51
|
Villate-Beitia I, Puras G, Soto-Sánchez C, Agirre M, Ojeda E, Zarate J, Fernández E, Pedraz JL. Non-viral vectors based on magnetoplexes, lipoplexes and polyplexes for VEGF gene delivery into central nervous system cells. Int J Pharm 2017; 521:130-140. [DOI: 10.1016/j.ijpharm.2017.02.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 02/02/2017] [Accepted: 02/05/2017] [Indexed: 12/19/2022]
|
52
|
Chen E, Chu S, Gov L, Kim Y, Lodoen M, Tenner A, Liu W. CD200 modulates macrophage cytokine secretion and phagocytosis in response to poly(lactic co-glycolic acid) microparticles and films. J Mater Chem B 2017; 5:1574-1584. [PMID: 28736613 PMCID: PMC5515357 DOI: 10.1039/c6tb02269c] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Biocompatibility is a major concern for developing biomaterials used in medical devices, tissue engineering and drug delivery. Poly(lactic-co-glycolic acid) (PLGA) is one of the most widely used biodegradable materials, yet still triggers a significant foreign body response that impairs healing. Immune cells including macrophages respond to the implanted biomaterial and mediate the host response, which can eventually lead to device failure. Previously in our laboratory, we found that CD200, an immunomodulatory protein, suppressed macrophage inflammatory activation in vitro and reduced local immune cell infiltration around a biomaterial implant. While in our initial study we used polystyrene as a model material, here we investigate the effect of CD200 on PLGA, a commonly used biomaterial with many potential clinical applications. We fabricated PLGA with varied geometries, modified their surfaces with CD200, and examined macrophage cytokine secretion and phagocytosis. We found that CD200 suppressed secretion of the pro-inflammatory cytokine TNF-α and enhanced secretion of the anti-inflammatory cytokine IL-10, suggesting a role for CD200 in promoting wound healing and tissue remodeling. In addition, we found that CD200 increased phagocytosis in both murine macrophages and human monocytes. Together, these data suggest that modification with CD200 leads to a response that simultaneously prevents inflammation and enhances phagocytosis. This immunomodulatory feature may be used as a strategy to mitigate inflammation or deliver drugs or anti-inflammatory agents targeting macrophages.
Collapse
Affiliation(s)
- E.Y. Chen
- Department of Chemical Engineering and Materials Science, University of California, Irvine
- The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California, Irvine
| | - S. Chu
- Department of Molecular Biology and Biochemistry, University of California, Irvine
| | - L. Gov
- Department of Molecular Biology and Biochemistry, University of California, Irvine
| | - Y.K. Kim
- Department of Chemical Engineering and Materials Science, University of California, Irvine
- The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California, Irvine
- Department of Biomedical Engineering, University of California, Irvine
| | - M.B. Lodoen
- Department of Molecular Biology and Biochemistry, University of California, Irvine
| | - A.J. Tenner
- Department of Molecular Biology and Biochemistry, University of California, Irvine
| | - W.F. Liu
- Department of Chemical Engineering and Materials Science, University of California, Irvine
- The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California, Irvine
- Department of Biomedical Engineering, University of California, Irvine
| |
Collapse
|
53
|
Ebrahimian M, Taghavi S, Mokhtarzadeh A, Ramezani M, Hashemi M. Co-delivery of Doxorubicin Encapsulated PLGA Nanoparticles and Bcl-xL shRNA Using Alkyl-Modified PEI into Breast Cancer Cells. Appl Biochem Biotechnol 2017; 183:126-136. [DOI: 10.1007/s12010-017-2434-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 02/06/2017] [Indexed: 12/30/2022]
|
54
|
Inhaled sildenafil as an alternative to oral sildenafil in the treatment of pulmonary arterial hypertension (PAH). J Control Release 2017; 250:96-106. [PMID: 28185800 DOI: 10.1016/j.jconrel.2017.02.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 02/02/2017] [Indexed: 01/08/2023]
Abstract
The practice of treating PAH patients with oral or intravenous sildenafil suffers from the limitations of short dosing intervals, peripheral vasodilation, unwanted side effects, and restricted use in pediatric patients. In this study, we sought to test the hypothesis that inhalable poly(lactic-co-glycolic acid) (PLGA) particles of sildenafil prolong the release of the drug, produce pulmonary specific vasodilation, reduce the systemic exposure of the drug, and may be used as an alternative to oral sildenafil in the treatment of PAH. Thus, we prepared porous PLGA particles of sildenafil using a water-in-oil-in-water double emulsion solvent evaporation method with polyethyleneimine (PEI) as a porosigen and characterized the formulations for surface morphology, respirability, in-vitro drug release, and evaluated for in vivo absorption, alveolar macrophage uptake, and safety. PEI increased the particle porosity, drug entrapment, and produced drug release for 36h. Fluorescent particles showed reduced uptake by alveolar macrophages. The polymeric particles were safe to rat pulmonary arterial smooth muscle cell and to the lungs, as evidenced by the cytotoxicity assay and analyses of the injury markers in the bronchoalveolar lavage fluid, respectively. Intratracheally administered sildenafil particles elicited more pulmonary specific and sustained vasodilation in SUGEN-5416/hypoxia-induced PAH rats than oral, intravenous, or intratracheal plain sildenafil did, when administered at the same dose. Overall, true to the hypothesis, this study shows that inhaled PLGA particles of sildenafil can be administered, as a substitute for oral form of sildenafil, at a reduced dose and longer dosing interval.
Collapse
|
55
|
Selby LI, Cortez-Jugo CM, Such GK, Johnston APR. Nanoescapology: progress toward understanding the endosomal escape of polymeric nanoparticles. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2017; 9. [PMID: 28160452 DOI: 10.1002/wnan.1452] [Citation(s) in RCA: 186] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 12/07/2016] [Accepted: 12/17/2016] [Indexed: 02/06/2023]
Abstract
Using nanoparticles to deliver drugs to cells has the potential to revolutionize the treatment of many diseases, including HIV, cancer, and diabetes. One of the major challenges facing this field is controlling where the drug is trafficked once the nanoparticle is taken up into the cell. In particular, if drugs remain localized in an endosomal or lysosomal compartment, the therapeutic can be rendered completely ineffective. To ensure the design of more effective delivery systems we must first develop a better understanding of how nanoparticles and their cargo are trafficked inside cells. This needs to be combined with an understanding of what characteristics are required for nanoparticles to achieve endosomal escape, along with methods to detect endosomal escape effectively. This review is focused into three sections: first, an introduction to the mechanisms governing internalization and trafficking in cells, second, a discussion of methods to detect endosomal escape, and finally, recent advances in controlling endosomal escape from polymer- and lipid-based nanoparticles, with a focus on engineering materials to promote endosomal escape. WIREs Nanomed Nanobiotechnol 2017, 9:e1452. doi: 10.1002/wnan.1452 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Laura I Selby
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Christina M Cortez-Jugo
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, Victoria, Australia.,Department of Chemical and Biomolecular Engineering, The University of Melbourne, Parkville, Victoria, Australia
| | - Georgina K Such
- Department of Chemistry, The University of Melbourne, Parkville, Victoria, Australia
| | - Angus P R Johnston
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, Victoria, Australia
| |
Collapse
|
56
|
Megías R, Arco M, Ciriza J, Saenz del Burgo L, Puras G, López-Viota M, Delgado ÁV, Dobson JP, Arias JL, Pedraz JL. Design and characterization of a magnetite/PEI multifunctional nanohybrid as non-viral vector and cell isolation system. Int J Pharm 2017; 518:270-280. [DOI: 10.1016/j.ijpharm.2016.12.042] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 12/14/2016] [Accepted: 12/17/2016] [Indexed: 12/20/2022]
|
57
|
Metwally AA, El-Ahmady SH, Hathout RM. Selecting optimum protein nano-carriers for natural polyphenols using chemoinformatics tools. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2016; 23:1764-1770. [PMID: 27912878 DOI: 10.1016/j.phymed.2016.10.020] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 09/30/2016] [Accepted: 10/26/2016] [Indexed: 05/21/2023]
Abstract
BACKGROUND The normal fate of any natural product with a therapeutic potential is to be formulated into an effective medicine. However, the conventional methods of selecting the suitable formulations or carriers based on the formulator experiences, trials and errors as well as materials availability do not usually yield the optimal results. HYPOTHESIS We hypothesize the possibility of the virtual optimum selection of a protein carrier for two polyphenolic compounds widely investigated for their chemopreventive effects; resveratrol and curcumin using a combination of some chemoinformatics tools. METHODS Two protein-based nanoparticles namely; albumin and gelatin nanoparticles were compared as carriers for the two selected phytochemicals; resveratrol and curcumin. Resveratrol-albumin, resveratrol-gelatin and curcumin-albumin results were gathered from the literature. While, a new combination (formulation), comprising curcumin as the cargo and gelatin nanoparticles as the carrier, was prepared and evaluated as a potential medicine for breast cancer. Combined chemoinformatics tools, namely; molecular dynamics and molecular docking were used to determine the optimum carrier for each of the two chemopreventive agents. RESULTS A new curcumin-gelatin nanoparticulate formulation was prepared and proven cytotoxic after an application period of 48h on MCF-7 breast cancer cell-lines scoring an IC50 value of 64.8µg/ml. The utilized chemoinformatics tools comprising the molecular dynamics simulations of the protein nano-particulate drug-carriers followed by the molecular docking of phytochemical drugs on these carriers could capture the optimum protein carrier for each of the tested phytochemical and hence propose a successful formulation. CONCLUSION This study presents one in a series that proves the novel addressed concept of the utilization of computational tools rather than wet-lab experimentation in providing better selection of drug-carrier pairs aiming for better formulations and the subsequent successful therapeutic effects.
