51
|
Stadler K. Peroxynitrite-driven mechanisms in diabetes and insulin resistance - the latest advances. Curr Med Chem 2011; 18:280-90. [PMID: 21110800 PMCID: PMC4191845 DOI: 10.2174/092986711794088317] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Accepted: 11/20/2010] [Indexed: 02/07/2023]
Abstract
Since its discovery, peroxynitrite has been known as a potent oxidant in biological systems, and a rapidly growing body of literature has characterized its biochemistry and role in the pathophysiology of various conditions. Either directly or by inducing free radical pathways, peroxynitrite damages vital biomolecules such as DNA, proteins including enzymes with important functions, and lipids. It also initiates diverse reactions leading eventually to disrupted cell signaling, cell death, and apoptosis. The potential role and contribution of this deleterious species has been the subject of investigation in several important diseases, including but not limited to, cancer, neurodegeneration, stroke, inflammatory conditions, cardiovascular problems, and diabetes mellitus. Diabetes, obesity, insulin resistance, and diabetes-related complications represent a major health problem at epidemic levels. Therefore, tremendous efforts have been put into investigation of the molecular basics of peroxynitrite-related mechanisms in diabetes. Studies constantly seek new therapeutical approaches in order to eliminate or decrease the level of peroxynitrite, or to interfere with its downstream mechanisms. This review is intended to emphasize the latest findings about peroxynitrite and diabetes, and, in addition, to discuss recent and novel advances that are likely to contribute to a better understanding of peroxynitrite-mediated damage in this disease.
Collapse
Affiliation(s)
- K Stadler
- Oxidative Stress and Disease Laboratory, Pennington Biomedical Research Center, LSU System, 6400 Perkins Rd, Baton Rouge, LA 70808, USA.
| |
Collapse
|
52
|
Park HJ. Chemistry and pharmacological action of caffeoylquinic acid derivatives and pharmaceutical utilization of chwinamul (Korean Mountainous vegetable). Arch Pharm Res 2010; 33:1703-20. [DOI: 10.1007/s12272-010-1101-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Revised: 06/23/2010] [Accepted: 07/22/2010] [Indexed: 12/12/2022]
|
53
|
Chopra K, Tiwari V, Arora V, Kuhad A. Sesamol Suppresses Neuro-Inflammatory Cascade in Experimental Model of Diabetic Neuropathy. THE JOURNAL OF PAIN 2010; 11:950-7. [DOI: 10.1016/j.jpain.2010.01.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Revised: 12/16/2009] [Accepted: 01/01/2010] [Indexed: 01/19/2023]
|
54
|
Al-Gayyar MMH, Abdelsaid MA, Matragoon S, Pillai BA, El-Remessy AB. Neurovascular protective effect of FeTPPs in N-methyl-D-aspartate model: similarities to diabetes. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 177:1187-97. [PMID: 20651233 DOI: 10.2353/ajpath.2010.091289] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have previously shown a causal role of peroxynitrite in mediating retinal ganglion cell (RGC) death in diabetic and neurotoxicity models. In the present study, the role of peroxynitrite in altering the antioxidant and antiapoptotic thioredoxin (Trx) system will be investigated as well as the subsequent effects on glial activation and capillary degeneration. Excitotoxicity of the retina was induced by intravitreal injection of N-methyl-d-aspartate (NMDA) in rats, which also received the peroxynitrite decomposition catalyst FeTPPs. RGC loss was assessed by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling and GC count. Glial activation and nitrotyrosine were assessed by immunohistochemistry. Acellular capillaries and pericytes were counted in retinal trypsin digest. NMDA-induced peroxynitrite formation caused RGC loss, which was associated with enhanced expression of Trx and its endogenous inhibitor thioredoxin interacting protein. The results also showed enhanced thioredoxin interacting protein/Trx binding and disruption of the Trx/apoptosis signal-regulating kinase 1 "inhibitory complex," leading to release of apoptosis signal-regulating kinase 1 and activation of the apoptotic pathway, as evidenced by p38 MAPK and poly-ADP-ribose polymerase activation. Furthermore, NMDA caused glial activation and compromised retinal vasculature, as indicated by acellular-capillary formation and pericyte loss. Treatment with FeTPPs blocked these effects. In conclusion, NMDA-induced retinal neuro/vascular injury is mediated by peroxynitrite-altered Trx antioxidant defense, which in turn activates the apoptosis signal-regulating kinase-1 apoptotic pathway. In addition to acute RGC death, an NMDA model can be a useful tool to study glial activation and capillary degeneration in retinal neurodegenerative disorders, including diabetic retinopathy.
