51
|
Ekundayo BE, Adewale OB, Obafemi BA, Afolabi OB, Obafemi TO. Management of Alzheimer's disease and related neurotoxic pathologies: Role of thiamine, pyridoxine and cobalamin. Eur J Pharmacol 2024; 982:176958. [PMID: 39209095 DOI: 10.1016/j.ejphar.2024.176958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/10/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Alzheimer's disease (AD) remains one of the most debilitating disease and most common neurological disorder in the world at large. However, with many years of multiple research and billions of dollars invested for the purpose of research, not many therapeutic options exist for the management of this disease. As at 2023, the number has only increased to 7, one of which is a combination of two existing therapies. However, research has continued still in the search for a cure. The roles and functions of thiamine, pyridoxine and cobalamin in the proper function of the nervous system has been well researched over time and their role in the management of neurological diseases have been of interest in the last decade. This review describes the roles of the aforementioned chemicals in the management of different models of AD and AD-like pathologies as mono-therapeutic agents and prospective adjuvant for combination therapy.
Collapse
Affiliation(s)
| | | | - Blessing Ariyo Obafemi
- Department of Medical Biochemistry Afe Babalola University, PMB 5454, Ado-Ekiti, Nigeria
| | | | - Tajudeen Olabisi Obafemi
- Department of Biochemistry Afe Babalola University, PMB 5454, Ado-Ekiti, Nigeria; Department of Life and Consumer Sciences, School of Agriculture and Life Sciences, University of South Florida Park, Roodepoort, 1709, Johannesburg, South Africa
| |
Collapse
|
52
|
Liu Z, Hu B, Tang J, Liu X, Cheng B, Jia C, Zhang L. Frontiers and hotspots evolution between air pollution and Alzheimer's disease: A bibliometric analysis from 2013 to 2023. J Alzheimers Dis 2024; 102:257-274. [PMID: 39573870 DOI: 10.1177/13872877241289381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
In recent years, the study of air pollution has received increasing attention from researchers, but a summary of Alzheimer's disease (AD) and air pollution is missed. Through combing the documents in the core dataset of Web of Science, this study analyzes current research based on specific keywords. CiteSpace and VOSviewer perform statistical analysis of measurement metrics to visualize a network of relevant content elements. The research devotes discussion to the relationship between air pollution and AD. Keyword hotspots include AD, children, oxidative stress, and system inflammation. Overall, 304 documents on air pollution and AD from 2013 to 2023 were retrieved from Web of Science. One hundred twenty-two journals published relevant articles, and the number of articles has increased gradually since the past decade. Research and development in AD and air pollution are progressing rapidly, but there is still a need for more connections with multidisciplinary technologies to explore cutting-edge hotspots.
Collapse
Affiliation(s)
- Zhirong Liu
- Department of General Surgery, The Affiliated Hospital of Chengdu Medical College, Chengdu Second People's Hospital, Chengdu, China
| | - BingShuang Hu
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Ju Tang
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - XinLian Liu
- Development and Regeneration Key Laboratory of Sichuan Province, Institute of Neuroscience, Department of Pathology and Pathophysiology, Chengdu Medical College, Chengdu, China
| | - BaoJing Cheng
- President Office, Chengdu Medical College, Chengdu, China
| | - Cui Jia
- Development and Regeneration Key Laboratory of Sichuan Province, Institute of Neuroscience, Department of Pathology and Pathophysiology, Chengdu Medical College, Chengdu, China
| | - LuShun Zhang
- Development and Regeneration Key Laboratory of Sichuan Province, Institute of Neuroscience, Department of Pathology and Pathophysiology, Chengdu Medical College, Chengdu, China
| |
Collapse
|
53
|
Wu B, Xiao Q, Zhu L, Tang H, Peng W. Icariin targets p53 to protect against ceramide-induced neuronal senescence: Implication in Alzheimer's disease. Free Radic Biol Med 2024; 224:204-219. [PMID: 39197597 DOI: 10.1016/j.freeradbiomed.2024.08.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/01/2024] [Accepted: 08/25/2024] [Indexed: 09/01/2024]
Abstract
BACKGROUND Alzheimer's disease (AD) is a leading cause of dementia. The aging brain is particularly vulnerable to various stressors, including increased levels of ceramide. However, the role of ceramide in neuronal cell senescence and AD progression and whether icariin, a natural flavonoid glucoside, could reverse neuronal senescence remain inadequately understood. AIM In this study, we explore the role of ceramide in neuronal senescence and AD, and whether icariin can counteract these effects. METHODS We pretreated HT-22 cells with icariin and then induced senescence with ceramide. Various assays were employed to assess cell senescence, such as reactive oxygen species (ROS) production, cell cycle progression, β-galactosidase staining, and expression of senescence-associated proteins. In vivo studies utilized APP/PS1 mice and C57BL/6J mice injected with ceramide to evaluate behavioral changes, histopathological alterations, and senescence-associated protein expression. Transcriptomics, molecular docking, molecular dynamics simulations, and cellular thermal shift assays were employed to verify the interaction between icariin and P53. The specificity of icariin targeting of P53 was further confirmed through rescue experiments utilizing the P53 activator Navtemadlin. RESULTS Our data demonstrated that ceramide could induce neuronal senescence and AD-related pathologies, which were reversed by icariin. Moreover, molecular studies revealed that icariin directly targeted P53, and its neuroprotective effects were attenuated by P53 activation, providing evidence for the role of P53 in icariin-mediated neuroprotection. CONCLUSION Icariin demonstrates a protective effect against ceramide-induced neuronal senescence by inhibiting the P53 pathway. This identifies a novel mechanism of action for icariin, offering a novel therapeutic approach for AD and other age-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Beibei Wu
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, China; Academician Workstation, Changsha Medical University, Changsha, 410219, China
| | - Qiao Xiao
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, China; Academician Workstation, Changsha Medical University, Changsha, 410219, China
| | - Lemei Zhu
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, China; Academician Workstation, Changsha Medical University, Changsha, 410219, China
| | - Hanfen Tang
- Department of Nutrition, The Second Xiangya Hospital, Central South University, Changsha, 410011, China.
| | - Weijun Peng
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, China; Academician Workstation, Changsha Medical University, Changsha, 410219, China.
| |
Collapse
|
54
|
Kazemeini S, Nadeem-Tariq A, Shih R, Rafanan J, Ghani N, Vida TA. From Plaques to Pathways in Alzheimer's Disease: The Mitochondrial-Neurovascular-Metabolic Hypothesis. Int J Mol Sci 2024; 25:11720. [PMID: 39519272 PMCID: PMC11546801 DOI: 10.3390/ijms252111720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Alzheimer's disease (AD) presents a public health challenge due to its progressive neurodegeneration, cognitive decline, and memory loss. The amyloid cascade hypothesis, which postulates that the accumulation of amyloid-beta (Aβ) peptides initiates a cascade leading to AD, has dominated research and therapeutic strategies. The failure of recent Aβ-targeted therapies to yield conclusive benefits necessitates further exploration of AD pathology. This review proposes the Mitochondrial-Neurovascular-Metabolic (MNM) hypothesis, which integrates mitochondrial dysfunction, impaired neurovascular regulation, and systemic metabolic disturbances as interrelated contributors to AD pathogenesis. Mitochondrial dysfunction, a hallmark of AD, leads to oxidative stress and bioenergetic failure. Concurrently, the breakdown of the blood-brain barrier (BBB) and impaired cerebral blood flow, which characterize neurovascular dysregulation, accelerate neurodegeneration. Metabolic disturbances such as glucose hypometabolism and insulin resistance further impair neuronal function and survival. This hypothesis highlights the interconnectedness of these pathways and suggests that therapeutic strategies targeting mitochondrial health, neurovascular integrity, and metabolic regulation may offer more effective interventions. The MNM hypothesis addresses these multifaceted aspects of AD, providing a comprehensive framework for understanding disease progression and developing novel therapeutic approaches. This approach paves the way for developing innovative therapeutic strategies that could significantly improve outcomes for millions affected worldwide.
Collapse
Affiliation(s)
| | | | | | | | | | - Thomas A. Vida
- Kirk Kerkorian School of Medicine at UNLV, 625 Shadow Lane, Las Vegas, NV 89106, USA; (S.K.); (A.N.-T.); (R.S.); (J.R.); (N.G.)
| |
Collapse
|
55
|
Žvirblis M, Sakalauskas A, Ali Janvand SH, Dudutienė V, Žiaunys M, Sniečkutė R, Otzen DE, Smirnovas V, Matulis D. Structure-Activity Relationship of Fluorinated Benzenesulfonamides as Inhibitors of Amyloid-β Aggregation. Chemistry 2024; 30:e202402330. [PMID: 39109590 DOI: 10.1002/chem.202402330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Indexed: 09/25/2024]
Abstract
Amyloid-beta aggregation is considered one of the factors influencing the onset of the Alzheimer's disease. Early prevention of such aggregation should alleviate disease condition by applying small molecule compounds that shift the aggregation equilibrium toward the soluble form of the peptide or slow down the process. We have discovered that fluorinated benzenesulfonamides of particular structure slowed the amyloid-beta peptide aggregation process by more than three-fold. We synthesized a series of ortho-para and meta-para double-substituted fluorinated benzenesulfonamides that inhibited the aggregation process to a variable extent yielding a detailed picture of the structure-activity relationship. Analysis of compound chemical structure effect on aggregation in artificial cerebrospinal fluid showed the necessity to arrange the benzenesulfonamide, hydrophobic substituent, and benzoic acid in a particular way. The amyloid beta peptide aggregate fibril structures varied in cross-sectional height depending on the applied inhibitor indicating the formation of a complex with the compound. Application of selected inhibitors increased the survivability of cells affected by the amyloid beta peptide. Such compounds may be developed as drugs against Alzheimer's disease.
Collapse
Affiliation(s)
- Mantas Žvirblis
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio av. 7, Vilnius, LT-10257, Lithuania
| | - Andrius Sakalauskas
- Sector of Amyloid Research, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio av. 7, Vilnius LT, 10257, Lithuania
| | - Saeid Hadi Ali Janvand
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark
| | - Virginija Dudutienė
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio av. 7, Vilnius, LT-10257, Lithuania
| | - Mantas Žiaunys
- Sector of Amyloid Research, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio av. 7, Vilnius LT, 10257, Lithuania
| | - Rūta Sniečkutė
- Sector of Amyloid Research, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio av. 7, Vilnius LT, 10257, Lithuania
| | - Daniel E Otzen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark
| | - Vytautas Smirnovas
- Sector of Amyloid Research, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio av. 7, Vilnius LT, 10257, Lithuania
| | - Daumantas Matulis
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio av. 7, Vilnius, LT-10257, Lithuania
| |
Collapse
|
56
|
Chen Y, Gao X, Sun F. Perceived Threat of Alzheimer's Disease and Related Dementias Among Chinese Family Caregivers of Older Adults with Cognitive Impairment. JOURNAL OF GERONTOLOGICAL SOCIAL WORK 2024; 67:976-994. [PMID: 38590188 DOI: 10.1080/01634372.2024.2339984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 04/03/2024] [Indexed: 04/10/2024]
Abstract
Perceived threat of Alzheimer's disease and related dementias (ADRD) has been found a widespread phenomenon in developed countries, but has not yet been fully explored in developing countries. Analyzing data from 300 family caregivers of older adults with cognitive impairment in China, this study found caregiver burden was positively associated with the perceived threat of ADRD, and this association was buffered by higher family income and longer caregiving time. To alleviate undue ADRD concerns, it suggests expanding respite care and community elder care beds, and initiating education programs on reducing unnecessary worries about developing ADRD.
Collapse
Affiliation(s)
- Yaofeng Chen
- School of Sociology, Huazhong University of Science and Technology, Wuhan, China
- Elder Service Research Center, Huazhong University of Science and Technology, Wuhan, China
| | - Xiang Gao
- School of Sociology, Huazhong University of Science and Technology, Wuhan, China
- Elder Service Research Center, Huazhong University of Science and Technology, Wuhan, China
| | - Fei Sun
- School of Social Work, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
57
|
Wu S, Miao J, Zhu S, Wu X, Shi J, Zhou J, Xing Y, Hu K, Ren J, Yang H. Pongamol Prevents Neurotoxicity via the Activation of MAPKs/Nrf2 Signaling Pathway in H 2O 2-Induced Neuronal PC12 Cells and Prolongs the Lifespan of Caenorhabditis elegans. Mol Neurobiol 2024; 61:8219-8233. [PMID: 38483657 DOI: 10.1007/s12035-024-04110-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 03/09/2024] [Indexed: 09/21/2024]
Abstract
Despite tremendous advances in modern medicine, effective prevention or therapeutic strategies for age-related neurodegenerative diseases such as Alzheimer's disease (AD) remain limited. Growing evidence now suggests that oxidative stress and apoptosis are increasingly associated with AD as promising therapeutic targets. Pongamol, a flavonoid, is the main constituent of pongamia pinnata and possesses a variety of pharmacological activities such as antioxidant, anti-aging and anti-inflammatory. In the present study, we investigated the antioxidant effects and mechanisms of pongamol in H2O2-induced PC12 cells and Caenorhabditis elegans (C. elegans). Our findings revealed that pongamol reduced cellular damage and apoptosis in H2O2-induced PC12 cells. Furthermore, pongamol reduced levels of apoptosis-related proteins Bax, Cyto C, Cleaved Caspase-3, and Cleaved PARP1, and increased the level of anti-apoptotic protein Bcl-2. Pongamol also effectively attenuated the level of oxidative stress markers such as glutathione (GSH) and reactive oxygen species (ROS) in H2O2-induced PC12 cells. Additionally, pongamol possessed antioxidant activity in H2O2-induced PC12 cells through the MAPKs/Nrf2 signaling pathway. Furthermore, pongamol exerted neuroprotective and anti-aging effects in C. elegans. All together, these results suggested that pongamol has a potential neuroprotective effect through the modulation of MAPKs/Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Shaojun Wu
- School of Pharmacy, Changzhou University, No. 1. Gehu Middle Road, Changzhou, 213164, Jiangsu, China
| | - Jie Miao
- School of Pharmacy, Changzhou University, No. 1. Gehu Middle Road, Changzhou, 213164, Jiangsu, China
| | - Susu Zhu
- School of Pharmacy, Changzhou University, No. 1. Gehu Middle Road, Changzhou, 213164, Jiangsu, China
| | - Xinyuan Wu
- School of Pharmacy, Changzhou University, No. 1. Gehu Middle Road, Changzhou, 213164, Jiangsu, China
| | - Jindan Shi
- School of Pharmacy, Changzhou University, No. 1. Gehu Middle Road, Changzhou, 213164, Jiangsu, China
| | - Jichao Zhou
- School of Pharmacy, Changzhou University, No. 1. Gehu Middle Road, Changzhou, 213164, Jiangsu, China
| | - Yi Xing
- School of Pharmacy, Changzhou University, No. 1. Gehu Middle Road, Changzhou, 213164, Jiangsu, China
| | - Kun Hu
- School of Pharmacy, Changzhou University, No. 1. Gehu Middle Road, Changzhou, 213164, Jiangsu, China
| | - Jie Ren
- School of Pharmacy, Changzhou University, No. 1. Gehu Middle Road, Changzhou, 213164, Jiangsu, China.
