51
|
Tamarind (Tamarindus indica L.) Seed a Candidate Protein Source with Potential for Combating SARS-CoV-2 Infection in Obesity. Drug Target Insights 2021; 15:5-12. [PMID: 33840996 PMCID: PMC8025844 DOI: 10.33393/dti.2021.2192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 03/11/2021] [Indexed: 12/17/2022] Open
Abstract
Introduction: Obesity and coronavirus disease (COVID)-19 are overlapping pandemics, and one might worsen the other. Methods: This narrative review discusses one of the primary mechanisms to initiate acute respiratory distress syndrome, uncontrolled systemic inflammation in COVID-19, and presents a potential candidate for adjuvant treatment. Blocking the S protein binding to angiotensin-converting enzyme 2 (ACE-2) and the 3C-like protease (3CL pro) is an effective strategy against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Results: Host proteases such as FURIN, trypsin, and transmembrane serine protease 2 (TMPRSS) act in S protein activation. Tamarind trypsin inhibitor (TTI) shows several beneficial effects on the reduction of inflammatory markers (tumor necrosis factor α [TNF-α], leptin) and biochemical parameters (fasting glycemia, triglycerides, and very low-density lipoprotein [VLDL]), in addition to improving pancreatic function and mucosal integrity in an obesity model. TTI may inhibit the action of proteases that collaborate with SARS-CoV-2 infection and the neutrophil activity characteristic of lung injury promoted by the virus. Conclusion: Thus, TTI may contribute to combating two severe overlapping problems with high cost and social complex implications, obesity and COVID-19.
Collapse
|
52
|
Hattori SI, Higashi-Kuwata N, Hayashi H, Allu SR, Raghavaiah J, Bulut H, Das D, Anson BJ, Lendy EK, Takamatsu Y, Takamune N, Kishimoto N, Murayama K, Hasegawa K, Li M, Davis DA, Kodama EN, Yarchoan R, Wlodawer A, Misumi S, Mesecar AD, Ghosh AK, Mitsuya H. A small molecule compound with an indole moiety inhibits the main protease of SARS-CoV-2 and blocks virus replication. Nat Commun 2021; 12:668. [PMID: 33510133 PMCID: PMC7843602 DOI: 10.1038/s41467-021-20900-6] [Citation(s) in RCA: 139] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 12/16/2020] [Indexed: 01/18/2023] Open
Abstract
Except remdesivir, no specific antivirals for SARS-CoV-2 infection are currently available. Here, we characterize two small-molecule-compounds, named GRL-1720 and 5h, containing an indoline and indole moiety, respectively, which target the SARS-CoV-2 main protease (Mpro). We use VeroE6 cell-based assays with RNA-qPCR, cytopathic assays, and immunocytochemistry and show both compounds to block the infectivity of SARS-CoV-2 with EC50 values of 15 ± 4 and 4.2 ± 0.7 μM for GRL-1720 and 5h, respectively. Remdesivir permitted viral breakthrough at high concentrations; however, compound 5h completely blocks SARS-CoV-2 infection in vitro without viral breakthrough or detectable cytotoxicity. Combination of 5h and remdesivir exhibits synergism against SARS-CoV-2. Additional X-ray structural analysis show that 5h forms a covalent bond with Mpro and makes polar interactions with multiple active site amino acid residues. The present data suggest that 5h might serve as a lead Mpro inhibitor for the development of therapeutics for SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Shin-Ichiro Hattori
- Department of Refractory Viral Infections, National Center for Global Health and Medicine Research Institute, Tokyo, Japan
| | - Nobuyo Higashi-Kuwata
- Department of Refractory Viral Infections, National Center for Global Health and Medicine Research Institute, Tokyo, Japan
| | - Hironori Hayashi
- Department of Intelligent Network for Infection Control, Tohoku University Hospital, Miyagi, Japan
- Department of infectious Diseases, International Research Institute of Disaster Science, Tohoku University, Miyagi, Japan
| | - Srinivasa Rao Allu
- Department of Chemistry and Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA
| | - Jakka Raghavaiah
- Department of Chemistry and Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA
| | - Haydar Bulut
- Experimental Retrovirology Section, HIV and AIDS Malignancy Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Debananda Das
- Experimental Retrovirology Section, HIV and AIDS Malignancy Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Brandon J Anson
- Department of Biochemistry and Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Emma K Lendy
- Department of Biochemistry and Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Yuki Takamatsu
- Department of Refractory Viral Infections, National Center for Global Health and Medicine Research Institute, Tokyo, Japan
| | - Nobutoki Takamune
- Kumamoto Innovative Development Organization, Kumamoto University, Kumamoto, Japan
| | - Naoki Kishimoto
- Department of Environmental and Molecular Health Sciences, Faculty of Medical and Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Kazutaka Murayama
- Graduate School of Biomedical Engineering, Tohoku University, Miyagi, Japan
| | - Kazuya Hasegawa
- Protein Crystal Analysis Division, Japan Synchrotron Radiation Research Institute, Hyogo, Japan
| | - Mi Li
- Protein Structure Section, Center for Structural Biology, National Cancer Institute, Frederick, MD, USA
- Basic Science Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - David A Davis
- Viral Oncology Section, HIV and AIDS Malignancy Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Eiichi N Kodama
- Department of infectious Diseases, International Research Institute of Disaster Science, Tohoku University, Miyagi, Japan
- Department of Infectious Diseases, Graduate School of Medicine and Tohoku Medical Megabank Organization, Tohoku University, Miyagi, Japan
| | - Robert Yarchoan
- Viral Oncology Section, HIV and AIDS Malignancy Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Alexander Wlodawer
- Protein Structure Section, Center for Structural Biology, National Cancer Institute, Frederick, MD, USA
| | - Shogo Misumi
- Department of Environmental and Molecular Health Sciences, Faculty of Medical and Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Andrew D Mesecar
- Department of Biochemistry and Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Arun K Ghosh
- Department of Chemistry and Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA
| | - Hiroaki Mitsuya
- Department of Refractory Viral Infections, National Center for Global Health and Medicine Research Institute, Tokyo, Japan.
- Experimental Retrovirology Section, HIV and AIDS Malignancy Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
- Department of Clinical Sciences, Kumamoto University Hospital, Kumamoto, Japan.
| |
Collapse
|
53
|
Tong JB, Luo D, Xu HY, Bian S, Zhang X, Xiao XC, Wang J. A computational approach for designing novel SARS-CoV-2 M pro inhibitors: combined QSAR, molecular docking, and molecular dynamics simulation techniques. NEW J CHEM 2021. [DOI: 10.1039/d1nj02127c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The promising compound T21 for treating COVID-19 at the active site of SARS-CoV-2 Mpro.
