51
|
Di L, Artursson P, Avdeef A, Benet LZ, Houston JB, Kansy M, Kerns EH, Lennernäs H, Smith DA, Sugano K. The Critical Role of Passive Permeability in Designing Successful Drugs. ChemMedChem 2020; 15:1862-1874. [PMID: 32743945 DOI: 10.1002/cmdc.202000419] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Indexed: 12/25/2022]
Abstract
Passive permeability is a key property in drug disposition and delivery. It is critical for gastrointestinal absorption, brain penetration, renal reabsorption, defining clearance mechanisms and drug-drug interactions. Passive diffusion rate is translatable across tissues and animal species, while the extent of absorption is dependent on drug properties, as well as in vivo physiology/pathophysiology. Design principles have been developed to guide medicinal chemistry to enhance absorption, which combine the balance of aqueous solubility, permeability and the sometimes unfavorable compound characteristic demanded by the target. Permeability assays have been implemented that enable rapid development of structure-permeability relationships for absorption improvement. Future advances in assay development to reduce nonspecific binding and improve mass balance will enable more accurately measurement of passive permeability. Design principles that integrate potency, selectivity, passive permeability and other ADMET properties facilitate rapid advancement of successful drug candidates to patients.
Collapse
Affiliation(s)
- Li Di
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research and Development, 445 Eastern Point Road, Groton, CT 06340, USA
| | - Per Artursson
- Department of Pharmacy, Uppsala University, 752 36, Uppsala, Sweden
| | - Alex Avdeef
- in-ADME Research, 1732 First Avenue, #102, New York, NY 10128, USA
| | - Leslie Z Benet
- Department of Bioengineering and Therapeutic Sciences, UCSF, San Francisco, CA 94143, USA
| | - J Brian Houston
- Division of Pharmacy & Optometry, Stopford Building, Oxford Road, Manchester, M13 9PT, UK
| | | | | | - Hans Lennernäs
- Department of Pharmacy, Uppsala University, 752 36, Uppsala, Sweden
| | | | - Kiyohiko Sugano
- College of Pharmaceutical Sciences, Department of Pharmacy, Ritsumeikan University, Noji-higashi, Kusatsu, Shiga, 525-8577, Japan
| |
Collapse
|
52
|
Weeks J, Li AP, Doshi U, Johanning K, Guiney PD. In vitro evaluation of the metabolic stability of nine fragrance chemicals in trout and human hepatocytes. J Appl Toxicol 2020; 40:1421-1434. [PMID: 32488907 DOI: 10.1002/jat.3995] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 04/01/2020] [Accepted: 04/15/2020] [Indexed: 12/11/2022]
Abstract
In vitro metabolic stability of nine fragrance chemicals: p-tolyl acetate, cashmeran, ethylene brassylate, celestolide, galaxolide, traseolide, ambretone, tonalide and pentadecanolide, was evaluated in trout and human hepatocytes. The compounds were incubated with trout hepatocytes at 12°C and human hepatocytes at 37°C. Quantification of compound disappearance with time was performed using gas chromatography/mass spectrometry. in vivo hepatic intrinsic clearance values were calculated from the in vitro data. Significant metabolism was observed with trout hepatocytes for five of the nine fragrance chemicals, while all nine were metabolized significantly with human hepatocytes. Previously published models were used to examine expected bioaccumulation and persistence in whole organisms. Calculated half-lives due to metabolism of the nine chemicals are significantly shorter for humans than trout: <1 hour and <1 day, respectively. For all chemicals with demonstrated hepatic metabolism, the models indicate a lack of accumulation. For those where metabolism was demonstrated in trout, calculated bioconcentration factors would not be classified as bioaccumulative under prevailing regulatory systems.
Collapse
Affiliation(s)
- John Weeks
- S.C. Johnson and Son, Inc., Racine, Wisconsin, US
| | - Albert P Li
- In Vitro ADMET Laboratories LLC, Columbia, Maryland, US
| | - Utkarsh Doshi
- In Vitro ADMET Laboratories LLC, Columbia, Maryland, US.,Altria Client Services LLC, Richmond, Virginia, US
| | | | | |
Collapse
|
53
|
Lacivita E, Niso M, Stama ML, Arzuaga A, Altamura C, Costa L, Desaphy JF, Ragozzino ME, Ciranna L, Leopoldo M. Privileged scaffold-based design to identify a novel drug-like 5-HT 7 receptor-preferring agonist to target Fragile X syndrome. Eur J Med Chem 2020; 199:112395. [PMID: 32442850 DOI: 10.1016/j.ejmech.2020.112395] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/20/2020] [Accepted: 04/25/2020] [Indexed: 02/07/2023]
Abstract
Recent preclinical studies have shown that activation of the serotonin 5-HT7 receptor has the potential to treat neurodevelopmental disorders such as Fragile X syndrome, a rare disease characterized by autistic features. With the aim to provide the scientific community with diversified drug-like 5-HT7 receptor-preferring agonists, we designed a set of new long-chain arylpiperazines by exploiting structural fragments present in clinically approved drugs or in preclinical candidates (privileged scaffolds). The new compounds were synthesized, tested for their affinity at 5-HT7 and 5-HT1A receptors, and screened for their in vitro stability to microsomal degradation and toxicity. Selected compounds were characterized as 5-HT7 receptor-preferring ligands, endowed with high metabolic stability and low toxicity. Compound 7g emerged as a drug-like 5-HT7 receptor-preferring agonist capable to rescue synaptic plasticity and attenuate stereotyped behavior in a mouse model of Fragile X syndrome.
Collapse
Affiliation(s)
- Enza Lacivita
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, via Orabona 4, 70125, Bari, Italy
| | - Mauro Niso
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, via Orabona 4, 70125, Bari, Italy
| | - Madia Letizia Stama
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, via Orabona 4, 70125, Bari, Italy
| | - Anna Arzuaga
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Concetta Altamura
- Department of Biomedical Sciences and Human Oncology, Università degli Studi di Bari Aldo Moro, Policlinico, piazza Giulio Cesare, 70126, Bari, Italy
| | - Lara Costa
- Dipartimento di Medicina Clinica e Sperimentale, Università di Messina, Via Consolare Valeria 1, Messina, Italy
| | - Jean-François Desaphy
- Department of Biomedical Sciences and Human Oncology, Università degli Studi di Bari Aldo Moro, Policlinico, piazza Giulio Cesare, 70126, Bari, Italy
| | - Michael E Ragozzino
- Department of Psychology, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Lucia Ciranna
- Dipartimento di Scienze Biomediche e Biotecnologiche, Università di Catania, Via Santa Sofia 97, Catania, Italy
| | - Marcello Leopoldo
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, via Orabona 4, 70125, Bari, Italy.
| |
Collapse
|
54
|
Kim TH, Tao X, Moya B, Jiao Y, Basso KB, Zhou J, Lang Y, Sutaria DS, Zavascki AP, Barth AL, Reeve SM, Schweizer HP, Deveson Lucas D, Boyce JD, Bonomo RA, Lee RE, Shin BS, Louie A, Drusano GL, Bulitta JB. Novel Cassette Assay To Quantify the Outer Membrane Permeability of Five β-Lactams Simultaneously in Carbapenem-Resistant Klebsiella pneumoniae and Enterobacter cloacae. mBio 2020; 11:e03189-19. [PMID: 32047131 PMCID: PMC7018653 DOI: 10.1128/mbio.03189-19] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 12/23/2019] [Indexed: 02/05/2023] Open
Abstract
Poor penetration through the outer membrane (OM) of Gram-negative bacteria is a major barrier of antibiotic development. While β-lactam antibiotics are commonly used against Klebsiella pneumoniae and Enterobacter cloacae, there are limited data on OM permeability especially in K. pneumoniae Here, we developed a novel cassette assay, which can simultaneously quantify the OM permeability to five β-lactams in carbapenem-resistant K. pneumoniae and E. cloacae Both clinical isolates harbored a blaKPC-2 and several other β-lactamases. The OM permeability of each antibiotic was studied separately ("discrete assay") and simultaneously ("cassette assay") by determining the degradation of extracellular β-lactam concentrations via multiplex liquid chromatography-tandem mass spectrometry analyses. Our K. pneumoniae isolate was polymyxin resistant, whereas the E. cloacae was polymyxin susceptible. Imipenem penetrated the OM at least 7-fold faster than meropenem for both isolates. Imipenem penetrated E. cloacae at least 258-fold faster and K. pneumoniae 150-fold faster compared to aztreonam, cefepime, and ceftazidime. For our β-lactams, OM permeability was substantially higher in the E. cloacae compared to the K. pneumoniae isolate (except for aztreonam). This correlated with a higher OmpC porin production in E. cloacae, as determined by proteomics. The cassette and discrete assays showed comparable results, suggesting limited or no competition during influx through OM porins. This cassette assay allowed us, for the first time, to efficiently quantify the OM permeability of multiple β-lactams in carbapenem-resistant K. pneumoniae and E. cloacae Characterizing the OM permeability presents a critical contribution to combating the antimicrobial resistance crisis and enables us to rationally optimize the use of β-lactam antibiotics.IMPORTANCE Antimicrobial resistance is causing a global human health crisis and is affecting all antibiotic classes. While β-lactams have been commonly used against susceptible isolates of Klebsiella pneumoniae and Enterobacter cloacae, carbapenem-resistant isolates are spreading worldwide and pose substantial clinical challenges. Rapid penetration of β-lactams leads to high drug concentrations at their periplasmic target sites, allowing β-lactams to more completely inactivate their target receptors. Despite this, there are limited tangible data on the permeability of β-lactams through the outer membranes of many Gram-negative pathogens. This study presents a novel, cassette assay, which can simultaneously characterize the permeability of five β-lactams in multidrug-resistant clinical isolates. We show that carbapenems, and especially imipenem, penetrate the outer membrane of K. pneumoniae and E. cloacae substantially faster than noncarbapenem β-lactams. The ability to efficiently characterize the outer membrane permeability is critical to optimize the use of β-lactams and combat carbapenem-resistant isolates.
Collapse
Affiliation(s)
- Tae Hwan Kim
- Departments of Pharmaceutics and Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Orlando, Florida, USA
| | - Xun Tao
- Departments of Pharmaceutics and Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Orlando, Florida, USA
| | - Bartolome Moya
- Departments of Pharmaceutics and Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Orlando, Florida, USA
| | - Yuanyuan Jiao
- Departments of Pharmaceutics and Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Orlando, Florida, USA
| | - Kari B Basso
- Department of Chemistry, University of Florida, Gainesville, Florida, USA
| | - Jieqiang Zhou
- Departments of Pharmaceutics and Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Orlando, Florida, USA
| | - Yinzhi Lang
- Departments of Pharmaceutics and Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Orlando, Florida, USA
| | - Dhruvitkumar S Sutaria
- Departments of Pharmaceutics and Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Orlando, Florida, USA
| | | | - Afonso L Barth
- Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Laboratório de Pesquisa em Resistência Bacteriana, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Stephanie M Reeve
- Department of Chemical Biology and Therapeutics, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Herbert P Schweizer
- Department of Molecular Genetics and Microbiology, Emerging Pathogens Institute, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Deanna Deveson Lucas
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Victoria, Australia
| | - John D Boyce
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Victoria, Australia
| | - Robert A Bonomo
- Medical Service and GRECC, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
- Departments of Medicine, Pharmacology, Molecular Biology and Microbiology, Biochemistry, and Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, Ohio, USA
| | - Richard E Lee
- Department of Chemical Biology and Therapeutics, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Beom Soo Shin
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do, South Korea
| | - Arnold Louie
- Institute for Therapeutic Innovation, College of Medicine, University of Florida, Orlando, Florida, USA
| | - George L Drusano
- Institute for Therapeutic Innovation, College of Medicine, University of Florida, Orlando, Florida, USA
| | - Jürgen B Bulitta
- Departments of Pharmaceutics and Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Orlando, Florida, USA
| |
Collapse
|
55
|
Davidsen AB, Mardal M, Holm NB, Andreasen AK, Johansen SS, Noble C, Dalsgaard P, Linnet K. Ketamine analogues: Comparative toxicokinetic in vitro-in vivo extrapolation and quantification of 2-fluorodeschloroketamine in forensic blood and hair samples. J Pharm Biomed Anal 2019; 180:113049. [PMID: 31881397 DOI: 10.1016/j.jpba.2019.113049] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 12/12/2019] [Accepted: 12/12/2019] [Indexed: 11/20/2022]
Abstract
Recently, the new psychoactive substance (NPS) ketamine analogue 2-fluoro-deschloroketamine (2FDCK) was observed in driving-under-the-influence-of-drugs whole blood samples and in a forensic hair investigation case in Denmark. The molecular structure variations among the NPS subgroups may alter the metabolic fate and drug potency, thereby posing a threat for drug users. This study reports quantification of 2FDCK in whole blood samples and forensic hair and compares the following toxicokinetic parameters: unbound fraction (fu) and in vitro-in vivo-extrapolation (IVIVE) of hepatic clearance for ketamine, norketamine, 2FDCK, methoxetamine and deschloroketamine. The fu was investigated with ultrafiltration, while clearance studies were conducted at 1 μM with pooled human liver microsomes. Samples were analysed by liquid chromatography and mass spectrometry. For the first time, 2FDCK was determined in a concentration range between 0.005 and 0.48 mg/kg in blood samples. Segmental hair analysis demonstrated 2FDCK at concentrations from 0.007 to 0.034 ng/mg throughout the three investigated segments. Toxicokinetic comparison of the five compounds gave a fu between 0.54 and 0.84, with ketamine being the most bound and deschloroketamine being the least bound, in accordance with the logP of the compounds. Conversely, a negative correlation was observed between the molecular weight of the halogen in the ortho-position and IVIVE hepatic clearance. The IVIVE of hepatic clearance, CLparallel-tube, gave values from 18.1 to 5.44 mL/min/kg for ketamine and methoxetamine, respectively. The deschloroketamine IVIVE was disregarded due to low drug elimination under the experimental conditions used. This study provides a basis for toxicokinetic understanding of ketamine analogues.
Collapse
Affiliation(s)
- Anders Bork Davidsen
- Section of Forensic Chemistry, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Marie Mardal
- Section of Forensic Chemistry, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Occupational and Environmental Medicine, University Hospital of North Norway, Sykehusvegen, Tromsoe, Norway
| | - Niels Bjerre Holm
- Section of Forensic Chemistry, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anna Katrine Andreasen
- Section of Forensic Chemistry, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sys Stybe Johansen
- Section of Forensic Chemistry, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Carolina Noble
- Section of Forensic Chemistry, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Clinical Pharmacology and Toxicology Laboratory, Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, United States
| | - Petur Dalsgaard
- Section of Forensic Chemistry, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kristian Linnet
- Section of Forensic Chemistry, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
56
|
De Gasparo R, Halgas O, Harangozo D, Kaiser M, Pai EF, Krauth‐Siegel RL, Diederich F. Targeting a Large Active Site: Structure‐Based Design of Nanomolar Inhibitors of
Trypanosoma brucei
Trypanothione Reductase. Chemistry 2019; 25:11416-11421. [DOI: 10.1002/chem.201901664] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 07/03/2019] [Indexed: 01/16/2023]
Affiliation(s)
- Raoul De Gasparo
- Laboratorium für Organische ChemieETH Zurich Vladimir-Prelog-Weg 3 8093 Zurich Switzerland
| | - Ondrej Halgas
- Departments of Biochemistry and Medical BiophysicsUniversity of Toronto Medical Sciences Building, 5318, 1 King's College Circle Toronto ON M5S 1A8 Canada
- The Campbell Family Institute for Cancer ResearchUniversity Health Network 101 College Street Toronto ON M5G 1L7 Canada
| | - Dora Harangozo
- Laboratorium für Organische ChemieETH Zurich Vladimir-Prelog-Weg 3 8093 Zurich Switzerland
| | - Marcel Kaiser
- Swiss Tropical and Public Health Institute Socinstrasse 57 4002 Basel Switzerland
- University of Basel Petersplatz 1 4003 Basel Switzerland
| | - Emil F. Pai
- Departments of Biochemistry and Medical BiophysicsUniversity of Toronto Medical Sciences Building, 5318, 1 King's College Circle Toronto ON M5S 1A8 Canada
- The Campbell Family Institute for Cancer ResearchUniversity Health Network 101 College Street Toronto ON M5G 1L7 Canada
| | - R. Luise Krauth‐Siegel
- Biochemie-Zentrum Heidelberg (BZH)Universität Heidelberg Im Neuenheimer Feld 328 69120 Heidelberg Germany
| | - François Diederich
- Laboratorium für Organische ChemieETH Zurich Vladimir-Prelog-Weg 3 8093 Zurich Switzerland
| |
Collapse
|
57
|
Zhao S, Kamelia L, Boonpawa R, Wesseling S, Spenkelink B, Rietjens IMCM. Physiologically based kinetic modelling-facilitated reverse dosimetry to predict in vivo red blood cell acetylcholinesterase inhibition following exposure to chlorpyrifos in the Caucasian and Chinese population. Toxicol Sci 2019; 171:69-83. [PMID: 31214721 PMCID: PMC6736452 DOI: 10.1093/toxsci/kfz134] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 03/26/2019] [Accepted: 05/23/2019] [Indexed: 11/25/2022] Open
Abstract
Organophosphates have a long history of use as insecticides over the world. The aim of the present study was to investigate the interethnic differences in kinetics, biomarker formation, and in vivo red blood cell acetylcholinesterase inhibition of chlorpyrifos (CPF) in the Chinese and the Caucasian population. To this purpose, physiologically based kinetic models for CPF in both the Chinese and Caucasian population were developed, and used to study time- and dose-dependent interethnic variation in urinary biomarkers and to convert concentration-response curves for red blood cell acetylcholinesterase inhibition to in vivo dose-response curves in these 2 populations by reverse dosimetry. The results obtained revealed a marked interethnic difference in toxicokinetics of CPF, with lower urinary biomarker levels at similar dose levels and slower CPF bioactivation and faster chlorpyrifos-oxon detoxification in the Chinese compared with the Caucasian population, resulting in 5- to 6-fold higher CPF sensitivity of the Caucasian than the Chinese population. These differences might be related to variation in the frequency of single-nucleotide polymorphisms for the major biotransformation enzymes involved. To conclude, the interethnic variation in kinetics of CPF may affect both its biomarker-based exposure assessment and its toxicity and risk assessment and physiologically based kinetic modeling facilitates the characterization and quantification of these interethnic variations.
Collapse
Affiliation(s)
- Shensheng Zhao
- Division of Toxicology, Wageningen University and Research, Wageningen, The Netherlands
| | - Lenny Kamelia
- Division of Toxicology, Wageningen University and Research, Wageningen, The Netherlands
| | - Rungnapa Boonpawa
- Faculty of Natural Resources and Agro-Industry, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Thailand
| | - Sebastiaan Wesseling
- Division of Toxicology, Wageningen University and Research, Wageningen, The Netherlands
| | - Bert Spenkelink
- Division of Toxicology, Wageningen University and Research, Wageningen, The Netherlands
| | - Ivonne M C M Rietjens
- Division of Toxicology, Wageningen University and Research, Wageningen, The Netherlands
| |
Collapse
|
58
|
Treyer A, Ullah M, Parrott N, Molitor B, Fowler S, Artursson P. Impact of Intracellular Concentrations on Metabolic Drug-Drug Interaction Studies. AAPS JOURNAL 2019; 21:77. [PMID: 31214810 PMCID: PMC6581936 DOI: 10.1208/s12248-019-0344-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 05/23/2019] [Indexed: 12/16/2022]
Abstract
Accurate prediction of drug-drug interactions (DDI) is a challenging task in drug discovery and development. It requires determination of enzyme inhibition in vitro which is highly system-dependent for many compounds. The aim of this study was to investigate whether the determination of intracellular unbound concentrations in primary human hepatocytes can be used to bridge discrepancies between results obtained using human liver microsomes and hepatocytes. Specifically, we investigated if Kpuu could reconcile differences in CYP enzyme inhibition values (Ki or IC50). Firstly, our methodology for determination of Kpuu was optimized for human hepatocytes, using four well-studied reference compounds. Secondly, the methodology was applied to a series of structurally related CYP2C9 inhibitors from a Roche discovery project. Lastly, the Kpuu values of three commonly used CYP3A4 inhibitors—ketoconazole, itraconazole, and posaconazole—were determined and compared to compound-specific hepatic enrichment factors obtained from physiologically based modeling of clinical DDI studies with these three compounds. Kpuu obtained in suspended human hepatocytes gave good predictions of system-dependent differences in vitro. The Kpuu was also in fair agreement with the compound-specific hepatic enrichment factors in DDI models and can therefore be used to improve estimations of enrichment factors in physiologically based pharmacokinetic modeling.