| | - Hao Yang
- Department of Pharmacy, the Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, No. 68. Gehu Middle Road, Changzhou, 213164, Jiangsu, China.
| |
Collapse
|
58
|
Ngoc APT, Zahoor A, Kim DG, Yang SH. Using Synbiotics as a Therapy to Protect Mental Health in Alzheimer's Disease. J Microbiol Biotechnol 2024; 34:1739-1747. [PMID: 39099195 PMCID: PMC11485767 DOI: 10.4014/jmb.2403.03021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/29/2024] [Accepted: 06/10/2024] [Indexed: 08/06/2024]
Abstract
Alzheimer's disease (AD) is a progressive neurological disorder that represents a major cause of dementia worldwide. Its pathogenesis involves multiple pathways, including the amyloid cascade, tau protein, oxidative stress, and metal ion dysregulation. Recent studies have suggested a critical link between changes in gut microbial diversity and the disruption of the gut-brain axis in AD. Previous studies primarily explored the potential benefits of probiotics and prebiotics in managing AD. However, studies have yet to fully describe a novel promising approach involving the use of synbiotics, which include a combination of active probiotics and new-generation prebiotics. Synbiotics show potential for mitigating the onset and progression of AD, thereby offering a holistic approach to address the multifaceted nature of AD. This review article primarily aims to gain further insights into the mechanisms of AD, specifically the intricate interaction between gut bacteria and the brain via the gut-brain axis. By understanding this relationship, we can identify potential targets for intervention and therapeutic strategies to combat AD effectively. This review also discusses substantial evidence supporting the role of synbiotics as a promising AD treatment that surpasses traditional probiotic or prebiotic interventions. We find that synbiotics may be used not only to address cognitive decline but also to reduce AD-related psychological burden, thus enhancing the overall quality of life of patients with AD.
Collapse
Affiliation(s)
- Anh Pham Thi Ngoc
- Department of Biotechnology, Chonnam National University, Yeosu 59626, Republic of Korea
| | - Adil Zahoor
- Department of Biotechnology, Chonnam National University, Yeosu 59626, Republic of Korea
| | - Dong Gyun Kim
- Department of Biotechnology, Chonnam National University, Yeosu 59626, Republic of Korea
| | - Seung Hwan Yang
- Department of Biotechnology, Chonnam National University, Yeosu 59626, Republic of Korea
| |
Collapse
|
59
|
Bagwe Parab S, Kaur G. Emoxypine succinate modulates behavioral and molecular responses in zebrafish model of iron Overload-Induced neuroinflammation via CDK5/GSK3- β and NLRP3 inflammasome pathway. Brain Res 2024; 1846:149236. [PMID: 39270994 DOI: 10.1016/j.brainres.2024.149236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/11/2024] [Accepted: 09/10/2024] [Indexed: 09/15/2024]
Abstract
Excessive iron accumulation in the brain plays a significant role in neurodegenerative processes, contributing to the pathogenesis of Alzheimer's disease (AD). AD, a prominent neurological disorder affecting the central nervous system, is characterized by the accumulation of beta-amyloid (Aβ) and tau phosphorylation. This accumulation leads to the subsequent development of cognitive impairments, particularly in learning and memory functions. This study investigates the neuroprotective effects of emoxypine succinate in a zebrafish model of iron overload-induced neurodegeneration. Iron was administered to the zebrafish for 28 days to induce neurodegeneration. Following induction, Emoxypine succinate was employed as a treatment intervention for 14 days (concentrations of 4 mg/L, 8 mg/L, and 12 mg/L). Following the end of the treatment, behavioral tests (Y maze test, Novel tank test) were conducted on the zebrafish, and the biochemical (MDA, Catalase, SOD, GSH) and molecular parameters (AchE, Iron levels, IL-1β, TNF-α, CDK-5, GSK-3β, and NLRP3) of the zebrafish brain were also assessed. In the novel tank test, emoxypine succinate-treated groups exhibited significantly increased time in the upper zone (p < 0.001), higher distance travelled (p < 0.001), and shorter latency to the top (p < 0.001) compared to the negative control. Similarly, the Y-maze test revealed improved time in the novel arm (p < 0.001) and total distance travelled (p < 0.001) in treated groups versus the negative control. Assessment of oxidative stress parameters demonstrated significant reductions in oxidative stress in emoxypine succinate-treated groups. Furthermore, AChE activity decreased significantly (p < 0.001), and brain iron levels decreased substantially (p < 0.001) in treated groups, indicating positive therapeutic outcomes. Molecular analysis showed a significant reduction in pro-inflammatory markers like IL-1β, TNF-α, CDK-5, GSK-3β, and NLRP3 (p < 0.001). This comprehensive study highlights the potential efficacy of emoxypine succinate in mitigating neurodegeneration associated with iron dysregulation.
Collapse
Affiliation(s)
- Siddhi Bagwe Parab
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's Narsee Monjee Institute of Management Studies, Mumbai 56, India; Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V. M. Road, Vile Parle (W), Mumbai, India
| | - Ginpreet Kaur
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's Narsee Monjee Institute of Management Studies, Mumbai 56, India.
| |
Collapse
|
60
|
Sun T, Zhen T, Harakandi CH, Wang L, Guo H, Chen Y, Sun H. New insights into butyrylcholinesterase: Pharmaceutical applications, selective inhibitors and multitarget-directed ligands. Eur J Med Chem 2024; 275:116569. [PMID: 38852337 DOI: 10.1016/j.ejmech.2024.116569] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/30/2024] [Accepted: 06/02/2024] [Indexed: 06/11/2024]
Abstract
Butyrylcholinesterase (BChE), also known as pseudocholinesterase and serum cholinesterase, is an isoenzyme of acetylcholinesterase (AChE). It mediates the degradation of acetylcholine, especially under pathological conditions. Proverbial pharmacological applications of BChE, its mutants and modulators consist of combating Alzheimer's disease (AD), influencing multiple sclerosis (MS), addressing cocaine addiction, detoxifying organophosphorus poisoning and reflecting the progression or prognosis of some diseases. Of interest, recent reports have shed light on the relationship between BChE and lipid metabolism. It has also been proved that BChE is going to increase abnormally as a compensator for AChE in the middle and late stages of AD, and BChE inhibitors can alleviate cognitive disorders and positively influence some pathological features in AD model animals, foreboding favorable prospects and potential applications. Herein, the selective BChE inhibitors and BChE-related multitarget-directed ligands published in the last three years were briefly summarized, along with the currently known pharmacological applications of BChE, aiming to grasp the latest research directions. Thereinto, some emerging strategies for designing BChE inhibitors are intriguing, and the modulators based on target combination of histone deacetylase and BChE against AD is unprecedented. Furthermore, the involvement of BChE in the hydrolysis of ghrelin, the inhibition of low-density lipoprotein (LDL) uptake, and the down-regulation of LDL receptor (LDLR) expression suggests its potential to influence lipid metabolism disorders. This compelling prospect likely stimulates further exploration in this promising research direction.
Collapse
Affiliation(s)
- Tianyu Sun
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Tengfei Zhen
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | | | - Lei Wang
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Huanchao Guo
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Yao Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China.
| | - Haopeng Sun
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China.
| |
Collapse
|
61
|
Sun W, Sheng X, Li P, Li R, Guo Z, Lin H, Gong Y. Identification of vilazodone as a novel plasminogen activator inhibitor to overcome Alzheimer's disease through virtual screening, molecular dynamics simulation, and biological evaluation. Arch Pharm (Weinheim) 2024; 357:e2400263. [PMID: 38816779 DOI: 10.1002/ardp.202400263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 06/01/2024]
Abstract
Urokinase-type plasminogen activator (PLAU), a member of the S1 serine peptidase family in Clan PA, plays a crucial role in the conversion of plasminogen into active plasmin. However, the precise role of PLAU in the central nervous system remains incompletely elucidated, particularly, in relation to Alzheimer's disease (AD). In this study, we successfully identified that PLAU could promote cell senescence in neurons, indicating it as a potential target for AD treatment through a systematic approach, which included both bioinformatics analysis and experimental verification. Subsequently, a structure-based virtual screening approach was employed to identify a potential PLAU inhibitor from the Food and Drug Administration-approved drug database. After analyzing docking scores and thoroughly examining the receptor-ligand complex interaction modes, vilazodone emerges as a highly promising PLAU inhibitor. Additionally, molecular docking and molecular dynamics simulations were performed to generate a complex structure between the relatively stable inhibitor vilazodone and PLAU. Of note, vilazodone exhibited superior cytotoxicity against senescent cells, showing a senolytic activity through targeting PLAU and ultimately producing an anti-AD effect. These findings suggest that targeting PLAU could represent a promising therapeutic strategy for AD. Furthermore, investigating the inhibitory potential and structural modifications based on vilazodone may provide valuable insights for future drug development targeting PLAU in AD disorders.
Collapse
Affiliation(s)
- Wenxiu Sun
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, Department of Biopharmaceutics and Food Science, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xuan Sheng
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, Department of Biopharmaceutics and Food Science, Nanjing University of Chinese Medicine, Nanjing, China
| | - Peiru Li
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, Department of Biopharmaceutics and Food Science, Nanjing University of Chinese Medicine, Nanjing, China
| | - Runwu Li
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, Department of Biopharmaceutics and Food Science, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zihe Guo
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, Department of Biopharmaceutics and Food Science, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hao Lin
- The State Key Lab of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, China
| | - Yuesong Gong
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, Department of Biopharmaceutics and Food Science, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
62
|
Huang L, Li Z, Lv Y, Zhang X, Li Y, Li Y, Yu C. Unveiling disulfidptosis-related biomarkers and predicting drugs in Alzheimer's disease. Sci Rep 2024; 14:20185. [PMID: 39215110 PMCID: PMC11364544 DOI: 10.1038/s41598-024-70893-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 08/22/2024] [Indexed: 09/04/2024] Open
Abstract
Alzheimer's disease is the predominant form of dementia, and disulfidptosis is the latest reported mode of cell death that impacts various disease processes. This study used bioinformatics to analyze genes associated with disulfidptosis in Alzheimer's disease comprehensively. Based on the public datasets, the differentially expressed genes associated with disulfidptosis were identified, and immune cell infiltration was investigated through correlation analysis. Subsequently, hub genes were determined by a randomforest model. A prediction model was constructed using logistic regression. In addition, the drug-target affinity was predicted by a graph neural network model, and the results were validated by molecular docking. Five hub genes (PPEF1, NEUROD6, VIP, NUPR1, and GEM) were identified. The gene set showed significant enrichment for AD-related pathways. The logistic regression model demonstrated an AUC of 0.952, with AUC values of 0.916 and 0.864 in validated datasets. The immune infiltration analysis revealed significant heterogeneity between the Alzheimer's disease and control groups. High-affinity drugs for hub genes were identified. Through our study, a disease prediction model was constructed using potential biomarkers, and drugs targeting the genes were predicted. These results contribute to further understanding of the molecular mechanisms underlying Alzheimer's disease.
Collapse
Affiliation(s)
- Lei Huang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zhengtai Li
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yitong Lv
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | | | - Yifan Li
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yingji Li
- ICE Bioscience Inc., Beijing, 100176, China.
| | - Changyuan Yu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
63
|
Cheng X, Dai Y, Shang B, Zhang S, Lin L, Wu Q, Zhan R, Li S, Liu S. Danggui Shaoyao San and disassembled prescription: neuroprotective effects via AMPK/mTOR-mediated autophagy in mice. BMC Complement Med Ther 2024; 24:298. [PMID: 39127649 PMCID: PMC11317013 DOI: 10.1186/s12906-024-04588-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/11/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND Danggui Shaoyao San (DSS), a frequently prescribed Chinese medicine formula, has demonstrated clinical efficacy in the treatment of Alzheimer's disease (AD). This study aims to explore the differences in therapeutic effects of DSS and its disassembled prescriptions, Suangan (SG) and Xingan (XG), in treating Alzheimer's Disease and the mechanism of DSS recovering autophagy in AD. METHODS A network pharmacology strategy was employed to delineate the bioactive constituents, associated targets, and regulatory mechanisms of DSS in AD, encompassing in silico target forecasting, the generation and scrutiny of PPI networks, alongside GO and KEGG-based pathway elucidation. An AD mouse model, induced by intracerebroventricular injection of Aβ1-42, was used to evaluate the therapeutic effects of DSS and its disassembled prescriptions on AD. Cognitive function was evaluated using the Morris water maze. Expression levels of inflammatory cytokines were quantified via RT-qPCR and ELISA. Western blotting was used to detect the expression of proteins related to AD pathological markers and the AMPK/mTOR signaling pathway. RESULTS 50 active compounds and 718 HUB genes were screened from relevant databases and literature. KEGG and GO analyses indicated that DSS's potential mechanisms against AD involved the AMPK/mTOR signaling pathway and mitophagy. In vivo animal model, the results demonstrated that DSS, SG, and XG treatments improved cognitive function and ameliorated neuroinflammation in mice. Additionally, they alleviated the pathological changes of neuronal cells. These treatments also increased the protein level of PSD-95, and decreased levels of APP and p-Tau. Among them, DSS exhibited the best efficacy. Furthermore, DSS, SG, and XG upregulated the expression of LC3, Beclin1, and p-AMPK, while decreasing the expression of P62 and p-mTOR. CONCLUSIONS DSS, SG, and XG were found to ameliorate AD-related pathological symptoms in Aβ1-42-injected mice, likely through the AMPK/mTOR autophagy signaling pathway.
