51
|
Geijselaers SLC, Aalten P, Ramakers IHGB, De Deyn PP, Heijboer AC, Koek HL, OldeRikkert MGM, Papma JM, Reesink FE, Smits LL, Stehouwer CDA, Teunissen CE, Verhey FRJ, van der Flier WM, Biessels GJ. Association of Cerebrospinal Fluid (CSF) Insulin with Cognitive Performance and CSF Biomarkers of Alzheimer's Disease. J Alzheimers Dis 2018; 61:309-320. [PMID: 29154275 PMCID: PMC5734123 DOI: 10.3233/jad-170522] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Background: Abnormal insulin signaling in the brain has been linked to Alzheimer’s disease (AD). Objective: To evaluate whether cerebrospinal fluid (CSF) insulin levels are associated with cognitive performance and CSF amyloid-β and Tau. Additionally, we explore whether any such association differs by sex or APOE ɛ4 genotype. Methods: From 258 individuals participating in the Parelsnoer Institute Neurodegenerative Diseases, a nationwide multicenter memory clinic population, we selected 138 individuals (mean age 66±9 years, 65.2% male) diagnosed with subjective cognitive impairment (n = 45), amnestic mild cognitive impairment (n = 44), or AD (n = 49), who completed a neuropsychological assessment, including tests of global cognition and memory performance, and who underwent lumbar puncture. We measured CSF levels of insulin, amyloid-β1-42, total (t-)Tau, and phosphorylated (p-)Tau. Results: CSF insulin levels did not differ between the diagnostic groups (p = 0.136). Across the whole study population, CSF insulin was unrelated to cognitive performance and CSF biomarkers of AD, after adjustment for age, sex, body mass index, diabetes status, and clinic site (all p≥0.131). Importantly, however, we observed effect modification by sex and APOE ɛ4 genotype. Specifically, among women, higher insulin levels in the CSF were associated with worse global cognition (standardized regression coefficient –0.483; p = 0.008) and higher p-Tau levels (0.353; p = 0.040). Among non-carriers of the APOE ɛ4 allele, higher CSF insulin was associated with higher t-Tau (0.287; p = 0.008) and p-Tau (0.246; p = 0.029). Conclusion: Our findings provide further evidence for a relationship between brain insulin signaling and AD pathology. It also highlights the need to consider sex and APOE ɛ4 genotype when assessing the role of insulin.
Collapse
Affiliation(s)
- Stefan L C Geijselaers
- Departments of Neurology and Geriatrics Brain Centre Rudolf Magnus, University Medical Centre Utrecht, Utrecht, the Netherlands.,Department of Internal Medicine and Cardiovascular Research Institute, Maastricht University Medical Centre +, Maastricht, the Netherlands
| | - Pauline Aalten
- Alzheimer Centre Limburg, School for Mental Health and Neuroscience (MHeNS), Maastricht University Medical Centre +, Maastricht, the Netherlands
| | - Inez H G B Ramakers
- Alzheimer Centre Limburg, School for Mental Health and Neuroscience (MHeNS), Maastricht University Medical Centre +, Maastricht, the Netherlands
| | - Peter Paul De Deyn
- Department of Neurology and Alzheimer Research Centre, University of Groningen, University Medical Centre Groningen, Groningen, the Netherlands
| | - Annemieke C Heijboer
- Department of Clinical Chemistry, Endocrine Laboratory, VU University Medical Centre, Amsterdam, the Netherlands
| | - Huiberdina L Koek
- Departments of Neurology and Geriatrics Brain Centre Rudolf Magnus, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Marcel G M OldeRikkert
- Radboudumc Alzheimer Centre, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Janne M Papma
- Departments of Neurology and Radiology, Erasmus University Medical Centre, Rotterdam, the Netherlands
| | - Fransje E Reesink
- Department of Neurology and Alzheimer Research Centre, University of Groningen, University Medical Centre Groningen, Groningen, the Netherlands
| | - Lieke L Smits
- Alzheimer Centre Amsterdam, VU University Medical Centre, Amsterdam, the Netherlands
| | - Coen D A Stehouwer
- Department of Internal Medicine and Cardiovascular Research Institute, Maastricht University Medical Centre +, Maastricht, the Netherlands
| | - Charlotte E Teunissen
- Department of Clinical Chemistry, Neurochemistry Laboratory and Biobank, VU University Medical Centre, Amsterdam, the Netherlands
| | - Frans R J Verhey
- Alzheimer Centre Limburg, School for Mental Health and Neuroscience (MHeNS), Maastricht University Medical Centre +, Maastricht, the Netherlands
| | | | - Geert Jan Biessels
- Department of Internal Medicine and Cardiovascular Research Institute, Maastricht University Medical Centre +, Maastricht, the Netherlands
| | | |
Collapse
|
52
|
Durães F, Pinto M, Sousa E. Old Drugs as New Treatments for Neurodegenerative Diseases. Pharmaceuticals (Basel) 2018; 11:ph11020044. [PMID: 29751602 PMCID: PMC6027455 DOI: 10.3390/ph11020044] [Citation(s) in RCA: 203] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 05/07/2018] [Accepted: 05/08/2018] [Indexed: 12/12/2022] Open
Abstract
Neurodegenerative diseases are increasing in number, given that the general global population is becoming older. They manifest themselves through mechanisms that are not fully understood, in many cases, and impair memory, cognition and movement. Currently, no neurodegenerative disease is curable, and the treatments available only manage the symptoms or halt the progression of the disease. Therefore, there is an urgent need for new treatments for this kind of disease, since the World Health Organization has predicted that neurodegenerative diseases affecting motor function will become the second-most prevalent cause of death in the next 20 years. New therapies can come from three main sources: synthesis, natural products, and existing drugs. This last source is known as drug repurposing, which is the most advantageous, since the drug’s pharmacokinetic and pharmacodynamic profiles are already established, and the investment put into this strategy is not as significant as for the classic development of new drugs. There have been several studies on the potential of old drugs for the most relevant neurodegenerative diseases, including Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, Multiple Sclerosis and Amyotrophic Lateral Sclerosis.
Collapse
Affiliation(s)
- Fernando Durães
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
- CIIMAR, Interdisciplinary Center of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos P, 4450-208 Matosinhos, Portugal.
| | - Madalena Pinto
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
- CIIMAR, Interdisciplinary Center of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos P, 4450-208 Matosinhos, Portugal.
| | - Emília Sousa
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
- CIIMAR, Interdisciplinary Center of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos P, 4450-208 Matosinhos, Portugal.
| |
Collapse
|
53
|
Novel dual GLP-1/GIP receptor agonists show neuroprotective effects in Alzheimer's and Parkinson's disease models. Neuropharmacology 2018; 136:251-259. [PMID: 29402504 DOI: 10.1016/j.neuropharm.2018.01.040] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 01/10/2018] [Accepted: 01/27/2018] [Indexed: 02/06/2023]
Abstract
Type 2 diabetes is a risk factor for several chronic neurodegenerative disorders such as Alzheimer's or Parkinson's disease. The link appears to be insulin de-sensitisation in the brain. Insulin is an important neuroprotective growth factor. GLP-1 and GIP are growth factors that re-sensitise insulin and GLP-1 mimetics are used in the clinic to treat diabetes. GLP-1 and GIP mimetics initially designed to treat diabetes show good protective effects in animal models of Alzheimer's and Parkinson's disease. Based on these results, several clinical trials have shown first encouraging effects in patients with Alzheimer's or Parkinson' disease. Novel dual GLP-1/GIP receptor agonists have been developed to treat diabetes, and they also show good neuroprotective effects that are superior to single GLP-1 analogues. Several newer dual analogues have been tested that have been engineered to cross the blood -brain barrier. They show clear neuroprotective effects by reducing inflammation and oxidative stress and apoptotic signalling and protecting memory formation, synaptic numbers and synaptic activity, motor activity, dopaminergic neurons, cortical activity and energy utilisation in the brain. These results demonstrate the potential of developing disease-modifying treatments for Alzheimer's and Parkinson's disease that are superior to current single GLP-1 mimetics. This article is part of the Special Issue entitled 'Metabolic Impairment as Risk Factors for Neurodegenerative Disorders.'
Collapse
|
54
|
Manyevitch R, Protas M, Scarpiello S, Deliso M, Bass B, Nanajian A, Chang M, Thompson SM, Khoury N, Gonnella R, Trotz M, Moore DB, Harms E, Perry G, Clunes L, Ortiz A, Friedrich JO, Murray IV. Evaluation of Metabolic and Synaptic Dysfunction Hypotheses of Alzheimer's Disease (AD): A Meta-Analysis of CSF Markers. Curr Alzheimer Res 2018; 15:164-181. [PMID: 28933272 PMCID: PMC5769087 DOI: 10.2174/1567205014666170921122458] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 09/13/2017] [Accepted: 09/14/2017] [Indexed: 01/08/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is currently incurable and a majority of investigational drugs have failed clinical trials. One explanation for this failure may be the invalidity of hypotheses focusing on amyloid to explain AD pathogenesis. Recently, hypotheses which are centered on synaptic and metabolic dysfunction are increasingly implicated in AD. OBJECTIVE Evaluate AD hypotheses by comparing neurotransmitter and metabolite marker concentrations in normal versus AD CSF. METHODS Meta-analysis allows for statistical comparison of pooled, existing cerebrospinal fluid (CSF) marker data extracted from multiple publications, to obtain a more reliable estimate of concentrations. This method also provides a unique opportunity to rapidly validate AD hypotheses using the resulting CSF concentration data. Hubmed, Pubmed and Google Scholar were comprehensively searched for published English articles, without date restrictions, for the keywords "AD", "CSF", and "human" plus markers selected for synaptic and metabolic pathways. Synaptic markers were acetylcholine, gamma-aminobutyric acid (GABA), glutamine, and glycine. Metabolic markers were glutathione, glucose, lactate, pyruvate, and 8 other amino acids. Only studies that measured markers in AD and controls (Ctl), provided means, standard errors/deviation, and subject numbers were included. Data were extracted by six authors and reviewed by two others for accuracy. Data were pooled using ratio of means (RoM of AD/Ctl) and random effects meta-analysis using Cochrane Collaboration's Review Manager software. RESULTS Of the 435 identified publications, after exclusion and removal of duplicates, 35 articles were included comprising a total of 605 AD patients and 585 controls. The following markers of synaptic and metabolic pathways were significantly changed in AD/controls: acetylcholine (RoM 0.36, 95% CI 0.24-0.53, p<0.00001), GABA (0.74, 0.58-0.94, p<0.01), pyruvate (0.48, 0.24-0.94, p=0.03), glutathione (1.11, 1.01- 1.21, p=0.03), alanine (1.10, 0.98-1.23, p=0.09), and lower levels of significance for lactate (1.2, 1.00-1.47, p=0.05). Of note, CSF glucose and glutamate levels in AD were not significantly different than that of the controls. CONCLUSION This study provides proof of concept for the use of meta-analysis validation of AD hypotheses, specifically via robust evidence for the cholinergic hypothesis of AD. Our data disagree with the other synaptic hypotheses of glutamate excitotoxicity and GABAergic resistance to neurodegeneration, given observed unchanged glutamate levels and decreased GABA levels. With regards to metabolic hypotheses, the data supported upregulation of anaerobic glycolysis, pentose phosphate pathway (glutathione), and anaplerosis of the tricarboxylic acid cycle using glutamate. Future applications of meta-analysis indicate the possibility of further in silico evaluation and generation of novel hypotheses in the AD field.
Collapse
Affiliation(s)
- Roni Manyevitch
- Department of Physiology and Neuroscience, School of Medicine, St George’s University, True Blue, St George’s, Grenada, W.I., USA
| | - Matthew Protas
- Department of Physiology and Neuroscience, School of Medicine, St George’s University, True Blue, St George’s, Grenada, W.I., USA
| | - Sean Scarpiello
- Department of Physiology and Neuroscience, School of Medicine, St George’s University, True Blue, St George’s, Grenada, W.I., USA
| | - Marisa Deliso
- Department of Physiology and Neuroscience, School of Medicine, St George’s University, True Blue, St George’s, Grenada, W.I., USA
| | - Brittany Bass
- Department of Physiology and Neuroscience, School of Medicine, St George’s University, True Blue, St George’s, Grenada, W.I., USA
| | - Anthony Nanajian
- Department of Physiology and Neuroscience, School of Medicine, St George’s University, True Blue, St George’s, Grenada, W.I., USA
| | - Matthew Chang
- Department of Physiology and Neuroscience, School of Medicine, St George’s University, True Blue, St George’s, Grenada, W.I., USA
| | - Stefani M. Thompson
- Department of Physiology and Neuroscience, School of Medicine, St George’s University, True Blue, St George’s, Grenada, W.I., USA
| | - Neil Khoury
- Department of Physiology and Neuroscience, School of Medicine, St George’s University, True Blue, St George’s, Grenada, W.I., USA
| | - Rachel Gonnella
- Department of Physiology and Neuroscience, School of Medicine, St George’s University, True Blue, St George’s, Grenada, W.I., USA
| | - Margit Trotz
- Department of Biochemistry, School of Medicine, St George’s University, Grenada, W.I., USA
| | - D. Blaine Moore
- Department of Biology, Kalamazoo College, Kalamazoo, MI, USA
| | - Emily Harms
- Department of Educational Services, St George’s University, Grenada, W.I., USA
| | - George Perry
- Department of Biology, University of Texas San Antonio, TX, USA
| | - Lucy Clunes
- Department of Pharmacology, School of Medicine, St George’s University, Grenada, W.I., USA
| | - Angélica Ortiz
- Department of Anatomy, School of Medicine, St George’s University, Grenada, W.I., USA
| | | | - Ian V.J. Murray
- Department of Physiology and Neuroscience, School of Medicine, St George’s University, True Blue, St George’s, Grenada, W.I., USA
- Department of Biology, University of Texas San Antonio, TX, USA
| |
Collapse
|
55
|
Vieira MNN, Lima-Filho RAS, De Felice FG. Connecting Alzheimer's disease to diabetes: Underlying mechanisms and potential therapeutic targets. Neuropharmacology 2017; 136:160-171. [PMID: 29129775 DOI: 10.1016/j.neuropharm.2017.11.014] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 11/07/2017] [Accepted: 11/08/2017] [Indexed: 12/31/2022]
Abstract
Alzheimer's disease (AD) is a risk factor for type 2 diabetes and vice versa, and a growing body of evidence indicates that these diseases are connected both at epidemiological, clinical and molecular levels. Recent studies have begun to reveal common pathogenic mechanisms shared by AD and type 2 diabetes. Impaired neuronal insulin signaling and endoplasmic reticulum (ER) stress are present in animal models of AD, similar to observations in peripheral tissue in T2D. These findings shed light into novel diabetes-related mechanisms leading to brain dysfunction in AD. Here, we review the literature on selected mechanisms shared between these diseases and discuss how the identification of such mechanisms may lead to novel therapeutic targets in AD. This article is part of the Special Issue entitled 'Metabolic Impairment as Risk Factors for Neurodegenerative Disorders.'