Collapse
Affiliation(s)
- AbdelKader A Metwally
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Sherweit H El-Ahmady
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Rania M Hathout
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt; Bioinformatics program, Faculty of Computer and Information Sciences, Ain Shams University, Cairo, Egypt; Department of Pharmaceutical Technology, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), Cairo, Egypt.
| |
Collapse
|
58
|
Yhee JY, Im J, Nho RS. Advanced Therapeutic Strategies for Chronic Lung Disease Using Nanoparticle-Based Drug Delivery. J Clin Med 2016; 5:jcm5090082. [PMID: 27657144 PMCID: PMC5039485 DOI: 10.3390/jcm5090082] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Revised: 09/15/2016] [Accepted: 09/17/2016] [Indexed: 12/12/2022] Open
Abstract
Chronic lung diseases include a variety of obstinate and fatal diseases, including asthma, chronic obstructive pulmonary disease (COPD), cystic fibrosis (CF), idiopathic pulmonary fibrosis (IPF), and lung cancers. Pharmacotherapy is important for the treatment of chronic lung diseases, and current progress in nanoparticles offers great potential as an advanced strategy for drug delivery. Based on their biophysical properties, nanoparticles have shown improved pharmacokinetics of therapeutics and controlled drug delivery, gaining great attention. Herein, we will review the nanoparticle-based drug delivery system for the treatment of chronic lung diseases. Various types of nanoparticles will be introduced, and recent innovative efforts to utilize the nanoparticles as novel drug carriers for the effective treatment of chronic lung diseases will also be discussed.
Collapse
Affiliation(s)
- Ji Young Yhee
- Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Jintaek Im
- Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA.
| | | |
Collapse
|
59
|
Lü JM, Liang Z, Wang X, Gu J, Yao Q, Chen C. New polymer of lactic-co-glycolic acid-modified polyethylenimine for nucleic acid delivery. Nanomedicine (Lond) 2016; 11:1971-91. [PMID: 27456396 DOI: 10.2217/nnm-2016-0128] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM To develop an improved delivery system for nucleic acids. MATERIALS & METHODS We designed, synthesized and characterized a new polymer of lactic-co-glycolic acid-modified polyethylenimine (LGA-PEI). Functions of LGA-PEI polymer were determined. RESULTS The new LGA-PEI polymer spontaneously formed nanoparticles (NPs) with DNA or RNA, and showed higher DNA or RNA loading efficiency, higher or comparable transfection efficacy, and lower cytotoxicity in several cell types including PANC-1, Jurkat and HEK293 cells, when compared with lipofectamine 2000, branched or linear PEI (25 kDa). In nude mouse models, LGA-PEI showed higher delivery efficiency of plasmid DNA or miRNA mimic into pancreatic and ovarian xenograft tumors. LGA-PEI/DNA NPs showed much lower toxicity than control PEI NPs in mouse models. CONCLUSION The new LGA-PEI polymer is a safer and more effective system to deliver DNA or RNA than PEI.
Collapse
Affiliation(s)
- Jian-Ming Lü
- Division of Surgical Research, Michael E DeBakey Department of Surgery, Baylor College of Medicine, One Plaza, Houston, TX 77030, USA
| | - Zhengdong Liang
- Division of Surgical Research, Michael E DeBakey Department of Surgery, Baylor College of Medicine, One Plaza, Houston, TX 77030, USA
| | - Xiaoxiao Wang
- Division of Surgical Research, Michael E DeBakey Department of Surgery, Baylor College of Medicine, One Plaza, Houston, TX 77030, USA
| | - Jianhua Gu
- AFM/SEM Core Facility, The Methodist Hospital Research Institute, 6670 Bertner Avenue, Houston, TX 77030, USA
| | - Qizhi Yao
- Division of Surgical Research, Michael E DeBakey Department of Surgery, Baylor College of Medicine, One Plaza, Houston, TX 77030, USA.,Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey VA Medical Center, Houston, TX 77030, USA
| | - Changyi Chen
- Division of Surgical Research, Michael E DeBakey Department of Surgery, Baylor College of Medicine, One Plaza, Houston, TX 77030, USA
| |
Collapse
|
60
|
Yu K, Zhao J, Yu C, Sun F, Liu Y, Zhang Y, Lee RJ, Teng L, Li Y. Role of Four Different Kinds of Polyethylenimines (PEIs) in Preparation of Polymeric Lipid Nanoparticles and Their Anticancer Activity Study. J Cancer 2016; 7:872-82. [PMID: 27162547 PMCID: PMC4860805 DOI: 10.7150/jca.13855] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 03/22/2016] [Indexed: 01/14/2023] Open
Abstract
A series of polyethylenimines-coated poly(d,l-lactide-co-glycolide)/lipid nanoparticles (PPLs) were fabricated for delivering paclitaxel via a simple nano-precipitation method. Four kinds of polyethylenimines (PEIs) (800 Da-, 2000 Da- and 25 kDa-branched PEIs, and 25 kDa-linear PEI) were selected as a polymeric coating for the nanoparticles. The PPLs were evaluated for their cytotoxic effects towards tumor cells. The nanoparticles were uniform spheres with particle sizes ranging from 135.8 to 535.9 nm and zeta potentials between 13.5 and 45.4 mV. The content of lipids and PEIs were optimized at lipids content from 0 to 40% and PEI content from 2.5% to 10%, respectively. At 20% lipid content and 5% PEI content, the formulation was found to be optimal. In vitro experiments showed that 25 kDa-branched PEI coated PLGA/lipid nanoparticles (25k-bPPLs) had higher cytotoxicity than other PPLs in several cancer cell lines. Meanwhile, 25k-bPPLs maintained high cellular delivery efficiency without excessive toxicity, which was confirmed by confocal microscopy and flow cytometry analyses. Furthermore, 25k-bPPLs displayed excellent colloidal stability in pH 7.4 PBS. In conclusion, 25k-bPPLs are promising drug delivery vehicles for cancer therapeutics.
Collapse
Affiliation(s)
- Kongtong Yu
- 1. School of Life Sciences, Jilin University, Changchun, Jilin Province, 130012, China
| | - Jinlong Zhao
- 1. School of Life Sciences, Jilin University, Changchun, Jilin Province, 130012, China
| | - Changhui Yu
- 1. School of Life Sciences, Jilin University, Changchun, Jilin Province, 130012, China
| | - Fengying Sun
- 1. School of Life Sciences, Jilin University, Changchun, Jilin Province, 130012, China
| | - Yan Liu
- 1. School of Life Sciences, Jilin University, Changchun, Jilin Province, 130012, China
| | - Yang Zhang
- 1. School of Life Sciences, Jilin University, Changchun, Jilin Province, 130012, China
| | - Robert J Lee
- 1. School of Life Sciences, Jilin University, Changchun, Jilin Province, 130012, China.; 2. College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Lesheng Teng
- 1. School of Life Sciences, Jilin University, Changchun, Jilin Province, 130012, China.; 3. State Key Laboratory of Long-acting and Targeting Drug Delivery System, Yantai 264000, China
| | - Youxin Li
- 1. School of Life Sciences, Jilin University, Changchun, Jilin Province, 130012, China.; 3. State Key Laboratory of Long-acting and Targeting Drug Delivery System, Yantai 264000, China
| |
Collapse
|
61
|
Samanta A, Medintz IL. Nanoparticles and DNA - a powerful and growing functional combination in bionanotechnology. NANOSCALE 2016; 8:9037-95. [PMID: 27080924 DOI: 10.1039/c5nr08465b] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Functionally integrating DNA and other nucleic acids with nanoparticles in all their different physicochemical forms has produced a rich variety of composite nanomaterials which, in many cases, display unique or augmented properties due to the synergistic activity of both components. These capabilities, in turn, are attracting greater attention from various research communities in search of new nanoscale tools for diverse applications that include (bio)sensing, labeling, targeted imaging, cellular delivery, diagnostics, therapeutics, theranostics, bioelectronics, and biocomputing to name just a few amongst many others. Here, we review this vibrant and growing research area from the perspective of the materials themselves and their unique capabilities. Inorganic nanocrystals such as quantum dots or those made from gold or other (noble) metals along with metal oxides and carbon allotropes are desired as participants in these hybrid materials since they can provide distinctive optical, physical, magnetic, and electrochemical properties. Beyond this, synthetic polymer-based and proteinaceous or viral nanoparticulate materials are also useful in the same role since they can provide a predefined and biocompatible cargo-carrying and targeting capability. The DNA component typically provides sequence-based addressability for probes along with, more recently, unique architectural properties that directly originate from the burgeoning structural DNA field. Additionally, DNA aptamers can also provide specific recognition capabilities against many diverse non-nucleic acid targets across a range of size scales from ions to full protein and cells. In addition to appending DNA to inorganic or polymeric nanoparticles, purely DNA-based nanoparticles have recently surfaced as an excellent assembly platform and have started finding application in areas like sensing, imaging and immunotherapy. We focus on selected and representative nanoparticle-DNA materials and highlight their myriad applications using examples from the literature. Overall, it is clear that this unique functional combination of nanomaterials has far more to offer than what we have seen to date and as new capabilities for each of these materials are developed, so, too, will new applications emerge.