Collapse
Affiliation(s)
- Mohammed M H Al-Gayyar
- Program in Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA 30912, USA
| | | | | | | | | |
Collapse
|
55
|
Abstract
Oxygenated heme proteins are known to react rapidly with nitric oxide (NO) to produce peroxynitrite (PN) at the heme site. This process could lead either to attenuation of the effects of NO or to nitrosative protein damage. PN is a powerful nitrating and oxidizing agent that has been implicated in a variety of cell injuries. Accordingly, it is important to delineate the nature and variety of reaction mechanisms of PN interactions with heme proteins. In this Forum, we survey the range of reactions of PN with heme proteins, with particular attention to myoglobin and cytochrome c. While these two proteins are textbook paradigms for oxygen binding and electron transfer, respectively, both have recently been shown to have other important functions that involve NO and PN. We have recently described direct evidence that ferrylmyolgobin (ferrylMb) and nitrogen dioxide (NO(2)) are both produced during the reaction of PN and metmyolgobin (metMb) (Su, J.; Groves, J. T. J. Am. Chem. Soc. 2009, 131, 12979-12988). Kinetic evidence indicates that these products evolve from the initial formation of a caged radical intermediate [Fe(IV) horizontal lineO.NO(2)]. This caged pair reacts mainly via internal return with a rate constant k(r) to form metMb and nitrate in an oxygen-rebound scenario. Detectable amounts of ferrylMb are observed by stopped-flow spectrophotometry, appearing at a rate consistent with the rate, k(obs), of heme-mediated PN decomposition. Freely diffusing NO(2), which is liberated concomitantly from the radical pair (k(e)), preferentially nitrates myoglobin Tyr103 and added fluorescein. For cytochrome c, Raman spectroscopy has revealed that a substantial fraction of cytochrome c converts to a beta-sheet structure, at the expense of turns and helices at low pH (Balakrishnan, G.; Hu, Y.; Oyerinde, O. F.; Su, J.; Groves, J. T.; Spiro, T. G. J. Am. Chem. Soc., 2007, 129, 504-505). It is proposed that a short beta-sheet segment, comprising residues 37-39 and 58-61, extends itself into the large 37-61 loop when the latter is destabilized by protonation of H26, which forms an anchoring hydrogen bond to loop residue P44. This conformation change ruptures the Met80-Fe bond, as revealed by changes in ligation-sensitive Raman bands. It also induces peroxidase activity with the same temperature profile. This process is suggested to model the apoptotic peroxidation of cardiolipin by cytochrome c.
Collapse
Affiliation(s)
- Jia Su
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
| | | |
Collapse
|
56
|
Taliyan R, Singh M, Sharma P. Beneficial Effect of Cyclosporine in Experimental Diabetes Induced Neuropathic Pain in Rats. INT J PHARMACOL 2010. [DOI: 10.3923/ijp.2010.393.399] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
57
|
Isolation and quantitative analysis of peroxynitrite scavengers from Artemisia princeps var. orientalis. Arch Pharm Res 2010; 33:703-8. [DOI: 10.1007/s12272-010-0509-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2009] [Revised: 02/16/2010] [Accepted: 03/07/2010] [Indexed: 11/30/2022]
|
58
|
Lee BI, Nugroho A, Bachri MS, Choi J, Lee KR, Choi JS, Kim WB, Lee KT, Lee JD, Park HJ. Anti-ulcerogenic Effect and HPLC Analysis of the Caffeoylquinic Acid-Rich Extract from Ligularia stenocephala. Biol Pharm Bull 2010; 33:493-7. [DOI: 10.1248/bpb.33.493] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Byung-Il Lee
- Department of Food Science and Biotechnology, Kangwon National University
| | - Agung Nugroho
- Department of Agro-industrial Technology, Faculty of Agriculture, Lambung Mangkurat University
| | | | | | - Kang Ro Lee
- Natural Products Laboratory, College of Pharmacy, SungKyunKwan University
| | - Jae Sue Choi
- Division of Food Science and Biotechnology, Pukyong National University
| | - Won-Bae Kim
- Highland Agriculture Research Center, Rural Development Administration
| | | | - Jong-Dai Lee
- Department of Food Science and Biotechnology, Kangwon National University
| | - Hee-Juhn Park
- Department of Pharmaceutical Engineering, Sangji University
| |
Collapse
|
59
|
Sciatic nerve transection increases gluthatione antioxidant system activity and neuronal nitric oxide synthase expression in the spinal cord. Brain Res Bull 2009; 80:422-7. [DOI: 10.1016/j.brainresbull.2009.08.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2009] [Revised: 08/02/2009] [Accepted: 08/06/2009] [Indexed: 12/11/2022]
|
60
|
Qualitative and quantitative determination of the caffeoylquinic acids on the Korean mountainous vegetables used for chwinamul and their peroxynitrite-scavenging effect. Arch Pharm Res 2009; 32:1361-7. [PMID: 19898797 DOI: 10.1007/s12272-009-2003-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Revised: 08/04/2009] [Accepted: 08/05/2009] [Indexed: 12/15/2022]
Abstract
Mountainous vegetables called chwinamul are used in Korea to promote health. Chwinamul was obtained from several plants belonging to the Compositae - e.g., Kalimeris yomena, Aster scaber, Solidago virga var. gigantea, Solidago viragaurea var. asiatica, Saussurea grandifolia, Ainsliaea acerifolia - were used for our experiments. Analytical methods for simultaneous determination of the caffeoylquinic acids (3,4-di-O-caffeoylquinic acid, 3,5-di-O-dicaffeoyl-epi-quinic acid, 3,5-di-O-caffeoylquinic acid, 4,5-di-O-caffeoylquinic acid, 5-O-caffeoylquinic acid, 3-O-caffeoylquinic acid, 3-O-p-coumaroyl-caffeoylquinic acids) were established for chwinamul. The kinds of constituents were identified from HPLC chromatograms and it was possible to calculate the percentage (w/w) of seven of these compounds in the dried plants and in the extracts. The proportion of caffeoylquinic acids in the extracts ranged from 20.25 to 38.35%. Since it is known that peroxynitrite (ONOO(-))-scavenging is beneficial for amelioration of obesity, diabetes mellitus, atherosclerosis and even Alzheimer's disease, assays for peroxynitrite-scavenging activity were performed on the seven chwinamul plants. Of the tested extracts, the MeOH extract of A. acerifolia had the most potent effect (IC(50) 1.49 +/- 0.68 microg/mL). These results suggest that chwinamul vegetables can be used for treatment or prevention of peroxynitrite-related diseases.
