51
|
Ishikawa K, Miura C, Maejima K, Komatsu K, Hashimoto M, Tomomitsu T, Fukuoka M, Yusa A, Yamaji Y, Namba S. Nucleocapsid protein from fig mosaic virus forms cytoplasmic agglomerates that are hauled by endoplasmic reticulum streaming. J Virol 2015; 89:480-91. [PMID: 25320328 PMCID: PMC4301128 DOI: 10.1128/jvi.02527-14] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 10/13/2014] [Indexed: 01/11/2023] Open
Abstract
UNLABELLED Although many studies have demonstrated intracellular movement of viral proteins or viral replication complexes, little is known about the mechanisms of their motility. In this study, we analyzed the localization and motility of the nucleocapsid protein (NP) of Fig mosaic virus (FMV), a negative-strand RNA virus belonging to the recently established genus Emaravirus. Electron microscopy of FMV-infected cells using immunogold labeling showed that NPs formed cytoplasmic agglomerates that were predominantly enveloped by the endoplasmic reticulum (ER) membrane, while nonenveloped NP agglomerates also localized along the ER. Likewise, transiently expressed NPs formed agglomerates, designated NP bodies (NBs), in close proximity to the ER, as was the case in FMV-infected cells. Subcellular fractionation and electron microscopic analyses of NP-expressing cells revealed that NBs localized in the cytoplasm. Furthermore, we found that NBs moved rapidly with the streaming of the ER in an actomyosin-dependent manner. Brefeldin A treatment at a high concentration to disturb the ER network configuration induced aberrant accumulation of NBs in the perinuclear region, indicating that the ER network configuration is related to NB localization. Dominant negative inhibition of the class XI myosins, XI-1, XI-2, and XI-K, affected both ER streaming and NB movement in a similar pattern. Taken together, these results showed that NBs localize in the cytoplasm but in close proximity to the ER membrane to form enveloped particles and that this causes passive movements of cytoplasmic NBs by ER streaming. IMPORTANCE Intracellular trafficking is a primary and essential step for the cell-to-cell movement of viruses. To date, many studies have demonstrated the rapid intracellular movement of viral factors but have failed to provide evidence for the mechanism or biological significance of this motility. Here, we observed that agglomerates of nucleocapsid protein (NP) moved rapidly throughout the cell, and we performed live imaging and ultrastructural analysis to identify the mechanism of motility. We provide evidence that cytoplasmic protein agglomerates were passively dragged by actomyosin-mediated streaming of the endoplasmic reticulum (ER) in plant cells. In virus-infected cells, NP agglomerates were surrounded by the ER membranes, indicating that NP agglomerates form the basis of enveloped virus particles in close proximity to the ER. Our work provides a sophisticated model of macromolecular trafficking in plant cells and improves our understanding of the formation of enveloped particles of negative-strand RNA viruses.
Collapse
Affiliation(s)
- Kazuya Ishikawa
- Laboratory of Plant Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Chihiro Miura
- Laboratory of Plant Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Kensaku Maejima
- Laboratory of Plant Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Ken Komatsu
- Laboratory of Plant Pathology, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Masayoshi Hashimoto
- Laboratory of Plant Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Tatsuya Tomomitsu
- Laboratory of Plant Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Misato Fukuoka
- Laboratory of Plant Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Akira Yusa
- Laboratory of Plant Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Yasuyuki Yamaji
- Laboratory of Plant Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Shigetou Namba
- Laboratory of Plant Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
52
|
Abstract
Advances in microscopy techniques applied to living cells have dramatically transformed our view of the actin cytoskeleton as a framework for cellular processes. Conventional fluorescence imaging and static analyses are useful for quantifying cellular architecture and the network of filaments that support vesicle trafficking, organelle movement, and response to biotic stress. However, new imaging techniques have revealed remarkably dynamic features of individual actin filaments and the mechanisms that underpin their construction and turnover. In this review, we briefly summarize knowledge about actin and actin-binding proteins in plant systems. We focus on the quantitative properties of the turnover of individual actin filaments, highlight actin-binding proteins that participate in actin dynamics, and summarize the current genetic evidence that has been used to dissect specific aspects of the stochastic dynamics model. Finally, we describe some signaling pathways in which recent data implicate changes in actin filament dynamics and the associated cytoplasmic responses.
Collapse
Affiliation(s)
- Jiejie Li
- Department of Biological Sciences and
| | | | | |
Collapse
|
53
|
Lang I, Sassmann S, Schmidt B, Komis G. Plasmolysis: Loss of Turgor and Beyond. PLANTS (BASEL, SWITZERLAND) 2014; 3:583-93. [PMID: 27135521 PMCID: PMC4844282 DOI: 10.3390/plants3040583] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 10/15/2014] [Accepted: 11/14/2014] [Indexed: 11/17/2022]
Abstract
Plasmolysis is a typical response of plant cells exposed to hyperosmotic stress. The loss of turgor causes the violent detachment of the living protoplast from the cell wall. The plasmolytic process is mainly driven by the vacuole. Plasmolysis is reversible (deplasmolysis) and characteristic to living plant cells. Obviously, dramatic structural changes are required to fulfill a plasmolytic cycle. In the present paper, the fate of cortical microtubules and actin microfilaments is documented throughout a plasmolytic cycle in living cells of green fluorescent protein (GFP) tagged Arabidopsis lines. While the microtubules became wavy and highly bundled during plasmolysis, cortical filamentous actin remained in close vicinity to the plasma membrane lining the sites of concave plasmolysis and adjusting readily to the diminished size of the protoplast. During deplasmolysis, cortical microtubule re-organization progressed slowly and required up to 24 h to complete the restoration of the original pre-plasmolytic pattern. Actin microfilaments, again, recovered faster and organelle movement remained intact throughout the whole process. In summary, the hydrostatic skeleton resulting from the osmotic state of the plant vacuole "overrules" the stabilization by cortical cytoskeletal elements.
Collapse
Affiliation(s)
- Ingeborg Lang
- Cell Imaging and Ultrastructure Research, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria.
| | - Stefan Sassmann
- Cell Imaging and Ultrastructure Research, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria.
| | - Brigitte Schmidt
- Cell Imaging and Ultrastructure Research, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria.
| | - George Komis
- CR-Hana, Palacký University Olomouc, Šlechtitelů 586/11, 783 71 Olomouc-Holice, Czech Republic.
| |
Collapse
|
54
|
Guan X, Buchholz G, Nick P. Actin marker lines in grapevine reveal a gatekeeper function of guard cells. JOURNAL OF PLANT PHYSIOLOGY 2014; 171:1164-1173. [PMID: 24973589 DOI: 10.1016/j.jplph.2014.03.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Revised: 01/26/2014] [Accepted: 03/11/2014] [Indexed: 06/03/2023]
Abstract
Resistance to abiotic and biotic stress is a central topic for sustainable agriculture, especially in grapevine, one of the field crops with the highest economic output per acreage. As early cellular factors for plant defense, actin microfilaments (AF) are of high relevance. We therefore generated a transgenic actin marker line for grapevine by expressing a fusion protein between green fluorescent protein and the second actin-binding domain of Arabidopsis (Arabidopsis thaliana) fimbrin, AtFIM1. Based on this first cytoskeletal-marker line in grapevine, the response of AFs to phytopathogenic microorganisms could be followed in vivo. Upon inoculation with fluorescently labeled strains of phytopathogenic bacteria, actin responses were confined to the guard cells. In contrast, upon contact with zoospores of Plasmopara viticola, not only the guard cells, but also epidermal pavement cells, where no zoospores had attached responded with the formation of a perinuclear actin basket. Our data support the hypothesis that guard cells act as pacemakers of defense, dominating the responses of the remaining epidermal cells.
Collapse
Affiliation(s)
- Xin Guan
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology, Kaiserstraße 2, D-76128 Karlsruhe, Germany; College of Horticulture and Landscape Architecture, Southwest University, 400716 Chongqing, China.
| | - Günther Buchholz
- RLP AgroScience/AlPlanta - Institute for Plant Research, Breitenweg 71, D-67435 Neustadt an der Weinstraße, Germany
| | - Peter Nick
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology, Kaiserstraße 2, D-76128 Karlsruhe, Germany
| |
Collapse
|
55
|
Matoušková J, Janda M, Fišer R, Sašek V, Kocourková D, Burketová L, Dušková J, Martinec J, Valentová O. Changes in actin dynamics are involved in salicylic acid signaling pathway. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 223:36-44. [PMID: 24767113 DOI: 10.1016/j.plantsci.2014.03.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 02/07/2014] [Accepted: 03/01/2014] [Indexed: 05/09/2023]
Abstract
Changes in actin cytoskeleton dynamics are one of the crucial players in many physiological as well as non-physiological processes in plant cells. Positioning of actin filament arrays is necessary for successful establishment of primary lines of defense toward pathogen attack, depolymerization leads very often to the enhanced susceptibility to the invading pathogen. On the other hand it was also shown that the disruption of actin cytoskeleton leads to the induction of defense response leading to the expression of PATHOGENESIS RELATED proteins (PR). In this study we show that pharmacological actin depolymerization leads to the specific induction of genes in salicylic acid pathway but not that involved in jasmonic acid signaling. Life imaging of leafs of Arabidopsis thaliana with GFP-tagged fimbrin (GFP-fABD2) treated with 1 mM salicylic acid revealed rapid disruption of actin filaments resembling the pattern viewed after treatment with 200 nM latrunculin B. The effect of salicylic acid on actin filament fragmentation was prevented by exogenous addition of phosphatidic acid, which binds to the capping protein and thus promotes actin polymerization. The quantitative evaluation of actin filament dynamics is also presented.