Collapse
Affiliation(s)
- Anirban Samanta
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, DC 20375, USA. and College of Science, George Mason University, Fairfax, Virginia 22030, USA
| | - Igor L Medintz
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, DC 20375, USA.
| |
Collapse
|
62
|
Athari SS, Mortaz E, Pourpak Z, Moin M, Moazzeni SM. VIP-loaded PLGA as an anti-asthma nanodrug candidate. ACTA ACUST UNITED AC 2016. [DOI: 10.1007/s00580-016-2265-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
63
|
Chu C, Deng J, Liu L, Cao Y, Wei X, Li J, Man Y. Nanoparticles combined with growth factors: recent progress and applications. RSC Adv 2016. [DOI: 10.1039/c6ra13636b] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Increasing attention has been focused on the applications of nanoparticles combined with growth factors (NPs/GFs) due to the substantial functions of GFs in regenerative medicine and disease treatments.
Collapse
Affiliation(s)
- Chenyu Chu
- State Key Laboratory of Oral Diseases
- West China Hospital of Stomatology
- Sichuan University
- Chengdu 610041
- China
| | - Jia Deng
- State Key Laboratory of Oral Diseases
- West China Hospital of Stomatology
- Sichuan University
- Chengdu 610041
- China
| | - Li Liu
- State Key Laboratory of Biotherapy and Laboratory for Aging Research
- West China Hospital
- Sichuan University and Collaborative Innovation Center for Biotherapy
- Chengdu
- China
| | - Yubin Cao
- State Key Laboratory of Oral Diseases
- West China Hospital of Stomatology
- Sichuan University
- Chengdu 610041
- China
| | - Xiawei Wei
- State Key Laboratory of Biotherapy and Laboratory for Aging Research
- West China Hospital
- Sichuan University and Collaborative Innovation Center for Biotherapy
- Chengdu
- China
| | - Jidong Li
- Research Center for Nano Biomaterials
- Analytical & Testing Center
- Sichuan University
- Chengdu 610041
- P. R. China
| | - Yi Man
- State Key Laboratory of Oral Diseases
- West China Hospital of Stomatology
- Sichuan University
- Chengdu 610041
- China
| |
Collapse
|
64
|
Sheng Y, Chang L, Kuang T, Hu J. PEG/heparin-decorated lipid–polymer hybrid nanoparticles for long-circulating drug delivery. RSC Adv 2016. [DOI: 10.1039/c5ra26215a] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Surface modification of lipid–polymer hybrid nanoparticles with the combined PEG and heparin was developed to achieve a significant prolongation in blood circulation.
Collapse
Affiliation(s)
- Yan Sheng
- College of Chemistry and Chemical Engineering
- Yantai University
- Yantai 264005
- People's Republic of China
| | - Lingqian Chang
- Nanoscale Science and Engineering Center
- The Ohio State University
- Columbus
- USA
| | - Tairong Kuang
- Nanoscale Science and Engineering Center
- The Ohio State University
- Columbus
- USA
| | - Jiaming Hu
- Nanoscale Science and Engineering Center
- The Ohio State University
- Columbus
- USA
| |
Collapse
|
65
|
Pillai GJ, Greeshma MM, Menon D. Impact of poly(lactic-co-glycolic acid) nanoparticle surface charge on protein, cellular and haematological interactions. Colloids Surf B Biointerfaces 2015; 136:1058-66. [PMID: 26590899 DOI: 10.1016/j.colsurfb.2015.10.047] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 10/14/2015] [Accepted: 10/28/2015] [Indexed: 11/17/2022]
Abstract
The initial interactions of nanoparticles with biomolecules have a great influence on its toxicity, efficacy, biodistribution and clearance. The present work is an attempt to understand the impact of surface charge of polymeric nanoparticles on its plasma protein and cellular interactions. Negative, near-neutral and positively charged poly(lactic-co-glycolic acid) [PLGA] nanoparticles were prepared using casein, poly(vinyl alcohol) and poly(ethylene imine) respectively, as surface stabilizers. A significant temporal variation in the hydrodynamic diameter of PLGA nanoparticles was observed in the presence of plasma proteins, which correlated with the amount of proteins adsorbed to each surface. Positively charged particles displayed the maximum size variation and protein adsorption. Cellular uptake of differentially charged nanoparticles was also concurrent with the quantity of adsorbed proteins, though there was no significant difference in their cytotoxicity. Haematological interactions (haemolysis and plasma coagulation times) of positively charged nanoparticles were considerably different from near-neutral and negative nanoparticles. Collectively, the results point to the interplay between plasma protein adsorption and cellular interactions of PLGA nanoparticles, which is governed by its surface charge, thereby necessitating a rational design of nanoparticles.
Collapse
Affiliation(s)
- Gopikrishna J Pillai
- Amrita Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, 682041 Kerala, India
| | - M M Greeshma
- Amrita Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, 682041 Kerala, India
| | - Deepthy Menon
- Amrita Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, 682041 Kerala, India.
| |
Collapse
|
66
|
Tığlı Aydın RS, Kaynak G, Gümüşderelioğlu M. Salinomycin encapsulated nanoparticles as a targeting vehicle for glioblastoma cells. J Biomed Mater Res A 2015; 104:455-64. [PMID: 26476239 DOI: 10.1002/jbm.a.35591] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 10/09/2015] [Accepted: 10/15/2015] [Indexed: 11/09/2022]
Abstract
Salinomycin has been introduced as a novel alternative to traditional anti-cancer drugs. The aim of this study was to test a strategy designed to deliver salinomycin to glioblastoma cells in vitro. Salinomycin-encapsulated polysorbate 80-coated poly(lactic-co-glycolic acid) nanoparticles (P80-SAL-PLGA) were prepared and characterized with respect to particle size, morphology, thermal properties, drug encapsulation efficiency and controlled salinomycin-release behaviour. The in vitro cellular uptake of P80-SAL-PLGA (5 and 10 µM) or uncoated nanoparticles was assessed in T98G human glioblastoma cells, and the cell viability was investigated with respect to anti-growth activities. SAL, which was successfully transported to T98G glioblastoma cells via P80 coated nanoparticles (∼14% within 60 min), greatly decreased (p < 0.01) the cellular viability of T98G cells. Substantial morphological changes were observed in the T98G cells with damaged actin cytoskeleton. Thus, P80-SAL-PLGA nanoparticles induced cell death, suggesting a potential therapeutic role for this salinomycin delivery system in the treatment of human glioblastoma.
Collapse
Affiliation(s)
- R Seda Tığlı Aydın
- Department of Biomedical Engineering, Bülent Ecevit University, İncivez, Zonguldak, 67100, Turkey
| | - Gökçe Kaynak
- Bioengineering Division, Hacettepe University, Beytepe, Ankara, Turkey
| | - Menemşe Gümüşderelioğlu
- Bioengineering Division, Hacettepe University, Beytepe, Ankara, Turkey.,Department of Chemical Engineering, Hacettepe University, Beytepe, Ankara, Turkey
| |
Collapse
|
67
|
Fu Y, Li L, Wang H, Jiang Y, Liu H, Cui X, Wang P, Lü C. Silica nanoparticles-mediated stable genetic transformation in Nicotiana tabacum. Chem Res Chin Univ 2015. [DOI: 10.1007/s40242-015-5088-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
68
|
Petrizzo A, Conte C, Tagliamonte M, Napolitano M, Bifulco K, Carriero V, De Stradis A, Tornesello ML, Buonaguro FM, Quaglia F, Buonaguro L. Functional characterization of biodegradable nanoparticles as antigen delivery system. J Exp Clin Cancer Res 2015; 34:114. [PMID: 26444005 PMCID: PMC4596393 DOI: 10.1186/s13046-015-0231-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 09/29/2015] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Peptide based vaccines may suffer from limited stability and inefficient delivery to professional antigen-presenting cells (APCs), such as dendritic cells (DCs). In order to overcome such limitations, several types of biodegradable nanoparticles (NPs) have been developed as carrier system for antigens. The present study describes for the first time the extensive biological characterization of cationic NPs made of poly (D,L-lactide-co-glycolide) (PLGA) and polyethylenimine (PLGA/PEI) as delivery system for protein/peptide antigens, with potential in therapeutic cancer vaccine development. RESULTS Flow cytometry as well as confocal laser scanning microscopy (CLSM) showed that PLGA/PEI NPs are more readily taken up than PLGA NPs by both human CD14(+) monocytes and mouse Hepa 1-6 hepatoma cell line. No signs of toxicity were observed in either cellular setting. Sequential image acquisition by TEM showed an intracellular apical localization for PLGA NPs and a perinuclear localization for PLGA/PEI NPs. Both NPs showed a clathrin-dependent as well as a caveolin-dependent internalization pathway and, once in the cells, they formed multivesicular endosomes (MVE). Finally, an ex vivo priming experiment showed that PLGA/PEI NPs are comparable to PLGA NPs in delivering a non-self antigen (i.e., ovalbumin - OVA) to immature dendritic cells (imDCs), which matured and induced autologous naïve CD4(+) T cells to differentiate to memory (i.e., central memory and effector memory) cells. Such a differentiation was associated with a Th1 phenotype suggesting a downstream activation and amplification of a CD8(+) T cell cytotoxic response. The same OVA antigen in a soluble form was unable to induce maturation of DCs, indicating that both NP formulations provided an intrinsic adjuvanting effect combined to efficient antigen delivery. CONCLUSIONS Our study represents the first report on side-by-side comparison of PLGA and PLGA/PEI NPs as strategy for protein antigen delivery. PLGA/PEI NPs are superior for cellular uptake and antigen delivery as compared to PLGA NPs. Such an evidence suggests their great potential value for vaccine development, including therapeutic cancer vaccines.