Collapse
Affiliation(s)
- Jian-Bo Tong
- College of Chemistry and Chemical Engineering
- Shaanxi University of Science and Technology
- Xi’an 710021
- China
- Shaanxi Key Laboratory of Chemical Additives for Industry
| | - Ding Luo
- College of Chemistry and Chemical Engineering
- Shaanxi University of Science and Technology
- Xi’an 710021
- China
- Shaanxi Key Laboratory of Chemical Additives for Industry
| | - Hai-Yin Xu
- College of Chemistry and Chemical Engineering
- Shaanxi University of Science and Technology
- Xi’an 710021
- China
- Shaanxi Key Laboratory of Chemical Additives for Industry
| | - Shuai Bian
- College of Chemistry and Chemical Engineering
- Shaanxi University of Science and Technology
- Xi’an 710021
- China
- Shaanxi Key Laboratory of Chemical Additives for Industry
| | - Xing Zhang
- College of Chemistry and Chemical Engineering
- Shaanxi University of Science and Technology
- Xi’an 710021
- China
- Shaanxi Key Laboratory of Chemical Additives for Industry
| | - Xue-Chun Xiao
- College of Chemistry and Chemical Engineering
- Shaanxi University of Science and Technology
- Xi’an 710021
- China
- Shaanxi Key Laboratory of Chemical Additives for Industry
| | - Jie Wang
- College of Chemistry and Chemical Engineering
- Shaanxi University of Science and Technology
- Xi’an 710021
- China
- Shaanxi Key Laboratory of Chemical Additives for Industry
| |
Collapse
|
54
|
Pillaiyar T, Wendt LL, Manickam M, Easwaran M. The recent outbreaks of human coronaviruses: A medicinal chemistry perspective. Med Res Rev 2021; 41:72-135. [PMID: 32852058 PMCID: PMC7461420 DOI: 10.1002/med.21724] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/22/2020] [Accepted: 08/08/2020] [Indexed: 01/18/2023]
Abstract
Coronaviruses (CoVs) infect both humans and animals. In humans, CoVs can cause respiratory, kidney, heart, brain, and intestinal infections that can range from mild to lethal. Since the start of the 21st century, three β-coronaviruses have crossed the species barrier to infect humans: severe-acute respiratory syndrome (SARS)-CoV-1, Middle East respiratory syndrome (MERS)-CoV, and SARS-CoV-2 (2019-nCoV). These viruses are dangerous and can easily be transmitted from human to human. Therefore, the development of anticoronaviral therapies is urgently needed. However, to date, no approved vaccines or drugs against CoV infections are available. In this review, we focus on the medicinal chemistry efforts toward the development of antiviral agents against SARS-CoV-1, MERS-CoV, SARS-CoV-2, targeting biochemical events important for viral replication and its life cycle. These targets include the spike glycoprotein and its host-receptors for viral entry, proteases that are essential for cleaving polyproteins to produce functional proteins, and RNA-dependent RNA polymerase for viral RNA replication.
Collapse
Affiliation(s)
- Thanigaimalai Pillaiyar
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal ChemistryUniversity of BonnBonnGermany
| | - Lukas L. Wendt
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal ChemistryUniversity of BonnBonnGermany
| | - Manoj Manickam
- Department of ChemistryPSG Institute of Technology and Applied ResearchCoimbatoreTamil NaduIndia
| | - Maheswaran Easwaran
- Department of Biomedical EngineeringSethu Institute of TechnologyVirudhunagarTamilnaduIndia
| |
Collapse
|
55
|
Kneller DW, Galanie S, Phillips G, O'Neill HM, Coates L, Kovalevsky A. Malleability of the SARS-CoV-2 3CL M pro Active-Site Cavity Facilitates Binding of Clinical Antivirals. Structure 2020; 28:1313-1320.e3. [PMID: 33152262 PMCID: PMC7584437 DOI: 10.1016/j.str.2020.10.007] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/12/2020] [Accepted: 10/19/2020] [Indexed: 12/12/2022]
Abstract
The COVID-19 pandemic caused by SARS-CoV-2 requires rapid development of specific therapeutics and vaccines. The main protease of SARS-CoV-2, 3CL Mpro, is an established drug target for the design of inhibitors to stop the virus replication. Repurposing existing clinical drugs can offer a faster route to treatments. Here, we report on the binding mode and inhibition properties of several inhibitors using room temperature X-ray crystallography and in vitro enzyme kinetics. The enzyme active-site cavity reveals a high degree of malleability, allowing aldehyde leupeptin and hepatitis C clinical protease inhibitors (telaprevir, narlaprevir, and boceprevir) to bind and inhibit SARS-CoV-2 3CL Mpro. Narlaprevir, boceprevir, and telaprevir are low-micromolar inhibitors, whereas the binding affinity of leupeptin is substantially weaker. Repurposing hepatitis C clinical drugs as COVID-19 treatments may be a useful option to pursue. The observed malleability of the enzyme active-site cavity should be considered for the successful design of specific protease inhibitors.
Collapse
Affiliation(s)
- Daniel W Kneller
- Neutron Scattering Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, USA; National Virtual Biotechnology Laboratory, US Department of Energy, Washington, DC, USA
| | - Stephanie Galanie
- National Virtual Biotechnology Laboratory, US Department of Energy, Washington, DC, USA; Biosciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, USA
| | - Gwyndalyn Phillips
- Neutron Scattering Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, USA; National Virtual Biotechnology Laboratory, US Department of Energy, Washington, DC, USA
| | - Hugh M O'Neill
- Neutron Scattering Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, USA; National Virtual Biotechnology Laboratory, US Department of Energy, Washington, DC, USA
| | - Leighton Coates
- National Virtual Biotechnology Laboratory, US Department of Energy, Washington, DC, USA; Second Target Station, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, USA.
| | - Andrey Kovalevsky
- Neutron Scattering Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, USA; National Virtual Biotechnology Laboratory, US Department of Energy, Washington, DC, USA.
| |
Collapse
|
56
|
Silva LR, da Silva Santos-Júnior PF, de Andrade Brandão J, Anderson L, Bassi ÊJ, Xavier de Araújo-Júnior J, Cardoso SH, da Silva-Júnior EF. Druggable targets from coronaviruses for designing new antiviral drugs. Bioorg Med Chem 2020; 28:115745. [PMID: 33007557 PMCID: PMC7836322 DOI: 10.1016/j.bmc.2020.115745] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/26/2020] [Accepted: 08/29/2020] [Indexed: 01/18/2023]
Abstract
Severe respiratory infections were highlighted in the SARS-CoV outbreak in 2002, as well as MERS-CoV, in 2012. Recently, the novel CoV (COVID-19) has led to severe respiratory damage to humans and deaths in Asia, Europe, and Americas, which allowed the WHO to declare the pandemic state. Notwithstanding all impacts caused by Coronaviruses, it is evident that the development of new antiviral agents is an unmet need. In this review, we provide a complete compilation of all potential antiviral agents targeting macromolecular structures from these Coronaviruses (Coronaviridae), providing a medicinal chemistry viewpoint that could be useful for designing new therapeutic agents.