Collapse
Affiliation(s)
- Marcelo N N Vieira
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil; Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil.
| | - Ricardo A S Lima-Filho
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil.
| | - Fernanda G De Felice
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil; Centre for Neuroscience Studies, Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario K7L 3N6, Canada.
| |
Collapse
|
56
|
Rojas-Gutierrez E, Muñoz-Arenas G, Treviño S, Espinosa B, Chavez R, Rojas K, Flores G, Díaz A, Guevara J. Alzheimer's disease and metabolic syndrome: A link from oxidative stress and inflammation to neurodegeneration. Synapse 2017; 71:e21990. [PMID: 28650104 DOI: 10.1002/syn.21990] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 06/20/2017] [Accepted: 06/21/2017] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia and one of the most important causes of morbidity and mortality among the aging population. AD diagnosis is made post-mortem, and the two pathologic hallmarks, particularly evident in the end stages of the illness, are amyloid plaques and neurofibrillary tangles. Currently, there is no curative treatment for AD. Additionally, there is a strong relation between oxidative stress, metabolic syndrome, and AD. The high levels of circulating lipids and glucose imbalances amplify lipid peroxidation that gradually diminishes the antioxidant systems, causing high levels of oxidative metabolism that affects cell structure, leading to neuronal damage. Accumulating evidence suggests that AD is closely related to a dysfunction of both insulin signaling and glucose metabolism in the brain, leading to an insulin-resistant brain state. Four drugs are currently used for this pathology: Three FDA-approved cholinesterase inhibitors and one NMDA receptor antagonist. However, wide varieties of antioxidants are promissory to delay or prevent the symptoms of AD and may help in treating the disease. Therefore, therapeutic efforts to achieve attenuation of oxidative stress could be beneficial in AD treatment, attenuating Aβ-induced neurotoxicity and improve neurological outcomes in AD. The term inflammaging characterizes a widely accepted paradigm that aging is accompanied by a low-grade chronic up-regulation of certain pro-inflammatory responses in the absence of overt infection, and is a highly significant risk factor for both morbidity and mortality in the elderly.
Collapse
Affiliation(s)
- Eduardo Rojas-Gutierrez
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Guadalupe Muñoz-Arenas
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Pue, Mexico
| | - Samuel Treviño
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Pue, Mexico
| | - Blanca Espinosa
- Departamento de Bioquímica, Instituto Nacional de Enfermedades Respiratorias-INER, Ciudad de México, Mexico
| | - Raúl Chavez
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Karla Rojas
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Gonzalo Flores
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, Puebla, Pue, Mexico
| | - Alfonso Díaz
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Pue, Mexico
| | - Jorge Guevara
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| |
Collapse
|
57
|
Velazquez R, Tran A, Ishimwe E, Denner L, Dave N, Oddo S, Dineley KT. Central insulin dysregulation and energy dyshomeostasis in two mouse models of Alzheimer's disease. Neurobiol Aging 2017; 58:1-13. [PMID: 28688899 PMCID: PMC5819888 DOI: 10.1016/j.neurobiolaging.2017.06.003] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 05/23/2017] [Accepted: 06/09/2017] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder worldwide. While the causes of AD are not known, several risk factors have been identified. Among these, type two diabetes (T2D), a chronic metabolic disease, is one of the most prevalent risk factors for AD. Insulin resistance, which is associated with T2D, is defined as diminished or absent insulin signaling and is reflected by peripheral blood hyperglycemia and impaired glucose clearance. In this study, we used complementary approaches to probe for peripheral insulin resistance, central nervous system (CNS) insulin sensitivity and energy homeostasis in Tg2576 and 3xTg-AD mice, two widely used animal models of AD. We report that CNS insulin signaling abnormalities are evident months before peripheral insulin resistance. In addition, we find that brain energy metabolism is differentially altered in both mouse models, with 3xTg-AD mice showing more extensive changes. Collectively, our data suggest that early AD may reflect engagement of different signaling networks that influence CNS metabolism, which in turn may alter peripheral insulin signaling.
Collapse
Affiliation(s)
- Ramon Velazquez
- Arizona State University-Banner Neurodegenerative Disease Research Center at the Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - An Tran
- Arizona State University-Banner Neurodegenerative Disease Research Center at the Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Egide Ishimwe
- Department of Neurology, Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch at Galveston (UTMB), Galveston, TX, USA
| | - Larry Denner
- Internal Medicine, Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch at Galveston (UTMB), Galveston, TX, USA
| | - Nikhil Dave
- Arizona State University-Banner Neurodegenerative Disease Research Center at the Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Salvatore Oddo
- Arizona State University-Banner Neurodegenerative Disease Research Center at the Biodesign Institute, Arizona State University, Tempe, AZ, USA; School of Life Sciences, Arizona State University, Tempe, AZ, USA.
| | - Kelly T Dineley
- Department of Neurology, Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch at Galveston (UTMB), Galveston, TX, USA.
| |
Collapse
|
58
|
Szajer J, Jacobson A, Green E, Murphy C. Reduced brain response to a sweet taste in Hispanic young adults. Brain Res 2017; 1674:101-110. [PMID: 28851601 DOI: 10.1016/j.brainres.2017.08.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 08/17/2017] [Accepted: 08/22/2017] [Indexed: 12/26/2022]
Abstract
Hispanics have an increased risk for metabolic disorders, which evidence suggests may be due to interactions between lifespan biological, genetic, and lifestyle factors. Studies show the diet of many U.S. Hispanic groups have high sugar consumption, which has been shown to influence future preference for and consumption of high-sugar foods, and is associated with increased risk for insulin-related disorders and obesity. Taste is a primary determinant of food preference and selection. Differences in neural response to taste have been associated with obesity. Understanding brain response to sweet taste stimuli in healthy Hispanic adults is an important first step in characterizing the potential neural mechanisms for this behavior. We used fMRI to examine brain activation during the hedonic evaluation of sucrose as a function of ethnicity in Hispanic and non-Hispanic young adults. Taste stimuli were administered orally while subjects were scanned at 3T. Data were analyzed with AFNI via 3dROIstats and 3dMEMA, a mixed effects multi-level analysis of whole brain activation. The Hispanic group had significantly lower ROI activation in the left amygdala and significantly lower whole brain activation in regions critical for reward processing, and hedonic evaluation (e.g. frontal, orbitofrontal, and anterior cingulate cortices) than the non-Hispanic group. Differences in processing of sweet tastes have important clinical and public health implications, especially considering increased risk of metabolic syndrome and cognitive decline in Hispanic populations. Future research to better understanding relationships between health risk and brain function in Hispanic populations is warranted to better conceptualize and develop interventions for these populations.
Collapse
Affiliation(s)
- Jacquelyn Szajer
- San Diego State University/UC San Diego Joint Doctoral Program, San Diego, CA, USA
| | | | - Erin Green
- San Diego State University/UC San Diego Joint Doctoral Program, San Diego, CA, USA
| | - Claire Murphy
- San Diego State University/UC San Diego Joint Doctoral Program, San Diego, CA, USA; San Diego State University, San Diego, CA, USA; University of California, San Diego, CA, USA.
| |
Collapse
|
59
|
The impact of diet-based glycaemic response and glucose regulation on cognition: evidence across the lifespan. Proc Nutr Soc 2017; 76:466-477. [DOI: 10.1017/s0029665117000829] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The brain has a high metabolic rate and its metabolism is almost entirely restricted to oxidative utilisation of glucose. These factors emphasise the extreme dependence of neural tissue on a stable and adequate supply of glucose. Whereas initially it was thought that only glucose deprivation (i.e. under hypoglycaemic conditions) can affect brain function, it has become apparent that low-level fluctuations in central availability can affect neural and consequently, cognitive performance. In the present paper the impact of diet-based glycaemic response and glucose regulation on cognitive processes across the lifespan will be reviewed. The data suggest that although an acute rise in blood glucose levels has some short-term improvements of cognitive function, a more stable blood glucose profile, which avoids greater peaks and troughs in circulating glucose is associated with better cognitive function and a lower risk of cognitive impairments in the longer term. Therefore, a habitual diet that secures optimal glucose delivery to the brain in the fed and fasting states should be most advantageous for the maintenance of cognitive function. Although the evidence to date is promising, it is insufficient to allow firm and evidence-based nutritional recommendations. The rise in obesity, diabetes and metabolic syndrome in recent years highlights the need for targeted dietary and lifestyle strategies to promote healthy lifestyle and brain function across the lifespan and for future generations. Consequently, there is an urgent need for hypothesis-driven, randomised controlled trials that evaluate the role of different glycaemic manipulations on cognition.
Collapse
|
60
|
Tramutola A, Arena A, Cini C, Butterfield DA, Barone E. Modulation of GLP-1 signaling as a novel therapeutic approach in the treatment of Alzheimer’s disease pathology. Expert Rev Neurother 2016; 17:59-75. [PMID: 27715341 DOI: 10.1080/14737175.2017.1246183] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Antonella Tramutola
- Department of Biochemical Sciences ‘A. Rossi-Fanelli’, Sapienza University of Rome, Roma, Italy
| | - Andrea Arena
- Department of Biochemical Sciences ‘A. Rossi-Fanelli’, Sapienza University of Rome, Roma, Italy
| | - Chiara Cini
- Department of Biochemical Sciences ‘A. Rossi-Fanelli’, Sapienza University of Rome, Roma, Italy
| | - D. Allan Butterfield
- Department of Chemistry and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - Eugenio Barone
- Department of Biochemical Sciences ‘A. Rossi-Fanelli’, Sapienza University of Rome, Roma, Italy
- Universidad Autónoma de Chile, Instituto de Ciencias Biomédicas, Facultad de Salud, Santiago, Chile
| |
Collapse
|
61
|
Anti-amnesic effect of Dendropanax morbifera via JNK signaling pathway on cognitive dysfunction in high-fat diet-induced diabetic mice. Behav Brain Res 2016; 312:39-54. [DOI: 10.1016/j.bbr.2016.06.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 06/03/2016] [Accepted: 06/07/2016] [Indexed: 02/06/2023]
|
62
|
Salem L, Saleh N, Désaméricq G, Youssov K, Dolbeau G, Cleret L, Bourhis ML, Azulay JP, Krystkowiak P, Verny C, Morin F, Moutereau S, The French Huntington Study Group, Bachoud-Lévi AC, Maison P. Insulin-Like Growth Factor-1 but Not Insulin Predicts Cognitive Decline in Huntington's Disease. PLoS One 2016; 11:e0162890. [PMID: 27627435 PMCID: PMC5023180 DOI: 10.1371/journal.pone.0162890] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 08/30/2016] [Indexed: 01/05/2023] Open
Abstract
Background Huntington's disease (HD) is one of several neurodegenerative disorders that have been associated with metabolic alterations. Changes in Insulin Growth Factor 1 (IGF-1) and/or insulin input to the brain may underlie or contribute to the progress of neurodegenerative processes. Here, we investigated the association over time between changes in plasma levels of IGF-1 and insulin and the cognitive decline in HD patients. Methods We conducted a multicentric cohort study in 156 patients with genetically documented HD aged from 22 to 80 years. Among them, 146 patients were assessed at least twice with a follow-up of 3.5 ± 1.8 years. We assessed their cognitive decline using the Unified Huntington’s Disease Rating Scale, and their IGF-1 and insulin plasmatic levels, at baseline and once a year during the follow-up. Associations were evaluated using a mixed-effect linear model. Results In the cross-sectional analysis at baseline, higher levels of IGF-1 and insulin were associated with lower cognitive scores and thus with a higher degree of cognitive impairment. In the longitudinal analysis, the decrease of all cognitive scores, except the Stroop interference, was associated with the IGF-1 level over time but not of insulin. Conclusions IGF-1 levels, unlike insulin, predict the decline of cognitive function in HD.