Collapse
|
61
|
McCarty MF, Barroso-Aranda J, Contreras F. High-dose folate and dietary purines promote scavenging of peroxynitrite-derived radicals – Clinical potential in inflammatory disorders. Med Hypotheses 2009; 73:824-34. [DOI: 10.1016/j.mehy.2008.09.058] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2008] [Revised: 09/12/2008] [Accepted: 09/18/2008] [Indexed: 01/02/2023]
|
62
|
Obrosova IG. Diabetic painful and insensate neuropathy: pathogenesis and potential treatments. Neurotherapeutics 2009; 6:638-47. [PMID: 19789069 PMCID: PMC5084286 DOI: 10.1016/j.nurt.2009.07.004] [Citation(s) in RCA: 208] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2009] [Accepted: 07/09/2009] [Indexed: 12/31/2022] Open
Abstract
Advanced peripheral diabetic neuropathy (PDN) is associated with elevated vibration and thermal perception thresholds that progress to sensory loss and degeneration of all fiber types in peripheral nerve. A considerable proportion of diabetic patients also describe abnormal sensations such as paresthesias, allodynia, hyperalgesia, and spontaneous pain. One or several manifestations of abnormal sensation and pain are described in all the diabetic rat and mouse models studied so far (i.e., streptozotocin-diabetic rats and mice, type 1 insulinopenic BB/Wor and type 2 hyperinsulinemic diabetic BBZDR/Wor rats, Zucker diabetic fatty rats, and nonobese diabetic, Akita, leptin- and leptin-receptor-deficient, and high-fat diet-fed mice). Such manifestations are 1) thermal hyperalgesia, an equivalent of a clinical phenomenon described in early PDN; 2) thermal hypoalgesia, typically present in advanced PDN; 3) mechanical hyperalgesia, an equivalent of pain on pressure in early PDN; 4) mechanical hypoalgesia, an equivalent to the loss of sensitivity to mechanical noxious stimuli in advanced PDN; 5) tactile allodynia, a painful perception of a light touch; and 5) formalin-induced hyperalgesia. Rats with short-term diabetes develop painful neuropathy, whereas those with longer-term diabetes and diabetic mice typically display manifestations of both painful and insensate neuropathy, or insensate neuropathy only. Animal studies using pharmacological and genetic approaches revealed important roles of increased aldose reductase, protein kinase C, and poly(ADP-ribose) polymerase activities, advanced glycation end-products and their receptors, oxidative-nitrosative stress, growth factor imbalances, and C-peptide deficiency in both painful and insensate neuropathy. This review describes recent achievements in studying the pathogenesis of diabetic neuropathic pain and sensory disorders in diabetic animal models and developing potential pathogenetic treatments.
Collapse
Affiliation(s)
- Irina G Obrosova
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana 70808, USA.
| |
Collapse
|
63
|
Vareniuk I, Pacher P, Pavlov IA, Drel VR, Obrosova IG. Peripheral neuropathy in mice with neuronal nitric oxide synthase gene deficiency. Int J Mol Med 2009. [PMID: 19360314 DOI: 10.3892/ijmm_00000166/html] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023] Open
Abstract
Evidence for the important role of the potent oxidant peroxynitrite in peripheral diabetic neuropathy and neuropathic pain is emerging. This study evaluated the contribution of neuronal nitric oxide synthase (nNOS) to diabetes-induced nitrosative stress in peripheral nerve and dorsal root ganglia, and peripheral nerve dysfunction and degeneration. Control and nNOS-/- mice were made diabetic with streptozotocin, and maintained for 6 weeks. Peroxynitrite injury was assessed by nitrotyrosine and poly(ADP-ribose) immunoreactivities. Peripheral diabetic neuropathy was evaluated by measurements of sciatic motor and hind-limb digital sensory nerve conduction velocities, thermal algesia, tactile allodynia, and intraepidermal nerve fiber density. Control nNOS-/- mice displayed normal motor nerve conduction velocity and thermal response latency, whereas sensory nerve conduction velocity was slightly lower compared with non-diabetic wild-type mice, and tactile response threshold and intraepidermal nerve fiber density were reduced by 47 and 38%, respectively. Both diabetic wild-type and nNOS-/- mice displayed enhanced nitrosative stress in peripheral nerve. In contrast to diabetic wild-type mice, diabetic nNOS-/- mice had near normal nitrotyrosine and poly(ADP-ribose) immunofluorescence in dorsal root ganglia. Both diabetic wild-type and nNOS-/- mice developed motor and sensory nerve conduction velocity deficits and thermal hypoalgesia although nNOS gene deficiency slightly reduced severity of the three disorders. Tactile response thresholds were similarly decreased in control and diabetic nNOS-/- mice compared with non-diabetic wild-type mice. Intraepidermal nerve fiber density was lower by 27% in diabetic nNOS-/- mice compared with the corresponding non-diabetic group, and by 20% in diabetic nNOS-/- mice compared with diabetic wild-type mice. In conclusion, nNOS is required for maintaining the normal peripheral nerve function and small sensory nerve fibre innervation. nNOS gene deficiency does not protect from development of nerve conduction deficit, sensory neuropathy and intraepidermal nerve fiber loss.