Collapse
Affiliation(s)
- Leandro Rocha Silva
- Chemistry and Biotechnology Institute, Federal University of Alagoas, Campus A.C. Simões, Lourival Melo Mota Avenue, Maceió 57072-970, Brazil; Laboratory of Organic and Medicinal Synthesis, Federal University of Alagoas, Campus Arapiraca, Manoel Severino Barbosa Avenue, Arapiraca 57309-005, Brazil
| | | | - Júlia de Andrade Brandão
- IMUNOREG - Immunoregulation Research Group, Laboratory of Research in Virology and Immunology, Institute of Biological Sciences and Health, Federal University of Alagoas, Campus AC. Simões, Lourival Melo Mota Avenue, Maceió 57072-970, Brazil
| | - Letícia Anderson
- IMUNOREG - Immunoregulation Research Group, Laboratory of Research in Virology and Immunology, Institute of Biological Sciences and Health, Federal University of Alagoas, Campus AC. Simões, Lourival Melo Mota Avenue, Maceió 57072-970, Brazil; CESMAC University Center, Cônego Machado Street, Maceió 57051-160, Brazil
| | - Ênio José Bassi
- IMUNOREG - Immunoregulation Research Group, Laboratory of Research in Virology and Immunology, Institute of Biological Sciences and Health, Federal University of Alagoas, Campus AC. Simões, Lourival Melo Mota Avenue, Maceió 57072-970, Brazil
| | - João Xavier de Araújo-Júnior
- Chemistry and Biotechnology Institute, Federal University of Alagoas, Campus A.C. Simões, Lourival Melo Mota Avenue, Maceió 57072-970, Brazil; Laboratory of Medicinal Chemistry, Pharmaceutical Sciences Institute, Federal University of Alagoas, Campus A.C. Simões, Lourival Melo Mota Avenue, Maceió 57072-970, Brazil
| | - Sílvia Helena Cardoso
- Laboratory of Organic and Medicinal Synthesis, Federal University of Alagoas, Campus Arapiraca, Manoel Severino Barbosa Avenue, Arapiraca 57309-005, Brazil
| | - Edeildo Ferreira da Silva-Júnior
- Chemistry and Biotechnology Institute, Federal University of Alagoas, Campus A.C. Simões, Lourival Melo Mota Avenue, Maceió 57072-970, Brazil; Laboratory of Medicinal Chemistry, Pharmaceutical Sciences Institute, Federal University of Alagoas, Campus A.C. Simões, Lourival Melo Mota Avenue, Maceió 57072-970, Brazil.
| |
Collapse
|
57
|
Masand VH, Akasapu S, Gandhi A, Rastija V, Patil MK. Structure features of peptide-type SARS-CoV main protease inhibitors: Quantitative structure activity relationship study. CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS : AN INTERNATIONAL JOURNAL SPONSORED BY THE CHEMOMETRICS SOCIETY 2020; 206:104172. [PMID: 33518858 PMCID: PMC7833253 DOI: 10.1016/j.chemolab.2020.104172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 09/09/2020] [Accepted: 10/02/2020] [Indexed: 05/12/2023]
Abstract
In the present work, an extensive QSAR (Quantitative Structure Activity Relationships) analysis of a series of peptide-type SARS-CoV main protease (MPro) inhibitors following the OECD guidelines has been accomplished. The analysis was aimed to identify salient and concealed structural features that govern the MPro inhibitory activity of peptide-type compounds. The QSAR analysis is based on a dataset of sixty-two peptide-type compounds which resulted in the generation of statistically robust and highly predictive multiple models. All the developed models were validated extensively and satisfy the threshold values for many statistical parameters (for e.g. R2 = 0.80-0.82, Q2 loo = 0.74-0.77, Q 2 LMO = 0.66-0.67). The developed QSAR models identified number of sp2 hybridized Oxygen atoms within seven bonds from aromatic Carbon atoms, the presence of Carbon and Nitrogen atoms at a topological distance of 3 and other interrelations of atom pairs as important pharmacophoric features. Hence, the present QSAR models have a good balance of Qualitative (Descriptive QSARs) and Quantitative (Predictive QSARs) approaches, therefore useful for future modifications of peptide-type compounds for anti- SARS-CoV activity.