Collapse
Affiliation(s)
- Linda Salem
- Université Paris Est, Faculté de médecine, Créteil, France
- Inserm, U955, Equipe 01, Neuropsychologie interventionnelle, Créteil, France
- Ecole Normale Supérieure, Département d'études Cognitives, Paris, France
- AP-HP, Hôpital H. Mondor- A. Chenevier, Centre de référence maladie de Huntington, Neurologie cognitive, Créteil, France
| | - Nadine Saleh
- Université Paris Est, Faculté de médecine, Créteil, France
- Inserm, U955, Equipe 01, Neuropsychologie interventionnelle, Créteil, France
- Ecole Normale Supérieure, Département d'études Cognitives, Paris, France
- AP-HP, Hôpital H. Mondor- A. Chenevier, Centre de référence maladie de Huntington, Neurologie cognitive, Créteil, France
| | - Gaelle Désaméricq
- Université Paris Est, Faculté de médecine, Créteil, France
- Inserm, U955, Equipe 01, Neuropsychologie interventionnelle, Créteil, France
- Ecole Normale Supérieure, Département d'études Cognitives, Paris, France
- AP-HP, Hôpital H. Mondor- A. Chenevier, Centre de référence maladie de Huntington, Neurologie cognitive, Créteil, France
| | - Katia Youssov
- Université Paris Est, Faculté de médecine, Créteil, France
- Inserm, U955, Equipe 01, Neuropsychologie interventionnelle, Créteil, France
- Ecole Normale Supérieure, Département d'études Cognitives, Paris, France
- AP-HP, Hôpital H. Mondor- A. Chenevier, Centre de référence maladie de Huntington, Neurologie cognitive, Créteil, France
| | - Guillaume Dolbeau
- Université Paris Est, Faculté de médecine, Créteil, France
- Inserm, U955, Equipe 01, Neuropsychologie interventionnelle, Créteil, France
- AP-HP, Hôpital H. Mondor- A. Chenevier, Unité de recherche clinique, Créteil, France
| | - Laurent Cleret
- Université Paris Est, Faculté de médecine, Créteil, France
- Inserm, U955, Equipe 01, Neuropsychologie interventionnelle, Créteil, France
- Ecole Normale Supérieure, Département d'études Cognitives, Paris, France
- AP-HP, Hôpital H. Mondor- A. Chenevier, Centre de référence maladie de Huntington, Neurologie cognitive, Créteil, France
| | - Marie-Laure Bourhis
- AP-HP, Hôpital H. Mondor- A. Chenevier, Unité de recherche clinique, Créteil, France
| | - Jean-Philippe Azulay
- Hôpital de la Timone, Service de Neurologie et pathologie du mouvement, Marseille, France
| | | | - Christophe Verny
- CHU of Angers, Centre de référence des maladies neurogénétiques, service de neurologie, Angers, France
| | - Françoise Morin
- AP-HP-GHU NORD, Hôpital Avicenne, Etablissement Français du sang, Bobigny, France
| | - Stéphane Moutereau
- AP-HP, Hôpital H. Mondor- A. Chenevier, Département de Biochimie-Pharmaco-Toxicologie, Créteil, France
| | | | - Anne-Catherine Bachoud-Lévi
- Université Paris Est, Faculté de médecine, Créteil, France
- Inserm, U955, Equipe 01, Neuropsychologie interventionnelle, Créteil, France
- Ecole Normale Supérieure, Département d'études Cognitives, Paris, France
- AP-HP, Hôpital H. Mondor- A. Chenevier, Centre de référence maladie de Huntington, Neurologie cognitive, Créteil, France
- * E-mail:
| | - Patrick Maison
- Université Paris Est, Faculté de médecine, Créteil, France
- Inserm, U955, Equipe 01, Neuropsychologie interventionnelle, Créteil, France
- Ecole Normale Supérieure, Département d'études Cognitives, Paris, France
- AP-HP, Hôpital H. Mondor- A. Chenevier, Centre de référence maladie de Huntington, Neurologie cognitive, Créteil, France
| |
Collapse
|
63
|
Hölscher C. Glucagon-like peptide 1 and glucose-dependent insulinotropic polypeptide analogues as novel treatments for Alzheimer’s and Parkinson’s disease. Cardiovasc Endocrinol 2016. [DOI: 10.1097/xce.0000000000000087] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
64
|
Abstract
Concerns about hypoglycaemia, plus lack of evidence of benefit, contributed to underutilisation of insulin for older people with type 2 diabetes in the past. Following the UKPDS it is clear that many elderly patients treated with diet and oral antidiabetic agents will develop beta-cell failure and will be at risk of worsening glycaemic control with reduced well-being unless insulin is considered. Following diabetes diagnosis, the mainstay of treatment will be dietary control and exercise together with management of cardiovascular risk factors. When glycaemic control deteriorates oral agents will be needed. However, whereas in the past insulin was seen as a last resort for older type 2 patients there is support for considering its early use in selected older people with preserved cognitive function and poor glycaemic control, as well as for frail older people with weight loss and poor quality of life. The regimens of choice may include a combination of basal insulin with oral agents or twice-daily combinations of premixed short and intermediate acting insulin. The development of insulin analogues with their associated reduced risk of hypoglycaemia may also herald a new era of insulin treatment for older people.
Collapse
Affiliation(s)
- Timothy J Hendra
- Department of Geriatric Medicine, Brearley Wing, Northern General Hospital, Herries Road, Sheffield, S5 7AU, UK,Tim,
| |
Collapse
|
65
|
Gainey SJ, Kwakwa KA, Bray JK, Pillote MM, Tir VL, Towers AE, Freund GG. Short-Term High-Fat Diet (HFD) Induced Anxiety-Like Behaviors and Cognitive Impairment Are Improved with Treatment by Glyburide. Front Behav Neurosci 2016; 10:156. [PMID: 27563288 PMCID: PMC4980396 DOI: 10.3389/fnbeh.2016.00156] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 07/29/2016] [Indexed: 01/21/2023] Open
Abstract
Obesity-associated comorbidities such as cognitive impairment and anxiety are increasing public health burdens that have gained prevalence in children. To better understand the impact of childhood obesity on brain function, mice were fed with a high-fat diet (HFD) from weaning for 1, 3 or 6 weeks. When compared to low-fat diet (LFD)-fed mice (LFD-mice), HFD-fed mice (HFD-mice) had impaired novel object recognition (NOR) after 1 week. After 3 weeks, HFD-mice had impaired NOR and object location recognition (OLR). Additionally, these mice displayed anxiety-like behavior by measure of both the open-field and elevated zero maze (EZM) testing. At 6 weeks, HFD-mice were comparable to LFD-mice in NOR, open-field and EZM performance but they remained impaired during OLR testing. Glyburide, a second-generation sulfonylurea for the treatment of type 2 diabetes, was chosen as a countermeasure based on previous data exhibiting its potential as an anxiolytic. Interestingly, a single dose of glyburide corrected deficiencies in NOR and mitigated anxiety-like behaviors in mice fed with HFD-diet for 3-weeks. Taken together these results indicate that a HFD negatively impacts a subset of hippocampal-independent behaviors relatively rapidly, but such behaviors normalize with age. In contrast, impairment of hippocampal-sensitive memory takes longer to develop but persists. Since single-dose glyburide restores brain function in 3-week-old HFD-mice, drugs that block ATP-sensitive K(+) (KATP) channels may be of clinical relevance in the treatment of obesity-associated childhood cognitive issues and psychopathologies.
Collapse
Affiliation(s)
- Stephen J Gainey
- Department of Animal Sciences, University of IllinoisUrbana, IL, USA; Department of Pathology, Program in Integrative Immunology and Behavior, University of Illinois College of MedicineUrbana, IL, USA
| | - Kristin A Kwakwa
- Department of Pathology, Program in Integrative Immunology and Behavior, University of Illinois College of Medicine Urbana, IL, USA
| | - Julie K Bray
- Department of Pathology, Program in Integrative Immunology and Behavior, University of Illinois College of Medicine Urbana, IL, USA
| | - Melissa M Pillote
- Department of Pathology, Program in Integrative Immunology and Behavior, University of Illinois College of Medicine Urbana, IL, USA
| | - Vincent L Tir
- Department of Pathology, Program in Integrative Immunology and Behavior, University of Illinois College of Medicine Urbana, IL, USA
| | - Albert E Towers
- Department of Pathology, Program in Integrative Immunology and Behavior, University of Illinois College of MedicineUrbana, IL, USA; Department of Nutritional Sciences, University of IllinoisUrbana, IL, USA
| | - Gregory G Freund
- Department of Animal Sciences, University of IllinoisUrbana, IL, USA; Department of Pathology, Program in Integrative Immunology and Behavior, University of Illinois College of MedicineUrbana, IL, USA; Department of Nutritional Sciences, University of IllinoisUrbana, IL, USA
| |
Collapse
|
66
|
Picone P, Vilasi S, Librizzi F, Contardi M, Nuzzo D, Caruana L, Baldassano S, Amato A, Mulè F, San Biagio PL, Giacomazza D, Di Carlo M. Biological and biophysics aspects of metformin-induced effects: cortex mitochondrial dysfunction and promotion of toxic amyloid pre-fibrillar aggregates. Aging (Albany NY) 2016; 8:1718-34. [PMID: 27509335 PMCID: PMC5032692 DOI: 10.18632/aging.101004] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 07/15/2016] [Indexed: 12/26/2022]
Abstract
The onset of Alzheimer disease (AD) is influenced by several risk factors comprising diabetes. Within this context, antidiabetic drugs, including metformin, are investigated for their effect on AD. We report that in the C57B6/J mice, metformin is delivered to the brain where activates AMP-activated kinase (AMPK), its molecular target. This drug affects the levels of β-secretase (BACE1) and β-amyloid precursor protein (APP), promoting processing and aggregation of β-amyloid (Aβ), mainly in the cortex region. Moreover, metformin induces mitochondrial dysfunction and cell death by affecting the level and conformation of Translocase of the Outer Membrane 40 (TOM40), voltage-dependent anion-selective channels 1 (VDAC1) and hexokinase I (HKI), proteins involved in mitochondrial transport of molecules, including Aβ. By using biophysical techniques we found that metformin is able to directly interact with Aβ influencing its aggregation kinetics and features. These findings indicate that metformin induces different adverse effects, leading to an overall increase of the risk of AD onset.
Collapse
Affiliation(s)
- Pasquale Picone
- Istituto di Biomedicina e Immunologia Molecolare, CNR, Palermo, Italy
| | | | | | - Marco Contardi
- Istituto di Biofisica, CNR, Palermo, Italy
- Current address: Italian Institute of Technology, Genova, Italy
| | - Domenico Nuzzo
- Istituto di Biomedicina e Immunologia Molecolare, CNR, Palermo, Italy
| | - Luca Caruana
- Istituto di Biomedicina e Immunologia Molecolare, CNR, Palermo, Italy
| | - Sara Baldassano
- Departimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, University of Palermo, Palermo, Italy
| | - Antonella Amato
- Departimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, University of Palermo, Palermo, Italy
| | - Flavia Mulè
- Departimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, University of Palermo, Palermo, Italy
| | | | | | - Marta Di Carlo
- Istituto di Biomedicina e Immunologia Molecolare, CNR, Palermo, Italy
| |
Collapse
|
67
|
Mansouri S, Lietzau G, Lundberg M, Nathanson D, Nyström T, Patrone C. Pituitary Adenlylate Cyclase Activating Peptide Protects Adult Neural Stem Cells from a Hypoglycaemic milieu. PLoS One 2016; 11:e0156867. [PMID: 27305000 PMCID: PMC4909203 DOI: 10.1371/journal.pone.0156867] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 05/19/2016] [Indexed: 12/25/2022] Open
Abstract
Hypoglycaemia is a common side-effect of glucose-lowering therapies for type-2 diabetic patients, which may cause cognitive/neurological impairment. Although the effects of hypoglycaemia in the brain have been extensively studied in neurons, how hypoglycaemia impacts the viability of adult neural stem cells (NSCs) has been poorly investigated. In addition, the cellular and molecular mechanisms of how hypoglycaemia regulates NSCs survival have not been characterized. Recent work others and us have shown that the pituitary adenylate cyclase-activating polypeptide (PACAP) and the glucagon-like peptide-1 receptor (GLP-1R) agonist Exendin-4 stimulate NSCs survival against glucolipoapoptosis. The aim of this study was to establish an in vitro system where to study the effects of hypoglycaemia on NSC survival. Furthermore, we determine the potential role of PACAP and Exendin-4 in counteracting the effect of hypoglycaemia. A hypoglycaemic in vitro milieu was mimicked by exposing subventricular zone-derived NSC to low levels of glucose. Moreover, we studied the potential involvement of apoptosis and endoplasmic reticulum stress by quantifying protein levels of Bcl-2, cleaved caspase-3 and mRNA levels of CHOP. We show that PACAP via PAC-1 receptor and PKA activation counteracts impaired NSC viability induced by hypoglycaemia. The protective effect induced by PACAP correlated with endoplasmic reticulum stress, Exendin-4 was ineffective. The results show that hypoglycaemia decreases NSC viability and that this effect can be substantially counteracted by PACAP via PAC-1 receptor activation. The data supports a potential therapeutic role of PAC-1 receptor agonists for the treatment of neurological complications, based on neurogenesis impairment by hypoglycaemia.
