51
|
A Novel Laser-Based Zebrafish Model for Studying Traumatic Brain Injury and Its Molecular Targets. Pharmaceutics 2022; 14:pharmaceutics14081751. [PMID: 36015377 PMCID: PMC9416346 DOI: 10.3390/pharmaceutics14081751] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/17/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
Traumatic brain injury (TBI) is a major public health problem. Here, we developed a novel model of non-invasive TBI induced by laser irradiation in the telencephalon of adult zebrafish (Danio rerio) and assessed their behavior and neuromorphology to validate the model and evaluate potential targets for neuroreparative treatment. Overall, TBI induced hypolocomotion and anxiety-like behavior in the novel tank test, strikingly recapitulating responses in mammalian TBI models, hence supporting the face validity of our model. NeuN-positive cell staining was markedly reduced one day, but not seven days, after TBI, suggesting increased neuronal damage immediately after the injury, and its fast recovery. The brain-derived neurotrophic factor (Bdnf) level in the brain dropped immediately after the trauma, but fully recovered seven days later. A marker of microglial activation, Iba1, was elevated in the TBI brain, albeit decreasing from Day 3. The levels of hypoxia-inducible factor 1-alpha (Hif1a) increased 30 min after the injury, and recovered by Day 7, further supporting the construct validity of the model. Collectively, these findings suggest that our model of laser-induced brain injury in zebrafish reproduces mild TBI and can be a useful tool for TBI research and preclinical neuroprotective drug screening.
Collapse
|
52
|
Qin Q, Wang T, Xu Z, Liu S, Zhang H, Du Z, Wang J, Wang Y, Wang Z, Yuan S, Wu J, He W, Wang C, Yan X, Wang Y, Jiang X. Ectoderm-derived frontal bone mesenchymal stem cells promote traumatic brain injury recovery by alleviating neuroinflammation and glutamate excitotoxicity partially via FGF1. Stem Cell Res Ther 2022; 13:341. [PMID: 35883153 PMCID: PMC9327213 DOI: 10.1186/s13287-022-03032-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 07/04/2022] [Indexed: 11/16/2022] Open
Abstract
Background Traumatic brain injury (TBI) leads to cell and tissue impairment, as well as functional deficits. Stem cells promote structural and functional recovery and thus are considered as a promising therapy for various nerve injuries. Here, we aimed to investigate the role of ectoderm-derived frontal bone mesenchymal stem cells (FbMSCs) in promoting cerebral repair and functional recovery in a murine TBI model. Methods A murine TBI model was established by injuring C57BL/6 N mice with moderate-controlled cortical impact to evaluate the extent of brain damage and behavioral deficits. Ectoderm-derived FbMSCs were isolated from the frontal bone and their characteristics were assessed using multiple differentiation assays, flow cytometry and microarray analysis. Brain repairment and functional recovery were analyzed at different days post-injury with or without FbMSC application. Behavioral tests were performed to assess learning and memory improvements. RNA sequencing analysis, immunofluorescence staining, and quantitative reverse-transcription polymerase chain reaction (qRT-PCR) were used to examine inflammation reaction and neural regeneration. In vitro co-culture analysis and quantification of glutamate transportation were carried out to explore the possible mechanism of neurogenesis and functional recovery promoted by FbMSCs. Results Ectoderm-derived FbMSCs showed fibroblast like morphology and osteogenic differentiation capacity. FbMSCs were CD105, CD29 positive and CD45, CD31 negative. Different from mesoderm-derived MSCs, FbMSCs expressed the ectoderm-specific transcription factor Tfap2β. TBI mice showed impaired learning and memory deficits. Microglia and astrocyte activation, as well as neural damage, were significantly increased post-injury. FbMSC application ameliorated the behavioral deficits of TBI mice and promoted neural regeneration. RNA sequencing analysis showed that signal pathways related to inflammation decreased, whereas those related to neural activation increased. Immunofluorescence staining and qRT-PCR data revealed that microglial activation and astrocyte polarization to the A1 phenotype were suppressed by FbMSC application. In addition, FGF1 secreted from FbMSCs enhanced glutamate transportation by astrocytes and alleviated the cytotoxic effect of excessive glutamate on neurons. Conclusions Ectoderm-derived FbMSC application significantly alleviated neuroinflammation, brain injury, and excitatory toxicity to neurons, improved cognition and behavioral deficits in TBI mice. Therefore, ectoderm-derived FbMSCs could be ideal therapeutic candidates for TBI which mostly affect cells from the same embryonic origins as FbMSCs. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-03032-6.
Collapse
Affiliation(s)
- Qiaozhen Qin
- Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Haidian District, Beijing, 100850, People's Republic of China.,Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing, 100124, People's Republic of China
| | - Ting Wang
- Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Haidian District, Beijing, 100850, People's Republic of China
| | - Zhenhua Xu
- Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Haidian District, Beijing, 100850, People's Republic of China
| | - Shuirong Liu
- Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Haidian District, Beijing, 100850, People's Republic of China
| | - Heyang Zhang
- Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Haidian District, Beijing, 100850, People's Republic of China
| | - Zhangzhen Du
- Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Haidian District, Beijing, 100850, People's Republic of China
| | - Jianing Wang
- Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Haidian District, Beijing, 100850, People's Republic of China
| | - Yadi Wang
- Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Haidian District, Beijing, 100850, People's Republic of China
| | - Zhenning Wang
- Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Haidian District, Beijing, 100850, People's Republic of China
| | - Shanshan Yuan
- Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Haidian District, Beijing, 100850, People's Republic of China
| | - Jiamei Wu
- Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Haidian District, Beijing, 100850, People's Republic of China
| | - Wenyan He
- China National Clinical Research Center for Neurological Diseases, Jing-Jin Center for Neuroinflammation, Beijing Tiantan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Changzhen Wang
- Beijing Institute of Radiation Medicine, 27 Taiping Road, Haidian District, Beijing, 100850, People's Republic of China
| | - Xinlong Yan
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing, 100124, People's Republic of China.