Collapse
Key Words
- ADMET, Absorption, Distribution, Metabolism, Excretion and Toxicity
- COVID-19
- GA, Genetic algorithm
- MLR, Multiple linear Regression
- OECD, Organisation for Economic Co-operation and Development
- OFS, Objective Feature Selection
- OLS, Ordinary Least Square
- Peptide-type compounds
- QSAR
- QSAR, Quantitative structure-activity analysis
- QSARINS, QSAR Insubria
- SARS-CoV
- SARS-CoV-2
- SFS, Subjective Feature Selection
- SMILES, Simplified molecular-Input Line-Entry System
- WHO, World health organization
Collapse
Affiliation(s)
- Vijay H Masand
- Department of Chemistry, Vidya Bharati Mahavidyalaya, Amravati, Maharashtra, 444 602, India
| | | | - Ajaykumar Gandhi
- Department of Chemistry, Government College of Arts and Science, Aurangabad, Maharashtra, 431 004, India
| | - Vesna Rastija
- Department of Agroecology and Environmental Protection, Faculty of Agrobiotechnical Sciences Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Meghshyam K Patil
- Department of Chemistry, Osmanabad Sub-Centre Dr. Babasaheb Ambedkar Marathwada University, Osmanabad, Maharashtra, India
| |
Collapse
|
58
|
Liu Y, Liang C, Xin L, Ren X, Tian L, Ju X, Li H, Wang Y, Zhao Q, Liu H, Cao W, Xie X, Zhang D, Wang Y, Jian Y. The development of Coronavirus 3C-Like protease (3CL pro) inhibitors from 2010 to 2020. Eur J Med Chem 2020; 206:112711. [PMID: 32810751 PMCID: PMC7409838 DOI: 10.1016/j.ejmech.2020.112711] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/17/2020] [Accepted: 07/29/2020] [Indexed: 01/24/2023]
Abstract
This review fully describes the coronavirus 3CLpro peptidomimetic inhibitors and nonpeptidic small molecule inhibitors developed from 2010 to 2020. Specifically, the structural characteristics, binding modes and SARs of these 3CLpro inhibitors are expounded in detail by division into two categories: peptidomimetic inhibitors mainly utilize electrophilic warhead groups to covalently bind the 3CLpro Cys145 residue and thereby achieve irreversible inhibition effects, whereas nonpeptidic small molecule inhibitors mainly interact with residues in the S1', S1, S2 and S4 pockets via hydrogen bonds, hydrophobic bonds and van der Waals forces. Based on the emerging PROTAC technology and the existing 3CLpro inhibitors, 3CLpro PROTAC degraders are hypothesised to be next-generation anti-coronavirus drugs.
Collapse
Affiliation(s)
- Yuzhi Liu
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Chengyuan Liang
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an, 710021, PR China.
| | - Liang Xin
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Xiaodong Ren
- Medical College, Guizhou University, Guiyang, 550025, PR China
| | - Lei Tian
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Xingke Ju
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Han Li
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Yongbo Wang
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Qianqian Zhao
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Hong Liu
- Zhuhai Jinan Selenium Source Nanotechnology Co., Ltd., Hengqin, Zhuhai, Guangdong, 519030, PR China.
| | - Wenqiang Cao
- Zhuhai Jinan Selenium Source Nanotechnology Co., Ltd., Hengqin, Zhuhai, Guangdong, 519030, PR China
| | - Xiaolin Xie
- Shaanxi Panlong Pharmaceutical Group Co., Ltd., Xi'an, 710025, PR China
| | - Dezhu Zhang
- Shaanxi Panlong Pharmaceutical Group Co., Ltd., Xi'an, 710025, PR China
| | - Yu Wang
- Shaanxi Panlong Pharmaceutical Group Co., Ltd., Xi'an, 710025, PR China
| | - Yanlin Jian
- Laboratory for Medicinal Chemistry (FFW), Ghent University, Ottergemsesteenweg 460, B9000, Gent, Belgium.
| |
Collapse
|
59
|
Negi M, Chawla PA, Faruk A, Chawla V. Role of heterocyclic compounds in SARS and SARS CoV-2 pandemic. Bioorg Chem 2020; 104:104315. [PMID: 33007742 PMCID: PMC7513919 DOI: 10.1016/j.bioorg.2020.104315] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 09/20/2020] [Indexed: 01/07/2023]
Abstract
Coronaviruses have led to severe emergencies in the world since the outbreak of SARS CoV in 2002, followed by MERS CoV in 2012. SARS CoV-2, the novel pandemic caused by coronaviruses that began in December 2019 in China has led to a total of 24,066,076 confirmed cases and a death toll of 823,572 as reported by World Health Organisation on 26 August 2020, spreading to 213 countries and territories. However, there are still no vaccines or medications available till date against SARS coronaviruses which is an urgent requirement to control the current pandemic like situations. Since many decades, heterocyclic scaffolds have been explored exhaustively for their anticancer, antimalarial, anti-inflammatory, antitubercular, antimicrobial, antidiabetic, antiviral and many more treatment capabilities. Therefore, through this review, we have tried to emphasize on the anticipated role of heterocyclic scaffolds in the design and discovery of the much-awaited anti-SARS CoV-2 therapy, by exploring the research articles depicting different heterocyclic moieties as targeting SARS, MERS and SARS CoV-2 coronaviruses. The heterocyclic motifs mentioned in the review can serve as crucial resources for the development of SARS coronaviruses treatment strategies.
Collapse
Affiliation(s)
- Meenakshi Negi
- Department of Pharmaceutical Sciences, HNB Garhwal University, Srinagar, Garhwal, Uttarakhand, India
| | - Pooja A. Chawla
- Department of Pharmaceutical Chemistry and Analysis, ISF College of Pharmacy, Moga, Punjab, India,Corresponding author at: Department of Pharmaceutical Chemistry and Analysis, ISF College of Pharmacy, Moga 142001, Punjab, India
| | - Abdul Faruk
- Department of Pharmaceutical Sciences, HNB Garhwal University, Srinagar, Garhwal, Uttarakhand, India
| | - Viney Chawla
- University Institute of Pharmaceutical Sciences, Baba Farid University of Health Sciences, Faridkot, Punjab, India
| |
Collapse
|
60
|
Mandour YM, Zlotos DP, Alaraby Salem M. A multi-stage virtual screening of FDA-approved drugs reveals potential inhibitors of SARS-CoV-2 main protease. J Biomol Struct Dyn 2020; 40:2327-2338. [PMID: 33094680 PMCID: PMC7597227 DOI: 10.1080/07391102.2020.1837680] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an ongoing global health emergency. Repurposing of approved pharmaceutical drugs for COVID-19 treatment represents an attractive approach to quickly identify promising drug candidates. SARS-CoV-2 main protease (Mpro) is responsible for the maturation of viral functional proteins making it a key antiviral target. Based on the recently revealed crystal structures of SARS-CoV-2 Mpro, we herein describe a multi-stage virtual screening protocol including pharmacophore screening, molecular docking and protein-ligand interaction fingerprints (PLIF) post-docking filtration for efficient enrichment of potent SARS-CoV-2 Mpro inhibitors. Potential hits, along with a cocrystallized control were further studied via molecular dynamics. A 150-ns production trajectory was followed by RMSD, free energy calculation, and H-bond analysis for each compound. The applied virtual screening protocol led to identification of five FDA-approved drugs with promising binding modes to key subsites of the substrate-binding pocket of SARS-CoV-2 Mpro. The identified compounds belong to different pharmaceutical classes, including several protease inhibitors, antineoplastic agents and a natural flavonoid. The drug candidates discovered in this study present a potential extension of the recently reported SARS-CoV-2 Mpro inhibitors that have been identified using other virtual screening protocols and may be repurposed for COVID-19 treatment.