Collapse
Affiliation(s)
- Xiaoqing Cheng
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Waihuan Road, Guangzhou Higher Education Mega Center, No. 232, Guangzhou, 510006, Guangdong, China
| | - Yuqiong Dai
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Waihuan Road, Guangzhou Higher Education Mega Center, No. 232, Guangzhou, 510006, Guangdong, China
| | - Baoling Shang
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Shuting Zhang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Waihuan Road, Guangzhou Higher Education Mega Center, No. 232, Guangzhou, 510006, Guangdong, China
| | - Liting Lin
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Waihuan Road, Guangzhou Higher Education Mega Center, No. 232, Guangzhou, 510006, Guangdong, China
| | - Qingguang Wu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Waihuan Road, Guangzhou Higher Education Mega Center, No. 232, Guangzhou, 510006, Guangdong, China
| | - Ruoting Zhan
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- Key Laboratory of Chinese Medicinal Resource from Lingnan, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shengqing Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Waihuan Road, Guangzhou Higher Education Mega Center, No. 232, Guangzhou, 510006, Guangdong, China.
| | - Sijun Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Waihuan Road, Guangzhou Higher Education Mega Center, No. 232, Guangzhou, 510006, Guangdong, China.
| |
Collapse
|
64
|
Pei J, Palanisamy CP, Natarajan PM, Umapathy VR, Roy JR, Srinivasan GP, Panagal M, Jayaraman S. Curcumin-loaded polymeric nanomaterials as a novel therapeutic strategy for Alzheimer's disease: A comprehensive review. Ageing Res Rev 2024; 99:102393. [PMID: 38925479 DOI: 10.1016/j.arr.2024.102393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/18/2024] [Accepted: 06/21/2024] [Indexed: 06/28/2024]
Abstract
Alzheimer's disease (AD) stands as a formidable challenge in modern medicine, characterized by progressive neurodegeneration, cognitive decline, and memory impairment. Despite extensive research, effective therapeutic strategies remain elusive. The antioxidant, anti-inflammatory, and neuroprotective properties of curcumin, found in turmeric, have demonstrated promise. The poor bioavailability and rapid systemic clearance of this drug limit its clinical application. This comprehensive review explores the potential of curcumin-loaded polymeric nanomaterials as an innovative therapeutic avenue for AD. It delves into the preparation and characteristics of diverse polymeric nanomaterial platforms, including liposomes, micelles, dendrimers, and polymeric nanoparticles. Emphasis is placed on how these platforms enhance curcumin's bioavailability and enable targeted delivery to the brain, addressing critical challenges in AD treatment. Mechanistic insights reveal how these nanomaterials modulate key AD pathological processes, including amyloid-beta aggregation, tau phosphorylation, oxidative stress, and neuroinflammation. The review also highlighted the preclinical studies demonstrate reduced amyloid-beta plaques and neuroinflammation, alongside improved cognitive function, while clinical trials show promise in enhancing curcumin's bioavailability and efficacy in AD. Additionally, it addresses the challenges of clinical translation, such as regulatory issues, large-scale production, and long-term stability. By synthesizing recent advancements, this review underscores the potential of curcumin-loaded polymeric nanomaterials to offer a novel and effective therapeutic approach for AD, aiming to guide future research and development in this field.
Collapse
Affiliation(s)
- JinJin Pei
- Qinba State Key Laboratory of Biological Resources and Ecological Environment, 2011 QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C, Shaanxi Province Key Laboratory of Bio-Resources, College of Bioscience and Bioengineering, Shaanxi University of Technology, Hanzhong 723001, China
| | - Chella Perumal Palanisamy
- Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Prabhu Manickam Natarajan
- Department of Clinical Sciences, Center of Medical and Bio-allied Health Sciences and Research, College of Dentistry, Ajman University, Ajman, United Arab Emirates
| | - Vidhya Rekha Umapathy
- Department of Public Health Dentistry, Thai Moogambigai Dental College and Hospital, Dr. MGR Educational and Research Institute, Chennai 600 107, Tamil Nadu, India
| | - Jeane Rebecca Roy
- Department of Anatomy, Bhaarath Medical College and hospital, Bharath Institute of Higher Education and Research (BIHER), Chennai, Tamil Nadu 600073, India
| | - Guru Prasad Srinivasan
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Mani Panagal
- Department of Biotechnology, Annai College of Arts and Science, Kovilacheri, Kumbakonam, Tamil Nadu 612503, India
| | - Selvaraj Jayaraman
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospital, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai 600077, India.
| |
Collapse
|
65
|
Safarbalou A, Abbasi A. Oral administration of liposome-encapsulated thymol could alleviate the inflammatory parameters in serum and hippocampus in a rat model of Alzheimer's disease. Exp Gerontol 2024; 193:112473. [PMID: 38801839 DOI: 10.1016/j.exger.2024.112473] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/19/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024]
Abstract
BACKGROUND Neuroinflammation is closely related to Alzheimer's Disease (AD) pathology, hence supplements with anti-inflammatory property could help attenuate the progression of AD. This study was conducted to evaluate the potential anti-inflammatory effects of liposome encapsulated thymol (LET), administered orally, in prevention of Alzheimer in a rat model by anti-inflammatory mechanisms. METHODS The rats were grouped into six groups (n = 10 animals per group), including Control healthy (Con), Alzheimer's disease (AD) model, AD model treated with free thymol in 40 and 80 mg/kg body weight (TH40 and TH80), AD model treated with LET in 40 and 80 mg/kg of body weight (LET40 and LET80). The behavioral response of step through latency (Passive Avoidance Test), concentrations of interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) and cyclooxygenase-2 (COX-2) and brain-derived neurotrophic factor (BDNF) were assessed in serum and hippocampus. RESULTS The results showed that significant increase in concentrations of IL-1β (P = 0.001), IL-6 (P = 0.001), TNF-α (P = 0.001) and COX-2 (P = 0.001) in AD group compared with healthy control rats. AD induction significantly reduced step through latency and revealed deficits in passive avoidance performance. The results also showed the treatment with free thymol especially in higher concentrations and also LTE could decrease serum concentrations of IL-1β (P < 0.05), IL-6 (P < 0.05), TNF-α (P < 0.05), and COX-2 (P < 0.05) and increase BDNF (P < 0.05) compared with control Alzheimer rats in hippocampus and serum. There were also significant correlations between serum and hippocampus concentrations of IL-1β (r2 = 0.369, P = 0.001), IL-6 (r2 = 0.386, P = 0.001), TNF-α (r2 = 0.412, P = 0.001), and COX-2 (r2 = 0.357, P = 0.001). It means a closed and positive relation between serum and hippocampus concentrations of IL-1β, IL-6, TNF-α, and COX-2. CONCLUSIONS LET demonstrates its ability to attenuate neuroinflammatory reaction in AD model through suppression of IL-1β, IL-6, and TNF-α and COX-2 indicators. Hence, it can ameliorate AD pathogenesis by declining inflammatory reaction.
Collapse
Affiliation(s)
- Asal Safarbalou
- Department of Biomedical Research, Institute for Intelligent Research, Tbilisi, Georgia
| | - Adeel Abbasi
- Department of Biomedical Research, Institute for Intelligent Research, Tbilisi, Georgia.
| |
Collapse
|
66
|
Singh K, Kaur A, Goyal B, Goyal D. Harnessing the Therapeutic Potential of Peptides for Synergistic Treatment of Alzheimer's Disease by Targeting Aβ Aggregation, Metal-Mediated Aβ Aggregation, Cholinesterase, Tau Degradation, and Oxidative Stress. ACS Chem Neurosci 2024; 15:2545-2564. [PMID: 38979773 DOI: 10.1021/acschemneuro.4c00246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024] Open
Abstract
Alzheimer's disease (AD) is a progressive multifaceted neurodegenerative disease and remains a formidable global health challenge. The current medication for AD gives symptomatic relief and, thus, urges us to look for alternative disease-modifying therapies based on a multitarget directed approach. Looking at the remarkable progress made in peptide drug development in the last decade and the benefits associated with peptides, they offer valuable chemotypes [multitarget directed ligands (MTDLs)] as AD therapeutics. This review recapitulates the current developments made in harnessing peptides as MTDLs in combating AD by targeting multiple key pathways involved in the disease's progression. The peptides hold immense potential and represent a convincing avenue in the pursuit of novel AD therapeutics. While hurdles remain, ongoing research offers hope that peptides may eventually provide a multifaceted approach to combat AD.
Collapse
Affiliation(s)
- Kamaljot Singh
- Department of Chemistry, Faculty of Basic and Applied Sciences, Sri Guru Granth Sahib World University, Fatehgarh Sahib, 140406 Punjab, India
| | - Anupamjeet Kaur
- Department of Chemistry, Faculty of Basic and Applied Sciences, Sri Guru Granth Sahib World University, Fatehgarh Sahib, 140406 Punjab, India
| | - Bhupesh Goyal
- Department of Chemistry and Biochemistry, Thapar Institute of Engineering & Technology, Patiala, 147004 Punjab, India
| | - Deepti Goyal
- Department of Chemistry, DAV College, Sector 10, Chandigarh 160011, India
| |
Collapse
|
67
|
Yu M, Shen Z, Zhang S, Zhang Y, Zhao H, Zhang L. The active components of Erzhi wan and their anti-Alzheimer's disease mechanisms determined by an integrative approach of network pharmacology, bioinformatics, molecular docking, and molecular dynamics simulation. Heliyon 2024; 10:e33761. [PMID: 39027618 PMCID: PMC11255520 DOI: 10.1016/j.heliyon.2024.e33761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 06/21/2024] [Accepted: 06/26/2024] [Indexed: 07/20/2024] Open
Abstract
Erzhi Wan (EZW), a classic Traditional Chinese Medicine formula, has shown promise as a potential therapeutic option for Alzheimer's disease (AD), yet its mechanism remains elusive. Herein, we employed an integrative in-silico approach to investigate the active components and their mechanisms against AD. We screened four active components with blood-brain barrier permeabilities from TCMSP, along with 307 corresponding targets predicted by SwissTargetPrediction, PharmMapper, and TCMbank websites. Then, we retrieved 2260 AD-related targets from Genecards, OMIM, and NCBI databases. Furthermore, we constructed the protein-protein interaction (PPI) network of the intersected targets via the STRING database and performed the GO and KEGG enrichment analyses using the "clusterProfiler" R package. The results showed that the intersected targets were intimately related to the p53/PI3K/Akt signaling pathway, serotonergic synapse, and response to oxygen level. Subsequently, 25 core targets were found differentially expressed in brain regions by bioinformatics analyses of GEO datasets of clinical samples from the Alzdata database. The binding sites and stabilities between the active components and the core targets were investigated by the molecular docking approach using Autodock 4.2.6 software, followed by pocket detection and druggability assessment via the DoGSiteScorer server. The results showed that acacetin, β-sitosterol, and 3-O-acetyldammarenediol-II strongly interacted with the druggable pockets of AR, CASP8, POLB, and PREP. Eventually, the docking results were further cross-referenced with the literature research and validated by 100 ns of molecular dynamics simulations using GROMACS software. Binding free energies were calculated via MM/PBSA strategy combined with interaction entropy. The simulation results indicated stable bindings between four docking pairs including acacetin-AR, acacetin-CASP8, β-sitosterol-POLB, and 3-O-acetyldammarenediol-II-PREP. Overall, our study demonstrated a theoretical basis for how three active components of EZW confer efficacy against AD. It provides a promising reference for subsequent research regarding drug discoveries and clinical applications.
Collapse
Affiliation(s)
- Meng Yu
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250355, China
| | - Zhongqi Shen
- Institute of Chinese Medical Literature and Culture, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250355, China
| | - Shaozhi Zhang
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250355, China
| | - Yang Zhang
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250355, China
| | - Hongwei Zhao
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250355, China
| | - Longfei Zhang
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250355, China
| |
Collapse
|
68
|
Wang J, Feng Y, Sun Y. ACOT7, a candidate and novel serum biomarker of Alzheimer's disease. Front Aging Neurosci 2024; 16:1345668. [PMID: 39026992 PMCID: PMC11254632 DOI: 10.3389/fnagi.2024.1345668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 06/19/2024] [Indexed: 07/20/2024] Open
Abstract
Alzheimer's disease (AD) is the most common fatal neurodegenerative disease among the elderly worldwide, characterized by memory and cognitive impairment. The identification of biomarkers for AD is crucial and urgent to facilitate the diagnosis and intervention. The aim of this study was to evaluate the diagnostic value of acyl-Coenzyme A thioesterase 7 (ACOT7) as a serum biomarker for the prediction of AD. In our study, we observed a significant increase in ACOT7 expression in patients (n = 366) with AD and animal (n = 8-12) models of AD, compared to the control group. A significant negative correlation was found between ACOT7 levels and Mini-Mental State Examination (MMSE) scores (r = -0.85; p < 0.001). The analysis of the receiver operating characteristic curve (ROC) showed that the area under the curve (AUC) for ACOT7 was 0.83 (95% confidence intervals: 0.80-0.86). The optimal cut-off point of 62.5 pg./mL was selected with the highest sum of sensitivity and specificity. The diagnostic accuracy of serum ACOT7 for AD was 77% (95% confidence intervals: 72-82%), with a sensitivity of 80% (95% confidence intervals: 75-84%) and a specificity of 74% (95% confidence intervals: 69-79%). Moreover, the ROC analysis showed that the AUC of Aβ42/40 ratio is 0.70, and the diagnostic accuracy was 72%, with 69% sensitivity and 76% specificity. Compared with the AD traditional marker Aβ42/40 ratio, ACOT7 shows better superiority as a new serum candidate biomarker of AD. By suppressing the ACOT7 gene, our study provides evidence of the involvement of ACOT7 in the metabolism of amyloid precursor protein (APP), resulting in alterations in the expression levels of Aβ42, BACE1 and βCTF. ACOT7 has the ability to modulate the amyloidogenic pathway of APP metabolism, while it does not have an impact on the non-amyloidogenic pathway. In conclusion, the findings of our study suggest that serum ACOT7 may serve as a promising and non-invasive biomarker for AD.
Collapse
Affiliation(s)
- Jintao Wang
- Department of Pharmacy, First People’s Hospital of Wenling, Wenling, China
| | - Yong Feng
- Department of Medical Research, Qingdao Huangdao People’s Hospital, Qingdao, China
| | - Yingni Sun
- State Key Laboratory of Chemical Resources Engineering, Beijing University of Chemical Technology, Beijing, China
- Beijing Handian Pharmaceutical Co, Ltd., Beijing, China
- School of Life Sciences, Ludong University, Yantai, China
| |
Collapse
|
69
|
Sequeira RC, Godad A. Understanding Glycogen Synthase Kinase-3: A Novel Avenue for Alzheimer's Disease. Mol Neurobiol 2024; 61:4203-4221. [PMID: 38064104 DOI: 10.1007/s12035-023-03839-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 11/28/2023] [Indexed: 07/11/2024]
Abstract
Alzheimer's Disease (AD) is the most prevalent form of age-related dementia. Even though a century has passed since the discovery of AD, the exact cause of the disease still remains unknown. As a result, this poses a major hindrance in developing effective therapies for treating AD. Glycogen synthase kinase-3 (GSK-3) is one of the kinases that has been investigated recently as a potential therapeutic target for the treatment of AD. It is also known as human tau protein kinase and is a proline-directed serine-threonine kinase. Since dysregulation of this kinase affects all the major characteristic features of the disease, such as tau phosphorylation, amyloid formation, memory, and synaptic function, it is thought to be a major player in the pathogenesis of AD. In this review, we present the most recent information on the role of this kinase in the onset and progression of AD, as well as significant findings that identify GSK-3 as one of the most important targets for AD therapy. We further discuss the potential of treating AD by targeting GSK-3 and give an overview of the ongoing studies aimed at developing GSK-3 inhibitors in preclinical and clinical investigations.
