51
|
Li TT, An JX, Xu JY, Tuo BG. Overview of organic anion transporters and organic anion transporter polypeptides and their roles in the liver. World J Clin Cases 2019; 7:3915-3933. [PMID: 31832394 PMCID: PMC6906560 DOI: 10.12998/wjcc.v7.i23.3915] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/20/2019] [Accepted: 11/26/2019] [Indexed: 02/05/2023] Open
Abstract
Organic anion transporters (OATs) and organic anion transporter polypeptides (OATPs) are classified within two SLC superfamilies, namely, the SLC22A superfamily and the SLCO superfamily (formerly the SLC21A family), respectively. They are expressed in many tissues, such as the liver and kidney, and mediate the absorption and excretion of many endogenous and exogenous substances, including various drugs. Most are composed of 12 transmembrane polypeptide chains with the C-terminus and the N-terminus located in the cell cytoplasm. OATs and OATPs are abundantly expressed in the liver, where they mainly promote the uptake of various endogenous substrates such as bile acids and various exogenous drugs such as antifibrotic and anticancer drugs. However, differences in the locations of glycosylation sites, phosphorylation sites, and amino acids in the OAT and OATP structures lead to different substrates being transported to the liver, which ultimately results in their different roles in the liver. To date, few articles have addressed these aspects of OAT and OATP structures, and we study further the similarities and differences in their structures, tissue distribution, substrates, and roles in liver diseases.
Collapse
Affiliation(s)
- Ting-Ting Li
- Department of Gastroenterology, Affiliated Hospital, Zunyi Medical University, Zunyi 563100, Guizhou Province, China
| | - Jia-Xing An
- Department of Gastroenterology, Affiliated Hospital, Zunyi Medical University, Zunyi 563100, Guizhou Province, China
| | - Jing-Yu Xu
- Department of Gastroenterology, Affiliated Hospital, Zunyi Medical University, Zunyi 563100, Guizhou Province, China
| | - Bi-Guang Tuo
- Department of Gastroenterology, Affiliated Hospital, Zunyi Medical University, Zunyi 563100, Guizhou Province, China
| |
Collapse
|
52
|
Patel O, Muller CJF, Joubert E, Rosenkranz B, Taylor MJC, Louw J, Awortwe C. Pharmacokinetic Interaction of Green Rooibos Extract With Atorvastatin and Metformin in Rats. Front Pharmacol 2019; 10:1243. [PMID: 31708777 PMCID: PMC6822546 DOI: 10.3389/fphar.2019.01243] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 09/27/2019] [Indexed: 12/15/2022] Open
Abstract
An aspalathin-rich green rooibos extract (Afriplex GRT™) has demonstrated anti-diabetic and hypolipidemic properties, while also moderately inhibiting CYP3A4 activity, suggesting a potential for herb-drug interaction. The present study, therefore, evaluated the effects of orally administered GRT on the pharmacokinetics of atorvastatin and metformin in Wistar rats. Wistar rats were orally treated with GRT (50 mg/kg BW), atorvastatin (40 mg/kg BW) or metformin (150 mg/kg BW) alone or 50 mg/kg BW GRT in combination with 40 mg/kg BW atorvastatin or 150 mg/kg BW metformin. Blood samples were collected at 0, 10, and 30 min and 1, 2, 4, 6, and 8 h and plasma samples obtained for Liquid chromatography-mass spectrometry (LC-MS/MS) analyses. Non-compartment and two-compartment pharmacokinetic parameters of atorvastatin and metformin in the presence or absence of GRT were determined by PKSolver version 2.0 software. Membrane transporter proteins, ATP-binding cassette sub-family C member 2 (Abcc2), solute carrier organic anion transporter family, member 1b2 (Slco1b2), ATP-binding cassette, sub-family B (MDR/TAP), member 1A (Abcb1a), and organic cation transporter 1 (Oct1) mRNA expression were determined using real-time PCR expression data normalized to β-actin and hypoxanthine-guanine phosphoribosyltransferase (HPRT), respectively. Co-administration of GRT with atorvastatin substantially increased the maximum plasma concentration (Cmax) and area of the plasma concentration-time curve (AUC0-8) of atorvastatin by 5.8-fold (p = 0.03) and 5.9-fold (p = 0.02), respectively. GRT had no effect on the plasma levels of metformin. GRT increased Abcc2 expression and metformin downregulated Abcb1a expression while the combination of GRT with atorvastatin or metformin did not significantly alter the expression of Slco1b1 or Oct1 did not significantly alter the expression of Sclo1b2 or Oct1. Co-administration of GRT with atorvastatin in rats may lead to higher plasma concentrations and, therefore, to an increase of the exposure to atorvastatin.
Collapse
Affiliation(s)
- Oelfah Patel
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council (SAMRC), Tygerberg, South Africa.,Division of Clinical Pharmacology, Department of Medicine, Faculty of Medicine and Health Sciences, University of Stellenbosch, Tygerberg, South Africa
| | - Christo J F Muller
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council (SAMRC), Tygerberg, South Africa.,Division of Medical Physiology, Faculty of Health Sciences, Stellenbosch University, Tygerberg, South Africa.,Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa, South Africa
| | - Elizabeth Joubert
- Plant Bioactives Group, Post-Harvest and Agro-Processing Technologies, Agricultural Research Council, Infruitec-Nietvoorbij, Stellenbosch, South Africa.,Department of Food Science, Stellenbosch University, Matieland, South Africa
| | - Bernd Rosenkranz
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council (SAMRC), Tygerberg, South Africa.,Division of Clinical Pharmacology, Department of Medicine, Faculty of Medicine and Health Sciences, University of Stellenbosch, Tygerberg, South Africa
| | - Malcolm J C Taylor
- Central Analytical Facility, Mass Spectrometry Unit, Matieland, South Africa
| | - Johan Louw
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council (SAMRC), Tygerberg, South Africa.,Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa, South Africa
| | - Charles Awortwe
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council (SAMRC), Tygerberg, South Africa.,Division of Clinical Pharmacology, Department of Medicine, Faculty of Medicine and Health Sciences, University of Stellenbosch, Tygerberg, South Africa
| |
Collapse
|
53
|
Liu X. Transporter-Mediated Drug-Drug Interactions and Their Significance. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1141:241-291. [PMID: 31571167 DOI: 10.1007/978-981-13-7647-4_5] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Drug transporters are considered to be determinants of drug disposition and effects/toxicities by affecting the absorption, distribution, and excretion of drugs. Drug transporters are generally divided into solute carrier (SLC) family and ATP binding cassette (ABC) family. Widely studied ABC family transporters include P-glycoprotein (P-GP), breast cancer resistance protein (BCRP), and multidrug resistance proteins (MRPs). SLC family transporters related to drug transport mainly include organic anion-transporting polypeptides (OATPs), organic anion transporters (OATs), organic cation transporters (OCTs), organic cation/carnitine transporters (OCTNs), peptide transporters (PEPTs), and multidrug/toxin extrusions (MATEs). These transporters are often expressed in tissues related to drug disposition, such as the small intestine, liver, and kidney, implicating intestinal absorption of drugs, uptake of drugs into hepatocytes, and renal/bile excretion of drugs. Most of therapeutic drugs are their substrates or inhibitors. When they are comedicated, serious drug-drug interactions (DDIs) may occur due to alterations in intestinal absorption, hepatic uptake, or renal/bile secretion of drugs, leading to enhancement of their activities or toxicities or therapeutic failure. This chapter will illustrate transporter-mediated DDIs (including food drug interaction) in human and their clinical significances.
Collapse
Affiliation(s)
- Xiaodong Liu
- China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
54
|
Kulkarni P, Korzekwa K, Nagar S. A hybrid model to evaluate the impact of active uptake transport on hepatic distribution of atorvastatin in rats. Xenobiotica 2019; 50:536-544. [PMID: 31530243 DOI: 10.1080/00498254.2019.1668982] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
1. Mathematical modeling remains a useful tool to study the impact of transporters on overall and intracellular drug disposition. The impact of organic anion transporter protein mediated uptake on atorvastatin systemic and intracellular pharmacokinetics, specifically distribution volume, was studied in rats with mathematical modeling and conducting in vivo pharmacokinetic studies for atorvastatin in presence and absence of rifampicin. A previously developed 5-compartment explicit membrane model for the liver was combined with a compartmental model to develop a semi-physiological hybrid model for atorvastatin disposition. 2. Rifampicin treatment resulted in a decrease in systemic clearance and steady-state distribution volume, and an increase in half-life of atorvastatin. The hybrid model predicted higher unbound intracellular liver atorvastatin concentrations than unbound plasma concentrations in both rifampicin treated and untreated groups, indicating involvement of uptake transporters. The intracellular unbound concentrations during the distributive phase were unaffected by rifampicin. The dependence of clearance on blood flow as well as hepatic uptake for atorvastatin (a moderate-to-high extraction ratio drug) can explain this lack of change in intracellular concentrations if there is incomplete inhibition of transport at the tested rifampicin dose. 3. The hybrid model successfully allowed the evaluation of effect of active uptake on intracellular and plasma atorvastatin disposition.
Collapse
Affiliation(s)
- Priyanka Kulkarni
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, PA, USA
| | - Ken Korzekwa
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, PA, USA
| | - Swati Nagar
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, PA, USA
| |
Collapse
|
55
|
Zhang D, Hop CECA, Patilea-Vrana G, Gampa G, Seneviratne HK, Unadkat JD, Kenny JR, Nagapudi K, Di L, Zhou L, Zak M, Wright MR, Bumpus NN, Zang R, Liu X, Lai Y, Khojasteh SC. Drug Concentration Asymmetry in Tissues and Plasma for Small Molecule-Related Therapeutic Modalities. Drug Metab Dispos 2019; 47:1122-1135. [PMID: 31266753 PMCID: PMC6756291 DOI: 10.1124/dmd.119.086744] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 06/10/2019] [Indexed: 02/06/2023] Open
Abstract
The well accepted "free drug hypothesis" for small-molecule drugs assumes that only the free (unbound) drug concentration at the therapeutic target can elicit a pharmacologic effect. Unbound (free) drug concentrations in plasma are readily measurable and are often used as surrogates for the drug concentrations at the site of pharmacologic action in pharmacokinetic-pharmacodynamic analysis and clinical dose projection in drug discovery. Furthermore, for permeable compounds at pharmacokinetic steady state, the free drug concentration in tissue is likely a close approximation of that in plasma; however, several factors can create and maintain disequilibrium between the free drug concentration in plasma and tissue, leading to free drug concentration asymmetry. These factors include drug uptake and extrusion mechanisms involving the uptake and efflux drug transporters, intracellular biotransformation of prodrugs, membrane receptor-mediated uptake of antibody-drug conjugates, pH gradients, unique distribution properties (covalent binders, nanoparticles), and local drug delivery (e.g., inhalation). The impact of these factors on the free drug concentrations in tissues can be represented by K p,uu, the ratio of free drug concentration between tissue and plasma at steady state. This review focuses on situations in which free drug concentrations in tissues may differ from those in plasma (e.g., K p,uu > or <1) and discusses the limitations of the surrogate approach of using plasma-free drug concentration to predict free drug concentrations in tissue. This is an important consideration for novel therapeutic modalities since systemic exposure as a driver of pharmacologic effects may provide limited value in guiding compound optimization, selection, and advancement. Ultimately, a deeper understanding of the relationship between free drug concentrations in plasma and tissues is needed.
Collapse
Affiliation(s)
- Donglu Zhang
- Genentech, South San Francisco, California (D.Z., C.E.C.A.H., J.R.K., K.N., M.Z., M.R.W., R.Z., S.C.K.); Department of Medicine, Division of Clinical Pharmacology, The Johns Hopkins University School of Medicine, Baltimore, Maryland (H.K.S., N.N.B.); Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (G.G.); Department of Pharmaceutics, University of Washington, Seattle, Washington (G.P.-V., J.D.U.); Biogen, Cambridge, Massachusetts (X.L.); Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc., Eastern Point Road, Groton, Connecticut (L.D.); Drug Disposition, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana (L.Z.); and Drug Metabolism, Gilead Sciences, Foster City, California (Y.L.)
| | - Cornelis E C A Hop
- Genentech, South San Francisco, California (D.Z., C.E.C.A.H., J.R.K., K.N., M.Z., M.R.W., R.Z., S.C.K.); Department of Medicine, Division of Clinical Pharmacology, The Johns Hopkins University School of Medicine, Baltimore, Maryland (H.K.S., N.N.B.); Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (G.G.); Department of Pharmaceutics, University of Washington, Seattle, Washington (G.P.-V., J.D.U.); Biogen, Cambridge, Massachusetts (X.L.); Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc., Eastern Point Road, Groton, Connecticut (L.D.); Drug Disposition, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana (L.Z.); and Drug Metabolism, Gilead Sciences, Foster City, California (Y.L.)
| | - Gabriela Patilea-Vrana
- Genentech, South San Francisco, California (D.Z., C.E.C.A.H., J.R.K., K.N., M.Z., M.R.W., R.Z., S.C.K.); Department of Medicine, Division of Clinical Pharmacology, The Johns Hopkins University School of Medicine, Baltimore, Maryland (H.K.S., N.N.B.); Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (G.G.); Department of Pharmaceutics, University of Washington, Seattle, Washington (G.P.-V., J.D.U.); Biogen, Cambridge, Massachusetts (X.L.); Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc., Eastern Point Road, Groton, Connecticut (L.D.); Drug Disposition, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana (L.Z.); and Drug Metabolism, Gilead Sciences, Foster City, California (Y.L.)
| | - Gautham Gampa
- Genentech, South San Francisco, California (D.Z., C.E.C.A.H., J.R.K., K.N., M.Z., M.R.W., R.Z., S.C.K.); Department of Medicine, Division of Clinical Pharmacology, The Johns Hopkins University School of Medicine, Baltimore, Maryland (H.K.S., N.N.B.); Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (G.G.); Department of Pharmaceutics, University of Washington, Seattle, Washington (G.P.-V., J.D.U.); Biogen, Cambridge, Massachusetts (X.L.); Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc., Eastern Point Road, Groton, Connecticut (L.D.); Drug Disposition, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana (L.Z.); and Drug Metabolism, Gilead Sciences, Foster City, California (Y.L.)