Collapse
Affiliation(s)
- Shiva Mansouri
- Department of Clinical Science and Education, Södersjukhuset, Internal Medicine, Karolinska Institutet, Stockholm, Sweden
- * E-mail:
| | - Grazyna Lietzau
- Department of Clinical Science and Education, Södersjukhuset, Internal Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Mathias Lundberg
- Department of Clinical Science and Education, Södersjukhuset, Internal Medicine, Karolinska Institutet, Stockholm, Sweden
| | - David Nathanson
- Department of Clinical Science and Education, Södersjukhuset, Internal Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Thomas Nyström
- Department of Clinical Science and Education, Södersjukhuset, Internal Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Cesare Patrone
- Department of Clinical Science and Education, Södersjukhuset, Internal Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
68
|
Gumuslu E, Mutlu O, Celikyurt IK, Ulak G, Akar F, Erden F, Ertan M. Exenatide enhances cognitive performance and upregulates neurotrophic factor gene expression levels in diabetic mice. Fundam Clin Pharmacol 2016; 30:376-84. [PMID: 26935863 DOI: 10.1111/fcp.12192] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Revised: 02/22/2016] [Accepted: 02/26/2016] [Indexed: 12/25/2022]
Abstract
Exenatide is a potent and selective agonist for the GLP-1 (glucagon-like peptide-1) receptor. Recent studies are focused on the effects of GLP-1 analogues on hippocampal neurogenesis, cognition, learning and memory functions. The aim of this study was to assess the effects of chronic exenatide treatment (0.1 μg/kg, s.c, twice daily for 2 weeks) on spatial memory functions by using the modified elevated plus maze (mEPM) test and emotional memory functions by using the passive avoidance (PA) test in streptozotocin/nicotinamide (STZ-NA)-induced diabetic mice. As the genes involved in neurite remodelling are among the primary targets of regulation, the effects of diabetes and chronic administration of exenatide on brain-derived neurotrophic factor (BDNF) and cyclic adenosine monophosphate (cAMP) response element binding protein (CREB) messenger ribonucleic acid (mRNA) levels in the hippocampus of mice were also determined using quantitative real-time polymerase chain reaction (RT-PCR). This study revealed that in the mEPM and PA tests, type-2 diabetes-induced mice exhibited significant impairment of learning and memory which were ameliorated by GLP-1 receptor agonist exenatide. Quantitative RT-PCR revealed that CREB and BDNF gene expression levels were downregulated in diabetic mice, and these alterations were increased by exenatide treatment. Since, exenatide improves cognitive ability in STZ/NA-induced diabetic mice and activates molecular mechanisms of memory storage in response to a learning experience, it may be a candidate for alleviation of mood and cognitive disorder.
Collapse
Affiliation(s)
- Esen Gumuslu
- Department of Medical Genetics, Medical Faculty, Kocaeli University, Kocaeli, 41380, Turkey
| | - Oguz Mutlu
- Department of Medical Pharmacology, Psychopharmacology Lab., Medical Faculty, Kocaeli University, Kocaeli, 41380, Turkey
| | - Ipek K Celikyurt
- Department of Medical Pharmacology, Psychopharmacology Lab., Medical Faculty, Kocaeli University, Kocaeli, 41380, Turkey
| | - Guner Ulak
- Department of Medical Pharmacology, Psychopharmacology Lab., Medical Faculty, Kocaeli University, Kocaeli, 41380, Turkey
| | - Furuzan Akar
- Department of Medical Pharmacology, Psychopharmacology Lab., Medical Faculty, Kocaeli University, Kocaeli, 41380, Turkey
| | - Faruk Erden
- Department of Medical Pharmacology, Psychopharmacology Lab., Medical Faculty, Kocaeli University, Kocaeli, 41380, Turkey
| | - Merve Ertan
- Department of Medical Genetics, Medical Faculty, Kocaeli University, Kocaeli, 41380, Turkey
| |
Collapse
|
69
|
Fang F, Gao Y, Wang T, Chen D, Liu J, Qian W, Cheng J, Gao R, Wang J, Xiao H. Insulin signaling disruption in male mice due to perinatal bisphenol A exposure: Role of insulin signaling in the brain. Toxicol Lett 2016; 245:59-67. [PMID: 26779933 DOI: 10.1016/j.toxlet.2016.01.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 01/10/2016] [Accepted: 01/11/2016] [Indexed: 12/16/2022]
Abstract
Bisphenol A (BPA), an environmental estrogenic endocrine disruptor, is widely used for producing polycarbonate plastics and epoxy resins. Available data have shown that perinatal exposure to BPA contributes to peripheral insulin resistance, while in the present study, we aimed to investigate the effects of perinatal BPA exposure on insulin signaling and glucose transport in the cortex of offspring mice. The pregnant mice were administrated either vehicle or BPA (100 μg/kg/day) at three perinatal stages. Stage I: from day 6 of gestation until parturition (P6-PND0 fetus exposure); Stage II: from lactation until delactation (PND0-PND21 newborn exposure) and Stage III: from day 6 of pregnancy until delactation (P6-PND21 fetus and newborn exposure). At 8 months of age for the offspring mice, the insulin signaling pathways and glucose transporters (GLUTs) were detected. Our data indicated that the insulin signaling including insulin, phosphorylated insulin receptor (IR), phosphorylated protein kinase B (p-AKT), phosphorylated glycogen synthase kinase 3β (p-GSK3β) and phosphorylated extracellular signal regulated protein kinase (p-ERK) were significantly decreased in the brain. In parallel, GLUTs (GLUT1/3/4) were obviously decreased as well in BPA-treated group in mice brain. Noteworthily, the phosphorylated tau (p-tau) and amyloid precursor protein (APP) were markedly up-regulated in all BPA-treated groups. These results, taken together, suggest the adverse effects of BPA on insulin signaling and GLUTs, which might subsequently contribute to the increment of p-tau and APP in the brain of adult offspring. Therefore, perinatal BPA exposure might be a risk factor for the long-term neurodegenerative changes in offspring male mice.
Collapse
Affiliation(s)
- Fangfang Fang
- Key Lab of Modern Toxicology (NJMU), Ministry of Education, Department of Toxicology, School of Public Health, Nanjing Medical University, 818 Tianyuan East Road, Nanjing 211166, China
| | - Yue Gao
- Key Lab of Modern Toxicology (NJMU), Ministry of Education, Department of Toxicology, School of Public Health, Nanjing Medical University, 818 Tianyuan East Road, Nanjing 211166, China
| | - Tingwei Wang
- Key Lab of Modern Toxicology (NJMU), Ministry of Education, Department of Toxicology, School of Public Health, Nanjing Medical University, 818 Tianyuan East Road, Nanjing 211166, China
| | - Donglong Chen
- Key Lab of Modern Toxicology (NJMU), Ministry of Education, Department of Toxicology, School of Public Health, Nanjing Medical University, 818 Tianyuan East Road, Nanjing 211166, China
| | - Jingli Liu
- Key Lab of Modern Toxicology (NJMU), Ministry of Education, Department of Toxicology, School of Public Health, Nanjing Medical University, 818 Tianyuan East Road, Nanjing 211166, China; Department of Laboratory Medicine, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing 210000, China
| | - Wenyi Qian
- Key Lab of Modern Toxicology (NJMU), Ministry of Education, Department of Toxicology, School of Public Health, Nanjing Medical University, 818 Tianyuan East Road, Nanjing 211166, China
| | - Jie Cheng
- Key Lab of Modern Toxicology (NJMU), Ministry of Education, Department of Toxicology, School of Public Health, Nanjing Medical University, 818 Tianyuan East Road, Nanjing 211166, China
| | - Rong Gao
- Key Lab of Modern Toxicology (NJMU), Ministry of Education, Department of Toxicology, School of Public Health, Nanjing Medical University, 818 Tianyuan East Road, Nanjing 211166, China
| | - Jun Wang
- Key Lab of Modern Toxicology (NJMU), Ministry of Education, Department of Toxicology, School of Public Health, Nanjing Medical University, 818 Tianyuan East Road, Nanjing 211166, China.
| | - Hang Xiao
- Key Lab of Modern Toxicology (NJMU), Ministry of Education, Department of Toxicology, School of Public Health, Nanjing Medical University, 818 Tianyuan East Road, Nanjing 211166, China.
| |
Collapse
|
70
|
Luchsinger JA, Perez T, Chang H, Mehta P, Steffener J, Pradabhan G, Ichise M, Manly J, Devanand DP, Bagiella E. Metformin in Amnestic Mild Cognitive Impairment: Results of a Pilot Randomized Placebo Controlled Clinical Trial. J Alzheimers Dis 2016; 51:501-14. [PMID: 26890736 PMCID: PMC5079271 DOI: 10.3233/jad-150493] [Citation(s) in RCA: 189] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Diabetes and hyperinsulinemia may be risk factors for Alzheimer's disease (AD). We conducted a pilot study of metformin, a medication efficacious in treating and preventing diabetes while reducing hyperinsulinemia, among persons with amnestic mild cognitive impairment (aMCI) with the goal of collecting preliminary data on feasibility, safety, and efficacy. Participants were 80 men and women aged 55 to 90 years with aMCI, overweight or obese, without treated diabetes. We randomized participants to metformin 1000 mg twice a day or matching placebo for 12 months. The co-primary clinical outcomes were changes from baseline to 12 months in total recall of the Selective Reminding Test (SRT) and the score of the Alzheimer's Disease Assessment Scale-cognitive subscale (ADAS-cog). The secondary outcome was change in relative glucose uptake in the posterior cingulate-precuneus in brain fluorodeoxyglucose positron emission tomography. Change in plasma Aβ42 was an exploratory outcome. The mean age of participants was 65 years. Fifty percent of participants were women. The only baseline variable that was different between the arms was the ADAS-Cog. Metformin could not be tolerated by 7.5% of participants; 15% tolerated 500 mg/day, 35% tolerated 1000 mg/day, 32.5% tolerated 1500 mg/day, and only 10% tolerated the maximum dose. There were no serious adverse events related to metformin. The 7.5% of persons who did not tolerate metformin reported gastrointestinal symptoms. After adjusting for baseline ADAS-cog, changes in total recall of the SRT favored the metformin group (9.7±8.5 versus 5.3±8.5; p = 0.02). Differences for other outcomes were not significant. A larger trial seems warranted to evaluate the efficacy and cognitive safety of metformin in prodromal AD.
Collapse
Affiliation(s)
- José A. Luchsinger
- Departments of Medicine and Epidemiology, Columbia University Medical Center, 630 West 168 street, New York, NY 10032. USA
| | - Thania Perez
- Deparment of Medicine, Columbia University Medical Center, 630 West 168 street, New York, NY 10032. USA
| | - Helena Chang
- Department of Statistics, Mt. Sinai Medical Center, 1425 Madison Avenue, New York, NY, 10029, USA
| | - Pankaj Mehta
- New York Institute for Basic Research, 1050 Forest Hill Road, Staten Island, NY 10314, USA
| | - Jason Steffener
- Gertrude H. Sergievsky Center, Columbia University, 630 West 168 Street, New York, NY 10032, USA
| | - Gnanavalli Pradabhan
- Department of Psychiatry, Columbia University Medical Center, and Division of Geriatric Psychiatry, New York State Psychiatric Institute, 1051 Riverside Drive, New York, NY 10032, USA
| | - Masanori Ichise
- Department of Radiology, Columbia University Medical Center, 622 West 168 street, New York, NY 10032, USA
| | - Jennifer Manly
- Gertrude H. Sergievsky Center, Columbia University, 630 West 168 Street, New York, NY 10032, USA
| | - Devangere P. Devanand
- Department of Psychiatry, Columbia University Medical Center, and Division of Geriatric Psychiatry, New York State Psychiatric Institute, 1051 Riverside Drive, New York, NY 10032, USA
| | - Emilia Bagiella
- Department of Statistics, Mt. Sinai Medical Center, 1425 Madison Avenue, New York, NY, 10029, USA
| |
Collapse
|
71
|
Blanching alters the phenolic constituents and in vitro antioxidant and anticholinesterases properties of fireweed (Crassocephalum crepidioides). J Taibah Univ Med Sci 2015. [DOI: 10.1016/j.jtumed.2015.09.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
72
|
Chang WC, Kuo PL, Chen CW, Wu JSB, Shen SC. Caffeic acid improves memory impairment and brain glucose metabolism via ameliorating cerebral insulin and leptin signaling pathways in high-fat diet-induced hyperinsulinemic rats. Food Res Int 2015. [DOI: 10.1016/j.foodres.2015.04.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
73
|
Adenosine A2B receptor activation stimulates glucose uptake in the mouse forebrain. Purinergic Signal 2015; 11:561-9. [PMID: 26446689 DOI: 10.1007/s11302-015-9474-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 09/23/2015] [Indexed: 01/08/2023] Open
Abstract
ATP consumption during intense neuronal activity leads to peaks of both extracellular adenosine levels and increased glucose uptake in the brain. Here, we investigated the hypothesis that the activation of the low-affinity adenosine receptor, the A2B receptor (A(2B)R), promotes glucose uptake in neurons and astrocytes, thereby linking brain activity with energy metabolism. To this end, we mapped the spatiotemporal accumulation of the fluorescent-labelled deoxyglucose, 2-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-2-deoxyglucose (2-NBDG), in superfused acute hippocampal slices of C57Bl/6j mice. Bath application of the A(2B)R agonist BAY606583 (300 nM) triggered an immediate and stable (>10 min) increase of the velocity of 2-NBDG accumulation throughout hippocampal slices. This was abolished with the pretreatment with the selective A(2B)R antagonist, MRS1754 (200 nM), and was also absent in A(2B)R null-mutant mice. In mouse primary astrocytic or neuronal cultures, BAY606583 similarly increased (3)H-deoxyglucose uptake in the following 20 min incubation period, which was again abolished by a pretreatment with MRS1754. Finally, incubation of hippocampal, frontocortical, or striatal slices of C57Bl/6j mice at 37 °C, with either MRS1754 (200 nM) or adenosine deaminase (3 U/mL) significantly reduced glucose uptake. Furthermore, A(2B)R blockade diminished newly synthesized glycogen content and at least in the striatum, increased lactate release. In conclusion, we report here that A(2B)R activation is associated with an instant and tonic increase of glucose transport into neurons and astrocytes in the mouse brain. These prompt further investigations to evaluate the clinical potential of this novel glucoregulator mechanism.