Collapse
Affiliation(s)
- Jindřiška Matoušková
- Department of Biochemistry and Microbiology, Institute of Chemical Technology Prague, Technická 3, 166 28 Prague 6, Czech Republic; Charles University in Prague, Faculty of Pharmacy in Hradec Králové, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Martin Janda
- Department of Biochemistry and Microbiology, Institute of Chemical Technology Prague, Technická 3, 166 28 Prague 6, Czech Republic
| | - Radovan Fišer
- Charles University in Prague, Faculty of Science, Albertov 2038/6, 128 00 Prague 2, Czech Republic
| | - Vladimír Sašek
- Institute of Experimental Botany, Academy of Science of the Czech Republic, Rozvojová 263, 165 02 Prague 6 - Lysolaje, Czech Republic
| | - Daniela Kocourková
- Institute of Experimental Botany, Academy of Science of the Czech Republic, Rozvojová 263, 165 02 Prague 6 - Lysolaje, Czech Republic
| | - Lenka Burketová
- Institute of Experimental Botany, Academy of Science of the Czech Republic, Rozvojová 263, 165 02 Prague 6 - Lysolaje, Czech Republic
| | - Jiřina Dušková
- Charles University in Prague, Faculty of Pharmacy in Hradec Králové, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Jan Martinec
- Institute of Experimental Botany, Academy of Science of the Czech Republic, Rozvojová 263, 165 02 Prague 6 - Lysolaje, Czech Republic
| | - Olga Valentová
- Department of Biochemistry and Microbiology, Institute of Chemical Technology Prague, Technická 3, 166 28 Prague 6, Czech Republic.
| |
Collapse
|
56
|
Dyachok J, Sparks JA, Liao F, Wang YS, Blancaflor EB. Fluorescent protein-based reporters of the actin cytoskeleton in living plant cells: Fluorophore variant, actin binding domain, and promoter considerations. Cytoskeleton (Hoboken) 2014; 71:311-27. [DOI: 10.1002/cm.21174] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 02/27/2014] [Accepted: 03/19/2014] [Indexed: 12/28/2022]
Affiliation(s)
- Julia Dyachok
- Plant Biology Division; The Samuel Roberts Noble Foundation; Ardmore Oklahoma
| | - J. Alan Sparks
- Plant Biology Division; The Samuel Roberts Noble Foundation; Ardmore Oklahoma
| | - Fuqi Liao
- Department of Computing Services; The Samuel Roberts Noble Foundation; Ardmore Oklahoma
| | - Yuh-Shuh Wang
- Plant Signal Research Group; Institute of Technology, University of Tartu; Nooruse 1 Tartu 50411 Estonia
| | | |
Collapse
|
57
|
Li R, Li J, Li S, Qin G, Novák O, Pěnčík A, Ljung K, Aoyama T, Liu J, Murphy A, Gu H, Tsuge T, Qu LJ. ADP1 affects plant architecture by regulating local auxin biosynthesis. PLoS Genet 2014; 10:e1003954. [PMID: 24391508 PMCID: PMC3879159 DOI: 10.1371/journal.pgen.1003954] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 09/26/2013] [Indexed: 01/30/2023] Open
Abstract
Plant architecture is one of the key factors that affect plant survival and productivity. Plant body structure is established through the iterative initiation and outgrowth of lateral organs, which are derived from the shoot apical meristem and root apical meristem, after embryogenesis. Here we report that ADP1, a putative MATE (multidrug and toxic compound extrusion) transporter, plays an essential role in regulating lateral organ outgrowth, and thus in maintaining normal architecture of Arabidopsis. Elevated expression levels of ADP1 resulted in accelerated plant growth rate, and increased the numbers of axillary branches and flowers. Our molecular and genetic evidence demonstrated that the phenotypes of plants over-expressing ADP1 were caused by reduction of local auxin levels in the meristematic regions. We further discovered that this reduction was probably due to decreased levels of auxin biosynthesis in the local meristematic regions based on the measured reduction in IAA levels and the gene expression data. Simultaneous inactivation of ADP1 and its three closest homologs led to growth retardation, relative reduction of lateral organ number and slightly elevated auxin level. Our results indicated that ADP1-mediated regulation of the local auxin level in meristematic regions is an essential determinant for plant architecture maintenance by restraining the outgrowth of lateral organs. Plant architecture is one of the key factors that affect plant survival and productivity. It is well established that the plant hormone auxin plays an essential role in organ initiation and pattern formation, thus affecting plant architecture. We found that a putative MATE (multidrug and toxic compound extrusion) transporter, ADP1, which was expressed in the meristematic regions, through regulating the level of auxin biosynthesis, controls lateral organ outgrowth so as to maintain normal architecture in Arabidopsis. The more ADP1 was expressed, the less levels of local auxin were detected in the meristematic regions of the plant, resulting in increased growth rate and a greater number of axillary branches and flowers. The reduction of auxin levels is probably due to decreased level of auxin biosynthesis in the local meristematic regions. Down-regulated expression of ADP1 and its three closely related genes caused plants to grow slower and to produce less lateral organs. Our results indicated that ADP1-mediated regulation of the local auxin levels in meristematic regions is an essential determinant for plant architecture by restraining the outgrowth of lateral organs.
Collapse
Affiliation(s)
- Ruixi Li
- State Key Laboratory of Protein and Plant Gene Research, Peking-Yale Joint Research Center for Plant Molecular Genetics and AgroBiotechnology, Peking-Tsinghua Center for Life Sciences, College of Life Sciences, Peking University, Beijing, People's Republic of China
| | - Jieru Li
- State Key Laboratory of Protein and Plant Gene Research, Peking-Yale Joint Research Center for Plant Molecular Genetics and AgroBiotechnology, Peking-Tsinghua Center for Life Sciences, College of Life Sciences, Peking University, Beijing, People's Republic of China
| | - Shibai Li
- State Key Laboratory of Protein and Plant Gene Research, Peking-Yale Joint Research Center for Plant Molecular Genetics and AgroBiotechnology, Peking-Tsinghua Center for Life Sciences, College of Life Sciences, Peking University, Beijing, People's Republic of China
| | - Genji Qin
- State Key Laboratory of Protein and Plant Gene Research, Peking-Yale Joint Research Center for Plant Molecular Genetics and AgroBiotechnology, Peking-Tsinghua Center for Life Sciences, College of Life Sciences, Peking University, Beijing, People's Republic of China
| | - Ondřej Novák
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, Sweden
- Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 21, Olomouc, Czech Republic
| | - Aleš Pěnčík
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Karin Ljung
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Takashi Aoyama
- Institute for Chemical Research, Kyoto University, Gokasho Uji, Kyoto, Japan
| | - Jingjing Liu
- State Key Laboratory of Protein and Plant Gene Research, Peking-Yale Joint Research Center for Plant Molecular Genetics and AgroBiotechnology, Peking-Tsinghua Center for Life Sciences, College of Life Sciences, Peking University, Beijing, People's Republic of China
| | - Angus Murphy
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana, United States of America
| | - Hongya Gu
- State Key Laboratory of Protein and Plant Gene Research, Peking-Yale Joint Research Center for Plant Molecular Genetics and AgroBiotechnology, Peking-Tsinghua Center for Life Sciences, College of Life Sciences, Peking University, Beijing, People's Republic of China
- National Plant Gene Research Center (Beijing), Beijing, People's Republic of China
| | - Tomohiko Tsuge
- Institute for Chemical Research, Kyoto University, Gokasho Uji, Kyoto, Japan
- * E-mail: (TT); (LJQ)
| | - Li-Jia Qu
- State Key Laboratory of Protein and Plant Gene Research, Peking-Yale Joint Research Center for Plant Molecular Genetics and AgroBiotechnology, Peking-Tsinghua Center for Life Sciences, College of Life Sciences, Peking University, Beijing, People's Republic of China
- National Plant Gene Research Center (Beijing), Beijing, People's Republic of China
- * E-mail: (TT); (LJQ)
| |
Collapse
|
58
|
Rosero A, Zárský V, Cvrčková F. Visualizing and quantifying the in vivo structure and dynamics of the Arabidopsis cortical cytoskeleton using CLSM and VAEM. Methods Mol Biol 2014; 1080:87-97. [PMID: 24132421 DOI: 10.1007/978-1-62703-643-6_7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The cortical microtubules, and to some extent also the actin meshwork, play a central role in the shaping of plant cells. Transgenic plants expressing fluorescent protein markers specifically tagging the two main cytoskeletal systems are available, allowing noninvasive in vivo studies. Advanced microscopy techniques, in particular confocal laser scanning microscopy (CLSM) and variable angle epifluorescence microscopy (VAEM), can be nowadays used for imaging the cortical cytoskeleton of living cells with unprecedented spatial and temporal resolution. With the aid of suitable computing techniques, quantitative information can be extracted from microscopic images and video sequences, providing insight into both architecture and dynamics of the cortical cytoskeleton.
Collapse
Affiliation(s)
- Amparo Rosero
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | | | | |
Collapse
|
59
|
Henty-Ridilla JL, Li J, Blanchoin L, Staiger CJ. Actin dynamics in the cortical array of plant cells. CURRENT OPINION IN PLANT BIOLOGY 2013; 16:678-87. [PMID: 24246228 DOI: 10.1016/j.pbi.2013.10.012] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 10/07/2013] [Accepted: 10/08/2013] [Indexed: 05/03/2023]
Abstract
The actin cytoskeleton changes in organization and dynamics as cellular functions are reprogrammed following responses to diverse stimuli, hormones, and developmental cues. How this is choreographed and what molecular players are involved in actin remodeling continues to be an area of intense scrutiny. Advances in imaging modalities and fluorescent fusion protein reporters have illuminated the strikingly dynamic behavior of single actin filaments at high spatial and temporal resolutions. This led to a model for the stochastic dynamic turnover of actin filaments and predicted the actions and responsibilities of several key actin-binding proteins. Recently, aspects of this model have been tested using powerful genetic strategies in both Arabidopsis and Physcomitrella. Collectively, the latest data emphasize the importance of filament severing activities and regulation of barbed-end availability as key facets of plant actin filament turnover.
Collapse
|
60
|
Park E, Nebenführ A. Myosin XIK of Arabidopsis thaliana accumulates at the root hair tip and is required for fast root hair growth. PLoS One 2013; 8:e76745. [PMID: 24116145 PMCID: PMC3792037 DOI: 10.1371/journal.pone.0076745] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2013] [Accepted: 08/28/2013] [Indexed: 11/19/2022] Open
Abstract
Myosin motor proteins are thought to carry out important functions in the establishment and maintenance of cell polarity by moving cellular components such as organelles, vesicles, or protein complexes along the actin cytoskeleton. In Arabidopsis thaliana, disruption of the myosin XIK gene leads to reduced elongation of the highly polar root hairs, suggesting that the encoded motor protein is involved in this cell growth. Detailed live-cell observations in this study revealed that xik root hairs elongated more slowly and stopped growth sooner than those in wild type. Overall cellular organization including the actin cytoskeleton appeared normal, but actin filament dynamics were reduced in the mutant. Accumulation of RabA4b-containing vesicles, on the other hand, was not significantly different from wild type. A functional YFP-XIK fusion protein that could complement the mutant phenotype accumulated at the tip of growing root hairs in an actin-dependent manner. The distribution of YFP-XIK at the tip, however, did not match that of the ER or several tip-enriched markers including CFP-RabA4b. We conclude that the myosin XIK is required for normal actin dynamics and plays a role in the subapical region of growing root hairs to facilitate optimal growth.