| | - Herana Kamal Seneviratne
- Genentech, South San Francisco, California (D.Z., C.E.C.A.H., J.R.K., K.N., M.Z., M.R.W., R.Z., S.C.K.); Department of Medicine, Division of Clinical Pharmacology, The Johns Hopkins University School of Medicine, Baltimore, Maryland (H.K.S., N.N.B.); Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (G.G.); Department of Pharmaceutics, University of Washington, Seattle, Washington (G.P.-V., J.D.U.); Biogen, Cambridge, Massachusetts (X.L.); Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc., Eastern Point Road, Groton, Connecticut (L.D.); Drug Disposition, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana (L.Z.); and Drug Metabolism, Gilead Sciences, Foster City, California (Y.L.)
| | - Jashvant D Unadkat
- Genentech, South San Francisco, California (D.Z., C.E.C.A.H., J.R.K., K.N., M.Z., M.R.W., R.Z., S.C.K.); Department of Medicine, Division of Clinical Pharmacology, The Johns Hopkins University School of Medicine, Baltimore, Maryland (H.K.S., N.N.B.); Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (G.G.); Department of Pharmaceutics, University of Washington, Seattle, Washington (G.P.-V., J.D.U.); Biogen, Cambridge, Massachusetts (X.L.); Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc., Eastern Point Road, Groton, Connecticut (L.D.); Drug Disposition, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana (L.Z.); and Drug Metabolism, Gilead Sciences, Foster City, California (Y.L.)
| | - Jane R Kenny
- Genentech, South San Francisco, California (D.Z., C.E.C.A.H., J.R.K., K.N., M.Z., M.R.W., R.Z., S.C.K.); Department of Medicine, Division of Clinical Pharmacology, The Johns Hopkins University School of Medicine, Baltimore, Maryland (H.K.S., N.N.B.); Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (G.G.); Department of Pharmaceutics, University of Washington, Seattle, Washington (G.P.-V., J.D.U.); Biogen, Cambridge, Massachusetts (X.L.); Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc., Eastern Point Road, Groton, Connecticut (L.D.); Drug Disposition, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana (L.Z.); and Drug Metabolism, Gilead Sciences, Foster City, California (Y.L.)
| | - Karthik Nagapudi
- Genentech, South San Francisco, California (D.Z., C.E.C.A.H., J.R.K., K.N., M.Z., M.R.W., R.Z., S.C.K.); Department of Medicine, Division of Clinical Pharmacology, The Johns Hopkins University School of Medicine, Baltimore, Maryland (H.K.S., N.N.B.); Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (G.G.); Department of Pharmaceutics, University of Washington, Seattle, Washington (G.P.-V., J.D.U.); Biogen, Cambridge, Massachusetts (X.L.); Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc., Eastern Point Road, Groton, Connecticut (L.D.); Drug Disposition, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana (L.Z.); and Drug Metabolism, Gilead Sciences, Foster City, California (Y.L.)
| | - Li Di
- Genentech, South San Francisco, California (D.Z., C.E.C.A.H., J.R.K., K.N., M.Z., M.R.W., R.Z., S.C.K.); Department of Medicine, Division of Clinical Pharmacology, The Johns Hopkins University School of Medicine, Baltimore, Maryland (H.K.S., N.N.B.); Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (G.G.); Department of Pharmaceutics, University of Washington, Seattle, Washington (G.P.-V., J.D.U.); Biogen, Cambridge, Massachusetts (X.L.); Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc., Eastern Point Road, Groton, Connecticut (L.D.); Drug Disposition, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana (L.Z.); and Drug Metabolism, Gilead Sciences, Foster City, California (Y.L.)
| | - Lian Zhou
- Genentech, South San Francisco, California (D.Z., C.E.C.A.H., J.R.K., K.N., M.Z., M.R.W., R.Z., S.C.K.); Department of Medicine, Division of Clinical Pharmacology, The Johns Hopkins University School of Medicine, Baltimore, Maryland (H.K.S., N.N.B.); Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (G.G.); Department of Pharmaceutics, University of Washington, Seattle, Washington (G.P.-V., J.D.U.); Biogen, Cambridge, Massachusetts (X.L.); Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc., Eastern Point Road, Groton, Connecticut (L.D.); Drug Disposition, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana (L.Z.); and Drug Metabolism, Gilead Sciences, Foster City, California (Y.L.)
| | - Mark Zak
- Genentech, South San Francisco, California (D.Z., C.E.C.A.H., J.R.K., K.N., M.Z., M.R.W., R.Z., S.C.K.); Department of Medicine, Division of Clinical Pharmacology, The Johns Hopkins University School of Medicine, Baltimore, Maryland (H.K.S., N.N.B.); Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (G.G.); Department of Pharmaceutics, University of Washington, Seattle, Washington (G.P.-V., J.D.U.); Biogen, Cambridge, Massachusetts (X.L.); Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc., Eastern Point Road, Groton, Connecticut (L.D.); Drug Disposition, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana (L.Z.); and Drug Metabolism, Gilead Sciences, Foster City, California (Y.L.)
| | - Matthew R Wright
- Genentech, South San Francisco, California (D.Z., C.E.C.A.H., J.R.K., K.N., M.Z., M.R.W., R.Z., S.C.K.); Department of Medicine, Division of Clinical Pharmacology, The Johns Hopkins University School of Medicine, Baltimore, Maryland (H.K.S., N.N.B.); Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (G.G.); Department of Pharmaceutics, University of Washington, Seattle, Washington (G.P.-V., J.D.U.); Biogen, Cambridge, Massachusetts (X.L.); Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc., Eastern Point Road, Groton, Connecticut (L.D.); Drug Disposition, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana (L.Z.); and Drug Metabolism, Gilead Sciences, Foster City, California (Y.L.)
| | - Namandjé N Bumpus
- Genentech, South San Francisco, California (D.Z., C.E.C.A.H., J.R.K., K.N., M.Z., M.R.W., R.Z., S.C.K.); Department of Medicine, Division of Clinical Pharmacology, The Johns Hopkins University School of Medicine, Baltimore, Maryland (H.K.S., N.N.B.); Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (G.G.); Department of Pharmaceutics, University of Washington, Seattle, Washington (G.P.-V., J.D.U.); Biogen, Cambridge, Massachusetts (X.L.); Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc., Eastern Point Road, Groton, Connecticut (L.D.); Drug Disposition, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana (L.Z.); and Drug Metabolism, Gilead Sciences, Foster City, California (Y.L.)
| | - Richard Zang
- Genentech, South San Francisco, California (D.Z., C.E.C.A.H., J.R.K., K.N., M.Z., M.R.W., R.Z., S.C.K.); Department of Medicine, Division of Clinical Pharmacology, The Johns Hopkins University School of Medicine, Baltimore, Maryland (H.K.S., N.N.B.); Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (G.G.); Department of Pharmaceutics, University of Washington, Seattle, Washington (G.P.-V., J.D.U.); Biogen, Cambridge, Massachusetts (X.L.); Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc., Eastern Point Road, Groton, Connecticut (L.D.); Drug Disposition, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana (L.Z.); and Drug Metabolism, Gilead Sciences, Foster City, California (Y.L.)
| | - Xingrong Liu
- Genentech, South San Francisco, California (D.Z., C.E.C.A.H., J.R.K., K.N., M.Z., M.R.W., R.Z., S.C.K.); Department of Medicine, Division of Clinical Pharmacology, The Johns Hopkins University School of Medicine, Baltimore, Maryland (H.K.S., N.N.B.); Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (G.G.); Department of Pharmaceutics, University of Washington, Seattle, Washington (G.P.-V., J.D.U.); Biogen, Cambridge, Massachusetts (X.L.); Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc., Eastern Point Road, Groton, Connecticut (L.D.); Drug Disposition, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana (L.Z.); and Drug Metabolism, Gilead Sciences, Foster City, California (Y.L.)
| | - Yurong Lai
- Genentech, South San Francisco, California (D.Z., C.E.C.A.H., J.R.K., K.N., M.Z., M.R.W., R.Z., S.C.K.); Department of Medicine, Division of Clinical Pharmacology, The Johns Hopkins University School of Medicine, Baltimore, Maryland (H.K.S., N.N.B.); Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (G.G.); Department of Pharmaceutics, University of Washington, Seattle, Washington (G.P.-V., J.D.U.); Biogen, Cambridge, Massachusetts (X.L.); Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc., Eastern Point Road, Groton, Connecticut (L.D.); Drug Disposition, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana (L.Z.); and Drug Metabolism, Gilead Sciences, Foster City, California (Y.L.)
| | - S Cyrus Khojasteh
- Genentech, South San Francisco, California (D.Z., C.E.C.A.H., J.R.K., K.N., M.Z., M.R.W., R.Z., S.C.K.); Department of Medicine, Division of Clinical Pharmacology, The Johns Hopkins University School of Medicine, Baltimore, Maryland (H.K.S., N.N.B.); Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (G.G.); Department of Pharmaceutics, University of Washington, Seattle, Washington (G.P.-V., J.D.U.); Biogen, Cambridge, Massachusetts (X.L.); Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc., Eastern Point Road, Groton, Connecticut (L.D.); Drug Disposition, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana (L.Z.); and Drug Metabolism, Gilead Sciences, Foster City, California (Y.L.)
| |
Collapse
|
56
|
Carter SJ, Ferecskó AS, King L, Ménochet K, Parton T, Chappell MJ. A mechanistic modelling approach for the determination of the mechanisms of inhibition by cyclosporine on the uptake and metabolism of atorvastatin in rat hepatocytes using a high throughput uptake method. Xenobiotica 2019; 50:415-426. [PMID: 31389297 DOI: 10.1080/00498254.2019.1652781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Determine the inhibition mechanism through which cyclosporine inhibits the uptake and metabolism of atorvastatin in fresh rat hepatocytes using mechanistic models applied to data generated using a high throughput oil spin method.Atorvastatin was incubated in fresh rat hepatocytes (0.05-150 nmol/ml) with or without 20 min pre-incubation with 10 nmol/ml cyclosporine and sampled over 0.25-60 min using a high throughput oil spin method. Micro-rate constant and macro-rate constant mechanistic models were ranked based on goodness of fit values.The best fitting model to the data was a micro-rate constant mechanistic model including non-competitive inhibition of uptake and competitive inhibition of metabolism by cyclosporine (Model 2). The association rate constant for atorvastatin was 150-fold greater than the dissociation rate constant and 10-fold greater than the translocation into the cell. The association and dissociation rate constants for cyclosporine were 7-fold smaller and 10-fold greater, respectively, than atorvastatin. The simulated atorvastatin-transporter-cyclosporine complex derived using the micro-rate constant parameter estimates increased in line with the incubation concentration of atorvastatin.The increased amount of data generated with the high throughput oil spin method, combined with a micro-rate constant mechanistic model helps to explain the inhibition of uptake by cyclosporine following pre-incubation.
Collapse
Affiliation(s)
- Simon J Carter
- Biomedical and Biological Systems Laboratory, School of Engineering, University of Warwick, Coventry, United Kingdom
| | | | | | | | | | - Michael J Chappell
- Biomedical and Biological Systems Laboratory, School of Engineering, University of Warwick, Coventry, United Kingdom
| |
Collapse
|
57
|
Pang KS, Han YR, Noh K, Lee PI, Rowland M. Hepatic clearance concepts and misconceptions: Why the well-stirred model is still used even though it is not physiologic reality? Biochem Pharmacol 2019; 169:113596. [PMID: 31398312 DOI: 10.1016/j.bcp.2019.07.025] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 07/30/2019] [Indexed: 12/22/2022]
Abstract
The liver is the most important drug metabolizing organ, endowed with a plethora of metabolizing enzymes and transporters to facilitate drug entry and removal via metabolism and/or biliary excretion. For this reason, much focus surrounds the development of clearance concepts, which are based on normalizing the rate of removal to the input or arterial concentration. By so doing, some authors have recently claimed that it implies one specific model of hepatic elimination, namely, the widely used well-stirred or venous equilibration model (WSM). This commentary challenges this claim and aims to provide a comprehensive discussion of not only the WSM but other currently applied hepatic clearance models - the parallel tube model (PTM), the dispersion model (DM), the zonal liver model (ZLM), and the heterogeneous capillary transit time model of Goresky and co-workers (GM). The WSM, PTM, and DM differ in the patterns of internal blood flow, assuming bulk, plug, and dispersive flows, respectively, which render different degrees of mixing within the liver that are characterized by the magnitudes of the dispersion number (DN), resulting in different implications concerning the (unbound) substrate concentration in liver (CuH). Early models assumed perfusion rate-limited distribution, which have since been modified to include membrane-limited transport. The recent developments associated with the misconceptions and the sensitivity of the models are hereby addressed. Since the WSM has been and will likely remain widely used, the pros and cons of this model relative to physiological reality are further discussed.
Collapse
Affiliation(s)
- K Sandy Pang
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada.
| | - Yi Rang Han
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Keumhan Noh
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Ping I Lee
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Malcolm Rowland
- Centre for Applied Pharmacokinetic Research, University of Manchester, United Kingdom
| |
Collapse
|
58
|
Bi YA, Costales C, Mathialagan S, West M, Eatemadpour S, Lazzaro S, Tylaska L, Scialis R, Zhang H, Umland J, Kimoto E, Tess DA, Feng B, Tremaine LM, Varma MVS, Rodrigues AD. Quantitative Contribution of Six Major Transporters to the Hepatic Uptake of Drugs: "SLC-Phenotyping" Using Primary Human Hepatocytes. J Pharmacol Exp Ther 2019; 370:72-83. [PMID: 30975793 DOI: 10.1124/jpet.119.257600] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 04/08/2019] [Indexed: 11/22/2022] Open
Abstract
Hepatic uptake transporters [solute carriers (SLCs)], including organic anion transporting polypeptide (OATP) 1B1, OATP1B3, OATP2B1, sodium-dependent taurocholate cotransporting polypeptide (NTCP), and organic anion (OAT2) and organic cation (OCT1) transporters, play a key role in determining the systemic and liver exposure of chemically diverse drugs. Here, we established a phenotyping approach to quantify the contribution of the six SLCs, and passive diffusion, to the overall uptake using plated human hepatocytes (PHHs). First, selective inhibitor conditions were identified by screening about 20 inhibitors across the six SLCs using single-transfected human embryonic kidney 293 cells. Data implied rifamycin SV (20 µM) inhibits three OATPs, while rifampicin (5 µM) inhibits OATP1B1/1B3 only. Further, hepatitis B virus myristoylated-preS1 peptide (0.1 µM), quinidine (100 µM), and ketoprofen (100-300 µM) are relatively selective against NTCP, OCT1, and OAT2, respectively. Second, using these inhibitory conditions, the fraction transported (ft ) by the individual SLCs was characterized for 20 substrates with PHH. Generally, extended clearance classification system class 1A/3A (e.g., warfarin) and 1B/3B compounds (e.g., statins) showed predominant OAT2 and OATP1B1/1B3 contribution, respectively. OCT1-mediated uptake was prominent for class 2/4 compounds (e.g., metformin). Third, in vitro ft values were corrected using quantitative proteomics data to obtain "scaled ft " Fourth, in vitro-in vivo extrapolation of the scaled OATP1B1/1B3 ft was assessed, leveraging statin clinical drug-drug interaction data with rifampicin as the perpetrator. Finally, we outlined a novel stepwise strategy to implement phenotypic characterization of SLC-mediated hepatic uptake for new molecular entities and drugs in a drug discovery and development setting.