Collapse
|
74
|
Ahmed S, Mahmood Z, Zahid S. Linking insulin with Alzheimer's disease: emergence as type III diabetes. Neurol Sci 2015; 36:1763-9. [PMID: 26248483 DOI: 10.1007/s10072-015-2352-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 07/25/2015] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease (AD) has characteristic neuropathological abnormalities including regionalized neurodegeneration, neurofibrillary tangles, amyloid beta (Aβ) deposition, activation of pro-apoptotic genes, and oxidative stress. As the brain functions continue to disintegrate, there is a decline in person's cognitive abilities, memory, mood, spontaneity, and socializing behavior. A framework that sequentially interlinks all these phenomenons under one event is lacking. Accumulating evidence has indicated the role of insulin deficiency and insulin resistance as mediators of AD neurodegeneration. Herein, we reviewed the evidence stemming from the development of diabetes agent-induced AD animal model. Striking evidence has attributed loss of insulin receptor-bearing neurons to precede or accompany initial stage of AD. This state seems to progress with AD such that, in the terminal stages, it worsens and becomes global. Oxidative stress, tau hyperphosphorylation, APP-Aβ deposition, and impaired glucose and energy metabolism have all been linked to perturbation in insulin/IGF signaling. We conclude that AD could be referred to as "type 3 diabetes". Moreover, owing to common pathophysiology with diabetes common therapeutic regime could be effective for AD patients.
Collapse
Affiliation(s)
- Sara Ahmed
- Neurobiology Research Laboratory, Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Zahra Mahmood
- Neurobiology Research Laboratory, Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Saadia Zahid
- Neurobiology Research Laboratory, Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan.
| |
Collapse
|
75
|
Noel A, Ingrand S, Barrier L. Inhibition of GSK3β by pharmacological modulation of sphingolipid metabolism occurs independently of ganglioside disturbance in a cellular model of Alzheimer's disease. Exp Neurol 2015; 271:308-18. [PMID: 26115843 DOI: 10.1016/j.expneurol.2015.06.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 06/19/2015] [Accepted: 06/22/2015] [Indexed: 12/11/2022]
Abstract
Accumulating evidence implicates ganglioside and/or related-sphingolipid disturbance in the pathogenesis of Alzheimer's disease (AD). However, it is not known whether these lipidic alterations are connected with other important features of AD, such as deregulated insulin/Akt/GSK3 signaling. In this study, we have treated neuroglioma cells expressing the double Swedish mutation of human amyloid precursor protein (H4APPsw) with several glycosphingolipid (GSL)-modulating agents, and we have analyzed the impact of the aberrant ganglioside composition on the GSK3 activation state. We found that both ceramide analogs D- and L-PDMP (1-phenyl 2-decanoylamino-3-morpholino-1-propanol), which have opposite effects on ganglioside synthesis, selectively inhibited GSK3β via Ser9 phosphorylation independently of the upstream insulin/Akt pathway. Conversely, the iminosugar N-butyldeoxynojirimycin (NB-DNJ) which displayed similar reduction of gangliosides as D-PDMP, did not affect the phosphorylation state of GSK3β. Concurrently, while NB-DNJ did not modify the cellular ceramide content, both PDMP enantiomers strongly and equally reduced the levels of long-chain ceramide species. Altogether, our findings led us to hypothesize that the PDMP-induced altered ganglioside composition is not the principal mechanism involved in the inhibition of GSK3β, but seems to implicate, at least in part, their ability to reduce ceramide levels. Nevertheless, this study provides new information regarding the possibilities to target GSK3β through modulation of sphingolipid metabolism.
Collapse
Affiliation(s)
- Anastasia Noel
- Université Laval, Faculté de médecine, Département de Psychiatrie et Neurosciences, Québec, QC, Canada; Centre Hospitalier de l'Université Laval, Axe Neurosciences, 2705 Boulevard Laurier, Québec, QC G1V 4G2, Canada; University of Poitiers, Groupe de Recherche sur le Vieillissement Cérébral, GRéViC EA 3808, Poitiers, France
| | - Sabrina Ingrand
- Université de Poitiers, UFR Médecine & Pharmacie, Service de Biochimie et Toxicologie, 6 rue de la Milétrie, TSA 51115, 86073 Poitiers cedex 9, France
| | - Laurence Barrier
- Université de Poitiers, UFR Médecine & Pharmacie, Service de Biochimie et Toxicologie, 6 rue de la Milétrie, TSA 51115, 86073 Poitiers cedex 9, France.
| |
Collapse
|
76
|
Giustina A, Berardelli R, Gazzaruso C, Mazziotti G. Insulin and GH-IGF-I axis: endocrine pacer or endocrine disruptor? Acta Diabetol 2015; 52:433-43. [PMID: 25118998 DOI: 10.1007/s00592-014-0635-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 07/23/2014] [Indexed: 12/13/2022]
Abstract
Growth hormone/insulin-like growth factor (IGF) axis may play a role in maintaining glucose homeostasis in synergism with insulin. IGF-1 can directly stimulate glucose transport into the muscle through either IGF-1 or insulin/IGF-1 hybrid receptors. In severely decompensated diabetes including diabetic ketoacidosis, plasma levels of IGF-1 are low and insulin delivery into the portal system is required to normalize IGF-1 synthesis and bioavailability. Normalization of serum IGF-1 correlated with the improvement of glucose homeostasis during insulin therapy providing evidence for the use of IGF-1 as biomarker of metabolic control in diabetes. Taking apart the inherent mitogenic discussion, diabetes treatment using insulins with high affinity for the IGF-1 receptor may act as an endocrine pacer exerting a cardioprotective effect by restoring the right level of IGF-1 in bloodstream and target tissues, whereas insulins with low affinity for the IGF-1 receptor may lack this positive effect. An excessive and indirect stimulation of IGF-1 receptor due to sustained and chronic hyperinsulinemia over the therapeutic level required to overtake acute/chronic insulin resistance may act as endocrine disruptor as it may possibly increase the cardiovascular risk in the short and medium term and mitogenic/proliferative action in the long term. In conclusion, normal IGF-1 may be hypothesized to be a good marker of appropriate insulin treatment of the subject with diabetes and may integrate and make more robust the message coming from HbA1c in terms of prediction of cardiovascular risk.
Collapse
Affiliation(s)
- Andrea Giustina
- Chair of Endocrinology and Metabolism, University of Brescia - A.O. Spedali Civili di Brescia, 25123, Brescia, Italy,
| | | | | | | |
Collapse
|
77
|
Effects of Aging and Experimentally Induced Modifications of Signal Pathways on Insulin-Induced Shifts of Glucose Metabolism in the Rat Neocortex. NEUROPHYSIOLOGY+ 2015. [DOI: 10.1007/s11062-015-9491-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
78
|
Hertz L, Chen Y, Waagepetersen HS. Effects of ketone bodies in Alzheimer's disease in relation to neural hypometabolism, β-amyloid toxicity, and astrocyte function. J Neurochem 2015; 134:7-20. [PMID: 25832906 DOI: 10.1111/jnc.13107] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 03/22/2015] [Accepted: 03/24/2015] [Indexed: 12/11/2022]
Abstract
Diet supplementation with ketone bodies (acetoacetate and β-hydroxybuturate) or medium-length fatty acids generating ketone bodies has consistently been found to cause modest improvement of mental function in Alzheimer's patients. It was suggested that the therapeutic effect might be more pronounced if treatment was begun at a pre-clinical stage of the disease instead of well after its manifestation. The pre-clinical stage is characterized by decade-long glucose hypometabolism in brain, but ketone body metabolism is intact even initially after disease manifestation. One reason for the impaired glucose metabolism may be early destruction of the noradrenergic brain stem nucleus, locus coeruleus, which stimulates glucose metabolism, at least in astrocytes. These glial cells are essential in Alzheimer pathogenesis. The β-amyloid peptide Aβ interferes with their cholinergic innervation, which impairs synaptic function because of diminished astrocytic glutamate release. Aβ also reduces glucose metabolism and causes hyperexcitability. Ketone bodies are similarly used against seizures, but the effectively used concentrations are so high that they must interfere with glucose metabolism and de novo synthesis of neurotransmitter glutamate, reducing neuronal glutamatergic signaling. The lower ketone body concentrations used in Alzheimer's disease may owe their effect to support of energy metabolism, but might also inhibit release of gliotransmitter glutamate. Alzheimer's disease is a panglial-neuronal disorder with long-standing brain hypometabolism, aberrations in both neuronal and astrocytic glucose metabolism, inflammation, hyperexcitability, and dementia. Relatively low doses of β-hydroxybutyrate can have an ameliorating effect on cognitive function. This could be because of metabolic supplementation or inhibition of Aβ-induced release of glutamate as gliotransmitter, which is likely to reduce hyperexcitability and inflammation. The therapeutic β-hydroxybutyrate doses are too low to reduce neuronally released glutamate.
Collapse
Affiliation(s)
- Leif Hertz
- Laboratory of Metabolic Brain Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang, China
| | - Ye Chen
- Henry M. Jackson Foundation, Bethesda, Maryland, USA
| | - Helle S Waagepetersen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
79
|
Adzovic L, Lynn AE, D'Angelo HM, Crockett AM, Kaercher RM, Royer SE, Hopp SC, Wenk GL. Insulin improves memory and reduces chronic neuroinflammation in the hippocampus of young but not aged brains. J Neuroinflammation 2015; 12:63. [PMID: 25889938 PMCID: PMC4391678 DOI: 10.1186/s12974-015-0282-z] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 03/17/2015] [Indexed: 01/04/2023] Open
Abstract
The role of insulin in the brain is still not completely understood. In the periphery, insulin can decrease inflammation induced by lipopolysaccharide (LPS); however, whether insulin can reduce inflammation within the brain is unknown. Experiments administrating intranasal insulin to young and aged adults have shown that insulin improves memory. In our animal model of chronic neuroinflammation, we administered insulin and/or LPS directly into the brain via the fourth ventricle for 4 weeks in young rats; we then analyzed their spatial memory and neuroinflammatory response. Additionally, we administered insulin or artificial cerebral spinal fluid (aCSF), in the same manner, to aged rats and then analyzed their spatial memory and neuroinflammatory response. Response to chronic neuroinflammation in young rats was analyzed in the presence or absence of insulin supplementation. Here, we show for the first time that insulin infused (i.c.v.) to young rats significantly attenuated the effects of LPS by decreasing the expression of neuroinflammatory markers in the hippocampus and by improving performance in the Morris water pool task. In young rats, insulin infusion alone significantly improved their performance as compared to all other groups. Unexpectedly, in aged rats, the responsiveness to insulin was completely absent, that is, spatial memory was still impaired suggesting that an age-dependent insulin resistance may contribute to the cognitive impairment observed in neurodegenerative diseases. Our data suggest a novel therapeutic effect of insulin on neuroinflammation in the young but not the aged brain.