| | - Yan Wang
- Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Haidian District, Beijing, 100850, People's Republic of China. .,Anhui Medical University, Hefei, 230032, Anhui, People's Republic of China.
| | - Xiaoxia Jiang
- Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Haidian District, Beijing, 100850, People's Republic of China. .,Anhui Medical University, Hefei, 230032, Anhui, People's Republic of China.
| |
Collapse
|
53
|
Zheng S, Mu S, Li J, Zhang S, Wei L, Wang M, Xu Y, Wang S. Cerebral venous hemodynamic responses in a mouse model of traumatic brain injury. Brain Res 2022; 1792:148014. [PMID: 35839929 DOI: 10.1016/j.brainres.2022.148014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 05/28/2022] [Accepted: 07/10/2022] [Indexed: 11/24/2022]
Abstract
Traumatic brain injury (TBI) is a serious public health problem that endangers human health and is divided into primary and secondary injuries. Previous work has confirmed that changes in cerebral blood flow (CBF) are related to the progression of secondary injury, although clinical studies have shown that CBF monitoring cannot fully and accurately evaluate disease progression. These studies have almost ignored the monitoring of venous blood flow; however, as an outflow channel of the cerebral circulation, it warrants discussion. To explore the regulation of venous blood flow after TBI, the present study established TBI mouse models of different severities, observed changes in cerebral venous blood flow by laser speckle flow imaging, and recorded intracranial pressure (ICP) after brain injury to evaluate the correlation between venous blood flow and ICP. Behavioral and histopathological assessments were performed after the intervention. The results showed that there was a significant negative correlation between ICP and venous blood flow (r = -0.795, P < 0.01), and both recovered to varying degrees in the later stages of observation. The blood flow changes in regional microvessels were similar to those in venous, and the expression of angiogenesis proteins around the impact area was significantly increased. In conclusion, this study based on the TBI mouse model, recorded the changes in venous blood flow and ICP and revealed that venous blood flow can be used as an indicator of the progression of secondary brain injury.
Collapse
Affiliation(s)
- Shaorui Zheng
- Fuzong Clinical Medical College of Fujian Medical University, Fuzhou 350025, China; Department of Neurosurgery, Affiliated Hospital of Putian University, Putian 351100, China
| | - Shuwen Mu
- Fuzong Clinical Medical College of Fujian Medical University, Fuzhou 350025, China
| | - Jun Li
- Department of Neurosurgery, The 900th Hospital of Joint Logistic Support Force, Fujian Medical University Fuzong Clinical College, Fuzhou 350025, China
| | - Shangming Zhang
- Department of Neurosurgery, The 900th Hospital of Joint Logistic Support Force, Fujian Medical University Fuzong Clinical College, Fuzhou 350025, China
| | - Liangfeng Wei
- Department of Neurosurgery, The 900th Hospital of Joint Logistic Support Force, Fujian Medical University Fuzong Clinical College, Fuzhou 350025, China
| | - Mingyue Wang
- Department of Pathology, The 900th Hospital of Joint Logistic Support Force, Fujian Medical University Fuzong Clinical College, Fuzhou 350025, China
| | - Yongjun Xu
- Laboratory of Basic Medicine, The 900th Hospital of Joint Logistic Support Force, Fujian Medical University Fuzong Clinical College, Fuzhou 350025, China.
| | - Shousen Wang
- Fuzong Clinical Medical College of Fujian Medical University, Fuzhou 350025, China; Department of Neurosurgery, The 900th Hospital of Joint Logistic Support Force, Fujian Medical University Fuzong Clinical College, Fuzhou 350025, China.
| |
Collapse
|
54
|
Kang EM, Jia YB, Wang JY, Wang GY, Chen HJ, Chen XY, Ye YQ, Zhang X, Su XH, Wang JY, He XS. Downregulation of microRNA-124-3p promotes subventricular zone neural stem cell activation by enhancing the function of BDNF downstream pathways after traumatic brain injury in adult rats. CNS Neurosci Ther 2022; 28:1081-1092. [PMID: 35481944 PMCID: PMC9160452 DOI: 10.1111/cns.13845] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 01/29/2022] [Accepted: 02/01/2022] [Indexed: 12/11/2022] Open
Abstract
Aims In this study, the effect of intracerebral ventricle injection with a miR‐124‐3p agomir or antagomir on prognosis and on subventricular zone (SVZ) neural stem cells (NSCs) in adult rats with moderate traumatic brain injury (TBI) was investigated. Methods Model rats with moderate controlled cortical impact (CCI) were established and verified as described previously. The dynamic changes in miR‐124‐3p and the status of NSCs in the SVZ were analyzed. To evaluate the effect of lateral ventricle injection with miR‐124‐3p analogs and inhibitors after TBI, modified neurological severity scores (mNSSs) and rotarod tests were used to assess motor function prognosis. The variation in SVZ NSC marker expression was also explored. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of predicted miR‐124‐3p targets was performed to infer miR‐124‐3p functions, and miR‐124‐3p effects on pivotal predicted targets were further explored. Results Administration of miR‐124 inhibitors enhanced SVZ NSC proliferation and improved the motor function of TBI rats. Functional analysis of miR‐124 targets revealed high correlations between miR‐124 and neurotrophin signaling pathways, especially the TrkB downstream pathway. PI3K, Akt3, and Ras were found to be crucial miR‐124 targets and to be involved in most predicted functional pathways. Interference with miR‐124 expression in the lateral ventricle affected the PI3K/Akt3 and Ras pathways in the SVZ, and miR‐124 inhibitors intensified the potency of brain‐derived neurotrophic factor (BDNF) in SVZ NSC proliferation after TBI. Conclusion Disrupting miR‐124 expression through lateral ventricle injection has beneficial effects on neuroregeneration and TBI prognosis. Moreover, the combined use of BDNF and miR‐124 inhibitors might lead to better outcomes in TBI than BDNF treatment alone.