Collapse
Affiliation(s)
- Andrea Treyer
- Department of Pharmacy, Uppsala University, Box 580, SE-751 23, Uppsala, Sweden
| | - Mohammed Ullah
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Neil Parrott
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Birgit Molitor
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Stephen Fowler
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Per Artursson
- Department of Pharmacy, Uppsala University, Box 580, SE-751 23, Uppsala, Sweden. .,Science for Life Laboratory Drug Discovery and Development platform (SciLifelab DDD-P), Uppsala, Sweden. .,Uppsala University Drug Optimization and Pharmaceutical Profiling Platform (UDOPP), Uppsala University, Uppsala, Sweden.
| |
Collapse
|
59
|
Davidsen AB, Mardal M, Linnet K. In Vitro Metabolism and Hepatic Intrinsic Clearance of the Synthetic Cannabinoid Receptor Agonist JWH-122 and Its Four ω-Halogenated Analogues. AAPS JOURNAL 2019; 21:63. [PMID: 31093790 DOI: 10.1208/s12248-019-0338-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 04/28/2019] [Indexed: 01/27/2023]
Abstract
The number of new psychoactive substances (NPS) emerging on the illicit drug market has increased over the last decade. Halogenation of existing illicit drugs is a particular trend, with the purpose of both circumventing the law and altering the toxicodynamic and toxicokinetic profiles of the compounds. This study investigates the in vitro impact of JWH-122 ω-halogenation (fluoro, chloro, bromo and iodo) on the metabolism, apparent intrinsic hepatic clearance and analytical targets for detecting drug consumption. Metabolite profiling was conducted with pooled human liver microsomes, suspended rat hepatocytes and pooled human hepatocytes. The in vitro half-life was also determined in pooled human hepatocytes. All samples were analysed by liquid chromatography/high-resolution mass spectrometry. All compounds, except for JWH-122, showed high formation rates of phase I metabolites, predominantly ω-COOH and methylnaphthyl hydroxylation metabolites. Phase II metabolites were ω-O-glucuronides, methylnaphthyl O-glucuronides and ω-glutathione conjugates. The relative ion intensity of the glutathione conjugates increased with the ω-halogen size, with I-JWH-122 having the highest intensity. Stability studies gave a low half-life and a high intrinsic hepatic clearance for JWH-122 (1305 mL/min/kg) and MAM-2201 (1408 mL/min/kg). Cl-, Br- and I-JWH-122 showed increasing half-life with increasing ω-halogen size, with intrinsic clearance values of 235-502 mL/min/kg. The recommended analytical targets for consumption of JWH-122 or ω-halogenated JWH-122 analogues are the ω-COOH metabolites for unspecific profiling and the methylnaphthyl hydroxylated metabolites to distinguish the compounds. Furthermore, ω-halogenation with larger halogens appears to increase the intrinsic hepatic stability, thereby prolonging exposure and possibly the duration of action.
Collapse
Affiliation(s)
- Anders Bork Davidsen
- Section of Forensic Chemistry, Institute of Forensic Medicine, University of Copenhagen, Frederik V's Vej 11, Copenhagen, Denmark
| | - Marie Mardal
- Section of Forensic Chemistry, Institute of Forensic Medicine, University of Copenhagen, Frederik V's Vej 11, Copenhagen, Denmark.
| | - Kristian Linnet
- Section of Forensic Chemistry, Institute of Forensic Medicine, University of Copenhagen, Frederik V's Vej 11, Copenhagen, Denmark
| |
Collapse
|
60
|
Riccardi KA, Tess DA, Lin J, Patel R, Ryu S, Atkinson K, Di L, Li R. A Novel Unified Approach to Predict Human Hepatic Clearance for Both Enzyme- and Transporter-Mediated Mechanisms Using Suspended Human Hepatocytes. Drug Metab Dispos 2019; 47:484-492. [PMID: 30787098 DOI: 10.1124/dmd.118.085639] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Accepted: 02/05/2019] [Indexed: 02/13/2025] Open
Abstract
The accurate prediction of human pharmacokinetics is critically important in modern drug discovery since it drives both pharmacological and toxicological effects. Although significant progress has been made in predicting drug disposition by hepatic drug-metabolizing enzymes, predicting transporter-mediated clearance is still highly uncertain. Furthermore, different approaches are often used to predict clearance with and without transporter involvement, hence the major clearance pathway for a compound must first be determined to know which approach to use. As a result of these challenges, a novel unified method has been developed using cryopreserved suspended human hepatocytes to predict human hepatic clearance for both enzyme- and transporter-mediated mechanisms. This method hypothesizes that, once in vitro metabolic stability is scaled by partition coefficients between hepatocytes and buffer with 4% bovine serum albumin, in vivo clearance can be better predicted. With this method, good in vitro-in vivo correlation of human hepatic clearance has been obtained for a set of 32 structurally diverse compounds, including such transporters as organic anion-transporting polypeptide substrates. The clearance predictions for most compounds are within 3-fold of observed values. This is the first time that multiple compounds result in good in vitro-in vivo extrapolation using an entirely "bottom-up" approach without any empirical scaling factor when transporter-mediated clearance is involved. Potential exceptions are compounds with significant biliary and/or extra-hepatic clearance. The method offers an alternative approach to more accurately predict human hepatic clearance when multiple complex mechanisms are involved.
Collapse
Affiliation(s)
- Keith A Riccardi
- Pharmacokinetics, Dynamics and Metabolism, Medicine Design, Pfizer Worldwide R&D, Groton, Connecticut (K.A.R., J.L., R.P., S.R., K.A., L.D.) and Systems Modeling and Simulation, Medicine Design, Pfizer Worldwide R&D, Cambridge, Massachusetts (D.A.T., R.L.)
| | - David A Tess
- Pharmacokinetics, Dynamics and Metabolism, Medicine Design, Pfizer Worldwide R&D, Groton, Connecticut (K.A.R., J.L., R.P., S.R., K.A., L.D.) and Systems Modeling and Simulation, Medicine Design, Pfizer Worldwide R&D, Cambridge, Massachusetts (D.A.T., R.L.)
| | - Jian Lin
- Pharmacokinetics, Dynamics and Metabolism, Medicine Design, Pfizer Worldwide R&D, Groton, Connecticut (K.A.R., J.L., R.P., S.R., K.A., L.D.) and Systems Modeling and Simulation, Medicine Design, Pfizer Worldwide R&D, Cambridge, Massachusetts (D.A.T., R.L.)
| | - Roshan Patel
- Pharmacokinetics, Dynamics and Metabolism, Medicine Design, Pfizer Worldwide R&D, Groton, Connecticut (K.A.R., J.L., R.P., S.R., K.A., L.D.) and Systems Modeling and Simulation, Medicine Design, Pfizer Worldwide R&D, Cambridge, Massachusetts (D.A.T., R.L.)
| | - Sangwoo Ryu
- Pharmacokinetics, Dynamics and Metabolism, Medicine Design, Pfizer Worldwide R&D, Groton, Connecticut (K.A.R., J.L., R.P., S.R., K.A., L.D.) and Systems Modeling and Simulation, Medicine Design, Pfizer Worldwide R&D, Cambridge, Massachusetts (D.A.T., R.L.)
| | - Karen Atkinson
- Pharmacokinetics, Dynamics and Metabolism, Medicine Design, Pfizer Worldwide R&D, Groton, Connecticut (K.A.R., J.L., R.P., S.R., K.A., L.D.) and Systems Modeling and Simulation, Medicine Design, Pfizer Worldwide R&D, Cambridge, Massachusetts (D.A.T., R.L.)
| | - Li Di
- Pharmacokinetics, Dynamics and Metabolism, Medicine Design, Pfizer Worldwide R&D, Groton, Connecticut (K.A.R., J.L., R.P., S.R., K.A., L.D.) and Systems Modeling and Simulation, Medicine Design, Pfizer Worldwide R&D, Cambridge, Massachusetts (D.A.T., R.L.)
| | - Rui Li
- Pharmacokinetics, Dynamics and Metabolism, Medicine Design, Pfizer Worldwide R&D, Groton, Connecticut (K.A.R., J.L., R.P., S.R., K.A., L.D.) and Systems Modeling and Simulation, Medicine Design, Pfizer Worldwide R&D, Cambridge, Massachusetts (D.A.T., R.L.)
| |
Collapse
|
61
|
Naritomi Y, Sanoh S, Ohta S. Utility of Chimeric Mice with Humanized Liver for Predicting Human Pharmacokinetics in Drug Discovery: Comparison with in Vitro– in Vivo Extrapolation and Allometric Scaling. Biol Pharm Bull 2019; 42:327-336. [DOI: 10.1248/bpb.b18-00754] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Yoichi Naritomi
- Analysis & Pharmacokinetics Research Laboratories, Astellas Pharma Inc
| | - Seigo Sanoh
- Graduate School of Biomedical and Health Sciences, Hiroshima University
| | - Shigeru Ohta
- Graduate School of Biomedical and Health Sciences, Hiroshima University
| |
Collapse
|
62
|
Bowman CM, Benet LZ. In Vitro-In Vivo Extrapolation and Hepatic Clearance-Dependent Underprediction. J Pharm Sci 2019; 108:2500-2504. [PMID: 30817922 DOI: 10.1016/j.xphs.2019.02.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 02/08/2019] [Accepted: 02/14/2019] [Indexed: 12/16/2022]
Abstract
Accurately predicting the hepatic clearance of compounds using in vitro to in vivo extrapolation (IVIVE) is crucial within the pharmaceutical industry. However, several groups have recently highlighted the serious error in the process. Although empirical or regression-based scaling factors may be used to mitigate the common underprediction, they provide unsatisfying solutions because the reasoning behind the underlying error has yet to be determined. One previously noted trend was intrinsic clearance-dependent underprediction, highlighting the limitations of current in vitro systems. When applying these generated in vitro intrinsic clearance values during drug development and making first-in-human dose predictions for new chemical entities though, hepatic clearance is the parameter that must be estimated using a model of hepatic disposition, such as the well-stirred model. Here, we examine error across hepatic clearance ranges and find a similar hepatic clearance-dependent trend, with high clearance compounds not predicted to be so, demonstrating another gap in the field.
Collapse
Affiliation(s)
- Christine M Bowman
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California 94143
| | - Leslie Z Benet
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California 94143.
| |
Collapse
|
63
|
Lapham K, Lin J, Novak J, Orozco C, Niosi M, Di L, Goosen TC, Ryu S, Riccardi K, Eng H, Cameron KO, Kalgutkar AS. 6-Chloro-5-[4-(1-Hydroxycyclobutyl)Phenyl]-1 H-Indole-3-Carboxylic Acid is a Highly Selective Substrate for Glucuronidation by UGT1A1, Relative to β-Estradiol. Drug Metab Dispos 2018; 46:1836-1846. [PMID: 30194276 DOI: 10.1124/dmd.118.083709] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 09/05/2018] [Indexed: 02/13/2025] Open
Abstract
6-Chloro-5-[4-(1-hydroxycyclobutyl)phenyl]-1H-indole-3-carboxylic acid (PF-06409577) is a direct activator of the human β1-containing adenosine monophosphate-activated protein kinase (ΑMPK) isoforms. The clearance mechanism of PF-06409577 in animals and humans involves uridine diphosphoglucuronosyl transferase (UGT)-mediated glucuronidation to an acyl glucuronide metabolite of PF-06409577 [(2S,3S,4S,5R,6S)-6-((6-chloro-5-(4-(1-hydroxycyclobutyl)phenyl)-1H-indole-3-carbonyl)oxy)-3,4,5-trihydroxytetrahydro-2H-pyran-2-carboxylic acid (M1)], which retains selective activation of human β1-containing AMPK isoforms. This paper describes a detailed characterization of the human UGT isoform(s) responsible for glucuronidation of PF-06409577 to M1. Studies using a panel of 13 human recombinant UGT (hrUGT) enzymes indicated that PF-06409577 was converted to M1 in a highly selective fashion by UGT1A1, which was further verified in human liver microsomes treated with specific chemical inhibitors, and in different UGT1A1 expressers. Conversion of PF-06409577 to M1 by UGT1A1 occurred in a relatively selective fashion, compared with β-estradiol (ES), a conventional probe substrate of UGT1A1. The Michaelis-Menten constant (K M) and V max values describing the formation of M1 from PF-06409577 in hrUGT1A1 and microsomal preparations from human intestine, liver, and kidney ranged from 131 to 212 μM (K M) and 107-3834 pmol/min per milligram (V max) in the presence of 2% bovine serum albumin. Relative activity factors (RAF) were determined for UGT1A1 using PF-06409577 and ES to enable estimation of intrinsic clearance from various tissues. RAF values from PF-06409577 and ES were generally comparable with the exception of intestinal microsomes, where ES overestimated the RAF of UGT1A1 due to glucuronidation by intestinal UGT1A8 and UGT1A10. Our results suggest the potential utility of PF-06409477 as a selective probe UGT1A1 substrate for UGT reaction phenotyping and inhibition studies in preclinical discovery/development.
Collapse
Affiliation(s)
- Kimberly Lapham
- Medicine Design, Pfizer Inc., Groton, Connecticut (K.L., J.L., J.N., C.O., M.N., L.D., T.C.G., S.R., K.R., H.E.); and Medicine Design, Pfizer Inc., Cambridge, Massachusetts (K.O.C., A.S.K.)
| | - Jian Lin
- Medicine Design, Pfizer Inc., Groton, Connecticut (K.L., J.L., J.N., C.O., M.N., L.D., T.C.G., S.R., K.R., H.E.); and Medicine Design, Pfizer Inc., Cambridge, Massachusetts (K.O.C., A.S.K.)
| | - Jonathan Novak
- Medicine Design, Pfizer Inc., Groton, Connecticut (K.L., J.L., J.N., C.O., M.N., L.D., T.C.G., S.R., K.R., H.E.); and Medicine Design, Pfizer Inc., Cambridge, Massachusetts (K.O.C., A.S.K.)
| | - Christine Orozco
- Medicine Design, Pfizer Inc., Groton, Connecticut (K.L., J.L., J.N., C.O., M.N., L.D., T.C.G., S.R., K.R., H.E.); and Medicine Design, Pfizer Inc., Cambridge, Massachusetts (K.O.C., A.S.K.)
| | - Mark Niosi
- Medicine Design, Pfizer Inc., Groton, Connecticut (K.L., J.L., J.N., C.O., M.N., L.D., T.C.G., S.R., K.R., H.E.); and Medicine Design, Pfizer Inc., Cambridge, Massachusetts (K.O.C., A.S.K.)
| | - Li Di
- Medicine Design, Pfizer Inc., Groton, Connecticut (K.L., J.L., J.N., C.O., M.N., L.D., T.C.G., S.R., K.R., H.E.); and Medicine Design, Pfizer Inc., Cambridge, Massachusetts (K.O.C., A.S.K.)
| | - Theunis C Goosen
- Medicine Design, Pfizer Inc., Groton, Connecticut (K.L., J.L., J.N., C.O., M.N., L.D., T.C.G., S.R., K.R., H.E.); and Medicine Design, Pfizer Inc., Cambridge, Massachusetts (K.O.C., A.S.K.)
| | - Sangwoo Ryu
- Medicine Design, Pfizer Inc., Groton, Connecticut (K.L., J.L., J.N., C.O., M.N., L.D., T.C.G., S.R., K.R., H.E.); and Medicine Design, Pfizer Inc., Cambridge, Massachusetts (K.O.C., A.S.K.)
| | - Keith Riccardi
- Medicine Design, Pfizer Inc., Groton, Connecticut (K.L., J.L., J.N., C.O., M.N., L.D., T.C.G., S.R., K.R., H.E.); and Medicine Design, Pfizer Inc., Cambridge, Massachusetts (K.O.C., A.S.K.)
| | - Heather Eng
- Medicine Design, Pfizer Inc., Groton, Connecticut (K.L., J.L., J.N., C.O., M.N., L.D., T.C.G., S.R., K.R., H.E.); and Medicine Design, Pfizer Inc., Cambridge, Massachusetts (K.O.C., A.S.K.)
| | - Kimberly O Cameron
- Medicine Design, Pfizer Inc., Groton, Connecticut (K.L., J.L., J.N., C.O., M.N., L.D., T.C.G., S.R., K.R., H.E.); and Medicine Design, Pfizer Inc., Cambridge, Massachusetts (K.O.C., A.S.K.)
| | - Amit S Kalgutkar
- Medicine Design, Pfizer Inc., Groton, Connecticut (K.L., J.L., J.N., C.O., M.N., L.D., T.C.G., S.R., K.R., H.E.); and Medicine Design, Pfizer Inc., Cambridge, Massachusetts (K.O.C., A.S.K.)
| |
Collapse
|
64
|
Koutsoukas A, Chang G, Keefer CE. In-Silico Extraction of Design Ideas Using MMPA-by-QSAR and its Application on ADME Endpoints. J Chem Inf Model 2018; 59:477-485. [DOI: 10.1021/acs.jcim.8b00520] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Alexios Koutsoukas
- Computational ADME Group, Department of Pharmacokinetics, Dynamics, and Metabolism, Pfizer Worldwide Research & Development, Groton, Connecticut 06340, United States
| | - George Chang
- Computational ADME Group, Department of Pharmacokinetics, Dynamics, and Metabolism, Pfizer Worldwide Research & Development, Groton, Connecticut 06340, United States
| | - Christopher E. Keefer
- Computational ADME Group, Department of Pharmacokinetics, Dynamics, and Metabolism, Pfizer Worldwide Research & Development, Groton, Connecticut 06340, United States
| |
Collapse
|
65
|
Kimoto E, Mathialagan S, Tylaska L, Niosi M, Lin J, Carlo AA, Tess DA, Varma MVS. Organic Anion Transporter 2-Mediated Hepatic Uptake Contributes to the Clearance of High-Permeability-Low-Molecular-Weight Acid and Zwitterion Drugs: Evaluation Using 25 Drugs. J Pharmacol Exp Ther 2018; 367:322-334. [PMID: 30135178 DOI: 10.1124/jpet.118.252049] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 08/15/2018] [Indexed: 03/08/2025] Open
Abstract
High-permeability-low-molecular-weight acids/zwitterions [i.e., extended clearance classification system class 1A (ECCS 1A) drugs] are considered to be cleared by metabolism with a minimal role of membrane transporters in their hepatic clearance. However, a marked disconnect in the in vitro-in vivo (IVIV) translation of hepatic clearance is often noted for these drugs. Metabolic rates measured using human liver microsomes and primary hepatocytes tend to underpredict. Here, we evaluated the role of organic anion transporter 2 (OAT2)-mediated hepatic uptake in the clearance of ECCS 1A drugs. For a set of 25 ECCS 1A drugs, in vitro transport activity was assessed using transporter-transfected cells and primary human hepatocytes. All but two drugs showed substrate affinity to OAT2, whereas four (bromfenac, entacapone, fluorescein, and nateglinide) also showed OATP1B1 activity in transfected cells. Most of these drugs (21 of 25) showed active uptake by plated human hepatocytes, with rifamycin SV (pan-transporter inhibitor) reducing the uptake by about 25%-95%. Metabolic turnover was estimated for 19 drugs after a few showed no measurable substrate depletion in liver microsomal incubations. IVIV extrapolation using in vitro data was evaluated to project human hepatic clearance of OAT2-alone substrates considering 1) uptake transport only, 2) metabolism only, and 3) transporter-enzyme interplay (extended clearance model). The transporter-enzyme interplay approach achieved improved prediction accuracy (average fold error = 1.9 and bias = 0.93) compared with the other two approaches. In conclusion, this study provides functional evidence for the role of OAT2-mediated hepatic uptake in determining the pharmacokinetics of several clinically important ECCS 1A drugs.