Collapse
Affiliation(s)
- Ronnita C Sequeira
- SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Gate No.1, Mithibai College Campus, Vaikunthlal Mehta Rd, Vile Parle West, Mumbai, Maharashtra, 400056, India
| | - Angel Godad
- SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Gate No.1, Mithibai College Campus, Vaikunthlal Mehta Rd, Vile Parle West, Mumbai, Maharashtra, 400056, India.
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, India.
| |
Collapse
|
70
|
Sun Y, Xia Q, Du L, Gan Y, Ren X, Liu G, Wang Y, Yan S, Li S, Zhang X, Xiao X, Jin H. Neuroprotective effects of Anshen Bunao Syrup on cognitive dysfunction in Alzheimer's disease rat models. Biomed Pharmacother 2024; 176:116754. [PMID: 38810401 DOI: 10.1016/j.biopha.2024.116754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/31/2024] Open
Abstract
Alzheimer's disease (AD) presents a significant challenge due to its prevalence and lack of cure, driving the quest for effective treatments. Anshen Bunao Syrup, a traditional Chinese medicine known for its neuroprotective properties, shows promise in addressing this need. However, understanding its precise mechanisms in AD remains elusive. This study aimed to investigate Anshen Bunao Syrup's therapeutic potential in AD treatment using a scopolamine-induced AD rat model. Assessments included novel-object recognition and Morris water maze tasks to evaluate spatial learning and memory, alongside Nissl staining and ELISA analyses for neuronal damage and biomarker levels. Results demonstrated that Anshen Bunao Syrup effectively mitigated cognitive dysfunction by inhibiting amyloid-β and phosphorylation Tau aggregation, thereby reducing neuronal damage. Metabolomics profiling of rats cortex revealed alterations in key metabolites implicated in tryptophan and fatty acid metabolism pathways, suggesting a role in the therapeutic effects of Anshen Bunao Syrup. Additionally, ELISA and correlation analyses indicated attenuation of oxidative stress and immune response through metabolic remodeling. In conclusion, this study provides compelling evidence for the neuroprotective effects of Anshen Bunao Syrup in AD models, shedding light on its potential as a therapeutic agent for AD prevention and treatment.
Collapse
Affiliation(s)
- Yuanfang Sun
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Qi Xia
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Lijing Du
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Yu Gan
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Xiaopeng Ren
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Institute of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Gang Liu
- Jilin Aodong Yanbian Pharmaceutical Co., Ltd., Yanbian 133700, China
| | - Yongkuan Wang
- Jilin Aodong Yanbian Pharmaceutical Co., Ltd., Yanbian 133700, China
| | - Shikai Yan
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; Institute of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Shasha Li
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Xiuyun Zhang
- Jilin Aodong Yanbian Pharmaceutical Co., Ltd., Yanbian 133700, China.
| | - Xue Xiao
- Institute of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Huizi Jin
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
71
|
Kaye AD, Sala KR, Dethloff D, Norton M, Moss C, Plessala MJ, Derouen AG, Lopez Torres Y, Kim J, Tirumala S, Shekoohi S, Varrassi G. The Evolving Use of Gold Nanoparticles as a Possible Reversal Agent for the Symptoms of Neurodegenerative Diseases: A Narrative Review. Cureus 2024; 16:e64846. [PMID: 39156432 PMCID: PMC11330313 DOI: 10.7759/cureus.64846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 07/18/2024] [Indexed: 08/20/2024] Open
Abstract
Neurodegenerative diseases are broadly hallmarked by impaired energy metabolism and toxic intracellular accumulations such as damaged organelles or reactive oxygen species (ROS). Gold nanoparticles readily cross the blood-brain barrier and increase nicotinamide adenine dinucleotide + hydrogen (NADH) oxidation to nicotinamide adenine dinucleotide (NAD+), which is vital for intracellular energy generation, cellular repair, and protection from ROS. Thus, the use of gold nanoparticles to treat and potentially reverse cellular injury seen in neurodegenerative disease has been an area of ongoing research. This systematic review explores current literature regarding the use of gold nanoparticle therapy in the treatment of neurodegenerative diseases such as Parkinson's disease, Alzheimer's disease, amyotrophic lateral sclerosis (ALS), and multiple sclerosis (MS). In vitro studies of CNM-Au8 (Clene Nanomedicine, Salt Lake City, UT) have been shown to reduce TDP-43 aggregates associated with ALS. These studies also exhibited the neuroprotective effects of CNM-Au8 in rat primary neurons exposed to amyloid-beta peptides, which are associated with Alzheimer's disease. In animal models of MS, oral delivery of CNM-Au8 was demonstrated to produce robust and significant remyelination activity, oligodendrocyte maturation, and expression of myelin markers. In these same MS animal models, CNM-Au8 improved the motor function of cuprizone-treated mice in both open-field and kinematic gait studies. Recent phase II trials of CNM-Au8 in 13 patients with Parkinson's disease and 11 patients with stable relapsing MS demonstrated a statistically significant increase in the NAD+/NADH ratio across two cohorts. As the current data repeatedly suggest, these gold nanoparticles are efficacious for the treatment and reversal of symptoms across these varying neurodegenerative pathologies. Further opportunities exist for increasing human trials and eventually incorporating this new technology into existing treatment regimens.
Collapse
Affiliation(s)
- Alan D Kaye
- Department of Anesthesiology, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Kelly R Sala
- School of Medicine, Louisiana Health Sciences Center New Orleans School of Medicine, New Orleans, USA
| | - Drew Dethloff
- School of Medicine, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Matthew Norton
- School of Medicine, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Corey Moss
- School of Medicine, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Michael J Plessala
- School of Medicine, Louisiana Health Sciences Center New Orleans School of Medicine, New Orleans, USA
| | - Alyssa G Derouen
- Department of Anesthesiology, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Yair Lopez Torres
- Department of Anesthesiology, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Julian Kim
- Department of Anesthesiology, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Sridhar Tirumala
- Department of Anesthesiology, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Sahar Shekoohi
- Department of Anesthesiology, Louisiana State University Health Sciences Center, Shreveport, USA
| | | |
Collapse
|
72
|
Xu Y, Filice CT, Leonenko Z. Protective effect of trehalose sugar on amyloid-membrane interactions using BLM electrophysiology. Biophys J 2024; 123:1690-1704. [PMID: 38751113 PMCID: PMC11213996 DOI: 10.1016/j.bpj.2024.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/10/2024] [Accepted: 05/13/2024] [Indexed: 05/30/2024] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease characterized by dementia and memory loss in the elderly population. The amyloid-β peptide (Aβ) is one of the main pathogenic factors in AD and is known to cause damage to neuronal cellular membranes. There is no cure currently available for AD, and new approaches, including preventive strategies, are highly desirable. In this work, we explore the possibility of protecting neuronal membranes from amyloid-induced damage with naturally existing sugar trehalose. Trehalose has been shown to protect plant cellular membranes in extreme conditions and modify Aβ misfolding. We hypothesize that trehalose can protect the neuronal membrane from amyloid toxicity. In this work, we studied the protective effect of trehalose against Aβ1-42-induced damage in model lipid membranes (DPPC/POPC/cholesterol) using atomic force microscopy and black lipid membrane electrophysiology. Our results demonstrate that Aβ1-42 damaged membranes and led to ionic current leakage across these membranes due to the formation of various defects and pores. The presence of trehalose reduced the ion current across membranes caused by Aβ1-42 peptide damage, thus efficiently protecting the membranes. These findings suggest that the trehalose sugar can potentially be useful in protecting neuronal membranes against amyloid toxicity in AD.
Collapse
Affiliation(s)
- Yue Xu
- Department of Physics & Astronomy, University of Waterloo, Waterloo, ON, Canada
| | - Carina Teresa Filice
- Department of Biology, University of Waterloo, Waterloo, ON, Canada; Waterloo Institute for Nanotechnology, Waterloo, ON, Canada
| | - Zoya Leonenko
- Department of Physics & Astronomy, University of Waterloo, Waterloo, ON, Canada; Department of Biology, University of Waterloo, Waterloo, ON, Canada; Waterloo Institute for Nanotechnology, Waterloo, ON, Canada.
| |
Collapse
|
73
|
Obaid Saleh BH, Salman MD, Salman AD, Alardhi SM, Mohammed MM, Gyurika IG, Le PC, Ali OI. In silico analysis of the use of solanine derivatives as a treatment for Alzheimer's disease. Heliyon 2024; 10:e32209. [PMID: 38912489 PMCID: PMC11190594 DOI: 10.1016/j.heliyon.2024.e32209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/07/2024] [Accepted: 05/29/2024] [Indexed: 06/25/2024] Open
Abstract
Alzheimer's disease (AD) is a brain illness that causes cognitive impairment in the elderly, especially females, as a result of genetics, hormones, and life experiences. It becomes more severe with age and is associated with cardiovascular disease, hypertension, and diabetes. Beta-amyloid plaques and hyper phosphorylated Tau protein buildup are common clinical findings. Misfiling of amyloid precursor protein (APP) and Amyloid beta peptide (Aβ) proteins contributes to Alzheimer's disease. Enzyme Acetylcholinesterase enzyme interacts with amyloid-beta, enhancing its accumulation in insoluble plaques, leading to successful treatment for Alzheimer's disease primarily based on lowering this enzyme. Treatments include using the Rivastigmine for mild, moderate, or severe Alzheimer's disease, which inhibits acetylcholinesterase, but may cause side effects; Solanine derivatives, nightshade toxin, it is cholinesterase inhibitory, may mitigate Alzheimer's illness is progressing. In this research utilized a molecular docking program, which is a computer's computational ability to determine the optimal position for a specific compound to bind to a protein or target, forming a target-ligand complex and displaying biological activity and aiding in the development of effective anti-AD treatments and understanding AD pathological mechanisms. The study examined complexes of 3LII (Acetylcholinesterase receptor) in the A and B chain with Solanine and Rivastigmine derivatives, using an in-silico approach. PyRx default sorter was used to improve docking accuracy. Four compounds were selected based on their higher binding affinities in chain A and B. The results showed that Solanine derivatives (alpha-Solanine, Beta1-Solanine and Beta2-Solanine) have higher binding strength (-9.0,-9.3 and -8.6) than Rivastigmine (-7.2) in chain A, and also the binding strength was high for the Solanine derivatives (alpha-Solanine, Beta1-Solanine, and Beta2-Solanine) (-9.0,-8.8 and -8.9) is higher than Rivastigmine (-6.0) in the chain B. Solanine derivatives showed higher binding strength with acetylcholinesterase, potentially for to reduce the progression of the disease.
Collapse
Affiliation(s)
| | - Manar Dawood Salman
- Iraqi Ministry of Science and Technology/ Environment and Water Directorate, Iraq
| | - Ali Dawood Salman
- Chemical Engineering Department, College of Engineering, University of Baghdad, Baghdad, Iraq
| | - Saja Mohsen Alardhi
- Nanotechnology and Advanced Material Research Center, University of Technology, Iraq
| | - Malik M. Mohammed
- Al Mustaqbal University Engineering Techniques of Fuel and Energy Department, Iraq
| | - István Gábor Gyurika
- Department of Mechanics, Research Centre for Engineering Sciences, University of Pannonia, H-8210, Veszprém, P.O. Box 1158, Hungary
| | - Phuoc-Cuong Le
- The University of Danang-University of Science and Technology, Danang, 550000, Viet Nam
| | - Osamah Ihsan Ali
- Department of Materials Engineering, Research Centre for Engineering Sciences, University of Pannonia, H-8210, Veszprém, P.O. Box 1158, Hungary
| |
Collapse
|
74
|
Su G, Ran L, Liu C, Qin Z, Teng H, Wu S. Directed Evolution and Immobilization of Lactobacillus brevis Alcohol Dehydrogenase for Chemo-Enzymatic Synthesis of Rivastigmine. Chemistry 2024; 30:e202400454. [PMID: 38568868 DOI: 10.1002/chem.202400454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/21/2024] [Accepted: 04/02/2024] [Indexed: 04/05/2024]
Abstract
Rivastigmine is one of the several pharmaceuticals widely prescribed for the treatment of Alzheimer's disease. However, its practical synthesis still faces many issues, such as the involvement of toxic metals and harsh reaction conditions. Herein, we report a chemo-enzymatic synthesis of Rivastigmine. The key chiral intermediate was synthesized by an engineered alcohol dehydrogenase from Lactobacillus brevis (LbADH). A semi-rational approach was employed to improve its catalytic activity and thermal stability. Several LbADH variants were obtained with a remarkable increase in activity and melting temperature. Exploration of the substrate scope of these variants demonstrated improved activities toward various ketones, especially acetophenone analogs. To further recycle and reuse the biocatalyst, one LbADH variant and glucose dehydrogenase were co-immobilized on nanoparticles. By integrating enzymatic and chemical steps, Rivastigmine was successfully synthesized with an overall yield of 66 %. This study offers an efficient chemo-enzymatic route for Rivastigmine and provides several efficient LbADH variants with a broad range of potential applications.