Collapse
Affiliation(s)
- Yi-An Bi
- Medicine Design, Worldwide Research and Development, Pfizer Inc., Groton, Connecticut
| | - Chester Costales
- Medicine Design, Worldwide Research and Development, Pfizer Inc., Groton, Connecticut
| | - Sumathy Mathialagan
- Medicine Design, Worldwide Research and Development, Pfizer Inc., Groton, Connecticut
| | - Mark West
- Medicine Design, Worldwide Research and Development, Pfizer Inc., Groton, Connecticut
| | - Soraya Eatemadpour
- Medicine Design, Worldwide Research and Development, Pfizer Inc., Groton, Connecticut
| | - Sarah Lazzaro
- Medicine Design, Worldwide Research and Development, Pfizer Inc., Groton, Connecticut
| | - Laurie Tylaska
- Medicine Design, Worldwide Research and Development, Pfizer Inc., Groton, Connecticut
| | - Renato Scialis
- Medicine Design, Worldwide Research and Development, Pfizer Inc., Groton, Connecticut
| | - Hui Zhang
- Medicine Design, Worldwide Research and Development, Pfizer Inc., Groton, Connecticut
| | - John Umland
- Medicine Design, Worldwide Research and Development, Pfizer Inc., Groton, Connecticut
| | - Emi Kimoto
- Medicine Design, Worldwide Research and Development, Pfizer Inc., Groton, Connecticut
| | - David A Tess
- Medicine Design, Worldwide Research and Development, Pfizer Inc., Groton, Connecticut
| | - Bo Feng
- Medicine Design, Worldwide Research and Development, Pfizer Inc., Groton, Connecticut
| | - Larry M Tremaine
- Medicine Design, Worldwide Research and Development, Pfizer Inc., Groton, Connecticut
| | - Manthena V S Varma
- Medicine Design, Worldwide Research and Development, Pfizer Inc., Groton, Connecticut
| | - A David Rodrigues
- Medicine Design, Worldwide Research and Development, Pfizer Inc., Groton, Connecticut
| |
Collapse
|
59
|
Khatri R, Fallon JK, Rementer RJB, Kulick NT, Lee CR, Smith PC. Targeted quantitative proteomic analysis of drug metabolizing enzymes and transporters by nano LC-MS/MS in the sandwich cultured human hepatocyte model. J Pharmacol Toxicol Methods 2019; 98:106590. [PMID: 31158457 PMCID: PMC6701468 DOI: 10.1016/j.vascn.2019.106590] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 04/30/2019] [Accepted: 05/25/2019] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Sandwich-cultured human hepatocytes (SCHHs) are the most common in vitro hepatocyte model used for studying hepatic drug disposition and hepatotoxicity. Targeted quantification of key DME and transporter protein expression is useful for in vitro-in vivo extrapolation of drug and xenobiotic clearance and developing corresponding PBPK models. However, established methods for comprehensive quantification of drug metabolizing enzyme (DMEs) and transporter expression in SCHHs are lacking. In this study, a targeted quantitative proteomic isotope dilution nanoLC-MS/MS method developed in our laboratory was adapted to quantify a panel of phase I & II DMEs and transporter proteins in SCHHs under basal and induced conditions. METHODS SCHHs were treated with known inducers of DMEs (Rifampin: PXR activator, CITCO: CAR activator) and transporters (CDCA: FXR activator) or with vehicle control (DMSO) for 72 h. Membrane protein was isolated from the SCHHs using a membrane extraction kit and 30 μg membrane protein was digested with trypsin. The resulting peptides were analyzed by isotope dilution nanoLC-MS/MS to quantify the DMEs and transporters. RESULTS Using the method, we could quantify fourteen phase I and ten phase II DMEs, and twelve uptake/efflux transporters, under basal and induced conditions in the SCHHs. Analysis showed donor to donor variation in basal protein levels of CYP450s, UGTs and transporters, and that basal protein expression of CYP450s and UGTs was higher than that of transporters. In addition, induction of key proteins in response to rifampin, CITCO and CDCA was observed. DISCUSSION We have successfully quantified protein abundance of multiple phase I and II DMEs and uptake and efflux transporters in SCHHs using a method previously developed in our laboratory. Our method is sufficiently sensitive to quantify inter-donor differences in protein concentrations at the basal level as well as changes in protein expression in response to endogenous and exogenous stimuli.
Collapse
Affiliation(s)
- Raju Khatri
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, NC 27599, United States of America
| | - John K Fallon
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, NC 27599, United States of America
| | - Rebecca J B Rementer
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, NC 27599, United States of America
| | - Natasha T Kulick
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, NC 27599, United States of America
| | - Craig R Lee
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, NC 27599, United States of America
| | - Philip C Smith
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, NC 27599, United States of America.
| |
Collapse
|
60
|
Prantil-Baun R, Novak R, Das D, Somayaji MR, Przekwas A, Ingber DE. Physiologically Based Pharmacokinetic and Pharmacodynamic Analysis Enabled by Microfluidically Linked Organs-on-Chips. Annu Rev Pharmacol Toxicol 2019; 58:37-64. [PMID: 29309256 DOI: 10.1146/annurev-pharmtox-010716-104748] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Physiologically based pharmacokinetic (PBPK) modeling and simulation approaches are beginning to be integrated into drug development and approval processes because they enable key pharmacokinetic (PK) parameters to be predicted from in vitro data. However, these approaches are hampered by many limitations, including an inability to incorporate organ-specific differentials in drug clearance, distribution, and absorption that result from differences in cell uptake, transport, and metabolism. Moreover, such approaches are generally unable to provide insight into pharmacodynamic (PD) parameters. Recent development of microfluidic Organ-on-a-Chip (Organ Chip) cell culture devices that recapitulate tissue-tissue interfaces, vascular perfusion, and organ-level functionality offer the ability to overcome these limitations when multiple Organ Chips are linked via their endothelium-lined vascular channels. Here, we discuss successes and challenges in the use of existing culture models and vascularized Organ Chips for PBPK and PD modeling of human drug responses, as well as in vitro to in vivo extrapolation (IVIVE) of these results, and how these approaches might advance drug development and regulatory review processes in the future.
Collapse
Affiliation(s)
- Rachelle Prantil-Baun
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, USA;
| | - Richard Novak
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, USA;
| | - Debarun Das
- CFD Research Corporation, Huntsville, Alabama 35806, USA
| | | | | | - Donald E Ingber
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, USA; .,Vascular Biology Program and Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA.,Harvard John A. Paulson School of Engineering and Applied Sciences, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
61
|
Saikosaponin b2 enhances the hepatotargeting effect of anticancer drugs through inhibition of multidrug resistance-associated drug transporters. Life Sci 2019; 231:116557. [PMID: 31194994 PMCID: PMC7094655 DOI: 10.1016/j.lfs.2019.116557] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 06/03/2019] [Accepted: 06/09/2019] [Indexed: 12/21/2022]
Abstract
Aims: Vinegar-baked Radix Bupleuri (VBRB) potentiates the activity of anticancer drugs in the liver by increasing their hepatic distribution. However, this phenomenon may be associated with drug transporters. We investigated the effect of saikosaponin b2 (SSb2; the main component of VBRB) on the activity and expression of different drug transporters in both normal cells and those that overexpress the transporter. Main methods: The activities of transporters were analyzed by concentration of their cellular substrates. Concentrations of colchicine (substrate of Pgp and MRP1) and cisplatin (substrate of OCT2 and MRP2) were determined by high-performance liquid chromatography (HPLC). The concentration of rhodamine B was determined by flow cytometry. The expression of transporter gene and protein were determined by qRT-PCR and Western blotting analysis. Key findings: SSb2 increased colchicine efflux in HEK293 cells by primarily increasing Mrp1 activity, independent of gene and protein expression. SSb2 enhanced Mrp2 function and increased cisplatin efflux in BRL3A cells by upregulating Mrp2 gene expression, with a marginal effect on Pgp in normal cells. SSb2 increased OCT2 activity in OCT2-HEK293 cells by increasing the expression of OCT2 protein and mRNA; however, SSb2 inhibited MRP2 activity in MRP2-HEK293 cells by decreasing MRP2 protein expression, and decreased Pgp and MRP1 activity in Pgp- and MRP1-HEK293 cells. Significance: SSb2 might potentially be the key active component of VBRB that enhances the hepatotargeting of anticancer drugs through the inhibition of multidrug resistance-associated drug transporters (Pgp, MRP1, and MRP2) in an environment-dependent manner.
Collapse
|
62
|
Evaluation of Drug Biliary Excretion Using Sandwich-Cultured Human Hepatocytes. Eur J Drug Metab Pharmacokinet 2019; 44:13-30. [PMID: 30167999 DOI: 10.1007/s13318-018-0502-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Evaluation of hepatobiliary transport of drugs is an important challenge, notably during the development of new molecular identities. In this context, sandwich-cultured human hepatocytes (SCHH) have been proposed as an interesting and integrated tool for predicting in vitro biliary excretion of drugs. The present review was therefore designed to summarize key findings about SCHH, including their establishment, their main functional features and their use for the determination of canalicular transport and the prediction of in vivo biliary clearance and hepatobiliary excretion-related drug-drug interactions. Reviewed data highlight the fact that SCHH represent an original and probably unique holistic in vitro approach to predict biliary clearance in humans, through taking into account sinusoidal drug uptake, passive drug diffusion, drug metabolism and sinusoidal and canalicular drug efflux. Limits and proposed refinements for SCHH-based analysis of drug biliary excretion, as well as putative human alternative in vitro models to SCHH are also discussed.
Collapse
|
63
|
Li Z, Di L, Maurer TS. Theoretical Considerations for Direct Translation of Unbound Liver-to-Plasma Partition Coefficient from In Vitro to In Vivo. AAPS JOURNAL 2019; 21:43. [DOI: 10.1208/s12248-019-0314-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 02/26/2019] [Indexed: 12/25/2022]
|
64
|
Physiologically-Based Pharmacokinetic Modeling for Drug-Drug Interactions of Procainamide and N-Acetylprocainamide with Cimetidine, an Inhibitor of rOCT2 and rMATE1, in Rats. Pharmaceutics 2019; 11:pharmaceutics11030108. [PMID: 30845766 PMCID: PMC6470842 DOI: 10.3390/pharmaceutics11030108] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 03/01/2019] [Accepted: 03/03/2019] [Indexed: 01/11/2023] Open
Abstract
Previous observations demonstrated that cimetidine decreased the clearance of procainamide (PA) and/or N-acetylprocainamide (NAPA; the primary metabolite of PA) resulting in the increased systemic exposure and the decrease of urinary excretion. Despite an abundance of in vitro and in vivo data regarding pharmacokinetic interactions between PA/NAPA and cimetidine, however, a mechanistic approach to elucidate these interactions has not been reported yet. The primary objective of this study was to construct a physiological model that describes pharmacokinetic interactions between PA/NAPA and cimetidine, an inhibitor of rat organic cation transporter 2 (rOCT2) and rat multidrug and toxin extrusion proteins (rMATE1), by performing extensive in vivo and in vitro pharmacokinetic studies for PA and NAPA performed in the absence or presence of cimetidine in rats. When a single intravenous injection of PA HCl (10 mg/kg) was administered to rats, co-administration of cimetidine (100 mg/kg) significantly increased systemic exposure and decreased the systemic (CL) and renal (CLR) clearance of PA, and reduced its tissue distribution. Similarly, cimetidine significantly decreased the CLR of NAPA formed by the metabolism of PA and increased the AUC of NAPA. Considering that these drugs could share similar renal secretory pathways (e.g., via rOCT2 and rMATE1), a physiologically-based pharmacokinetic (PBPK) model incorporating semi-mechanistic kidney compartments was devised to predict drug-drug interactions (DDIs). Using our proposed PBPK model, DDIs between PA/NAPA and cimetidine were successfully predicted for the plasma concentrations and urinary excretion profiles of PA and NAPA observed in rats. Moreover, sensitivity analyses of the pharmacokinetics of PA and NAPA showed the inhibitory effects of cimetidine via rMATE1 were probably important for the renal elimination of PA and NAPA in rats. The proposed PBPK model may be useful for understanding the mechanisms of interactions between PA/NAPA and cimetidine in vivo.