Collapse
Affiliation(s)
- Linda Adzovic
- Department of Psychology, Ohio State University, 1835 Neil Ave, Columbus, OH, 43210, USA. .,Department of Neuroscience, Ohio State University, Columbus, OH, 43210, USA.
| | - Ashley E Lynn
- Department of Neuroscience, Ohio State University, Columbus, OH, 43210, USA.
| | - Heather M D'Angelo
- Department of Psychology, Ohio State University, 1835 Neil Ave, Columbus, OH, 43210, USA.
| | - Alexis M Crockett
- Department of Neuroscience, Ohio State University, Columbus, OH, 43210, USA.
| | - Roxanne M Kaercher
- Department of Psychology, Ohio State University, 1835 Neil Ave, Columbus, OH, 43210, USA.
| | - Sarah E Royer
- Department of Neuroscience, Ohio State University, Columbus, OH, 43210, USA.
| | - Sarah C Hopp
- Department of Neuroscience, Ohio State University, Columbus, OH, 43210, USA.
| | - Gary L Wenk
- Department of Psychology, Ohio State University, 1835 Neil Ave, Columbus, OH, 43210, USA. .,Department of Neuroscience, Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
80
|
Central activation of PPAR-gamma ameliorates diabetes induced cognitive dysfunction and improves BDNF expression. Neurobiol Aging 2015; 36:1451-61. [DOI: 10.1016/j.neurobiolaging.2014.09.028] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 08/25/2014] [Accepted: 09/27/2014] [Indexed: 01/07/2023]
|
81
|
Short-lived diabetes in the young-adult ZDF rat does not exacerbate neuronal Ca(2+) biomarkers of aging. Brain Res 2014; 1621:214-21. [PMID: 25451110 DOI: 10.1016/j.brainres.2014.10.052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 10/24/2014] [Accepted: 10/26/2014] [Indexed: 12/31/2022]
Abstract
Results from clinical studies provide evidence that cognitive changes relatively late in life may be traced to antecedent conditions including diabetes, obesity, a sedentary lifestyle, and an atherogenic diet. As such, several traits of Type 2 diabetes (T2DM) could be considered pathogenic factors of aging, contributing to age-dependent cognitive decline and our susceptibility to Alzheimer's disease. It appears that both the duration of metabolic condition and the age of the individual, together can contribute to the potential impact on peripheral as well as brain health. Because of robust evidence that in animal models of aging, Ca(2+) dysregulation alters neuronal health, synaptic plasticity, and learning and memory processes, we tested the hypothesis that peripheral metabolic dysregulation could exacerbate Ca(2+) dysfunction in hippocampal CA1 neurons. Using intracellular/ extracellular electrophysiological and Ca(2+) imaging techniques, we show that Ca(2+)levels at rest or during synaptic stimulation, the Ca(2+)-dependent afterhyperpolarization, baseline field potentials, and short-term synaptic plasticity were not significantly altered in young-adult male Zucker diabetic fatty rats compare to their lean counterparts. Our observations suggest that early phases of T2DM characterized by high levels of glucose and insulin may be too transient to alter hippocampal CA1 physiology in this animal model of diabetes. These results are supported by clinical data showing that longer T2DM duration can have greater negative impact on cognitive functions. This article is part of a Special Issue entitled SI: Brain and Memory.
Collapse
|
82
|
Twig G, Gluzman I, Tirosh A, Gerstein HC, Yaniv G, Afek A, Derazne E, Tzur D, Karasik A, Gordon B, Fruchter E, Lubin G, Rudich A, Cukierman-Yaffe T. Cognitive function and the risk for diabetes among young men. Diabetes Care 2014; 37:2982-8. [PMID: 25092683 DOI: 10.2337/dc14-0715] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Diabetes is a risk factor for an accelerated rate of cognitive decline and dementia. However, the relationship between cognitive function and the subsequent development of diabetes is unclear. RESEARCH DESIGN AND METHODS We conducted a historical-prospective cohort study merging data collected at premilitary recruitment assessment with information collected at the Staff Periodic Examination Center of the Israeli Army Medical Corps. Included were men aged 25 years or older without a history of diabetes at the beginning of follow-up with available data regarding their general intelligence score (GIS), a comprehensive measure of cognitive function, at age 17 years. RESULTS Among 35,500 men followed for a median of 5.5 years, 770 new cases of diabetes were diagnosed. After adjustment for age, participants in the lowest GIS category had a 2.6-fold greater risk for developing diabetes compared with those in the highest GIS category. In multivariable analysis adjusted for age, BMI, fasting plasma glucose, sociogenetic variables, and lifestyle risk factors, those in the lowest GIS category had a twofold greater risk for incident diabetes when compared with the highest GIS category (hazard ratio 2.1 [95% CI 1.5-3.1]; P < 0.001). Additionally, participants in the lowest GIS category developed diabetes at a mean age of 39.5 ± 4.7 years and those in the highest GIS group at a mean age of 41.5 ± 5.1 years (P for comparison 0.042). CONCLUSIONS This study demonstrates that in addition to a potential causal link between diabetes and enhanced cognitive decline, lower cognitive function at late adolescence is independently associated with an elevated risk for future diabetes.
Collapse
Affiliation(s)
- Gilad Twig
- Department of Medicine B, Sheba Medical Center, Tel Hashomer, Israel Dr. Pinchas Bornstein Talpiot Medical Leadership Program, Sheba Medical Center, Tel Hashomer, Israel Israel Defense Forces Medical Corps, Israel
| | - Israel Gluzman
- Israel Defense Forces Medical Corps, Israel Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Amir Tirosh
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard School of Public Health, Boston, MA
| | - Hertzel C Gerstein
- Division of Endocrinology & Metabolism and Population Health Research Institute, McMaster University and Hamilton Health Sciences, Hamilton, Ontario, Canada
| | - Gal Yaniv
- Israel Defense Forces Medical Corps, Israel Department of Radiology and Imaging, Sheba Medical Center, Tel Hashomer, Israel
| | - Arnon Afek
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel Israel Ministry of Health, Jerusalem, Israel
| | - Estela Derazne
- Israel Defense Forces Medical Corps, Israel Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Dorit Tzur
- Israel Defense Forces Medical Corps, Israel
| | - Avraham Karasik
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel Department of Endocrinology, Sheba Medical Center, Tel Hashomer, Israel
| | - Barak Gordon
- Israel Defense Forces Medical Corps, Israel Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Eyal Fruchter
- Israel Defense Forces Medical Corps, Israel Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Gadi Lubin
- Israel Defense Forces Medical Corps, Israel Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Assaf Rudich
- Department of Clinical Biochemistry and Pharmacology and the National Institute of Biotechnology in the Negev, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Tali Cukierman-Yaffe
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel Department of Endocrinology, Sheba Medical Center, Tel Hashomer, Israel Gertner Institute for Epidemiology, Tel Hashomer, Israel
| |
Collapse
|
83
|
Hölscher C. First clinical data of the neuroprotective effects of nasal insulin application in patients with Alzheimer's disease. Alzheimers Dement 2014; 10:S33-7. [PMID: 24529523 DOI: 10.1016/j.jalz.2013.12.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 12/05/2013] [Indexed: 01/27/2023]
Abstract
Previous reviews have outlined the important role of insulin in the brain, and the observation that insulin signaling is desensitized in patients with Alzheimer's disease (AD). Because insulin is used to treat diabetes and insulin desensitization in the periphery, this motivated the design and execution of clinical pilot trials in patients with AD and mild cognitive impairment. Because insulin has powerful effects on blood sugar levels, a new technique was used by which insulin is applied as a spray. This method avoids high levels of insulin in the periphery and makes use of the transport system, via the nasal epithelium, into the brain. First trials in healthy subjects showed improvement in attention and memory tasks, and confirmed the concept that insulin signaling plays an important role in neuronal function and cognition. In a series of small clinical trials in patients with mild cognitive impairment/AD, nasal application of insulin or long-lasting insulin analogs showed improvements in memory tasks, cerebrospinal fluid biomarkers, and in a fluorodeoxyglucose positron emission tomographic study. In a more recent trial, two patient subgroups were identified, in which the insulin-resistant group improved after drug treatment whereas a subgroup that did not show insulin desensitization deteriorated. This highlights the need to conduct additional studies and demonstrates clearly that the hypothesis that insulin signaling plays in important role in cognition and AD has merit, and that this is a worthwhile target that shows great promise for future drug developments that improve insulin signaling. Insulin itself may not be the best choice, and other drugs that have been developed to treat diabetes that do not enhance insulin desensitization may be a better choice.
Collapse
Affiliation(s)
- Christian Hölscher
- Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, UK.
| |
Collapse
|
84
|
Rdzak GM, Abdelghany O. Does insulin therapy for type 1 diabetes mellitus protect against Alzheimer's disease? Pharmacotherapy 2014; 34:1317-23. [PMID: 25280207 DOI: 10.1002/phar.1494] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Alzheimer's disease is the most common cause of dementia in the United States. A better understanding of the disease's underlying pathways may provide novel treatment and/or prevention strategies for this progressive chronic neurodegenerative disorder. In recent years, there has been a growing interest in the possible links between insulin and Alzheimer's disease. Insulin-induced hypoglycemia causes adaptive changes in the brain, including an improved ability to use alternative fuels. Insulin has been shown to facilitate reduction of intracellular amyloid plaque and downregulation of amyloid-β-derived diffusible ligand-binding sites. Insulin also promotes tau hypophosphorylation, which stabilizes microtubules and promotes tubulin polymerization. Excess exogenous insulin may also play a role in overcoming the decreased utilization and transport of glucose in patients with Alzheimer's disease. Intranasal insulin therapy may have beneficial effects on cognition and function in patients with Alzheimer's disease, as well as having only minor adverse effects, and this route of administration been the focus in clinical trials. These data support the mechanistic pathways that might link excess exogenous insulin administered to patients with type 1 diabetes mellitus to possible protection from Alzheimer's disease and provide a rationale for using insulin to prevent the disease in high-risk patients.
Collapse
Affiliation(s)
- Grzegorz M Rdzak
- Pharmacy Department, Yale-New Haven Hospital, New Haven, Connecticut
| | | |
Collapse
|
85
|
Hsu TM, Konanur VR, Taing L, Usui R, Kayser BD, Goran MI, Kanoski SE. Effects of sucrose and high fructose corn syrup consumption on spatial memory function and hippocampal neuroinflammation in adolescent rats. Hippocampus 2014; 25:227-39. [PMID: 25242636 DOI: 10.1002/hipo.22368] [Citation(s) in RCA: 167] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2014] [Indexed: 12/27/2022]
Abstract
Excessive consumption of added sugars negatively impacts metabolic systems; however, effects on cognitive function are poorly understood. Also unknown is whether negative outcomes associated with consumption of different sugars are exacerbated during critical periods of development (e.g., adolescence). Here we examined the effects of sucrose and high fructose corn syrup-55 (HFCS-55) intake during adolescence or adulthood on cognitive and metabolic outcomes. Adolescent or adult male rats were given 30-day access to chow, water, and either (1) 11% sucrose solution, (2) 11% HFCS-55 solution, or (3) an extra bottle of water (control). In adolescent rats, HFCS-55 intake impaired hippocampal-dependent spatial learning and memory in a Barne's maze, with moderate learning impairment also observed for the sucrose group. The learning and memory impairment is unlikely based on nonspecific behavioral effects as adolescent HFCS-55 consumption did not impact anxiety in the zero maze or performance in a non-spatial response learning task using the same mildly aversive stimuli as the Barne's maze. Protein expression of pro-inflammatory cytokines (interleukin 6, interleukin 1β) was increased in the dorsal hippocampus for the adolescent HFCS-55 group relative to controls with no significant effect in the sucrose group, whereas liver interleukin 1β and plasma insulin levels were elevated for both adolescent-exposed sugar groups. In contrast, intake of HFCS-55 or sucrose in adults did not impact spatial learning, glucose tolerance, anxiety, or neuroinflammatory markers. These data show that consumption of added sugars, particularly HFCS-55, negatively impacts hippocampal function, metabolic outcomes, and neuroinflammation when consumed in excess during the adolescent period of development.
Collapse
Affiliation(s)
- Ted M Hsu
- Neuroscience Program, University of Southern California, Los Angeles, CA; Department of Biological Sciences, Human and Evolutionary Biology Section, University of Southern California, Los Angeles, CA, USA
| | | | | | | | | | | | | |
Collapse
|
86
|
Cukierman-Yaffe T, Bosch J, Diaz R, Dyal L, Hancu N, Hildebrandt P, Lanas F, Lewis BS, Marre M, Yale JF, Yusuf S, Gerstein HC. Effects of basal insulin glargine and omega-3 fatty acid on cognitive decline and probable cognitive impairment in people with dysglycaemia: a substudy of the ORIGIN trial. Lancet Diabetes Endocrinol 2014; 2:562-72. [PMID: 24898834 DOI: 10.1016/s2213-8587(14)70062-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Diabetes and non-diabetic dysglycaemia are risk factors for accelerated cognitive decline. In this planned substudy of the Outcome Reduction with Initial Glargine Intervention (ORIGIN) trial, we assessed whether normalising glucose with insulin glargine or administering omega-3 fatty acids in this population may slow this process or affect the development of cognitive impairment. METHODS The ORIGIN trial recruited participants older than 50 years with dysglycaemia who were taking either no or one oral glucose-lowering drug, who had additional risk factors for cardiovascular events, whose HbA1c was less than 9%, and who were not taking insulin. Participants were recruited from 573 sites in 40 countries. Participants were randomly assigned to either titrated basal insulin glargine targeting a fasting plasma glucose concentration of 5.3 mmol/L or lower or standard care and to either omega-3 fatty acid (1 g) or placebo by a factorial design. Outcome adjudicators and data analysts were masked to treatment allocation. Cognitive function was assessed by the Mini-Mental State Examination (MMS) and Digit Symbol Substitution (DSS). The effect of insulin glargine or omega-3 fatty * acid on cognitive function over time, the annualised change in test scores, and the development of probable cognitive impairment were measured. All analyses were restricted to those participants who had a cognitive measurement at both baseline and at least one follow-up visit. The ORIGIN trial is registered with ClinicalTrials.gov, NCT00069784. FINDINGS Participants were randomly assigned between Sept 1, 2003, and Dec 15, 2005. MMSE and DSS were assessed in 11,685 and 3392 ORIGIN participants (mean age 63.4 years [SD 7.7]), who were followed up for a median of 6.2 years (IQR 5.8-6.7). There was no difference in the rate of change of cognitive test scores between the insulin glargine and standard care groups (for the MMSE 0.0046, 95% CI -0.0132 to 0.0224, p=0.39; and for the DSS -0.0362, -0.2180 to 0.1455, p=0.34) or between the omega-3 fatty acid and placebo groups (for the MMSE 0.0013, 95% CI -0.0165 to 0.0191, p=0.21; and for the DSS -0.0605, -0.2422 to 0.1212, p=0.72). Similarly, the incidence of probable cognitive impairment did not differ between the insulin glargine and standard care groups (p=0.065) or the omega-3 fatty acid and placebo groups (p=0.070). In a subgroup analysis, allocation to insulin glargine versus standard care seemed to reduce the decline in the MMSE (but not the DSS) in participants with dysglycaemia but without evidence of diabetes (pinteraction=0.024). INTERPRETATION In this relatively young cohort of people with dysglycaemia, insulin mediated normoglycaemia and omega-3 fatty acid for over 6 years had a neutral effect on the rate of cognitive decline and on incident cognitive impairment. Future studies should assess the effect of these interventions in an older cohort or the effect of other glucometabolic interventions on cognitive decline. FUNDING Sanofi.