Collapse
Affiliation(s)
- Eunsook Park
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Andreas Nebenführ
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, United States of America
| |
Collapse
|
61
|
Baluška F, Mancuso S. Root apex transition zone as oscillatory zone. FRONTIERS IN PLANT SCIENCE 2013; 4:354. [PMID: 24106493 PMCID: PMC3788588 DOI: 10.3389/fpls.2013.00354] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 08/22/2013] [Indexed: 05/17/2023]
Abstract
Root apex of higher plants shows very high sensitivity to environmental stimuli. The root cap acts as the most prominent plant sensory organ; sensing diverse physical parameters such as gravity, light, humidity, oxygen, and critical inorganic nutrients. However, the motoric responses to these stimuli are accomplished in the elongation region. This spatial discrepancy was solved when we have discovered and characterized the transition zone which is interpolated between the apical meristem and the subapical elongation zone. Cells of this zone are very active in the cytoskeletal rearrangements, endocytosis and endocytic vesicle recycling, as well as in electric activities. Here we discuss the oscillatory nature of the transition zone which, together with several other features of this zone, suggest that it acts as some kind of command center. In accordance with the early proposal of Charles and Francis Darwin, cells of this root zone receive sensory information from the root cap and instruct the motoric responses of cells in the elongation zone.
Collapse
Affiliation(s)
- František Baluška
- Institute of Cellular and Molecular Botany, Department of Plant Cell Biology, University of BonnBonn, Germany
| | - Stefano Mancuso
- LINV – DiSPAA, Department of Agri-Food and Environmental Science, University of FlorenceSesto Fiorentino, Italy
| |
Collapse
|
62
|
Cevher-Keskin B. ARF1 and SAR1 GTPases in endomembrane trafficking in plants. Int J Mol Sci 2013; 14:18181-99. [PMID: 24013371 PMCID: PMC3794775 DOI: 10.3390/ijms140918181] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2013] [Revised: 08/19/2013] [Accepted: 08/20/2013] [Indexed: 01/06/2023] Open
Abstract
Small GTPases largely control membrane traffic, which is essential for the survival of all eukaryotes. Among the small GTP-binding proteins, ARF1 (ADP-ribosylation factor 1) and SAR1 (Secretion-Associated RAS super family 1) are commonly conserved among all eukaryotes with respect to both their functional and sequential characteristics. The ARF1 and SAR1 GTP-binding proteins are involved in the formation and budding of vesicles throughout plant endomembrane systems. ARF1 has been shown to play a critical role in COPI (Coat Protein Complex I)-mediated retrograde trafficking in eukaryotic systems, whereas SAR1 GTPases are involved in intracellular COPII-mediated protein trafficking from the ER to the Golgi apparatus. This review offers a summary of vesicular trafficking with an emphasis on the ARF1 and SAR1 expression patterns at early growth stages and in the de-etiolation process.
Collapse
Affiliation(s)
- Birsen Cevher-Keskin
- Plant Molecular Biology Laboratory, Genetic Engineering and Biotechnology Institute, Marmara Research Center, The Scientific and Technical Research Council of Turkey, TUBITAK, P.O. Box: 21, Gebze 41470, Kocaeli, Turkey.
| |
Collapse
|
63
|
Stable transformation and actin visualization in callus cultures of dodder (Cuscuta europaea). Biologia (Bratisl) 2013. [DOI: 10.2478/s11756-013-0188-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
64
|
Venus Y, Oelmüller R. Arabidopsis ROP1 and ROP6 influence germination time, root morphology, the formation of F-actin bundles, and symbiotic fungal interactions. MOLECULAR PLANT 2013; 6:872-86. [PMID: 23118477 DOI: 10.1093/mp/sss101] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The RHO-related GTPases ROP1 and ROP6 and the ROP1-interacting protein RIC4 in Arabidopsis are involved in various processes of F-actin dynamics, cell growth, and plant/microbe interactions. The knockout rop1 and rop1 rop6 seeds germinate earlier and are impaired in root hair development. Also root hair branching is strongly affected by manipulation of the RHO-related GTPase (ROP) levels. Furthermore, in the double knockout line rop1 rop6, no actin bundle formation can be detected. We demonstrate that these proteins are required for establishing a mutualistic interaction between the root-colonizing endophytic fungus Piriformospora indica and Arabidopsis. The fungus promotes growth of wild-type plants. rop1, rop6, rop1 rop6, ric4, 35S::ROP1, and 35S::ROP6 seedlings are impaired in the response to the fungus. Since the different root architectures have no effect on root colonization, the impaired response to P. indica should be caused by ROP-mediated events in the root cells. In wild-type roots, P. indica stimulates the formation of F-actin bundles and this does not occur in the rop1 rop6 knockout line. Furthermore, the fungus stimulates the expression of the calmodulin-binding protein gene Cbp60g, and this response is severely reduced in the rop mutants. We propose that ROP1 and ROP6 are required for F-actin bundle formation in the roots, which is required for P. indica-mediated growth promotion in Arabidopsis.
Collapse
Affiliation(s)
- Yvonne Venus
- Institut für Allgemeine Botanik und Pflanzenphysiologie, Friedrich-Schiller-Universität Jena, Dornburger Straβe 159, D-07743 Jena, Germany
| | | |
Collapse
|
65
|
Blancaflor EB. Regulation of plant gravity sensing and signaling by the actin cytoskeleton. AMERICAN JOURNAL OF BOTANY 2013; 100:143-52. [PMID: 23002165 DOI: 10.3732/ajb.1200283] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Gravitropism is a process by which plant organs readjust their growth toward or away from the gravity vector when the plant is reoriented. The actin cytoskeleton has often been a significant component of models explaining gravitropism, but its role in this process has become somewhat controversial in light of reports showing that actin inhibitors enhance the gravitropic response. The work with inhibitors implies that actin might function as a negative regulator of gravitropism. In this article, possibilities for how such a role might be accomplished are presented. First, the organization of actin in statocytes is revisited in an attempt to rationalize how compressive forces exerted by statoliths on membranes can lead to enhanced gravity sensing. Second, recent genetic work in the model plant Arabidopsis thaliana is discussed, focusing on the potential involvement of the protein degradation machinery in actin-mediated control of statolith dynamics and on the intriguing possibility that an actin-regulated, ligand-receptor mechanism for gravity signal transduction might operate in higher plants. Third, modifications in the trafficking of auxin efflux transporters are considered as possible mechanisms for the enhanced gravity responses observed in plant organs when the actin cytoskeleton is disrupted by chemical inhibitors. The various possibilities presented in this review emphasize the large amount of research that remains to be done before we can fully understand how the actin cytoskeleton modulates tropisms in higher plants.
Collapse
Affiliation(s)
- Elison B Blancaflor
- Plant Biology Division, The Samuel Roberts Noble Foundation Inc., 2510 Sam Noble Parkway, Ardmore, Oklahoma 73401, USA.
| |
Collapse
|
66
|
Role of actin cytoskeleton in brassinosteroid signaling and in its integration with the auxin response in plants. Dev Cell 2012; 22:1275-85. [PMID: 22698285 DOI: 10.1016/j.devcel.2012.04.008] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Revised: 02/10/2012] [Accepted: 04/11/2012] [Indexed: 01/13/2023]
Abstract
In plants, developmental programs and tropisms are modulated by the phytohormone auxin. Auxin reconfigures the actin cytoskeleton, which controls polar localization of auxin transporters such as PIN2 and thus determines cell-type-specific responses. In conjunction with a second growth-promoting phytohormone, brassinosteroid (BR), auxin synergistically enhances growth and gene transcription. We show that BR alters actin configuration and PIN2 localization in a manner similar to that of auxin. We describe a BR constitutive-response mutant that bears an allele of the ACTIN2 gene and shows altered actin configuration, PIN2 delocalization, and a broad array of phenotypes that recapitulate BR-treated plants. Moreover, we show that actin filament reconfiguration is sufficient to activate BR signaling, which leads to an enhanced auxin response. Our results demonstrate that the actin cytoskeleton functions as an integration node for the BR signaling pathway and auxin responsiveness.
Collapse
|
67
|
Jung SR, Seo JB, Shim D, Hille B, Koh DS. Actin cytoskeleton controls movement of intracellular organelles in pancreatic duct epithelial cells. Cell Calcium 2012; 51:459-69. [PMID: 22579052 DOI: 10.1016/j.ceca.2012.04.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Revised: 04/06/2012] [Accepted: 04/09/2012] [Indexed: 12/01/2022]
Abstract
In most eukaryotic cells, microtubules and filamentous actin (F-actin) provide tracks on which intracellular organelles move using molecular motors. Here we report that cytoplasmic movement of both mitochondria and lysosomes is slowed by F-actin meshwork formation in pancreatic duct epithelial cells (PDEC). Mitochondria and lysosomes were labeled with fluorescent Mitotracker Red CMXRos and Lysotracker Red DND-99, respectively, and their movements were monitored using epi-fluorescence and confocal microscopy. Mitochondria and lysosomes moving actively at rest stopped rapidly within several seconds after an intracellular Ca(2+) rise induced by activation of P2Y(2) purinergic receptors. The 'freezing' of the organelles was inhibited by blocking the Ca(2+) rise or by pretreatment with latrunculin B, an inhibitor of F-actin formation. Indeed, this freezing effect on the organelles was accompanied by the formation of F-actin in the whole cytoplasm as stained with Alexa 488-phalloidin in fixed PDEC. For real-time monitoring of F-actin formation in live cells, we expressed sGFP-fimbrin actin binding domain2 (fABD2) in PDEC. Rapid recruitment of the fluorescent probe near the nucleus and lysosomes suggested dense F-actin formation around intracellular structures. The development of F-actin paralleled that of organelle freezing. We conclude that rapid Ca(2+)-dependent F-actin formation physically restrains intracellular organelles and reduces their mobility non-selectively in PDEC.