Collapse
Affiliation(s)
- Guorong Su
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, 1 Shizishan Street, Wuhan, 430070, P.R. China
| | - Lu Ran
- College of Chemistry, Huazhong Agricultural University, 1 Shizishan Street, Wuhan, 430070, P.R. China
| | - Chang Liu
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, 1 Shizishan Street, Wuhan, 430070, P.R. China
| | - Zhaoyang Qin
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, 1 Shizishan Street, Wuhan, 430070, P.R. China
| | - Huailong Teng
- College of Chemistry, Huazhong Agricultural University, 1 Shizishan Street, Wuhan, 430070, P.R. China
| | - Shuke Wu
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, 1 Shizishan Street, Wuhan, 430070, P.R. China
| |
Collapse
|
75
|
Ekundayo BE, Obafemi TO, Adewale OB, Obafemi BA, Oyinloye BE, Ekundayo SK. Oxidative Stress, Endoplasmic Reticulum Stress and Apoptosis in the Pathology of Alzheimer's Disease. Cell Biochem Biophys 2024; 82:457-477. [PMID: 38472715 DOI: 10.1007/s12013-024-01248-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/29/2024] [Indexed: 03/14/2024]
Abstract
Alzheimer's disease (AD) accounts for a major statistic among the class of neurodegenerative diseases. A number of mechanisms have been identified in its pathogenesis and progression which include the amyloid beta (Aβ) aggregation, hyperphosphorylation of tau protein, oxidative stress, endoplasmic reticulum (ER) stress and apoptosis. These processes are interconnected and contribute significantly to the loss of neurons, brain mass and consequential memory loss and other cognitive difficulties. Oxidative stress in AD appears to be caused by excess of oxygen free radicals and extracellular Aβ deposits that cause local inflammatory processes and activate microglia, another possible source of reactive oxygen species (ROS). ER Stress describes the accumulation of misfolded and unfolded proteins as a result of physiological and pathological stimuli including high protein demand, toxins, inflammatory cytokines, and mutant protein expression that disturbs ER homeostasis. When compared to age-matched controls, postmortem brain tissues from AD patients showed elevated levels of ER stress markers, such as PERK, eIF2α, IRE1α, the chaperone Grp78, and the downstream mediator of cell death CHOP. Apoptosis is in charge of eliminating unnecessary and undesired cells to maintain good health. However, it has been demonstrated that a malfunctioning apoptotic pathway is a major factor in the development of certain neurological and immunological problems and diseases in people, including neurodegenerative diseases. This article highlights and discussed some of the experimentally established mechanisms through which these processes lead to the development as well as the exacerbation of AD.
Collapse
Affiliation(s)
| | | | | | - Blessing Ariyo Obafemi
- Department of Medical Biochemistry Afe Babalola University, PMB 5454, Ado-Ekiti, Nigeria
| | - Babatunji Emmanuel Oyinloye
- Department of Biochemistry Afe Babalola University, PMB 5454, Ado-Ekiti, Nigeria
- Biotechnology and Structural Biology (BSB) Group, Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa, 3886, South Africa
| | | |
Collapse
|
76
|
Tutuş B, Kaya AZ, Baz Y, Evren AE, Sağlik Özkan BN, Yurttaş L. Synthesis of new N-(5,6-methylenedioxybenzothiazole-2-yl)-2-[(substituted)thio/piperazine]acetamide/propanamide derivatives and evaluation of their AChE, BChE, and BACE-1 inhibitory activities. Drug Dev Res 2024; 85:e22214. [PMID: 38816986 DOI: 10.1002/ddr.22214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/07/2024] [Accepted: 05/12/2024] [Indexed: 06/01/2024]
Abstract
In this study, the synthesis of N-(5,6-methylenedioxybenzothiazole-2-yl)-2-[(substituted)thio/piperazine]acetamide/propanamide derivatives (3a-3k) and to investigate their acetylcholinesterase (AChE), butyrylcholinesterase (BChE) and β-secretase 1 (BACE-1) inhibition activity were aimed. Mass, 1H NMR, and 13C NMR spectra were utilized to determine the structure of the synthesized compounds. Compounds 3b, 3c, 3f, and 3j showed AChE inhibitory activity which compound 3c (IC50 = 0.030 ± 0.001 µM) showed AChE inhibitory activity as high as the reference drug donepezil (IC50 = 0.0201 ± 0.0010 µM). Conversely, none of the compounds showed BChE activity. Compounds 3c and 3j showed the highest BACE-1 inhibitory activity and IC50 value was found as 0.119 ± 0.004 µM for compound 3j whereas IC50 value was 0.110 ± 0.005 µM for donepezil, which is one of the reference substance. Molecular docking studies have been carried out using the data retrieved from the server of the Protein Data Bank (PDBID: 4EY7 and 2ZJM). Using in silico approach behavior active compounds (3c and 3j) and their binding modes clarified.
Collapse
Affiliation(s)
- Beyzanur Tutuş
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
- Kırıkhan Vocational School, Department of Pharmacy Services, Hatay Mustafa Kemal University, Hatay, Turkey
- Institute of Graduate Education, Department of Pharmaceutical Chemistry, Anadolu University, Eskişehir, Turkey
| | - Aybüke Züleyha Kaya
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
- Institute of Graduate Education, Department of Pharmaceutical Chemistry, Anadolu University, Eskişehir, Turkey
| | - Yonca Baz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
- Institute of Graduate Education, Department of Pharmaceutical Chemistry, Anadolu University, Eskişehir, Turkey
| | - Asaf Evrim Evren
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
- Vocational School of Health Services, Department of Pharmacy Services, Bilecik Seyh Edebali University, Bilecik, Turkey
| | | | - Leyla Yurttaş
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| |
Collapse
|
77
|
He C, Jiang J, Liu J, Zhou L, Ge Y, Yang Z. Pseudostellaria heterophylla polysaccharide mitigates Alzheimer's-like pathology via regulating the microbiota-gut-brain axis in 5 × FAD mice. Int J Biol Macromol 2024; 270:132372. [PMID: 38750854 DOI: 10.1016/j.ijbiomac.2024.132372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/09/2024] [Accepted: 05/12/2024] [Indexed: 05/26/2024]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterised by neuroinflammation, for which gut dysbiosis may be implicated. Our previous study showed that treatment with Pseudostellaria heterophylla aqueous extract and one of its cyclopeptides, heterophyllin B, attenuate memory deficits via immunomodulation and neurite regeneration. However, whether Pseudostellaria heterophylla polysaccharide (PH-PS) exerts neuroprotective effects against AD and its underlying mechanisms remain unclear. The infrared spectrum, molecular weight, and carbohydrate composition of the PH-PS were determined. The results showed that PH-PS (Mw 8.771 kDa) was composed of glucose (57.78 %), galactose (41.52 %), and arabinose (0.70 %). PH-PS treatment ameliorated learning and spatial memory deficits, reduced amyloid β build-up, and suppressed reactive glia and astrocytes in 5 × FAD mice. 16S rRNA sequencing further showed that PH-PS remodelled the intestinal flora composition by promoting probiotic microbiota, such as Lactobacillus, Muribaculum, Monoglobus, and [Eubacterium]_siraeum_group, and suppressing inflammation-related UCG-009 and Blautia. Additionally, PH-PS restored intestinal barrier function; ameliorated peripheral inflammation by reducing the secretion of inflammatory cytokines, thereby converting M1 microglia and A1 astrocyte toward beneficial M2 and A2 phenotypes; and contributed to Aβ plaques clearance by upregulation of insulin degradation enzyme and neprilysin. Collectively, our findings demonstrate that PH-PS may prevent the progression of AD via modulation of the gut microbiota and regulation of glial polarisation, which could provide evidence to design a potential diet therapy for preventing or curing AD.
Collapse
Affiliation(s)
- Chuantong He
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang Municipal Key laboratory of Marine Drugs and Nutrition for Brain Health, Zhanjiang 524088, China
| | - Jiahui Jiang
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang Municipal Key laboratory of Marine Drugs and Nutrition for Brain Health, Zhanjiang 524088, China
| | - Junxin Liu
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang Municipal Key laboratory of Marine Drugs and Nutrition for Brain Health, Zhanjiang 524088, China
| | - Longjian Zhou
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang Municipal Key laboratory of Marine Drugs and Nutrition for Brain Health, Zhanjiang 524088, China
| | - Yuewei Ge
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zhiyou Yang
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang Municipal Key laboratory of Marine Drugs and Nutrition for Brain Health, Zhanjiang 524088, China.
| |
Collapse
|
78
|
Liu R, Guo L, Zhao Y, Wu D, Yu J, Liu P. Study on multi-target effects of the novel HDAC6 inhibitor W5 on Aβ/Cu 2+-induced Alzheimer's disease model of rats. Brain Res 2024; 1832:148847. [PMID: 38442843 DOI: 10.1016/j.brainres.2024.148847] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 02/08/2024] [Accepted: 02/29/2024] [Indexed: 03/07/2024]
Abstract
Histone deacetylase 6 (HDAC6) is a key therapeutic target in neurodegenerative diseases such as Alzheimer's disease (AD), which has been demonstrated to play an essential role in memory function and microtubule-associated tau physiology. In this study, W5 was used to treat AD model rats induced by Aβ/Cu2+ to study the improving effect of W5 on learning and memory impairment in AD rats and its related mechanism, to provide the basis for the subsequent development of W5 as an anti-AD drug. Results showed that W5 could decrease the expression of Aβ, Tau, and p-Tau proteins in the hippocampus of AD rats to inhibit the formation of senile plaques and neurofibrillary tangles, down-regulate the expression of Bax mRNA and Caspase-3 mRNA, and up-regulate the expression of Bcl-2 mRNA to reduce the apoptosis of neuron cells, reverse the expression of TNF-α, IL-1β and IL-6 mRNA to regulate neuroinflammatory response in AD rat brain. W5 also could regulate the oxidative stress state of AD rats, and balance the neurotransmitter disorder in AD rats' brain tissue. Overall, W5 could recover the morphology of hippocampal neurons and improve the learning and memory dysfunction in AD rats by regulating multiple targets in AD rats, providing a promising therapeutic avenue for the treatment of AD.
Collapse
Affiliation(s)
- Ruihua Liu
- Department of Physical and Chemical Inspection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Linli Guo
- Department of Physical and Chemical Inspection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yanan Zhao
- Department of Physical and Chemical Inspection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Dan Wu
- Department of Physical and Chemical Inspection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Jiasi Yu
- Department of Physical and Chemical Inspection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Ping Liu
- Department of Physical and Chemical Inspection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
79
|
Ahmed T. Lipid nanoparticle mediated small interfering RNA delivery as a potential therapy for Alzheimer's disease. Eur J Neurosci 2024; 59:2915-2954. [PMID: 38622050 DOI: 10.1111/ejn.16336] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 02/21/2024] [Accepted: 03/14/2024] [Indexed: 04/17/2024]
Abstract
Alzheimer's disease (AD) is a neurodegenerative condition that exhibits a gradual decline in cognitive function and is prevalent among a significant number of individuals globally. The use of small interfering RNA (siRNA) molecules in RNA interference (RNAi) presents a promising therapeutic strategy for AD. Lipid nanoparticles (LNPs) have been developed as a delivery vehicle for siRNA, which can selectively suppress target genes, by enhancing cellular uptake and safeguarding siRNA from degradation. Numerous research studies have exhibited the effectiveness of LNP-mediated siRNA delivery in reducing amyloid beta (Aβ) levels and enhancing cognitive function in animal models of AD. The feasibility of employing LNP-mediated siRNA delivery as a therapeutic approach for AD is emphasized by the encouraging outcomes reported in clinical studies for other medical conditions. The use of LNP-mediated siRNA delivery has emerged as a promising strategy to slow down or even reverse the progression of AD by targeting the synthesis of tau phosphorylation and other genes linked to the condition. Improvement of the delivery mechanism and determination of the most suitable siRNA targets are crucial for the efficacious management of AD. This review focuses on the delivery of siRNA through LNPs as a promising therapeutic strategy for AD, based on the available literature.
Collapse
Affiliation(s)
- Tanvir Ahmed
- Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh
| |
Collapse
|
80
|
Vargas-Barona A, Bernáldez-Sarabia J, Castro-Ceseña AB. Lipid-polymer hybrid nanoparticles loaded with N-acetylcysteine for the modulation of neuroinflammatory biomarkers in human iPSC-derived PSEN2 (N141I) astrocytes as a model of Alzheimer's disease. J Mater Chem B 2024; 12:5085-5097. [PMID: 38713059 DOI: 10.1039/d4tb00521j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by cognitive impairment associated with the accumulation of beta-amyloid protein (Aβ). Aβ activates glial cells in the brain, increasing the secretion of proinflammatory cytokines, which leads to neuroinflammation and neuronal death. Currently, there are no effective treatments that cure or stop its progression; therefore, AD is considered a global health priority. The main limitations are the low drug bioavailability and impermeability of the blood-brain barrier (BBB). Fortunately, nanomedicine has emerged as a promising field for the development of new nanosystems for the controlled and targeted delivery of drugs to the brain. Therefore, in this work, lipid-polymer hybrid nanoparticles (LPHNPs) conjugated with transferrin (Tf) to facilitate crossing the BBB and loaded with N-acetylcysteine (NAC) for its anti-inflammatory effect were synthesized, and their physicochemical characterization was carried out. Subsequently, an in vitro model involving human astrocytes derived from induced pluripotent stem cells (iPSC) from an AD-diagnosed patient was developed, which was brought to a reactive state by stimulation with lipopolysaccharides (LPSs). The cell culture was treated with either Tf-conjugated LPHNPs loaded with NAC (NAC-Tf-LPHNPs) at 0.25 mg mL-1, or free NAC at 5 mM. The results showed that NAC-Tf-LPHNPs favorably modulated the expression of proinflammatory genes such as interleukin-1β (IL-1β), amyloid precursor protein (APP) and glial fibrillary acidic protein (GFAP). In addition, they reduced the secretion of the proinflammatory cytokines interleukin 6 (IL-6), IL-1β and interferon-gamma (INF-γ). Results for both cases were compared to the group of cells that did not receive any treatment. In contrast, free NAC only had this effect on the expression of IL-1β and the secretion of the cytokines IL-6 and INF-γ. These results indicate the potential of NAC-Tf-LPHNPs for AD treatment.
Collapse
Affiliation(s)
- Alondra Vargas-Barona
- Departamento de Innovación Biomédica, Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California (CICESE), Carretera Ensenada- Tijuana No. 3918, Zona Playitas, C.P. 22860, Ensenada, Baja California, Mexico.
| | - Johanna Bernáldez-Sarabia
- Departamento de Innovación Biomédica, Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California (CICESE), Carretera Ensenada- Tijuana No. 3918, Zona Playitas, C.P. 22860, Ensenada, Baja California, Mexico.
| | - Ana B Castro-Ceseña
- Departamento de Innovación Biomédica, Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California (CICESE), Carretera Ensenada- Tijuana No. 3918, Zona Playitas, C.P. 22860, Ensenada, Baja California, Mexico.