Collapse
Affiliation(s)
- Igor Vareniuk
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, USA
| | | | | | | | | |
Collapse
|
64
|
Vareniuk I, Pacher P, Pavlov IA, Drel VR, Obrosova IG. Peripheral neuropathy in mice with neuronal nitric oxide synthase gene deficiency. Int J Mol Med 2009; 23:571-80. [PMID: 19360314 PMCID: PMC2756471 DOI: 10.3892/ijmm_00000166] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Evidence for the important role of the potent oxidant peroxynitrite in peripheral diabetic neuropathy and neuropathic pain is emerging. This study evaluated the contribution of neuronal nitric oxide synthase (nNOS) to diabetes-induced nitrosative stress in peripheral nerve and dorsal root ganglia, and peripheral nerve dysfunction and degeneration. Control and nNOS-/- mice were made diabetic with streptozotocin, and maintained for 6 weeks. Peroxynitrite injury was assessed by nitrotyrosine and poly(ADP-ribose) immunoreactivities. Peripheral diabetic neuropathy was evaluated by measurements of sciatic motor and hind-limb digital sensory nerve conduction velocities, thermal algesia, tactile allodynia, and intraepidermal nerve fiber density. Control nNOS-/- mice displayed normal motor nerve conduction velocity and thermal response latency, whereas sensory nerve conduction velocity was slightly lower compared with non-diabetic wild-type mice, and tactile response threshold and intraepidermal nerve fiber density were reduced by 47 and 38%, respectively. Both diabetic wild-type and nNOS-/- mice displayed enhanced nitrosative stress in peripheral nerve. In contrast to diabetic wild-type mice, diabetic nNOS-/- mice had near normal nitrotyrosine and poly(ADP-ribose) immunofluorescence in dorsal root ganglia. Both diabetic wild-type and nNOS-/- mice developed motor and sensory nerve conduction velocity deficits and thermal hypoalgesia although nNOS gene deficiency slightly reduced severity of the three disorders. Tactile response thresholds were similarly decreased in control and diabetic nNOS-/- mice compared with non-diabetic wild-type mice. Intraepidermal nerve fiber density was lower by 27% in diabetic nNOS-/- mice compared with the corresponding non-diabetic group, and by 20% in diabetic nNOS-/- mice compared with diabetic wild-type mice. In conclusion, nNOS is required for maintaining the normal peripheral nerve function and small sensory nerve fibre innervation. nNOS gene deficiency does not protect from development of nerve conduction deficit, sensory neuropathy and intraepidermal nerve fiber loss.
Collapse
Affiliation(s)
- Igor Vareniuk
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, USA
| | | | | | | | | |
Collapse
|
65
|
Szabo C. Role of nitrosative stress in the pathogenesis of diabetic vascular dysfunction. Br J Pharmacol 2009; 156:713-27. [PMID: 19210748 DOI: 10.1111/j.1476-5381.2008.00086.x] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Here we overview the role of reactive nitrogen species (nitrosative stress) and associated pathways in the pathogenesis of diabetic vascular complications. Increased extracellular glucose concentration, a principal feature of diabetes mellitus, induces a dysregulation of reactive oxygen and nitrogen generating pathways. These processes lead to a loss of the vascular endothelium to produce biologically active nitric oxide (NO), which impairs vascular relaxations. Mitochondria play a crucial role in this process: endothelial cells placed in increase extracellular glucose respond with a marked increase in mitochondrial superoxide formation. Superoxide, when combining with NO generated by the endothelial cells (produced by the endothelial isoform of NO synthase), leads to the formation of peroxynitrite, a cytotoxic oxidant. Reactive oxygen and nitrogen species trigger endothelial cell dysfunction through a multitude of mechanisms including substrate depletion and uncoupling of endothelial isoform of NO synthase. Another pathomechanism involves DNA strand breakage and activation of the nuclear enzyme poly(ADP-ribose) polymerase (PARP). PARP-mediated poly(ADP-ribosyl)ation and inhibition of glyceraldehyde-3-phosphate dehydrogenase importantly contributes to the development of diabetic vascular complications: it induces activation of multiple pathways of injury including activation of nuclear factor kappa B, activation of protein kinase C and generation of intracellular advanced glycation end products. Reactive species generation and PARP play key roles in the pathogenesis of 'glucose memory' and in the development of injury in endothelial cells exposed to alternating high/low glucose concentrations.