Collapse
Affiliation(s)
- Emi Kimoto
- Medicine Design, Worldwide Research and Development, Pfizer Inc., Groton, Connecticut
| | - Sumathy Mathialagan
- Medicine Design, Worldwide Research and Development, Pfizer Inc., Groton, Connecticut
| | - Laurie Tylaska
- Medicine Design, Worldwide Research and Development, Pfizer Inc., Groton, Connecticut
| | - Mark Niosi
- Medicine Design, Worldwide Research and Development, Pfizer Inc., Groton, Connecticut
| | - Jian Lin
- Medicine Design, Worldwide Research and Development, Pfizer Inc., Groton, Connecticut
| | - Anthony A Carlo
- Medicine Design, Worldwide Research and Development, Pfizer Inc., Groton, Connecticut
| | - David A Tess
- Medicine Design, Worldwide Research and Development, Pfizer Inc., Groton, Connecticut
| | - Manthena V S Varma
- Medicine Design, Worldwide Research and Development, Pfizer Inc., Groton, Connecticut
| |
Collapse
|
66
|
Affiliation(s)
| | - Kevin Beaumont
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc., Cambridge, Massachusetts 02139, United States
| | - Tristan S. Maurer
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc., Cambridge, Massachusetts 02139, United States
| | - Li Di
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc., Groton, Connecticut 06340, United States
| |
Collapse
|
67
|
Phillips MB, Balbuena-Venancio P, Enders JR, Norini RL, Shim YS, Burgunder E, Rao L, Billings D, Pedersen J, Macdonald JM, Andersen M, Clewell HJ, Yoon M. Xenobiotic Metabolism in Alginate-Encapsulated Primary Human Hepatocytes Over Long Timeframes. ACTA ACUST UNITED AC 2018. [DOI: 10.1089/aivt.2017.0029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
| | - Pergentino Balbuena-Venancio
- ScitoVation, LLC, Research Triangle Park, North Carolina
- Institute for Chemical Safety Sciences, The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina
| | | | | | - Yoo-Sik Shim
- ScitoVation, LLC, Research Triangle Park, North Carolina
- Institute for Chemical Safety Sciences, The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina
| | - Erin Burgunder
- ScitoVation, LLC, Research Triangle Park, North Carolina
- Institute for Chemical Safety Sciences, The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina
| | - Lavanya Rao
- ScitoVation, LLC, Research Triangle Park, North Carolina
| | - David Billings
- ScitoVation, LLC, Research Triangle Park, North Carolina
- Institute for Chemical Safety Sciences, The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina
| | - Jenny Pedersen
- Institute for Chemical Safety Sciences, The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina
| | - Jeffrey M. Macdonald
- Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill, North Carolina
| | - Melvin Andersen
- ScitoVation, LLC, Research Triangle Park, North Carolina
- Institute for Chemical Safety Sciences, The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina
| | - Harvey J. Clewell
- ScitoVation, LLC, Research Triangle Park, North Carolina
- Institute for Chemical Safety Sciences, The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina
| | - Miyoung Yoon
- ScitoVation, LLC, Research Triangle Park, North Carolina
- Institute for Chemical Safety Sciences, The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina
| |
Collapse
|
68
|
Bowman CM, Benet LZ. An examination of protein binding and protein-facilitated uptake relating to in vitro-in vivo extrapolation. Eur J Pharm Sci 2018; 123:502-514. [PMID: 30098391 DOI: 10.1016/j.ejps.2018.08.008] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 08/03/2018] [Accepted: 08/04/2018] [Indexed: 01/09/2023]
Abstract
As explained by the free drug theory, the unbound fraction of drug has long been thought to drive the efficacy of a molecule. Thus, the fraction unbound term, or fu, appears in equations for fundamental pharmacokinetic parameters such as clearance, and is used when attempting in vitro to in vivo extrapolation (IVIVE). In recent years though, it has been noted that IVIVE does not always yield accurate predictions, and that some highly protein bound ligands have more efficient uptake than can be explained by their unbound fractions. This review explores the evolution of fu terms included when implementing IVIVE, the concept of protein-facilitated uptake, and the mechanisms that have been proposed to account for facilitated uptake.
Collapse
Affiliation(s)
- C M Bowman
- Department of Bioengineering and Therapeutic Sciences, Schools of Pharmacy and Medicine, University of California San Francisco, San Francisco, CA, USA
| | - L Z Benet
- Department of Bioengineering and Therapeutic Sciences, Schools of Pharmacy and Medicine, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
69
|
Movsisyan LD, Schäfer E, Nguyen A, Ehrmann FR, Schwab A, Rossolini T, Zimmerli D, Wagner B, Daff H, Heine A, Klebe G, Diederich F. Sugar Acetonides are a Superior Motif for Addressing the Large, Solvent-Exposed Ribose-33 Pocket of tRNA-Guanine Transglycosylase. Chemistry 2018; 24:9957-9967. [PMID: 29939431 DOI: 10.1002/chem.201801756] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 05/10/2018] [Indexed: 11/09/2022]
Abstract
The intestinal disease shigellosis caused by Shigella bacteria affects over 120 million people annually. There is an urgent demand for new drugs as resistance against common antibiotics emerges. Bacterial tRNA-guanine transglycosylase (TGT) is a druggable target and controls the pathogenicity of Shigella flexneri. We report the synthesis of sugar-functionalized lin-benzoguanines addressing the ribose-33 pocket of TGT from Zymomonas mobilis. Ligand binding was analyzed by isothermal titration calorimetry and X-ray crystallography. Pocket occupancy was optimized by variation of size and protective groups of the sugars. The participation of a polycyclic water-cluster in the recognition of the sugar moiety was revealed. Acetonide-protected ribo- and psicofuranosyl derivatives are highly potent, benefiting from structural rigidity, good solubility, and metabolic stability. We conclude that sugar acetonides have a significant but not yet broadly recognized value in drug development.
Collapse
Affiliation(s)
- Levon D Movsisyan
- Laboratorium für Organische Chemie, ETH Zurich, Vladimir-Prelog-Weg 3, HCI, 8093, Zurich, Switzerland
| | - Elisabeth Schäfer
- Laboratorium für Organische Chemie, ETH Zurich, Vladimir-Prelog-Weg 3, HCI, 8093, Zurich, Switzerland
| | - Andreas Nguyen
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marbacher Weg 6, 35032, Marburg, Germany
| | - Frederik R Ehrmann
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marbacher Weg 6, 35032, Marburg, Germany
| | - Anatol Schwab
- Laboratorium für Organische Chemie, ETH Zurich, Vladimir-Prelog-Weg 3, HCI, 8093, Zurich, Switzerland
| | - Thomas Rossolini
- Laboratorium für Organische Chemie, ETH Zurich, Vladimir-Prelog-Weg 3, HCI, 8093, Zurich, Switzerland
| | - Daniel Zimmerli
- F. Hoffmann-La Roche Ltd, Discovery Technologies, Bldg 92, 4070, Basel, Switzerland
| | - Björn Wagner
- F. Hoffmann-La Roche Ltd, Discovery Technologies, Bldg 92, 4070, Basel, Switzerland
| | - Hamina Daff
- F. Hoffmann-La Roche Ltd, Discovery Technologies, Bldg 92, 4070, Basel, Switzerland
| | - Andreas Heine
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marbacher Weg 6, 35032, Marburg, Germany
| | - Gerhard Klebe
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marbacher Weg 6, 35032, Marburg, Germany
| | - François Diederich
- Laboratorium für Organische Chemie, ETH Zurich, Vladimir-Prelog-Weg 3, HCI, 8093, Zurich, Switzerland
| |
Collapse
|
70
|
Ouali Alami N, Schurr C, Olde Heuvel F, Tang L, Li Q, Tasdogan A, Kimbara A, Nettekoven M, Ottaviani G, Raposo C, Röver S, Rogers-Evans M, Rothenhäusler B, Ullmer C, Fingerle J, Grether U, Knuesel I, Boeckers TM, Ludolph A, Wirth T, Roselli F, Baumann B. NF-κB activation in astrocytes drives a stage-specific beneficial neuroimmunological response in ALS. EMBO J 2018; 37:embj.201798697. [PMID: 29875132 PMCID: PMC6092622 DOI: 10.15252/embj.201798697] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 04/24/2018] [Accepted: 04/30/2018] [Indexed: 12/21/2022] Open
Abstract
Astrocytes are involved in non‐cell‐autonomous pathogenic cascades in amyotrophic lateral sclerosis (ALS); however, their role is still debated. We show that astrocytic NF‐κB activation drives microglial proliferation and leukocyte infiltration in the SOD1 (G93A) ALS model. This response prolongs the presymptomatic phase, delaying muscle denervation and decreasing disease burden, but turns detrimental in the symptomatic phase, accelerating disease progression. The transition corresponds to a shift in the microglial phenotype showing two effects that can be dissociated by temporally controlling NF‐κB activation. While NF‐κB activation in astrocytes induced a Wnt‐dependent microglial proliferation in the presymptomatic phase with neuroprotective effects on motoneurons, in later stage, astrocyte NF‐κB‐dependent microglial activation caused an accelerated disease progression. Notably, suppression of the early microglial response by CB2R agonists had acute detrimental effects. These data identify astrocytes as important regulators of microglia expansion and immune response. Therefore, stage‐dependent microglia modulation may be an effective therapeutic strategy in ALS.
Collapse
Affiliation(s)
| | - Christine Schurr
- Institute of Physiological Chemistry, Ulm University, Ulm, Germany
| | | | - Linyun Tang
- Department of Neurology, Ulm University, Ulm, Germany
| | - Qian Li
- Department of Neurology, Ulm University, Ulm, Germany
| | | | - Atsushi Kimbara
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Matthias Nettekoven
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Giorgio Ottaviani
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Catarina Raposo
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Stephan Röver
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Mark Rogers-Evans
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Benno Rothenhäusler
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Christoph Ullmer
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Jürgen Fingerle
- Natural and Medical Sciences Institute, Tübingen University, Reutlingen, Germany
| | - Uwe Grether
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Irene Knuesel
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Tobias M Boeckers
- Department of Anatomy and Cell Biology, Ulm University, Ulm, Germany
| | | | - Thomas Wirth
- Institute of Physiological Chemistry, Ulm University, Ulm, Germany
| | - Francesco Roselli
- Department of Neurology, Ulm University, Ulm, Germany .,Department of Anatomy and Cell Biology, Ulm University, Ulm, Germany
| | - Bernd Baumann
- Institute of Physiological Chemistry, Ulm University, Ulm, Germany
| |
Collapse
|
71
|
Schlapbach A, Revesz L, Pissot Soldermann C, Zoller T, Régnier CH, Bornancin F, Radimerski T, Blank J, Schuffenhauer A, Renatus M, Erbel P, Melkko S, Heng R, Simic O, Endres R, Wartmann M, Quancard J. N-aryl-piperidine-4-carboxamides as a novel class of potent inhibitors of MALT1 proteolytic activity. Bioorg Med Chem Lett 2018; 28:2153-2158. [PMID: 29759726 DOI: 10.1016/j.bmcl.2018.05.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 04/16/2018] [Accepted: 05/08/2018] [Indexed: 12/11/2022]
Abstract
Starting from a weak screening hit, potent and selective inhibitors of the MALT1 protease function were elaborated. Advanced compounds displayed high potency in biochemical and cellular assays. Compounds showed activity in a mechanistic Jurkat T cell activation assay as well as in the B-cell lymphoma line OCI-Ly3, which suggests potential use of MALT1 inhibitors in the treatment of autoimmune diseases as well as B-cell lymphomas with a dysregulated NF-κB pathway. Initially, rat pharmacokinetic properties of this compound series were dominated by very high clearance which could be linked to amide cleavage. Using a rat hepatocyte assay a good in vitro-in vivo correlation could be established which led to the identification of compounds with improved PK properties.
Collapse
Affiliation(s)
- Achim Schlapbach
- Novartis Institutes for BioMedical Research, CH-4002 Basel, Switzerland.
| | - Laszlo Revesz
- Novartis Institutes for BioMedical Research, CH-4002 Basel, Switzerland
| | | | - Thomas Zoller
- Novartis Institutes for BioMedical Research, CH-4002 Basel, Switzerland
| | | | | | - Thomas Radimerski
- Novartis Institutes for BioMedical Research, CH-4002 Basel, Switzerland
| | - Jutta Blank
- Novartis Institutes for BioMedical Research, CH-4002 Basel, Switzerland
| | | | - Martin Renatus
- Novartis Institutes for BioMedical Research, CH-4002 Basel, Switzerland
| | - Paulus Erbel
- Novartis Institutes for BioMedical Research, CH-4002 Basel, Switzerland
| | - Samu Melkko
- Novartis Institutes for BioMedical Research, CH-4002 Basel, Switzerland
| | - Richard Heng
- Novartis Institutes for BioMedical Research, CH-4002 Basel, Switzerland
| | - Oliver Simic
- Novartis Institutes for BioMedical Research, CH-4002 Basel, Switzerland
| | - Ralf Endres
- Novartis Institutes for BioMedical Research, CH-4002 Basel, Switzerland
| | - Markus Wartmann
- Novartis Institutes for BioMedical Research, CH-4002 Basel, Switzerland
| | - Jean Quancard
- Novartis Institutes for BioMedical Research, CH-4002 Basel, Switzerland
| |
Collapse
|
72
|
Matsunaga N, Fukuchi Y, Imawaka H, Tamai I. Sandwich-Cultured Hepatocytes for Mechanistic Understanding of Hepatic Disposition of Parent Drugs and Metabolites by Transporter-Enzyme Interplay. Drug Metab Dispos 2018; 46:680-691. [PMID: 29352067 DOI: 10.1124/dmd.117.079236] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 01/17/2018] [Indexed: 12/13/2022] Open
Abstract
Functional interplay between transporters and drug-metabolizing enzymes is currently one of the hottest topics in the field of drug metabolism and pharmacokinetics. Uptake transporter-enzyme interplay is important to determine intrinsic hepatic clearance based on the extended clearance concept. Enzyme and efflux transporter interplay, which includes both sinusoidal (basolateral) and canalicular efflux transporters, determines the fate of metabolites formed in the liver. As sandwich-cultured hepatocytes (SCHs) maintain metabolic activities and form a canalicular network, the whole interplay between uptake and efflux transporters and drug-metabolizing enzymes can be investigated simultaneously. In this article, we review the utility and applicability of SCHs for mechanistic understanding of hepatic disposition of both parent drugs and metabolites. In addition, the utility of SCHs for mimicking species-specific disposition of parent drugs and metabolites in vivo is described. We also review application of SCHs for clinically relevant prediction of drug-drug interactions caused by drugs and metabolites. The usefulness of mathematical modeling of hepatic disposition of parent drugs and metabolites in SCHs is described to allow a quantitative understanding of an event in vitro and to develop a more advanced model to predict in vivo disposition.
Collapse
Affiliation(s)
- Norikazu Matsunaga
- Pharmacokinetic Research Laboratories, Ono Pharmaceutical Co., Ltd., Tsukuba, Japan (N.M. Y.F., H.I.); Department of Membrane Transport and Biopharmaceutics, Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan (I.T.)
| | - Yukina Fukuchi
- Pharmacokinetic Research Laboratories, Ono Pharmaceutical Co., Ltd., Tsukuba, Japan (N.M. Y.F., H.I.); Department of Membrane Transport and Biopharmaceutics, Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan (I.T.)
| | - Haruo Imawaka
- Pharmacokinetic Research Laboratories, Ono Pharmaceutical Co., Ltd., Tsukuba, Japan (N.M. Y.F., H.I.); Department of Membrane Transport and Biopharmaceutics, Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan (I.T.)
| | - Ikumi Tamai
- Pharmacokinetic Research Laboratories, Ono Pharmaceutical Co., Ltd., Tsukuba, Japan (N.M. Y.F., H.I.); Department of Membrane Transport and Biopharmaceutics, Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan (I.T.)
| |
Collapse
|
73
|
Vazquez ML, Kaila N, Strohbach JW, Trzupek JD, Brown MF, Flanagan ME, Mitton-Fry MJ, Johnson TA, TenBrink RE, Arnold EP, Basak A, Heasley SE, Kwon S, Langille J, Parikh MD, Griffin SH, Casavant JM, Duclos BA, Fenwick AE, Harris TM, Han S, Caspers N, Dowty ME, Yang X, Banker ME, Hegen M, Symanowicz PT, Li L, Wang L, Lin TH, Jussif J, Clark JD, Telliez JB, Robinson RP, Unwalla R. Identification of N-{cis-3-[Methyl(7H-pyrrolo[2,3-d]pyrimidin-4-yl)amino]cyclobutyl}propane-1-sulfonamide (PF-04965842): A Selective JAK1 Clinical Candidate for the Treatment of Autoimmune Diseases. J Med Chem 2018; 61:1130-1152. [DOI: 10.1021/acs.jmedchem.7b01598] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Michael L. Vazquez
- Medicine
Design, Pfizer Inc, 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | - Neelu Kaila
- Medicine
Design, Pfizer Inc, 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | - Joseph W. Strohbach
- Medicine
Design, Pfizer Inc, 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | - John D. Trzupek
- Medicine
Design, Pfizer Inc, 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | - Matthew F. Brown
- Medicine
Design, Pfizer Inc, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Mark E. Flanagan
- Medicine
Design, Pfizer Inc, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Mark J. Mitton-Fry
- Medicine
Design, Pfizer Inc, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Timothy A. Johnson
- Veterinary
Medicine Research and Development, Pfizer Inc, 333 Portage Street, Kalamazoo, Michigan 49007, United States
| | - Ruth E. TenBrink
- Medicinal
Chemistry, Pfizer Inc, 700 Chesterfield Parkway West, Chesterfield, Missouri 63017, United States
| | - Eric P. Arnold
- Medicine
Design, Pfizer Inc, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Arindrajit Basak
- Medicine
Design, Pfizer Inc, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Steven E. Heasley
- Medicine
Design, Pfizer Inc, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Soojin Kwon
- Medicine
Design, Pfizer Inc, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Jonathan Langille
- Medicine
Design, Pfizer Inc, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Mihir D. Parikh
- Medicine
Design, Pfizer Inc, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Sarah H. Griffin
- Chemical
Research Development, Pfizer Inc, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Jeffrey M. Casavant
- Medicine
Design, Pfizer Inc, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Brian A. Duclos
- Veterinary
Medicine Research and Development, Pfizer Inc, 333 Portage Street, Kalamazoo, Michigan 49007, United States
| | - Ashley E. Fenwick
- Veterinary
Medicine Research and Development, Pfizer Inc, 333 Portage Street, Kalamazoo, Michigan 49007, United States
| | - Thomas M. Harris
- Medicine
Design, Pfizer Inc, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Seungil Han
- Medicine
Design, Pfizer Inc, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Nicole Caspers
- Medicine
Design, Pfizer Inc, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Martin E. Dowty
- Medicine
Design, Pfizer Inc, 1 Burtt Road, Andover, Massachusetts 01810, United States
| | - Xin Yang
- Medicine
Design, Pfizer Inc, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Mary Ellen Banker
- Medicine
Design, Pfizer Inc, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Martin Hegen
- Inflammation
and Immunology, Pfizer Inc, 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | - Peter T. Symanowicz
- Inflammation
and Immunology, Pfizer Inc, 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | - Li Li
- Inflammation
and Immunology, Pfizer Inc, 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | - Lu Wang
- Inflammation
and Immunology, Pfizer Inc, 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | - Tsung H. Lin
- Inflammation
and Immunology, Pfizer Inc, 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | - Jason Jussif
- Inflammation
and Immunology, Pfizer Inc, 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | - James D. Clark
- Inflammation
and Immunology, Pfizer Inc, 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | - Jean-Baptiste Telliez
- Inflammation
and Immunology, Pfizer Inc, 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | - Ralph P. Robinson
- Medicine
Design, Pfizer Inc, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Ray Unwalla
- Medicine
Design, Pfizer Inc, 1 Portland Street, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
74
|
Rational approach to highly potent and selective apoptosis signal-regulating kinase 1 (ASK1) inhibitors. Eur J Med Chem 2017; 145:606-621. [PMID: 29348070 DOI: 10.1016/j.ejmech.2017.12.041] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 12/11/2017] [Accepted: 12/13/2017] [Indexed: 11/21/2022]
Abstract
Many diseases are believed to be driven by pathological levels of reactive oxygen species (ROS) and oxidative stress has long been recognized as a driver for inflammatory disorders. Apoptosis signal-regulating kinase 1 (ASK1) has been reported to be activated by intracellular ROS and its inhibition leads to a down regulation of p38-and JNK-dependent signaling. Consequently, ASK1 inhibitors may have the potential to treat clinically important inflammatory pathologies including renal, pulmonary and liver diseases. Analysis of the ASK1 ATP-binding site suggested that Gln756, an amino acid that rarely occurs at the GK+2 position, offered opportunities for achieving kinase selectivity for ASK1 which was applied to the design of a parallel medicinal chemistry library that afforded inhibitors of ASK1 with nanomolar potency and excellent kinome selectivity. A focused optimization strategy utilizing structure-based design resulted in the identification of ASK1 inhibitors with low nanomolar potency in a cellular assay, high selectivity when tested against kinase and broad pharmacology screening panels, and attractive physicochemical properties. The compounds we describe are attractive tool compounds to inform the therapeutic potential of ASK1 inhibition.