Collapse
Affiliation(s)
- A Petrizzo
- Laboratoy Molecular Biology and Viral Oncology, Department of Experimental Oncology, Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione Pascale" - IRCCS, Via Mariano Semmola 142, 80131, Naples, Italy
| | - C Conte
- Department of Pharmacy, University of Napoli Federico II, Via Domenico Montesano 49, 80131, Naples, Italy
| | - M Tagliamonte
- Laboratoy Molecular Biology and Viral Oncology, Department of Experimental Oncology, Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione Pascale" - IRCCS, Via Mariano Semmola 142, 80131, Naples, Italy
| | - M Napolitano
- Laboratory of Clinical Immunology, Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione Pascale" - IRCCS, Via Mariano Semmola 142, 80131, Naples, Italy
| | - K Bifulco
- Laboratory of Tumor Progression, Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione Pascale" - IRCCS, Via Mariano Semmola 142, 80131, Naples, Italy
| | - V Carriero
- Laboratory of Tumor Progression, Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione Pascale" - IRCCS, Via Mariano Semmola 142, 80131, Naples, Italy
| | - A De Stradis
- National Research Council Institutional Sustainable Plant Protection, Bari, Italy
| | - M L Tornesello
- Laboratoy Molecular Biology and Viral Oncology, Department of Experimental Oncology, Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione Pascale" - IRCCS, Via Mariano Semmola 142, 80131, Naples, Italy
| | - F M Buonaguro
- Laboratoy Molecular Biology and Viral Oncology, Department of Experimental Oncology, Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione Pascale" - IRCCS, Via Mariano Semmola 142, 80131, Naples, Italy
| | - F Quaglia
- Department of Pharmacy, University of Napoli Federico II, Via Domenico Montesano 49, 80131, Naples, Italy
| | - L Buonaguro
- Laboratoy Molecular Biology and Viral Oncology, Department of Experimental Oncology, Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione Pascale" - IRCCS, Via Mariano Semmola 142, 80131, Naples, Italy.
| |
Collapse
|
69
|
Puras G, Martínez-Navarrete G, Mashal M, Zárate J, Agirre M, Ojeda E, Grijalvo S, Eritja R, Diaz-Tahoces A, Avilés-Trigueros M, Fernández E, Pedraz JL. Protamine/DNA/Niosome Ternary Nonviral Vectors for Gene Delivery to the Retina: The Role of Protamine. Mol Pharm 2015; 12:3658-71. [PMID: 26334586 DOI: 10.1021/acs.molpharmaceut.5b00422] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The present study aimed to evaluate the incorporation of protamine into niosome/DNA vectors to analyze the potential application of this novel ternary formulation to deliver the pCMS-EGFP plasmid into the rat retina. Binary vectors based on niosome/DNA and ternary vectors based on protamine/DNA/niosomes were prepared and physicochemically characterized. In vitro experiments were performed in ARPE-19 cells. At 1:1:5 protamine/DNA/niosome mass ratio, the resulted ternary vectors had 150 nm size, positive charge, spherical morphology, and condensed, released, and protected the DNA against enzymatic digestion. The presence of protamine in the ternary vectors improved transfection efficiency, cell viability, and DNA condensation. After ocular administration, the EGFP expression was detected in different cell layers of the retina depending on the administration route without any sign of toxicity associated with the formulations. While subretinal administration transfected mainly photoreceptors and retinal pigment epithelial cells at the site of injection, intravitreal administration produced a more uniform distribution of the protein expression through the inner layers of the retina. The protein expression in the retina persisted for at least one month after both administrations. Our study highlights the flattering properties of protamine/DNA/niosome ternary vectors for efficient and safe gene delivery to the rat retina.
Collapse
Affiliation(s)
| | - G Martínez-Navarrete
- Neuroprothesis and Neuroengineering Research Group, Miguel Hernández University , 03202 Alicante, Spain
| | | | | | | | | | - S Grijalvo
- Institute for Advanced Chemistry of Catalonia, IQAC-CSIC, Spanish Council for Scientific Research , 08034 Barcelona, Spain
| | - R Eritja
- Institute for Advanced Chemistry of Catalonia, IQAC-CSIC, Spanish Council for Scientific Research , 08034 Barcelona, Spain
| | - A Diaz-Tahoces
- Neuroprothesis and Neuroengineering Research Group, Miguel Hernández University , 03202 Alicante, Spain
| | - M Avilés-Trigueros
- Laboratory of Experimental Ophthalmology, Faculty of Medicine, University of Murcia , Regional Campus of International Excellence "Campus Mare Nostrum", E-30100 Murcia, Spain
| | - E Fernández
- Neuroprothesis and Neuroengineering Research Group, Miguel Hernández University , 03202 Alicante, Spain
| | | |
Collapse
|
70
|
Abstract
In this article, advances in designing polymeric nanoparticles for targeted cancer gene therapy are reviewed. Characterization and evaluation of biomaterials, targeting ligands, and transcriptional elements are each discussed. Advances in biomaterials have driven improvements to nanoparticle stability and tissue targeting, conjugation of ligands to the surface of polymeric nanoparticles enable binding to specific cancer cells, and the design of transcriptional elements has enabled selective DNA expression specific to the cancer cells. Together, these features have improved the performance of polymeric nanoparticles as targeted non-viral gene delivery vectors to treat cancer. As polymeric nanoparticles can be designed to be biodegradable, non-toxic, and to have reduced immunogenicity and tumorigenicity compared to viral platforms, they have significant potential for clinical use. Results of polymeric gene therapy in clinical trials and future directions for the engineering of nanoparticle systems for targeted cancer gene therapy are also presented.
Collapse
Affiliation(s)
- Jayoung Kim
- Department of Biomedical Engineering and the Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - David R. Wilson
- Department of Biomedical Engineering and the Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Camila G. Zamboni
- Department of Biomedical Engineering and the Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, MD, USA
- Instituto do Câncer do Estado de São Paulo, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Jordan J. Green
- Department of Biomedical Engineering and the Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, USA
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
71
|
Li Q, Shi C, Zhang W, Behl M, Lendlein A, Feng Y. Nanoparticles complexed with gene vectors to promote proliferation of human vascular endothelial cells. Adv Healthc Mater 2015; 4:1225-35. [PMID: 25755152 DOI: 10.1002/adhm.201400817] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 02/12/2015] [Indexed: 11/09/2022]
Abstract
Amphiphilic block copolymers containing biodegradable hydrophobic segments of depsipeptide based copolymers have been synthesized and explored as gene carriers for enhancing proliferation of endothelial cells in vitro. These polymers form nanoparticles (NPs) with positive charges on their surface, which could condense recombinant plasmids of enhanced green fluorescent protein plasmid and ZNF580 gene (pEGFP-ZNF580) and protect them against DNase I. ZNF580 gene is efficiently transported into EA.hy926 cells to promote their proliferation, whereby the transfection efficiency of NPs/pEGFP-ZNF580 is approximately similar to that of Lipofectamine 2000. These results indicate that the NPs might have potential as a carrier for pEGFP-ZNF580, which could support endothelialization of cardiovascular implants.
Collapse
Affiliation(s)
- Qian Li
- School of Chemical Engineering and Technology; Tianjin University; Tianjin 300072 China
| | - Changcan Shi
- School of Chemical Engineering and Technology; Tianjin University; Tianjin 300072 China
| | - Wencheng Zhang
- Department of Physiology and Pathophysiology; Logistics University of Chinese People's Armed Police Force; Tianjin 300162 China
| | - Marc Behl
- Tianjin University-Helmholtz-Zentrum Geesthacht; Joint Laboratory for Biomaterials and Regenerative Medicine; Tianjin 300072 China
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies (BCRT); Helmholtz-Zentrum Geesthacht; Kantstr. 55 14513 Teltow Germany
| | - Andreas Lendlein
- Tianjin University-Helmholtz-Zentrum Geesthacht; Joint Laboratory for Biomaterials and Regenerative Medicine; Tianjin 300072 China
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies (BCRT); Helmholtz-Zentrum Geesthacht; Kantstr. 55 14513 Teltow Germany
| | - Yakai Feng
- School of Chemical Engineering and Technology; Tianjin University; Tianjin 300072 China
- Tianjin University-Helmholtz-Zentrum Geesthacht; Joint Laboratory for Biomaterials and Regenerative Medicine; Tianjin 300072 China
- Key Laboratory of Systems Bioengineering of Ministry of Education; Tianjin University; Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin); Tianjin 300072 China
| |
Collapse
|
72
|
Zhang L, Bellis SL, Fan Y, Wu Y. Using inositol as a biocompatible ligand for efficient transgene expression. Int J Nanomedicine 2015; 10:2871-84. [PMID: 25926732 PMCID: PMC4403686 DOI: 10.2147/ijn.s77002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Transgene transfection techniques using cationic polymers such as polyethylenimines (PEIs) and PEI derivatives as gene vectors have shown efficacy, although they also have shortcomings. PEIs have decent DNA-binding capability and good cell internalization performance, but they cannot deliver gene payloads very efficiently to cell nuclei. In this study, three hyperbranched polyglycerol-polyethylenimine (PG6-PEI) polymers conjugated with myo-inositol (INO) molecules were developed. The three resulting PG6-PEI-INO polymers have an increased number of INO ligands per molecule. PG6-PEI-INO 1 had only 14 carboxymethyl INO (CMINO) units per molecule. PG6-PEI-INO 2 had approximately 130 CMINO units per molecule. PG6-PEI-INO 3 had as high as 415 CMINO units approximately. Mixing PG6-PEI-INO polymers with DNA produced compact nanocomposites. We then performed localization studies using fluorescent microscopy. As the number of conjugated inositol ligands increased in PG6-PEI-INO polymers, there was a corresponding increase in accumulation of the polymers within 293T cell nuclei. Transfection performed with spherical 293T cells yielded 82% of EGFP-positive cells when using PG6-PEI-INO 3 as the vehicle. Studies further revealed that extracellular adenosine triphosphate (eATP) can inhibit the transgene efficiency of PG6-PEI-INO polymers, as compared with PEI and PG6-PEI that were not conjugated with inositol. Our work unveiled the possibility of using inositol as an effective ligand for transgene expression.