Collapse
Affiliation(s)
- Csaba Szabo
- Department of Anesthesiology, The University of Texas Medical Branch, Galveston, TX 77555-0833, USA.
| |
Collapse
|
66
|
Szabo C. Role of nitrosative stress in the pathogenesis of diabetic vascular dysfunction. Br J Pharmacol 2009. [PMID: 19210748 DOI: 10.111/j.1476-5381.2008.00086.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Here we overview the role of reactive nitrogen species (nitrosative stress) and associated pathways in the pathogenesis of diabetic vascular complications. Increased extracellular glucose concentration, a principal feature of diabetes mellitus, induces a dysregulation of reactive oxygen and nitrogen generating pathways. These processes lead to a loss of the vascular endothelium to produce biologically active nitric oxide (NO), which impairs vascular relaxations. Mitochondria play a crucial role in this process: endothelial cells placed in increase extracellular glucose respond with a marked increase in mitochondrial superoxide formation. Superoxide, when combining with NO generated by the endothelial cells (produced by the endothelial isoform of NO synthase), leads to the formation of peroxynitrite, a cytotoxic oxidant. Reactive oxygen and nitrogen species trigger endothelial cell dysfunction through a multitude of mechanisms including substrate depletion and uncoupling of endothelial isoform of NO synthase. Another pathomechanism involves DNA strand breakage and activation of the nuclear enzyme poly(ADP-ribose) polymerase (PARP). PARP-mediated poly(ADP-ribosyl)ation and inhibition of glyceraldehyde-3-phosphate dehydrogenase importantly contributes to the development of diabetic vascular complications: it induces activation of multiple pathways of injury including activation of nuclear factor kappa B, activation of protein kinase C and generation of intracellular advanced glycation end products. Reactive species generation and PARP play key roles in the pathogenesis of 'glucose memory' and in the development of injury in endothelial cells exposed to alternating high/low glucose concentrations.
Collapse
Affiliation(s)
- Csaba Szabo
- Department of Anesthesiology, The University of Texas Medical Branch, Galveston, TX 77555-0833, USA.
| |
Collapse
|
67
|
Julius U, Drel VR, Grässler J, Obrosova IG. Nitrosylated proteins in monocytes as a new marker of oxidative-nitrosative stress in diabetic subjects with macroangiopathy. Exp Clin Endocrinol Diabetes 2009; 117:72-7. [PMID: 18726872 PMCID: PMC3057071 DOI: 10.1055/s-2008-1078710] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
BACKGROUND Peroxynitrite plays an important role in the pathogenesis of diabetic complications. Nitrosylated protein expression in peripheral blood monocytes reflects intracellular peroxynitrite injury, and thus could be a marker of higher diagnostic and prognostic value than plasma nitrotyrosine level. The purpose of this pilot study was to assess if peripheral blood monocytes of diabetic subjects accumulate nitrosylated proteins, and if nitrosylated protein expression correlates with blood glucose control, variables of lipid profile, C-reactive protein concentration (a marker of inflammation), and differs in patients with and without diabetic macrovascular and microvascular complications. METHODS Nitrosylated protein expression in peripheral blood monocytes (Western blot analysis) was assessed in 31 subjects with diabetes mellitus (29 Type 2, 2 Type 1; 20 males, 11 females; mean age 66 years). The presence of microangiopathy was defined by retinopathy, albumin excretion, and/or neuropathy, and macroangiopathy by carotid plaques, a history of myocardial infarction, and/or stroke. RESULTS Diabetic subjects accumulated significant amounts of nitrosylated proteins in peripheral blood monocytes. Nitrosylated protein expression positively correlated with body weight, blood glucose, HbA (1)C, and plasma C-reactive protein concentrations in the whole cohort as well as in subjects with diabetic macroangiopathy. CONCLUSIONS Monocyte nitrosylated protein expression is a new biomarker of metabolic control and inflammation in diabetic subjects with macroangiopathy. A more detailed assessment of diabetic microvascular complications in a larger group of patients is needed to determine if this variable can be employed as a biomarker of the presence, severity, and progression of diabetic neuropathy, retinopathy, and nephropathy.