Collapse
Affiliation(s)
- En-Ming Kang
- Department of Neurosurgery, Xijing Hospital, Airforce Military Medical University (Fourth Military Medical University), Xi'an, China
| | - Yi-Bin Jia
- Department of Neurosurgery, Xijing Hospital, Airforce Military Medical University (Fourth Military Medical University), Xi'an, China
| | - Jia-You Wang
- Department of Neurosurgery, Xijing Hospital, Airforce Military Medical University (Fourth Military Medical University), Xi'an, China
| | - Guan-Yi Wang
- Department of Neurosurgery, Xijing Hospital, Airforce Military Medical University (Fourth Military Medical University), Xi'an, China
| | - Hui-Jun Chen
- Department of Neurosurgery, Xijing Hospital, Airforce Military Medical University (Fourth Military Medical University), Xi'an, China
| | - Xiao-Yan Chen
- Department of Neurosurgery, Xijing Hospital, Airforce Military Medical University (Fourth Military Medical University), Xi'an, China
| | - Yu-Qin Ye
- Department of Neurosurgery, Xijing Hospital, Airforce Military Medical University (Fourth Military Medical University), Xi'an, China.,Department of Neurosurgery, PLA 163rd Hospital (Second Affiliated Hospital of Hunan Normal University), Changsha, China
| | - Xin Zhang
- Department of Neurosurgery, Xijing Hospital, Airforce Military Medical University (Fourth Military Medical University), Xi'an, China
| | - Xin-Hong Su
- Department of Neurosurgery, Xijing Hospital, Airforce Military Medical University (Fourth Military Medical University), Xi'an, China
| | - Jing-Yu Wang
- Teaching and Research Support Center, Engineering University of Chinese Armed Police Force, Xi'an, Shaanxi, China
| | - Xiao-Sheng He
- Department of Neurosurgery, Xijing Hospital, Airforce Military Medical University (Fourth Military Medical University), Xi'an, China
| |
Collapse
|
55
|
Fluoxetine reduces organ injury and improves motor function after traumatic brain injury in mice. J Trauma Acute Care Surg 2022; 93:38-42. [PMID: 35727591 DOI: 10.1097/ta.0000000000003646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Traumatic brain injury (TBI) is a leading cause of morbidity and mortality in trauma patients worldwide. Brain injury is associated with significant inflammation, both within the brain and in the peripheral organs. This inflammatory response in TBI leads to a secondary injury, worsening the effects of the original brain injury. Serotonin is also linked to inflammation in the intestine and inflammatory bowel disease, but its role in the gut-brain axis is not known. We hypothesized that using fluoxetine to block serotonin reuptake would reduce organ inflammation and improve outcomes after TBI. METHODS C57/B6 mice were given a severe TBI using a controlled cortical impact. To measure intestinal permeability, a piece of terminal ileum was resected, the lumen was filled with 4-kDa fluorescein isothiocyanate (FITC)-dextran, and the ends were tied. The intestinal segment was submerged in buffer and fluorescence in the buffer measured over time. To measure lung permeability, 70-kDa FITC-dextran is injected retro-orbitally. Thirty minutes later, the left lung was homogenized and the fluorescence was measured. To measure performance on the rota-rod, mice were placed on a spinning rod, and the time to fall off was measured. Those treated with fluoxetine received a single dose of 5 mg/kg via intraperitoneal injection immediately after injury. RESULTS Traumatic brain injury was associated with an increase in intestinal permeability to FITC-dextran, increased lung vascular permeability, and worse performance on the rota-rod. Fluoxetine significantly reduced lung and intestinal permeability after TBI and improved performance on the rota-rod after TBI. CONCLUSION Use of fluoxetine has the potential to reduce lung injury and improve motor coordination in severe TBI patients. Further study will be needed to elucidate the mechanism behind this effect.
Collapse
|
56
|
Yang ZY, Wu Y, Li X, Tang T, Wang Y, Huang ZB, Fan R. Bioinformatics Analysis of miRNAs and mRNAs Network-Xuefu Zhuyu Decoction Exerts Neuroprotection of Traumatic Brain Injury Mice in the Subacute Phase. Front Pharmacol 2022; 13:772680. [PMID: 35814248 PMCID: PMC9257413 DOI: 10.3389/fphar.2022.772680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
Xuefu Zhuyu decoction (XFZYD) is used to treat traumatic brain injury (TBI). XFZYD-based therapies have achieved good clinical outcomes in TBI. However, the underlying mechanisms of XFZYD in TBI remedy remains unclear. The study aimed to identify critical miRNAs and putative mechanisms associated with XFYZD through comprehensive bioinformatics analysis. We established a controlled cortical impact (CCI) mice model and treated the mice with XFZYD. The high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) confirmed the quality of XFZYD. The modified neurological severity score (mNSS) and Morris water maze (MWM) tests indicated that XFZYD improved the neurological deficit (p < 0.05) and cognitive function (p < 0.01). Histological analysis validated the establishment of the CCI model and the treatment effect of XFZYD. HE staining displayed that the pathological degree in the XFZYD-treated group was prominently reduced. The transcriptomic data was generated using microRNA sequencing (miRNA-seq) of the hippocampus. According to cluster analysis, the TBI group clustered together was distinct from the XFZYD group. Sixteen differentially expressed (5 upregulated; 11 downregulated) miRNAs were detected between TBI and XFZYD. The reliability of the sequencing data was confirmed by qRT-PCR. Three miRNAs (mmu-miR-142a-5p, mmu-miR-183-5p, mmu-miR-96-5p) were distinctively expressed in the XFZYD compared with the TBI and consisted of the sequencing results. Bioinformatics analysis suggested that the MAPK signaling pathway contributes to TBI pathophysiology and XFZYD treatment. Subsequently, the functions of miR-96-5p, miR-183-5p, and miR-142a-5p were validated in vitro. TBI significantly induces the down-expression of miR-96-5p, and up-expression of inflammatory cytokines, which were all inhibited by miR-96-5p mimics. The present research provides an adequate fundament for further knowing the pathologic and prognostic process of TBI and supplies deep insights into the therapeutic effects of XFZYD.