Collapse
Affiliation(s)
- Seung-Ryoung Jung
- Department of Physiology and Biophysics, University of Washington, Seattle, 98195, United States
| | | | | | | | | |
Collapse
|
68
|
Liu P, Qi M, Xue X, Ren H. Dynamics and functions of the actin cytoskeleton during the plant cell cycle. ACTA ACUST UNITED AC 2011. [DOI: 10.1007/s11434-011-4801-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
69
|
van der Honing HS, van Bezouwen LS, Emons AMC, Ketelaar T. High expression of Lifeact in Arabidopsis thaliana reduces dynamic reorganization of actin filaments but does not affect plant development. Cytoskeleton (Hoboken) 2011; 68:578-87. [PMID: 21948789 DOI: 10.1002/cm.20534] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Revised: 09/01/2011] [Accepted: 09/09/2011] [Indexed: 01/12/2023]
Abstract
Lifeact is a novel probe that labels actin filaments in a wide range of organisms. We compared the localization and reorganization of Lifeact:Venus-labeled actin filaments in Arabidopsis root hairs and root epidermal cells of lines that express different levels of Lifeact: Venus with that of actin filaments labeled with GFP:FABD2, a commonly used probe in plants. Unlike GFP:FABD2, Lifeact:Venus labeled the highly dynamic fine F-actin in the subapical region of tip-growing root hairs. Lifeact:Venus expression at varying levels was not observed to affect plant development. However, at expression levels comparable to those of GFP:FABD2 in a well-characterized marker line, Lifeact:Venus reduced reorganization rates of bundles of actin filaments in root epidermal cells. Reorganization rates of cytoplasmic strands, which reflect the reorganization of the actin cytoskeleton, were also reduced in these lines. Moreover, in the same line, Lifeact:Venus-decorated actin filaments were more resistant to depolymerization by latrunculin B than those in an equivalent GFP:FABD2-expressing line. In lines where Lifeact: Venus is expressed at lower levels, these effects are less prominent or even absent. We conclude that Lifeact: Venus reduces remodeling of the actin cytoskeleton in Arabidopsis in a concentration-dependent manner. Since this reduction occurs at expression levels that do not cause defects in plant development, selection of normally growing plants is not sufficient to determine optimal Lifeact expression levels. When correct expression levels of Lifeact have been determined, it is a valuable probe that labels dynamic populations of actin filaments such as fine F-actin, better than FABD2 does.
Collapse
|
70
|
Fan JL, Wei XZ, Wan LC, Zhang LY, Zhao XQ, Liu WZ, Hao HQ, Zhang HY. Disarrangement of actin filaments and Ca²⁺ gradient by CdCl₂ alters cell wall construction in Arabidopsis thaliana root hairs by inhibiting vesicular trafficking. JOURNAL OF PLANT PHYSIOLOGY 2011; 168:1157-67. [PMID: 21497412 DOI: 10.1016/j.jplph.2011.01.031] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Revised: 01/03/2011] [Accepted: 01/27/2011] [Indexed: 05/08/2023]
Abstract
Cadmium (Cd), one of the most toxic heavy metals, inhibits many cellular and physiological processes in plants. Here, the involvement of cytoplasmic Ca²⁺ gradient and actin filaments (AFs) in vesicular trafficking, cell wall deposition and tip growth was investigated during root (hair) development of Arabidopsis thaliana in response to CdCl₂ treatment. Seed germination and root elongation were prevented in a dose- and time-dependent manner by CdCl₂ treatment. Fluorescence labelling and non-invasive detection showed that CdCl₂ inhibited extracellular Ca²⁺ influx, promoted intracellular Ca²⁺ efflux, and disturbed the cytoplasmic tip-focused Ca²⁺ gradient. In vivo labelling revealed that CdCl₂ modified actin organization, which subsequently contributed to vesicle trafficking. Transmission electron microscopy revealed that CdCl₂ induced cytoplasmic vacuolization and was detrimental to organelles such as mitochondria and endoplasmic reticulum (ER). Finally, immunofluorescent labelling and Fourier transform infrared (FTIR) analysis indicated that configuration/distribution of cell wall components such as pectins and cellulose was significantly altered in response to CdCl₂. Our results indicate that CdCl₂ induces disruption of Ca²⁺ gradient and AFs affects the distribution of cell wall components in root hairs by disturbing vesicular trafficking in A. thaliana.
Collapse
Affiliation(s)
- Jun-Ling Fan
- Key Laboratory of Photosynthesis and Molecular Environmental Physiology, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing 100093, China
| | | | | | | | | | | | | | | |
Collapse
|
71
|
Skau CT, Courson DS, Bestul AJ, Winkelman JD, Rock RS, Sirotkin V, Kovar DR. Actin filament bundling by fimbrin is important for endocytosis, cytokinesis, and polarization in fission yeast. J Biol Chem 2011; 286:26964-77. [PMID: 21642440 DOI: 10.1074/jbc.m111.239004] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Through the coordinated action of diverse actin-binding proteins, cells simultaneously assemble actin filaments with distinct architectures and dynamics to drive different processes. Actin filament cross-linking proteins organize filaments into higher order networks, although the requirement of cross-linking activity in cells has largely been assumed rather than directly tested. Fission yeast Schizosaccharomyces pombe assembles actin into three discrete structures: endocytic actin patches, polarizing actin cables, and the cytokinetic contractile ring. The fission yeast filament cross-linker fimbrin Fim1 primarily localizes to Arp2/3 complex-nucleated branched filaments of the actin patch and by a lesser amount to bundles of linear antiparallel filaments in the contractile ring. It is unclear whether Fim1 associates with bundles of parallel filaments in actin cables. We previously discovered that a principal role of Fim1 is to control localization of tropomyosin Cdc8, thereby facilitating cofilin-mediated filament turnover. Therefore, we hypothesized that the bundling ability of Fim1 is dispensable for actin patches but is important for the contractile ring and possibly actin cables. By directly visualizing actin filament assembly using total internal reflection fluorescence microscopy, we determined that Fim1 bundles filaments in both parallel and antiparallel orientations and efficiently bundles Arp2/3 complex-branched filaments in the absence but not the presence of actin capping protein. Examination of cells exclusively expressing a truncated version of Fim1 that can bind but not bundle actin filaments revealed that bundling activity of Fim1 is in fact important for all three actin structures. Therefore, fimbrin Fim1 has diverse roles as both a filament "gatekeeper" and as a filament cross-linker.
Collapse
Affiliation(s)
- Colleen T Skau
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago Illinois 60637, USA
| | | | | | | | | | | | | |
Collapse
|
72
|
Zhang Y, Xiao Y, Du F, Cao L, Dong H, Ren H. Arabidopsis VILLIN4 is involved in root hair growth through regulating actin organization in a Ca2+-dependent manner. THE NEW PHYTOLOGIST 2011; 190:667-82. [PMID: 21275995 DOI: 10.1111/j.1469-8137.2010.03632.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
• Villin is one of the major actin filament bundling proteins in plants. The function of Arabidopsis VILLINs (AtVLNs) is still poorly understood in living cells. In this report, the biochemical activity and cellular function of AtVLN4 were examined. • The biochemical property of AtVLN4 was characterized by co-sedimentation assays, fluorescence microscopy and spectroscopy of pyrene fluorescence. The in vivo function of AtVLN4 was analysed by ectopically expressing it in tobacco pollen and examining the phenotypes of its T-DNA insertional plants. • Recombinant AtVLN4 protein exhibited multiple activities on actin, including actin filament bundling, calcium (Ca(2+))-dependent filament severing and barbed end capping. Expression of AtVLN4 in tobacco pollen induced the formation of supernumerary actin cables and reduced pollen tube growth. Loss of function of AtVLN4 resulted in slowing of root hair growth, alteration in cytoplasmic streaming routes and rate, and reduction of both axial and apical actin bundles. • Our results demonstrated that AtVLN4 is involved in root hair growth through regulating actin organization in a Ca(2+)-dependent manner.
Collapse
Affiliation(s)
- Yi Zhang
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education and College of Life Science, Beijing Normal University, Beijing, China
| | | | | | | | | | | |
Collapse
|
73
|
Du F, Ren H. Development and application of probes for labeling the actin cytoskeleton in living plant cells. PROTOPLASMA 2011; 248:239-50. [PMID: 20803158 DOI: 10.1007/s00709-010-0202-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Accepted: 08/14/2010] [Indexed: 05/15/2023]
Abstract
The actin cytoskeleton is one of the most important components of eukaryotic cytoskeletons. It participates in numerous crucial procedures of cells and has been studied by using various methods. The development and application of appropriate probes for actin visualization is the first and foremost step for functional analysis of actin in vivo. Since the actin cytoskeleton is a highly dynamic and sensitive structure, methods previously used to visualize actin often harm cells and cannot reveal the native state of the actin cytoskeleton in living cells. The development of labeling technologies for living plant cells, especially the emergence and application of green fluorescent protein-tagged actin markers, has provided new insights into the structure and function of the actin cytoskeleton in vivo. There has been a number of probes for actin labeling in living plant cells though they each present different advantages and defects. In this review, we discuss and compare those widely used methods for actin visualization and analysis.
Collapse
Affiliation(s)
- Fei Du
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Science, Beijing Normal University, Beijing, 100875, China
| | | |
Collapse
|
74
|
Shi L, Wang B, Gong W, Zhang Y, Zhu L, Yang X. Actin filaments and microtubules of Arabidopsis suspension cells show different responses to changing turgor pressure. Biochem Biophys Res Commun 2011; 405:632-7. [PMID: 21277286 DOI: 10.1016/j.bbrc.2011.01.081] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Accepted: 01/22/2011] [Indexed: 11/16/2022]
Abstract
Past decades have brought great advances in understanding the relationship between turgor pressure and plant cell growth. New studies have provided evidence that turgor pressure acts as a stimulus for cell growth, and is also a developmental cue for post-embryonic organogenesis. However, the subcellular mechanisms underlying plant cell turgor pressure sensing remain unclear. Here, using the relatively simple undifferentiated cells from suspension cultures, we report real-time in vivo observations of the reorganization of microtubules and actin microfilaments induced by turgor pressure changes. We found that these two cytoskeletal elements differed in their reorganization patterns. Our results will be useful in the understanding of the relationship between the cytoskeleton, turgor pressure, and stress in plant cell morphogenesis.
Collapse
Affiliation(s)
- Lanchun Shi
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, PR China
| | | | | | | | | | | |
Collapse
|
75
|
|
76
|
Intracellular Movements: Integration at the Cellular Level as Reflected in the Organization of Organelle Movements. MECHANICAL INTEGRATION OF PLANT CELLS AND PLANTS 2011. [DOI: 10.1007/978-3-642-19091-9_4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
77
|
Takác T, Pechan T, Richter H, Müller J, Eck C, Böhm N, Obert B, Ren H, Niehaus K, Samaj J. Proteomics on brefeldin A-treated Arabidopsis roots reveals profilin 2 as a new protein involved in the cross-talk between vesicular trafficking and the actin cytoskeleton. J Proteome Res 2010; 10:488-501. [PMID: 21090759 DOI: 10.1021/pr100690f] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The growing importance of vesicular trafficking and cytoskeleton dynamic reorganization during plant development requires the exploitation of novel experimental approaches. Several genetic and cell biological studies have used diverse pharmaceutical drugs that inhibit vesicular trafficking and secretion to study these phenomena. Here, proteomic and cell biology approaches were applied to study effects of brefeldin A (BFA), an inhibitor of vesicle recycling and secretion, in Arabidopsis roots. The main aim of this study was to obtain an overview of proteins affected by BFA, but especially to identify new proteins involved in the vesicular trafficking and its cross-talk to the actin cytoskeleton. The results showed that BFA altered vesicular trafficking and caused the formation of BFA-compartments which was accompanied by differential expression of several proteins in root cells. Some of the BFA-up-regulated proteins belong to the class of the vesicular trafficking proteins, such as V-ATPase and reversibly glycosylated polypeptide, while others, such as profilin 2 and elongation factor 1 alpha, are rather involved in the remodeling of the actin cytoskeleton. Upregulation of profilin 2 by BFA was verified by immunoblot and live imaging at subcellular level. The latter approach also revealed that profilin 2 accumulated in BFA-compartments which was accompanied by remodeling of the actin cytoskeleton in BFA-treated root cells. Thus, profilin 2 seems to be involved in the cross-talk between vesicular trafficking and the actin cytoskeleton, in a BFA-dependent manner.