Collapse
Affiliation(s)
- U Julius
- Medical Clinic III, University Hospital, Dresden, Germany.
| | | | | | | |
Collapse
|
68
|
Obrosova IG. Diabetes and the peripheral nerve. Biochim Biophys Acta Mol Basis Dis 2008; 1792:931-40. [PMID: 19061951 DOI: 10.1016/j.bbadis.2008.11.005] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2008] [Revised: 11/05/2008] [Accepted: 11/06/2008] [Indexed: 12/11/2022]
Abstract
Diabetes-induced damage to peripheral nerve culminates in development of peripheral diabetic neuropathy (PDN), one of the most devastating complications of diabetes mellitus and a leading cause of foot amputation. The pathogenesis of PDN occurs as a consequence of complex interactions among multiple hyperglycemia-initiated mechanisms, impaired insulin signaling, inflammation, hypertension, and disturbances of fatty acid and lipid metabolism. This review describes experimental new findings in animal and cell culture models as well as clinical data suggesting the importance of 1) previously established hyperglycemia-initiated mechanisms such as increased aldose reductase activity, non-enzymatic glycation/glycooxidation, activation of protein kinase C, 2) oxidative-nitrosative stress and poly(ADP-ribose) polymerase activation; 3) mitogen-activated protein kinase and cyclooxygenase-2 activation, impaired Ca(++) homeostasis and signaling, and several other mechanisms, in PDN.
Collapse
Affiliation(s)
- Irina G Obrosova
- Pennington Biomedical Research Center, Louisiana State University, 6400 Perkins Road, Baton Rouge, Louisiana 70808, USA.
| |
Collapse
|
69
|
Kamei J, Ohsawa M, Miyata S, Endo K, Hayakawa H. Effects of cytidine 5'-diphosphocholine (CDP-choline) on the thermal nociceptive threshold in streptozotocin-induced diabetic mice. Eur J Pharmacol 2008; 598:32-6. [PMID: 18834878 DOI: 10.1016/j.ejphar.2008.09.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2008] [Revised: 09/01/2008] [Accepted: 09/10/2008] [Indexed: 01/26/2023]
Abstract
Neuropathy accompanied by abnormal sensory perception is the most common complication in insulin-dependent and -independent diabetes mellitus. Since there are very few effective therapeutic regimens for sensory abnormalities in diabetes, we examined the effect of cytidine 5'-diphosphocholine (CDP)-choline on the thermal nociceptive threshold in streptozotocin-induced diabetic mice using the tail-flick test. Diabetic mice showed a shorter tail-flick latency at 1-4 weeks after streptozotocin treatment and a longer tail-flick latency after 8-12 weeks. This hyper- and hypoalgesia in diabetic mice was almost completely inhibited by daily treatment with CDP-choline (100 mg/kg/day, p.o.) beginning on the day of streptozotocin treatment. Daily treatment with CDP-choline beginning 5 weeks after streptozotocin treatment attenuated the development of hypoalgesia. Diabetic mice showed a significant increase in Na(+)-K(+)-ATPase activity at 3 weeks after streptozotocin treatment, whereas Na(+)-K(+)-ATPase activity was decreased at 12 weeks after treatment. These alterations were normalized by daily treatment with CDP-choline (100 mg/kg/day, p.o.) beginning the day of streptozotocin treatment. These results provide evidence to support the therapeutic potency of CDP-choline on the development of thermal hyper- and hypoalgesia and the progression of thermal hypoalgesia in diabetic mice. Moreover, these effects of CDP-choline may result from the normalization of Na(+)-K(+)-ATPase activity.
Collapse
Affiliation(s)
- Junzo Kamei
- Department of Pathophysiology and Therapeutics, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, Tokyo 142-8501, Japan.
| | | | | | | | | |
Collapse
|
70
|
Arora M, Kumar A, Kaundal RK, Sharma SS. Amelioration of neurological and biochemical deficits by peroxynitrite decomposition catalysts in experimental diabetic neuropathy. Eur J Pharmacol 2008; 596:77-83. [PMID: 18768138 DOI: 10.1016/j.ejphar.2008.08.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2008] [Revised: 07/31/2008] [Accepted: 08/07/2008] [Indexed: 12/11/2022]
Abstract
Diabetic neuropathy, a major complication of diabetes, affects more than 60% of diabetic patients. Recently, involvement of peroxynitrite has been postulated in diabetic neuropathy. In the present study, we have studied the effects of peroxynitrite decomposition catalysts (PDC's)-5,10,15,20-tetrakis(4-sulfonatophenyl) porphyrinato iron(III) [FeTPPS] and 5,10,15,20-tetrakis(N-methyl-4-pyridyl)porphyrinato iron(III) [FeTMPyP]-in experimental diabetic neuropathy. Male Sprague-Dawley rats, with six weeks of untreated diabetes were treated for two weeks with peroxynitrite decomposition catalysts. Diabetic animals showed a significant decrease in motor nerve conduction velocity and nerve blood flow, nociception as evident from decreased tail flick latency (hyperalgesia) and increased paw withdrawal pressure (mechanical allodynia) along with elevation in peroxynitrite and reduction in nerve glutathione levels. Two weeks treatment with PDC's significantly improved all the above stated functional and biochemical deficits. Aftermath of this study advocates the beneficial effects of peroxynitrite decomposition catalysts in experimental diabetic neuropathy.