Collapse
|
75
|
Industry Perspective on Contemporary Protein-Binding Methodologies: Considerations for Regulatory Drug-Drug Interaction and Related Guidelines on Highly Bound Drugs. J Pharm Sci 2017; 106:3442-3452. [DOI: 10.1016/j.xphs.2017.09.005] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 09/07/2017] [Indexed: 11/21/2022]
|
76
|
Caillé F, Cacheux F, Peyronneau MA, Jego B, Jaumain E, Pottier G, Ullmer C, Grether U, Winkeler A, Dollé F, Damont A, Kuhnast B. From Structure-Activity Relationships on Thiazole Derivatives to the In Vivo Evaluation of a New Radiotracer for Cannabinoid Subtype 2 PET Imaging. Mol Pharm 2017; 14:4064-4078. [PMID: 28968497 DOI: 10.1021/acs.molpharmaceut.7b00746] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Upregulation of the cannabinoid type 2 receptors (CB2R) unveils inflammation processes of pathological disorders, such as cancer, pain, or neurodegenerative diseases. Among others, CB2R agonist A-836339 has been labeled with carbon-11 for PET imaging of the CB2R and displayed promising results in a mouse model of Alzheimer's disease. The aim of the present work was to develop fluorinated analogs of A-836339 for labeling with fluorine-18 to design a new PET tracer for CB2R imaging. Seven fluorinated analogs of A-836339 were synthesized in two to three steps and their binding affinities and selectivities for both the human and the mouse CB2R were measured as well as their early ADME profiles. Among them, compound 2f (KihCB2R = 0.1 nM, KihCB1R/KihCB2R = 300) displayed high affinity and selectivity for CB2R but also promising lipophilicity, kinetic solubility, and membrane permeation properties and was further selected for in vitro metabolism studies. Incubation of 2f with human or rat liver microsomes followed by LC/MS analysis revealed the presence of six different metabolites mainly resulting from oxidation reactions. A tosylated precursor of 2f was synthesized in two steps and radiolabeled with fluorine-18 to afford [18F]2f in 15 ± 5% radiochemical yield and a molar activity of 110 ± 30 GBq/μmol. Autoradiographies of rat spleen and biodistribution studies in healthy rats including pretreatments with either CB2R or CB1R-specific compounds suggested that [18F]2f is a specific tracer for the CB2R in vivo. We have therefore demonstrated here that [18F]2f is a promising novel tracer for imaging CB2R in vivo using PET. Further investigation in animal models of inflammation will follow.
Collapse
Affiliation(s)
- Fabien Caillé
- UMR 1023 IMIV, Service Hospitalier Frédéric Joliot, CEA, Inserm, Université Paris Sud, CNRS, Université Paris-Saclay , 91405 Orsay, France
| | - Fanny Cacheux
- UMR 1023 IMIV, Service Hospitalier Frédéric Joliot, CEA, Inserm, Université Paris Sud, CNRS, Université Paris-Saclay , 91405 Orsay, France
| | - Marie-Anne Peyronneau
- UMR 1023 IMIV, Service Hospitalier Frédéric Joliot, CEA, Inserm, Université Paris Sud, CNRS, Université Paris-Saclay , 91405 Orsay, France
| | - Benoît Jego
- UMR 1023 IMIV, Service Hospitalier Frédéric Joliot, CEA, Inserm, Université Paris Sud, CNRS, Université Paris-Saclay , 91405 Orsay, France
| | - Emilie Jaumain
- UMR 1023 IMIV, Service Hospitalier Frédéric Joliot, CEA, Inserm, Université Paris Sud, CNRS, Université Paris-Saclay , 91405 Orsay, France
| | - Géraldine Pottier
- UMR 1023 IMIV, Service Hospitalier Frédéric Joliot, CEA, Inserm, Université Paris Sud, CNRS, Université Paris-Saclay , 91405 Orsay, France
| | - Christoph Ullmer
- Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd. , 4070 Basel, Switzerland
| | - Uwe Grether
- Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd. , 4070 Basel, Switzerland
| | - Alexandra Winkeler
- UMR 1023 IMIV, Service Hospitalier Frédéric Joliot, CEA, Inserm, Université Paris Sud, CNRS, Université Paris-Saclay , 91405 Orsay, France
| | - Frédéric Dollé
- UMR 1023 IMIV, Service Hospitalier Frédéric Joliot, CEA, Inserm, Université Paris Sud, CNRS, Université Paris-Saclay , 91405 Orsay, France
| | - Annelaure Damont
- UMR 1023 IMIV, Service Hospitalier Frédéric Joliot, CEA, Inserm, Université Paris Sud, CNRS, Université Paris-Saclay , 91405 Orsay, France
| | - Bertrand Kuhnast
- UMR 1023 IMIV, Service Hospitalier Frédéric Joliot, CEA, Inserm, Université Paris Sud, CNRS, Université Paris-Saclay , 91405 Orsay, France
| |
Collapse
|
77
|
Kim A, Yu BY, Dueker SR, Shin KH, Kim HS, Ahn H, Cho JY, Yu KS, Jang IJ, Lee H. An Accelerator Mass Spectrometry-Enabled Microtracer Study to Evaluate the First-Pass Effect on the Absorption of YH4808. Clin Pharmacol Ther 2017; 102:537-546. [PMID: 28214288 DOI: 10.1002/cpt.672] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 01/23/2017] [Accepted: 02/14/2017] [Indexed: 12/25/2022]
Abstract
14 C-labeled YH4808, a novel potassium-competitive acid blocker, was intravenously administered as a microtracer at 80 μg (11.8 kBq or 320 nCi) concomitantly with the nonradiolabeled oral drug at 200 mg to determine the absolute bioavailability and to assess the effect of pharmacogenomics on the oral absorption of YH4808. The absolute bioavailability was low and highly variable (mean, 10.1%; range, 2.3-19.3%), and M3 and M8, active metabolites of YH4808, were formed 22.6- and 38.5-fold higher after oral administration than intravenous administration, respectively. The product of the fraction of an oral YH4808 dose entering the gut wall and the fraction of YH4808 passing on to the portal circulation was larger in subjects carrying the variants of the CHST3, SLC15A1, and SULT1B1 genes. A combined LC+AMS is a useful tool to construct a rich and highly informative pharmacokinetic knowledge core in early clinical drug development at a reasonable cost.
Collapse
Affiliation(s)
- A Kim
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Korea.,Clinical Trial Center, Ajou University Medical Center, Suwon, Korea
| | - B-Y Yu
- Korea Institute of Science and Technology, Seoul, Korea
| | | | - K-H Shin
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, Korea
| | - H S Kim
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Korea
| | - H Ahn
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Korea
| | - J-Y Cho
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Korea
| | - K-S Yu
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Korea
| | - I-J Jang
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Korea
| | - H Lee
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Korea.,Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Korea
| |
Collapse
|
78
|
Soethoudt M, Grether U, Fingerle J, Grim TW, Fezza F, de Petrocellis L, Ullmer C, Rothenhäusler B, Perret C, van Gils N, Finlay D, MacDonald C, Chicca A, Gens MD, Stuart J, de Vries H, Mastrangelo N, Xia L, Alachouzos G, Baggelaar MP, Martella A, Mock ED, Deng H, Heitman LH, Connor M, Di Marzo V, Gertsch J, Lichtman AH, Maccarrone M, Pacher P, Glass M, van der Stelt M. Cannabinoid CB 2 receptor ligand profiling reveals biased signalling and off-target activity. Nat Commun 2017; 8:13958. [PMID: 28045021 PMCID: PMC5216056 DOI: 10.1038/ncomms13958] [Citation(s) in RCA: 264] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 11/15/2016] [Indexed: 01/01/2023] Open
Abstract
The cannabinoid CB2 receptor (CB2R) represents a promising therapeutic target for various forms of tissue injury and inflammatory diseases. Although numerous compounds have been developed and widely used to target CB2R, their selectivity, molecular mode of action and pharmacokinetic properties have been poorly characterized. Here we report the most extensive characterization of the molecular pharmacology of the most widely used CB2R ligands to date. In a collaborative effort between multiple academic and industry laboratories, we identify marked differences in the ability of certain agonists to activate distinct signalling pathways and to cause off-target effects. We reach a consensus that HU910, HU308 and JWH133 are the recommended selective CB2R agonists to study the role of CB2R in biological and disease processes. We believe that our unique approach would be highly suitable for the characterization of other therapeutic targets in drug discovery research.
Collapse
Affiliation(s)
- Marjolein Soethoudt
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
- Department of Medicinal Chemistry, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| | - Uwe Grether
- Roche Innovation Center Basel, F. Hoffman-La Roche Ltd., Grenzachterstrasse 124, Basel 4070, Switzerland
| | - Jürgen Fingerle
- Department of Biochemistry, NMI, University Tübingen, Markwiesenstrasse 55, Reutlingen 72770, Germany
| | - Travis W. Grim
- Department of Pharmacology and Toxicology, 1220 East Broad Street, PO Box 980613, Richmond, Virginia 23298-0613, USA
| | - Filomena Fezza
- Department of Experimental Medicine and Surgery, Tor Vergata University of Rome, Via Montpellier 1, Rome 00133, Italy
- European Center for Brain Research/IRCCS Santa Lucia Foundation, via del Fosso del Fiorano 65, Rome 00143, Italy
| | - Luciano de Petrocellis
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, C.N.R., Via Campi Flegrei 34, Comprensorio Olivetti, Pozzuoli 80078, Italy
| | - Christoph Ullmer
- Roche Innovation Center Basel, F. Hoffman-La Roche Ltd., Grenzachterstrasse 124, Basel 4070, Switzerland
| | - Benno Rothenhäusler
- Roche Innovation Center Basel, F. Hoffman-La Roche Ltd., Grenzachterstrasse 124, Basel 4070, Switzerland
| | - Camille Perret
- Roche Innovation Center Basel, F. Hoffman-La Roche Ltd., Grenzachterstrasse 124, Basel 4070, Switzerland
| | - Noortje van Gils
- Department of Medicinal Chemistry, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| | - David Finlay
- Department of Pharmacology and Clinical Pharmacology, Faculty of Medical and Health Sciences, University of Auckland, 85 Park road, Grafton, Auckland 1023, New Zealand
| | - Christa MacDonald
- Department of Pharmacology and Clinical Pharmacology, Faculty of Medical and Health Sciences, University of Auckland, 85 Park road, Grafton, Auckland 1023, New Zealand
| | - Andrea Chicca
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, Bern CH-3012, Switzerland
| | - Marianela Dalghi Gens
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, Bern CH-3012, Switzerland
| | - Jordyn Stuart
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, North Ryde, New South Wales 2109, Australia
| | - Henk de Vries
- Department of Medicinal Chemistry, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| | - Nicolina Mastrangelo
- Department of Medicine, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 21, Rome 00128, Italy
| | - Lizi Xia
- Department of Medicinal Chemistry, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| | - Georgios Alachouzos
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| | - Marc P. Baggelaar
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| | - Andrea Martella
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
- Department of Medicinal Chemistry, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| | - Elliot D. Mock
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| | - Hui Deng
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| | - Laura H. Heitman
- Department of Medicinal Chemistry, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| | - Mark Connor
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, North Ryde, New South Wales 2109, Australia
| | - Vincenzo Di Marzo
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, C.N.R., Via Campi Flegrei 34, Comprensorio Olivetti, Pozzuoli 80078, Italy
| | - Jürg Gertsch
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, Bern CH-3012, Switzerland
| | - Aron H. Lichtman
- Department of Pharmacology and Toxicology, 1220 East Broad Street, PO Box 980613, Richmond, Virginia 23298-0613, USA
| | - Mauro Maccarrone
- European Center for Brain Research/IRCCS Santa Lucia Foundation, via del Fosso del Fiorano 65, Rome 00143, Italy
- Department of Medicine, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 21, Rome 00128, Italy
| | - Pal Pacher
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute of Health/NIAAA, 5625 Fishers Lane, Rockville, Maryland 20852, USA
| | - Michelle Glass
- Department of Pharmacology and Clinical Pharmacology, Faculty of Medical and Health Sciences, University of Auckland, 85 Park road, Grafton, Auckland 1023, New Zealand
| | - Mario van der Stelt
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| |
Collapse
|
79
|
Chang G, Huard K, Kauffman GW, Stepan AF, Keefer CE. A multi-endpoint matched molecular pair (MMP) analysis of 6-membered heterocycles. Bioorg Med Chem 2017; 25:381-388. [DOI: 10.1016/j.bmc.2016.11.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 10/28/2016] [Accepted: 11/01/2016] [Indexed: 11/28/2022]
|
80
|
Tsamandouras N, Kostrzewski T, Stokes CL, Griffith LG, Hughes DJ, Cirit M. Quantitative Assessment of Population Variability in Hepatic Drug Metabolism Using a Perfused Three-Dimensional Human Liver Microphysiological System. J Pharmacol Exp Ther 2017; 360:95-105. [PMID: 27760784 PMCID: PMC5193075 DOI: 10.1124/jpet.116.237495] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 10/17/2016] [Indexed: 12/16/2022] Open
Abstract
In this work, we first describe the population variability in hepatic drug metabolism using cryopreserved hepatocytes from five different donors cultured in a perfused three-dimensional human liver microphysiological system, and then show how the resulting data can be integrated with a modeling and simulation framework to accomplish in vitro-in vivo translation. For each donor, metabolic depletion profiles of six compounds (phenacetin, diclofenac, lidocaine, ibuprofen, propranolol, and prednisolone) were measured, along with metabolite formation, mRNA levels of 90 metabolism-related genes, and markers of functional viability [lactate dehydrogenase (LDH) release, albumin, and urea production]. Drug depletion data were analyzed with mixed-effects modeling. Substantial interdonor variability was observed with respect to gene expression levels, drug metabolism, and other measured hepatocyte functions. Specifically, interdonor variability in intrinsic metabolic clearance ranged from 24.1% for phenacetin to 66.8% for propranolol (expressed as coefficient of variation). Albumin, urea, LDH, and cytochrome P450 mRNA levels were identified as significant predictors of in vitro metabolic clearance. Predicted clearance values from the liver microphysiological system were correlated with the observed in vivo values. A population physiologically based pharmacokinetic model was developed for lidocaine to illustrate the translation of the in vitro output to the observed pharmacokinetic variability in vivo. Stochastic simulations with this model successfully predicted the observed clinical concentration-time profiles and the associated population variability. This is the first study of population variability in drug metabolism in the context of a microphysiological system and has important implications for the use of these systems during the drug development process.
Collapse
Affiliation(s)
- N Tsamandouras
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts (N.T., L.G.G., M.C.); CN Bio Innovations, Hertfordshire, United Kingdom (T.K., D.J.H.); and Stokes Consulting, Redwood City, California (C.L.S.)
| | - T Kostrzewski
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts (N.T., L.G.G., M.C.); CN Bio Innovations, Hertfordshire, United Kingdom (T.K., D.J.H.); and Stokes Consulting, Redwood City, California (C.L.S.)
| | - C L Stokes
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts (N.T., L.G.G., M.C.); CN Bio Innovations, Hertfordshire, United Kingdom (T.K., D.J.H.); and Stokes Consulting, Redwood City, California (C.L.S.)
| | - L G Griffith
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts (N.T., L.G.G., M.C.); CN Bio Innovations, Hertfordshire, United Kingdom (T.K., D.J.H.); and Stokes Consulting, Redwood City, California (C.L.S.)
| | - D J Hughes
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts (N.T., L.G.G., M.C.); CN Bio Innovations, Hertfordshire, United Kingdom (T.K., D.J.H.); and Stokes Consulting, Redwood City, California (C.L.S.)
| | - M Cirit
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts (N.T., L.G.G., M.C.); CN Bio Innovations, Hertfordshire, United Kingdom (T.K., D.J.H.); and Stokes Consulting, Redwood City, California (C.L.S.)
| |
Collapse
|
81
|
Futatsugi K, Huard K, Kung DW, Pettersen JC, Flynn DA, Gosset JR, Aspnes GE, Barnes RJ, Cabral S, Dowling MS, Fernando DP, Goosen TC, Gorczyca WP, Hepworth D, Herr M, Lavergne S, Li Q, Niosi M, Orr STM, Pardo ID, Perez SM, Purkal J, Schmahai TJ, Shirai N, Shoieb AM, Zhou J, Goodwin B. Small structural changes of the imidazopyridine diacylglycerol acyltransferase 2 (DGAT2) inhibitors produce an improved safety profile. MEDCHEMCOMM 2016; 8:771-779. [PMID: 30108796 DOI: 10.1039/c6md00564k] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 11/08/2016] [Indexed: 11/21/2022]
Abstract
Small molecule DGAT2 inhibitors have shown promise for the treatment of metabolic diseases in preclinical models. Herein, we report the first toxicological evaluation of imidazopyridine-based DGAT2 inhibitors and show that the arteriopathy associated with imidazopyridine 1 can be mitigated with small structural modifications, and is thus not mechanism related.