Collapse
Affiliation(s)
- Lei Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, People's Republic of China
| | - Susan L Bellis
- Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Yiwen Fan
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan, People's Republic of China
| | - Yunkun Wu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, People's Republic of China
| |
Collapse
|
73
|
Amin ML, Joo JY, Yi DK, An SSA. Surface modification and local orientations of surface molecules in nanotherapeutics. J Control Release 2015; 207:131-42. [PMID: 25883030 DOI: 10.1016/j.jconrel.2015.04.017] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Revised: 04/09/2015] [Accepted: 04/12/2015] [Indexed: 12/22/2022]
Abstract
Nanotechnology has emerged as a powerful tool for various therapeutic applications, solving many difficulties in both diagnosis and treatment. However, many obstacles in complex biological systems have impeded the successful application of therapeutic nanoparticles, and fine-tuning nanoparticle properties have become extremely important in developing highly effective nanomedicines. To this end, particles have been engineered in various ways, with a special emphasis on surface modifications. The nanoparticle surface contacts the biological environment, and is a crucial determinant of the response. Thus, surface coating, surface charge, conjugated molecules, shape, and topography have enormous impacts on the total behavior of nanoparticles, including their biodistribution, stability, target localization, cellular interaction, uptake, drug release, and toxicity. Hence, engineering of the particle surface would provide wider dimensions of control for the specific and precise functions in the development of smart nanomedicines. Moreover, local orientation of nanoparticles in vivo and orientations of surface molecules are critical for their efficacy. Herein, we analyze surface functionalities, focusing on their mechanisms and respective advantages, and summarize results of surface engineering and renovating applications of nanoparticles.
Collapse
Affiliation(s)
- Md Lutful Amin
- Department of BioNano Technology, Gachon University, Gyeonggi-do, Republic of Korea; Department of Pharmacy, Stamford University Bangladesh, Dhaka-1217, Bangladesh
| | - Jae Yeon Joo
- Department of BioNano Technology, Gachon University, Gyeonggi-do, Republic of Korea
| | - Dong Kee Yi
- Department of Chemistry, Myongji University, Yongin, Gyeonggi-do, Republic of Korea; Department of Energy and Biotechnology, Myongji University, Republic of Korea.
| | - Seong Soo A An
- Department of BioNano Technology, Gachon University, Gyeonggi-do, Republic of Korea.
| |
Collapse
|
74
|
Choudhary S, Kusum Devi V. Potential of nanotechnology as a delivery platform against tuberculosis: Current research review. J Control Release 2015; 202:65-75. [DOI: 10.1016/j.jconrel.2015.01.035] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 01/26/2015] [Accepted: 01/27/2015] [Indexed: 11/26/2022]
|
75
|
Evaluation of Lung Toxicity of Biodegradable Nanoparticles. ADVANCES IN DELIVERY SCIENCE AND TECHNOLOGY 2015. [DOI: 10.1007/978-3-319-11355-5_22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
76
|
Agirre M, Zarate J, Ojeda E, Puras G, Rojas LA, Alemany R, Pedraz JL. Delivery of an adenovirus vector plasmid by ultrapure oligochitosan based polyplexes. Int J Pharm 2014; 479:312-9. [PMID: 25550211 DOI: 10.1016/j.ijpharm.2014.12.062] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 12/23/2014] [Accepted: 12/26/2014] [Indexed: 12/11/2022]
Abstract
Ultrapure oligochitosans have been recently reported as efficient non-viral vectors for the delivery of pCMS-EGFP plasmid (5.5kbp) to the cornea and retina. However, the delivery of oncolytic adenoviral plasmids (40kbp) represents a unique challenge. In this work, we elaborated self assembled O15 and O25 UOC/pAdTLRGD polyplexes, and we studied the influence of the N/P ratio, the pH of the transfection medium and the salt concentration on the particle size and zeta potential by an orthogonal experimental design. All polyplexes showed a particle size lower than 200nm and a positive zeta potential. These parameters were influenced by the N/P ratio, salt concentration, and pH of the transfection medium. The selected polyplexes were able to bind, release, and protect the plasmid from DNase degradation. Transfection experiments in HEK293 and A549 cell lines demonstrated that UOC/pAdTLRGD polyplexes were able to deliver the plasmid and transfect both cell lines. These results suggest that O15 and O25 UOC based polyplexes are suitable for future in vivo applications.
Collapse
Affiliation(s)
- Mireia Agirre
- NanoBioCel Group, University of the Basque Country, Vitoria-Gasteiz, Spain; Networking Research Center of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - Jon Zarate
- NanoBioCel Group, University of the Basque Country, Vitoria-Gasteiz, Spain; Networking Research Center of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - Edilberto Ojeda
- NanoBioCel Group, University of the Basque Country, Vitoria-Gasteiz, Spain; Networking Research Center of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - Gustavo Puras
- NanoBioCel Group, University of the Basque Country, Vitoria-Gasteiz, Spain; Networking Research Center of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - Luis A Rojas
- Traslational Research Laboratory, IDIBELL-Institut Catalá d'Oncologia, L'Hospitalet de LLobregat, Barcelona, Spain
| | - Ramón Alemany
- Traslational Research Laboratory, IDIBELL-Institut Catalá d'Oncologia, L'Hospitalet de LLobregat, Barcelona, Spain
| | - José L Pedraz
- NanoBioCel Group, University of the Basque Country, Vitoria-Gasteiz, Spain; Networking Research Center of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain.
| |
Collapse
|
77
|
Silencing of the scavenger receptor (Class B – Type 1) gene using siRNA-loaded chitosan nanaoparticles in a HepG2 cell model. Colloids Surf B Biointerfaces 2014; 123:930-7. [DOI: 10.1016/j.colsurfb.2014.10.045] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 10/14/2014] [Accepted: 10/22/2014] [Indexed: 11/22/2022]
|
78
|
Jiang T, Yu X, Carbone EJ, Nelson C, Kan HM, Lo KWH. Poly aspartic acid peptide-linked PLGA based nanoscale particles: Potential for bone-targeting drug delivery applications. Int J Pharm 2014; 475:547-57. [DOI: 10.1016/j.ijpharm.2014.08.067] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 08/24/2014] [Accepted: 08/27/2014] [Indexed: 12/25/2022]
|
79
|
Borrajo E, Vidal A, Alonso MJ, Garcia‐Fuentes M. How Regenerative Medicine Can Benefit from Nucleic Acids Delivery Nanocarriers? POLYMERS IN REGENERATIVE MEDICINE 2014:285-336. [DOI: 10.1002/9781118356692.ch9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
|
80
|
Ashwanikumar N, Kumar NA, Nair SA, Kumar GSV. Dual drug delivery of 5-fluorouracil (5-FU) and methotrexate (MTX) through random copolymeric nanomicelles of PLGA and polyethylenimine demonstrating enhanced cell uptake and cytotoxicity. Colloids Surf B Biointerfaces 2014; 122:520-528. [PMID: 25108479 DOI: 10.1016/j.colsurfb.2014.07.024] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 07/14/2014] [Accepted: 07/15/2014] [Indexed: 12/21/2022]
Abstract
We now report the synthesis of a random copolymer of poly-lactic-co-glycolic acid (PLGA) grafted branched polyethylenimine (BPEI) and the use of it as a multi drug delivery system (DDS). The methotrexate (MTX) was conjugated to BPEI through DCC/NHS chemistry. The copolymer-drug conjugate (PBP-MTX) was characterised by FT-IR and (1)H NMR spectroscopy. The PBP-MTX was converted into nanomicelles with entrapped 5-fluorouracil (5-FU) through nanoprecipitation technique. The size, shape, morphology and surface charge of the nanomicelles were confirmed using different techniques. The thermal behaviour and distribution of both conjugated and entrapped drug through the polymeric matrix were assessed by differential scanning calorimetry (DSC) and powder X-ray diffraction analysis (PXRD). In vitro drug release pattern of the nanomicelles was examined to ascertain the release pattern of two drugs namely 5-FU and MTX. The cellular uptake studies demonstrated higher uptake of the nanomicelles in colon cancer cell line HCT 116. Further the cytotoxicity evaluation of nanomicelles illustrated promising action which confirms the use of the system as a potential DDS to colon cancer.
Collapse
Affiliation(s)
- N Ashwanikumar
- Chemical Biology, Rajiv Gandhi Centre for Biotechnology, Poojappura, Thiruvananthapuram 695 014, Kerala, India
| | - Nisha Asok Kumar
- Cancer Research Programme, Rajiv Gandhi Centre for Biotechnology, Poojappura, Thiruvananthapuram 695 014, Kerala, India
| | - S Asha Nair
- Cancer Research Programme, Rajiv Gandhi Centre for Biotechnology, Poojappura, Thiruvananthapuram 695 014, Kerala, India
| | - G S Vinod Kumar
- Chemical Biology, Rajiv Gandhi Centre for Biotechnology, Poojappura, Thiruvananthapuram 695 014, Kerala, India.
| |
Collapse
|
81
|
Xu Y, Yuen PW, Lam JKW. Intranasal DNA Vaccine for Protection against Respiratory Infectious Diseases: The Delivery Perspectives. Pharmaceutics 2014; 6:378-415. [PMID: 25014738 PMCID: PMC4190526 DOI: 10.3390/pharmaceutics6030378] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 06/20/2014] [Accepted: 06/24/2014] [Indexed: 11/16/2022] Open
Abstract
Intranasal delivery of DNA vaccines has become a popular research area recently. It offers some distinguished advantages over parenteral and other routes of vaccine administration. Nasal mucosa as site of vaccine administration can stimulate respiratory mucosal immunity by interacting with the nasopharyngeal-associated lymphoid tissues (NALT). Different kinds of DNA vaccines are investigated to provide protection against respiratory infectious diseases including tuberculosis, coronavirus, influenza and respiratory syncytial virus (RSV) etc. DNA vaccines have several attractive development potential, such as producing cross-protection towards different virus subtypes, enabling the possibility of mass manufacture in a relatively short time and a better safety profile. The biggest obstacle to DNA vaccines is low immunogenicity. One of the approaches to enhance the efficacy of DNA vaccine is to improve DNA delivery efficiency. This review provides insight on the development of intranasal DNA vaccine for respiratory infections, with special attention paid to the strategies to improve the delivery of DNA vaccines using non-viral delivery agents.