Collapse
Affiliation(s)
- Yasmine M Mandour
- Pharmaceutical Chemistry Department, Faculty of Pharmacy and Biotechnology, The German University in Cairo, Cairo, Egypt.,School of Life and Medical Sciences, University of Hertfordshire hosted by Global Academic Foundation, New Administrative Capital, Cairo, Egypt
| | - Darius P Zlotos
- Pharmaceutical Chemistry Department, Faculty of Pharmacy and Biotechnology, The German University in Cairo, Cairo, Egypt
| | - M Alaraby Salem
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, October University of Modern Sciences and Arts (MSA), Giza, Egypt
| |
Collapse
|
61
|
Masand VH, Rastija V, Patil MK, Gandhi A, Chapolikar A. Extending the identification of structural features responsible for anti-SARS-CoV activity of peptide-type compounds using QSAR modelling. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2020; 31:643-654. [PMID: 32847369 DOI: 10.1080/1062936x.2020.1784271] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 06/15/2020] [Indexed: 06/11/2023]
Abstract
A quantitative structure-activity relationship (QSAR) model was built from a dataset of 54 peptide-type compounds as SARS-CoV inhibitors. The analysis was executed to identify prominent and hidden structural features that govern anti-SARS-CoV activity. The QSAR model was derived from the genetic algorithm-multi-linear regression (GA-MLR) methodology. This resulted in the generation of a statistically robust and highly predictive model. In addition, it satisfied the OECD principles for QSAR validation. The model was validated thoroughly and fulfilled the threshold values of a battery of statistical parameters (e.g. r 2 = 0.87, Q 2 loo = 0.82). The derived model is successful in identifying many atom-pairs as important structural features that govern the anti-SARS-CoV activity of peptide-type compounds. The newly developed model has a good balance of descriptive and statistical approaches. Consequently, the present work is useful for future modifications of peptide-type compounds for SARS-CoV and SARS-CoV-2 activity.
Collapse
Affiliation(s)
- V H Masand
- Department of Chemistry, Vidya Bharati Mahavidyalaya , Amravati, India
| | - V Rastija
- Department of Chemistry, Faculty of Agrobiotechnical Sciences, Josip Juraj Strossmayer University of Osijek , Osijek, Croatia
| | - M K Patil
- Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University , Aurangabad, India
| | - A Gandhi
- Department of Chemistry, Government College of Arts and Science , Aurangabad, India
| | - A Chapolikar
- Department of Chemistry, Government College of Arts and Science , Aurangabad, India
| |
Collapse
|
62
|
Akaji K, Konno H. Design and Evaluation of Anti-SARS-Coronavirus Agents Based on Molecular Interactions with the Viral Protease. Molecules 2020; 25:molecules25173920. [PMID: 32867349 PMCID: PMC7504761 DOI: 10.3390/molecules25173920] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 08/14/2020] [Accepted: 08/21/2020] [Indexed: 11/16/2022] Open
Abstract
Three types of new coronaviruses (CoVs) have been identified recently as the causative viruses for the severe pneumonia-like respiratory illnesses, severe acute respiratory syndrome (SARS), Middle East respiratory syndrome (MERS), and corona-virus disease 2019 (COVID-19). Neither therapeutic agents nor vaccines have been developed to date, which is a major drawback in controlling the present global pandemic of COVID-19 caused by SARS coronavirus 2 (SARS-CoV-2) and has resulted in more than 20,439,814 cases and 744,385 deaths. Each of the 3C-like (3CL) proteases of the three CoVs is essential for the proliferation of the CoVs, and an inhibitor of the 3CL protease (3CLpro) is thought to be an ideal therapeutic agent against SARS, MERS, or COVID-19. Among these, SARS-CoV is the first corona-virus isolated and has been studied in detail since the first pandemic in 2003. This article briefly reviews a series of studies on SARS-CoV, focusing on the development of inhibitors for the SARS-CoV 3CLpro based on molecular interactions with the 3CL protease. Our recent approach, based on the structure-based rational design of a novel scaffold for SARS-CoV 3CLpro inhibitor, is also included. The achievements summarized in this short review would be useful for the design of a variety of novel inhibitors for corona-viruses, including SARS-CoV-2.
Collapse
Affiliation(s)
- Kenichi Akaji
- Department of Medicinal Chemistry, Kyoto Pharmaceutical University, Yamashina, Kyoto 607-8414, Japan
- Hamari Chemicals, Ltd., Suminoe-ku, Osaka 559-0034, Japan
- Correspondence:
| | - Hiroyuki Konno
- Chemical Engineering and Biochemical Engineering, Yamagata University, Yonezawa, Yamagata 992-8510, Japan;
| |
Collapse
|
63
|
Hosseini-Zare MS, Thilagavathi R, Selvam C. Targeting severe acute respiratory syndrome-coronavirus (SARS-CoV-1) with structurally diverse inhibitors: a comprehensive review. RSC Adv 2020; 10:28287-28299. [PMID: 35519094 PMCID: PMC9055768 DOI: 10.1039/d0ra04395h] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 07/13/2020] [Indexed: 12/13/2022] Open
Abstract
Coronaviruses, which were discovered in 1968, can lead to some human viral disorders, like severe acute respiratory syndrome (SARS), Middle East respiratory syndrome-related (MERS), and, recently, coronavirus disease 2019 (COVID-19). The coronavirus that leads to COVID-19 is rapidly spreading all over the world and is the reason for the deaths of thousands of people. Recent research has revealed that there is about 80% sequence homology between the coronaviruses that cause SARS and COVID-19. Considering this fact, we decided to collect the maximum available information on targets, structures, and inhibitors reported so far for SARS-CoV-1 that could be useful for researchers who work on closely related COVID-19. There are vital proteases, like papain-like protease 2 (PL2pro) and 3C-like protease (3CLpro), or main protease (Mpro), that are involved in and are essential for the replication of SARS coronavirus and so are valuable targets for the treatment of patients affected by this type of virus. SARS-CoV-1 NTPase/helicase plays an important role in the release of several non-structural proteins (nsps), so it is another essential target relating to the viral life cycle. In this paper, we provide extensive information about diverse molecules with anti-SARS activity. In addition to traditional medicinal chemistry outcomes, HTS, virtual screening efforts, and structural insights for better understanding inhibitors and SARS-CoV-1 target complexes are also discussed. This study covers a wide range of anti-SARS agents, particularly SARS-CoV-1 inhibitors, and provides new insights into drug design for the deadly SARS-CoV-2 virus.