Collapse
Affiliation(s)
- Zhao-yu Yang
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yao Wu
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xuexuan Li
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Tao Tang
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yang Wang
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Ze-bing Huang
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Infectious Disease, Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Rong Fan, ; Ze-bing Huang,
| | - Rong Fan
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Rong Fan, ; Ze-bing Huang,
| |
Collapse
|
57
|
2, 3, 5, 4'-tetrahydroxystilbene-2-O-beta-D-glucoside protects against neuronal cell death and traumatic brain injury-induced pathophysiology. Aging (Albany NY) 2022; 14:2607-2627. [PMID: 35314517 PMCID: PMC9004580 DOI: 10.18632/aging.203958] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 03/01/2022] [Indexed: 11/25/2022]
Abstract
Traumatic brain injury (TBI) is a global health issue that affects at least 10 million people per year. Neuronal cell death and brain injury after TBI, including apoptosis, inflammation, and excitotoxicity, have led to detrimental effects in TBI. 2, 3, 5, 4’-tetrahydroxystilbene-2-O-beta-D-glucoside (THSG), a water-soluble compound extracted from the Chinese herb Polygonum multiflorum, has been shown to exert various biological functions. However, the effects of THSG on TBI is still poorly understood. THSG reduced L-glutamate-induced DNA fragmentation and protected glial and neuronal cell death after L-glutamate stimulation. Our results also showed that TBI caused significant behavioral deficits in the performance of beam walking, mNSS, and Morris water maze tasks in a mouse model. Importantly, daily administration of THSG (60 mg/kg/day) after TBI for 21 days attenuated the injury severity score, promoted motor coordination, and improved cognitive performance post-TBI. Moreover, administration of THSG also dramatically decreased the brain lesion volume. THSG reduced TBI-induced neuronal apoptosis in the brain cortex 24 h after TBI. Furthermore, THSG increased the number of immature neurons in the subgranular zone (SGZ) of the dentate gyrus (DG) of the hippocampus. Our results demonstrate that THSG exerts neuroprotective effects on glutamate-induced excitotoxicity and glial and neuronal cell death. The present study also demonstrated that THSG effectively protects against TBI-associated motor and cognitive impairment, at least in part, by inhibiting TBI-induced apoptosis and promoting neurogenesis.
Collapse
|
58
|
Huang Y, Zhang H, Yang E, Yue K, Gao X, Dai S, Wei J, Yang Y, Luo P, Li X, Jiang X. Integrated Proteome and Phosphoproteome Analyses Reveal Early- and Late-Stage Protein Networks of Traumatic Brain Injury. J Mol Neurosci 2022; 72:759-771. [PMID: 35023002 DOI: 10.1007/s12031-021-01949-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/21/2021] [Indexed: 11/25/2022]
Abstract
Traumatic brain injury (TBI) is a major public health concern all around the world. Accumulating evidence suggests that pathological processes after brain injury continuously evolve. Here, we identified the differentially expressed proteins (DEPs) and differentially expressed phosphoproteins (DEPPs) in the early and late stages of TBI in mice using TMT labeling, enrichment of Phos affinity followed, and high-resolution LC-MS/MS analysis. Subsequently, integrative analyses, including functional enrichment-based clustering analysis, motif analysis, cross-talk pathway/process enrichment analysis, and protein-protein interaction enrichment analysis were performed to further identify the different and similar pathophysiologic mechanisms in the early and late stage. Our work reveals a map of early and late-stage protein networks in TBI, which shed light on useful biomarkers and the underlying mechanisms in TBI and its sequelae.
Collapse
Affiliation(s)
- Yutao Huang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Haofuzi Zhang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Erwan Yang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Kangyi Yue
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Xiangyu Gao
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Shuhui Dai
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Jialiang Wei
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Yuefan Yang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Peng Luo
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, People's Republic of China.
| | - Xin Li
- Department of Anesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, People's Republic of China.
| | - Xiaofan Jiang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, People's Republic of China.
| |
Collapse
|
59
|
Zhang Y, Huang Z, Xia H, Xiong J, Ma X, Liu C. The benefits of exercise for outcome improvement following traumatic brain injury: Evidence, pitfalls and future perspectives. Exp Neurol 2021; 349:113958. [PMID: 34951984 DOI: 10.1016/j.expneurol.2021.113958] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 12/04/2021] [Accepted: 12/15/2021] [Indexed: 12/15/2022]
Abstract
Traumatic brain injury (TBI), also known as a silent epidemic, is currently a substantial public health problem worldwide. Given the increased energy demands following brain injury, relevant guidelines tend to recommend absolute physical and cognitive rest for patients post-TBI. Nevertheless, recent evidence suggests that strict rest does not provide additional benefits to patients' recovery. By contrast, as a cost-effective non-pharmacological therapy, exercise has shown promise for enhancing functional outcomes after injury. This article summarizes the most recent evidence supporting the beneficial effects of exercise on TBI outcomes, focusing on the efficacy of exercise for cognitive recovery after injury and its potential mechanisms. Available evidence demonstrates the potential of exercise in improving cognitive impairment, mood disorders, and post-concussion syndrome following TBI. However, the clinical application for exercise rehabilitation in TBI remains challenging, particularly due to the inadequacy of the existing clinical evaluation system. Also, a better understanding of the underlying mechanisms whereby exercise promotes its most beneficial effects post-TBI will aid in the development of new clinical strategies to best benefit of these patients.