- CONAHCYT-Departamento de Innovación Biomédica, Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California (CICESE), Carretera Ensenada-Tijuana No. 3918, Zona Playitas, C.P. 22860, Ensenada, Baja California, Mexico
| |
Collapse
|
81
|
Yaghmaei E, Lu H, Ehwerhemuepha L, Zheng J, Danioko S, Rezaie A, Sajjadi SA, Rakovski C. Combined use of Donepezil and Memantine increases the probability of five-year survival of Alzheimer's disease patients. COMMUNICATIONS MEDICINE 2024; 4:99. [PMID: 38783011 PMCID: PMC11116549 DOI: 10.1038/s43856-024-00527-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 05/10/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is the most common neurodegenerative disease. Studying the effects of drug treatments on multiple health outcomes related to AD could be beneficial in demonstrating which drugs reduce the disease burden and increase survival. METHODS We conducted a comprehensive causal inference study implementing doubly robust estimators and using one of the largest high-quality medical databases, the Oracle Electronic Health Records (EHR) Real-World Data. Our work was focused on the estimation of the effects of the two common Alzheimer's disease drugs, Donepezil and Memantine, and their combined use on the five-year survival since initial diagnosis of AD patients. Also, we formally tested for the presence of interaction between these drugs. RESULTS Here, we show that the combined use of Donepezil and Memantine significantly elevates the probability of five-year survival. In particular, their combined use increases the probability of five-year survival by 0.050 (0.021, 0.078) (6.4%), 0.049 (0.012, 0.085), (6.3%), 0.065 (0.035, 0.095) (8.3%) compared to no drug treatment, the Memantine monotherapy, and the Donepezil monotherapy respectively. We also identify a significant beneficial additive drug-drug interaction effect between Donepezil and Memantine of 0.064 (0.030, 0.098). CONCLUSIONS Based on our findings, adopting combined treatment of Memantine and Donepezil could extend the lives of approximately 303,000 people with AD living in the USA to be beyond five-years from diagnosis. If these patients instead have no drug treatment, Memantine monotherapy or Donepezil monotherapy they would be expected to die within five years.
Collapse
Affiliation(s)
- Ehsan Yaghmaei
- Schmid College of Science and Technology, Chapman University, Orange, CA, USA
| | - Hongxia Lu
- School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Jianwei Zheng
- Schmid College of Science and Technology, Chapman University, Orange, CA, USA
| | - Sidy Danioko
- Schmid College of Science and Technology, Chapman University, Orange, CA, USA
| | - Ahmad Rezaie
- Schmid College of Science and Technology, Chapman University, Orange, CA, USA
| | | | - Cyril Rakovski
- Schmid College of Science and Technology, Chapman University, Orange, CA, USA.
| |
Collapse
|
82
|
Basir HS, Mirazi N, Komaki A, Hosseini A. Cacao consumption improves passive avoidance memory impairment in a rat model of Alzheimer's disease: the role of hippocampal synaptic plasticity and oxidative stress. Front Pharmacol 2024; 15:1379264. [PMID: 38756381 PMCID: PMC11096498 DOI: 10.3389/fphar.2024.1379264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/05/2024] [Indexed: 05/18/2024] Open
Abstract
Introduction: Alzheimer's disease (AD) causes progressive loss of cognitive function and synaptic plasticity, which is the most common form of dementia. The present study was designed to scrutinize the effects of cacao on passive avoidance memory function and to identify the roles of hippocampal synaptic plasticity and oxidative stress in an AD rat model induced by unilateral intracerebroventricular (UICV) injection of amyloid-beta (Aβ). Methods: Oral administration of cacao (500 mg/kg/ day) was given for 2 consecutive months. A memory retention test was conducted 24 h after passive avoidance training was completed. Subsequently, the amplitude of population spike (PS) and slope of field excitatory postsynaptic potentials (fEPSPs) were assessed at hippocampal long-term potentiation (LTP) in perforant pathway-dentate gyrus (PP-DG) synapses. Moreover, total thiol group (TTG) and malondialdehyde (MDA) concentrations were evaluated in the plasma. Furthermore, compact Aβ plaques were detected in the hippocampal DG by performing Congo red staining. Results: As a result of AD induction, passive avoidance memory was impaired; also, reduced fEPSP slopes, PS amplitudes, and content of TTG, and increase in MDA levels in the rats were observed. In contrast, cacao treatment ameliorated passive avoidance memory impairment, improved hippocampal LTP impairment, modulated oxidative-antioxidative status, and delayed Aβ plaques production in AD rats. Disscussion: Conclusively, cacao alleviates Aβ-induced cognitive deficit, probably by the amelioration of hippocampal LTP impairment, modulation of oxidative-antioxidative status, and inhibition of Aβ plaque accumulation.
Collapse
Affiliation(s)
- Hamid Shokati Basir
- Department of Biology, Faculty of Basic Science, Bu-Ali Sina University, Hamedan, Iran
| | - Naser Mirazi
- Department of Biology, Faculty of Basic Science, Bu-Ali Sina University, Hamedan, Iran
| | - Alireza Komaki
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Abdolkarim Hosseini
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
83
|
Xiao Y, Hou Y, Zhou H, Diallo G, Fiszman M, Wolfson J, Zhou L, Kilicoglu H, Chen Y, Su C, Xu H, Mantyh WG, Zhang R. Repurposing non-pharmacological interventions for Alzheimer's disease through link prediction on biomedical literature. Sci Rep 2024; 14:8693. [PMID: 38622164 PMCID: PMC11018822 DOI: 10.1038/s41598-024-58604-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 04/01/2024] [Indexed: 04/17/2024] Open
Abstract
Non-pharmaceutical interventions (NPI) have great potential to improve cognitive function but limited investigation to discover NPI repurposing for Alzheimer's Disease (AD). This is the first study to develop an innovative framework to extract and represent NPI information from biomedical literature in a knowledge graph (KG), and train link prediction models to repurpose novel NPIs for AD prevention. We constructed a comprehensive KG, called ADInt, by extracting NPI information from biomedical literature. We used the previously-created SuppKG and NPI lexicon to identify NPI entities. Four KG embedding models (i.e., TransE, RotatE, DistMult and ComplEX) and two novel graph convolutional network models (i.e., R-GCN and CompGCN) were trained and compared to learn the representation of ADInt. Models were evaluated and compared on two test sets (time slice and clinical trial ground truth) and the best performing model was used to predict novel NPIs for AD. Discovery patterns were applied to generate mechanistic pathways for high scoring candidates. The ADInt has 162,212 nodes and 1,017,284 edges. R-GCN performed best in time slice (MR = 5.2054, Hits@10 = 0.8496) and clinical trial ground truth (MR = 3.4996, Hits@10 = 0.9192) test sets. After evaluation by domain experts, 10 novel dietary supplements and 10 complementary and integrative health were proposed from the score table calculated by R-GCN. Among proposed novel NPIs, we found plausible mechanistic pathways for photodynamic therapy and Choerospondias axillaris to prevent AD, and validated psychotherapy and manual therapy techniques using real-world data analysis. The proposed framework shows potential for discovering new NPIs for AD prevention and understanding their mechanistic pathways.
Collapse
Affiliation(s)
- Yongkang Xiao
- Institute for Health Informatics, University of Minnesota, Minneapolis, MN, USA
| | - Yu Hou
- Division of Computational Health Sciences, Department of Surgery, University of Minnesota, Minneapolis, MN, USA
| | - Huixue Zhou
- Institute for Health Informatics, University of Minnesota, Minneapolis, MN, USA
| | - Gayo Diallo
- INRIA SISTM, Team AHeaD - INSERM 1219 Bordeaux Population Health, University of Bordeaux, 33000, Bordeaux, France
| | - Marcelo Fiszman
- NITES - Núcleo de Inovação e Tecnologia Em Saúde, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil
- Semedy Inc, Needham, MA, USA
| | - Julian Wolfson
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Li Zhou
- Division of General Internal Medicine and Primary Care, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Halil Kilicoglu
- School of Information Sciences, University of Illinois Urbana-Champaign, Champaign, IL, USA
| | - You Chen
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Chang Su
- Department of Population Health Sciences, Weill Cornell Medicine, New York, NY, USA
| | - Hua Xu
- Section of Biomedical Informatics and Data Science, School of Medicine, Yale University, New Haven, CT, USA
| | - William G Mantyh
- Department of Neurology, University of Minnesota, Minneapolis, MN, USA
| | - Rui Zhang
- Division of Computational Health Sciences, Department of Surgery, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
84
|
Wang S, Xie S, Zheng Q, Zhang Z, Wang T, Zhang G. Biofluid biomarkers for Alzheimer's disease. Front Aging Neurosci 2024; 16:1380237. [PMID: 38659704 PMCID: PMC11039951 DOI: 10.3389/fnagi.2024.1380237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/27/2024] [Indexed: 04/26/2024] Open
Abstract
Alzheimer's disease (AD) is a multifactorial neurodegenerative disease, with a complex pathogenesis and an irreversible course. Therefore, the early diagnosis of AD is particularly important for the intervention, prevention, and treatment of the disease. Based on the different pathophysiological mechanisms of AD, the research progress of biofluid biomarkers are classified and reviewed. In the end, the challenges and perspectives of future research are proposed.
Collapse
Affiliation(s)
- Sensen Wang
- Shandong Yinfeng Academy of Life Science, Jinan, Shandong, China
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong, China
| | - Sitan Xie
- Shandong Yinfeng Academy of Life Science, Jinan, Shandong, China
| | - Qinpin Zheng
- Shandong Yinfeng Academy of Life Science, Jinan, Shandong, China
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong, China
| | - Zhihui Zhang
- Shandong Yinfeng Academy of Life Science, Jinan, Shandong, China
| | - Tian Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong, China
| | - Guirong Zhang
- Shandong Yinfeng Academy of Life Science, Jinan, Shandong, China
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong, China
| |
Collapse
|
85
|
Branigan KS, Dotta BT. Cognitive Decline: Current Intervention Strategies and Integrative Therapeutic Approaches for Alzheimer's Disease. Brain Sci 2024; 14:298. [PMID: 38671950 PMCID: PMC11048559 DOI: 10.3390/brainsci14040298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/14/2024] [Accepted: 03/18/2024] [Indexed: 04/28/2024] Open
Abstract
Alzheimer's disease (AD) represents a pressing global health challenge, with an anticipated surge in diagnoses over the next two decades. This progressive neurodegenerative disorder unfolds gradually, with observable symptoms emerging after two decades of imperceptible brain changes. While traditional therapeutic approaches, such as medication and cognitive therapy, remain standard in AD management, their limitations prompt exploration into novel integrative therapeutic approaches. Recent advancements in AD research focus on entraining gamma waves through innovative methods, such as light flickering and electromagnetic fields (EMF) stimulation. Flickering light stimulation (FLS) at 40 Hz has demonstrated significant reductions in AD pathologies in both mice and humans, providing improved cognitive functioning. Additionally, recent experiments have demonstrated that APOE mutations in mouse models substantially reduce tau pathologies, with microglial modulation playing a crucial role. EMFs have also been demonstrated to modulate microglia. The exploration of EMFs as a therapeutic approach is gaining significance, as many recent studies have showcased their potential to influence microglial responses. Th article concludes by speculating on the future directions of AD research, emphasizing the importance of ongoing efforts in understanding the complexities of AD pathogenesis through a holistic approach and developing interventions that hold promise for improved patient outcomes.
Collapse
Affiliation(s)
| | - Blake T. Dotta
- Behavioural Neuroscience & Biology Programs, School of Natural Science, Laurentian University, Sudbury, ON P3E2C6, Canada
| |
Collapse
|
86
|
Wang Z, Zhan Q, Tong B, Yang S, Hou B, Huang H, Saykin AJ, Thompson PM, Davatzikos C, Shen L. Distance-weighted Sinkhorn loss for Alzheimer's disease classification. iScience 2024; 27:109212. [PMID: 38433927 PMCID: PMC10906516 DOI: 10.1016/j.isci.2024.109212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 01/27/2024] [Accepted: 02/07/2024] [Indexed: 03/05/2024] Open
Abstract
Traditional loss functions such as cross-entropy loss often quantify the penalty for each mis-classified training sample without adequately considering its distance from the ground truth class distribution in the feature space. Intuitively, the larger this distance is, the higher the penalty should be. With this observation, we propose a penalty called distance-weighted Sinkhorn (DWS) loss. For each mis-classified training sample (with predicted label A and true label B), its contribution to the DWS loss positively correlates to the distance the training sample needs to travel to reach the ground truth distribution of all the A samples. We apply the DWS framework with a neural network to classify different stages of Alzheimer's disease. Our empirical results demonstrate that the DWS framework outperforms the traditional neural network loss functions and is comparable or better to traditional machine learning methods, highlighting its potential in biomedical informatics and data science.
Collapse
Affiliation(s)
- Zexuan Wang
- University of Pennsylvania, B301 Richards Building, 3700 Hamilton Walk, Philadelphia, PA 19104, USA
| | - Qipeng Zhan
- University of Pennsylvania, B301 Richards Building, 3700 Hamilton Walk, Philadelphia, PA 19104, USA
| | - Boning Tong
- University of Pennsylvania, B301 Richards Building, 3700 Hamilton Walk, Philadelphia, PA 19104, USA
| | - Shu Yang
- University of Pennsylvania, B301 Richards Building, 3700 Hamilton Walk, Philadelphia, PA 19104, USA
| | - Bojian Hou
- University of Pennsylvania, B301 Richards Building, 3700 Hamilton Walk, Philadelphia, PA 19104, USA
| | - Heng Huang
- University of Maryland, College Park, 8125 Paint Branch Drive, College Park, MD 20742, USA
| | - Andrew J. Saykin
- Indiana University, 355 West 16th Street, Indianapolis, IN 46202, USA
| | - Paul M. Thompson
- University of Southern California, 4676 Admiralty Way, Marina Del Rey, CA 90292, USA
| | - Christos Davatzikos
- University of Pennsylvania, B301 Richards Building, 3700 Hamilton Walk, Philadelphia, PA 19104, USA
| | - Li Shen
- University of Pennsylvania, B301 Richards Building, 3700 Hamilton Walk, Philadelphia, PA 19104, USA
| |
Collapse
|
87
|
Lin C, Du H. Interactions between forsythoside E and two cholinesterases at the different conditions: fluorescence sections. Methods Appl Fluoresc 2024; 12:025003. [PMID: 38428023 DOI: 10.1088/2050-6120/ad2f3a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 03/01/2024] [Indexed: 03/03/2024]
Abstract
Forsythoside E is one secondary metabolite ofForsythia suspensa(Thunb.) Vahl. In the study, the interactions between forsythoside E and two types of cholinesterases, acetylcholinesterase and butyrylcholinesterase were investigated in the different conditions. Forsythoside E increased the fluorescence intensity of acetylcholinesterase but quenched the fluorescence of butyrylcholinesterase. Aβ25-35used in the study may not form complexes with cholinesterases, and did not affect the interaction between forsythoside E and cholinesterases. The charged quaternary group of AsCh interacted with the 'anionic' subsite in acetylcholinesterase, which did not affect the interaction between forsythoside E and acetylcholinesterase. The enhancement rate of forsythoside E to acetylcholinesterase fluorescence from high to low was acid solution (pH 6.4), neutral solution (pH 7.4) and alkaline solution (pH 8.0), while the reduction rate of forsythoside E to butyrylcholinesterase fluorescence was in reverse order. Metal ions may interact with cholinesterases, and increased the effects of forsythoside E to cholinesterases fluorescence, in order that Fe3+was the highest, followed by Cu2+, and Mg2+. A forsythoside E-butyrylcholinesterase complex at stoichiometric ratio of 1:1 was spontaneously formed, and the static quenching was the main quenching mode in the process of forsythoside E binding with butyrylcholinesterase. TheKvalues of two complexes were pretty much the same, suggesting that the interaction between cholinesterases and forsythoside E was almost unaffected by acid-base environment and metal ions. Thennumbers of two cholinesterases approximately equaled to one, indicating that there was only one site on each cholinesterase applicable for forsythoside E to bind to.