Collapse
Affiliation(s)
- Maryam S Hosseini-Zare
- Department of Pharmaceutical and Environmental Health Sciences, College of Pharmacy and Health Sciences, Texas Southern University Houston TX-77004 USA +1-713-313-7552
| | - Ramasamy Thilagavathi
- Department of Biotechnology, Faculty of Engineering, Karpagam Academy of Higher Education Coimbatore India
| | - Chelliah Selvam
- Department of Pharmaceutical and Environmental Health Sciences, College of Pharmacy and Health Sciences, Texas Southern University Houston TX-77004 USA +1-713-313-7552
| |
Collapse
|
64
|
Kneller DW, Phillips G, O'Neill HM, Jedrzejczak R, Stols L, Langan P, Joachimiak A, Coates L, Kovalevsky A. Structural plasticity of SARS-CoV-2 3CL M pro active site cavity revealed by room temperature X-ray crystallography. Nat Commun 2020; 11:3202. [PMID: 32581217 PMCID: PMC7314768 DOI: 10.1038/s41467-020-16954-7] [Citation(s) in RCA: 327] [Impact Index Per Article: 65.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 06/04/2020] [Indexed: 11/18/2022] Open
Abstract
The COVID-19 disease caused by the SARS-CoV-2 coronavirus has become a pandemic health crisis. An attractive target for antiviral inhibitors is the main protease 3CL Mpro due to its essential role in processing the polyproteins translated from viral RNA. Here we report the room temperature X-ray structure of unliganded SARS-CoV-2 3CL Mpro, revealing the ligand-free structure of the active site and the conformation of the catalytic site cavity at near-physiological temperature. Comparison with previously reported low-temperature ligand-free and inhibitor-bound structures suggest that the room temperature structure may provide more relevant information at physiological temperatures for aiding in molecular docking studies.
Collapse
Affiliation(s)
- Daniel W Kneller
- Neutron Scattering Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN, 37831, USA
| | - Gwyndalyn Phillips
- Neutron Scattering Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN, 37831, USA
| | - Hugh M O'Neill
- Neutron Scattering Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN, 37831, USA
| | - Robert Jedrzejczak
- Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL, 60667, USA
- Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Argonne, IL, 60439, USA
| | - Lucy Stols
- Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL, 60667, USA
| | - Paul Langan
- Neutron Scattering Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN, 37831, USA
| | - Andrzej Joachimiak
- Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL, 60667, USA
- Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Argonne, IL, 60439, USA
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, 60367, USA
| | - Leighton Coates
- Neutron Scattering Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN, 37831, USA.
| | - Andrey Kovalevsky
- Neutron Scattering Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN, 37831, USA.
| |
Collapse
|
65
|
Ghosh AK, Brindisi M, Shahabi D, Chapman ME, Mesecar AD. Drug Development and Medicinal Chemistry Efforts toward SARS-Coronavirus and Covid-19 Therapeutics. ChemMedChem 2020; 15:907-932. [PMID: 32324951 PMCID: PMC7264561 DOI: 10.1002/cmdc.202000223] [Citation(s) in RCA: 203] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Indexed: 12/13/2022]
Abstract
The COVID-19 pandemic caused by SARS-CoV-2 infection is spreading at an alarming rate and has created an unprecedented health emergency around the globe. There is no effective vaccine or approved drug treatment against COVID-19 and other pathogenic coronaviruses. The development of antiviral agents is an urgent priority. Biochemical events critical to the coronavirus replication cycle provided a number of attractive targets for drug development. These include, spike protein for binding to host cell-surface receptors, proteolytic enzymes that are essential for processing polyproteins into mature viruses, and RNA-dependent RNA polymerase for RNA replication. There has been a lot of ground work for drug discovery and development against these targets. Also, high-throughput screening efforts have led to the identification of diverse lead structures, including natural product-derived molecules. This review highlights past and present drug discovery and medicinal-chemistry approaches against SARS-CoV, MERS-CoV and COVID-19 targets. The review hopes to stimulate further research and will be a useful guide to the development of effective therapies against COVID-19 and other pathogenic coronaviruses.
Collapse
Affiliation(s)
- Arun K. Ghosh
- Department of ChemistryPurdue UniversityWest LafayetteIN 47907USA
- Department of Medicinal Chemistry and Molecular PharmacolgyPurdue UniversityWest LafayetteIN 47907USA
| | - Margherita Brindisi
- Department of ChemistryPurdue UniversityWest LafayetteIN 47907USA
- Department of Excellence of PharmacyUniversity of Naples Federico II80131NaplesItaly
| | - Dana Shahabi
- Department of ChemistryPurdue UniversityWest LafayetteIN 47907USA
| | | | - Andrew D. Mesecar
- Department of ChemistryPurdue UniversityWest LafayetteIN 47907USA
- Department of BiochemistryPurdue UniversityWest LafayetteIN 47907USA
- Department of Biological SciencesPurdue UniversityWest LafayetteIN 47907USA
| |
Collapse
|
66
|
Artificial intelligence approach fighting COVID-19 with repurposing drugs. Biomed J 2020; 43:355-362. [PMID: 32426387 PMCID: PMC7227517 DOI: 10.1016/j.bj.2020.05.001] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 05/08/2020] [Indexed: 12/26/2022] Open
Abstract
Background The ongoing COVID-19 pandemic has caused more than 193,825 deaths during the past few months. A quick-to-be-identified cure for the disease will be a therapeutic medicine that has prior use experiences in patients in order to resolve the current pandemic situation before it could become worsening. Artificial intelligence (AI) technology is hereby applied to identify the marketed drugs with potential for treating COVID-19. Methods An AI platform was established to identify potential old drugs with anti-coronavirus activities by using two different learning databases; one consisted of the compounds reported or proven active against SARS-CoV, SARS-CoV-2, human immunodeficiency virus, influenza virus, and the other one containing the known 3C-like protease inhibitors. All AI predicted drugs were then tested for activities against a feline coronavirus in in vitro cell-based assay. These assay results were feedbacks to the AI system for relearning and thus to generate a modified AI model to search for old drugs again. Results After a few runs of AI learning and prediction processes, the AI system identified 80 marketed drugs with potential. Among them, 8 drugs (bedaquiline, brequinar, celecoxib, clofazimine, conivaptan, gemcitabine, tolcapone, and vismodegib) showed in vitro activities against the proliferation of a feline infectious peritonitis (FIP) virus in Fcwf-4 cells. In addition, 5 other drugs (boceprevir, chloroquine, homoharringtonine, tilorone, and salinomycin) were also found active during the exercises of AI approaches. Conclusion Having taken advantages of AI, we identified old drugs with activities against FIP coronavirus. Further studies are underway to demonstrate their activities against SARS-CoV-2 in vitro and in vivo at clinically achievable concentrations and doses. With prior use experiences in patients, these old drugs if proven active against SARS-CoV-2 can readily be applied for fighting COVID-19 pandemic.