Collapse
Affiliation(s)
- Yulan Zhang
- Cognitive & Sports Neuroscience Laboratory, National Demonstration Center for Experimental Sports Science Education, College of Physical Education and Sports Science, South China Normal University, Guangzhou, Guangdong 510006, China; Laboratory of Laser Sports Medicine, College of Physical Education and Sports Science, South China Normal University, Guangzhou, Guangdong 510006, China
| | - Zhihai Huang
- Cognitive & Sports Neuroscience Laboratory, National Demonstration Center for Experimental Sports Science Education, College of Physical Education and Sports Science, South China Normal University, Guangzhou, Guangdong 510006, China
| | - Honglin Xia
- Laboratory of Regenerative Medicine in Sports Science, College of Physical Education and Sports Science, South China Normal University, Guangzhou, Guangdong 510006, China
| | - Jing Xiong
- Cognitive & Sports Neuroscience Laboratory, National Demonstration Center for Experimental Sports Science Education, College of Physical Education and Sports Science, South China Normal University, Guangzhou, Guangdong 510006, China; Laboratory of Laser Sports Medicine, College of Physical Education and Sports Science, South China Normal University, Guangzhou, Guangdong 510006, China
| | - Xu Ma
- Cognitive & Sports Neuroscience Laboratory, National Demonstration Center for Experimental Sports Science Education, College of Physical Education and Sports Science, South China Normal University, Guangzhou, Guangdong 510006, China; Laboratory of Laser Sports Medicine, College of Physical Education and Sports Science, South China Normal University, Guangzhou, Guangdong 510006, China
| | - Chengyi Liu
- Laboratory of Laser Sports Medicine, College of Physical Education and Sports Science, South China Normal University, Guangzhou, Guangdong 510006, China.
| |
Collapse
|
60
|
Tucker LB, McCabe JT. Measuring Anxiety-Like Behaviors in Rodent Models of Traumatic Brain Injury. Front Behav Neurosci 2021; 15:682935. [PMID: 34776887 PMCID: PMC8586518 DOI: 10.3389/fnbeh.2021.682935] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 10/06/2021] [Indexed: 12/31/2022] Open
Abstract
Anxiety is a common complaint following acquired traumatic brain injury (TBI). However, the measurement of dysfunctional anxiety behavioral states following experimental TBI in rodents is complex. Some studies report increased anxiety after TBI, whereas others find a decreased anxiety-like state, often described as increased risk-taking behavior or impulsivity. These inconsistencies may reflect a lack of standardization of experimental injury models or of behavioral testing techniques. Here, we review the most commonly employed unconditioned tests of anxiety and discuss them in a context of experimental TBI. Special attention is given to the effects of repeated testing, and consideration of potential sensory and motor confounds in injured rodents. The use of multiple tests and alternative data analysis methods are discussed, as well as the potential for the application of common data elements (CDEs) as a means of providing a format for documentation of experimental details and procedures of each published research report. CDEs may improve the rigor, reproducibility, as well as endpoint for better relating findings with clinical TBI phenotypes and the final goal of translation. While this may not resolve all incongruities in findings across laboratories, it is seen as a way forward for standardized and universal data collection for improvement of data quality and sharing, and advance therapies for neuropsychiatric symptoms that often present for decades following TBI.
Collapse
Affiliation(s)
- Laura B Tucker
- Preclinical Behavior and Models Core, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States.,Department of Anatomy, Physiology and Genetics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Joseph T McCabe
- Preclinical Behavior and Models Core, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States.,Department of Anatomy, Physiology and Genetics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| |
Collapse
|
61
|
Graham NSN, Zimmerman KA, Moro F, Heslegrave A, Maillard SA, Bernini A, Miroz JP, Donat CK, Lopez MY, Bourke N, Jolly AE, Mallas EJ, Soreq E, Wilson MH, Fatania G, Roi D, Patel MC, Garbero E, Nattino G, Baciu C, Fainardi E, Chieregato A, Gradisek P, Magnoni S, Oddo M, Zetterberg H, Bertolini G, Sharp DJ. Axonal marker neurofilament light predicts long-term outcomes and progressive neurodegeneration after traumatic brain injury. Sci Transl Med 2021; 13:eabg9922. [PMID: 34586833 DOI: 10.1126/scitranslmed.abg9922] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Neil S N Graham
- Department of Brain Sciences, Imperial College London, London W12 0NN, UK.,UK DRI Centre for Care Research and Technology, Imperial College London, London W12 0BZ, UK
| | - Karl A Zimmerman
- Department of Brain Sciences, Imperial College London, London W12 0NN, UK.,UK DRI Centre for Care Research and Technology, Imperial College London, London W12 0BZ, UK
| | - Federico Moro
- Laboratory of Acute Brain Injury and Therapeutic Strategies, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo 24126, Italy.,Fondazione IRCCS, Ca' Granda Ospedale Maggiore Policlinico, Dipartimento di Anestesia e Rianimazione, 20122, Milan, Italy
| | - Amanda Heslegrave
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK.,UK Dementia Research Institute at UCL, London WC1N 3BG, UK
| | - Samia Abed Maillard
- Neuroscience Critical Care Research Group, Department of Intensive Care Medicine, CHUV Lausanne University Hospital and University of Lausanne, Lausanne 1011, Switzerland
| | - Adriano Bernini
- Neuroscience Critical Care Research Group, Department of Intensive Care Medicine, CHUV Lausanne University Hospital and University of Lausanne, Lausanne 1011, Switzerland
| | - John-Paul Miroz
- Neuroscience Critical Care Research Group, Department of Intensive Care Medicine, CHUV Lausanne University Hospital and University of Lausanne, Lausanne 1011, Switzerland
| | - Cornelius K Donat
- Department of Brain Sciences, Imperial College London, London W12 0NN, UK
| | - Maria Yanez Lopez
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, UK
| | - Niall Bourke
- Department of Brain Sciences, Imperial College London, London W12 0NN, UK.,UK DRI Centre for Care Research and Technology, Imperial College London, London W12 0BZ, UK
| | - Amy E Jolly
- Department of Brain Sciences, Imperial College London, London W12 0NN, UK.,UK DRI Centre for Care Research and Technology, Imperial College London, London W12 0BZ, UK
| | - Emma-Jane Mallas
- Department of Brain Sciences, Imperial College London, London W12 0NN, UK.,UK DRI Centre for Care Research and Technology, Imperial College London, London W12 0BZ, UK