Collapse
Affiliation(s)
- Tali Cukierman-Yaffe
- Endocrinology Institute, Gertner Institute Sheba Medical Center, Ramat Gan, Israel; Epidemiology Department, Tel-Aviv University, Tel-Aviv, Israel; Population Health Research Institute, Hamilton Health Sciences and McMaster University, Hamilton, ON, Canada.
| | - Jackie Bosch
- Population Health Research Institute, Hamilton Health Sciences and McMaster University, Hamilton, ON, Canada; School of Rehabilitation Science, Hamilton Health Sciences and McMaster University, Hamilton, ON, Canada
| | - Rafael Diaz
- Estudios Clínicos Latino América, Rosario, Argentina
| | - Leanne Dyal
- Population Health Research Institute, Hamilton Health Sciences and McMaster University, Hamilton, ON, Canada
| | - Nicolae Hancu
- Diabetes, Nutrition and Metabolic Diseases Department, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | | | - Fernando Lanas
- Department of Internal Medicine, Universidad de La Frontera, Temuco, Chile
| | - Basil S Lewis
- Cardiovascular Clinical Research Institute, Lady Davis Carmel Medical Center and Technion-IIT, Haifa, Israel
| | - Michel Marre
- Service d'Endocrinologie Diabétologie Nutrition, Groupe Hospitalier Bichat, Claude Bernard, Paris, France; Unité INSERM U1138 équipe 2, "Pathophysiology and therapeutics of vascular and renal diseases related to diabetes and nutrition", Centre de Recherches des Cordeliers, Paris, France
| | - Jean-Francois Yale
- Department of Medicine, McGill University Health Centre, Montreal, QC, Canada
| | - Salim Yusuf
- Population Health Research Institute, Hamilton Health Sciences and McMaster University, Hamilton, ON, Canada
| | - Hertzel C Gerstein
- Population Health Research Institute, Hamilton Health Sciences and McMaster University, Hamilton, ON, Canada
| |
Collapse
|
87
|
Cukierman-Yaffe T. Diabetes, dysglycemia and cognitive dysfunction. Diabetes Metab Res Rev 2014; 30:341-5. [PMID: 24339052 DOI: 10.1002/dmrr.2507] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 11/26/2013] [Indexed: 11/06/2022]
Abstract
Evidence from the last decade supports the hypothesis that diabetes may be viewed as a disease of accelerated cognitive ageing. It is a risk factor for the development of dementia, for an accelerated rate of cognitive decline and for cognitive dysfunction. Thus, 'diabetes-related cognitive dysfunction' may be viewed as another long-term complication of diabetes. This article will review the evidence supporting this hypothesis and will elaborate on the implications for patient care, as well as discuss potential treatment options and their limitation. The final section reviews possible mechanistic explanations.
Collapse
|
88
|
Elevated risk of type 2 diabetes for development of Alzheimer disease: a key role for oxidative stress in brain. Biochim Biophys Acta Mol Basis Dis 2014; 1842:1693-706. [PMID: 24949886 DOI: 10.1016/j.bbadis.2014.06.010] [Citation(s) in RCA: 286] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 06/05/2014] [Accepted: 06/09/2014] [Indexed: 12/23/2022]
Abstract
Alzheimer disease (AD) is the most common form of dementia among the elderly and is characterized by progressive loss of memory and cognition. Epidemiological data show that the incidence of AD increases with age and doubles every 5 years after 65 years of age. From a neuropathological point of view, amyloid-β-peptide (Aβ) leads to senile plaques, which, together with hyperphosphorylated tau-based neurofibrillary tangles and synapse loss, are the principal pathological hallmarks of AD. Aβ is associated with the formation of reactive oxygen (ROS) and nitrogen (RNS) species, and induces calcium-dependent excitotoxicity, impairment of cellular respiration, and alteration of synaptic functions associated with learning and memory. Oxidative stress was found to be associated with type 2 diabetes mellitus (T2DM), which (i) represents another prevalent disease associated with obesity and often aging, and (ii) is considered to be a risk factor for AD development. T2DM is characterized by high blood glucose levels resulting from increased hepatic glucose production, impaired insulin production and peripheral insulin resistance, which close resemble to the brain insulin resistance observed in AD patients. Furthermore, growing evidence suggests that oxidative stress plays a pivotal role in the development of insulin resistance and vice versa. This review article provides molecular aspects and the pharmacological approaches from both preclinical and clinical data interpreted from the point of view of oxidative stress with the aim of highlighting progresses in this field.
Collapse
|
89
|
Abdominal Obesity Associated with Elevated Serum Butyrylcholinesterase Activity, Insulin Resistance and Reduced High Density Lipoprotein-Cholesterol Levels. Indian J Clin Biochem 2014; 30:275-80. [PMID: 26089612 DOI: 10.1007/s12291-014-0443-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 05/13/2014] [Indexed: 01/11/2023]
Abstract
Abdominal obesity (AO) has a strong correlation with cardiovascular disease and has been linked to Alzheimer's disease and type 2 diabetes. We investigated the association between AO and elevated serum butyrylcholinesterase (BChE) activity, insulin resistance and the serum lipid profile, including triglyceride (TG), HDL-cholesterol (HDL-C) and LDL-cholesterol (LDL-C) levels in AO and non-AO women subjects. A total of 500 AO subjects (age 49.1 ± 10.5 years), and 142 non-AO women subjects (age 49.9 ± 11.9 years) were enrolled for the general biochemistry tests, serum BChE, fasting insulin and homeostasis model assessment of insulin resistance (HOMA-IR). Body mass index, waist circumference, Blood pressure (BP), plasma glucose (Glu), triglyceride (TG), BChE, insulin, HOMA-IR were significantly higher and HDL-C levels were significantly lower in AO subjects (p < 0.05). Waist circumference was significantly correlated with BP, Glu, TG, BChE, insulin and HOMA-IR in AO subjects. Multiple logistic regression demonstrated that AO was associated with elevated BChE, HOMA-IR, hypertension and reduced HDL-C after adjusting for these variables. AO is associated with elevated BChE, insulin resistance, HT and reduced HDL-C. These may predict the development of type 2 diabetes mellitus and may be associated with cognitive disorder in the future, both are mediated through insulin resistance.
Collapse
|
90
|
Gold PE. Regulation of memory - from the adrenal medulla to liver to astrocytes to neurons. Brain Res Bull 2014; 105:25-35. [PMID: 24406469 PMCID: PMC4039576 DOI: 10.1016/j.brainresbull.2013.12.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 12/20/2013] [Accepted: 12/24/2013] [Indexed: 12/25/2022]
Abstract
Epinephrine, released into blood from the adrenal medulla in response to arousing experiences, is a potent enhancer of learning and memory processing. This review examines mechanisms by which epinephrine exerts its effects on these cognitive functions. Because epinephrine is largely blocked from moving from blood to brain, it is likely that the hormone's effects on memory are mediated by peripheral actions. A classic effect of epinephrine is to act at the liver to break down glycogen stores, resulting in increased blood glucose levels. The increase in blood glucose provides additional energy substrates to the brain to buttress the processes needed for an experience to be learned and remembered. In part, it appears that the increased glucose may act in the brain in a manner akin to that evident in the liver, engaging glycogenolysis in astrocytes to provide an energy substrate, in this case lactate, to augment neuronal functions. Together, the findings reveal a mechanism underlying modulation of memory that integrates the physiological functions of multiple organ systems to support brain processes. This article is part of a Special Issue entitled 'Memory enhancement'.
Collapse
Affiliation(s)
- Paul E Gold
- Department of Biology, Syracuse University, Syracuse, NY 13244, United States.
| |
Collapse
|
91
|
PPARγ recruitment to active ERK during memory consolidation is required for Alzheimer's disease-related cognitive enhancement. J Neurosci 2014; 34:4054-63. [PMID: 24623782 DOI: 10.1523/jneurosci.4024-13.2014] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cognitive impairment is a quintessential feature of Alzheimer's disease (AD) and AD mouse models. The peroxisome proliferator-activated receptor-γ (PPARγ) agonist rosiglitazone improves hippocampus-dependent cognitive deficits in some AD patients and ameliorates deficits in the Tg2576 mouse model for AD amyloidosis. Tg2576 cognitive enhancement occurs through the induction of a gene and protein expression profile reflecting convergence of the PPARγ signaling axis and the extracellular signal-regulated protein kinase (ERK) cascade, a critical mediator of memory consolidation. We therefore tested whether PPARγ and ERK associated in protein complexes that subserve cognitive enhancement through PPARγ agonism. Coimmunoprecipitation of hippocampal extracts revealed that PPARγ and activated, phosphorylated ERK (pERK) associated in Tg2576 in vivo, and that PPARγ agonism facilitated recruitment of PPARγ to pERK during memory consolidation. Furthermore, the amount of PPARγ recruited to pERK correlated with the cognitive reserve in humans with AD and in Tg2576. Our findings implicate a previously unidentified PPARγ-pERK complex that provides a molecular mechanism for the convergence of these pathways during cognitive enhancement, thereby offering new targets for therapeutic development in AD.
Collapse
|
92
|
Abstract
The incretin hormone glucagon-like peptide 1 (GLP-1) has many effects in the body. It is best known for the 'incretin effect', facilitating insulin release from the pancreas under hyperglycaemic conditions. Building on this, GLP-1 mimetics have been developed as a treatment for type 2 diabetes. In the course of monitoring of patients, it has become apparent that GLP-1 mimetics have a range of other physiological effects in the body. In preclinical trials, a substantial body of evidence has been built that these mimetics have neuroprotective and anti-inflammatory effects. GLP-1 also has very similar growth-factor-like properties to insulin, which is presumably the underlying basis of the neuroprotective effects. In preclinical studies of Alzheimer's disease (AD), Parkinson's disease (PD), stroke and other neurodegenerative disorders, it has been shown that most GLP-1 mimetics cross the blood-brain barrier and show impressive neuroprotective effects in numerous studies. In animal models of AD, GLP-1 mimetics such as exendin-4, liraglutide and lixisenatide have shown protective effects in the CNS by reducing β-amyloid plaques, preventing loss of synapses and memory impairments, and reducing oxidative stress and the chronic inflammatory response in the brain. In animal models of PD, exendin-4 showed protection of dopaminergic neurons in the substantia nigra and prevention of dopamine loss in the basal ganglia while preserving motor control. These encouraging findings have spawned several clinical trials, some of which have shown encouraging initial results. Therefore, GLP-1 mimetics show great promise as a novel treatment for neurodegenerative conditions.
Collapse
Affiliation(s)
- Christian Hölscher
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster LA1 4YQ, UK
| |
Collapse
|
93
|
Chen Y, Deng Y, Zhang B, Gong CX. Deregulation of brain insulin signaling in Alzheimer's disease. Neurosci Bull 2014; 30:282-94. [PMID: 24652456 PMCID: PMC5562654 DOI: 10.1007/s12264-013-1408-x] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 01/03/2014] [Indexed: 01/09/2023] Open
Abstract
Contrary to the previous belief that insulin does not act in the brain, studies in the last three decades have demonstrated important roles of insulin and insulin signal transduction in various functions of the central nervous system. Deregulated brain insulin signaling and its role in molecular pathogenesis have recently been reported in Alzheimer's disease (AD). In this article, we review the roles of brain insulin signaling in memory and cognition, the metabolism of amyloid β precursor protein, and tau phosphorylation. We further discuss deficiencies of brain insulin signaling and glucose metabolism, their roles in the development of AD, and recent studies that target the brain insulin signaling pathway for the treatment of AD. It is clear now that deregulation of brain insulin signaling plays an important role in the development of sporadic AD. The brain insulin signaling pathway also offers a promising therapeutic target for treating AD and probably other neurodegenerative disorders.