Collapse
Affiliation(s)
- Yingying Xu
- Department of Pharmacology & Pharmacy, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, 21 Sassoon Road, Hong Kong, China.
| | - Pak-Wai Yuen
- Department of Pharmacology & Pharmacy, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, 21 Sassoon Road, Hong Kong, China.
| | - Jenny Ka-Wing Lam
- Department of Pharmacology & Pharmacy, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, 21 Sassoon Road, Hong Kong, China.
| |
Collapse
|
82
|
Menon JU, Ravikumar P, Pise A, Gyawali D, Hsia CCW, Nguyen KT. Polymeric nanoparticles for pulmonary protein and DNA delivery. Acta Biomater 2014; 10:2643-52. [PMID: 24512977 DOI: 10.1016/j.actbio.2014.01.033] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 01/16/2014] [Accepted: 01/30/2014] [Indexed: 12/17/2022]
Abstract
Polymeric nanoparticles (NPs) are promising carriers of biological agents to the lung due to advantages including biocompatibility, ease of surface modification, localized action and reduced systemic toxicity. However, there have been no studies extensively characterizing and comparing the behavior of polymeric NPs for pulmonary protein/DNA delivery both in vitro and in vitro. We screened six polymeric NPs: gelatin, chitosan, alginate, poly(lactic-co-glycolic) acid (PLGA), PLGA-chitosan and PLGA-poly(ethylene glycol) (PEG), for inhalational protein/DNA delivery. All NPs except PLGA-PEG and alginate were <300nm in size with a bi-phasic core compound release profile. Gelatin, PLGA NPs and PLGA-PEG NPs remained stable in deionized water, serum, saline and simulated lung fluid (Gamble's solution) over 5days. PLGA-based NPs and natural polymer NPs exhibited the highest cytocompatibility and dose-dependent in vitro uptake, respectively, by human alveolar type-1 epithelial cells. Based on these profiles, gelatin and PLGA NPs were used to encapsulate plasmid DNA encoding yellow fluorescent protein (YFP) or rhodamine-conjugated erythropoietin (EPO) for inhalational delivery to rats. Following a single inhalation, widespread pulmonary EPO distribution persisted for up to 10days while increasing YFP expression was observed for at least 7days for both NPs. The overall results support both PLGA and gelatin NPs as promising carriers for pulmonary protein/DNA delivery.
Collapse
Affiliation(s)
- Jyothi U Menon
- Department of Bioengineering, The University of Texas at Arlington, Arlington, TX, USA; Graduate Biomedical Engineering Program, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA
| | - Priya Ravikumar
- Department of Internal Medicine, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA
| | - Amruta Pise
- Department of Bioengineering, The University of Texas at Arlington, Arlington, TX, USA; Graduate Biomedical Engineering Program, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA
| | - Dipendra Gyawali
- Department of Bioengineering, The University of Texas at Arlington, Arlington, TX, USA; Graduate Biomedical Engineering Program, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA
| | - Connie C W Hsia
- Graduate Biomedical Engineering Program, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA; Department of Internal Medicine, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA.
| | - Kytai T Nguyen
- Department of Bioengineering, The University of Texas at Arlington, Arlington, TX, USA; Graduate Biomedical Engineering Program, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA.
| |
Collapse
|
83
|
Xiao B, Yang Y, Viennois E, Zhang Y, Ayyadurai S, Baker M, Laroui H, Merlin D. Glycoprotein CD98 as a receptor for colitis-targeted delivery of nanoparticle. J Mater Chem B 2014; 2:1499-1508. [PMID: 24729869 PMCID: PMC3981968 DOI: 10.1039/c3tb21564d] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Treatment strategies for inflammatory bowel disease have been constrained by limited therapeutic efficacy and serious adverse effects owing to a lack of receptor for targeted drug delivery to the inflamed colon. Upon inflammation, CD98 expression is highly elevated in colonic epithelial cells and infiltrating immune cells. To investigate whether CD98 can be used as a colitis-targeted delivery receptor, we constructed CD98 Fab'-bearing quantum dots (QDs)-loaded nanoparticles (Fab'-NPs). The resultant Fab'-NPs had desired particle size (~458 nm) with a narrow size distribution and zeta-potential (approximately +19 mV), low cytotoxicity, and excellent fluorescence properties. Electron microscopy images provided direct evidence for the well-dispersed distribution of QDs within spherical Fab'-NPs. Cellular uptake experiments demonstrated that Fab'-NPs were efficiently internalized into Colon-26 and RAW 264.7 cells through the CD98-mediated endocytosis pathway, and showed that the targeting effect of CD98 Fab' markedly increased their cellular uptake efficiency compared with control pegylated QDs-loaded NPs (PEG-NPs). Furthermore, ex vivo studies showed much more effective accumulation of Fab'-NPs in colitis tissue than that of PEG-NPs. These findings suggest that because of inflammation-dependent over-expression of CD98, active colitis-targeted delivery can be accomplished using NPs decorated with CD98 antibody.
Collapse
Affiliation(s)
- Bo Xiao
- Center for Diagnostics and Therapeutics, Department of Biology and Chemistry, Georgia State University, Atlanta, 30302, USA. Fax: +1-404-413-3580; Tel: +1-404-413-3597
| | - Yang Yang
- Center for Diagnostics and Therapeutics, Department of Biology and Chemistry, Georgia State University, Atlanta, 30302, USA. Fax: +1-404-413-3580; Tel: +1-404-413-3597
| | - Emilie Viennois
- Center for Diagnostics and Therapeutics, Department of Biology and Chemistry, Georgia State University, Atlanta, 30302, USA. Fax: +1-404-413-3580; Tel: +1-404-413-3597
- Atlanta Veterans Affairs Medical Center, Decatur, 30033, USA
| | - Yuchen Zhang
- Center for Diagnostics and Therapeutics, Department of Biology and Chemistry, Georgia State University, Atlanta, 30302, USA. Fax: +1-404-413-3580; Tel: +1-404-413-3597
| | - Saravanan Ayyadurai
- Center for Diagnostics and Therapeutics, Department of Biology and Chemistry, Georgia State University, Atlanta, 30302, USA. Fax: +1-404-413-3580; Tel: +1-404-413-3597
| | - Mark Baker
- Center for Diagnostics and Therapeutics, Department of Biology and Chemistry, Georgia State University, Atlanta, 30302, USA. Fax: +1-404-413-3580; Tel: +1-404-413-3597
| | - Hamed Laroui
- Center for Diagnostics and Therapeutics, Department of Biology and Chemistry, Georgia State University, Atlanta, 30302, USA. Fax: +1-404-413-3580; Tel: +1-404-413-3597
| | - Didier Merlin
- Center for Diagnostics and Therapeutics, Department of Biology and Chemistry, Georgia State University, Atlanta, 30302, USA. Fax: +1-404-413-3580; Tel: +1-404-413-3597
- Atlanta Veterans Affairs Medical Center, Decatur, 30033, USA
| |
Collapse
|
84
|
Endres T, Zheng M, Kılıç A, Turowska A, Beck-Broichsitter M, Renz H, Merkel OM, Kissel T. Amphiphilic biodegradable PEG-PCL-PEI triblock copolymers for FRET-capable in vitro and in vivo delivery of siRNA and quantum dots. Mol Pharm 2014; 11:1273-81. [PMID: 24592902 DOI: 10.1021/mp400744a] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Amphiphilic triblock copolymers represent a versatile delivery platform capable of co-delivery of nucleic acids, drugs, and/or dyes. Multifunctional cationic triblock copolymers based on poly(ethylene glycol), poly-ε-caprolactone, and polyethylene imine, designed for the delivery of siRNA, were evaluated in vitro and in vivo. Moreover, a nucleic acid-unpacking-sensitive imaging technique based on quantum dot-mediated fluorescence resonance energy transfer (QD-FRET) was established. Cell uptake in vitro was measured by flow cytometry, whereas transfection efficiencies of nanocarriers with different hydrophilic block lengths were determined in vitro and in vivo by quantitative real-time PCR. Furthermore, after the proof of concept was demonstrated by fluorescence spectroscopy/microscopy, a prototype FRET pair was established by co-loading QDs and fluorescently labeled siRNA. The hydrophobic copolymer mediated a 5-fold higher cellular uptake and good knockdown efficiency (61 ± 5% in vitro, 55 ± 18% in vivo) compared to its hydrophilic counterpart (13 ± 6% in vitro, 30 ± 17% in vivo), which exhibited poor performance. FRET was demonstrated by UV-induced emission of the acceptor dye. Upon complex dissociation, which was simulated by the addition of heparin, a dose-dependent decrease in FRET efficiency was observed. We believe that in vitro/in vivo correlation of the structure and function of polymeric nanocarriers as well as sensitive imaging functionality for mechanistic investigations are prerequisites for a more rational design of amphiphilic gene carriers.