Collapse
|
65
|
Chan TS, Yu H, Moore A, Khetani SR, Tweedie D. Meeting the Challenge of Predicting Hepatic Clearance of Compounds Slowly Metabolized by Cytochrome P450 Using a Novel Hepatocyte Model, HepatoPac. Drug Metab Dispos 2019; 47:58-66. [PMID: 30552098 DOI: 10.1124/dmd.113.053397fullarticlecorrection] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 08/15/2013] [Indexed: 12/17/2022] Open
Abstract
Generating accurate in vitro intrinsic clearance data is an important aspect of predicting in vivo human clearance. Primary hepatocytes in suspension are routinely used to predict in vivo clearance; however, incubation times have typically been limited to 4-6 hours, which is not long enough to accurately evaluate the metabolic stability of slowly metabolized compounds. HepatoPac is a micropatterened hepatocyte-fibroblast coculture system that can be used for continuous incubations of up to 7 days. This study evaluated the ability of human HepatoPac to predict the in vivo clearance (CL) of 17 commercially available compounds with low to intermediate clearance (<12 ml/min/kg). In vitro half-life for disappearance of each compound was converted to hepatic clearance using the well stirred model, with and without correction for plasma protein binding. Hepatic CL, using three individual donors, was accurately predicted for 11 of 17 compounds (59%; predicted clearance within 2-fold of observed human in vivo clearance values). The accuracy of prediction increased to 82% (14 of 17 compounds) with an acceptance criterion defined as within 3-fold. When considering only low clearance compounds (<5 ml/min per kg), which represented 10 of the 17 compounds, the accuracy of prediction was 70% within 2-fold and 100% within 3-fold. In addition, the turnover of three slowly metabolized compounds (alprazolam, meloxicam, and tolbutamide) in HepatoPac was directly compared with turnover in suspended hepatocytes. The turnover of alprazolam and tolbutamide was approximately 2-fold greater using HepatoPac compared with suspended hepatocytes, which was roughly in line with the extrapolated values (correcting for the longer incubation time and lower cell number with HepatoPac). HepatoPac, but not suspended hepatocytes, demonstrated significant turnover of meloxicam. These results demonstrate the utility of HepatoPac for prediction of in vivo hepatic clearance, particularly with low clearance compounds.
Collapse
Affiliation(s)
- Tom S Chan
- Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals, Ridgefield, Connecticut (T.S.C., H.Y., D.T.); Hepregen Corporation, Medford, Massachusetts (A.M.); and Mechanical and Biomedical Engineering, Colorado State University, Fort Collins, Colorado (S.R.K.)
| | - Hongbin Yu
- Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals, Ridgefield, Connecticut (T.S.C., H.Y., D.T.); Hepregen Corporation, Medford, Massachusetts (A.M.); and Mechanical and Biomedical Engineering, Colorado State University, Fort Collins, Colorado (S.R.K.)
| | - Amanda Moore
- Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals, Ridgefield, Connecticut (T.S.C., H.Y., D.T.); Hepregen Corporation, Medford, Massachusetts (A.M.); and Mechanical and Biomedical Engineering, Colorado State University, Fort Collins, Colorado (S.R.K.)
| | - Salman R Khetani
- Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals, Ridgefield, Connecticut (T.S.C., H.Y., D.T.); Hepregen Corporation, Medford, Massachusetts (A.M.); and Mechanical and Biomedical Engineering, Colorado State University, Fort Collins, Colorado (S.R.K.)
| | - Donald Tweedie
- Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals, Ridgefield, Connecticut (T.S.C., H.Y., D.T.); Hepregen Corporation, Medford, Massachusetts (A.M.); and Mechanical and Biomedical Engineering, Colorado State University, Fort Collins, Colorado (S.R.K.)
| |
Collapse
|
66
|
Wittenburg LA, Ramirez D, Conger H, Gustafson DL. Simultaneous absolute quantitation of ATP-binding cassette transporters in normal dog tissues by signature peptide analysis using a LC/MS/MS method. Res Vet Sci 2018; 122:93-101. [PMID: 30500618 DOI: 10.1016/j.rvsc.2018.11.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 10/29/2018] [Accepted: 11/11/2018] [Indexed: 12/21/2022]
Abstract
Membrane transport proteins are fundamental components of blood-tissue barriers and affect the absorption, distribution and elimination, and interactions of many of the drugs commonly used in veterinary medicine. A quantitative, simultaneous measurement of these proteins across dog tissues is not currently available, nor is it possible with current immune-based assays such as western blot. In the present study, we aimed to develop a sensitive and specific liquid chromatography tandem-mass spectrometry (LC/MS/MS) based quantitation method that can simultaneously quantitate 14 ATP-binding cassette transporters. We applied this method to a panel of normal canine tissues and compared the LC/MS/MS results with relative messenger RNA (mRNA) abundance using quantitative real-time polymerase chain reaction (qRT-PCR). Our LC/MS/MS method is sensitive, with lower limits of quantitation ranging from 5 to 10 fmol/μg of protein. We were able to detect and/or quantitate each of the 14 transporters in at least one normal dog tissue. Relative protein and mRNA abundance within tissues did not demonstrate a significant correlation in all cases. The results presented here will provide for more accurate predictions of drug movement in dogs through incorporation into physiologically based pharmacokinetic (PBPK) models; the method described here has wide applicability to the quantitation of virtually any proteins of interest in biologic samples where validated canine antibodies do not exist.
Collapse
Affiliation(s)
- Luke A Wittenburg
- Department of Clinical Sciences, Flint Animal Cancer Center, Colorado State University, 300 West Drake Road, Fort Collins, Colorado 80525, United States.
| | - Dominique Ramirez
- Department of Clinical Sciences, Flint Animal Cancer Center, Colorado State University, 300 West Drake Road, Fort Collins, Colorado 80525, United States
| | - Holly Conger
- Department of Clinical Sciences, Flint Animal Cancer Center, Colorado State University, 300 West Drake Road, Fort Collins, Colorado 80525, United States
| | - Daniel L Gustafson
- Department of Clinical Sciences, Flint Animal Cancer Center, Colorado State University, 300 West Drake Road, Fort Collins, Colorado 80525, United States
| |
Collapse
|
67
|
Patilea-Vrana GI, Unadkat JD. When Does the Rate-Determining Step in the Hepatic Clearance of a Drug Switch from Sinusoidal Uptake to All Hepatobiliary Clearances? Implications for Predicting Drug-Drug Interactions. Drug Metab Dispos 2018; 46:1487-1496. [PMID: 30115647 PMCID: PMC6193213 DOI: 10.1124/dmd.118.081307] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 08/10/2018] [Indexed: 12/24/2022] Open
Abstract
For dual transporter-enzyme substrate drugs, the extended clearance model can be used to predict the rate-determining step(s) (RDS) of a drug and hence predict its drug-drug interaction (DDI) liabilities (i.e., transport, metabolism, or both). If the RDS of the hepatic clearance of the drug is sinusoidal uptake clearance (CLs in), even if the drug is eliminated mainly by hepatic metabolism, its DDI liability (as viewed from changes to systemic drug concentrations) is expected to be inhibition or induction of uptake transporters but not hepatic enzymes; however, this is true only if the condition required to maintain CLs in as the RDS is maintained. Here, we illustrate through theoretical simulations that the RDS condition may be violated in the presence of a DDI. That is, the RDS of a drug can switch from CLs in to all hepatobiliary clearances [i.e., metabolic/biliary clearance (CLmet + bile) and CLs in], leading to unexpected systemic DDIs, such as metabolic DDIs, when only transporter DDIs were anticipated. As expected, these analyses revealed that the RDS switch depends on the ratio of CLmet + bile to sinusoidal efflux clearance (CLs ef). Additional analyses revealed that for intravenously administered drugs, the RDS switch also depends on the magnitude of CLs in We analyzed published in vitro quantified hepatobiliary clearances and observed that most drugs have a CLmet + bile/CLs ef ratio < 4; hence, in practice, the magnitude of CLs in must be considered when establishing the RDS. These analyses provide insights previously not appreciated and a theoretical framework to predict DDI liabilities for drugs that are dual transporter-enzyme substrates.
Collapse
Affiliation(s)
| | - Jashvant D Unadkat
- Department of Pharmaceutics, University of Washington, Seattle, Washington
| |
Collapse
|
68
|
Kimoto E, Mathialagan S, Tylaska L, Niosi M, Lin J, Carlo AA, Tess DA, Varma MVS. Organic Anion Transporter 2-Mediated Hepatic Uptake Contributes to the Clearance of High-Permeability-Low-Molecular-Weight Acid and Zwitterion Drugs: Evaluation Using 25 Drugs. J Pharmacol Exp Ther 2018; 367:322-334. [PMID: 30135178 DOI: 10.1124/jpet.118.252049] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 08/15/2018] [Indexed: 03/08/2025] Open
Abstract
High-permeability-low-molecular-weight acids/zwitterions [i.e., extended clearance classification system class 1A (ECCS 1A) drugs] are considered to be cleared by metabolism with a minimal role of membrane transporters in their hepatic clearance. However, a marked disconnect in the in vitro-in vivo (IVIV) translation of hepatic clearance is often noted for these drugs. Metabolic rates measured using human liver microsomes and primary hepatocytes tend to underpredict. Here, we evaluated the role of organic anion transporter 2 (OAT2)-mediated hepatic uptake in the clearance of ECCS 1A drugs. For a set of 25 ECCS 1A drugs, in vitro transport activity was assessed using transporter-transfected cells and primary human hepatocytes. All but two drugs showed substrate affinity to OAT2, whereas four (bromfenac, entacapone, fluorescein, and nateglinide) also showed OATP1B1 activity in transfected cells. Most of these drugs (21 of 25) showed active uptake by plated human hepatocytes, with rifamycin SV (pan-transporter inhibitor) reducing the uptake by about 25%-95%. Metabolic turnover was estimated for 19 drugs after a few showed no measurable substrate depletion in liver microsomal incubations. IVIV extrapolation using in vitro data was evaluated to project human hepatic clearance of OAT2-alone substrates considering 1) uptake transport only, 2) metabolism only, and 3) transporter-enzyme interplay (extended clearance model). The transporter-enzyme interplay approach achieved improved prediction accuracy (average fold error = 1.9 and bias = 0.93) compared with the other two approaches. In conclusion, this study provides functional evidence for the role of OAT2-mediated hepatic uptake in determining the pharmacokinetics of several clinically important ECCS 1A drugs.
Collapse
Affiliation(s)
- Emi Kimoto
- Medicine Design, Worldwide Research and Development, Pfizer Inc., Groton, Connecticut
| | - Sumathy Mathialagan
- Medicine Design, Worldwide Research and Development, Pfizer Inc., Groton, Connecticut
| | - Laurie Tylaska
- Medicine Design, Worldwide Research and Development, Pfizer Inc., Groton, Connecticut
| | - Mark Niosi
- Medicine Design, Worldwide Research and Development, Pfizer Inc., Groton, Connecticut
| | - Jian Lin
- Medicine Design, Worldwide Research and Development, Pfizer Inc., Groton, Connecticut
| | - Anthony A Carlo
- Medicine Design, Worldwide Research and Development, Pfizer Inc., Groton, Connecticut
| | - David A Tess
- Medicine Design, Worldwide Research and Development, Pfizer Inc., Groton, Connecticut
| | - Manthena V S Varma
- Medicine Design, Worldwide Research and Development, Pfizer Inc., Groton, Connecticut
| |
Collapse
|
69
|
Benet LZ, Bowman CM, Liu S, Sodhi JK. The Extended Clearance Concept Following Oral and Intravenous Dosing: Theory and Critical Analyses. Pharm Res 2018; 35:242. [PMID: 30349948 PMCID: PMC6364828 DOI: 10.1007/s11095-018-2524-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 10/15/2018] [Indexed: 12/14/2022]
Abstract
PURPOSE To derive the theoretical basis for the extended clearance model of organ elimination following both oral and IV dosing, and critically analyze the approaches previously taken. METHODS We derived from first principles the theoretical basis for the extended clearance concept of organ elimination following both oral and IV dosing and critically analyzed previous approaches. RESULTS We point out a number of critical characteristics that have either been misinterpreted or not clearly presented in previously published treatments. First, the extended clearance concept is derived based on the well-stirred model. It is not appropriate to use alternative models of hepatic clearance. In analyzing equations, clearance terms are all intrinsic clearances, not total drug clearances. Flow and protein binding parameters should reflect blood measurements, not plasma values. In calculating the AUCR-factor following oral dosing, the AUC terms do not include flow parameters. We propose that calculations of AUCR may be a more useful approach to evaluate drug-drug and pharmacogenomic interactions than evaluating rate-determining steps. Through analyses of cerivastatin and fluvastatin interactions with cyclosporine we emphasize the need to characterize volume of distribution changes resulting from transporter inhibition/induction that can affect rate constants in PBPK models. Finally, we note that for oral doses, prediction of systemic and intrahepatic drug-drug interactions do not require knowledge of fu,H or Kp,uu for substrates/victims. CONCLUSIONS The extended clearance concept is a powerful tool to evaluate drug-drug interactions, pharmacogenomic and disease state variance but evaluating the AUCR-factor may provide a more valuable approach than characterizing rate-determining steps.
Collapse
Affiliation(s)
- Leslie Z Benet
- Department of Bioengineering and Therapeutic Sciences, Schools of Pharmacy and Medicine, University of California San Francisco, San Francisco, California, 94143-0912, USA.
| | - Christine M Bowman
- Department of Bioengineering and Therapeutic Sciences, Schools of Pharmacy and Medicine, University of California San Francisco, San Francisco, California, 94143-0912, USA
| | - Shufang Liu
- Department of Bioengineering and Therapeutic Sciences, Schools of Pharmacy and Medicine, University of California San Francisco, San Francisco, California, 94143-0912, USA
| | - Jasleen K Sodhi
- Department of Bioengineering and Therapeutic Sciences, Schools of Pharmacy and Medicine, University of California San Francisco, San Francisco, California, 94143-0912, USA
| |
Collapse
|
70
|
Adiwidjaja J, Boddy AV, McLachlan AJ. A Strategy to Refine the Phenotyping Approach and Its Implementation to Predict Drug Clearance: A Physiologically Based Pharmacokinetic Simulation Study. CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY 2018; 7:798-808. [PMID: 30260092 PMCID: PMC6310868 DOI: 10.1002/psp4.12355] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 09/10/2018] [Indexed: 12/13/2022]
Abstract
The phenotyping approach to predict drug metabolism activity is often hampered by a lack of correlation between the probe and the drug of interest. In this article, we present a strategy to refine the phenotyping approach based on a physiologically based pharmacokinetic simulation (implemented in Simcyp Simulator version 17) using previously published models. The apparent clearance (CL/F) of erlotinib was better predicted by the sum of caffeine and i.v. midazolam CL/F (r2 = 0.60) compared to that of either probe drug alone. The clearance of atorvastatin and repaglinide had a strong correlation (r2 = 0.70 and 0.63, respectively) with that of pitavastatin (a SLCO1B1 probe). Use of multiple probes for drugs that are predominantly metabolized by more than one cytochrome P450 (CYP) enzyme should be considered. In a case in which hepatic uptake transporters play a significant role in the disposition of a drug, the pharmacokinetic of a transporter probe will provide better predictions of the drug clearance.