Collapse
Affiliation(s)
- K Futatsugi
- Pfizer Inc. Medicine Design , 610 Main Street , Cambridge , Massachusetts , 02155 USA .
| | - K Huard
- Pfizer Inc. Medicine Design , 610 Main Street , Cambridge , Massachusetts , 02155 USA .
| | - D W Kung
- Pfizer Inc. Medicine Design , Eastern Point Road , Groton , Connecticut , 06340 USA .
| | - J C Pettersen
- Pfizer Inc. Drug Safety Research and Development , Eastern Point Road , Groton , Connecticut , 06340 USA
| | - D A Flynn
- Pfizer Inc. Drug Safety Research and Development , Eastern Point Road , Groton , Connecticut , 06340 USA
| | - J R Gosset
- Pfizer Inc. Medicine Design , 610 Main Street , Cambridge , Massachusetts , 02155 USA .
| | - G E Aspnes
- Pfizer Inc. Medicine Design , 610 Main Street , Cambridge , Massachusetts , 02155 USA .
| | - R J Barnes
- Pfizer Inc. Drug Safety Research and Development , Eastern Point Road , Groton , Connecticut , 06340 USA
| | - S Cabral
- Pfizer Inc. Medicine Design , Eastern Point Road , Groton , Connecticut , 06340 USA .
| | - M S Dowling
- Pfizer Inc. Medicine Design , Eastern Point Road , Groton , Connecticut , 06340 USA .
| | - D P Fernando
- Pfizer Inc. Medicine Design , Eastern Point Road , Groton , Connecticut , 06340 USA .
| | - T C Goosen
- Pfizer Inc. Medicine Design , Eastern Point Road , Groton , Connecticut , 06340 USA .
| | - W P Gorczyca
- Pfizer Inc. Drug Safety Research and Development , Eastern Point Road , Groton , Connecticut , 06340 USA
| | - D Hepworth
- Pfizer Inc. Medicine Design , 610 Main Street , Cambridge , Massachusetts , 02155 USA .
| | - M Herr
- Pfizer Inc. Medicine Design , Eastern Point Road , Groton , Connecticut , 06340 USA .
| | - S Lavergne
- Pfizer Inc. Medicine Design , Eastern Point Road , Groton , Connecticut , 06340 USA .
| | - Q Li
- Pfizer Inc. Medicine Design , Eastern Point Road , Groton , Connecticut , 06340 USA .
| | - M Niosi
- Pfizer Inc. Medicine Design , Eastern Point Road , Groton , Connecticut , 06340 USA .
| | - S T M Orr
- Pfizer Inc. Medicine Design , Eastern Point Road , Groton , Connecticut , 06340 USA .
| | - I D Pardo
- Pfizer Inc. Drug Safety Research and Development , Eastern Point Road , Groton , Connecticut , 06340 USA
| | - S M Perez
- Pfizer Inc. Cardiovascular and Metabolic Disease Research Unit , 610 Main Street , Cambridge , Massachusetts , 02155 USA
| | - J Purkal
- Pfizer Inc. Cardiovascular and Metabolic Disease Research Unit , 610 Main Street , Cambridge , Massachusetts , 02155 USA
| | - T J Schmahai
- Pfizer Inc. Drug Safety Research and Development , Eastern Point Road , Groton , Connecticut , 06340 USA
| | - N Shirai
- Pfizer Inc. Drug Safety Research and Development , Eastern Point Road , Groton , Connecticut , 06340 USA
| | - A M Shoieb
- Pfizer Inc. Drug Safety Research and Development , Eastern Point Road , Groton , Connecticut , 06340 USA
| | - J Zhou
- Pfizer Inc. Drug Safety Research and Development , Eastern Point Road , Groton , Connecticut , 06340 USA
| | - B Goodwin
- Pfizer Inc. Cardiovascular and Metabolic Disease Research Unit , 610 Main Street , Cambridge , Massachusetts , 02155 USA
| |
Collapse
|
82
|
Marques LM, Callejon DR, Pinto LG, de Campos ML, de Oliveira AR, Vessecchi R, Adhikari A, Shrestha RL, Peccinini RG, Lopes NP. Pharmacokinetic properties, in vitro metabolism and plasma protein binding of govaniadine an alkaloid isolated from Corydalis govaniana Wall. J Pharm Biomed Anal 2016; 131:464-472. [DOI: 10.1016/j.jpba.2016.09.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 08/30/2016] [Accepted: 09/01/2016] [Indexed: 12/01/2022]
|
83
|
Riccardi K, Li Z, Brown JA, Gorgoglione MF, Niosi M, Gosset J, Huard K, Erion DM, Di L. Determination of Unbound Partition Coefficient and in Vitro-in Vivo Extrapolation for SLC13A Transporter-Mediated Uptake. Drug Metab Dispos 2016; 44:1633-42. [PMID: 27417179 DOI: 10.1124/dmd.116.071837] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 07/13/2016] [Indexed: 02/13/2025] Open
Abstract
Unbound partition coefficient (Kpuu) is important to an understanding of the asymmetric free drug distribution of a compound between cells and medium in vitro, as well as between tissue and plasma in vivo, especially for transporter-mediated processes. Kpuu was determined for a set of compounds from the SLC13A family that are inhibitors and substrates of transporters in hepatocytes and transporter-transfected cell lines. Enantioselectivity was observed, with (R)-enantiomers achieving much higher Kpuu (>4) than the (S)-enantiomers (<1) in human hepatocytes and SLC13A5-transfected human embryonic 293 cells. The intracellular free drug concentration correlated directly with in vitro pharmacological activity rather than the nominal concentration in the assay because of the high Kpuu mediated by SLC13A5 transporter uptake. Delivery of the diacid PF-06649298 directly or via hydrolysis of the ethyl ester prodrug PF-06757303 resulted in quite different Kpuu values in human hepatocytes (Kpuu of 3 for diacid versus 59 for prodrug), which was successfully modeled on the basis of passive diffusion, active uptake, and conversion rate from ester to diacid using a compartmental model. Kpuu values changed with drug concentrations; lower values were observed at higher concentrations possibly owing to a saturation of transporters. Michaelis-Menten constant (Km) of SLC13A5 was estimated to be 24 μM for PF-06649298 in human hepatocytes. In vitro Kpuu obtained from rat suspension hepatocytes supplemented with 4% fatty acid free bovine serum albumin showed good correlation with in vivo Kpuu of liver-to-plasma, illustrating the potential of this approach to predict in vivo Kpuu from in vitro systems.
Collapse
Affiliation(s)
- Keith Riccardi
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc., Groton, CT (K.R., J.A.B., M.N., L.D.); Cambridge, MA (M.F.G., J.G., K.H., D.M.E.)
| | - Zhenhong Li
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc., Groton, CT (K.R., J.A.B., M.N., L.D.); Cambridge, MA (M.F.G., J.G., K.H., D.M.E.)
| | - Janice A Brown
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc., Groton, CT (K.R., J.A.B., M.N., L.D.); Cambridge, MA (M.F.G., J.G., K.H., D.M.E.)
| | - Matthew F Gorgoglione
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc., Groton, CT (K.R., J.A.B., M.N., L.D.); Cambridge, MA (M.F.G., J.G., K.H., D.M.E.)
| | - Mark Niosi
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc., Groton, CT (K.R., J.A.B., M.N., L.D.); Cambridge, MA (M.F.G., J.G., K.H., D.M.E.)
| | - James Gosset
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc., Groton, CT (K.R., J.A.B., M.N., L.D.); Cambridge, MA (M.F.G., J.G., K.H., D.M.E.)
| | - Kim Huard
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc., Groton, CT (K.R., J.A.B., M.N., L.D.); Cambridge, MA (M.F.G., J.G., K.H., D.M.E.)
| | - Derek M Erion
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc., Groton, CT (K.R., J.A.B., M.N., L.D.); Cambridge, MA (M.F.G., J.G., K.H., D.M.E.)
| | - Li Di
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc., Groton, CT (K.R., J.A.B., M.N., L.D.); Cambridge, MA (M.F.G., J.G., K.H., D.M.E.)
| |
Collapse
|
84
|
Yao Z, Qian M, Zhang H, Nie J, Ye J, Li Z. Etoxazole is Metabolized Enantioselectively in Liver Microsomes of Rat and Human in Vitro. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:9682-9688. [PMID: 27479246 DOI: 10.1021/acs.est.6b02676] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Acaricide etoxazole belongs to the ovicides/miticides diphenyloxazole class, affecting adults to lay sterile eggs by inhibiting chitin biosynthesis possibly. The reverse-phase HPLC-MS/MS method was used to determine the etoxazole enantiomers. The enantioselective degradation behavior of rac-etoxazole in liver microsomes of rat and human in vitro with NADPH was dramatically different. The t1/2 of (R)-etoxazole was 15.23 min in rat liver microsomes and 30.54 min in human liver microsomes, while 21.73 and 23.50 min were obtained for (S)-etoxazole, respectively. The Vmax of (R)-etoxazole was almost 5-fold of (S)-etoxazole in liver microsomes of rat in vitro. However, the Vmax of (S)-etoxazole was almost 2-fold of (R)-etoxazole in liver microsomes of human in vitro. The CLint of etoxazole was also shown the enantioselectivity on the contrary in liver microsomes of rat and human. These results indicated that the metabolism of two etoxazole enantiomers was selective in liver microsomes of rat and human in vitro, and enantioselectivity in the two kinds of liver microsomes was in the difference in degradation performance. The reason might be related to the composition and content involved in the enzyme system.
Collapse
Affiliation(s)
- Zhoulin Yao
- College of Chemical Engineering, Zhejiang University of Technology , Hangzhou 310014, China
- Zhejiang Citrus Research Institute, Zhejiang Academy of Agricultural Sciences , Taizhou 318020, China
- Institute of Quality and Standard for Agricultural Products, Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang Province, State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, and MOA Key Laboratory for Pesticide Residue Detection, Zhejiang Academy of Agricultural Sciences , Hangzhou 310021, China
| | - Mingrong Qian
- Institute of Quality and Standard for Agricultural Products, Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang Province, State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, and MOA Key Laboratory for Pesticide Residue Detection, Zhejiang Academy of Agricultural Sciences , Hangzhou 310021, China
| | - Hu Zhang
- Institute of Quality and Standard for Agricultural Products, Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang Province, State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, and MOA Key Laboratory for Pesticide Residue Detection, Zhejiang Academy of Agricultural Sciences , Hangzhou 310021, China
| | - Jing Nie
- College of Chemical Engineering, Zhejiang University of Technology , Hangzhou 310014, China
| | - Jingqing Ye
- College of Chemical Engineering, Zhejiang University of Technology , Hangzhou 310014, China
| | - Zuguang Li
- College of Chemical Engineering, Zhejiang University of Technology , Hangzhou 310014, China
| |
Collapse
|
85
|
Applicability of the Rayleigh equation for enantioselective metabolism of chiral xenobiotics by microsomes, hepatocytes and in-vivo retention in rabbit tissues. Sci Rep 2016; 6:23715. [PMID: 27021918 PMCID: PMC4810358 DOI: 10.1038/srep23715] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 03/14/2016] [Indexed: 01/22/2023] Open
Abstract
In this study we propose a new approach for analyzing the enantioselective biodegradation of some antidepressant drugs mediated by human and rat liver microsomes by using the Rayleigh equation to describe the enantiomeric enrichment−conversion dependencies. Analysis of reported degradation data of additional six pesticides, an alpha blocker and a flame retardant by microsomes or hepatocytes in vitro reaffirmed the universality of the approach. In all the in vitro studied cases that involved enantioselective degradation, a Rayleigh dependence of the enantiomeric enrichment was observed. Published data regarding in vivo retention of myclobutanil in liver, kidney, muscle and brain tissues of rabbits following injection of the racemate were remodeled showing prevalence of the Rayleigh law for the chiral enrichment of the fungicide in the various tissues. This approach will revolutionize data organization in metabolic pathway research of target xenobiotics by either liver microsomes, hepatocytes or their organ-specific in vivo retention. The fact that the enantiomeric enrichment as a function of the conversion can be described by a single quantifier, will pave the road for the use of structure activity predictors of the enantiomeric enrichment and for mechanistic discrimination based on parametric dependence of the quantifier.
Collapse
|
86
|
Lin C, Miao Y, Qian M, Wang Q, Zhang H. Enantioselective Metabolism of Flufiprole in Rat and Human Liver Microsomes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:2371-2376. [PMID: 26938045 DOI: 10.1021/acs.jafc.5b05853] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The enantioselective metabolism of flufiprole in rat and human liver microsomes in vitro was investigated in this study. The separation and determination were performed using a liquid chromatography system equipped with a triple-quadrupole mass spectrometer and a Lux Cellulose-2 chiral column. The enantioselective metabolism of rac-flufiprole was dramatically different in rat and human liver microsomes in the presence of the β-nicotinamide adenine dinucleotide phosphate regenerating system. The half-lives (t1/2) of flufiprole in rat and human liver microsomes were 7.22 and 21.00 min, respectively, for R-(+)-flufiprole, whereas the values were 11.75 and 17.75 min, respectively, for S-(-)-flufiprole. In addition, the Vmax of R-(+)-flufiprole was about 3-fold that of S-(-)-flufiprole in rat liver microsomes, whereas its value in the case of S-(-)-flufiprole was about 2-fold that of R-(+)-flufiprole in human liver microsomes. The CLint of rac-flufiprole also showed opposite enantioselectivy in rat and human liver microsomes. The different compositions and contents of metabolizing enzyme in the two liver microsomes might be the reasons for the difference in the metabolic behavior of the two enantiomers.
Collapse
Affiliation(s)
- Chunmian Lin
- College of Biological and Environmental Engineering, Zhejiang University of Technology , Hangzhou 310014, China
| | - Yelong Miao
- College of Biological and Environmental Engineering, Zhejiang University of Technology , Hangzhou 310014, China
| | - Mingrong Qian
- Institute of Quality and Standard for Agricultural Products, Zhejiang Academy of Agricultural Sciences , Hangzhou 310021, China
| | - Qiang Wang
- Institute of Quality and Standard for Agricultural Products, Zhejiang Academy of Agricultural Sciences , Hangzhou 310021, China
| | - Hu Zhang
- Institute of Quality and Standard for Agricultural Products, Zhejiang Academy of Agricultural Sciences , Hangzhou 310021, China
| |
Collapse
|
87
|
Pirovano A, Brandmaier S, Huijbregts MAJ, Ragas AMJ, Veltman K, Hendriks AJ. QSARs for estimating intrinsic hepatic clearance of organic chemicals in humans. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2016; 42:190-197. [PMID: 26874337 DOI: 10.1016/j.etap.2016.01.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 01/19/2016] [Accepted: 01/21/2016] [Indexed: 06/05/2023]
Abstract
Quantitative structure-activity relationships (QSARs) were developed to predict the in vitro clearance (CLINT) of xenobiotics metabolised in human hepatocytes (118 compounds) and microsomes (115 compounds). Clearance values were gathered from the scientific literature and multiple linear models were built and validated selecting at most 6 predictors from a pool of over 2000 potential molecular descriptors. For the hepatocytes QSAR, the explained variance (Radj(2)) was 67% and the predictive ability (Rext(2)) was 62%. For the microsomes QSAR, Radj(2) was 50% and Rext(2) 30%. For both liver assays, the most important descriptor relates to electronic properties of the compound. Functional groups of fragments were useful to identify specific compounds that have a deviating reaction rate compared to the others, such as polychlorobiphenyls (PCBs) and organic amides which were poorly metabolised by hepatocytes and microsomes, respectively. For hepatocytes, clearance was predominantly determined by electronic characteristics, while size and shape characteristics were less important and partitioning properties were absent. This may suggest that uptake across the membrane and enzyme binding are not rate-limiting steps. Particularly for hepatocytes the QSAR statistics are encouraging, allowing application of the outcomes in in vitro to in vivo extrapolation.
Collapse
Affiliation(s)
- Alessandra Pirovano
- Radboud University Nijmegen, Institute for Wetland and Water Research, Department of Environmental Science, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
| | - Stefan Brandmaier
- Helmholtz-Zentrum München - German Research Centre for Environmental Health (GmbH), Research Unit of Molecular Epidemiology, Institute of Epidemiology II, Munich, Germany
| | - Mark A J Huijbregts
- Radboud University Nijmegen, Institute for Wetland and Water Research, Department of Environmental Science, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Ad M J Ragas
- Radboud University Nijmegen, Institute for Wetland and Water Research, Department of Environmental Science, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands; Faculty of Management, Science and Technology, Open University, Heerlen, The Netherlands
| | - Karin Veltman
- University of Michigan, School of Public Health, Department of Environmental Health Sciences, 1415 Washington Heights, Ann Arbor, MI, USA
| | - A Jan Hendriks
- Radboud University Nijmegen, Institute for Wetland and Water Research, Department of Environmental Science, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| |
Collapse
|
88
|
Nicolaï J, De Bruyn T, Thevelin L, Augustijns P, Annaert P. Transport-Metabolism Interplay of Atazanavir in Rat Hepatocytes. Drug Metab Dispos 2016; 44:389-97. [PMID: 26712820 DOI: 10.1124/dmd.115.068114] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 12/23/2015] [Indexed: 02/13/2025] Open
Abstract
The aim of this study was to explore the mechanisms governing the intra- to extracellular unbound concentration ratio (Kpu,u) for the HIV protease inhibitor atazanavir (ATV) in rat hepatocytes. We had previously proposed a new method to determine Kpu,u by using the unbound Km values from metabolism studies with suspended rat hepatocytes and rat liver microsomes. Following that method, we determined that the value of ATV Kpu,u was 0.32, indicating that ATV hepatocellular clearance is uptake rate-limited. This hypothesis was supported by the linear correlation between Kpu,u and active uptake clearance (P = 0.04; R(2)=0.82) in the presence of increasing concentrations of the uptake transport inhibitor losartan. Moreover, in contrast to an expected increase of Kpu,u upon inhibition of ATV metabolism, a decrease of Kpu,u was observed, suggesting an increased impact of sinusoidal efflux. In summary, involvement of active uptake transport does not guarantee high intracellular accumulation; however, it has a key role in regulating intracellular drug concentrations and drug metabolism. These findings will help improve future in vitro-to-in vivo extrapolations and likewise physiologically based pharmacokinetic models.
Collapse
Affiliation(s)
- Johan Nicolaï
- Drug Delivery and Disposition, KU Leuven Department of Pharmaceutical and Pharmacological Sciences, Leuven, Belgium
| | - Tom De Bruyn
- Drug Delivery and Disposition, KU Leuven Department of Pharmaceutical and Pharmacological Sciences, Leuven, Belgium
| | - Louise Thevelin
- Drug Delivery and Disposition, KU Leuven Department of Pharmaceutical and Pharmacological Sciences, Leuven, Belgium
| | - Patrick Augustijns
- Drug Delivery and Disposition, KU Leuven Department of Pharmaceutical and Pharmacological Sciences, Leuven, Belgium
| | - Pieter Annaert
- Drug Delivery and Disposition, KU Leuven Department of Pharmaceutical and Pharmacological Sciences, Leuven, Belgium
| |
Collapse
|
89
|
Dong JQ, Varma MV, Wolford A, Ryder T, Di L, Feng B, Terra SG, Sagawa K, Kalgutkar AS. Pharmacokinetics and Disposition of the Thiouracil Derivative PF-06282999, an Orally Bioavailable, Irreversible Inactivator of Myeloperoxidase Enzyme, Across Animals and Humans. Drug Metab Dispos 2016; 44:209-19. [PMID: 26608081 DOI: 10.1124/dmd.115.067868] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 11/23/2015] [Indexed: 02/13/2025] Open
Abstract
The thiouracil derivative PF-06282999 [2-(6-(5-chloro-2-methoxyphenyl)-4-oxo-2-thioxo-3,4-dihydropyrimidin-1(2H)-yl)acetamide] is an irreversible inactivator of myeloperoxidase and is currently in clinical trials for the potential treatment of cardiovascular diseases. Concerns over idiosyncratic toxicity arising from bioactivation of the thiouracil motif to reactive species in the liver have been largely mitigated through the physicochemical (molecular weight, lipophilicity, and topological polar surface area) characteristics of PF-06282999, which generally favor elimination via nonmetabolic routes. To test this hypothesis, pharmacokinetics and disposition studies were initiated with PF-06282999 using animals and in vitro assays, with the ultimate goal of predicting human pharmacokinetics and elimination mechanisms. Consistent with its physicochemical properties, PF-06282999 was resistant to metabolic turnover from liver microsomes and hepatocytes from animals and humans and was devoid of cytochrome P450 inhibition. In vitro transport studies suggested moderate intestinal permeability and minimal transporter-mediated hepatobiliary disposition. PF-06282999 demonstrated moderate plasma protein binding across all of the species. Pharmacokinetics in preclinical species characterized by low to moderate plasma clearances, good oral bioavailability at 3- to 5-mg/kg doses, and renal clearance as the projected major clearance mechanism in humans. Human pharmacokinetic predictions using single-species scaling of dog and/or monkey pharmacokinetics were consistent with the parameters observed in the first-in-human study, conducted in healthy volunteers at a dose range of 20-200 mg PF-06282999. In summary, disposition characteristics of PF-06282999 were relatively similar across preclinical species and humans, with renal excretion of the unchanged parent emerging as the principal clearance mechanism in humans, which was anticipated based on its physicochemical properties and supported by preclinical studies.