Collapse
Affiliation(s)
- Manish Arora
- Molecular Neuropharmacology Laboratory, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Mohali, Punjab, India
| | | | | | | |
Collapse
|
71
|
Facile synthesis of ortho-pyridyl-substituted corroles and molecular structures of analogous porphyrins. Tetrahedron Lett 2008. [DOI: 10.1016/j.tetlet.2008.04.113] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
72
|
Ali TK, Matragoon S, Pillai BA, Liou GI, El-Remessy AB. Peroxynitrite mediates retinal neurodegeneration by inhibiting nerve growth factor survival signaling in experimental and human diabetes. Diabetes 2008; 57:889-98. [PMID: 18285558 DOI: 10.2337/db07-1669] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Recently we have shown that diabetes-induced retinal neurodegeneration positively correlates with oxidative stress and peroxynitrite. Studies also show that peroxynitrite impairs nerve growth factor (NGF) survival signaling in sensory neurons. However, the causal role of peroxynitrite and the impact of tyrosine nitration on diabetes-induced retinal neurodegeneration and NGF survival signaling have not been elucidated. RESEARCH DESIGN AND METHODS Expression of NGF and its receptors was examined in retinas from human and streptozotocin-induced diabetic rats and retinal ganglion cells (RGCs). Diabetic animals were treated with FeTPPS (15 mg x kg(-1) x day(-1) ip), which catalytically decomposes peroxynitrite to nitrate. After 4 weeks of diabetes, retinal cell death was determined by TUNEL assay. Lipid peroxidation and nitrotyrosine were determined using MDA assay, immunofluorescence, and Slot-Blot analysis. Expression of NGF and its receptors was determined by enzyme-linked immunosorbent assay (ELISA), real-time PCR, immunoprecipitation, and Western blot analyses. RESULTS Analyses of retinal neuronal death and NGF showed ninefold and twofold increases, respectively, in diabetic retinas compared with controls. Diabetes also induced increases in lipid peroxidation, nitrotyrosine, and the pro-apoptotic p75(NTR) receptor in human and rat retinas. These effects were associated with tyrosine nitration of the pro-survival TrkA receptor, resulting in diminished phosphorylation of TrkA and its downstream target, Akt. Furthermore, peroxynitrite induced neuronal death, TrkA nitration, and activation of p38 mitogen-activated protein kinase (MAPK) in RGCs, even in the presence of exogenous NGF. FeTPPS prevented tyrosine nitration, restored NGF survival signal, and prevented neuronal death in vitro and in vivo. CONCLUSIONS Together, these data suggest that diabetes-induced peroxynitrite impairs NGF neuronal survival by nitrating TrkA receptor and enhancing p75(NTR) expression.
Collapse
Affiliation(s)
- Tayyeba K Ali
- Program in Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA 30912, USA
| | | | | | | | | |
Collapse
|
73
|
Obrosova IG, Xu W, Lyzogubov VV, Ilnytska O, Mashtalir N, Vareniuk I, Pavlov IA, Zhang J, Slusher B, Drel VR. PARP inhibition or gene deficiency counteracts intraepidermal nerve fiber loss and neuropathic pain in advanced diabetic neuropathy. Free Radic Biol Med 2008; 44:972-81. [PMID: 17976390 PMCID: PMC3057075 DOI: 10.1016/j.freeradbiomed.2007.09.013] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2007] [Revised: 08/31/2007] [Accepted: 09/20/2007] [Indexed: 02/04/2023]
Abstract
Evidence that poly(ADP-ribose) polymerase (PARP) activation plays an important role in diabetic complications is emerging. This study evaluated the role of PARP in rat and mouse models of advanced diabetic neuropathy. The orally active PARP inhibitor 10-(4-methylpiperazin-1-ylmethyl)-2H-7-oxa-1,2-diaza-benzo[de]anthracen-3-one (GPI-15427; formulated as a mesilate salt, 30 mg kg(-1) day(-1) in the drinking water for 10 weeks after the first 2 weeks without treatment) at least partially prevented PARP activation in peripheral nerve and DRG neurons, as well as thermal hypoalgesia, mechanical hyperalgesia, tactile allodynia, exaggerated response to formalin, and, most importantly, intraepidermal nerve fiber degeneration in streptozotocin-diabetic rats. These findings are consistent with the lack of small sensory nerve fiber dysfunction in diabetic PARP -/- mice. Furthermore, whereas diabetic PARP +/+ mice displayed approximately 46% intraepidermal nerve fiber loss, diabetic PARP -/- mice retained completely normal intraepidermal nerve fiber density. In conclusion, PARP activation is an important contributor to intraepidermal nerve fiber degeneration and functional changes associated with advanced Type 1 diabetic neuropathy. The results support a rationale for the development of potent and low-toxicity PARP inhibitors and PARP inhibitor-containing combination therapies.