Collapse
Affiliation(s)
- Jeffry Adiwidjaja
- Sydney Pharmacy School, The University of Sydney, Sydney, New South Wales, Australia
| | - Alan V Boddy
- Sydney Pharmacy School, The University of Sydney, Sydney, New South Wales, Australia.,School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Andrew J McLachlan
- Sydney Pharmacy School, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
71
|
Kosa RE, Lazzaro S, Bi YA, Tierney B, Gates D, Modi S, Costales C, Rodrigues AD, Tremaine LM, Varma MV. Simultaneous Assessment of Transporter-Mediated Drug-Drug Interactions Using a Probe Drug Cocktail in Cynomolgus Monkey. Drug Metab Dispos 2018; 46:1179-1189. [PMID: 29880631 DOI: 10.1124/dmd.118.081794] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 05/30/2018] [Indexed: 12/18/2022] Open
Abstract
We aim to establish an in vivo preclinical model to enable simultaneous assessment of inhibition potential of an investigational drug on clinically relevant drug transporters, organic anion-transporting polypeptide (OATP)1B, breast cancer resistance protein (BCRP), P-glycoprotein (P-gp), and organic anion transporter (OAT)3. Pharmacokinetics of substrate cocktail consisting of pitavastatin (OATP1B substrate), rosuvastatin (OATP1B/BCRP/OAT3), sulfasalazine (BCRP), and talinolol (P-gp) were obtained in cynomolgus monkey-alone or in combination with transporter inhibitors. Single-dose rifampicin (30 mg/kg) significantly (P < 0.01) increased the plasma exposure of all four drugs, with a marked effect on pitavastatin and rosuvastatin [area under the plasma concentration-time curve (AUC) ratio ∼21-39]. Elacridar, BCRP/P-gp inhibitor, increased the AUC of sulfasalazine, talinolol, as well as rosuvastatin and pitavastatin. An OAT1/3 inhibitor (probenecid) significantly (P < 0.05) impacted the renal clearance of rosuvastatin (∼8-fold). In vitro, rifampicin (10 µM) inhibited uptake of pitavastatin, rosuvastatin, and sulfasalazine by monkey and human primary hepatocytes. Transport studies using membrane vesicles suggested that all probe substrates, except talinolol, are transported by cynoBCRP, whereas talinolol is a cynoP-gp substrate. Elacridar and rifampicin inhibited both cynoBCRP and cynoP-gp in vitro, indicating potential for in vivo intestinal efflux inhibition. In conclusion, a probe substrate cocktail was validated to simultaneously evaluate perpetrator impact on multiple clinically relevant transporters using the cynomolgus monkey. The results support the use of the cynomolgus monkey as a model that could enable drug-drug interaction risk assessment, before advancing a new molecular entity into clinical development, as well as providing mechanistic insights on transporter-mediated interactions.
Collapse
Affiliation(s)
- Rachel E Kosa
- Pharmacokinetics, Dynamics, and Metabolism, Medicine Design (R.E.K., S.L., Y.-a.B., B.T., C.C., A.D.R., L.M.T., M.V.V.) and Research Formulations, Pharmaceutical Sciences (D.G., S.M.), Pfizer Worldwide R&D, Groton, Connecticut
| | - Sarah Lazzaro
- Pharmacokinetics, Dynamics, and Metabolism, Medicine Design (R.E.K., S.L., Y.-a.B., B.T., C.C., A.D.R., L.M.T., M.V.V.) and Research Formulations, Pharmaceutical Sciences (D.G., S.M.), Pfizer Worldwide R&D, Groton, Connecticut
| | - Yi-An Bi
- Pharmacokinetics, Dynamics, and Metabolism, Medicine Design (R.E.K., S.L., Y.-a.B., B.T., C.C., A.D.R., L.M.T., M.V.V.) and Research Formulations, Pharmaceutical Sciences (D.G., S.M.), Pfizer Worldwide R&D, Groton, Connecticut
| | - Brendan Tierney
- Pharmacokinetics, Dynamics, and Metabolism, Medicine Design (R.E.K., S.L., Y.-a.B., B.T., C.C., A.D.R., L.M.T., M.V.V.) and Research Formulations, Pharmaceutical Sciences (D.G., S.M.), Pfizer Worldwide R&D, Groton, Connecticut
| | - Dana Gates
- Pharmacokinetics, Dynamics, and Metabolism, Medicine Design (R.E.K., S.L., Y.-a.B., B.T., C.C., A.D.R., L.M.T., M.V.V.) and Research Formulations, Pharmaceutical Sciences (D.G., S.M.), Pfizer Worldwide R&D, Groton, Connecticut
| | - Sweta Modi
- Pharmacokinetics, Dynamics, and Metabolism, Medicine Design (R.E.K., S.L., Y.-a.B., B.T., C.C., A.D.R., L.M.T., M.V.V.) and Research Formulations, Pharmaceutical Sciences (D.G., S.M.), Pfizer Worldwide R&D, Groton, Connecticut
| | - Chester Costales
- Pharmacokinetics, Dynamics, and Metabolism, Medicine Design (R.E.K., S.L., Y.-a.B., B.T., C.C., A.D.R., L.M.T., M.V.V.) and Research Formulations, Pharmaceutical Sciences (D.G., S.M.), Pfizer Worldwide R&D, Groton, Connecticut
| | - A David Rodrigues
- Pharmacokinetics, Dynamics, and Metabolism, Medicine Design (R.E.K., S.L., Y.-a.B., B.T., C.C., A.D.R., L.M.T., M.V.V.) and Research Formulations, Pharmaceutical Sciences (D.G., S.M.), Pfizer Worldwide R&D, Groton, Connecticut
| | - Larry M Tremaine
- Pharmacokinetics, Dynamics, and Metabolism, Medicine Design (R.E.K., S.L., Y.-a.B., B.T., C.C., A.D.R., L.M.T., M.V.V.) and Research Formulations, Pharmaceutical Sciences (D.G., S.M.), Pfizer Worldwide R&D, Groton, Connecticut
| | - Manthena V Varma
- Pharmacokinetics, Dynamics, and Metabolism, Medicine Design (R.E.K., S.L., Y.-a.B., B.T., C.C., A.D.R., L.M.T., M.V.V.) and Research Formulations, Pharmaceutical Sciences (D.G., S.M.), Pfizer Worldwide R&D, Groton, Connecticut
| |
Collapse
|
72
|
Chedik L, Bruyere A, Bacle A, Potin S, Le Vée M, Fardel O. Interactions of pesticides with membrane drug transporters: implications for toxicokinetics and toxicity. Expert Opin Drug Metab Toxicol 2018; 14:739-752. [DOI: 10.1080/17425255.2018.1487398] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Lisa Chedik
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France
| | - Arnaud Bruyere
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France
| | - Astrid Bacle
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France
- Pôle Pharmacie, Centre Hospitalier Universitaire, Rennes, France
| | - Sophie Potin
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France
- Pôle Pharmacie, Centre Hospitalier Universitaire, Rennes, France
| | - Marc Le Vée
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France
| | - Olivier Fardel
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France
- Pôle Biologie, Centre Hospitalier Universitaire, Rennes, France
| |
Collapse
|
73
|
Drug transporter expression profiling in a three-dimensional kidney proximal tubule in vitro nephrotoxicity model. Pflugers Arch 2018; 470:1311-1323. [DOI: 10.1007/s00424-018-2150-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 04/20/2018] [Accepted: 04/27/2018] [Indexed: 01/09/2023]
|
74
|
El-Kattan AF, Varma MVS. Navigating Transporter Sciences in Pharmacokinetics Characterization Using the Extended Clearance Classification System. Drug Metab Dispos 2018; 46:729-739. [PMID: 29496721 DOI: 10.1124/dmd.117.080044] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 02/22/2018] [Indexed: 02/13/2025] Open
Abstract
Membrane transporters play an important role in the absorption, distribution, clearance, and elimination of drugs. Supported by the pharmacokinetics data in human, several transporters including organic anion transporting polypeptide (OATP)1B1, OATP1B3, organic anion transporter (OAT)1, OAT3, organic cation transporter (OCT)2, multidrug and toxin extrusion (MATE) proteins, P-glycoprotein and breast cancer resistance protein are suggested to be of clinical relevance. An early understanding of the transporter role in drug disposition and clearance allows reliable prediction/evaluation of pharmacokinetics and changes due to drug-drug interactions (DDIs) or genetic polymorphisms. We recently proposed an extended clearance classification system (ECCS) based on simple drug properties (i.e., ionization, permeability, and molecular weight) to predict the predominant clearance mechanism. According to this framework, systemic clearance of class 1B and 3B drugs is likely determined by the OATP-mediated hepatic uptake. Class 3A and 4 drugs, and certain class 3B drugs, are predominantly cleared by renal, wherein, OAT1, OAT3, OCT2, and MATE proteins could contribute to their active renal secretion. Intestinal efflux and uptake transporters largely influence the oral pharmacokinetics of class 3A, 3B, and 4 drugs. We discuss the paradigm of applying the ECCS framework in mapping the role of clinically relevant drug transporters in early discovery and development; thereby implementing the right strategy to allow optimization of drug exposure and evaluation of clinical risk due to DDIs and pharmacogenomics.
Collapse
Affiliation(s)
- Ayman F El-Kattan
- Pharmacokinetics Dynamics and Metabolism, Medicine Design, Pfizer Global Research and Development, Pfizer Inc., Cambridge, Massachusetts (A.F.E.-K.); and Pharmacokinetics Dynamics and Metabolism, Medicine Design, Pfizer Global Research and Development, Pfizer Inc., Groton, Connecticut (M.V.S.V.)
| | - Manthena V S Varma
- Pharmacokinetics Dynamics and Metabolism, Medicine Design, Pfizer Global Research and Development, Pfizer Inc., Cambridge, Massachusetts (A.F.E.-K.); and Pharmacokinetics Dynamics and Metabolism, Medicine Design, Pfizer Global Research and Development, Pfizer Inc., Groton, Connecticut (M.V.S.V.)
| |
Collapse
|
75
|
Harrison J, De Bruyn T, Darwich AS, Houston JB. Simultaneous Assessment In Vitro of Transporter and Metabolic Processes in Hepatic Drug Clearance: Use of a Media Loss Approach. Drug Metab Dispos 2018; 46:405-414. [PMID: 29439129 DOI: 10.1124/dmd.117.079590] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 01/29/2018] [Indexed: 12/23/2022] Open
Abstract
Hepatocyte drug depletion-time assays are well established for determination of metabolic clearance in vitro. The present study focuses on the refinement and evaluation of a "media loss" assay, an adaptation of the conventional depletion assay involving centrifugation of hepatocytes prior to sampling, allowing estimation of uptake in addition to metabolism. Using experimental procedures consistent with a high throughput, a selection of 12 compounds with a range of uptake and metabolism characteristics (atorvastatin, cerivastatin, clarithromycin, erythromycin, indinavir, pitavastatin, repaglinide, rosuvastatin, saquinavir, and valsartan, with two control compounds-midazolam and tolbutamide) were investigated in the presence and absence of the cytochrome P450 inhibitor 1-aminobenzotriazole and organic anion transporter protein inhibitor rifamycin SV in rat hepatocytes. Data were generated simultaneously for a given drug, and provided, through the use of a mechanistic cell model, clearance terms characterizing metabolism, active and passive uptake, together with intracellular binding and partitioning parameters. Results were largely consistent with the particular drug characteristics, with active uptake, passive diffusion, and metabolic clearances ranging between 0.4 and 777, 3 and 383, and 2 and 236 μl/min per milligram protein, respectively. The same experiments provided total and unbound drug cellular partition coefficients ranging between 3.8 and 254 and 2.3 and 8.3, respectively, and intracellular unbound fractions between 0.014 and 0.263. Following in vitro-in vivo extrapolation, the lowest prediction bias was noted using uptake clearance, compared with metabolic clearance or apparent clearance from the media loss assay alone. This approach allows rapid and comprehensive characterization of hepatocyte drug disposition valuable for prediction of hepatic processes in vivo.
Collapse
Affiliation(s)
- James Harrison
- Centre for Applied Pharmacokinetic Research, Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom (J.H., T.D.B., A.S.D., J.B.H.) and Department of Drug Metabolism and Pharmacokinetics, Genentech Inc., South San Francisco, California (T.D.B.)
| | - Tom De Bruyn
- Centre for Applied Pharmacokinetic Research, Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom (J.H., T.D.B., A.S.D., J.B.H.) and Department of Drug Metabolism and Pharmacokinetics, Genentech Inc., South San Francisco, California (T.D.B.)
| | - Adam S Darwich
- Centre for Applied Pharmacokinetic Research, Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom (J.H., T.D.B., A.S.D., J.B.H.) and Department of Drug Metabolism and Pharmacokinetics, Genentech Inc., South San Francisco, California (T.D.B.)
| | - J Brian Houston
- Centre for Applied Pharmacokinetic Research, Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom (J.H., T.D.B., A.S.D., J.B.H.) and Department of Drug Metabolism and Pharmacokinetics, Genentech Inc., South San Francisco, California (T.D.B.)
| |
Collapse
|
76
|
Chedik L, Bruyere A, Fardel O. Interactions of organophosphorus pesticides with solute carrier (SLC) drug transporters. Xenobiotica 2018; 49:363-374. [PMID: 29448871 DOI: 10.1080/00498254.2018.1442030] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
1. Organophosphorus pesticides (OPs) are known to interact with human ATP-binding cassette drug efflux pumps. The present study was designed to determine whether they can also target activities of human solute carrier (SLC) drug transporters. 2. The interactions of 13 OPs with SLC transporters involved in drug disposition, such as organic cation transporters (OCTs), multidrug and toxin extrusion proteins (MATEs), organic anion transporters (OATs) and organic anion transporting polypeptides (OATPs), were mainly investigated using transporter-overexpressing cell clones and fluorescent or radiolabeled reference substrates. 3. With a cut-off value of at least 50% modulation of transporter activity by 100 µM OPs, OAT1 and MATE2-K were not impacted, whereas OATP1B1 and MATE1 were inhibited by two and three OPs, respectively. OAT3 activity was similarly blocked by three OPs, and was additionally stimulated by one OP. Five OPs cis-stimulated OATP2B1 activity. Both OCT1 and OCT2 were inhibited by the same eight OPs, including fenamiphos and phosmet, with IC50 values however in the 3-30 µM range, likely not relevant to environmental exposure. 4. These data demonstrated that various OPs inhibit SLC drug transporter activities, especially those of OCT1 and OCT2, but only when used at high concentrations not expected to occur in environmentally-exposed humans.