Collapse
Affiliation(s)
- Tomás Takác
- Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Department of Cell Biology, Palacký University, Olomouc, Czech Republic.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Ovecka M, Berson T, Beck M, Derksen J, Samaj J, Baluska F, Lichtscheidl IK. Structural sterols are involved in both the initiation and tip growth of root hairs in Arabidopsis thaliana. THE PLANT CELL 2010; 22:2999-3019. [PMID: 20841426 PMCID: PMC2965552 DOI: 10.1105/tpc.109.069880] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Revised: 07/21/2010] [Accepted: 08/18/2010] [Indexed: 05/22/2023]
Abstract
Structural sterols are abundant in the plasma membrane of root apex cells in Arabidopsis thaliana. They specifically accumulate in trichoblasts during the prebulging and bulge stages and show a polar accumulation in the tip during root hair elongation but are distributed evenly in mature root hairs. Thus, structural sterols may serve as a marker for root hair initiation and growth. In addition, they may predict branching events in mutants with branching root hairs. Structural sterols were detected using the sterol complexing fluorochrome filipin. Application of filipin caused a rapid, concentration-dependent decrease in tip growth. Filipin-complexed sterols accumulated in globular structures that fused to larger FM4-64-positive aggregates in the tip, so-called filipin-induced apical compartments, which were closely associated with the plasma membrane. The plasma membrane appeared malformed and the cytoarchitecture of the tip zone was affected. Trans-Golgi network/early endosomal compartments containing molecular markers, such as small Rab GTPase RabA1d and SNARE Wave line 13 (VTI12), locally accumulated in these filipin-induced apical compartments, while late endosomes, endoplasmic reticulum, mitochondria, plastids, and cytosol were excluded from them. These data suggest that the local distribution and apical accumulation of structural sterols may regulate vesicular trafficking and plasma membrane properties during both initiation and tip growth of root hairs in Arabidopsis.
Collapse
Affiliation(s)
- Miroslav Ovecka
- Core Facility of Cell Imaging and Ultrastructure Research, University of Viena, A-1090 Viena, Austria.
| | | | | | | | | | | | | |
Collapse
|
79
|
Smertenko AP, Deeks MJ, Hussey PJ. Strategies of actin reorganisation in plant cells. J Cell Sci 2010; 123:3019-28. [DOI: 10.1242/jcs.071126] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Spatial-temporal flexibility of the actin filament network (F-actin) is essential for all basic cellular functions and is governed by a stochastic dynamic model. In this model, actin filaments that randomly polymerise from a pool of free actin are bundled with other filaments and severed by ADF/cofilin. The fate of the severed fragments is not known. It has been proposed that the fragments are disassembled and the monomeric actin recycled for the polymerisation of new filaments. Here, we have generated tobacco cell lines and Arabidopsis plants expressing the actin marker Lifeact to address the mechanisms of F-actin reorganisation in vivo. We found that F-actin is more dynamic in isotropically expanding cells and that the density of the network changes with a periodicity of 70 seconds. The depolymerisation rate, but not the polymerisation rate, of F-actin increases when microtubules are destabilised. New filaments can be assembled from shorter free cytoplasmic fragments, from the products of F-actin severing and by polymerisation from the ends of extant filaments. Thus, remodelling of F-actin might not require bulk depolymerisation of the entire network, but could occur via severing and end-joining of existing polymers.
Collapse
Affiliation(s)
- Andrei P. Smertenko
- School of Biological and Biomedical Sciences, University of Durham, South Road, Durham DH1 3LE, UK
| | - Michael J. Deeks
- School of Biological and Biomedical Sciences, University of Durham, South Road, Durham DH1 3LE, UK
| | - Patrick J. Hussey
- School of Biological and Biomedical Sciences, University of Durham, South Road, Durham DH1 3LE, UK
| |
Collapse
|
80
|
Kriegs B, Jansen M, Hahn K, Peisker H, Šamajová O, Beck M, Braun S, Ulbrich A, Baluška F, Schulz M. Cyclic monoterpene mediated modulations of Arabidopsis thaliana phenotype: effects on the cytoskeleton and on the expression of selected genes. PLANT SIGNALING & BEHAVIOR 2010; 5:832-8. [PMID: 20484979 PMCID: PMC3115032 DOI: 10.4161/psb.5.7.12032] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Revised: 02/26/2010] [Accepted: 04/07/2010] [Indexed: 05/07/2023]
Abstract
Monoterpenes at high atmospheric concentrations are strong growth inhibitors in allelopathic interactions. Effects depend on dose, molecular structure of the monoterpene and on the species of the receiver plant. Stomata are among the first targets affected by camphor and menthol. Previously, it could be demonstrated that the compounds induce swelling of the protoplasts, prevent stomatal closure and enhance transpiration. In this study, we show that the block of stomatal closure is accompanied by changes to the cytoskeleton, which has a direct role in stomatal movements. Although MPK3 (MAP3 kinase) and ABF4 gene expressions are induced within six hours, stomatal closure is prevented. In contrast to ABF4, ABF2 (both transcription factors) is not induced. MPK3 and ABF4 both encode for proteins involved in the process of stomatal closure. The expression of PEPCase, an enzyme important for stomatal opening, is down regulated. The leaves develop stress symptoms, mirrored by transient changes in the expression profile of additional genes: lipoxygenase 2 (LOX2), CER5, CER6 (both important for wax production) and RD29B (an ABA inducible stress protein). Non-invasive methods showed a fast response of the plant to camphor fumigations both in a rapid decrease of the quantum yield and in the relative growth rate. Repeated exposures to the monoterpenes resulted finally in growth reduction and a stress related change in the phenotype. It is proposed that high concentrations or repeated exposure to monoterpenes led to irreversible damages, whereas low concentrations or short-term fumigations may have the potential to strengthen the plant fitness.
Collapse
Affiliation(s)
- Bettina Kriegs
- IMBIO (Institut für Molekulare Physiologie und Biotechnologie der Pflanzen); Universität Bonn; Bonn, Germany
| | - Marcus Jansen
- ICG-3-Phytosphäre; Forschungszentrum Jülich GmbH; Jülich, Germany
| | - Katrin Hahn
- IMBIO (Institut für Molekulare Physiologie und Biotechnologie der Pflanzen); Universität Bonn; Bonn, Germany
| | - Helga Peisker
- IMBIO (Institut für Molekulare Physiologie und Biotechnologie der Pflanzen); Universität Bonn; Bonn, Germany
| | - Olga Šamajová
- IZMB (Institut für Zelluläre und Molekulare Botanik) Universität Bonn; Bonn, Germany
- Centre of the Region Hana for Biotechnological and Agricultural Research; Faculty of Science; Palacky University; Olomouc, Czech Republic
| | - Martina Beck
- IZMB (Institut für Zelluläre und Molekulare Botanik) Universität Bonn; Bonn, Germany
| | - Silvia Braun
- ICG-3-Phytosphäre; Forschungszentrum Jülich GmbH; Jülich, Germany
| | - Andreas Ulbrich
- ICG-3-Phytosphäre; Forschungszentrum Jülich GmbH; Jülich, Germany
- Fachhochschule Osnabrück; Gemüseproduktion und Verarbeitung; Osnabrück, Germany
| | - František Baluška
- IZMB (Institut für Zelluläre und Molekulare Botanik) Universität Bonn; Bonn, Germany
| | - Margot Schulz
- IMBIO (Institut für Molekulare Physiologie und Biotechnologie der Pflanzen); Universität Bonn; Bonn, Germany
| |
Collapse
|
81
|
Wang C, Zhang L, Yuan M, Ge Y, Liu Y, Fan J, Ruan Y, Cui Z, Tong S, Zhang S. The microfilament cytoskeleton plays a vital role in salt and osmotic stress tolerance in Arabidopsis. PLANT BIOLOGY (STUTTGART, GERMANY) 2010; 12:70-8. [PMID: 20653889 DOI: 10.1111/j.1438-8677.2009.00201.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Although recent studies have suggested that the microfilament (MF) cytoskeleton of plant cells participates in the response to salt stress, it remains unclear as to whether the MF cytoskeleton actually plays an active role in a plant's ability to withstand salt stress. In the present study, we report for the first time the role of MFs in salt tolerance of Arabidopsis thaliana. Our experiments revealed that Arabidopsis seedlings treated with 150 mm NaCl maintained MF assembly and bundle formation, whereas treatment with 250 mm NaCl initially induced MF assembly but subsequently caused MF disassembly. A corresponding change in the fluorescence intensity of MFs was also observed; that is, a sustained rise in fluorescence intensity in seedlings exposed to 150 mm NaCl and an initial rise and subsequent fall in seedlings exposed to 250 mm NaCl. These results suggest that MF assembly and bundles are induced early after salt stress treatment, while MF polymerization disappears after high salt stress. Facilitation of MF assembly with phalloidin rescued wild-type seedlings from death, whereas blocking MFs assembly with latrunculin A and cytochalasin D resulted in few survivors under salt stress. Pre-treatment of seedlings with phalloidin also clearly increased plant ability to withstand salt stress. MF assembly increased survival of Arabidopsis salt-sensitive sos2 mutants under salt stress and rescued defective sos2 mutants. Polymerization of MFs and its role in promoting survival was also found in plants exposed to osmotic stress. These findings suggest that the MF cytoskeleton participates and plays a vital role in responses to salt and osmotic stress in Arabidopsis.