Collapse
Affiliation(s)
- Thomas Endres
- Department of Pharmaceutics and Biopharmacy, Philipps-Universität Marburg , Ketzerbach 63, 35037 Marburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
85
|
Khan W, Challa VGS, Langer R, Domb AJ. Biodegradable Polymers for Focal Delivery Systems. ADVANCES IN DELIVERY SCIENCE AND TECHNOLOGY 2014. [DOI: 10.1007/978-1-4614-9434-8_1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
86
|
Cyclodextrin based nanosponges for pharmaceutical use: a review. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2013; 63:335-58. [PMID: 24152895 DOI: 10.2478/acph-2013-0021] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nanosponges are a novel class of hyper-crosslinked polymer based colloidal structures consisting of solid nanoparticles with colloidal sizes and nanosized cavities. These nano-sized colloidal carriers have been recently developed and proposed for drug delivery, since their use can solubilize poorly water-soluble drugs and provide prolonged release as well as improve a drug's bioavailability by modifying the pharmacokinetic parameters of actives. Development of nanosponges as drug delivery systems, with special reference to cyclodextrin based nanosponges, is presented in this article. In the current review, attempts have been made to illustrate the features of cyclodextrin based nanosponges and their applications in pharmaceutical formulations. Special emphasis has been placed on discussing the methods of preparation, characterization techniques and applications of these novel drug delivery carriers for therapeutic purposes. Nanosponges can be referred to as solid porous particles having a capacity to load drugs and other actives into their nanocavity; they can be formulated as oral, parenteral, topical or inhalation dosage forms. Nanosponges offer high drug loading compared to other nanocarriers and are thus suitable for solving issues related to stability, solubility and delayed release of actives. Controlled release of the loaded actives and solubility enhancement of poorly water-soluble drugs are major advantages of nanosponge drug delivery systems.
Collapse
|
87
|
Karimi M, Avci P, Ahi M, Gazori T, Hamblin MR, Naderi-Manesh H. Evaluation of Chitosan-Tripolyphosphate Nanoparticles as a p-shRNA Delivery Vector: Formulation, Optimization and Cellular Uptake Study. ACTA ACUST UNITED AC 2013; 1:266-278. [PMID: 26989641 DOI: 10.1166/jnd.2013.1027] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Polysaccharides (especially chitosan) have recently attracted much attention as gene therapy delivery vehicles for their unique properties such as biocompatibility, biodegradability, low toxicity, and controlled release. Nanoparticles have strong potential as a carrier of plasmid short hairpin RNA (p-shRNA). This study aimed to find the optimum conditions for obtaining Chitosan/triphosphate (TPP)/p-shRNA nanoparticles by the ionic gelation method, and investigating the cellular uptake of the optimized nanoparticles. After applying the central composite design of response surface methodology (RSM), the optimum conditions for preparation of nanoparticles with small size and high loading efficiency were: chitosan/TPP ratio = 10, pH = 5.5 and N/P ratio = 11. The resulting nanoparticles had an average size of 172.8 ± 7 nm and loading efficiency of 71.5 ± 5%. SEM images showed spherical and smooth nanoparticles. The nanoparticles complexed with p-shRNA and may protect it against nuclease digestion. Cytotoxicity studies with HeLa and PC3 human cancer cells demonstrated that chitosan/TPP nanoparticles had low toxicity. Cellular uptake studies using HeLa cells showed that the nanoparticles entered the cells (cellular uptake) and delivered DNA, probably due to their favorable Zeta potential (approximately +28 mV) and small size.
Collapse
Affiliation(s)
- Mahdi Karimi
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, 14115, Iran; Department of Dermatology, Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston MA, 02114, USA
| | - Pinar Avci
- Department of Dermatology, Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston MA, 02114, USA; Department of Dermatology, Semmelweis University School of Medicine, Budapest, 1085, Hungary
| | - Mohsen Ahi
- Biotechnology Group, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, 14115, Iran
| | - Tarane Gazori
- Biotechnology Group, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, 14115, Iran
| | - Michael R Hamblin
- Department of Dermatology, Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston MA, 02114, USA; Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, 02139, USA
| | - Hossein Naderi-Manesh
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, 14115, Iran; Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, 14115, Iran
| |
Collapse
|
88
|
Gyulai G, Pénzes C, Mohai M, Csempesz F, Kiss É. Influence of surface properties of polymeric nanoparticles on their membrane affinity. Eur Polym J 2013. [DOI: 10.1016/j.eurpolymj.2013.02.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
89
|
Vadakkan MV, Annapoorna K, Sivakumar KC, Mundayoor S, Kumar GSV. Dry powder cationic lipopolymeric nanomicelle inhalation for targeted delivery of antitubercular drug to alveolar macrophage. Int J Nanomedicine 2013; 8:2871-85. [PMID: 23990716 PMCID: PMC3748905 DOI: 10.2147/ijn.s47456] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Excipients having self-assembling properties are less explored in the field of dry powder inhalation (DPI) technology. An amphiphilic lipopolymer system was developed using stearic acid (SA) and branched polyethyleneimine (BPEI) (1800 Dalton), at different proportions by covalent conjugation. A molecular dynamic (MD) simulation tool was employed for predicting the carrier behavior in a polar in vivo condition. The structural characterization was carried out using nuclear magnetic resonance spectroscopy (NMR) and Fourier transform infrared (FTIR) spectroscopy. The physical nature of the lipopolymer was analyzed by differential scanning calorimetry. Determination of zeta potential and diameter of the micelles showed existence of cationic particles in the nano size range when a lower number of primary amino groups of BPEI was grafted with SA. The rifampicin (RIF)-loaded lipopolymer was also formulated further into spray-dried microparticles. Powder X-ray diffraction (PXRD) studies revealed that the RIF API (active pharmaceutical ingredient) exists as molecular dispersion in spray-dried microparticles. Topological analysis of the spray-dried nanomicelle was carried out using scanning electron microscopy (SEM). A large population of the drug-carrying particles were found to be under the inhalable size range (fine particle fraction 67.88% ± 3%). In vitro drug release kinetics from spray-dried nanomicelles were carried out at lung fluid pH.
Collapse
|
90
|
Self-assembled nanoparticles based on modified cationic dipeptides and DNA: novel systems for gene delivery. J Nanobiotechnology 2013; 11:18. [PMID: 23800286 PMCID: PMC3707807 DOI: 10.1186/1477-3155-11-18] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 06/14/2013] [Indexed: 01/02/2023] Open
Abstract
Background Gene therapy is most effective when delivery is both efficient and safe. However, it has often proven difficult to find a balance between efficiency and safety in case of viral or polymeric vectors for gene therapy. Peptide based delivery systems may be attractive alternatives but their relative instability to proteolysis is a major concern in realizing their potential application in biomedical sciences. In this work we report gene delivery potential of nanoparticles (Nps) synthesized from cationic dipeptides containing a non-protein amino acid α, β-dehydrophenylalanine (∆Phe) residue. Methods Dipeptides were synthesized using solution phase peptide synthesis method. Nps were formed using self-assembly. Nps were characterized using light scattering, electron microscopy. Transfection efficiency was tested in hepatocellular carcinoma (HuH 7) cells. Results The cationic dipeptides condensed plasmid DNA into discrete vesicular nanostructures. Dipeptide Nps are non-cytotoxic, protected the condensed DNAs from enzymatic degradation and ferried them successfully inside different types of cells. GFP encoding plasmid DNA loaded dipeptide Nps showed positive transfection and gene expression in HuH 7 cells. Conclusions The cationic dipeptide Nps can successfully deliver DNA without exerting any cytotoxic effect. Owing to their simple dipeptide origin, ease of synthesis, enhanced enzymatic stability as well unmatched biocompatibility, these could be successfully developed as vehicles for effective gene therapy.
Collapse
|
91
|
Ong HX, Traini D, Young PM. Pharmaceutical applications of the Calu-3 lung epithelia cell line. Expert Opin Drug Deliv 2013; 10:1287-302. [PMID: 23730924 DOI: 10.1517/17425247.2013.805743] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
INTRODUCTION The Calu-3 lung cell line has been shown to be a promising in vitro model of airway epithelia due to its similarity to in vivo physiology. Hence, over the past decade, it has found increasing applications in the pharmaceutical industry. AREAS COVERED This review focuses on the pharmaceutical applications of the Calu-3 cell line in areas such as mechanisms of drug transport, studying aerosol deposition, controlled release studies and identification of possible drug-drug interactions. The main findings of various studies, as well as the predictive potential of this model, are presented and discussed in this review. EXPERT OPINION There is still a lack of mechanistic knowledge regarding transport of inhaled therapeutics across the lungs. Cell culture models such as Calu-3 provide a simple and reproducible system to study the underlying mechanisms by which inhaled therapeutics interact with the lungs. However, more complex systems that integrate particle deposition onto different cell culture systems may be useful in addressing some fundamental questions to generate a better understanding of determinants that influences pulmonary drug dissolution, absorption, metabolism and efficacy. Ultimately the use of the Calu-3 cell line provides a basic research tool that enables the development of safer and more effective inhaled therapeutics.