Collapse
Affiliation(s)
- Lisa Chedik
- a Institut de Recherches en Santé, Environnement et Travail (IRSET) , UMR INSERM U1085, Université de Rennes 1 , Rennes , France
| | - Arnaud Bruyere
- a Institut de Recherches en Santé, Environnement et Travail (IRSET) , UMR INSERM U1085, Université de Rennes 1 , Rennes , France
| | - Olivier Fardel
- a Institut de Recherches en Santé, Environnement et Travail (IRSET) , UMR INSERM U1085, Université de Rennes 1 , Rennes , France.,b Pôle Biologie, Centre Hospitalier Universitaire , Rennes , France
| |
Collapse
|
77
|
Wood FL, Houston JB, Hallifax D. Importance of the Unstirred Water Layer and Hepatocyte Membrane Integrity In Vitro for Quantification of Intrinsic Metabolic Clearance. Drug Metab Dispos 2018; 46:268-278. [PMID: 29233818 DOI: 10.1124/dmd.117.078949] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 12/11/2017] [Indexed: 11/22/2022] Open
Abstract
Prediction of clearance-a vital component of drug discovery-remains in need of improvement and, in particular, requires more incisive assessment of mechanistic methodology in vitro, according to a number of recent reports. Although isolated hepatocytes have become an irreplaceable standard system for the measurement of intrinsic hepatic clearance mediated by active uptake transport and metabolism, the lack of prediction reliability appears to reflect a lack of methodological validation, especially for highly cleared drugs, as we have previously shown. Here, novel approaches were employed to explore fundamental experimental processes and associated potential limitations of in vitro predictions of clearance. Rat hepatocytes deemed nonviable by trypan blue staining showed undiminished metabolic activity for probe cytochrome P450 (P450) substrates midazolam and propranolol; supplementation with NADPH enhanced these activities. Extensive permeabilization of the plasma membrane using saponin showed either full or minimal P450 activity, depending on the presence or absence of 1 mM NADPH, respectively. The shaking of incubations facilitated P450 metabolic rates up to 5-fold greater than static incubation, depending on intrinsic clearance, indicating the critical influence of the unstirred water layer (UWL). Permeabilization allowed static incubation metabolic rates to approach those of shaking for intact cells, indicating an artificially induced breakdown of the UWL. Permeabilization combined with shaking allowed an increased metabolic rate for saquinavir, resolving the membrane permeability limitation for this drug. These findings advance the interpretation of the rate-limiting processes involved in intrinsic clearance measurements and could be critical for successful in vitro prediction.
Collapse
Affiliation(s)
- Francesca L Wood
- Centre for Applied Pharmacokinetic Research, Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - J Brian Houston
- Centre for Applied Pharmacokinetic Research, Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - David Hallifax
- Centre for Applied Pharmacokinetic Research, Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| |
Collapse
|
78
|
Bi YA, Lin J, Mathialagan S, Tylaska L, Callegari E, Rodrigues AD, Varma MVS. Role of Hepatic Organic Anion Transporter 2 in the Pharmacokinetics of R- and S-Warfarin: In Vitro Studies and Mechanistic Evaluation. Mol Pharm 2018; 15:1284-1295. [DOI: 10.1021/acs.molpharmaceut.7b01108] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Yi-an Bi
- Pharmacokinetics, Dynamics, and Metabolism, Pfizer Global Research and Development, MS 8220-2451, Groton, Connecticut 06340, United States
| | - Jian Lin
- Pharmacokinetics, Dynamics, and Metabolism, Pfizer Global Research and Development, MS 8220-2451, Groton, Connecticut 06340, United States
| | - Sumathy Mathialagan
- Pharmacokinetics, Dynamics, and Metabolism, Pfizer Global Research and Development, MS 8220-2451, Groton, Connecticut 06340, United States
| | - Laurie Tylaska
- Pharmacokinetics, Dynamics, and Metabolism, Pfizer Global Research and Development, MS 8220-2451, Groton, Connecticut 06340, United States
| | - Ernesto Callegari
- Pharmacokinetics, Dynamics, and Metabolism, Pfizer Global Research and Development, MS 8220-2451, Groton, Connecticut 06340, United States
| | - A. David Rodrigues
- Pharmacokinetics, Dynamics, and Metabolism, Pfizer Global Research and Development, MS 8220-2451, Groton, Connecticut 06340, United States
| | - Manthena V. S. Varma
- Pharmacokinetics, Dynamics, and Metabolism, Pfizer Global Research and Development, MS 8220-2451, Groton, Connecticut 06340, United States
| |
Collapse
|
79
|
Feng L, Liu L, Zhao Y, Zhao R. Saikosaponins A, C and D enhance liver-targeting effects of anticancer drugs by modulating drug transporters. Oncotarget 2017; 8:110092-110102. [PMID: 29299132 PMCID: PMC5746367 DOI: 10.18632/oncotarget.22639] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 10/27/2017] [Indexed: 11/25/2022] Open
Abstract
Vinegar-baked Radix Bupleuri (VBRB) is clinically used to enhance the pharmacological activity of drugs used to treat liver diseases. Our previous study demonstrated that this effect is dependent on increased drug accumulation in the liver; however, the underlying mechanism remains unclear. We hypothesize that VBRB mediated its effects by altering drug transporters. Thus, the present study was designed to determine the effects of VBRB's main components, saikosaponin A, C, and D, on drug transporters. Transporter activity was determined by measuring the intracellular concentration of transporter substrates. Protein and mRNA levels were measured by Western blot and qPCR, respectively. Colchicine was used as the substrate for P-glycoprotein (Pgp) and multidrug resistance protein (MRP) 1, cisplatin was used as the substrate for Mrp2 and organic cation transporters 2 (Oct2), and verapamil and MK571 were used as inhibitors of Pgp and MRP1, respectively. Saikosaponin A, C, and D differentially affected transporter activity. All of the saikosaponins inhibited Pgp activity in Pgp over-expressing HEK293 cells and increased substrate uptake of OCT2 in OCT2 over-expressing HEK293. Saikosaponin C and D inhibited MRP2 activity in HEK293 cells and BRL 3A cell with high MRP2 expression; saikosaponin A increased colchicine accumulation in GSH-stimulated HEK293 cells, but decreased colchicine uptake in HEK293 cells. Saikosaponin D inhibited MRP1 activity in GSH-stimulated HEK293 cells, but marginally affected the uptake of colchicine in HEK293 cells. In conclusion, saikosaponins play a role in VBRB's induced liver targeting effect through affecting drug transporters with a transporter expression amount depending manner.
Collapse
Affiliation(s)
- Limin Feng
- Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Lijuan Liu
- Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Ya Zhao
- Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Ruizhi Zhao
- Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.,Guangdong Province Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou 510006, China
| |
Collapse
|
80
|
Morse BL, MacGuire JG, Marino AM, Zhao Y, Fox M, Zhang Y, Shen H, Griffith Humphreys W, Marathe P, Lai Y. Physiologically Based Pharmacokinetic Modeling of Transporter-Mediated Hepatic Clearance and Liver Partitioning of OATP and OCT Substrates in Cynomolgus Monkeys. AAPS JOURNAL 2017; 19:1878-1889. [PMID: 29019117 DOI: 10.1208/s12248-017-0151-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 09/19/2017] [Indexed: 01/11/2023]
Abstract
In the present investigations, we evaluate in vitro hepatocyte uptake and partitioning for the prediction of in vivo clearance and liver partitioning. Monkeys were intravenously co-dosed with rosuvastatin and bosentan, substrates of the organic anion transporting polypeptides (OATPs), and metformin, a substrate of organic cation transporter 1 (OCT1). Serial plasma and liver samples were collected over time. Liver and plasma unbound fraction was determined using equilibrium dialysis. In vivo unbound partitioning (Kpu,u) for rosuvastatin, bosentan, and metformin, calculated from total concentrations in the liver and plasma, were 243, 553, and 15, respectively. A physiologically based pharmacokinetic monkey model that incorporates active and passive hepatic uptake was developed to fit plasma and liver concentrations. In addition, a two-compartment model was used to fit in vitro hepatic uptake curves in suspended monkey hepatocyte to determine active uptake, passive diffusion, and intracellular unbound fraction parameters. At steady-state in the model, in vitro Kpu,u was determined. The results demonstrated that in vitro values under-predicted in vivo active uptake for rosuvastatin, bosentan, and metformin by 6.7-, 28-, and 1.5-fold, respectively, while passive diffusion was over-predicted. In vivo Kpu,u values were under-predicted from in vitro data by 30-, 79-, and 3-fold. In conclusion, active uptake and liver partitioning in monkeys for OATP substrates were greatly under-predicted from in vitro hepatocyte uptake, while OCT-mediated uptake and partitioning scaled reasonably well from in vitro, demonstrating substrate- and transporter-dependent scaling factors. The combination of in vitro experimental and modeling approaches proved useful for assessing prediction of in vivo intracellular partitioning.
Collapse
Affiliation(s)
- Bridget L Morse
- Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, Princeton, NJ, USA.,Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, USA
| | - Jamus G MacGuire
- Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, Princeton, NJ, USA
| | - Anthony M Marino
- Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, Princeton, NJ, USA
| | - Yue Zhao
- Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, Princeton, NJ, USA
| | - Maxine Fox
- Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, Princeton, NJ, USA
| | - Yueping Zhang
- Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, Princeton, NJ, USA
| | - Hong Shen
- Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, Princeton, NJ, USA
| | | | - Punit Marathe
- Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, Princeton, NJ, USA
| | - Yurong Lai
- Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, Princeton, NJ, USA. .,Drug Metabolism, Gilead Sciences Inc., Foster City, California, 94404, USA.
| |
Collapse
|
81
|
Braun C, Sakamoto A, Fuchs H, Ishiguro N, Suzuki S, Cui Y, Klinder K, Watanabe M, Terasaki T, Sauer A. Quantification of Transporter and Receptor Proteins in Dog Brain Capillaries and Choroid Plexus: Relevance for the Distribution in Brain and CSF of Selected BCRP and P-gp Substrates. Mol Pharm 2017; 14:3436-3447. [PMID: 28880093 DOI: 10.1021/acs.molpharmaceut.7b00449] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Transporters at the blood-brain barrier (BBB) and the blood-cerebrospinal fluid barrier (BCSFB) play a pivotal role as gatekeepers for efflux or uptake of endogenous and exogenous molecules. The protein expression of a number of them has already been determined in the brains of rodents, nonhuman primates, and humans using quantitative targeted absolute proteomics (QTAP). The dog is an important animal model for drug discovery and development, especially for safety evaluations. The purpose of the present study was to clarify the relevance of the transporter protein expression for drug distribution in the dog brain and CSF. We used QTAP to examine the protein expression of 17 selected transporters and receptors at the dog BBB and BCSFB. For the first time, we directly linked the expression of two efflux transporters, P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP), to regional brain and CSF distribution using specific substrates. Two cocktails, each containing one P-gp substrate (quinidine or apafant) and one BCRP substrate (dantrolene or daidzein) were infused intravenously prior to collection of the brain. Transporter expression varied only slightly between the capillaries of different brain regions and did not result in region-specific distribution of the investigated substrates. There were, however, distinct differences between brain capillaries and choroid plexus. Largest differences were observed for BCRP and P-gp: both were highly expressed in brain capillaries, but no BCRP and only low amounts of P-gp were detected in the choroid plexus. Kp,uu,brain and Kp,uu,CSF of both P-gp substrates were indicative of drug efflux. Also, Kp,uu,brain for the BCRP substrates was low. In contrast, Kp,uu,CSF for both BCRP substrates was close to unity, resulting in Kp,uu,CSF/Kp,uu,brain ratios of 7 and 8, respectively. We conclude that the drug transporter expression profiles differ between the BBB and BCSFB in dogs, that there are species differences in the expression profiles, and that CSF is not a suitable surrogate for unbound brain concentrations of BCRP substrates in dogs.
Collapse
Affiliation(s)
- Clemens Braun
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG , 88397 Biberach an der Riss, Germany
| | - Atsushi Sakamoto
- Kobe Pharma Research Institute, Nippon Boehringer Ingelheim Co., Ltd. , Kobe 650-0046, Japan
| | - Holger Fuchs
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG , 88397 Biberach an der Riss, Germany
| | - Naoki Ishiguro
- Kobe Pharma Research Institute, Nippon Boehringer Ingelheim Co., Ltd. , Kobe 650-0046, Japan
| | - Shinobu Suzuki
- Kobe Pharma Research Institute, Nippon Boehringer Ingelheim Co., Ltd. , Kobe 650-0046, Japan
| | - Yunhai Cui
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG , 88397 Biberach an der Riss, Germany
| | - Klaus Klinder
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG , 88397 Biberach an der Riss, Germany
| | - Michitoshi Watanabe
- Proteomedix Frontiers Co., Ltd , T-Biz, 6-6-40 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan.,Division of Membrane Transport and Drug Targeting, Graduate School of Pharmaceutical Sciences, Tohoku University , 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Tetsuya Terasaki
- Division of Membrane Transport and Drug Targeting, Graduate School of Pharmaceutical Sciences, Tohoku University , 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Achim Sauer
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG , 88397 Biberach an der Riss, Germany
| |
Collapse
|
82
|
Comparison of the Predictability of Human Hepatic Clearance for Organic Anion Transporting Polypeptide Substrate Drugs Between Different In Vitro–In Vivo Extrapolation Approaches. J Pharm Sci 2017; 106:2678-2687. [DOI: 10.1016/j.xphs.2017.02.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 02/14/2017] [Accepted: 02/16/2017] [Indexed: 11/18/2022]
|
83
|
Riede J, Camenisch G, Huwyler J, Poller B. Current In Vitro Methods to Determine Hepatic Kp uu : A Comparison of Their Usefulness and Limitations. J Pharm Sci 2017; 106:2805-2814. [DOI: 10.1016/j.xphs.2017.03.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 03/23/2017] [Accepted: 03/27/2017] [Indexed: 12/20/2022]
|
84
|
Nguyen HQ, Lin J, Kimoto E, Callegari E, Tse S, Obach RS. Prediction of Losartan-Active Carboxylic Acid Metabolite Exposure Following Losartan Administration Using Static and Physiologically Based Pharmacokinetic Models. J Pharm Sci 2017; 106:2758-2770. [DOI: 10.1016/j.xphs.2017.03.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 03/22/2017] [Accepted: 03/27/2017] [Indexed: 01/02/2023]
|
85
|
Patel M, Taskar KS, Zamek-Gliszczynski MJ. Importance of Hepatic Transporters in Clinical Disposition of Drugs and Their Metabolites. J Clin Pharmacol 2017; 56 Suppl 7:S23-39. [PMID: 27385177 DOI: 10.1002/jcph.671] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 10/16/2015] [Indexed: 01/04/2023]
Abstract
This review provides a practical clinical perspective on the relevance of hepatic transporters in pharmacokinetics and drug-drug interactions (DDIs). Special emphasis is placed on transporters with clear relevance to clinical DDIs, efficacy, and safety. Basolateral OATP1B1 and 1B3 emerged as important hepatic drug uptake pathways, sites for systemic DDIs, and sources of pharmacogenetic variability. As the first step in hepatic drug removal from the circulation, OATPs are an important determinant of systemic pharmacokinetics, specifically influencing systemic absorption, clearance, and hepatic distribution for subsequent metabolism and/or excretion. Biliary excretion of parent drugs is a less prevalent clearance pathway than metabolism or urinary excretion, but BCRP and MRP2 are critically important to biliary/fecal elimination of drug metabolites. Inhibition of biliary excretion is typically not apparent at the level of systemic pharmacokinetics but can markedly increase liver exposure. Basolateral efflux transporters MRP3 and MRP4 mediate excretion of parent drugs and, more commonly, polar metabolites from hepatocytes into blood. Basolateral excretion is an area in need of further clinical investigation, which will necessitate studies more complex than just systemic pharmacokinetics. Clinical relevance of hepatic uptake is relatively well appreciated, and clinical consequences of hepatic excretion (biliary and basolateral) modulation remain an active research area.