| | - Eyal Soreq
- Department of Brain Sciences, Imperial College London, London W12 0NN, UK.,UK DRI Centre for Care Research and Technology, Imperial College London, London W12 0BZ, UK
| | - Mark H Wilson
- Department of Neurosurgery, Imperial College Healthcare NHS Trust, London W6 8RF, UK.,Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK
| | - Gavin Fatania
- Department of Imaging, Imperial College Healthcare NHS Trust, London W6 8RF, UK
| | - Dylan Roi
- Department of Imaging, Imperial College Healthcare NHS Trust, London W6 8RF, UK
| | - Maneesh C Patel
- Department of Imaging, Imperial College Healthcare NHS Trust, London W6 8RF, UK
| | - Elena Garbero
- Laboratory of Clinical Epidemiology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo 24126, Italy
| | - Giovanni Nattino
- Laboratory of Clinical Epidemiology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo 24126, Italy
| | - Camelia Baciu
- Neurorianimazione, ASST Grande Ospedale Metropolitano Niguarda, Milano 20162, Italy
| | - Enrico Fainardi
- Department of Experimental and Clinical Sciences, Careggi University Hospital, University of Firenze, Florence 50139, Italy
| | - Arturo Chieregato
- Neurorianimazione, ASST Grande Ospedale Metropolitano Niguarda, Milano 20162, Italy
| | - Primoz Gradisek
- Clinical Department of Anaesthesiology and Intensive Therapy, University Medical Center, Ljubljana 1000, Slovenia
| | - Sandra Magnoni
- Department of Anesthesia and Intensive Care, Santa Chiara Hospital, Trento 38122, Italy
| | - Mauro Oddo
- Neuroscience Critical Care Research Group, Department of Intensive Care Medicine, CHUV Lausanne University Hospital and University of Lausanne, Lausanne 1011, Switzerland.,Medical Direction, CHUV Lausanne University Hospital, Lausanne 1011, Switzerland
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Mölndal 431 41, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal 431 41, Sweden
| | - Guido Bertolini
- Laboratory of Clinical Epidemiology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo 24126, Italy
| | - David J Sharp
- Department of Brain Sciences, Imperial College London, London W12 0NN, UK.,UK DRI Centre for Care Research and Technology, Imperial College London, London W12 0BZ, UK.,Centre for Injury Studies, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
62
|
Smith DH, Kochanek PM, Rosi S, Meyer R, Ferland-Beckham C, Prager EM, Ahlers ST, Crawford F. Roadmap for Advancing Pre-Clinical Science in Traumatic Brain Injury. J Neurotrauma 2021; 38:3204-3221. [PMID: 34210174 PMCID: PMC8820284 DOI: 10.1089/neu.2021.0094] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Pre-clinical models of disease have long played important roles in the advancement of new treatments. However, in traumatic brain injury (TBI), despite the availability of numerous model systems, translation from bench to bedside remains elusive. Integrating clinical relevance into pre-clinical model development is a critical step toward advancing therapies for TBI patients across the spectrum of injury severity. Pre-clinical models include in vivo and ex vivo animal work-both small and large-and in vitro modeling. The wide range of pre-clinical models reflect substantial attempts to replicate multiple aspects of TBI sequelae in humans. Although these models reveal multiple putative mechanisms underlying TBI pathophysiology, failures to translate these findings into successful clinical trials call into question the clinical relevance and applicability of the models. Here, we address the promises and pitfalls of pre-clinical models with the goal of evolving frameworks that will advance translational TBI research across models, injury types, and the heterogenous etiology of pathology.
Collapse
Affiliation(s)
- Douglas H Smith
- Center for Brain Injury and Repair, Department of Neurosurgery, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Patrick M Kochanek
- Department of Critical Care Medicine; Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine and Children's Hospital of Pittsburgh of UPMC, Rangos Research Center, Pittsburgh, Pennsylvania, USA
| | - Susanna Rosi
- Departments of Physical Therapy Rehabilitation Science, Neurological Surgery, Weill Institute for Neuroscience, University of California San Francisco, Zuckerberg San Francisco General Hospital, San Francisco, California, USA
| | - Retsina Meyer
- Cohen Veterans Bioscience, New York, New York, USA.,Delix Therapeutics, Inc, Boston, Massachusetts, USA
| | | | | | - Stephen T Ahlers
- Department of Neurotrauma, Operational and Undersea Medicine Directorate Naval Medical Research Center, Silver Spring, Maryland, USA
| | | |
Collapse
|
63
|
Song B, Lee SJ, Kim CH. Roles of Cytokines in the Temporal Changes of Microglial Membrane Currents and Neuronal Excitability and Synaptic Efficacy in ATP-Induced Cortical Injury Model. Int J Mol Sci 2021; 22:ijms22136853. [PMID: 34202215 PMCID: PMC8268462 DOI: 10.3390/ijms22136853] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/18/2021] [Accepted: 06/23/2021] [Indexed: 12/20/2022] Open
Abstract
Cytokines are important neuroinflammatory modulators in neurodegenerative brain disorders including traumatic brain injury (TBI) and stroke. However, their temporal effects on the physiological properties of microglia and neurons during the recovery period have been unclear. Here, using an ATP-induced cortical injury model, we characterized selective effects of ATP injection compared to needle-control. In the damaged region, the fluorescent intensity of CX3CR1-GFP (+) cells, as well as the cell density, was increased and the maturation of newborn BrdU (+) cells continued until 28 day-post-injection (dpi) of ATP. The excitability and synaptic E/I balance of neurons and the inward and outward membrane currents of microglia were increased at 3 dpi, when expressions of tumor necrosis factor (TNF)-α/interleukin (IL)-1β and IL-10/IL-4 were also enhanced. These changes of both cells at 3 dpi were mostly decayed at 7 dpi and were suppressed by any of IL-10, IL-4, suramin (P2 receptor inhibitor) and 4-AP (K+ channel blocker). Acute ATP application alone induced only small effects from both naïve neurons and microglial cells in brain slice. However, TNF-α alone effectively increased the excitability of naïve neurons, which was blocked by suramin or 4-AP. TNF-α and IL-1β increased and decreased membrane currents of naïve microglia, respectively. Our results suggest that ATP and TNF-α dominantly induce the physiological activities of 3 dpi neurons and microglia, and IL-10 effectively suppresses such changes of both activated cells in K+ channel- and P2 receptor-dependent manner, while IL-4 suppresses neurons preferentially.