Collapse
Affiliation(s)
- Jennifer Q Dong
- Pfizer Inc., Cambridge, Massachusetts (J.Q.D., A.S.K.); and Pfizer Inc., Groton, Connecticut (M.V.V., A.W., T.R., L.D., B.F., S.G.T., K.S.)
| | - Manthena V Varma
- Pfizer Inc., Cambridge, Massachusetts (J.Q.D., A.S.K.); and Pfizer Inc., Groton, Connecticut (M.V.V., A.W., T.R., L.D., B.F., S.G.T., K.S.)
| | - Angela Wolford
- Pfizer Inc., Cambridge, Massachusetts (J.Q.D., A.S.K.); and Pfizer Inc., Groton, Connecticut (M.V.V., A.W., T.R., L.D., B.F., S.G.T., K.S.)
| | - Tim Ryder
- Pfizer Inc., Cambridge, Massachusetts (J.Q.D., A.S.K.); and Pfizer Inc., Groton, Connecticut (M.V.V., A.W., T.R., L.D., B.F., S.G.T., K.S.)
| | - Li Di
- Pfizer Inc., Cambridge, Massachusetts (J.Q.D., A.S.K.); and Pfizer Inc., Groton, Connecticut (M.V.V., A.W., T.R., L.D., B.F., S.G.T., K.S.)
| | - Bo Feng
- Pfizer Inc., Cambridge, Massachusetts (J.Q.D., A.S.K.); and Pfizer Inc., Groton, Connecticut (M.V.V., A.W., T.R., L.D., B.F., S.G.T., K.S.)
| | - Steven G Terra
- Pfizer Inc., Cambridge, Massachusetts (J.Q.D., A.S.K.); and Pfizer Inc., Groton, Connecticut (M.V.V., A.W., T.R., L.D., B.F., S.G.T., K.S.)
| | - Kazuko Sagawa
- Pfizer Inc., Cambridge, Massachusetts (J.Q.D., A.S.K.); and Pfizer Inc., Groton, Connecticut (M.V.V., A.W., T.R., L.D., B.F., S.G.T., K.S.)
| | - Amit S Kalgutkar
- Pfizer Inc., Cambridge, Massachusetts (J.Q.D., A.S.K.); and Pfizer Inc., Groton, Connecticut (M.V.V., A.W., T.R., L.D., B.F., S.G.T., K.S.)
| |
Collapse
|
90
|
Huard K, Gosset JR, Montgomery JI, Gilbert A, Hayward MM, Magee TV, Cabral S, Uccello DP, Bahnck K, Brown J, Purkal J, Gorgoglione M, Lanba A, Futatsugi K, Herr M, Genung NE, Aspnes G, Polivkova J, Garcia-Irizarry CN, Li Q, Canterbury D, Niosi M, Vera NB, Li Z, Khunte B, Siderewicz J, Rolph T, Erion DM. Optimization of a Dicarboxylic Series for in Vivo Inhibition of Citrate Transport by the Solute Carrier 13 (SLC13) Family. J Med Chem 2016; 59:1165-75. [DOI: 10.1021/acs.jmedchem.5b01752] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kim Huard
- Worldwide Medicinal Chemistry, ‡Cardiovascular, Metabolic and Endocrine Diseases Research Unit, and §Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development, Cambridge, Massachusetts 02139, United States
- Worldwide Medicinal Chemistry, and ⊥Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development, Groton, Connecticut 06340, United States
| | - James R. Gosset
- Worldwide Medicinal Chemistry, ‡Cardiovascular, Metabolic and Endocrine Diseases Research Unit, and §Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development, Cambridge, Massachusetts 02139, United States
- Worldwide Medicinal Chemistry, and ⊥Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development, Groton, Connecticut 06340, United States
| | - Justin I. Montgomery
- Worldwide Medicinal Chemistry, ‡Cardiovascular, Metabolic and Endocrine Diseases Research Unit, and §Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development, Cambridge, Massachusetts 02139, United States
- Worldwide Medicinal Chemistry, and ⊥Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development, Groton, Connecticut 06340, United States
| | - Adam Gilbert
- Worldwide Medicinal Chemistry, ‡Cardiovascular, Metabolic and Endocrine Diseases Research Unit, and §Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development, Cambridge, Massachusetts 02139, United States
- Worldwide Medicinal Chemistry, and ⊥Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development, Groton, Connecticut 06340, United States
| | - Matthew M. Hayward
- Worldwide Medicinal Chemistry, ‡Cardiovascular, Metabolic and Endocrine Diseases Research Unit, and §Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development, Cambridge, Massachusetts 02139, United States
- Worldwide Medicinal Chemistry, and ⊥Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development, Groton, Connecticut 06340, United States
| | - Thomas V. Magee
- Worldwide Medicinal Chemistry, ‡Cardiovascular, Metabolic and Endocrine Diseases Research Unit, and §Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development, Cambridge, Massachusetts 02139, United States
- Worldwide Medicinal Chemistry, and ⊥Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development, Groton, Connecticut 06340, United States
| | - Shawn Cabral
- Worldwide Medicinal Chemistry, ‡Cardiovascular, Metabolic and Endocrine Diseases Research Unit, and §Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development, Cambridge, Massachusetts 02139, United States
- Worldwide Medicinal Chemistry, and ⊥Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development, Groton, Connecticut 06340, United States
| | - Daniel P. Uccello
- Worldwide Medicinal Chemistry, ‡Cardiovascular, Metabolic and Endocrine Diseases Research Unit, and §Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development, Cambridge, Massachusetts 02139, United States
- Worldwide Medicinal Chemistry, and ⊥Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development, Groton, Connecticut 06340, United States
| | - Kevin Bahnck
- Worldwide Medicinal Chemistry, ‡Cardiovascular, Metabolic and Endocrine Diseases Research Unit, and §Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development, Cambridge, Massachusetts 02139, United States
- Worldwide Medicinal Chemistry, and ⊥Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development, Groton, Connecticut 06340, United States
| | - Janice Brown
- Worldwide Medicinal Chemistry, ‡Cardiovascular, Metabolic and Endocrine Diseases Research Unit, and §Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development, Cambridge, Massachusetts 02139, United States
- Worldwide Medicinal Chemistry, and ⊥Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development, Groton, Connecticut 06340, United States
| | - Julie Purkal
- Worldwide Medicinal Chemistry, ‡Cardiovascular, Metabolic and Endocrine Diseases Research Unit, and §Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development, Cambridge, Massachusetts 02139, United States
- Worldwide Medicinal Chemistry, and ⊥Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development, Groton, Connecticut 06340, United States
| | - Matthew Gorgoglione
- Worldwide Medicinal Chemistry, ‡Cardiovascular, Metabolic and Endocrine Diseases Research Unit, and §Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development, Cambridge, Massachusetts 02139, United States
- Worldwide Medicinal Chemistry, and ⊥Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development, Groton, Connecticut 06340, United States
| | - Adhiraj Lanba
- Worldwide Medicinal Chemistry, ‡Cardiovascular, Metabolic and Endocrine Diseases Research Unit, and §Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development, Cambridge, Massachusetts 02139, United States
- Worldwide Medicinal Chemistry, and ⊥Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development, Groton, Connecticut 06340, United States
| | - Kentaro Futatsugi
- Worldwide Medicinal Chemistry, ‡Cardiovascular, Metabolic and Endocrine Diseases Research Unit, and §Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development, Cambridge, Massachusetts 02139, United States
- Worldwide Medicinal Chemistry, and ⊥Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development, Groton, Connecticut 06340, United States
| | - Michael Herr
- Worldwide Medicinal Chemistry, ‡Cardiovascular, Metabolic and Endocrine Diseases Research Unit, and §Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development, Cambridge, Massachusetts 02139, United States
- Worldwide Medicinal Chemistry, and ⊥Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development, Groton, Connecticut 06340, United States
| | - Nathan E. Genung
- Worldwide Medicinal Chemistry, ‡Cardiovascular, Metabolic and Endocrine Diseases Research Unit, and §Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development, Cambridge, Massachusetts 02139, United States
- Worldwide Medicinal Chemistry, and ⊥Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development, Groton, Connecticut 06340, United States
| | - Gary Aspnes
- Worldwide Medicinal Chemistry, ‡Cardiovascular, Metabolic and Endocrine Diseases Research Unit, and §Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development, Cambridge, Massachusetts 02139, United States
- Worldwide Medicinal Chemistry, and ⊥Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development, Groton, Connecticut 06340, United States
| | - Jana Polivkova
- Worldwide Medicinal Chemistry, ‡Cardiovascular, Metabolic and Endocrine Diseases Research Unit, and §Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development, Cambridge, Massachusetts 02139, United States
- Worldwide Medicinal Chemistry, and ⊥Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development, Groton, Connecticut 06340, United States
| | - Carmen N. Garcia-Irizarry
- Worldwide Medicinal Chemistry, ‡Cardiovascular, Metabolic and Endocrine Diseases Research Unit, and §Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development, Cambridge, Massachusetts 02139, United States
- Worldwide Medicinal Chemistry, and ⊥Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development, Groton, Connecticut 06340, United States
| | - Qifang Li
- Worldwide Medicinal Chemistry, ‡Cardiovascular, Metabolic and Endocrine Diseases Research Unit, and §Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development, Cambridge, Massachusetts 02139, United States
- Worldwide Medicinal Chemistry, and ⊥Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development, Groton, Connecticut 06340, United States
| | - Daniel Canterbury
- Worldwide Medicinal Chemistry, ‡Cardiovascular, Metabolic and Endocrine Diseases Research Unit, and §Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development, Cambridge, Massachusetts 02139, United States
- Worldwide Medicinal Chemistry, and ⊥Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development, Groton, Connecticut 06340, United States
| | - Mark Niosi
- Worldwide Medicinal Chemistry, ‡Cardiovascular, Metabolic and Endocrine Diseases Research Unit, and §Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development, Cambridge, Massachusetts 02139, United States
- Worldwide Medicinal Chemistry, and ⊥Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development, Groton, Connecticut 06340, United States
| | - Nicholas B. Vera
- Worldwide Medicinal Chemistry, ‡Cardiovascular, Metabolic and Endocrine Diseases Research Unit, and §Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development, Cambridge, Massachusetts 02139, United States
- Worldwide Medicinal Chemistry, and ⊥Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development, Groton, Connecticut 06340, United States
| | - Zhenhong Li
- Worldwide Medicinal Chemistry, ‡Cardiovascular, Metabolic and Endocrine Diseases Research Unit, and §Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development, Cambridge, Massachusetts 02139, United States
- Worldwide Medicinal Chemistry, and ⊥Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development, Groton, Connecticut 06340, United States
| | - Bhagyashree Khunte
- Worldwide Medicinal Chemistry, ‡Cardiovascular, Metabolic and Endocrine Diseases Research Unit, and §Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development, Cambridge, Massachusetts 02139, United States
- Worldwide Medicinal Chemistry, and ⊥Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development, Groton, Connecticut 06340, United States
| | - Jaclyn Siderewicz
- Worldwide Medicinal Chemistry, ‡Cardiovascular, Metabolic and Endocrine Diseases Research Unit, and §Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development, Cambridge, Massachusetts 02139, United States
- Worldwide Medicinal Chemistry, and ⊥Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development, Groton, Connecticut 06340, United States
| | - Timothy Rolph
- Worldwide Medicinal Chemistry, ‡Cardiovascular, Metabolic and Endocrine Diseases Research Unit, and §Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development, Cambridge, Massachusetts 02139, United States
- Worldwide Medicinal Chemistry, and ⊥Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development, Groton, Connecticut 06340, United States
| | - Derek M. Erion
- Worldwide Medicinal Chemistry, ‡Cardiovascular, Metabolic and Endocrine Diseases Research Unit, and §Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development, Cambridge, Massachusetts 02139, United States
- Worldwide Medicinal Chemistry, and ⊥Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development, Groton, Connecticut 06340, United States
| |
Collapse
|
91
|
Araki T, Iwazaki N, Ishiguro N, Sakamoto A, Nagata K, Ohbuchi M, Moriguchi H, Motoi M, Shinkyo R, Homma T, Sakamoto S, Iwase Y, Ise R, Nakanishi Y, Uto M, Inoue T. Requirements for human iPS cell-derived hepatocytes as an alternative to primary human hepatocytes for assessing absorption, distribution, metabolism, excretion and toxicity of pharmaceuticals. ACTA ACUST UNITED AC 2016. [DOI: 10.2131/fts.3.89] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Tetsuro Araki
- Consortium for Safety Assessment using Human iPS Cells (CSAHi)
- Non-Clinical Evaluation Expert Committee, Drug Evaluation Committee, Japan Pharmaceutical Manufacturers Association
- Laboratory for Safety Assessment and ADME, Pharmaceuticals Research Center, Asahi Kasei Pharma Corporation
| | - Norihiko Iwazaki
- Consortium for Safety Assessment using Human iPS Cells (CSAHi)
- DMPK Research Laboratories, Mitsubishi Tanabe Pharma Corporation
| | - Naoki Ishiguro
- Consortium for Safety Assessment using Human iPS Cells (CSAHi)
- Pharmacokinetics and Non-Clinical Safety, Kobe Pharma Research Institute, Nippon Boehringer Ingelheim Co., Ltd
| | - Atsushi Sakamoto
- Consortium for Safety Assessment using Human iPS Cells (CSAHi)
- Pharmacokinetics and Non-Clinical Safety, Kobe Pharma Research Institute, Nippon Boehringer Ingelheim Co., Ltd
| | - Keisuke Nagata
- Consortium for Safety Assessment using Human iPS Cells (CSAHi)
- Drug Safety Research Laboratories, Astellas Pharma Inc
| | - Masato Ohbuchi
- Consortium for Safety Assessment using Human iPS Cells (CSAHi)
- Analysis & Pharmacokinetics Research Laboratories, Astellas Pharma Inc
| | - Hiroyuki Moriguchi
- Consortium for Safety Assessment using Human iPS Cells (CSAHi)
- Analysis & Pharmacokinetics Research Laboratories, Astellas Pharma Inc
| | - Makiko Motoi
- Consortium for Safety Assessment using Human iPS Cells (CSAHi)
- Drug Metabolism and Pharmacokinetics Japan, Tsukuba Research Laboratories, Eisai Co., Ltd
| | - Raku Shinkyo
- Consortium for Safety Assessment using Human iPS Cells (CSAHi)
- Drug Metabolism and Pharmacokinetics Japan, Tsukuba Research Laboratories, Eisai Co., Ltd
| | - Toshiki Homma
- Consortium for Safety Assessment using Human iPS Cells (CSAHi)
- Kissei Pharmaceutical Co., Ltd
| | - Sakae Sakamoto
- Consortium for Safety Assessment using Human iPS Cells (CSAHi)
- Kissei Pharmaceutical Co., Ltd
| | - Yumiko Iwase
- Consortium for Safety Assessment using Human iPS Cells (CSAHi)
- Non-Clinical Evaluation Expert Committee, Drug Evaluation Committee, Japan Pharmaceutical Manufacturers Association
- Mitsubishi Tanabe Pharma Corporation
| | - Ryota Ise
- Consortium for Safety Assessment using Human iPS Cells (CSAHi)
- Shin Nippon Biomedical Laboratories, Ltd
| | - Yasuharu Nakanishi
- Consortium for Safety Assessment using Human iPS Cells (CSAHi)
- Pharmacokinetics and Bioanalysis Center, Shin Nippon Biomedical Laboratories, Ltd
| | - Masahiro Uto
- Consortium for Safety Assessment using Human iPS Cells (CSAHi)
- Pharmacokinetics and Bioanalysis Center, Shin Nippon Biomedical Laboratories, Ltd
| | - Tomoaki Inoue
- Consortium for Safety Assessment using Human iPS Cells (CSAHi)
- Non-Clinical Evaluation Expert Committee, Drug Evaluation Committee, Japan Pharmaceutical Manufacturers Association
- Safety Assessment Department, Research Division, Chugai Pharmaceutical Co., Ltd
| |
Collapse
|
92
|
Zientek MA, Goosen TC, Tseng E, Lin J, Bauman JN, Walker GS, Kang P, Jiang Y, Freiwald S, Neul D, Smith BJ. In Vitro Kinetic Characterization of Axitinib Metabolism. Drug Metab Dispos 2016; 44:102-14. [PMID: 26512042 DOI: 10.1124/dmd.115.065615] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 10/27/2015] [Indexed: 11/22/2022] Open
Abstract
N-Methyl-2-[3-((E)-2-pyridin-2-yl-vinyl)-1H-indazol-6-ylsulfanyl]-benzamide (axitinib) is an oral inhibitor of vascular endothelial growth factor receptors 1-3, which is approved for the treatment of advanced renal cell cancer. Human [(14)C]-labeled clinical studies indicate axitinib's primary route of clearance is metabolism. The aims of the in vitro experiments presented herein were to identify and characterize the enzymes involved in axitinib metabolic clearance. In vitro biotransformation studies of axitinib identified a number of metabolites including an axitinib sulfoxide, several less abundant oxidative metabolites, and glucuronide conjugates. The most abundant NADPH- and UDPGA-dependent metabolites, axitinib sulfoxide (M12) and axitinib N-glucuronide (M7) were selected for phenotyping and kinetic study. Phenotyping experiments with human liver microsomes (HLMs) using chemical inhibitors and recombinant human cytochrome P450s demonstrated axitinib was predominately metabolized by CYP3A4/5, with minor contributions from CYP2C19 and CYP1A2. The apparent substrate concentration at half-maximal velocity (Km) and Vmax values for the formation of axitinib sulfoxide by CYP3A4 or CYP3A5 were 4.0 or 1.9 µM and 9.6 or 1.4 pmol·min(-1)·pmol(-1), respectively. Using a CYP3A4-specific inhibitor (Cyp3cide) in liver microsomes expressing CYP3A5, 66% of the axitinib intrinsic clearance was attributable to CYP3A4 and 15% to CYP3A5. Axitinib N-glucuronidation was primarily catalyzed by UDP-glucuronosyltransferase (UGT) UGT1A1, which was verified by chemical inhibitors and UGT1A1 null expressers, with lesser contributions from UGTs 1A3, 1A9, and 1A4. The Km and Vmax values describing the formation of the N-glucuronide in HLM or rUGT1A1 were 2.7 µM or 0.75 µM and 8.9 or 8.3 pmol·min(-1)·mg(-1), respectively. In summary, CYP3A4 is the major enzyme involved in axitinib clearance with lesser contributions from CYP3A5, CYP2C19, CYP1A2, and UGT1A1.