Collapse
Affiliation(s)
- Mitesh Patel
- Mechanistic Safety and Disposition, GlaxoSmithKline, King of Prussia, PA, USA
| | - Kunal S Taskar
- Mechanistic Safety and Disposition, GlaxoSmithKline, Ware, Hertfordshire, UK
| | | |
Collapse
|
86
|
Jaroch K, Jaroch A, Bojko B. Cell cultures in drug discovery and development: The need of reliable in vitro-in vivo extrapolation for pharmacodynamics and pharmacokinetics assessment. J Pharm Biomed Anal 2017; 147:297-312. [PMID: 28811111 DOI: 10.1016/j.jpba.2017.07.023] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 07/16/2017] [Accepted: 07/19/2017] [Indexed: 12/21/2022]
Abstract
For ethical and cost-related reasons, use of animals for the assessment of mode of action, metabolism and/or toxicity of new drug candidates has been increasingly scrutinized in research and industrial applications. Implementation of the 3 "Rs"1; rule (Reduction, Replacement, Refinement) through development of in silico or in vitro assays has become an essential element of risk assessment. Physiologically based pharmacokinetic (PBPK2) modeling is the most potent in silico tool used for extrapolation of pharmacokinetic parameters to animal or human models from results obtained in vitro. Although, many types of in vitro assays are conducted during drug development, use of cell cultures is the most reliable one. Two-dimensional (2D) cell cultures have been a part of drug development for many years. Nowadays, their role is decreasing in favor of three-dimensional (3D) cell cultures and co-cultures. 3D cultures exhibit protein expression patterns and intercellular junctions that are closer to in vivo states in comparison to classical monolayer cultures. Co-cultures allow for examinations of the mutual influence of different cell lines. However, the complexity and high costs of co-cultures and 3D equipment exclude such methods from high-throughput screening (HTS).3In vitro absorption, distribution, metabolism, and excretion assessment, as well as drug-drug interaction (DDI), are usually performed with the use of various cell culture based assays. Progress in in silico and in vitro methods can lead to better in vitro-in vivo extrapolation (IVIVE4) outcomes and have a potential to contribute towards a significant reduction in the number of laboratory animals needed for drug research. As such, concentrated efforts need to be spent towards the development of an HTS in vitro platform with satisfactory IVIVE features.
Collapse
Affiliation(s)
- Karol Jaroch
- Department of Pharmacodynamics and Molecular Pharmacology, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Jurasza 2 Street, 85-089 Bydgoszcz, Poland
| | - Alina Jaroch
- Department and Institute of Nutrition and Dietetics, Faculty of Health Sciences, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Dębowa 3 Street, 85-626 Bydgoszcz, Poland; Department and Clinic of Geriatrics, Faculty of Health Sciences, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Curie Sklodowskiej 9 Street, 85-094 Bydgoszcz, Poland
| | - Barbara Bojko
- Department of Pharmacodynamics and Molecular Pharmacology, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Jurasza 2 Street, 85-089 Bydgoszcz, Poland.
| |
Collapse
|
87
|
Miners JO, Yang X, Knights KM, Zhang L. The Role of the Kidney in Drug Elimination: Transport, Metabolism, and the Impact of Kidney Disease on Drug Clearance. Clin Pharmacol Ther 2017; 102:436-449. [PMID: 28599065 DOI: 10.1002/cpt.757] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 05/09/2017] [Accepted: 05/31/2017] [Indexed: 12/14/2022]
Abstract
Recent advances in the identification and characterization of renal drug transporters and drug-metabolizing enzymes has led to greater understanding of their roles in drug and chemical elimination and in modulation of the intrarenal exposure and response to drugs, nephrotoxic compounds, and physiological mediators. Furthermore, there is increasing awareness of the potential importance of drug-drug interactions (DDIs) arising from inhibition of renal transporters, and regulatory agencies now provide recommendations for the evaluation of transporter-mediated DDIs. Apart from the well-recognized effects of kidney disease on renal drug clearance, there is a growing body of evidence demonstrating that the nonrenal clearances of drugs eliminated by certain transporters and drug-metabolizing enzymes are decreased in patients with chronic kidney disease (CKD). Based on these observations, renal impairment guidance documents of regulatory agencies recommend pharmacokinetic characterization of both renally cleared and nonrenally cleared drugs in CKD patients to inform possible dosage adjustment.
Collapse
Affiliation(s)
- J O Miners
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University School of Medicine, Adelaide, South Australia, Australia
| | - X Yang
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - K M Knights
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University School of Medicine, Adelaide, South Australia, Australia
| | - L Zhang
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| |
Collapse
|
88
|
Lee SC, Arya V, Yang X, Volpe DA, Zhang L. Evaluation of transporters in drug development: Current status and contemporary issues. Adv Drug Deliv Rev 2017; 116:100-118. [PMID: 28760687 DOI: 10.1016/j.addr.2017.07.020] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 07/19/2017] [Accepted: 07/26/2017] [Indexed: 01/22/2023]
Abstract
Transporters govern the access of molecules to cells or their exit from cells, thereby controlling the overall distribution of drugs to their intracellular site of action. Clinically relevant drug-drug interactions mediated by transporters are of increasing interest in drug development. Drug transporters, acting alone or in concert with drug metabolizing enzymes, can play an important role in modulating drug absorption, distribution, metabolism and excretion, thus affecting the pharmacokinetics and/or pharmacodynamics of a drug. The drug interaction guidance documents from regulatory agencies include various decision criteria that may be used to predict the need for in vivo assessment of transporter-mediated drug-drug interactions. Regulatory science research continues to assess the prediction performances of various criteria as well as to examine the strength and limitations of each prediction criterion to foster discussions related to harmonized decision criteria that may be used to facilitate global drug development. This review discusses the role of transporters in drug development with a focus on methodologies in assessing transporter-mediated drug-drug interactions, challenges in both in vitro and in vivo assessments of transporters, and emerging transporter research areas including biomarkers, assessment of tissue concentrations, and effect of diseases on transporters.
Collapse
Affiliation(s)
- Sue-Chih Lee
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Vikram Arya
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Xinning Yang
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Donna A Volpe
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Lei Zhang
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA.
| |
Collapse
|
89
|
|
90
|
Jeong YS, Yim CS, Ryu HM, Noh CK, Song YK, Chung SJ. Estimation of the minimum permeability coefficient in rats for perfusion-limited tissue distribution in whole-body physiologically-based pharmacokinetics. Eur J Pharm Biopharm 2017; 115:1-17. [DOI: 10.1016/j.ejpb.2017.01.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 01/25/2017] [Accepted: 01/28/2017] [Indexed: 01/12/2023]
|
91
|
Cantrill C, Houston JB. Understanding the Interplay Between Uptake and Efflux Transporters Within In Vitro Systems in Defining Hepatocellular Drug Concentrations. J Pharm Sci 2017; 106:2815-2825. [PMID: 28478131 DOI: 10.1016/j.xphs.2017.04.056] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 04/21/2017] [Accepted: 04/24/2017] [Indexed: 02/03/2023]
Abstract
One of the most holistic in vitro systems for prediction of intracellular drug concentrations is sandwich-cultured hepatocytes (SCH); however, a comprehensive evaluation of the utility of SCH to estimate uptake and biliary clearances and the need for additional kinetic parameters has yet to be carried out. Toward this end, we have selected 9 compounds (rosuvastatin, valsartan, fexofenadine, pravastatin, repaglinide, telmisartan, atorvastatin, saquinavir, and quinidine) to provide a range of physicochemical and hepatic disposition properties. Uptake clearances were determined in SCH and compared with conventional monolayer and suspension hepatocyte systems, previously reported by our laboratory. CLuptake ranged from 1 to 41 μL/min/106 cells in SCH which were significantly lower (1%-10%) compared with the other hepatocyte models. The hepatocyte-to-media unbound concentration ratio (Kpu) has been assessed and ranged 0.7-59, lower compared with other hepatocyte systems (8-280). Estimates of in vitro biliary clearance (CLbile) for 4 drugs were determined and were scaled to predict in vivo values using both intracellular concentration and media drug concentrations. These studies demonstrate that reduced uptake in rat SCH may limit drug access to canalicular efflux transport proteins and highlight the importance of elucidating the interplay between these proteins for accurate prediction of hepatic clearance.
Collapse
Affiliation(s)
- Carina Cantrill
- Centre for Applied Pharmacokinetic Research, Division of Pharmacy and Optometry, School of Biology, Medicine and Health Sciences, University of Manchester, UK
| | - J Brian Houston
- Centre for Applied Pharmacokinetic Research, Division of Pharmacy and Optometry, School of Biology, Medicine and Health Sciences, University of Manchester, UK.
| |
Collapse
|
92
|
Riccardi K, Lin J, Li Z, Niosi M, Ryu S, Hua W, Atkinson K, Kosa RE, Litchfield J, Di L. Novel Method to Predict In Vivo Liver-to-Plasma K puu for OATP Substrates Using Suspension Hepatocytes. Drug Metab Dispos 2017; 45:576-580. [PMID: 28258068 DOI: 10.1124/dmd.116.074575] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 03/01/2017] [Indexed: 02/13/2025] Open
Abstract
The ability to predict human liver-to-plasma unbound partition coefficient (Kpuu) is of great importance to estimate unbound liver concentration, develop PK/PD relationships, predict efficacy and toxicity in the liver, and model the drug-drug interaction potential for drugs that are asymmetrically distributed into the liver. A novel in vitro method has been developed to predict in vivo Kpuu with good accuracy using cryopreserved suspension hepatocytes in InVitroGRO HI media with 4% BSA. Validation was performed using six OATP substrates with rat in vivo Kpuu data from i.v. infusion studies where a steady state was achieved. Good in vitro-in vivo correlation (IVIVE) was observed as the in vitro Kpuu values were mostly within 2-fold of in vivo Kpuu Good Kpuu IVIVE in human was also observed with in vivo Kpuu data of dehydropravastatin from positron emission tomography and in vivo Kpuu data from PK/PD modeling for pravastatin and rosuvastatin. Under the specific Kpuu assay conditions, the drug-metabolizing enzymes and influx/efflux transporters appear to function at physiologic levels. No scaling factors are necessary to predict in vivo Kpuu from in vitro data. The novel in vitro Kpuu method provides a useful tool in drug discovery to project in vivo Kpuu.
Collapse
Affiliation(s)
- Keith Riccardi
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc., Groton, Connecticut (K.R., Ji.L., M.N., S.R., W.H., K.A., R.E.K., L.D.); Cambridge, Massachusetts (Z.L., Jo.L.)
| | - Jian Lin
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc., Groton, Connecticut (K.R., Ji.L., M.N., S.R., W.H., K.A., R.E.K., L.D.); Cambridge, Massachusetts (Z.L., Jo.L.)
| | - Zhenhong Li
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc., Groton, Connecticut (K.R., Ji.L., M.N., S.R., W.H., K.A., R.E.K., L.D.); Cambridge, Massachusetts (Z.L., Jo.L.)
| | - Mark Niosi
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc., Groton, Connecticut (K.R., Ji.L., M.N., S.R., W.H., K.A., R.E.K., L.D.); Cambridge, Massachusetts (Z.L., Jo.L.)
| | - Sangwoo Ryu
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc., Groton, Connecticut (K.R., Ji.L., M.N., S.R., W.H., K.A., R.E.K., L.D.); Cambridge, Massachusetts (Z.L., Jo.L.)
| | - Wenyi Hua
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc., Groton, Connecticut (K.R., Ji.L., M.N., S.R., W.H., K.A., R.E.K., L.D.); Cambridge, Massachusetts (Z.L., Jo.L.)
| | - Karen Atkinson
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc., Groton, Connecticut (K.R., Ji.L., M.N., S.R., W.H., K.A., R.E.K., L.D.); Cambridge, Massachusetts (Z.L., Jo.L.)
| | - Rachel E Kosa
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc., Groton, Connecticut (K.R., Ji.L., M.N., S.R., W.H., K.A., R.E.K., L.D.); Cambridge, Massachusetts (Z.L., Jo.L.)
| | - John Litchfield
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc., Groton, Connecticut (K.R., Ji.L., M.N., S.R., W.H., K.A., R.E.K., L.D.); Cambridge, Massachusetts (Z.L., Jo.L.)
| | - Li Di
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc., Groton, Connecticut (K.R., Ji.L., M.N., S.R., W.H., K.A., R.E.K., L.D.); Cambridge, Massachusetts (Z.L., Jo.L.)
| |
Collapse
|
93
|
Matsuda A, Karch R, Bauer M, Traxl A, Zeitlinger M, Langer O. A Prediction Method for P-glycoprotein-Mediated Drug-Drug Interactions at the Human Blood-Brain Barrier From Blood Concentration-Time Profiles, Validated With PET Data. J Pharm Sci 2017; 106:2780-2786. [PMID: 28385544 DOI: 10.1016/j.xphs.2017.03.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 03/22/2017] [Accepted: 03/27/2017] [Indexed: 12/11/2022]
Abstract
The purpose of this study was to establish physiologically based pharmacokinetic models to predict in humans the brain concentration-time profiles and P-glycoprotein (Pgp)-mediated brain drug-drug interactions between the model Pgp substrate (R)-[11C]verapamil (VPM), the model dual Pgp/breast cancer resistance protein (BCRP) substrate [11C]tariquidar (TQD), and the Pgp inhibitor tariquidar. The model predictions were validated with results from positron emission tomography studies in humans. Using these physiologically based pharmacokinetic models, the differences between predicted and observed areas under the concentration-time curves (AUC) of VPM and TQD in the brain were within a 1.2-fold and 2.5-fold range, respectively. Also, brain AUC increases of VPM and TQD after Pgp inhibitor administration were predicted with 2.5-fold accuracy when in vitro inhibition constant or half-maximum inhibitory concentration values of tariquidar were used. The predicted rank order of the magnitude of AUC increases reflected the results of the clinical positron emission tomography studies. Our results suggest that the established models can predict brain exposure from the respective blood concentration-time profiles and rank the magnitude of the Pgp-mediated brain drug-drug interaction potential for both Pgp and Pgp/BCRP substrates in humans.