Collapse
|
67
|
Tang B, He F, Liu D, Fang M, Wu Z, Xu D. AI-aided design of novel targeted covalent inhibitors against SARS-CoV-2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020. [PMID: 32511346 DOI: 10.1101/2020.03.03.972133] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The focused drug repurposing of known approved drugs (such as lopinavir/ritonavir) has been reported failed for curing SARS-CoV-2 infected patients. It is urgent to generate new chemical entities against this virus. As a key enzyme in the life-cycle of coronavirus, the 3C-like main protease (3CL pro or M pro ) is the most attractive for antiviral drug design. Based on a recently solved structure (PDB ID: 6LU7), we developed a novel advanced deep Q-learning network with the fragment-based drug design (ADQN-FBDD) for generating potential lead compounds targeting SARS-CoV-2 3CL pro . We obtained a series of derivatives from those lead compounds by our structure-based optimization policy (SBOP). All the 47 lead compounds directly from our AI-model and related derivatives based on SBOP are accessible in our molecular library at https://github.com/tbwxmu/2019-nCov . These compounds can be used as potential candidates for researchers in their development of drugs against SARS-CoV-2.
Collapse
|
68
|
Chen Y. Advances in the Synthesis of Methylated Products through Indirect Approaches. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201901240] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yantao Chen
- Medicinal Chemistry, Research and Early DevelopmentCardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca 43183 Gothenburg Sweden
| |
Collapse
|
69
|
Huang T, Wu X, Yu Y, An L, Yin X. A convenient synthesis of 2-acyl benzothiazoles/thiazoles from benzothiazole/thiazole and N,N'-carbonyldiimidazole activated carboxylic acids. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.05.043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
70
|
Two-amino acids change in the nsp4 of SARS coronavirus abolishes viral replication. Virology 2017; 510:165-174. [PMID: 28738245 PMCID: PMC7111695 DOI: 10.1016/j.virol.2017.07.019] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 07/09/2017] [Accepted: 07/14/2017] [Indexed: 02/03/2023]
Abstract
Infection with coronavirus rearranges the host cell membrane to assemble a replication/transcription complex in which replication of the viral genome and transcription of viral mRNA occur. Although coexistence of nsp3 and nsp4 is known to cause membrane rearrangement, the mechanisms underlying the interaction of these two proteins remain unclear. We demonstrated that binding of nsp4 with nsp3 is essential for membrane rearrangement and identified amino acid residues in nsp4 responsible for the interaction with nsp3. In addition, we revealed that the nsp3-nsp4 interaction is not sufficient to induce membrane rearrangement, suggesting the participation of other factors such as host proteins. Finally, we showed that loss of the nsp3-nsp4 interaction eliminated viral replication by using an infectious cDNA clone and replicon system of SARS-CoV. These findings provide clues to the mechanism of the replication/transcription complex assembly of SARS-CoV and could reveal an antiviral target for the treatment of betacoronavirus infection. H120 and F121 in the lumenal loop in nsp4 are essential for binding to nsp3. H120&F121 substitutions in nsp4 cause defect in membrane rearrangement function. Interaction with nsp3 through H120&F121 in nsp4 is crucial for viral propagation.
Collapse
|
71
|
Wang L, Bao BB, Song GQ, Chen C, Zhang XM, Lu W, Wang Z, Cai Y, Li S, Fu S, Song FH, Yang H, Wang JG. Discovery of unsymmetrical aromatic disulfides as novel inhibitors of SARS-CoV main protease: Chemical synthesis, biological evaluation, molecular docking and 3D-QSAR study. Eur J Med Chem 2017. [PMID: 28624700 PMCID: PMC7115414 DOI: 10.1016/j.ejmech.2017.05.045] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The worldwide outbreak of severe acute respiratory syndrome (SARS) in 2003 had caused a high rate of mortality. Main protease (Mpro) of SARS-associated coronavirus (SARS-CoV) is an important target to discover pharmaceutical compounds for the therapy of this life-threatening disease. During the course of screening new anti-SARS agents, we have identified that a series of unsymmetrical aromatic disulfides inhibited SARS-CoV Mpro significantly for the first time. Herein, 40 novel unsymmetrical aromatic disulfides were synthesized chemically and their biological activities were evaluated in vitro against SARS-CoV Mpro. These novel compounds displayed excellent IC50 data in the range of 0.516–5.954 μM. Preliminary studies indicated that these disulfides are reversible and mpetitive inhibitors. A possible binding mode was generated via molecular docking simulation and a comparative field analysis (CoMFA) model was constructed to understand the structure-activity relationships. The present research therefore has provided some meaningful guidance to design and identify anti-SARS drugs with totally new chemical structures. 40 novel unsymmetrical aromatic disulfides were synthesized. The synthesized disulfide compounds are potent inhibitors of SARS main protease. Possible binding mode and structure-activity relationships of the compounds were established.