Collapse
Affiliation(s)
- Michael A Zientek
- Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Pfizer Inc., San Diego, California (M.A.Z, P.K., Y.J, S.F., D.N, B.J.S.); and Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Pfizer Inc., Groton, Connecticut (T.C.G., E.T., J.L., J.N.B, G.S.W.)
| | - Theunis C Goosen
- Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Pfizer Inc., San Diego, California (M.A.Z, P.K., Y.J, S.F., D.N, B.J.S.); and Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Pfizer Inc., Groton, Connecticut (T.C.G., E.T., J.L., J.N.B, G.S.W.)
| | - Elaine Tseng
- Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Pfizer Inc., San Diego, California (M.A.Z, P.K., Y.J, S.F., D.N, B.J.S.); and Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Pfizer Inc., Groton, Connecticut (T.C.G., E.T., J.L., J.N.B, G.S.W.)
| | - Jian Lin
- Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Pfizer Inc., San Diego, California (M.A.Z, P.K., Y.J, S.F., D.N, B.J.S.); and Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Pfizer Inc., Groton, Connecticut (T.C.G., E.T., J.L., J.N.B, G.S.W.)
| | - Jonathan N Bauman
- Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Pfizer Inc., San Diego, California (M.A.Z, P.K., Y.J, S.F., D.N, B.J.S.); and Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Pfizer Inc., Groton, Connecticut (T.C.G., E.T., J.L., J.N.B, G.S.W.)
| | - Gregory S Walker
- Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Pfizer Inc., San Diego, California (M.A.Z, P.K., Y.J, S.F., D.N, B.J.S.); and Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Pfizer Inc., Groton, Connecticut (T.C.G., E.T., J.L., J.N.B, G.S.W.)
| | - Ping Kang
- Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Pfizer Inc., San Diego, California (M.A.Z, P.K., Y.J, S.F., D.N, B.J.S.); and Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Pfizer Inc., Groton, Connecticut (T.C.G., E.T., J.L., J.N.B, G.S.W.)
| | - Ying Jiang
- Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Pfizer Inc., San Diego, California (M.A.Z, P.K., Y.J, S.F., D.N, B.J.S.); and Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Pfizer Inc., Groton, Connecticut (T.C.G., E.T., J.L., J.N.B, G.S.W.)
| | - Sascha Freiwald
- Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Pfizer Inc., San Diego, California (M.A.Z, P.K., Y.J, S.F., D.N, B.J.S.); and Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Pfizer Inc., Groton, Connecticut (T.C.G., E.T., J.L., J.N.B, G.S.W.)
| | - David Neul
- Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Pfizer Inc., San Diego, California (M.A.Z, P.K., Y.J, S.F., D.N, B.J.S.); and Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Pfizer Inc., Groton, Connecticut (T.C.G., E.T., J.L., J.N.B, G.S.W.)
| | - Bill J Smith
- Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Pfizer Inc., San Diego, California (M.A.Z, P.K., Y.J, S.F., D.N, B.J.S.); and Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Pfizer Inc., Groton, Connecticut (T.C.G., E.T., J.L., J.N.B, G.S.W.)
| |
Collapse
|
93
|
Huard K, Brown J, Jones JC, Cabral S, Futatsugi K, Gorgoglione M, Lanba A, Vera NB, Zhu Y, Yan Q, Zhou Y, Vernochet C, Riccardi K, Wolford A, Pirman D, Niosi M, Aspnes G, Herr M, Genung NE, Magee TV, Uccello DP, Loria P, Di L, Gosset JR, Hepworth D, Rolph T, Pfefferkorn JA, Erion DM. Discovery and characterization of novel inhibitors of the sodium-coupled citrate transporter (NaCT or SLC13A5). Sci Rep 2015; 5:17391. [PMID: 26620127 PMCID: PMC4664966 DOI: 10.1038/srep17391] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 10/29/2015] [Indexed: 12/13/2022] Open
Abstract
Citrate is a key regulatory metabolic intermediate as it facilitates the integration of the glycolysis and lipid synthesis pathways. Inhibition of hepatic extracellular citrate uptake, by blocking the sodium-coupled citrate transporter (NaCT or SLC13A5), has been suggested as a potential therapeutic approach to treat metabolic disorders. NaCT transports citrate from the blood into the cell coupled to the transport of sodium ions. The studies herein report the identification and characterization of a novel small dicarboxylate molecule (compound 2) capable of selectively and potently inhibiting citrate transport through NaCT, both in vitro and in vivo. Binding and transport experiments indicate that 2 specifically binds NaCT in a competitive and stereosensitive manner, and is recognized as a substrate for transport by NaCT. The favorable pharmacokinetic properties of 2 permitted in vivo experiments to evaluate the effect of inhibiting hepatic citrate uptake on metabolic endpoints.
Collapse
Affiliation(s)
- Kim Huard
- Worldwide Medicinal Chemistry, 610 Main street, Cambridge, MA 02139
| | - Janice Brown
- Pharmacokinetics, Dynamics, and Metabolism, Eastern Point road, Groton, CT 06340
| | - Jessica C Jones
- Cardiovascular, Metabolic &Endocrine Disease Research Unit, 610 Main street, Cambridge, MA 02139
| | - Shawn Cabral
- Worldwide Medicinal Chemistry, Eastern Point road, Groton, CT 06340
| | | | - Matthew Gorgoglione
- Cardiovascular, Metabolic &Endocrine Disease Research Unit, 610 Main street, Cambridge, MA 02139
| | - Adhiraj Lanba
- Cardiovascular, Metabolic &Endocrine Disease Research Unit, 610 Main street, Cambridge, MA 02139
| | - Nicholas B Vera
- Cardiovascular, Metabolic &Endocrine Disease Research Unit, 610 Main street, Cambridge, MA 02139
| | - Yimin Zhu
- Cardiovascular, Metabolic &Endocrine Disease Research Unit, 610 Main street, Cambridge, MA 02139
| | - Qingyun Yan
- Cardiovascular, Metabolic &Endocrine Disease Research Unit, 610 Main street, Cambridge, MA 02139
| | - Yingjiang Zhou
- Cardiovascular, Metabolic &Endocrine Disease Research Unit, 610 Main street, Cambridge, MA 02139
| | - Cecile Vernochet
- Cardiovascular, Metabolic &Endocrine Disease Research Unit, 610 Main street, Cambridge, MA 02139
| | - Keith Riccardi
- Pharmacokinetics, Dynamics, and Metabolism, Eastern Point road, Groton, CT 06340
| | - Angela Wolford
- Pharmacokinetics, Dynamics, and Metabolism, Eastern Point road, Groton, CT 06340
| | - David Pirman
- Pharmacokinetics, Dynamics, and Metabolism, Eastern Point road, Groton, CT 06340
| | - Mark Niosi
- Pharmacokinetics, Dynamics, and Metabolism, Eastern Point road, Groton, CT 06340
| | - Gary Aspnes
- Worldwide Medicinal Chemistry, 610 Main street, Cambridge, MA 02139
| | - Michael Herr
- Worldwide Medicinal Chemistry, Eastern Point road, Groton, CT 06340
| | - Nathan E Genung
- Worldwide Medicinal Chemistry, Eastern Point road, Groton, CT 06340
| | - Thomas V Magee
- Worldwide Medicinal Chemistry, 610 Main street, Cambridge, MA 02139
| | - Daniel P Uccello
- Worldwide Medicinal Chemistry, Eastern Point road, Groton, CT 06340
| | - Paula Loria
- Pharmacokinetics, Dynamics, and Metabolism, Eastern Point road, Groton, CT 06340
| | - Li Di
- Pharmacokinetics, Dynamics, and Metabolism, Eastern Point road, Groton, CT 06340
| | - James R Gosset
- Pharmacokinetics, Dynamics, and Metabolism, 610 Main street, Cambridge, MA 02139
| | - David Hepworth
- Worldwide Medicinal Chemistry, 610 Main street, Cambridge, MA 02139
| | - Timothy Rolph
- Cardiovascular, Metabolic &Endocrine Disease Research Unit, 610 Main street, Cambridge, MA 02139
| | - Jeffrey A Pfefferkorn
- Cardiovascular, Metabolic &Endocrine Disease Research Unit, 610 Main street, Cambridge, MA 02139
| | - Derek M Erion
- Cardiovascular, Metabolic &Endocrine Disease Research Unit, 610 Main street, Cambridge, MA 02139
| |
Collapse
|
94
|
Ramachandran SD, Vivarès A, Klieber S, Hewitt NJ, Muenst B, Heinz S, Walles H, Braspenning J. Applicability of second-generation upcyte® human hepatocytes for use in CYP inhibition and induction studies. Pharmacol Res Perspect 2015; 3:e00161. [PMID: 26516577 PMCID: PMC4618636 DOI: 10.1002/prp2.161] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 06/08/2015] [Indexed: 11/08/2022] Open
Abstract
Human upcyte® hepatocytes are proliferating hepatocytes that retain many characteristics of primary human hepatocytes. We conducted a comprehensive evaluation of the application of second-generation upcyte® hepatocytes from four donors for inhibition and induction assays using a selection of reference inhibitors and inducers. CYP1A2, CYP2B6, CYP2C9, and CYP3A4 were reproducibly inhibited in a concentration-dependent manner and the calculated IC50 values for each compound correctly classified them as potent inhibitors. Upcyte® hepatocytes were responsive to prototypical CYP1A2, CYP2B6, CYP2C9, and CYP3A4 inducers, confirming that they have functional AhR-, CAR-, and PXR-mediated CYP regulation. A panel of 11 inducers classified as potent, moderate or noninducers of CYP3A4 and CYP2B6 were tested. There was a good fit of data from upcyte® hepatocytes to three different predictive models for CYP3A4 induction, namely the Relative Induction Score (RIS), AUCu/F2, and C max,u/Ind50. In addition, PXR (rifampicin) and CAR-selective (carbamazepine and phenytoin) inducers of CYP3A4 and CYP2B6 induction, respectively, were demonstrated. In conclusion, these data support the use of second-generation upcyte® hepatocytes for CYP inhibition and induction assays. Under the culture conditions used, these cells expressed CYP activities that were equivalent to or higher than those measured in primary human hepatocyte cultures, which could be inhibited or induced by prototypical CYP inhibitors and inducers, respectively. Moreover, they can be used to predict in vivo CYP3A4 induction potential using three prediction models. Bulk availability of cells from multiple donors makes upcyte® hepatocytes suitable for DDI screening, as well as more in-depth mechanistic investigations.
Collapse
Affiliation(s)
| | - Aurélie Vivarès
- Sanofi – DSAR Drug Disposition – In Vitro models371, rue du Pr. Blayac, Montpellier, 34000, France
| | - Sylvie Klieber
- Sanofi – DSAR Drug Disposition – In Vitro models371, rue du Pr. Blayac, Montpellier, 34000, France
| | | | - Bernhard Muenst
- Medicyte GmbHIm Neuenheimer Feld 581, Heidelberg, D-69120, Germany
| | - Stefan Heinz
- Medicyte GmbHIm Neuenheimer Feld 581, Heidelberg, D-69120, Germany
| | - Heike Walles
- Tissue Engineering and Regenerative Medicine, University WuerzburgRoentgenring 11, Wuerzburg, D-97070, Germany
| | | |
Collapse
|
95
|
Futatsugi K, Kung DW, Orr STM, Cabral S, Hepworth D, Aspnes G, Bader S, Bian J, Boehm M, Carpino PA, Coffey SB, Dowling MS, Herr M, Jiao W, Lavergne SY, Li Q, Clark RW, Erion DM, Kou K, Lee K, Pabst BA, Perez SM, Purkal J, Jorgensen CC, Goosen TC, Gosset JR, Niosi M, Pettersen JC, Pfefferkorn JA, Ahn K, Goodwin B. Discovery and Optimization of Imidazopyridine-Based Inhibitors of Diacylglycerol Acyltransferase 2 (DGAT2). J Med Chem 2015; 58:7173-85. [DOI: 10.1021/acs.jmedchem.5b01006] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Kentaro Futatsugi
- Worldwide Medicinal Chemistry, ‡Cardiovascular, Metabolic and Endocrine Diseases Research Unit, and §Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development, Cambridge, Massachusetts 02139, United States
- Worldwide Medicinal Chemistry, ⊥Cardiovascular, Metabolic and Endocrine Diseases Research Unit, #Pharmacokinetics, Dynamics and Metabolism, ∇Pharmaceutical Sciences, and ○Drug Safety Research & Development, Pfizer Worldwide Research & Development, Groton, Connecticut 06340, United States
| | - Daniel W. Kung
- Worldwide Medicinal Chemistry, ‡Cardiovascular, Metabolic and Endocrine Diseases Research Unit, and §Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development, Cambridge, Massachusetts 02139, United States
- Worldwide Medicinal Chemistry, ⊥Cardiovascular, Metabolic and Endocrine Diseases Research Unit, #Pharmacokinetics, Dynamics and Metabolism, ∇Pharmaceutical Sciences, and ○Drug Safety Research & Development, Pfizer Worldwide Research & Development, Groton, Connecticut 06340, United States
| | - Suvi T. M. Orr
- Worldwide Medicinal Chemistry, ‡Cardiovascular, Metabolic and Endocrine Diseases Research Unit, and §Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development, Cambridge, Massachusetts 02139, United States
- Worldwide Medicinal Chemistry, ⊥Cardiovascular, Metabolic and Endocrine Diseases Research Unit, #Pharmacokinetics, Dynamics and Metabolism, ∇Pharmaceutical Sciences, and ○Drug Safety Research & Development, Pfizer Worldwide Research & Development, Groton, Connecticut 06340, United States
| | - Shawn Cabral
- Worldwide Medicinal Chemistry, ‡Cardiovascular, Metabolic and Endocrine Diseases Research Unit, and §Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development, Cambridge, Massachusetts 02139, United States
- Worldwide Medicinal Chemistry, ⊥Cardiovascular, Metabolic and Endocrine Diseases Research Unit, #Pharmacokinetics, Dynamics and Metabolism, ∇Pharmaceutical Sciences, and ○Drug Safety Research & Development, Pfizer Worldwide Research & Development, Groton, Connecticut 06340, United States
| | - David Hepworth
- Worldwide Medicinal Chemistry, ‡Cardiovascular, Metabolic and Endocrine Diseases Research Unit, and §Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development, Cambridge, Massachusetts 02139, United States
- Worldwide Medicinal Chemistry, ⊥Cardiovascular, Metabolic and Endocrine Diseases Research Unit, #Pharmacokinetics, Dynamics and Metabolism, ∇Pharmaceutical Sciences, and ○Drug Safety Research & Development, Pfizer Worldwide Research & Development, Groton, Connecticut 06340, United States
| | - Gary Aspnes
- Worldwide Medicinal Chemistry, ‡Cardiovascular, Metabolic and Endocrine Diseases Research Unit, and §Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development, Cambridge, Massachusetts 02139, United States
- Worldwide Medicinal Chemistry, ⊥Cardiovascular, Metabolic and Endocrine Diseases Research Unit, #Pharmacokinetics, Dynamics and Metabolism, ∇Pharmaceutical Sciences, and ○Drug Safety Research & Development, Pfizer Worldwide Research & Development, Groton, Connecticut 06340, United States
| | - Scott Bader
- Worldwide Medicinal Chemistry, ‡Cardiovascular, Metabolic and Endocrine Diseases Research Unit, and §Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development, Cambridge, Massachusetts 02139, United States
- Worldwide Medicinal Chemistry, ⊥Cardiovascular, Metabolic and Endocrine Diseases Research Unit, #Pharmacokinetics, Dynamics and Metabolism, ∇Pharmaceutical Sciences, and ○Drug Safety Research & Development, Pfizer Worldwide Research & Development, Groton, Connecticut 06340, United States
| | - Jianwei Bian
- Worldwide Medicinal Chemistry, ‡Cardiovascular, Metabolic and Endocrine Diseases Research Unit, and §Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development, Cambridge, Massachusetts 02139, United States
- Worldwide Medicinal Chemistry, ⊥Cardiovascular, Metabolic and Endocrine Diseases Research Unit, #Pharmacokinetics, Dynamics and Metabolism, ∇Pharmaceutical Sciences, and ○Drug Safety Research & Development, Pfizer Worldwide Research & Development, Groton, Connecticut 06340, United States
| | - Markus Boehm
- Worldwide Medicinal Chemistry, ‡Cardiovascular, Metabolic and Endocrine Diseases Research Unit, and §Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development, Cambridge, Massachusetts 02139, United States
- Worldwide Medicinal Chemistry, ⊥Cardiovascular, Metabolic and Endocrine Diseases Research Unit, #Pharmacokinetics, Dynamics and Metabolism, ∇Pharmaceutical Sciences, and ○Drug Safety Research & Development, Pfizer Worldwide Research & Development, Groton, Connecticut 06340, United States
| | - Philip A. Carpino
- Worldwide Medicinal Chemistry, ‡Cardiovascular, Metabolic and Endocrine Diseases Research Unit, and §Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development, Cambridge, Massachusetts 02139, United States
- Worldwide Medicinal Chemistry, ⊥Cardiovascular, Metabolic and Endocrine Diseases Research Unit, #Pharmacokinetics, Dynamics and Metabolism, ∇Pharmaceutical Sciences, and ○Drug Safety Research & Development, Pfizer Worldwide Research & Development, Groton, Connecticut 06340, United States
| | - Steven B. Coffey
- Worldwide Medicinal Chemistry, ‡Cardiovascular, Metabolic and Endocrine Diseases Research Unit, and §Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development, Cambridge, Massachusetts 02139, United States
- Worldwide Medicinal Chemistry, ⊥Cardiovascular, Metabolic and Endocrine Diseases Research Unit, #Pharmacokinetics, Dynamics and Metabolism, ∇Pharmaceutical Sciences, and ○Drug Safety Research & Development, Pfizer Worldwide Research & Development, Groton, Connecticut 06340, United States
| | - Matthew S. Dowling
- Worldwide Medicinal Chemistry, ‡Cardiovascular, Metabolic and Endocrine Diseases Research Unit, and §Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development, Cambridge, Massachusetts 02139, United States
- Worldwide Medicinal Chemistry, ⊥Cardiovascular, Metabolic and Endocrine Diseases Research Unit, #Pharmacokinetics, Dynamics and Metabolism, ∇Pharmaceutical Sciences, and ○Drug Safety Research & Development, Pfizer Worldwide Research & Development, Groton, Connecticut 06340, United States
| | - Michael Herr
- Worldwide Medicinal Chemistry, ‡Cardiovascular, Metabolic and Endocrine Diseases Research Unit, and §Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development, Cambridge, Massachusetts 02139, United States
- Worldwide Medicinal Chemistry, ⊥Cardiovascular, Metabolic and Endocrine Diseases Research Unit, #Pharmacokinetics, Dynamics and Metabolism, ∇Pharmaceutical Sciences, and ○Drug Safety Research & Development, Pfizer Worldwide Research & Development, Groton, Connecticut 06340, United States
| | - Wenhua Jiao
- Worldwide Medicinal Chemistry, ‡Cardiovascular, Metabolic and Endocrine Diseases Research Unit, and §Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development, Cambridge, Massachusetts 02139, United States
- Worldwide Medicinal Chemistry, ⊥Cardiovascular, Metabolic and Endocrine Diseases Research Unit, #Pharmacokinetics, Dynamics and Metabolism, ∇Pharmaceutical Sciences, and ○Drug Safety Research & Development, Pfizer Worldwide Research & Development, Groton, Connecticut 06340, United States
| | - Sophie Y. Lavergne
- Worldwide Medicinal Chemistry, ‡Cardiovascular, Metabolic and Endocrine Diseases Research Unit, and §Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development, Cambridge, Massachusetts 02139, United States
- Worldwide Medicinal Chemistry, ⊥Cardiovascular, Metabolic and Endocrine Diseases Research Unit, #Pharmacokinetics, Dynamics and Metabolism, ∇Pharmaceutical Sciences, and ○Drug Safety Research & Development, Pfizer Worldwide Research & Development, Groton, Connecticut 06340, United States
| | - Qifang Li
- Worldwide Medicinal Chemistry, ‡Cardiovascular, Metabolic and Endocrine Diseases Research Unit, and §Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development, Cambridge, Massachusetts 02139, United States
- Worldwide Medicinal Chemistry, ⊥Cardiovascular, Metabolic and Endocrine Diseases Research Unit, #Pharmacokinetics, Dynamics and Metabolism, ∇Pharmaceutical Sciences, and ○Drug Safety Research & Development, Pfizer Worldwide Research & Development, Groton, Connecticut 06340, United States
| | - Ronald W. Clark
- Worldwide Medicinal Chemistry, ‡Cardiovascular, Metabolic and Endocrine Diseases Research Unit, and §Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development, Cambridge, Massachusetts 02139, United States
- Worldwide Medicinal Chemistry, ⊥Cardiovascular, Metabolic and Endocrine Diseases Research Unit, #Pharmacokinetics, Dynamics and Metabolism, ∇Pharmaceutical Sciences, and ○Drug Safety Research & Development, Pfizer Worldwide Research & Development, Groton, Connecticut 06340, United States
| | - Derek M. Erion
- Worldwide Medicinal Chemistry, ‡Cardiovascular, Metabolic and Endocrine Diseases Research Unit, and §Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development, Cambridge, Massachusetts 02139, United States