Collapse
Affiliation(s)
- C Wang
- Biological Science and Technology College, Shenyang Agricultural University, Shenyang, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
82
|
The coiled-coil domain of EHD2 mediates inhibition of LeEix2 endocytosis and signaling. PLoS One 2009; 4:e7973. [PMID: 19936242 PMCID: PMC2775675 DOI: 10.1371/journal.pone.0007973] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Accepted: 10/28/2009] [Indexed: 11/29/2022] Open
Abstract
Endocytosis has been suggested to be crucial for the induction of plant immunity in several cases. We have previously shown that two Arabidopsis proteins, AtEHD1 and AtEHD2, are involved in endocytosis in plant systems. AtEHD2 has an inhibitory effect on endocytosis of transferrin, FM-4-64, and LeEix2. There are many works in mammalian systems detailing the importance of the various domains in EHDs but, to date, the domains of plant EHD2 that are required for its inhibitory activity on endocytosis remained unknown. In this work we demonstrate that the coiled-coil domain of EHD2 is crucial for the ability of EHD2 to inhibit endocytosis in plants, as mutant EHD2 forms lacking the coiled-coil lost the ability to inhibit endocytosis and signaling of LeEix2. The coiled-coil was also required for binding of EHD2 to the LeEix2 receptor. It is therefore probable that binding of EHD2 to the LeEix2 receptor is required for inhibition of LeEix2 internalization. We also show herein that the P-loop of EHD2 is important for EHD2 to function properly. The EH domain of AtEHD2 does not appear to be involved in inhibition of endocytosis. Moreover, AtEHD2 influences actin organization and may exert its inhibitory effect on endocytosis through actin re-distribution. The coiled-coil domain of EHD2 functions in inhibition of endocytosis, while the EH domain does not appear to be involved in inhibition of endocytosis.
Collapse
|
83
|
Thomas C, Tholl S, Moes D, Dieterle M, Papuga J, Moreau F, Steinmetz A. Actin bundling in plants. ACTA ACUST UNITED AC 2009; 66:940-57. [DOI: 10.1002/cm.20389] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
84
|
A rapid tracking method for the quantitative analysis of organelle streaming velocity. Methods Mol Biol 2009. [PMID: 19768435 DOI: 10.1007/978-1-60761-376-3_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
A key to understanding cytoskeletal mechanisms of eukaryotic cells is found in their internal motility. In many plant cell types, these motile events, termed "cytoplasmic streaming", are very impressive with rapid movement of organelles over long distances. Like many other features of cytoplasmic streaming, organelle velocity is determined by acto-myosin-related mechanisms. Therefore, the quantification of streaming velocity aids the characterization of important factors contributing to cytoskeleton function. Usually, the movement velocity varies greatly between particles and exhibits rapid changes. This complexity makes measurements very cumbersome and requires large cell numbers and a lot of imaging data for statistical evaluation. Focusing on a triplet of rapidly moving organelles in a single cell proved to be an efficient method for determining organelle displacement in a direct, standardized manner. This approach requires only a few cells and allows the evaluation of potential factors involved in cytoplasmic streaming with a relatively low temporal and technical effort. This chapter evaluates two examples that show the high sensitivity of the method in the detection of differences in organelle streaming velocities. These include the retardation of streaming upon myosin inhibition and a similar, but much less expected, response following the overexpression of actin-binding proteins.
Collapse
|
85
|
Zhang Y, Zhang W, Baluska F, Menzel D, Ren H. Dynamics and roles of phragmoplast microfilaments in cell plate formation during cytokinesis of tobacco BY-2 cells. Sci Bull (Beijing) 2009. [DOI: 10.1007/s11434-009-0265-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
86
|
Zheng M, Beck M, Müller J, Chen T, Wang X, Wang F, Wang Q, Wang Y, Baluška F, Logan DC, Šamaj J, Lin J. Actin turnover is required for myosin-dependent mitochondrial movements in Arabidopsis root hairs. PLoS One 2009; 4:e5961. [PMID: 19536333 PMCID: PMC2694364 DOI: 10.1371/journal.pone.0005961] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2009] [Accepted: 05/19/2009] [Indexed: 12/04/2022] Open
Abstract
Background Previous studies have shown that plant mitochondrial movements are myosin-based along actin filaments, which undergo continuous turnover by the exchange of actin subunits from existing filaments. Although earlier studies revealed that actin filament dynamics are essential for many functions of the actin cytoskeleton, there are little data connecting actin dynamics and mitochondrial movements. Methodology/Principal Findings We addressed the role of actin filament dynamics in the control of mitochondrial movements by treating cells with various pharmaceuticals that affect actin filament assembly and disassembly. Confocal microscopy of Arabidopsis thaliana root hairs expressing GFP-FABD2 as an actin filament reporter showed that mitochondrial distribution was in agreement with the arrangement of actin filaments in root hairs at different developmental stages. Analyses of mitochondrial trajectories and instantaneous velocities immediately following pharmacological perturbation of the cytoskeleton using variable-angle evanescent wave microscopy and/or spinning disk confocal microscopy revealed that mitochondrial velocities were regulated by myosin activity and actin filament dynamics. Furthermore, simultaneous visualization of mitochondria and actin filaments suggested that mitochondrial positioning might involve depolymerization of actin filaments on the surface of mitochondria. Conclusions/Significance Base on these results we propose a mechanism for the regulation of mitochondrial speed of movements, positioning, and direction of movements that combines the coordinated activity of myosin and the rate of actin turnover, together with microtubule dynamics, which directs the positioning of actin polymerization events.
Collapse
Affiliation(s)
- Maozhong Zheng
- Key Laboratory of Photosynthesis and Molecular Environmental Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- Graduate School of Chinese Academy of Sciences, Beijing, China
| | - Martina Beck
- Institute of Cellular and Molecular Botany, Rheinische Friedrich-Wilhelms-University Bonn, Department of Plant Cell Biology, Bonn, Germany
| | - Jens Müller
- Institute of Cellular and Molecular Botany, Rheinische Friedrich-Wilhelms-University Bonn, Department of Plant Cell Biology, Bonn, Germany
| | - Tong Chen
- Key Laboratory of Photosynthesis and Molecular Environmental Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Xiaohua Wang
- Key Laboratory of Photosynthesis and Molecular Environmental Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- Graduate School of Chinese Academy of Sciences, Beijing, China
| | - Feng Wang
- Key Laboratory of Photosynthesis and Molecular Environmental Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- Graduate School of Chinese Academy of Sciences, Beijing, China
| | - Qinli Wang
- Key Laboratory of Photosynthesis and Molecular Environmental Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Yuqing Wang
- Key Laboratory of Photosynthesis and Molecular Environmental Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- Graduate School of Chinese Academy of Sciences, Beijing, China
| | - František Baluška
- Institute of Cellular and Molecular Botany, Rheinische Friedrich-Wilhelms-University Bonn, Department of Plant Cell Biology, Bonn, Germany
- Institute of Botany, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - David C. Logan
- Department of Biology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Jozef Šamaj
- Institute of Cellular and Molecular Botany, Rheinische Friedrich-Wilhelms-University Bonn, Department of Plant Cell Biology, Bonn, Germany
- Institute of Plant Genetics and Biotechnology, Slovak Academy of Sciences, Nitra, Slovak Republic
- Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| | - Jinxing Lin
- Key Laboratory of Photosynthesis and Molecular Environmental Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
87
|
Avisar D, Abu-Abied M, Belausov E, Sadot E, Hawes C, Sparkes IA. A comparative study of the involvement of 17 Arabidopsis myosin family members on the motility of Golgi and other organelles. PLANT PHYSIOLOGY 2009; 150:700-9. [PMID: 19369591 PMCID: PMC2689979 DOI: 10.1104/pp.109.136853] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Accepted: 04/08/2009] [Indexed: 05/17/2023]
Abstract
Gene families with multiple members are predicted to have individuals with overlapping functions. We examined all of the Arabidopsis (Arabidopsis thaliana) myosin family members for their involvement in Golgi and other organelle motility. Truncated fragments of all 17 annotated Arabidopsis myosins containing either the IQ tail or tail domains only were fused to fluorescent markers and coexpressed with a Golgi marker in two different plants. We tracked and calculated Golgi body displacement rate in the presence of all myosin truncations and found that tail fragments of myosins MYA1, MYA2, XI-C, XI-E, XI-I, and XI-K were the best inhibitors of Golgi body movement in the two plants. Tail fragments of myosins XI-B, XI-F, XI-H, and ATM1 had an inhibitory effect on Golgi bodies only in Nicotiana tabacum, while tail fragments of myosins XI-G and ATM2 had a slight effect on Golgi body motility only in Nicotiana benthamiana. The best myosin inhibitors of Golgi body motility were able to arrest mitochondrial movement too. No exclusive colocalization was found between these myosins and Golgi bodies in our system, although the excess of cytosolic signal observed could mask myosin molecules bound to the surface of the organelle. From the preserved actin filaments found in the presence of enhanced green fluorescent protein fusions of truncated myosins and the motility of myosin punctae, we conclude that global arrest of actomyosin-derived cytoplasmic streaming had not occurred. Taken together, our data suggest that the above myosins are involved, directly or indirectly, in the movement of Golgi and mitochondria in plant cells.
Collapse
Affiliation(s)
- Dror Avisar
- Institute of Plant Sciences, Volcani Center, Bet-Dagan 50250, Israel
| | | | | | | | | | | |
Collapse
|
88
|
Era A, Tominaga M, Ebine K, Awai C, Saito C, Ishizaki K, Yamato KT, Kohchi T, Nakano A, Ueda T. Application of Lifeact reveals F-actin dynamics in Arabidopsis thaliana and the liverwort, Marchantia polymorpha. PLANT & CELL PHYSIOLOGY 2009; 50:1041-8. [PMID: 19369273 PMCID: PMC2694730 DOI: 10.1093/pcp/pcp055] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Accepted: 04/10/2009] [Indexed: 05/18/2023]
Abstract
Actin plays fundamental roles in a wide array of plant functions, including cell division, cytoplasmic streaming, cell morphogenesis and organelle motility. Imaging the actin cytoskeleton in living cells is a powerful methodology for studying these important phenomena. Several useful probes for live imaging of filamentous actin (F-actin) have been developed, but new versatile probes are still needed. Here, we report the application of a new probe called Lifeact for visualizing F-actin in plant cells. Lifeact is a short peptide comprising 17 amino acids that was derived from yeast Abp140p. We used a Lifeact-Venus fusion protein for staining F-actin in Arabidopsis thaliana and were able to observe dynamic rearrangements of the actin meshwork in root hair cells. We also used Lifeact-Venus to visualize the actin cytoskeleton in the liverwort Marchantia polymorpha; this revealed unique and dynamic F-actin motility in liverwort cells. Our results suggest that Lifeact could be a useful tool for studying the actin cytoskeleton in a wide range of plant lineages.