Collapse
Affiliation(s)
- Yanxing Chen
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009 China
| | - Yanqiu Deng
- Department of Pathophysiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070 China
| | - Baorong Zhang
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009 China
| | - Cheng-Xin Gong
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York 10314 USA
| |
Collapse
|
94
|
Insulin, incretins and other growth factors as potential novel treatments for Alzheimer's and Parkinson's diseases. Biochem Soc Trans 2014; 42:593-9. [DOI: 10.1042/bst20140016] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Recently, it has been shown that in patients with AD (Alzheimer's disease) and, to some degree, in patients with PD (Parkinson's disease) insulin signalling is impaired. This finding has initiated a range of research projects that showed remarkable improvements using treatments that initially had been developed to treat diabetes. Pre-clinical studies showed good neuroprotective effects when applying insulin or long-lasting analogues of incretin peptides. In transgenic animal models of AD and PD, analogues of the incretin GLP-1 (glucagon-like peptide 1) prevented neurodegenerative processes and improved neuronal and synaptic functionality in AD and PD. Amyloid plaque load and synaptic loss as well as cognitive impairment had been ameliorated in AD models, and dopaminergic loss of transmission and motor function was reversed in models of PD. On the basis of these promising findings, several clinical trials are being conducted with the first encouraging clinical results being published. In several pilot studies in AD patients, the nasal application of insulin showed encouraging effects on cognition and biomarkers. A pilot study in PD patients testing a GLP-1 receptor agonist that is currently on the market as a treatment for Type 2 diabetes also showed encouraging effects. Several other clinical trials are currently ongoing in AD patients. The present review summarizes the range of neuroprotective effects that these drugs have demonstrated and emphasizes the great promise that this approach has in providing novel treatments that have protective and even restorative properties that no current drug treatment can offer.
Collapse
|
95
|
Mechanisms underlying the neuroprotective effect of brain reserve against late life depression. J Neural Transm (Vienna) 2014; 122 Suppl 1:S55-61. [PMID: 24390152 DOI: 10.1007/s00702-013-1154-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2013] [Accepted: 12/25/2013] [Indexed: 02/07/2023]
Abstract
Depression is common and medically relevant illness that has been associated to a state of "accelerated aging" and can significantly compromise successful aging. In recent years, the concept of "brain reserve" has emerged to describe some individuals having an increased "baseline adaptive neuroplasticity", providing greater dynamic capacity for adjusting and remodeling cortical circuits to various stressors. We hypothesize that brain reserve may have neuroprotective effects against late life depression. Here, we discuss the modulatory capacity of stress and corticosteroid hormones on hippocampal plasticity and neuronal viability in late life depression as well as the anti-depressive of ketamine and scopolamine mediated by stimulation of the mammalian target of rapamycin, increased inhibitory phosphorylation of GSK-3β, and increased synaptogenesis. This review shall shed light on complex neurobiological mechanisms that underpin late life depression and help to better understand neural correlates of resilience. Investigating how rat models of increased cognitive reserve mitigate a chronic mild stress-elicited depression will afford new insights in the search for new therapeutic targets to treat this neuropsychiatric disorder.
Collapse
|
96
|
Marrazzo G, Barbagallo I, Galvano F, Malaguarnera M, Gazzolo D, Frigiola A, D'Orazio N, Li Volti G. Role of dietary and endogenous antioxidants in diabetes. Crit Rev Food Sci Nutr 2014; 54:1599-1616. [PMID: 24580561 DOI: 10.1080/10408398.2011.644874] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Diabetes affects different people of all ages, race, and sex. This is a condition characterized by a state of chronic hyperglycaemia that leads to an increase of intracellular oxidative stress linked to the overproduction of free radicals. In the present review, we focus our attention on the molecular mechanisms leading to oxidative stress-mediates complications with particular regard to central nervous system (CNS). Furthermore, the present review reports the effects of different kind of antioxidants with enzymatic and nonenzymatic action that may significantly decrease the intracellular free radicals' overproduction and prevents the hyperglycaemia-mediated complications.
Collapse
Affiliation(s)
- Giuseppina Marrazzo
- a Department of Drug Science, Section of Biochemistry , University of Catania , Catanina , Italy
| | | | | | | | | | | | | | | |
Collapse
|
97
|
Rhee YH, Choi M, Lee HS, Park CH, Kim SM, Yi SH, Oh SM, Cha HJ, Chang MY, Lee SH. Insulin concentration is critical in culturing human neural stem cells and neurons. Cell Death Dis 2013; 4:e766. [PMID: 23928705 PMCID: PMC3763456 DOI: 10.1038/cddis.2013.295] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 06/27/2013] [Accepted: 07/15/2013] [Indexed: 12/25/2022]
Abstract
Cell culture of human-derived neural stem cells (NSCs) is a useful tool that contributes to our understanding of human brain development and allows for the development of therapies for intractable human brain disorders. Human NSC (hNSC) cultures, however, are not commonly used, mainly because of difficulty with consistently maintaining the cells in a healthy state. In this study, we show that hNSC cultures, unlike NSCs of rodent origins, are extremely sensitive to insulin, an indispensable culture supplement, and that the previously reported difficulty in culturing hNSCs is likely because of a lack of understanding of this relationship. Like other neural cell cultures, insulin is required for hNSC growth, as withdrawal of insulin supplementation results in massive cell death and delayed cell growth. However, severe apoptotic cell death was also detected in insulin concentrations optimized to rodent NSC cultures. Thus, healthy hNSC cultures were only produced in a narrow range of relatively low insulin concentrations. Insulin-mediated cell death manifested not only in all human NSCs tested, regardless of origin, but also in differentiated human neurons. The underlying cell death mechanism at high insulin concentrations was similar to insulin resistance, where cells became less responsive to insulin, resulting in a reduction in the activation of the PI3K/Akt pathway critical to cell survival signaling.
Collapse
Affiliation(s)
- Y-H Rhee
- Department of Biochemistry and Molecular Biology, College of Medicine, Hanyang University, Seoul, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Wamstad JB, Norwood KW, Rogol AD, Gurka MJ, Deboer MD, Blackman JA, Buck ML, Kuperminc MN, Darring JG, Patrick PD. Neuropsychological recovery and quality-of-life in children and adolescents with growth hormone deficiency following TBI: a preliminary study. Brain Inj 2013; 27:200-8. [PMID: 23384217 DOI: 10.3109/02699052.2012.672786] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE To compare neurocognition and quality-of-life (QoL) in a group of children and adolescents with or without growth hormone deficiency (GHD) following moderate-to-severe traumatic brain injury (TBI). STUDY DESIGNS Thirty-two children and adolescents were recruited from the TBI clinic at a children's hospital. Growth hormone (GH) was measured by both spontaneous overnight testing and following arginine/glucagon stimulation administration. Twenty-nine subjects participated in extensive neuropsychological assessment. RESULTS GHD as measured on overnight testing was significantly associated with a variety of neurocognitive and QoL measures. Specifically, subjects with GHD had significantly (p < 0.05) lower scores on measures of visual memory and health-related quality-of-life. These scores were not explained by severity of injury or IQ (p > 0.05). GHD noted in response to provocative testing was not associated with any neurocognitive or QoL measures. CONCLUSIONS GHD following TBI is common in children and adolescents. Deficits in neurocognition and QoL impact recovery after TBI. It is important to assess potential neurocognitive and QoL changes that may occur as a result of GHD. It is also important to consider the potential added benefit of overnight GH testing as compared to stimulation testing in predicting changes in neurocognition or QoL.
Collapse
Affiliation(s)
- Julia B Wamstad
- Department of Pediatrics, Riley Children’s Hospital, Indianapolis, IN, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Thibault O, Anderson KL, DeMoll C, Brewer LD, Landfield PW, Porter NM. Hippocampal calcium dysregulation at the nexus of diabetes and brain aging. Eur J Pharmacol 2013; 719:34-43. [PMID: 23872402 DOI: 10.1016/j.ejphar.2013.07.024] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 07/11/2013] [Indexed: 01/19/2023]
Abstract
Recently it has become clear that conditions of insulin resistance/metabolic syndrome, obesity and diabetes, are linked with moderate cognitive impairment in normal aging and elevated risk of Alzheimer's disease. It appears that a common feature of these conditions is impaired insulin signaling, affecting the brain as well as peripheral target tissues. A number of studies have documented that insulin directly affects brain processes and that reduced insulin signaling results in impaired learning and memory. Several studies have also shown that diabetes induces Ca(2+) dysregulation in neurons. Because brain aging is associated with substantial Ca(2+) dyshomeostasis, it has been proposed that impaired insulin signaling exacerbates or accelerates aging-related Ca(2+) dyshomeostasis. However, there have been few studies examining insulin interactions with Ca(2+) regulation in aging animals. We have been testing predictions of the Ca(2+) dysregulation/diabetes/brain aging hypothesis and have found that insulin and insulin-sensitizers (thiazolidinediones) target several hippocampal Ca(2+)-related processes affected by aging. The drugs appear able to reduce the age-dependent increase in Ca(2+) transients and the Ca(2+) -sensitive afterhyperpolarization. Thus, while additional testing is needed, the results to date are consistent with the view that strategies that enhance insulin signaling can counteract the effect of aging on Ca(2+) dysregulation.
Collapse
Affiliation(s)
- Olivier Thibault
- Department of Molecular and Biomedical Pharmacology, MS 313, 800 Rose Street, University of Kentucky Medical Center, Lexington, KY 40536, United States.
| | - Katie L Anderson
- Department of Molecular and Biomedical Pharmacology, MS 313, 800 Rose Street, University of Kentucky Medical Center, Lexington, KY 40536, United States
| | - Chris DeMoll
- Department of Molecular and Biomedical Pharmacology, MS 313, 800 Rose Street, University of Kentucky Medical Center, Lexington, KY 40536, United States
| | - Lawrence D Brewer
- Department of Molecular and Biomedical Pharmacology, MS 313, 800 Rose Street, University of Kentucky Medical Center, Lexington, KY 40536, United States
| | - Philip W Landfield
- Department of Molecular and Biomedical Pharmacology, MS 313, 800 Rose Street, University of Kentucky Medical Center, Lexington, KY 40536, United States
| | - Nada M Porter
- Department of Molecular and Biomedical Pharmacology, MS 313, 800 Rose Street, University of Kentucky Medical Center, Lexington, KY 40536, United States
| |
Collapse
|
100
|
Amin SN, Younan SM, Youssef MF, Rashed LA, Mohamady I. A histological and functional study on hippocampal formation of normal and diabetic rats. F1000Res 2013; 2:151. [PMID: 24555069 PMCID: PMC3901513 DOI: 10.12688/f1000research.2-151.v1] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/30/2013] [Indexed: 12/31/2022] Open
Abstract
Background: The hippocampus is a key brain area for many forms of learning and memory and is particularly sensitive to changes in glucose homeostasis. Aim of the work: To investigate in experimentally induced type 1 and 2 diabetes mellitus in rat model the effect of diabetes mellitus on cognitive functions and related markers of hippocampal synaptic plasticity, and the possible impact of blocking N-methyl-D-aspartic acid (NMDA) receptors by memantine. Materials and methods: Seven rat groups were included: non-diabetic control and non-diabetic receiving memantine; type-1 diabetic groups - untreated, treated with insulin alone and treated with insulin and memantine; and type 2 diabetic groups - untreated and memantine treated. Cognitive functions were assessed by the Morris Water Maze and passive avoidance test. Biochemical analysis was done for serum glucose, serum insulin and insulin resistance. Routine histological examination was done, together with immunohistochemistry for detection of the hippocampal learning and memory plasticity marker, namely activity regulated cytoskeletal-associated protein (Arc), and the astrocytes reactivity marker, namely glial fibrillary acidic protein (GFAP). Results: Both type 1 and 2 untreated diabetic groups showed significantly impaired cognitive performance compared to the non-diabetic group. Treating the type 1 diabetic group with insulin alone significantly improved cognitive performance, but significantly decreased GFAP and Arc compared to the untreated type 1 group. In addition, the type 2 diabetic groups showed a significant decrease in hippocampus GFAP and Arc compared to the non-diabetic groups. Blocking NMDA receptors by memantine significantly increased cognitive performance, GFAP and Arc in the type 1 insulin-memantine group compared to the type 1-insulin group and significantly increased Arc in the type 2-memantine group compared to the untreated type 2 diabetic group. The non-diabetic group receiving memantine was, however, significantly adversely affected. Conclusion: Cognitive functions are impaired in both types of diabetes mellitus and can be improved by blockage of NMDA receptors which may spark a future therapeutic role for these receptors in diabetes-associated cognitive dysfunction.
Collapse
Affiliation(s)
- Shaimaa N Amin
- Department of Physiology, Kasr El Aini Faculty of Medicine, Cairo University, Cairo, 11451, Egypt
| | - Sandra M Younan
- Department of Physiology, Kasr El Aini Faculty of Medicine, Cairo University, Cairo, 11451, Egypt
| | - Mira F Youssef
- Department of Histology, Kasr El Aini Faculty of Medicine, Cairo University, Cairo, 11451, Egypt
| | - Laila A Rashed
- Department of Biochemistry, Kasr El Aini Faculty of Medicine, Cairo University, Cairo, 11451, Egypt
| | - Ibrahim Mohamady
- Department of Physiology, Kasr El Aini Faculty of Medicine, Cairo University, Cairo, 11451, Egypt
| |
Collapse
|