Collapse
Affiliation(s)
- Bokyung Song
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Korea;
- Neuroscience Program, Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Korea
| | - Sung-Joong Lee
- Program in Neuroscience, Dental Research Institute, School of Dentistry, Seoul National University, Seoul 08826, Korea;
| | - Chong-Hyun Kim
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Korea;
- Neuroscience Program, Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Korea
- Correspondence:
| |
Collapse
|
64
|
Mester JR, Bazzigaluppi P, Dorr A, Beckett T, Burke M, McLaurin J, Sled JG, Stefanovic B. Attenuation of tonic inhibition prevents chronic neurovascular impairments in a Thy1-ChR2 mouse model of repeated, mild traumatic brain injury. Am J Cancer Res 2021; 11:7685-7699. [PMID: 34335958 PMCID: PMC8315057 DOI: 10.7150/thno.60190] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 06/04/2021] [Indexed: 12/24/2022] Open
Abstract
Rationale: Mild traumatic brain injury (mTBI), the most common type of brain trauma, frequently leads to chronic cognitive and neurobehavioral deficits. Intervening effectively is impeded by our poor understanding of its pathophysiological sequelae. Methods: To elucidate the long-term neurovascular sequelae of mTBI, we combined optogenetics, two-photon fluorescence microscopy, and intracortical electrophysiological recordings in mice to selectively stimulate peri-contusional neurons weeks following repeated closed-head injury and probe individual vessel's function and local neuronal reactivity. Results: Compared to sham-operated animals, mTBI mice showed doubled cortical venular speeds (115 ± 25%) and strongly elevated cortical venular reactivity (53 ± 17%). Concomitantly, the pericontusional neurons exhibited attenuated spontaneous activity (-57 ± 79%) and decreased reactivity (-47 ± 28%). Post-mortem immunofluorescence revealed signs of peri-contusional senescence and DNA damage, in the absence of neuronal loss or gliosis. Alteration of neuronal and vascular functioning was largely prevented by chronic, low dose, systemic administration of a GABA-A receptor inverse agonist (L-655,708), commencing 3 days following the third impact. Conclusions: Our findings indicate that repeated mTBI leads to dramatic changes in the neurovascular unit function and that attenuation of tonic inhibition can prevent these alterations. The sustained disruption of the neurovascular function may underlie the concussed brain's long-term susceptibility to injury, and calls for development of better functional assays as well as of neurovascularly targeted interventions.
Collapse
|
65
|
Different forms of traumatic brain injuries cause different tactile hypersensitivity profiles. Pain 2021; 162:1163-1175. [PMID: 33027220 DOI: 10.1097/j.pain.0000000000002103] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 09/28/2020] [Indexed: 12/21/2022]
Abstract
ABSTRACT Chronic complications of traumatic brain injury represent one of the greatest financial burdens and sources of suffering in the society today. A substantial number of these patients suffer from posttraumatic headache (PTH), which is typically associated with tactile allodynia. Unfortunately, this phenomenon has been understudied, in large part because of the lack of well-characterized laboratory animal models. We have addressed this gap in the field by characterizing the tactile sensory profile of 2 nonpenetrating models of PTH. We show that multimodal traumatic brain injury, administered by a jet-flow overpressure chamber that delivers a severe compressive impulse accompanied by a variable shock front and acceleration-deceleration insult, produces long-term tactile hypersensitivity and widespread sensitization. These are phenotypes reminiscent of PTH in patients, in both cephalic and extracephalic regions. By contrast, closed head injury induces only transient cephalic tactile hypersensitivity, with no extracephalic consequences. Both models show a more severe phenotype with repetitive daily injury for 3 days, compared with either 1 or 3 successive injuries in a single day, providing new insight into patterns of injury that may place patients at a greater risk of developing PTH. After recovery from transient cephalic tactile hypersensitivity, mice subjected to closed head injury demonstrate persistent hypersensitivity to established migraine triggers, including calcitonin gene-related peptide and sodium nitroprusside, a nitric oxide donor. Our results offer the field new tools for studying PTH and preclinical support for a pathophysiologic role of calcitonin gene-related peptide in this condition.