Collapse
Affiliation(s)
- Atsuko Era
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Motoki Tominaga
- Molecular Membrane Biology Laboratory, RIKEN Advanced Science Institute, Wako, Saitama, 351-0198 Japan
| | - Kazuo Ebine
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Chie Awai
- Molecular Membrane Biology Laboratory, RIKEN Advanced Science Institute, Wako, Saitama, 351-0198 Japan
| | - Chieko Saito
- Molecular Membrane Biology Laboratory, RIKEN Advanced Science Institute, Wako, Saitama, 351-0198 Japan
| | | | | | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502 Japan
| | - Akihiko Nakano
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033 Japan
- Molecular Membrane Biology Laboratory, RIKEN Advanced Science Institute, Wako, Saitama, 351-0198 Japan
| | - Takashi Ueda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033 Japan
| |
Collapse
|
89
|
Li JF, Park E, von Arnim AG, Nebenführ A. The FAST technique: a simplified Agrobacterium-based transformation method for transient gene expression analysis in seedlings of Arabidopsis and other plant species. PLANT METHODS 2009; 5:6. [PMID: 19457242 PMCID: PMC2693113 DOI: 10.1186/1746-4811-5-6] [Citation(s) in RCA: 175] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2008] [Accepted: 05/20/2009] [Indexed: 05/18/2023]
Abstract
BACKGROUND Plant genome sequencing has resulted in the identification of a large number of uncharacterized genes. To investigate these unknown gene functions, several transient transformation systems have been developed as quick and convenient alternatives to the lengthy transgenic assay. These transient assays include biolistic bombardment, protoplast transfection and Agrobacterium-mediated transient transformation, each having advantages and disadvantages depending on the research purposes. RESULTS We present a novel transient assay based on cocultivation of young Arabidopsis (Arabidopsis thaliana) seedlings with Agrobacterium tumefaciens in the presence of a surfactant which does not require any dedicated equipment and can be carried out within one week from sowing seeds to protein analysis. This Fast Agro-mediated Seedling Transformation (FAST) was used successfully to express a wide variety of constructs driven by different promoters in Arabidopsis seedling cotyledons (but not roots) in diverse genetic backgrounds. Localizations of three previously uncharacterized proteins were identified by cotransformation with fluorescent organelle markers. The FAST procedure requires minimal handling of seedlings and was also adaptable for use in 96-well plates. The high transformation efficiency of the FAST procedure enabled protein detection from eight transformed seedlings by immunoblotting. Protein-protein interaction, in this case HY5 homodimerization, was readily detected in FAST-treated seedlings with Förster resonance energy transfer and bimolecular fluorescence complementation techniques. Initial tests demonstrated that the FAST procedure can also be applied to other dicot and monocot species, including tobacco, tomato, rice and switchgrass. CONCLUSION The FAST system provides a rapid, efficient and economical assay of gene function in intact plants with minimal manual handling and without dedicated device. This method is potentially ideal for future automated high-throughput analysis.
Collapse
Affiliation(s)
- Jian-Feng Li
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996-0840, USA
- Current address: Department of Genetics, Harvard Medical School, and Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114-2790, USA
| | - Eunsook Park
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996-0840, USA
| | - Albrecht G von Arnim
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996-0840, USA
| | - Andreas Nebenführ
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996-0840, USA
| |
Collapse
|
90
|
Crowell EF, Bischoff V, Desprez T, Rolland A, Stierhof YD, Schumacher K, Gonneau M, Höfte H, Vernhettes S. Pausing of Golgi bodies on microtubules regulates secretion of cellulose synthase complexes in Arabidopsis. THE PLANT CELL 2009; 21:1141-54. [PMID: 19376932 PMCID: PMC2685615 DOI: 10.1105/tpc.108.065334] [Citation(s) in RCA: 367] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Plant growth and organ formation depend on the oriented deposition of load-bearing cellulose microfibrils in the cell wall. Cellulose is synthesized by plasma membrane-bound complexes containing cellulose synthase proteins (CESAs). Here, we establish a role for the cytoskeleton in intracellular trafficking of cellulose synthase complexes (CSCs) through the in vivo study of the green fluorescent protein (GFP)-CESA3 fusion protein in Arabidopsis thaliana hypocotyls. GFP-CESA3 localizes to the plasma membrane, Golgi apparatus, a compartment identified by the VHA-a1 marker, and, surprisingly, a novel microtubule-associated cellulose synthase compartment (MASC) whose formation and movement depend on the dynamic cortical microtubule array. Osmotic stress or treatment with the cellulose synthesis inhibitor CGA 325'615 induces internalization of CSCs in MASCs, mimicking the intracellular distribution of CSCs in nongrowing cells. Our results indicate that cellulose synthesis is coordinated with growth status and regulated in part through CSC internalization. We find that CSC insertion in the plasma membrane is regulated by pauses of the Golgi apparatus along cortical microtubules. Our data support a model in which cortical microtubules not only guide the trajectories of CSCs in the plasma membrane, but also regulate the insertion and internalization of CSCs, thus allowing dynamic remodeling of CSC secretion during cell expansion and differentiation.
Collapse
Affiliation(s)
- Elizabeth Faris Crowell
- Laboratoire de Biologie Cellulaire, Institut National de la Recherche Agronomique, 78026 Versailles cedex, France
| | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Faulkner CR, Blackman LM, Collings DA, Cordwell SJ, Overall RL. Anti-tropomyosin antibodies co-localise with actin microfilaments and label plasmodesmata. Eur J Cell Biol 2009; 88:357-69. [PMID: 19328591 DOI: 10.1016/j.ejcb.2009.02.184] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2008] [Revised: 01/28/2009] [Accepted: 02/02/2009] [Indexed: 01/14/2023] Open
Abstract
The actin cytoskeleton and associated actin-binding proteins form a complex network involved in a number of fundamental cellular processes including intracellular trafficking. In plants, both actin and myosin have been localised to plasmodesmata, and thus it is likely that other actin-binding proteins are also associated with plasmodesmata structure or function. A 75-kDa protein, enriched in plasmodesmata-rich cell wall extracts from the green alga Chara corallina, was sequenced and found to contain three peptides with similarity to the animal actin-binding protein tropomyosin. Western blot analysis with anti-tropomyosin antibodies confirmed the identity of this 75-kDa protein as a tropomyosin-like protein and further identified an additional 55-kDa protein, while immunofluorescence microscopy localised the antibodies to plasmodesmata and to the subcortical actin bundles and associated structures. The anti-tropomyosin antibodies detected a single protein at 42.5 kDa in Arabidopsis thaliana extracts and two proteins at 58.5 and 54 kDa in leek extracts, and these localised to plasmodesmata and the cell plate in A. thaliana and to plasmodesmata in leek tissue. Tropomyosin is an actin-binding protein thought to be involved in a range of functions associated with the actin cytoskeleton, including the regulation of myosin binding to actin filaments, but to date no tropomyosin-like proteins have been conclusively identified in plant genomes. Our data suggests that a tropomyosin-like protein is associated with plasmodesmata.
Collapse
Affiliation(s)
- Christine R Faulkner
- School of Biological Sciences, Macleay Building A12, University of Sydney, NSW 2006, Australia
| | | | | | | | | |
Collapse
|
92
|
Staiger CJ, Sheahan MB, Khurana P, Wang X, McCurdy DW, Blanchoin L. Actin filament dynamics are dominated by rapid growth and severing activity in the Arabidopsis cortical array. ACTA ACUST UNITED AC 2009; 184:269-80. [PMID: 19171759 PMCID: PMC2654301 DOI: 10.1083/jcb.200806185] [Citation(s) in RCA: 183] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Metazoan cells harness the power of actin dynamics to create cytoskeletal arrays that stimulate protrusions and drive intracellular organelle movements. In plant cells, the actin cytoskeleton is understood to participate in cell elongation; however, a detailed description and molecular mechanism(s) underpinning filament nucleation, growth, and turnover are lacking. Here, we use variable-angle epifluorescence microscopy (VAEM) to examine the organization and dynamics of the cortical cytoskeleton in growing and nongrowing epidermal cells. One population of filaments in the cortical array, which most likely represent single actin filaments, is randomly oriented and highly dynamic. These filaments grow at rates of 1.7 µm/s, but are generally short-lived. Instead of depolymerization at their ends, actin filaments are disassembled by severing activity. Remodeling of the cortical actin array also features filament buckling and straightening events. These observations indicate a mechanism inconsistent with treadmilling. Instead, cortical actin filament dynamics resemble the stochastic dynamics of an in vitro biomimetic system for actin assembly.
Collapse
Affiliation(s)
- Christopher J Staiger
- Department of Biological Sciences, Hansen Life Sciences Research Building, Purdue University, West Lafayette, IN 47907, USA
| | | | | | | | | | | |
Collapse
|
93
|
Maisch J, Fiserová J, Fischer L, Nick P. Tobacco Arp3 is localized to actin-nucleating sites in vivo. JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:603-14. [PMID: 19129161 PMCID: PMC2651461 DOI: 10.1093/jxb/ern307] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2008] [Revised: 10/23/2008] [Accepted: 11/07/2008] [Indexed: 05/19/2023]
Abstract
The polarity of actin is a central determinant of intracellular transport in plant cells. To visualize actin polarity in living plant cells, the tobacco homologue of the actin-related protein 3 (ARP3) was cloned and a fusion with the red fluorescent protein (RFP) was generated. Upon transient expression of these fusions in the tobacco cell line BY-2 (Nicotiana tabacum L. cv. Bright Yellow 2), punctate structures were observed near the nuclear envelope and in the cortical plasma. These dots could be shown to decorate actin filaments by expressing RFP-ARP3 in a marker line, where actin was tagged by GFP (green fluorescent protein)-FABD (fimbrin actin-binding domain 2). When actin filaments were disrupted by latrunculin B or by prolonged cold treatment, and subsequently allowed to recover, the actin filaments reformed from the RFP-ARP3 structures, that therefore represented actin nucleation sites. The intracellular distribution of these sites was followed during the formation of pluricellular files, and it was observed that the density of RFP-ARP3 increased in the apex of the polarized, terminal cells of a file, whereas it was equally distributed in the central cells of a file. These findings are interpreted in terms of position-dependent differences of actin organization.
Collapse
Affiliation(s)
- Jan Maisch
- Institute of Botany 1, University of Karlsruhe, Kaiserstrasse 2, D-76128 Karlsruhe, Germany.
| | | | | | | |
Collapse
|
94
|
Dyachok J, Yoo CM, Palanichelvam K, Blancaflor EB. Sample preparation for fluorescence imaging of the cytoskeleton in fixed and living plant roots. Methods Mol Biol 2009; 586:157-169. [PMID: 19768429 DOI: 10.1007/978-1-60761-376-3_8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
During the past decade the use of live cytoskeletal probes has increased dramatically due to the introduction of the green fluorescent protein. However, to make full use of these live cell reporters it is necessary to implement simple methods to maintain plant specimens in optimal growing conditions during imaging. To image the cytoskeleton in living Arabidopsis root cells, we rely on a system involving coverslips coated with nutrient supplemented agar where the seeds are directly germinated. This coverslip system can be conveniently transferred to the stage of a confocal microscope with minimal disturbance to the growth of the seedling. Parallel to our live cell imaging approaches, we routinely process fixed plant material via indirect immunofluorescence. For these methods we typically use nonembedded vibratome-sectioned and whole mount permeabilized root tissue. The clearly defined developmental regions of the root provide us with an elegant system to further understand the cytoskeletal basis of plant development.