- Worldwide Medicinal Chemistry, ⊥Cardiovascular, Metabolic and Endocrine Diseases Research Unit, #Pharmacokinetics, Dynamics and Metabolism, ∇Pharmaceutical Sciences, and ○Drug Safety Research & Development, Pfizer Worldwide Research & Development, Groton, Connecticut 06340, United States
| | - Kou Kou
- Worldwide Medicinal Chemistry, ‡Cardiovascular, Metabolic and Endocrine Diseases Research Unit, and §Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development, Cambridge, Massachusetts 02139, United States
- Worldwide Medicinal Chemistry, ⊥Cardiovascular, Metabolic and Endocrine Diseases Research Unit, #Pharmacokinetics, Dynamics and Metabolism, ∇Pharmaceutical Sciences, and ○Drug Safety Research & Development, Pfizer Worldwide Research & Development, Groton, Connecticut 06340, United States
| | - Kyuha Lee
- Worldwide Medicinal Chemistry, ‡Cardiovascular, Metabolic and Endocrine Diseases Research Unit, and §Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development, Cambridge, Massachusetts 02139, United States
- Worldwide Medicinal Chemistry, ⊥Cardiovascular, Metabolic and Endocrine Diseases Research Unit, #Pharmacokinetics, Dynamics and Metabolism, ∇Pharmaceutical Sciences, and ○Drug Safety Research & Development, Pfizer Worldwide Research & Development, Groton, Connecticut 06340, United States
| | - Brandon A. Pabst
- Worldwide Medicinal Chemistry, ‡Cardiovascular, Metabolic and Endocrine Diseases Research Unit, and §Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development, Cambridge, Massachusetts 02139, United States
- Worldwide Medicinal Chemistry, ⊥Cardiovascular, Metabolic and Endocrine Diseases Research Unit, #Pharmacokinetics, Dynamics and Metabolism, ∇Pharmaceutical Sciences, and ○Drug Safety Research & Development, Pfizer Worldwide Research & Development, Groton, Connecticut 06340, United States
| | - Sylvie M. Perez
- Worldwide Medicinal Chemistry, ‡Cardiovascular, Metabolic and Endocrine Diseases Research Unit, and §Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development, Cambridge, Massachusetts 02139, United States
- Worldwide Medicinal Chemistry, ⊥Cardiovascular, Metabolic and Endocrine Diseases Research Unit, #Pharmacokinetics, Dynamics and Metabolism, ∇Pharmaceutical Sciences, and ○Drug Safety Research & Development, Pfizer Worldwide Research & Development, Groton, Connecticut 06340, United States
| | - Julie Purkal
- Worldwide Medicinal Chemistry, ‡Cardiovascular, Metabolic and Endocrine Diseases Research Unit, and §Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development, Cambridge, Massachusetts 02139, United States
- Worldwide Medicinal Chemistry, ⊥Cardiovascular, Metabolic and Endocrine Diseases Research Unit, #Pharmacokinetics, Dynamics and Metabolism, ∇Pharmaceutical Sciences, and ○Drug Safety Research & Development, Pfizer Worldwide Research & Development, Groton, Connecticut 06340, United States
| | - Csilla C. Jorgensen
- Worldwide Medicinal Chemistry, ‡Cardiovascular, Metabolic and Endocrine Diseases Research Unit, and §Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development, Cambridge, Massachusetts 02139, United States
- Worldwide Medicinal Chemistry, ⊥Cardiovascular, Metabolic and Endocrine Diseases Research Unit, #Pharmacokinetics, Dynamics and Metabolism, ∇Pharmaceutical Sciences, and ○Drug Safety Research & Development, Pfizer Worldwide Research & Development, Groton, Connecticut 06340, United States
| | - Theunis C. Goosen
- Worldwide Medicinal Chemistry, ‡Cardiovascular, Metabolic and Endocrine Diseases Research Unit, and §Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development, Cambridge, Massachusetts 02139, United States
- Worldwide Medicinal Chemistry, ⊥Cardiovascular, Metabolic and Endocrine Diseases Research Unit, #Pharmacokinetics, Dynamics and Metabolism, ∇Pharmaceutical Sciences, and ○Drug Safety Research & Development, Pfizer Worldwide Research & Development, Groton, Connecticut 06340, United States
| | - James R. Gosset
- Worldwide Medicinal Chemistry, ‡Cardiovascular, Metabolic and Endocrine Diseases Research Unit, and §Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development, Cambridge, Massachusetts 02139, United States
- Worldwide Medicinal Chemistry, ⊥Cardiovascular, Metabolic and Endocrine Diseases Research Unit, #Pharmacokinetics, Dynamics and Metabolism, ∇Pharmaceutical Sciences, and ○Drug Safety Research & Development, Pfizer Worldwide Research & Development, Groton, Connecticut 06340, United States
| | - Mark Niosi
- Worldwide Medicinal Chemistry, ‡Cardiovascular, Metabolic and Endocrine Diseases Research Unit, and §Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development, Cambridge, Massachusetts 02139, United States
- Worldwide Medicinal Chemistry, ⊥Cardiovascular, Metabolic and Endocrine Diseases Research Unit, #Pharmacokinetics, Dynamics and Metabolism, ∇Pharmaceutical Sciences, and ○Drug Safety Research & Development, Pfizer Worldwide Research & Development, Groton, Connecticut 06340, United States
| | - John C. Pettersen
- Worldwide Medicinal Chemistry, ‡Cardiovascular, Metabolic and Endocrine Diseases Research Unit, and §Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development, Cambridge, Massachusetts 02139, United States
- Worldwide Medicinal Chemistry, ⊥Cardiovascular, Metabolic and Endocrine Diseases Research Unit, #Pharmacokinetics, Dynamics and Metabolism, ∇Pharmaceutical Sciences, and ○Drug Safety Research & Development, Pfizer Worldwide Research & Development, Groton, Connecticut 06340, United States
| | - Jeffrey A. Pfefferkorn
- Worldwide Medicinal Chemistry, ‡Cardiovascular, Metabolic and Endocrine Diseases Research Unit, and §Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development, Cambridge, Massachusetts 02139, United States
- Worldwide Medicinal Chemistry, ⊥Cardiovascular, Metabolic and Endocrine Diseases Research Unit, #Pharmacokinetics, Dynamics and Metabolism, ∇Pharmaceutical Sciences, and ○Drug Safety Research & Development, Pfizer Worldwide Research & Development, Groton, Connecticut 06340, United States
| | - Kay Ahn
- Worldwide Medicinal Chemistry, ‡Cardiovascular, Metabolic and Endocrine Diseases Research Unit, and §Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development, Cambridge, Massachusetts 02139, United States
- Worldwide Medicinal Chemistry, ⊥Cardiovascular, Metabolic and Endocrine Diseases Research Unit, #Pharmacokinetics, Dynamics and Metabolism, ∇Pharmaceutical Sciences, and ○Drug Safety Research & Development, Pfizer Worldwide Research & Development, Groton, Connecticut 06340, United States
| | - Bryan Goodwin
- Worldwide Medicinal Chemistry, ‡Cardiovascular, Metabolic and Endocrine Diseases Research Unit, and §Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research & Development, Cambridge, Massachusetts 02139, United States
- Worldwide Medicinal Chemistry, ⊥Cardiovascular, Metabolic and Endocrine Diseases Research Unit, #Pharmacokinetics, Dynamics and Metabolism, ∇Pharmaceutical Sciences, and ○Drug Safety Research & Development, Pfizer Worldwide Research & Development, Groton, Connecticut 06340, United States
| |
Collapse
|
96
|
Nettekoven M, Adam JM, Bendels S, Bissantz C, Fingerle J, Grether U, Grüner S, Guba W, Kimbara A, Ottaviani G, Püllmann B, Rogers-Evans M, Röver S, Rothenhäusler B, Schmitt S, Schuler F, Schulz-Gasch T, Ullmer C. Novel Triazolopyrimidine-Derived Cannabinoid Receptor 2 Agonists as Potential Treatment for Inflammatory Kidney Diseases. ChemMedChem 2015; 11:179-89. [DOI: 10.1002/cmdc.201500218] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 06/23/2015] [Indexed: 11/05/2022]
Affiliation(s)
- Matthias Nettekoven
- Roche Pharmaceutical Research and Early Development; Small-Molecule Research; Roche Innovation Center Basel; Grenzacher Str. 124 4070 Basel Switzerland
| | - Jean-Michel Adam
- Roche Pharmaceutical Research and Early Development; Small-Molecule Research; Roche Innovation Center Basel; Grenzacher Str. 124 4070 Basel Switzerland
| | - Stefanie Bendels
- Roche Pharmaceutical Research and Early Development; Small-Molecule Research; Roche Innovation Center Basel; Grenzacher Str. 124 4070 Basel Switzerland
| | - Catarina Bissantz
- Roche Pharmaceutical Research and Early Development; Small-Molecule Research; Roche Innovation Center Basel; Grenzacher Str. 124 4070 Basel Switzerland
| | - Jürgen Fingerle
- Roche Pharmaceutical Research and Early Development; Discovery Biology; Roche Innovation Center Basel; Grenzacher Str. 124 4070 Basel Switzerland
| | - Uwe Grether
- Roche Pharmaceutical Research and Early Development; Small-Molecule Research; Roche Innovation Center Basel; Grenzacher Str. 124 4070 Basel Switzerland
| | - Sabine Grüner
- Roche Pharmaceutical Research and Early Development; Discovery Biology; Roche Innovation Center Basel; Grenzacher Str. 124 4070 Basel Switzerland
| | - Wolfgang Guba
- Roche Pharmaceutical Research and Early Development; Small-Molecule Research; Roche Innovation Center Basel; Grenzacher Str. 124 4070 Basel Switzerland
| | - Atsushi Kimbara
- Roche Pharmaceutical Research and Early Development; Small-Molecule Research; Roche Innovation Center Basel; Grenzacher Str. 124 4070 Basel Switzerland
| | - Giorgio Ottaviani
- Roche Pharmaceutical Research and Early Development, DMPK; Roche Innovation Center Basel; Grenzacher Str. 124 4070 Basel Switzerland
| | - Bernd Püllmann
- Roche Pharmaceutical Research and Early Development; Small-Molecule Research; Roche Innovation Center Basel; Grenzacher Str. 124 4070 Basel Switzerland
| | - Mark Rogers-Evans
- Roche Pharmaceutical Research and Early Development; Small-Molecule Research; Roche Innovation Center Basel; Grenzacher Str. 124 4070 Basel Switzerland
| | - Stephan Röver
- Roche Pharmaceutical Research and Early Development; Small-Molecule Research; Roche Innovation Center Basel; Grenzacher Str. 124 4070 Basel Switzerland
| | - Benno Rothenhäusler
- Roche Pharmaceutical Research and Early Development, DMPK; Roche Innovation Center Basel; Grenzacher Str. 124 4070 Basel Switzerland
| | - Sebastien Schmitt
- Roche Pharmaceutical Research and Early Development; Small-Molecule Research; Roche Innovation Center Basel; Grenzacher Str. 124 4070 Basel Switzerland
| | - Franz Schuler
- Roche Pharmaceutical Research and Early Development, DMPK; Roche Innovation Center Basel; Grenzacher Str. 124 4070 Basel Switzerland
| | - Tanja Schulz-Gasch
- Roche Pharmaceutical Research and Early Development; Small-Molecule Research; Roche Innovation Center Basel; Grenzacher Str. 124 4070 Basel Switzerland
| | - Christoph Ullmer
- Roche Pharmaceutical Research and Early Development; Discovery Biology; Roche Innovation Center Basel; Grenzacher Str. 124 4070 Basel Switzerland
| |
Collapse
|
97
|
Nicolaï J, De Bruyn T, Van Veldhoven PP, Keemink J, Augustijns P, Annaert P. Verapamil hepatic clearance in four preclinical rat models: towards activity-based scaling. Biopharm Drug Dispos 2015; 36:462-80. [PMID: 25963583 DOI: 10.1002/bdd.1959] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 01/09/2015] [Accepted: 04/20/2015] [Indexed: 12/22/2022]
Abstract
The current study was designed to cross-validate rat liver microsomes (RLM), suspended rat hepatocytes (SRH) and the isolated perfused rat liver (IPRL) model against in vivo pharmacokinetic data, using verapamil as a model drug. Michaelis-Menten constants (Km), for the metabolic disappearance kinetics of verapamil in RLM and SRH (freshly isolated and cryopreserved), were determined and corrected for non-specific binding. The 'unbound' Km determined with RLM (2.8 µM) was divided by the 'unbound' Km determined with fresh and cryopreserved SRH (3.9 µM and 2.1 µM, respectively) to calculate the ratio of intracellular to extracellular unbound concentration (Kpu,u). Kpu,u was significantly different between freshly isolated (0.71) and cryopreserved (1.31) SRH, but intracellular capacity for verapamil metabolism was maintained after cryopreservation (200 vs. 191 µl/min/million cells). Direct comparison of intrinsic clearance values (Clint) in RLM versus SRH, yielded an activity-based scaling factor (SF) of 0.28-0.30 mg microsomal protein/million cells (MPPMC). Merging the IPRL-derived Clint with the MPPMC and SRH data, resulted in scaling factors for MPPGL (80 and 43 mg microsomal protein/g liver) and HPGL (269 and 153 million cells/g liver), respectively. Likewise, the hepatic blood flow (61 ml/min/kg b.wt) was calculated using IPRL Clint and the in vivo Cl. The scaling factors determined here are consistent with previously reported CYP450-content based scaling factors. Overall, the results show that integrated interpretation of data obtained with multiple preclinical tools (i.e. RLM, SRH, IPRL) can contribute to more reliable estimates for scaling factors and ultimately to improved in vivo clearance predictions based on in vitro experimentation.
Collapse
Affiliation(s)
- J Nicolaï
- Drug Delivery and Disposition, KU Leuven Department of Pharmaceutical and Pharmacological Sciences, O&N2, Leuven, Belgium
| | - T De Bruyn
- Drug Delivery and Disposition, KU Leuven Department of Pharmaceutical and Pharmacological Sciences, O&N2, Leuven, Belgium
| | - P P Van Veldhoven
- Laboratory of Lipid Biochemistry and Protein Interactions, KU Leuven Department of Cellular and Molecular Medicine, O&N1, Leuven, Belgium
| | - J Keemink
- Drug Delivery and Disposition, KU Leuven Department of Pharmaceutical and Pharmacological Sciences, O&N2, Leuven, Belgium
| | - P Augustijns
- Drug Delivery and Disposition, KU Leuven Department of Pharmaceutical and Pharmacological Sciences, O&N2, Leuven, Belgium
| | - P Annaert
- Drug Delivery and Disposition, KU Leuven Department of Pharmaceutical and Pharmacological Sciences, O&N2, Leuven, Belgium
| |
Collapse
|
98
|
Galetin A. Rationalizing underprediction of drug clearance from enzyme and transporter kinetic data: from in vitro tools to mechanistic modeling. Methods Mol Biol 2014; 1113:255-88. [PMID: 24523117 DOI: 10.1007/978-1-62703-758-7_13] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Over the years, there has been an increase in the number and quality of available in vitro tools for the assessment of clearance. Complexity of data analysis and modelling of corresponding in vitro data has increased in an analogous manner, in particular for the simultaneous characterization of transporter and metabolism kinetics, together with intracellular binding and passive diffusion. In the current chapter, the impact of different factors on the in vitro-in vivo extrapolation of clearance will be addressed in a stepwise manner, from the selection of the most adequate in vitro system and experimental design/condition to the corresponding modelling of data generated. The application of static or physiologically based pharmacokinetic models in the prediction of clearance will be discussed, highlighting limitations and current challenges of some of the approaches. Particular focus will be on the ability of in vitro and in silico predictive tools to overcome the trend of clearance underprediction. Improvements made as a result of inclusion of extrahepatic metabolism and consideration of transporter-metabolism interplay across different organs will be discussed.
Collapse
Affiliation(s)
- Aleksandra Galetin
- Manchester Pharmacy School, The University of Manchester, Stopford Building, Oxford Road, Manchester, UK
| |
Collapse
|
99
|
Li R, Bi YA, Lai Y, Sugano K, Steyn SJ, Trapa PE, Di L. Permeability comparison between hepatocyte and low efflux MDCKII cell monolayer. AAPS JOURNAL 2014; 16:802-9. [PMID: 24854896 DOI: 10.1208/s12248-014-9616-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 05/07/2014] [Indexed: 01/04/2023]
Abstract
Determination of passive permeability is not only important for predicting oral absorption and brain penetration, but also for accurately predicting hepatic clearance. High throughput (HT) measurement of passive permeability across hepatocyte cell membrane is technically more challenging than using monolayer cell-based permeability assays. In this study, we evaluated if the HT Madin-Darby canine kidney II-low efflux (MDCKII-LE) cell monolayer permeability assay can be used as a surrogate to predict the passive permeability of hepatocytes. Apparent passive permeability of MDCKII-LE is well correlated to passive diffusion clearance of human and rat hepatocytes, suggesting that the HT MDCKII-LE assay can be used as a surrogate to estimate the passive permeability of hepatocytes. In addition, lipophilicity (Log D determined at pH 7.4) was also found to be well correlated with both MDCKII-LE and hepatocyte permeability for most compounds, hence it may serve as another permeability surrogate.
Collapse
Affiliation(s)
- Rui Li
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc., 610 Main Street, Cambridge, Massachusetts, 02139, USA
| | | | | | | | | | | | | |
Collapse
|
100
|
Zhang YY, Liu Y, Mehboob S, Song JH, Boci T, Johnson ME, Ghosh AK, Jeong H. Metabolism-directed structure optimization of benzimidazole-based Francisella tularensis enoyl-reductase (FabI) inhibitors. Xenobiotica 2014; 44:404-16. [PMID: 24171690 PMCID: PMC4355941 DOI: 10.3109/00498254.2013.850553] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
1. FabI is a potential antibiotic target against Francisella tularensis, which has been classified as a Category A biowarfare agent of high risk to public health. Our previous work demonstrated that N-benzyl benzimidazole compounds possess promising FabI inhibitory activity, but their druggability properties, including metabolic stability, are unknown. 2. The objective of this study was to characterize structure-metabolism relationships of a series of N-benzyl benzimidazole compounds to guide chemical optimization for better metabolic stability. To this end, metabolic stability data were obtained for 22 initial lead compounds using mouse hepatic microsomes. 3. Metabolic hotspots on the benzimidazole core structure as well as the benzyl ring were identified and verified by metabolite identification studies of four model compounds. Interestingly, the proposed structure-metabolism relationships did not apply to nine newly synthesized cyclopentane or oxacyclopentane derivatives of N-benzyl benzimidazole. 4. Subsequently, in silico quantitative structure-property relationship models were developed. Four molecular descriptors representing molecular polarity/polarisability, symmetry and size were identified to best explain variability in metabolic stability of different compounds. Multi-linear and non-linear regression models based on the selected molecular descriptors were developed and validated. 5. The structure-metabolism relationships for N-benzyl benzimidazole compounds should help optimization of N-benzyl benzimidazole compounds for better pharmacokinetic behavior.
Collapse
Affiliation(s)
- Yan-Yan Zhang
- Department of Pharmacy Practice, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, USA
| | - Yong Liu
- Department of Pharmacy Practice, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, USA
| | - Shahila Mehboob
- Center for Pharmaceutical Biotechnology, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| | - Jin-Hua Song
- Departments of Chemistry and Medicinal Chemistry, Purdue University, West Lafayette, Indiana 47907, USA
| | - Teuta Boci
- Center for Pharmaceutical Biotechnology, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| | - Michael E. Johnson
- Center for Pharmaceutical Biotechnology, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| | - Arun K. Ghosh
- Departments of Chemistry and Medicinal Chemistry, Purdue University, West Lafayette, Indiana 47907, USA
| | - Hyunyoung Jeong
- Department of Pharmacy Practice, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, USA
- Department of Biopharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, USA
| |
Collapse
|