Collapse
Affiliation(s)
- Li Wang
- State-Key Laboratory and Research Institute of Elemento-Organic Chemistry, National Pesticide Engineering Research Center, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Bo-Bo Bao
- School of Life Sciences, Tianjin University, Tianjin 300072, China; Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin 300457, China
| | - Guo-Qing Song
- State-Key Laboratory and Research Institute of Elemento-Organic Chemistry, National Pesticide Engineering Research Center, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Cheng Chen
- School of Life Sciences, Tianjin University, Tianjin 300072, China; Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin 300457, China.
| | - Xu-Meng Zhang
- State-Key Laboratory and Research Institute of Elemento-Organic Chemistry, National Pesticide Engineering Research Center, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Wei Lu
- State-Key Laboratory and Research Institute of Elemento-Organic Chemistry, National Pesticide Engineering Research Center, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zefang Wang
- School of Life Sciences, Tianjin University, Tianjin 300072, China; Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin 300457, China
| | - Yan Cai
- School of Life Sciences, Tianjin University, Tianjin 300072, China; Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin 300457, China
| | - Shuang Li
- School of Life Sciences, Tianjin University, Tianjin 300072, China; Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin 300457, China
| | - Sheng Fu
- School of Life Sciences, Tianjin University, Tianjin 300072, China; Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin 300457, China
| | - Fu-Hang Song
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Haitao Yang
- School of Life Sciences, Tianjin University, Tianjin 300072, China; Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin 300457, China
| | - Jian-Guo Wang
- State-Key Laboratory and Research Institute of Elemento-Organic Chemistry, National Pesticide Engineering Research Center, College of Chemistry, Nankai University, Tianjin 300071, China.
| |
Collapse
|
72
|
Kumar V, Shin JS, Shie JJ, Ku KB, Kim C, Go YY, Huang KF, Kim M, Liang PH. Identification and evaluation of potent Middle East respiratory syndrome coronavirus (MERS-CoV) 3CL Pro inhibitors. Antiviral Res 2017; 141:101-106. [PMID: 28216367 PMCID: PMC7113684 DOI: 10.1016/j.antiviral.2017.02.007] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 02/10/2017] [Accepted: 02/14/2017] [Indexed: 01/25/2023]
Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV) causes severe acute respiratory illness with fever, cough and shortness of breath. Up to date, it has resulted in 1826 human infections, including 649 deaths. Analogous to picornavirus 3C protease (3Cpro), 3C-like protease (3CLpro) is critical for initiation of the MERS-CoV replication cycle and is thus regarded as a validated drug target. As presented here, our peptidomimetic inhibitors of enterovirus 3Cpro (6b, 6c and 6d) inhibited 3CLpro of MERS-CoV and severe acute respiratory syndrome coronavirus (SARS-CoV) with IC50 values ranging from 1.7 to 4.7 μM and from 0.2 to 0.7 μM, respectively. In MERS-CoV-infected cells, the inhibitors showed antiviral activity with EC50 values ranging from 0.6 to 1.4 μM, by downregulating the viral protein production in cells as well as reducing secretion of infectious viral particles into culture supernatants. They also suppressed other α- and β-CoVs from human and feline origin. These compounds exhibited good selectivity index (over 70 against MERS-CoV) and could lead to the development of broad-spectrum antiviral drugs against emerging CoVs and picornaviruses.
Collapse
Affiliation(s)
- Vathan Kumar
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Jin Soo Shin
- Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Jiun-Jie Shie
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
| | - Keun Bon Ku
- Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Chonsaeng Kim
- Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Yun Young Go
- Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Kai-Fa Huang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Meehyein Kim
- Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea.
| | - Po-Huang Liang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan; Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
73
|
Adhikari N, Baidya SK, Saha A, Jha T. Structural Insight Into the Viral 3C-Like Protease Inhibitors: Comparative SAR/QSAR Approaches. VIRAL PROTEASES AND THEIR INHIBITORS 2017. [PMCID: PMC7150231 DOI: 10.1016/b978-0-12-809712-0.00011-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Severe acute respiratory syndrome (SARS), caused by SARS-coronavirus (SARS-CoV), is a dreadful infection worldwide having economic and medical importance and a global threat for health. It was turned into an epidemic in South China followed by a chain of infections across three generations. A number of pathogeneses in human may occur due to the virus. This infection has not been taken into account before the SARS outbreak, and still it is a neglected one. Therefore, there is an urgent need to develop small molecule antivirals to combat the SARS-CoV. No vaccines are available till date though a number of SARS-CoV 3C-like and 3C protease inhibitors were reported. In this chapter, quantitative structure–activity relationship technique is used for development of anti-SARS and anti-HRV drugs and outcome discussed in details. This approach may be a useful strategy to design novel and potential anti-SARS drugs to combat these dreadful viral diseases.
Collapse
Affiliation(s)
| | | | | | - Tarun Jha
- Jadavpur University, Kolkata, West Bengal, India
| |
Collapse
|
74
|
Pillaiyar T, Manickam M, Namasivayam V, Hayashi Y, Jung SH. An Overview of Severe Acute Respiratory Syndrome-Coronavirus (SARS-CoV) 3CL Protease Inhibitors: Peptidomimetics and Small Molecule Chemotherapy. J Med Chem 2016; 59:6595-628. [PMID: 26878082 PMCID: PMC7075650 DOI: 10.1021/acs.jmedchem.5b01461] [Citation(s) in RCA: 539] [Impact Index Per Article: 59.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Indexed: 01/17/2023]
Abstract
Severe acute respiratory syndrome (SARS) is caused by a newly emerged coronavirus that infected more than 8000 individuals and resulted in more than 800 (10-15%) fatalities in 2003. The causative agent of SARS has been identified as a novel human coronavirus (SARS-CoV), and its viral protease, SARS-CoV 3CL(pro), has been shown to be essential for replication and has hence been recognized as a potent drug target for SARS infection. Currently, there is no effective treatment for this epidemic despite the intensive research that has been undertaken since 2003 (over 3500 publications). This perspective focuses on the status of various efficacious anti-SARS-CoV 3CL(pro) chemotherapies discovered during the last 12 years (2003-2015) from all sources, including laboratory synthetic methods, natural products, and virtual screening. We describe here mainly peptidomimetic and small molecule inhibitors of SARS-CoV 3CL(pro). Attempts have been made to provide a complete description of the structural features and binding modes of these inhibitors under many conditions.
Collapse
Affiliation(s)
- Thanigaimalai Pillaiyar
- Pharmaceutical
Institute, Pharmaceutical Chemistry I, University
of Bonn, An der Immenburg
4, D-53121 Bonn, Germany
| | - Manoj Manickam
- College
of Pharmacy and Institute of Drug Research and Development, Chungnam National University, Daejeon 34134, South Korea
| | - Vigneshwaran Namasivayam
- Pharmaceutical
Institute, Pharmaceutical Chemistry I, University
of Bonn, An der Immenburg
4, D-53121 Bonn, Germany
| | - Yoshio Hayashi
- Department
of Medicinal Chemistry, Tokyo University
of Pharmacy and Life Sciences, Tokyo 192-0392, Japan
| | - Sang-Hun Jung
- College
of Pharmacy and Institute of Drug Research and Development, Chungnam National University, Daejeon 34134, South Korea
| |
Collapse
|