Collapse
Affiliation(s)
- Julia Dyachok
- Plant Biology Division, The Samuel Roberts Noble Foundation Inc., Ardmore, OK, USA
| | | | | | | |
Collapse
|
95
|
Chapter 3. New insights into plant vacuolar structure and dynamics. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2009; 277:103-35. [PMID: 19766968 DOI: 10.1016/s1937-6448(09)77003-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The plant vacuole is a multifunctional organelle and is essential for plant development and growth. The most distinctive feature of the plant vacuole is its size, which usually occupies over 80-90% of the cell volume in well-developed somatic cells, and is therefore highly involved in cell growth and plant body size. Recent progress in the visualization of the vacuole, together with developments in image analysis, has revealed the highly organized and complex morphology of the vacuole, as well as its dynamics. The plant vacuolar membrane (VM) forms not only a typically large vacuole but also other structures, such as tubular structures, transvacuolar strands, bulbs, and sheets. In higher plant cells, actin microfilaments are mainly located near the VM and are involved in vacuolar shape changes with the actin-myosin systems. Most recently, microtubule-dependent regulation of vacuolar structures in moss plant cells was reported, suggesting a diversity of mechanisms regulating vacuolar morphogenesis.
Collapse
|
96
|
Cárdenas L. New findings in the mechanisms regulating polar growth in root hair cells. PLANT SIGNALING & BEHAVIOR 2009; 4:4-8. [PMID: 19568333 PMCID: PMC2634060 DOI: 10.4161/psb.4.1.7341] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2008] [Accepted: 11/03/2008] [Indexed: 05/07/2023]
Abstract
Root hairs cells are highly polarized cellular structures resulting from tip growth of specific root epidermal cells. Root-hair morphogenesis involves many aspects regulating tip growth such as exocytosis, ion flux, calcium homeostasis, reactive oxygen species (ROS), and cytoskeleton. These cells are excellent models for studying polar growth and can be challenged with many extracellular factors affecting the pattern of growth named Nod factors, elicitors, hormones, etc. The general scenery is that the well described tip-high intracellular Ca(2+) gradient plays a central role in regulating tip growth. On the other hand, ROS plays a key role in various processes, for example hypersensitive response, root hair development, hormone action, gravitropism and stress responses. However, ROS has recently emerged as a key player together with calcium in regulating polar growth, not only in root hair cells but also in pollen tubes, filamentous fungi and fucoid cells. Furthermore, Ca(2+)-permeable channel modulation by ROS has been demonstrated in Vicia faba guard cells and Arabidopsis root hairs. Recently, root hair cells were shown to experiment ROS, pH and calcium oscillations coupled to growth oscillation. These recent findings allow considering that root hair cells present a similar pattern of growth as described for pollen tubes.
Collapse
Affiliation(s)
- Luis Cárdenas
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México.
| |
Collapse
|
97
|
Abstract
The study of the symbiotic interaction between rhizobia and legumes represents a major theme in plant biology. This interaction results in the formation of nodules, root organs in which the bacteria reduce atmospheric nitrogen into ammonia, which can subsequently be utilized by the plant. The execution of the different developmental stages observed during nodule ontogenesis involves many cellular processes with significant roles for the plant cytoskeleton. A challenging question in cell biology is how the cytoskeleton organizes itself into the dynamic arrays required for cell differentiation and functioning. Nodulation is, particularly, well qualified as an experimental system for cytoskeleton research because an early essential step of the plant/microbe interaction takes place in surface-exposed root hairs, well suited for cell biological in vivo experimentation. Moreover, the changes in the organization of the cytoskeleton can be elicited by a well-defined molecule, the Nod factor, or by bacterial inoculation, thus providing the researcher with the possibility of controlling the cytoskeletal changes in target cells. In addition, the well-known cytology of the symbiotic interaction facilitates the correlation between the changes in the organization of the plant cytoskeleton with both histological and cellular changes. In this review, the current knowledge on the role of the plant cytoskeleton during nodulation is summarized, with emphasis on the interaction between Medicago truncatula and Sinorhizobium meliloti.
Collapse
Affiliation(s)
- A C J Timmers
- Laboratoire des Interactions Plantes-Microorganismes, CNRS/INRA, 24 Chemin de Borderouge, PB 52627, 31326 Castanet-Tolosan, France.
| |
Collapse
|
98
|
Gao XQ, Chen J, Wei PC, Ren F, Chen J, Wang XC. Array and distribution of actin filaments in guard cells contribute to the determination of stomatal aperture. PLANT CELL REPORTS 2008; 27:1655-65. [PMID: 18612643 DOI: 10.1007/s00299-008-0581-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2008] [Revised: 06/16/2008] [Accepted: 06/20/2008] [Indexed: 05/20/2023]
Abstract
Actin filaments in guard cells and their dynamics function in regulating stomatal movement. In this study, the array and distribution of actin filaments in guard cells during stomatal movement were studied with two vital labeling, microinjection of alexa-phalloidin in Vicia faba and expression of GFP-mTn in tobacco. We found that the random array of actin filaments in the most of the closed stomata changed to a ring-like array after stomatal open. And actin filaments, which were throughout the cytoplasm of guard cells of closed stomata (even distribution), were mainly found in the cortical cytoplasm in the case of open stomata (cortical distribution). These results revealed that the random array and even distribution of actin filaments in guard cells may be required for keeping the closed stomata; similarly, the ring-like array and cortical distribution of actin filaments function in sustaining open stomata. Furthermore, we found that actin depolymerization, the trait of moving stomata, facilitates the transformation of actin array and distribution with stomatal movement. So, the depolymerization of actin filaments was favorable for the changes of actin array and distribution in guard cells and thus facilitated stomatal movement.
Collapse
Affiliation(s)
- Xin-Qi Gao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University 100094, Beijing, People's Republic of China
| | | | | | | | | | | |
Collapse
|
99
|
Schenkel M, Sinclair AM, Johnstone D, Bewley JD, Mathur J. Visualizing the actin cytoskeleton in living plant cells using a photo-convertible mEos::FABD-mTn fluorescent fusion protein. PLANT METHODS 2008; 4:21. [PMID: 18803828 PMCID: PMC2557004 DOI: 10.1186/1746-4811-4-21] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2008] [Accepted: 09/19/2008] [Indexed: 05/23/2023]
Abstract
BACKGROUND The actin cytoskeleton responds quickly to diverse stimuli and plays numerous roles in cellular signalling, organelle motility and subcellular compartmentation during plant growth and development. Molecular and cell biological tools that can facilitate visualization of actin organization and dynamics in a minimally invasive manner are essential for understanding this fundamental component of the living cell. RESULTS A novel, monomeric (m) Eos-fluorescent protein derived from the coral Lobophyllia hemprichii was assessed for its green to red photo-convertibility in plant cells by creating mEosFP-cytosolic. mEosFP was fused to the F-(filamentous)-Actin Binding Domain of the mammalian Talin gene to create mEosFP::FABDmTalin. Photo-conversion, visualization and colour quantification protocols were developed for EosFP targeted to the F-actin cytoskeleton. Rapid photo-conversion in the entire cell or in a region of interest was easily achieved upon illumination with an approximately 400 nm wavelength light beam using an epi-fluorescent microscope. Dual color imaging after photo-conversion was carried out using a confocal laser-scanning microscope. Time-lapse imaging revealed that although photo-conversion of single mEosFP molecules can be rapid in terms of live-cell imaging it involves a progressive enrichment of red fluorescent molecules over green species. The fluorescence of photo-converted cells thus progresses through intermediate shades ranging from green to red. The time taken for complete conversion to red fluorescence depends on protein expression level within a cell and the quality of the focusing lens used to deliver the illuminating beam. Three easily applicable methods for obtaining information on fluorescent intensity and colour are provided as a means of ensuring experimental repeatability and data quantification, when using mEosFP and similar photo-convertible proteins. CONCLUSION The mEosFP::FABD-mTn probe retains all the imaging qualities associated with the well tested GFP::mTn probe while allowing for non-invasive, regional photo-conversion that allows colour based discrimination within a living cell. Whereas a number of precautions should be exercised in dealing with photo-convertible probes, mEosFP::FABD-mTn is a versatile live imaging tool for dissecting the organization and activity of the actin cytoskeleton in plants.
Collapse
Affiliation(s)
- Mike Schenkel
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Alison M Sinclair
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Daniel Johnstone
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - J Derek Bewley
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Jaideep Mathur
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| |
Collapse
|
100
|
Wang HJ, Wan AR, Jauh GY. An actin-binding protein, LlLIM1, mediates calcium and hydrogen regulation of actin dynamics in pollen tubes. PLANT PHYSIOLOGY 2008; 147:1619-36. [PMID: 18480376 PMCID: PMC2492651 DOI: 10.1104/pp.108.118604] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Actin microfilaments are crucial for polar cell tip growth, and their configurations and dynamics are regulated by the actions of various actin-binding proteins (ABPs). We explored the function of a lily (Lilium longiflorum) pollen-enriched LIM domain-containing protein, LlLIM1, in regulating the actin dynamics in elongating pollen tube. Cytological and biochemical assays verified LlLIM1 functioning as an ABP, promoting filamentous actin (F-actin) bundle assembly and protecting F-actin against latrunculin B-mediated depolymerization. Overexpressed LlLIM1 significantly disturbed pollen tube growth and morphology, with multiple tubes protruding from one pollen grain and coaggregation of FM4-64-labeled vesicles and Golgi apparatuses at the subapex of the tube tip. Moderate expression of LlLIM1 induced an oscillatory formation of asterisk-shaped F-actin aggregates that oscillated with growth period but in different phases at the subapical region. These results suggest that the formation of LlLIM1-mediated overstabilized F-actin bundles interfered with endomembrane trafficking to result in growth retardation. Cosedimentation assays revealed that the binding affinity of LlLIM1 to F-actin was simultaneously regulated by both pH and Ca(2+): LlLIM1 showed a preference for F-actin binding under low pH and low Ca(2+) concentration. The potential functions of LlLIM1 as an ABP sensitive to pH and calcium in integrating endomembrane trafficking, oscillatory pH, and calcium circumstances to regulate tip-focused pollen tube growth are discussed.
Collapse
Affiliation(s)
- Huei-Jing Wang
- Institute of Plant and Microbial Biology, Academia Sinica, Nankang, Taipei 115, Taiwan, Republic of China
| | | | | |
Collapse
|