Collapse
Affiliation(s)
- Irina G Obrosova
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Sullivan KA, Lentz SI, Roberts JL, Feldman EL. Criteria for creating and assessing mouse models of diabetic neuropathy. Curr Drug Targets 2008; 9:3-13. [PMID: 18220709 DOI: 10.2174/138945008783431763] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Diabetic neuropathy (DN) is a serious and debilitating complication of both type 1 and type 2 diabetes. Despite intense research efforts into multiple aspects of this complication, including both vascular and neuronal metabolic derangements, the only treatment remains maintenance of euglycemia. Basic research into the mechanisms responsible for DN relies on using the most appropriate animal model. The advent of genetic manipulation has moved mouse models of human disease to the forefront. The ability to insert or delete genes affected in human patients offers unique insight into disease processes; however, mice are still not humans and difficulties remain in interpreting data derived from these animals. A number of studies have investigated and described DN in mice but it is difficult to compare these studies with each other or with human DN due to experimental differences including background strain, type of diabetes, method of induction and duration of diabetes, animal age and gender. This review describes currently used DN animal models. We followed a standardized diabetes induction protocol and designed and implemented a set of phenotyping parameters to classify the development and severity of DN. By applying standard protocols, we hope to facilitate the comparison and characterization of DN across different background strains in the hope of discovering the most human like model in which to test potential therapies.
Collapse
Affiliation(s)
- Kelli A Sullivan
- University of Michigan, Departments of Neurology and Internal Medicine, USA
| | | | | | | |
Collapse
|
75
|
Lycopene attenuates thermal hyperalgesia in a diabetic mouse model of neuropathic pain. Eur J Pain 2007; 12:624-32. [PMID: 18055235 DOI: 10.1016/j.ejpain.2007.10.008] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2007] [Revised: 10/18/2007] [Accepted: 10/18/2007] [Indexed: 01/23/2023]
Abstract
Diabetic neuropathic pain, an important microvascular complication of diabetes mellitus is recognized as one of the most difficult types of pain to treat. The development of tolerance, inadequate relief and potential toxicity of classical antinociceptives warrant the investigation of the newer agents to relieve this pain. The aim of the present study was to explore the antinociceptive effect of lycopene and its effect on tumour necrosis factor-alpha (TNF-alpha) and nitric oxide (NO) release in streptozotocin induced diabetic mice. Four weeks after a single intraperitoneal injection of streptozotocin (200 mg/kg), mice were tested in the tail immersion and hot-plate assays. Diabetic mice exhibited significant hyperalgesia alongwith increased plasma glucose and decreased body weights as compared with control mice. Lycopene (1, 2 and 4 mg/kg body weight; per oral) treatment, from the 4th to 8th week after streptozotocin injection, significantly attenuated thermal hyperalgesia and the hot-plate latencies. Lycopene also inhibited the TNF-alpha and NO release in a dose dependent manner. These results indicate an antinociceptive activity of lycopene possibly through its inhibitory action on NO and TNF-alpha release and point towards its potential to attenuate diabetic neuropathic pain.
Collapse
|
76
|
Obrosova IG, Drel VR, Oltman CL, Mashtalir N, Tibrewala J, Groves JT, Yorek MA. Role of nitrosative stress in early neuropathy and vascular dysfunction in streptozotocin-diabetic rats. Am J Physiol Endocrinol Metab 2007; 293:E1645-55. [PMID: 17911342 DOI: 10.1152/ajpendo.00479.2007] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Evidence for important roles of the highly reactive oxidant peroxynitrite in diabetic complications is emerging. We evaluated the role of peroxynitrite in early peripheral neuropathy and vascular dysfunction in STZ-diabetic rats. In the first dose-finding study, control and STZ-diabetic rats were maintained with or without the potent peroxynitrite decomposition catalyst Fe(III)tetrakis-2-(N-triethylene glycol monomethyl ether) pyridyl porphyrin (FP15) at 3, 5, or 10 mg.kg(-1).day(-1) in the drinking water for 4 wk after an initial 2 wk without treatment for assessment of early neuropathy. In the second study with similar experimental design, control and STZ-diabetic rats were maintained with or without FP15, 5 mg.kg(-1).day(-1), for vascular studies. Rats with 6-wk duration of diabetes developed motor and sensory nerve conduction velocity deficits, mechanical hyperalgesia, and tactile allodynia in the absence of small sensory nerve fiber degeneration. They also had increased nitrotyrosine and poly(ADP-ribose) immunofluorescence in the sciatic nerve and dorsal root ganglia. All these variables were dose-dependently corrected by FP15, with minimal differences between the 5 and 10 mg.kg(-1).day(-1) doses. FP15, 5 mg.kg(-1).day(-1), also corrected endoneurial nutritive blood flow and nitrotyrosine, but not superoxide, fluorescence in aorta and epineurial arterioles. Diabetes-induced decreases in acetylcholine-mediated relaxation by epineurial arterioles and coronary and mesenteric arteries, as well as bradykinin-induced relaxation by coronary and mesenteric arteries, were alleviated by FP15 treatment. The findings reveal the important role of nitrosative stress in early neuropathy and vasculopathy and provide the rationale for further studies of peroxynitrite decomposition catalysts in long-term diabetic models.
Collapse
Affiliation(s)
- Irina G Obrosova
- Pennington Biomedical Research Center, Louisiana State University, 6400 Perkins Road, Baton Rouge, LA 70808, USA.
| | | | | | | | | | | | | |
Collapse
|