Collapse
Affiliation(s)
- Conghuan Lin
- Institute of Molecular Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, People's Republic of China
| | - Huizhi Du
- Institute of Molecular Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, People's Republic of China
| |
Collapse
|
88
|
Qiu J, Feng X, Chen H, Liu W, Liu W, Wu L, Gao X, Liu Y, Huang Y, Gong H, Qi Y, Xu Z, Zhao Q. Discovery of novel harmine derivatives as GSK-3β/DYRK1A dual inhibitors for Alzheimer's disease treatment. Arch Pharm (Weinheim) 2024; 357:e2300404. [PMID: 38010470 DOI: 10.1002/ardp.202300404] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/22/2023] [Accepted: 11/02/2023] [Indexed: 11/29/2023]
Abstract
Multitarget-directed ligands (MTDLs) have recently attracted significant interest due to their superior effectiveness in multifactorial Alzheimer's disease (AD). Combined inhibition of two important AD targets, glycogen synthase kinase-3β (GSK-3β) and dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A), may be a breakthrough in the treatment of AD. Based on our previous work, we have designed and synthesized a series of novel harmine derivatives, investigated their inhibition of GSK-3β and DYRK1A, and evaluated a variety of biological activities. The results of the experiments showed that most of these compounds exhibited good activity against GSK-3β and DYRK1A in vitro. ZLQH-5 was selected as the best compound due to the most potent inhibitory effect against GSK-3β and DYRK1A. Molecular docking studies demonstrated that ZLQH-5 could form stable interactions with the ATP binding pocket of GSK-3β and DYRK1A. In addition, ZLQH-5 showed low cytotoxicity against SH-SY5Y and HL-7702, good blood-brain barrier permeability, and favorable pharmacokinetic properties. More importantly, ZLQH-5 also attenuated the tau hyperphosphorylation in the okadaic acid SH-SY5Y cell model. These results indicated that ZLQH-5 could be a promising dual-target drug candidate for the treatment of AD.
Collapse
Affiliation(s)
- Jingsong Qiu
- Bei Fang Hospital of Shenyang Pharmaceutical University, General Hospital of Northern Theater Command, Shenyang, China
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Xiangling Feng
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Huanhua Chen
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Wenwu Liu
- Bei Fang Hospital of Shenyang Pharmaceutical University, General Hospital of Northern Theater Command, Shenyang, China
| | - Wenjie Liu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Limeng Wu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Xudong Gao
- Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang, China
| | - Yanfang Liu
- Department of Clinical Trial Center, General Hospital of Northern Theater Command, Shenyang, China
| | - Yaoguang Huang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Hao Gong
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Yiming Qi
- Department of Graduate School, Dalian Medical University, Dalian, China
| | - Zihua Xu
- Bei Fang Hospital of Shenyang Pharmaceutical University, General Hospital of Northern Theater Command, Shenyang, China
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Qingchun Zhao
- Bei Fang Hospital of Shenyang Pharmaceutical University, General Hospital of Northern Theater Command, Shenyang, China
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
89
|
Ullah A, Lee GJ, Kwon HT, Lim SI. Covalent immobilization of human serum albumin on cellulose acetate membrane for scavenging amyloid beta - A stepping extracorporeal strategy for ameliorating Alzheimer's disease. Colloids Surf B Biointerfaces 2024; 234:113753. [PMID: 38241888 DOI: 10.1016/j.colsurfb.2024.113753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 01/21/2024]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by interrupted neurocognitive functions and impaired mental development presumably caused by the accumulation of amyloid beta (Aβ) in the form of plaques. Targeting Aβ has been considered a promising approach for treating AD. In the current study, human serum albumin (HSA), a natural Aβ binder, is covalently immobilized onto the surface of a cellulose acetate (CA) membrane to devise an extracorporeal Aβ sequester. The immobilization of HSA at 3.06 ± 0.22 μg/mm2 of the CA membrane was found to be active functionally, as evidenced by the esterase-like activity converting p-nitrophenyl acetate into p-nitrophenol. The green fluorescent protein-Aβ (GFP-Aβ) fusion protein, recombinantly produced as a model ligand, exhibited characteristics of native Aβ. These features include the propensity to form aggregates or fibrils and an affinity for HSA with a dissociation constant (KD) of 0.91 μM. The HSA on the CA membrane showed concentration-dependent sequestration of GFP-Aβ in the 1-10-μM range. Moreover, it had a greater binding capacity than HSA immobilized on a commercial amine-binding plate. Results suggest that the covalent immobilization of HSA on the CA surface can be used as a potential platform for sequestering Aβ to alleviate AD.
Collapse
Affiliation(s)
- Aziz Ullah
- Department of Chemical Engineering, Pukyong National University, Busan 48513, Republic of Korea; Gomal Centre of Pharmaceutical Sciences, Faculty of Pharmacy, Gomal University, Dera Ismail Khan 29050, Khyber Pakhtunkhwa, Pakistan
| | - Gyu-Jin Lee
- Department of Chemical Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Hyuk Taek Kwon
- Department of Chemical Engineering, Pukyong National University, Busan 48513, Republic of Korea.
| | - Sung In Lim
- Department of Chemical Engineering, Pukyong National University, Busan 48513, Republic of Korea.
| |
Collapse
|
90
|
Alahmady NF, Alkhulaifi FM, Abdullah Momenah M, Ali Alharbi A, Allohibi A, Alsubhi NH, Ahmed Alhazmi W. Biochemical characterization of chamomile essential oil: Antioxidant, antibacterial, anticancer and neuroprotective activity and potential treatment for Alzheimer's disease. Saudi J Biol Sci 2024; 31:103912. [PMID: 38229887 PMCID: PMC10790085 DOI: 10.1016/j.sjbs.2023.103912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/07/2023] [Accepted: 12/15/2023] [Indexed: 01/18/2024] Open
Abstract
Alzheimer's disease (AD) causes dementia among older adults, increasing the global burden of dementia. Therefore, this study investigates the potential neuroprotective, antioxidant, and anticancer effects of chamomile essential oil (CCO) in Alzheimer's disease. CCO's main volatile compounds (VOCs) were α-bisabolol, camazulene, and bisabolol oxide A, representing 81 % of all VOCs. CCO scavenged 93 % of DPPH free radicals and inhibited the pathogenic bacteria, i.e., Staphylococcus aureus and Salmonella typhi, besides reducing 89 % of brain cancer cell lines (U87). Eighty albino rats were randomized into four groups: standard control, Alzheimer's disease group caused by AlCl3, and treated groups. The results indicated that the mean value of tumor necrosis factor α (TNF-α), amyloid precursor protein (APP), amyloid beta (Aβ), caspase-3, & B-cell lymphoma 2 (Bcl-2) was significantly elevated due to the harmful effect of AlCl3; however, CCO downregulated these values, and this effect was attributed to the considerable volatile compounds and phenolic compounds content. Additionally, CCO rats showed a significant increment in noradrenergic (NE), dopaminergic (DO), and serotoninergic systems with relative increases of 50, 50, and 14 % compared to diseased rats. The brain histology of CCO-treated rats showed a significant reduction in neuronal degeneration and improved brain changes, and its histology was close to that of the control brain. The results indicated that CCO offers a new strategy that could be used as an antioxidant and neuroprotective agent for AD due to its considerable contents of antioxidants and anti-inflammatory compounds.
Collapse
Affiliation(s)
- Nada F. Alahmady
- Department of Biology, College of science, Imam Abdulrahman bin Faisal University, P. O. Box 1982, Dammam 31441, Saudi Arabia
| | - Fadwa M. Alkhulaifi
- Department of Biology, College of science, Imam Abdulrahman bin Faisal University, P. O. Box 1982, Dammam 31441, Saudi Arabia
| | - Maha Abdullah Momenah
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, PO Box 84428, Riyadh 11671, Saudi Arabia
| | - Asmaa Ali Alharbi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Aminah Allohibi
- Biological Sciences Department, College of Science & Arts, King Abdulaziz University, Rabigh 21911, Saudi Arabia
| | - Nouf H. Alsubhi
- Biological Sciences Department, College of Science & Arts, King Abdulaziz University, Rabigh 21911, Saudi Arabia
| | - Wafaa Ahmed Alhazmi
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
91
|
Han S, Sun Z, Zhao K, Duan F, Caiafa CF, Zhang Y, Solé-Casals J. Early prediction of dementia using fMRI data with a graph convolutional network approach. J Neural Eng 2024; 21:016013. [PMID: 38215493 DOI: 10.1088/1741-2552/ad1e22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 01/12/2024] [Indexed: 01/14/2024]
Abstract
Objective. Alzheimer's disease is a progressive neurodegenerative dementia that poses a significant global health threat. It is imperative and essential to detect patients in the mild cognitive impairment (MCI) stage or even earlier, enabling effective interventions to prevent further deterioration of dementia. This study focuses on the early prediction of dementia utilizing Magnetic Resonance Imaging (MRI) data, using the proposed Graph Convolutional Networks (GCNs).Approach. Specifically, we developed a functional connectivity (FC) based GCN framework for binary classifications using resting-state fMRI data. We explored different types and processing methods of FC and evaluated the performance on the OASIS-3 dataset. We developed the GCN model for two different purposes: (1) MCI diagnosis: classifying MCI from normal controls (NCs); and (2) dementia risk prediction: classifying NCs from subjects who have the potential for developing MCI but have not been clinically diagnosed as MCI.Main results. The results of the experiments revealed several important findings: First, the proposed GCN outperformed both the baseline GCN and Support Vector Machine (SVM). It achieved the best average accuracy of 80.3% (11.7% higher than the baseline GCN and 23.5% higher than SVM) and the highest accuracy of 91.2%. Secondly, the GCN framework with (absolute) individual FC performed slightly better than that with global FC generally. However, GCN using global graphs with appropriate connectivity can achieve equivalent or superior performance to individual graphs in some cases, which highlights the significance of suitable connectivity for achieving performance. Additionally, the results indicate that the self-network connectivity of specific brain network regions (such as default mode network, visual network, ventral attention network and somatomotor network) may play a more significant role in GCN classification.Significance. Overall, this study offers valuable insights into the application of GCNs in brain analysis and early diagnosis of dementia. This contributes significantly to the understanding of MCI and has substantial potential for clinical applications in early diagnosis and intervention for dementia and other neurodegenerative diseases. Our code for GCN implementation is available at:https://github.com/Shuning-Han/FC-based-GCN.
Collapse
Affiliation(s)
- Shuning Han
- Data and Signal Processing Research Group, University of Vic-Central University of Catalonia, Vic 08500, Catalonia, Spain
- Image Processing Research Group, RIKEN Center for Advanced Photonics, RIKEN, Wako-Shi, Saitama, Japan
| | - Zhe Sun
- Faculty of Health Data Science, Juntendo University, Urayasu, Chiba, Japan
| | - Kanhao Zhao
- Department of Bioengineering, Lehigh University, Bethlehem, PA 18015, United States of America
| | - Feng Duan
- Tianjin Key Laboratory of Brain Science and Intelligent Rehabilitation, Nankai University, Tianjin, People's Republic of China
| | - Cesar F Caiafa
- Instituto Argentino de Radioastronomía-CCT La Plata, CONICET / CIC-PBA / UNLP, V. Elisa 1894, Argentina
- Tensor Learning Team, Riken AIP, Tokyo, Tokyo 103-0027, Japan
| | - Yu Zhang
- Department of Bioengineering, Lehigh University, Bethlehem, PA 18015, United States of America
- Department of Electrical and Computer Engineering, Lehigh University, Bethlehem, PA 18015, United States of America
| | - Jordi Solé-Casals
- Data and Signal Processing Research Group, University of Vic-Central University of Catalonia, Vic 08500, Catalonia, Spain
- Department of Psychiatry, University of Cambridge, Cambridge CB20SZ, United Kingdom
| |
Collapse
|
92
|
Zhang Y, Tian J, Ni J, Wei M, Li T, Shi J. Polygala tenuifolia and Acorus tatarinowii in the treatment of Alzheimer's disease: a systematic review and meta-analysis. Front Pharmacol 2024; 14:1268000. [PMID: 38283842 PMCID: PMC10815298 DOI: 10.3389/fphar.2023.1268000] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 12/11/2023] [Indexed: 01/30/2024] Open
Abstract
Background: The complexity of Chinese medicine treatment for Alzheimer's disease (AD) utilizing a multi-herb therapy makes the evidence in current studies insufficient. Herb pairs are the most fundamental form of multi-herb formulae. Among the Chinese herbal formulas for AD treatment, Polygala tenuifolia (PT) and Acorus tatarinowii (AT) appeared as the most commonly used herbal pairs in combination. Objective: The aim of this study is to evaluate the clinical efficacy and safety of the combination of PT and AT in the treatment of AD. Methods: We systematically searched and screened randomized controlled trials of pairing PT and AT for the treatment of AD patients in eight databases with a search deadline of June 26, 2023. Authors, year of publication, title, and basic information such as subject characteristics (age, sex, and race), course of disease, control interventions, dose, and treatment duration were extracted from the screened studies. Primary outcomes assessed included mini-mental state examination (MMSE), activities of daily living (ADL), and AD assessment scale-cognitive subscale (ADAS-cog), while secondary outcomes included efficiency and adverse events. The quality of the included studies was assessed using the Cochrane risk of bias tool. The mean difference with 95% confidence intervals (MD [95% CI]) and risk ratio (RR) was selected as the effect size, and the data were analyzed and evaluated using RevMan 5.4 and Stata 16. Results: A total of sixteen eligible and relevant studies involving 1103 AD participants were included. The combination of PT and AT plus conventional drugs was superior to single conventional drugs in MMSE [MD = 2.57, 95%CI: (1.44, 3.69); p < 0.00001; I 2 = 86%], ADL [MD = -3.19, 95%CI: (-4.29, -2.09); p < 0.00001; I 2 = 0%], and ADAS-cog scores [MD = -2.09, 95%CI: (-3.07, -1.10); p < 0.0001; I 2 = 0%]. The combination of PT and AT plus conventional drugs had a significantly more favorable benefit in clinical effectiveness [RR = 1.27, 95%CI: (1.12, 1.44); p = 0.0002; I 2 = 0%]. Adverse events were not increased with the combination of PT and AT plus conventional drugs compared to conventional drugs [RR = 0.65, 95%CI: (0.35, 1.19); p = 0.16; I 2 = 0%]. The experimental group treated with the combination of PT and AT alone for AD was comparable in MMSE, ADL, and ADAS-cog scores compared with the control group treated with single conventional drugs. Conclusion: Compared to single conventional drugs, the combination of PT and AT may be used as an alternative therapy to improve global cognition and functioning in AD, and the combination of PT and AT as adjunctive therapy appears to produce a better therapeutic response to AD in terms of efficacy without increasing the risk of adverse events. However, the very low to low quality of available evidence limits confidence in the findings. Systematic Review Registration: https://www.crd.york.ac.uk/prospero/, identifier CRD42023444156.