Collapse
Affiliation(s)
- Akihiro Matsuda
- Department of Clinical Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Rudolf Karch
- Center for Medical Statistics, Informatics, and Intelligent Systems, Medical University of Vienna, A-1090 Vienna, Austria
| | - Martin Bauer
- Department of Clinical Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Alexander Traxl
- Center for Health and Bioresources, AIT Austrian Institute of Technology GmbH, A-2444 Seibersdorf, Austria
| | - Markus Zeitlinger
- Department of Clinical Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Oliver Langer
- Department of Clinical Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria; Center for Health and Bioresources, AIT Austrian Institute of Technology GmbH, A-2444 Seibersdorf, Austria; Department of Biomedical Imaging and Image-Guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, A-1090 Vienna, Austria.
| |
Collapse
|
94
|
A Time-Dependent Model Describes Methotrexate Elimination and Supports Dynamic Modification of MRP2/ABCC2 Activity. Ther Drug Monit 2017; 39:145-156. [DOI: 10.1097/ftd.0000000000000381] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
95
|
Li J, Larregieu CA, Benet LZ. Classification of natural products as sources of drugs according to the biopharmaceutics drug disposition classification system (BDDCS). Chin J Nat Med 2017; 14:888-897. [PMID: 28262115 DOI: 10.1016/s1875-5364(17)30013-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Indexed: 11/20/2022]
Abstract
Natural products (NPs) are compounds that are derived from natural sources such as plants, animals, and micro-organisms. Therapeutics has benefited from numerous drug classes derived from natural product sources. The Biopharmaceutics Drug Disposition Classification System (BDDCS) was proposed to serve as a basis for predicting the importance of transporters and enzymes in determining drug bioavailability and disposition. It categorizes drugs into one of four biopharmaceutical classes according to their water solubility and extent of metabolism. The present paper reviews 109 drugs from natural product sources: 29% belong to class 1 (high solubility, extensive metabolism), 22% to class 2 (low solubility, extensive metabolism), 40% to class 3 (high solubility, poor metabolism), and 9% to class 4 (low solubility, poor metabolism). Herein we evaluated the characteristics of NPs in terms of BDDCS class for all 109 drugs as wells as for subsets of NPs drugs derived from plant sources as antibiotics. In the 109 NPs drugs, we compiled 32 drugs from plants, 50% (16) of total in class 1, 22% (7) in class 2 and 28% (9) in class 3, none found in class 4; Meantime, the antibiotics were found 5 (16%) in class 2, 22 (71%) in class 3, and 4 (13%) in class 4; no drug was found in class 1. Based on this classification, we anticipate BDDCS to serve as a useful adjunct in evaluating the potential characteristics of new natural products.
Collapse
Affiliation(s)
- Ji Li
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Caroline A Larregieu
- Department of Bioengineering & Therapeutic Science, University of California, San Francisco, CA 94143-0912, USA
| | - Leslie Z Benet
- Department of Bioengineering & Therapeutic Science, University of California, San Francisco, CA 94143-0912, USA.
| |
Collapse
|
96
|
Bi YA, Scialis RJ, Lazzaro S, Mathialagan S, Kimoto E, Keefer J, Zhang H, Vildhede AM, Costales C, Rodrigues AD, Tremaine LM, Varma MVS. Reliable Rate Measurements for Active and Passive Hepatic Uptake Using Plated Human Hepatocytes. AAPS JOURNAL 2017; 19:787-796. [DOI: 10.1208/s12248-017-0051-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 01/30/2017] [Indexed: 12/16/2022]
|
97
|
Espana B, Couturier S, Prouillac C. Role of ABC transporters in trans-epithelial transport of vitamin K antagonists. Biopharm Drug Dispos 2017; 38:20-32. [DOI: 10.1002/bdd.2055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 11/21/2016] [Accepted: 11/24/2016] [Indexed: 12/21/2022]
Affiliation(s)
- Bernadette Espana
- USC 1233 INRA/Vetagro Sup, Rongeurs sauvages Risques Sanitaires et Gestion des Populations; Vetagro Sup - Campus Vétérinaire de Lyon; 1 av. Bourgelat 69280 Marcy l'Etoile France
| | - Solange Couturier
- Laboratoire de Biologie Médicale; Vetagro Sup - Campus Vétérinaire de Lyon; 1 av. Bourgelat 69280 Marcy l'Etoile France
| | - Caroline Prouillac
- USC 1233 INRA/Vetagro Sup, Rongeurs sauvages Risques Sanitaires et Gestion des Populations; Vetagro Sup - Campus Vétérinaire de Lyon; 1 av. Bourgelat 69280 Marcy l'Etoile France
| |
Collapse
|
98
|
Wang H, Sun P, Wang C, Meng Q, Liu Z, Huo X, Sun H, Ma X, Peng J, Liu K. Liver uptake of cefditoren is mediated by OATP1B1 and OATP2B1 in humans and Oatp1a1, Oatp1a4, and Oatp1b2 in rats. RSC Adv 2017; 7:30038-30048. [DOI: 10.1039/c7ra03537c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2025] Open
Abstract
OATPs and Oatps mediated liver uptake of cefditoren in humans and in rats.
Collapse
|
99
|
Patilea-Vrana G, Unadkat JD. Transport vs. Metabolism: What Determines the Pharmacokinetics and Pharmacodynamics of Drugs? Insights From the Extended Clearance Model. Clin Pharmacol Ther 2016; 100:413-418. [PMID: 27448198 PMCID: PMC5056141 DOI: 10.1002/cpt.437] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 07/14/2016] [Accepted: 07/15/2016] [Indexed: 11/09/2022]
Abstract
The well-stirred hepatic clearance model (WSHM) has been expanded to include drug transporters (i.e., extended clearance model [ECM]). However, the consequences of this expansion in understanding when transporters vs. metabolic enzymes will affect the pharmacokinetic (PK) and pharmacodynamic (PD) of drugs remains opaque. Identifying the rate-determining step(s) in systemic or tissue drug PK/PD will allow accurate predictions of drug PK/PD and drug-drug interactions (DDIs). Here, we clarify the implications of the ECM on PK/PD of drugs.
Collapse
Affiliation(s)
- G Patilea-Vrana
- Department of Pharmaceutics, University of Washington, Seattle, Washington, USA
| | - J D Unadkat
- Department of Pharmaceutics, University of Washington, Seattle, Washington, USA.
| |
Collapse
|
100
|
Giordanetto F, Pettersen D, Starke I, Nordberg P, Dahlström M, Knerr L, Selmi N, Rosengren B, Larsson LO, Sandmark J, Castaldo M, Dekker N, Karlsson U, Hurt-Camejo E. Discovery of AZD2716: A Novel Secreted Phospholipase A 2 (sPLA 2) Inhibitor for the Treatment of Coronary Artery Disease. ACS Med Chem Lett 2016; 7:884-889. [PMID: 27774123 PMCID: PMC5066155 DOI: 10.1021/acsmedchemlett.6b00188] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 08/09/2016] [Indexed: 01/30/2023] Open
Abstract
![]()
Expedited
structure-based optimization of the initial fragment hit 1 led to the design of (R)-7 (AZD2716)
a novel, potent secreted phospholipase A2 (sPLA2) inhibitor with excellent preclinical pharmacokinetic properties
across species, clear in vivo efficacy, and minimized
safety risk. Based on accumulated profiling data, (R)-7 was selected as a clinical candidate for the treatment
of coronary artery disease.
Collapse
Affiliation(s)
- Fabrizio Giordanetto
- Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit Departments of Medicinal Chemistry, ‡Bioscience, §DMPK, ∥Discovery Sciences Departments of Structure & Biophysics, ⊥Reagents and Assay Development, and #Screening Sciences and Sample Management, Astrazeneca, Mölndal, Pepparedsleden 1, SE-431 83 Mölndal, Sweden
| | - Daniel Pettersen
- Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit Departments of Medicinal Chemistry, ‡Bioscience, §DMPK, ∥Discovery Sciences Departments of Structure & Biophysics, ⊥Reagents and Assay Development, and #Screening Sciences and Sample Management, Astrazeneca, Mölndal, Pepparedsleden 1, SE-431 83 Mölndal, Sweden
| | - Ingemar Starke
- Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit Departments of Medicinal Chemistry, ‡Bioscience, §DMPK, ∥Discovery Sciences Departments of Structure & Biophysics, ⊥Reagents and Assay Development, and #Screening Sciences and Sample Management, Astrazeneca, Mölndal, Pepparedsleden 1, SE-431 83 Mölndal, Sweden
| | - Peter Nordberg
- Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit Departments of Medicinal Chemistry, ‡Bioscience, §DMPK, ∥Discovery Sciences Departments of Structure & Biophysics, ⊥Reagents and Assay Development, and #Screening Sciences and Sample Management, Astrazeneca, Mölndal, Pepparedsleden 1, SE-431 83 Mölndal, Sweden
| | - Mikael Dahlström
- Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit Departments of Medicinal Chemistry, ‡Bioscience, §DMPK, ∥Discovery Sciences Departments of Structure & Biophysics, ⊥Reagents and Assay Development, and #Screening Sciences and Sample Management, Astrazeneca, Mölndal, Pepparedsleden 1, SE-431 83 Mölndal, Sweden
| | - Laurent Knerr
- Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit Departments of Medicinal Chemistry, ‡Bioscience, §DMPK, ∥Discovery Sciences Departments of Structure & Biophysics, ⊥Reagents and Assay Development, and #Screening Sciences and Sample Management, Astrazeneca, Mölndal, Pepparedsleden 1, SE-431 83 Mölndal, Sweden
| | - Nidhal Selmi
- Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit Departments of Medicinal Chemistry, ‡Bioscience, §DMPK, ∥Discovery Sciences Departments of Structure & Biophysics, ⊥Reagents and Assay Development, and #Screening Sciences and Sample Management, Astrazeneca, Mölndal, Pepparedsleden 1, SE-431 83 Mölndal, Sweden
| | - Birgitta Rosengren
- Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit Departments of Medicinal Chemistry, ‡Bioscience, §DMPK, ∥Discovery Sciences Departments of Structure & Biophysics, ⊥Reagents and Assay Development, and #Screening Sciences and Sample Management, Astrazeneca, Mölndal, Pepparedsleden 1, SE-431 83 Mölndal, Sweden
| | - Lars-Olof Larsson
- Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit Departments of Medicinal Chemistry, ‡Bioscience, §DMPK, ∥Discovery Sciences Departments of Structure & Biophysics, ⊥Reagents and Assay Development, and #Screening Sciences and Sample Management, Astrazeneca, Mölndal, Pepparedsleden 1, SE-431 83 Mölndal, Sweden
| | - Jenny Sandmark
- Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit Departments of Medicinal Chemistry, ‡Bioscience, §DMPK, ∥Discovery Sciences Departments of Structure & Biophysics, ⊥Reagents and Assay Development, and #Screening Sciences and Sample Management, Astrazeneca, Mölndal, Pepparedsleden 1, SE-431 83 Mölndal, Sweden
| | - Marie Castaldo
- Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit Departments of Medicinal Chemistry, ‡Bioscience, §DMPK, ∥Discovery Sciences Departments of Structure & Biophysics, ⊥Reagents and Assay Development, and #Screening Sciences and Sample Management, Astrazeneca, Mölndal, Pepparedsleden 1, SE-431 83 Mölndal, Sweden
| | - Niek Dekker
- Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit Departments of Medicinal Chemistry, ‡Bioscience, §DMPK, ∥Discovery Sciences Departments of Structure & Biophysics, ⊥Reagents and Assay Development, and #Screening Sciences and Sample Management, Astrazeneca, Mölndal, Pepparedsleden 1, SE-431 83 Mölndal, Sweden
| | - Ulla Karlsson
- Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit Departments of Medicinal Chemistry, ‡Bioscience, §DMPK, ∥Discovery Sciences Departments of Structure & Biophysics, ⊥Reagents and Assay Development, and #Screening Sciences and Sample Management, Astrazeneca, Mölndal, Pepparedsleden 1, SE-431 83 Mölndal, Sweden
| | - Eva Hurt-Camejo
- Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit Departments of Medicinal Chemistry, ‡Bioscience, §DMPK, ∥Discovery Sciences Departments of Structure & Biophysics, ⊥Reagents and Assay Development, and #Screening Sciences and Sample Management, Astrazeneca, Mölndal, Pepparedsleden 1, SE-431 83 Mölndal, Sweden
| |
Collapse
|