Collapse
Affiliation(s)
- Hui Xin Ong
- Woolcock Institute of Medical Research, Respiratory Technology, Glebe, NSW, Australia
| | | | | |
Collapse
|
92
|
Core–shell-type lipid–polymer hybrid nanoparticles as a drug delivery platform. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2013; 9:474-91. [DOI: 10.1016/j.nano.2012.11.010] [Citation(s) in RCA: 296] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 11/06/2012] [Accepted: 11/14/2012] [Indexed: 12/22/2022]
|
93
|
Wang M, Zhang Y, Feng J, Gu T, Dong Q, Yang X, Sun Y, Wu Y, Chen Y, Kong W. Preparation, characterization, and in vitro and in vivo investigation of chitosan-coated poly (d,l-lactide-co-glycolide) nanoparticles for intestinal delivery of exendin-4. Int J Nanomedicine 2013; 8:1141-54. [PMID: 23658482 PMCID: PMC3607418 DOI: 10.2147/ijn.s41457] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background Exendin-4 is an incretin mimetic agent approved for type 2 diabetes treatment. However, the required frequent injections restrict its clinical application. Here, the potential use of chitosan-coated poly (d,l-lactide-co-glycolide) (CS-PLGA) nanoparticles was investigated for intestinal delivery of exendin-4. Methods and results Nanoparticles were prepared using a modified water–oil–water (w/o/w) emulsion solvent-evaporation method, followed by coating with chitosan. The physical properties, particle size, and cell toxicity of the nanoparticles were examined. The cellular uptake mechanism and transmembrane permeability were performed in Madin-Darby canine kidney-cell monolayers. Furthermore, in vivo intraduodenal administration of exendin-4-loaded nanoparticles was carried out in rats. The PLGA nanoparticle coating with chitosan led to a significant change in zeta potential, from negative to positive, accompanied by an increase in particle size of ~30 nm. Increases in both the molecular weight and degree of deacetylation of chitosan resulted in an observable increase in zeta potential but no apparent change in the particle size of ~300 nm. Both unmodified PLGA and chitosan-coated nanoparticles showed only slight cytotoxicity. Use of different temperatures and energy depletion suggested that the cellular uptake of both types of nanoparticles was energy-dependent. Further investigation revealed that the uptake of PLGA nanoparticles occurred via caveolin-mediated endocytosis and that of CS-PLGA nanoparticles involved both macropinocytosis and clathrin-mediated endocytosis, as evidenced by using endocytic inhibitors. However, under all conditions, CS-PLGA nanoparticles showed a greater potential to be transported into cells, as shown by flow cytometry and confocal microscopy. Transmembrane permeability analysis showed that unmodified and modified PLGA nanoparticles could improve the transport of exendin-4 by up to 8.9- and 16.5-fold, respectively, consistent with the evaluation in rats. Conclusion The chitosan-coated nanoparticles have a higher transport potential over both free drug and unmodified particles, providing support for their potential development as a candidate oral delivery agent for exendin-4.
Collapse
Affiliation(s)
- Mengshu Wang
- National Engineering Laboratory for AIDS Vaccine, College of Life Science, Jilin University, Changchun, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
94
|
|
95
|
Induction of apoptosis by chitosan/HPV16 E7 siRNA complexes in cervical cancer cells. Mol Med Rep 2012; 7:998-1002. [DOI: 10.3892/mmr.2012.1246] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2012] [Accepted: 12/06/2012] [Indexed: 11/05/2022] Open
|
96
|
Rothen-Rutishauser B, Clift MJ, Jud C, Fink A, Wick P. Human epithelial cells in vitro – Are they an advantageous tool to help understand the nanomaterial-biological barrier interaction? ACTA ACUST UNITED AC 2012. [DOI: 10.1515/entl-2015-0004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstratThe human body can be exposed to nanomaterials through a variety of different routes. As nanomaterials get in contact with the skin, the gastrointestinal tract, and the respiratory tract, these biological compartments are acting as barriers to the passage of nano-sized materials into the organism. These structural and functional barriers are provided by the epithelia serving as an interface between biological compartments. In order to initiate the reduction, refinement and replacement of time consuming, expensive and stressful (to the animals) in vivo experimental approaches, many in vitro epithelial cell culture models have been developed during the last decades. This review therefore, focuses on the functional as well as structural aspects of epithelial cells as well as the most commonly used in vitro epithelial models of the primary biological barriers with which nanomaterials might come in contact with either occupationally, or during their manufacturing and application. The advantages and disadvantages of the different in vitro models are discussed in order to provide a clear overview as to whether or not epithelial cell cultures are an advantageous model to be used for basic mechanism and nanotoxicology research.
Collapse
|
97
|
Puras G, Zarate J, Díaz-Tahoces A, Avilés-Trigueros M, Fernández E, Pedraz JL. Oligochitosan polyplexes as carriers for retinal gene delivery. Eur J Pharm Sci 2012. [PMID: 23201002 DOI: 10.1016/j.ejps.2012.11.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Non-viral gene therapy represents a promising approach for the treatment of retinal diseases. However, the lack of an efficient carrier hampers the implementation of this therapy. In this study, we evaluated low molecular weight ultrapure oligochitosans for the delivery of the pCMS-EGFP plasmid into the rat retina cells after subretinal and intravitreal administrations. Polyplexes were technologically characterized. Resulting polyplexes based on ultrapure oligochitosans were slightly spherical, protected the plasmid against enzymatic digestion, and their charge and size values ranged from 8 to 14 millivolts and from 150 to 69 nm respectively depending on the N/P ratio. In HEK-293 cultured cells, transfection efficiency significantly increased from 12% to 30% when pH decreased from 7.4 to 7.1 (data normalized to Lipofectamine™ 2000). However, no significant transfection was detected in ARPE-19 cultured cells. Subretinal administrations transfected mainly the pigmented cells of the retinal pigment epithelium and the light sensitive photoreceptor cells, whereas intravitreal injections transfected cells in the ganglion cell layer, blood vessels in the inner layers of the retina and photoreceptors. These results support the potential use of oligochitosans for delivering genetic material into retinal cells in vivo.
Collapse
Affiliation(s)
- G Puras
- NanoBioCel Group, University of Basque Country, Vitoria, Spain
| | | | | | | | | | | |
Collapse
|
98
|
Kunda NK, Somavarapu S, Gordon SB, Hutcheon GA, Saleem IY. Nanocarriers targeting dendritic cells for pulmonary vaccine delivery. Pharm Res 2012; 30:325-41. [PMID: 23054093 DOI: 10.1007/s11095-012-0891-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Accepted: 09/18/2012] [Indexed: 12/27/2022]
Abstract
Pulmonary vaccine delivery has gained significant attention as an alternate route for vaccination without the use of needles. Immunization through the pulmonary route induces both mucosal and systemic immunity, and the delivery of antigens in a dry powder state can overcome some challenges such as cold-chain and availability of medical personnel compared to traditional liquid-based vaccines. Antigens formulated as nanoparticles (NPs) reach the respiratory airways of the lungs providing greater chance of uptake by relevant immune cells. In addition, effective targeting of antigens to the most 'professional' antigen presenting cells (APCs), the dendritic cells (DCs) yields an enhanced immune response and the use of an adjuvant further augments the generated immune response thus requiring less antigen/dosage to achieve vaccination. This review discusses the pulmonary delivery of vaccines, methods of preparing NPs for antigen delivery and targeting, the importance of targeting DCs and different techniques involved in formulating dry powders suitable for inhalation.
Collapse
Affiliation(s)
- Nitesh K Kunda
- Formulation and Drug Delivery Research School of Pharmacy and Biomolecular Science, Liverpool John Moores University, James Parsons Building, Byrom Street, Liverpool, L3 3AF, UK
| | | | | | | | | |
Collapse
|
99
|
Saengkrit N, Sanitrum P, Woramongkolchai N, Saesoo S, Pimpha N, Chaleawlert-Umpon S, Tencomnao T, Puttipipatkhachorn S. The PEI-introduced CS shell/PMMA core nanoparticle for silencing the expression of E6/E7 oncogenes in human cervical cells. Carbohydr Polym 2012; 90:1323-9. [PMID: 22939347 DOI: 10.1016/j.carbpol.2012.06.079] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Revised: 06/26/2012] [Accepted: 06/28/2012] [Indexed: 01/28/2023]
Abstract
In this study, we examined the potential of cationic nanoparticle - polyethyleneimine-introduced chitosan shell/poly (methyl methacrylate) core nanoparticles (CS-PEI) for siRNA delivery. Initially, DNA delivery was performed to validate the capability of CS-PEI for gene delivery in the human cervical cancer cell line, SiHa. siRNA delivery were subsequently carried out to evaluate the silencing effect on targeted E6 and E7 oncogenes. Physicochemical properties including size, zeta potential and morphology of CS-PEI/DNA and CS-PEI/siRNA complexes, were analyzed. The surface charges and sizes of the complexes were observed at different N/P ratios. The hydrodynamic sizes of the CS-PEI/DNA and CS-PEI/siRNA were approximately 300-400 and 400-500nm, respectively. Complexes were positively charged depending on the amount of added CS-PEI. AFM images revealed the mono-dispersed and spherical shapes of the complexes. Gel retardation assay confirmed that CS-PEI nanoparticles completely formed complexes with DNA and siRNA at a N/P ratio of 1.6. For DNA transfection, CS-PEI provided the highest transfection result. Localization of siRNA delivered through CS-PEI was confirmed by differential interference contrast (DIC) confocal imaging. The silencing effect of siRNA specific to HPV 16 E6/E7 oncogene was examined at 18 and 24h post-transfection. The results demonstrated the capacity of CS-PEI to suppress the expression of HVP oncogenes.
Collapse
Affiliation(s)
- Nattika Saengkrit
- National Nanotechnology Center, National Science and Technology Development Agency, Pathumthani, Thailand.
| | | | | | | | | | | | | | | |
Collapse
|
100
|
|