Collapse
Affiliation(s)
- Yuchen Zhang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jinzhou Tian
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jingnian Ni
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Mingqing Wei
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Ting Li
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jing Shi
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
93
|
Wang M, Fu Q. Nanomaterials for Disease Treatment by Modulating the Pyroptosis Pathway. Adv Healthc Mater 2024; 13:e2301266. [PMID: 37354133 DOI: 10.1002/adhm.202301266] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/06/2023] [Indexed: 06/26/2023]
Abstract
Pyroptosis differs significantly from apoptosis and cell necrosis as an alternative mode of programmed cell death. Its occurrence is mediated by the gasdermin protein, leading to characteristic outcomes including cell swelling, membrane perforation, and release of cell contents. Research underscores the role of pyroptosis in the etiology and progression of many diseases, making it a focus of research intervention as scientists explore ways to regulate pyroptosis pathways in disease management. Despite numerous reviews detailing the relationship between pyroptosis and disease mechanisms, few delve into recent advancements in nanomaterials as a mechanism for modulating the pyroptosis pathway to mitigate disease effects. Therefore, there is an urgent need to fill this gap and elucidate the path for the use of this promising technology in the field of disease treatment. This review article delves into recent developments in nanomaterials for disease management through pyroptosis modulation, details the mechanisms by which drugs interact with pyroptosis pathways, and highlights the promise that nanomaterial research holds in driving forward disease treatment.
Collapse
Affiliation(s)
- Mengzhen Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, P. R. China
| | - Qinrui Fu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, P. R. China
| |
Collapse
|
94
|
Arora R, Babbar R, Dabra A, Chopra B, Deswal G, Grewal AS. Marine-derived Compounds: A Powerful Platform for the Treatment of Alzheimer's Disease. Cent Nerv Syst Agents Med Chem 2024; 24:166-181. [PMID: 38305396 DOI: 10.2174/0118715249269050231129103002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/18/2023] [Accepted: 10/31/2023] [Indexed: 02/03/2024]
Abstract
Alzheimer's disease (AD) is a debilitating form of dementia that primarily affects cholinergic neurons in the brain, significantly reducing an individual's capacity for learning and creative skills and ultimately resulting in an inability to carry out even basic daily tasks. As the elderly population is exponentially increasing, the disease has become a significant concern for society. Therefore, neuroprotective substances have garnered considerable interest in addressing this universal issue. Studies have shown that oxidative damage to neurons contributes to the pathophysiological processes underlying AD progression. In AD, tau phosphorylation and glutamate excitotoxicity may play essential roles, but no permanent cure for AD is available. The existing therapies only manage the early symptoms of AD and often come with numerous side effects and toxicities. To address these challenges, researchers have turned to nature and explored various sources such as plants, animals, and marine organisms. Many historic holy books from different cultures emphasize that adding marine compounds to the regular diet enhances brain function and mitigates its decline. Consequently, researchers have devoted significant time to identifying potentially active neuroprotective substances from marine sources. Marine-derived compounds are gaining recognition due to their abundant supply of diverse chemical compounds with biological and pharmacological potential and unique mechanisms of action. Several studies have reported that plants exhibit multitarget potential in treating AD. In light of this, the current study focuses on marine-derived components with excellent potential for treating this neurodegenerative disease.
Collapse
Affiliation(s)
- Rashmi Arora
- Chitkara College of Pharmacy, Chitkara University, Chandigarh, Punjab, India
| | - Ritchu Babbar
- Chitkara College of Pharmacy, Chitkara University, Chandigarh, Punjab, India
| | - Abhishek Dabra
- Guru Gobind Singh College of Pharmacy, Yamunanagar, Haryana, India
| | - Bhawna Chopra
- Guru Gobind Singh College of Pharmacy, Yamunanagar, Haryana, India
| | - Geeta Deswal
- Guru Gobind Singh College of Pharmacy, Yamunanagar, Haryana, India
| | | |
Collapse
|
95
|
Bhasin S, Kumar B. Prevalence of Dementia in India. STUDIES IN COMPUTATIONAL INTELLIGENCE 2024:91-103. [DOI: 10.1007/978-3-031-53148-4_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
96
|
Alamri OA, Qusti S, Balgoon M, Ageeli AA, Al-Marhaby FA, Alosaimi AM, Jowhari MA, Saeed A. The role of MoS 2 QDs coated with DSPE-PEG-TPP in the protection of protein secondary structure of the brain tissues in an Alzheimer's disease model. Int J Biol Macromol 2024; 255:128522. [PMID: 38040141 DOI: 10.1016/j.ijbiomac.2023.128522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/12/2023] [Accepted: 11/28/2023] [Indexed: 12/03/2023]
Abstract
In this investigation, we have explored the protective capacity of MoS2 QDs coated with 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[amino(polyethyleneglycol) -2000] (DSPE-PEG) linked with (3-carboxypropyl) triphenylphosphonium-bromide (TPP), on the secondary structure of proteins in Alzheimer's disease (AD)-affected brain tissues. Using a cohort of fifteen male SWR/J mice, we establish three groups: a control group, a second group induced with AD through daily doses of AlCl3 and D-galactose for 49 consecutive days, and a third group receiving the same AD-inducing doses but treated with DSPE-PEG-TPP-MoS2 QDs. Brain tissues are meticulously separated from the skull, and their molecular structures are analyzed via FTIR spectroscopy. Employing the curve fitting method on the amide I peak, we delve into the nuances of protein secondary structure. The FTIR analysis reveals a marked increase in β-sheet structures and a concurrent decline in turn and α-helix structures in the AD group in comparison to the control group. Notably, no statistically significant differences emerge between the treated and control mice. Furthermore, multivariate analysis of the FTIR spectral region, encompassing protein amide molecular structures, underscores a remarkable similarity between the treated and normal mice. This study elucidates the potential of DSPE-PEG-TPP-MoS2 QDs in shielding brain tissue proteins against the pathogenic influences of AD.
Collapse
Affiliation(s)
- Ohoud Abdulaziz Alamri
- Department of Medical Laboratory, King Fahad Armed Forces Hospital, Jeddah 23311, Saudi Arabia; Department of Biochemistry Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Safaa Qusti
- Department of Biochemistry Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Maha Balgoon
- Department of Biochemistry Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abeer A Ageeli
- Department of Chemistry, Faculty of Science, Jazan University, Jazan 45142, Saudi Arabia
| | - F A Al-Marhaby
- Department of Physics, Al-Qunfudhah University College, Umm Al-Qura University, Makkah 24230, Saudi Arabia
| | - Abeer M Alosaimi
- Department of Chemistry, College of Science, Taif University, Taif 21944, Saudi Arabia
| | - Mohammed A Jowhari
- Medical Physics Department, Jazan Specialized Hospital, Ministry of Health, Jazan Health Affairs, Jazan 45142, Saudi Arabia
| | - Abdu Saeed
- Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Department of Physics, Thamar University, Thamar 87246, Yemen.
| |
Collapse
|
97
|
Singh YP, Kumar N, Chauhan BS, Garg P. Carbamate as a potential anti-Alzheimer's pharmacophore: A review. Drug Dev Res 2023; 84:1624-1651. [PMID: 37694498 DOI: 10.1002/ddr.22113] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/20/2023] [Accepted: 08/30/2023] [Indexed: 09/12/2023]
Abstract
Alzheimer's disease (AD) is a progressive age-related neurodegenerative brain disorder, which leads to loss of memory and other cognitive dysfunction. The underlying mechanisms of AD pathogenesis are very complex and still not fully explored. Cholinergic neuronal loss, accumulation of amyloid plaque, metal ions dyshomeostasis, tau hyperphosphorylation, oxidative stress, neuroinflammation, and mitochondrial dysfunction are major hallmarks of AD. The current treatment options for AD are acetylcholinesterase inhibitors (donepezil, rivastigmine, and galantamine) and NMDA receptor antagonists (memantine). These FDA-approved drugs mainly provide symptomatic relief without addressing the pathological aspects of disease progression. So, there is an urgent need for novel drug development that not only addresses the basic mechanisms of the disease but also shows the neuroprotective property. Various research groups across the globe are working on the development of multifunctional agents for AD amelioration using different core scaffolds for their design, and carbamate is among them. Rivastigmine was the first carbamate drug investigated for AD management. The carbamate fragment, a core scaffold of rivastigmine, act as a potential inhibitor of acetylcholinesterase. In this review, we summarize the last 10 years of research conducted on the modification of carbamate with different substituents which primarily target ChE inhibition, reduce oxidative stress, and modulate Aβ aggregation.
Collapse
Affiliation(s)
- Yash Pal Singh
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Navneet Kumar
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab, India
| | | | - Prabha Garg
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab, India
| |
Collapse
|
98
|
Singh YP, Kumar H. Berberine derivatives as inhibitors of acetylcholinesterase: A systematic review. Chem Biol Drug Des 2023; 102:1592-1603. [PMID: 37665093 DOI: 10.1111/cbdd.14337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/12/2023] [Accepted: 08/18/2023] [Indexed: 09/05/2023]
Abstract
Alzheimer's disease (AD) is a chronic age-related neurodegenerative brain disorder characterized by the impairment of memory accompanied by worsening of thinking ability of an individual. The exact pathophysiology of AD is not fully understood. However low level of the neurotransmitter named acetylcholine (ACh), aggregation of Aβ peptide into toxic Aβ plaque, hyperphosphorylation of tau, bio-metal imbalance, and oxidative stress are the main hallmarks of this disease. Due to the complex pathophysiology of AD, no specific treatment is available in the market, and treatment is only limited to the symptomatic relief. So, there is an urgent need for the development of new drug candidate, which can have disease-modifying effect and improve learning and memory in AD patient. Therefore, berberine-based multifunction compounds with potential cholinesterase inhibitory properties were reviewed in this article. Structure-activity relationship (SAR) and biological activity provide highlights on the new derivatives used for the management of AD.
Collapse
Affiliation(s)
- Yash Pal Singh
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | - Harish Kumar
- Government College of Pharmacy, Shimla, Himachal Pradesh, India
| |
Collapse
|
99
|
Zou D, Liu R, Lv Y, Guo J, Zhang C, Xie Y. Latest advances in dual inhibitors of acetylcholinesterase and monoamine oxidase B against Alzheimer's disease. J Enzyme Inhib Med Chem 2023; 38:2270781. [PMID: 37955252 PMCID: PMC10653629 DOI: 10.1080/14756366.2023.2270781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 09/27/2023] [Indexed: 11/14/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive brain disease characterised by progressive memory loss and cognition impairment, ultimately leading to death. There are three FDA-approved acetylcholinesterase inhibitors (donepezil, rivastigmine, and galantamine, AChEIs) for the symptomatic treatment of AD. Monoamine oxidase B (MAO-B) has been considered to contribute to pathologies of AD. Therefore, we reviewed the dual inhibitors of acetylcholinesterase (AChE) and MAO-B developed in the last five years. In this review, these dual-target inhibitors were classified into six groups according to the basic parent structure, including chalcone, coumarin, chromone, benzo-fused five-membered ring, imine and hydrazine, and other scaffolds. Their design strategies, structure-activity relationships (SARs), and molecular docking studies with AChE and MAO-B were analysed and discussed, giving valuable insights for the subsequent development of AChE and MAO-B dual inhibitors. Challenges in the development of balanced and potent AChE and MAO-B dual inhibitors were noted, and corresponding solutions were provided.
Collapse
Affiliation(s)
- Dajiang Zou
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Renzheng Liu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Yangjing Lv
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Jianan Guo
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Changjun Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Yuanyuan Xie
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceutical, Zhejiang University of Technology, Hangzhou, China
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, Key Laboratory of Pharmaceutical Engineering of Zhejiang Province, Hangzhou, China
| |
Collapse
|
100
|
Zhang C, Zhang Y, Lv Y, Guo J, Gao B, Lu Y, Zang A, Zhu X, Zhou T, Xie Y. Chromone-based monoamine oxidase B inhibitor with potential iron-chelating activity for the treatment of Alzheimer's disease. J Enzyme Inhib Med Chem 2023; 38:100-117. [PMID: 36519319 PMCID: PMC9762789 DOI: 10.1080/14756366.2022.2134358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Based on the multitarget-directed ligands (MTDLs) strategy, a series of chromone-hydroxypyridinone hybrids were designed, synthesised, and evaluated as potential multimodal anti-AD ligands. Prospective iron-chelating effects and favourable monoamine oxidase B (MAO-B) inhibitory activities were observed for most of the compounds. Pharmacological assays led to the identification of compound 17d, which exhibited favourable iron-chelating potential (pFe3+ = 18.52) and selective hMAO-B inhibitory activity (IC50 = 67.02 ± 4.3 nM, SI = 11). Docking simulation showed that 17d occupied both the substrate and the entrance cavity of MAO-B, and established several key interactions with the pocket residues. Moreover, 17d was determined to cross the blood-brain barrier (BBB), and can significantly ameliorate scopolamine-induced cognitive impairment in AD mice. Despite its undesired pharmacokinetic property, 17d remains a promising multifaceted agent that is worth further investigation.
Collapse
Affiliation(s)
- Changjun Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Yujia Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Yangjing Lv
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Jianan Guo
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Bianbian Gao
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Yi Lu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Anjie Zang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Xi Zhu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Tao Zhou
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, P. R. China
| | - Yuanyuan Xie
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, P. R. China,Collaborative Innovation Centre of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, P. R. China,CONTACT Yuanyuan X. Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou310014, P. R. China
| |
Collapse
|