Collapse
|
66
|
Cui W, Wu X, Feng D, Luo J, Shi Y, Guo W, Liu H, Wang Q, Wang L, Ge S, Qu Y. Acrolein Induces Systemic Coagulopathy via Autophagy-dependent Secretion of von Willebrand Factor in Mice after Traumatic Brain Injury. Neurosci Bull 2021; 37:1160-1175. [PMID: 33939120 PMCID: PMC8353051 DOI: 10.1007/s12264-021-00681-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 12/05/2020] [Indexed: 12/11/2022] Open
Abstract
Traumatic brain injury (TBI)-induced coagulopathy has increasingly been recognized as a significant risk factor for poor outcomes, but the pathogenesis remains poorly understood. In this study, we aimed to investigate the causal role of acrolein, a typical lipid peroxidation product, in TBI-induced coagulopathy, and further explore the underlying molecular mechanisms. We found that the level of plasma acrolein in TBI patients suffering from coagulopathy was higher than that in those without coagulopathy. Using a controlled cortical impact mouse model, we demonstrated that the acrolein scavenger phenelzine prevented TBI-induced coagulopathy and recombinant ADAMTS-13 prevented acrolein-induced coagulopathy by cleaving von Willebrand factor (VWF). Our results showed that acrolein may contribute to an early hypercoagulable state after TBI by regulating VWF secretion. mRNA sequencing (mRNA-seq) and transcriptome analysis indicated that acrolein over-activated autophagy, and subsequent experiments revealed that acrolein activated autophagy partly by regulating the Akt/mTOR pathway. In addition, we demonstrated that acrolein was produced in the perilesional cortex, affected endothelial cell integrity, and disrupted the blood-brain barrier. In conclusion, in this study we uncovered a novel pro-coagulant effect of acrolein that may contribute to TBI-induced coagulopathy and vascular leakage, providing an alternative therapeutic target.
Collapse
Affiliation(s)
- Wenxing Cui
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Xun Wu
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Dayun Feng
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Jianing Luo
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Yingwu Shi
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Wei Guo
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Haixiao Liu
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Qiang Wang
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Liang Wang
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Shunnan Ge
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China.
| | - Yan Qu
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China.
| |
Collapse
|
67
|
The association of traumatic brain injury, gut microbiota and the corresponding metabolites in mice. Brain Res 2021; 1762:147450. [PMID: 33773978 DOI: 10.1016/j.brainres.2021.147450] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/22/2021] [Accepted: 03/21/2021] [Indexed: 01/05/2023]
Abstract
BACKGROUND Traumatic Brain Injury (TBI) present a significant burden to global health. Close association and mutual regulation exist between the brain and gut microbiota. In addition, metabolites may play an important role as intermediary mediators of the brain and gut microbiota. Consequently, the study sought to investigate the alterations in gut microbiota and metabolites after TBI and conducted a comprehensive analysis of the correlation between gut microbiota and metabolites after TBI in mice. METHODS Changes in intestinal microbiota and metabolites in mice after moderate or severe traumatic brain injury were detected through 16S rDNA sequencing and the non-target LC-MS technology. Additionally, Pearson correlation analysis was used to explore the association between the microbiota and metabolites. RESULTS TBI was able to change the composition of intestinal microbiota, resulting to a decrease in microbial diversity in the intestinal tract (sham vs sTBI: 8.35 ± 0.12 vs 7.71 ± 0.5, p < 0.01; sTBI vs mTBI: 7.71 ± 0.5 vs 8.25 ± 0.34, p < 0.05). The results also showed that TBI could change the types and abundance of metabolites (723 in mTBI and sham groups; 1221 in sTBI and sham groups; 324 in mTBI and sTBI groups). Moreover, some of the altered gut metabolites were significantly correlated with part of the altered gut microbes after TBI. CONCLUSIONS TBI significantly changed intestinal microbiota as well as metabolites. Some of the altered microbiota and metabolites had a significant association. The results from this study provide information that paves way for future studies utilizing the brain gut axis theory in the diagnosis and treatment of TBI.
Collapse
|
68
|
Donat CK, Yanez Lopez M, Sastre M, Baxan N, Goldfinger M, Seeamber R, Müller F, Davies P, Hellyer P, Siegkas P, Gentleman S, Sharp DJ, Ghajari M. From biomechanics to pathology: predicting axonal injury from patterns of strain after traumatic brain injury. Brain 2021; 144:70-91. [PMID: 33454735 PMCID: PMC7990483 DOI: 10.1093/brain/awaa336] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 09/01/2020] [Accepted: 09/14/2020] [Indexed: 12/19/2022] Open
Abstract
The relationship between biomechanical forces and neuropathology is key to understanding traumatic brain injury. White matter tracts are damaged by high shear forces during impact, resulting in axonal injury, a key determinant of long-term clinical outcomes. However, the relationship between biomechanical forces and patterns of white matter injuries, associated with persistent diffusion MRI abnormalities, is poorly understood. This limits the ability to predict the severity of head injuries and the design of appropriate protection. Our previously developed human finite element model of head injury predicted the location of post-traumatic neurodegeneration. A similar rat model now allows us to experimentally test whether strain patterns calculated by the model predicts in vivo MRI and histology changes. Using a controlled cortical impact, mild and moderate injuries (1 and 2 mm) were performed. Focal and axonal injuries were quantified with volumetric and diffusion 9.4 T MRI at 2 weeks post injury. Detailed analysis of the corpus callosum was conducted using multi-shell diffusion MRI and histopathology. Microglia and astrocyte density, including process parameters, along with white matter structural integrity and neurofilament expression were determined by quantitative immunohistochemistry. Linear mixed effects regression analyses for strain and strain rate with the employed outcome measures were used to ascertain how well immediate biomechanics could explain MRI and histology changes. The spatial pattern of mechanical strain and strain rate in the injured cortex shows good agreement with the probability maps of focal lesions derived from volumetric MRI. Diffusion metrics showed abnormalities in the corpus callosum, indicating white matter changes in the segments subjected to high strain, as predicted by the model. The same segments also exhibited a severity-dependent increase in glia cell density, white matter thinning and reduced neurofilament expression. Linear mixed effects regression analyses showed that mechanical strain and strain rate were significant predictors of in vivo MRI and histology changes. Specifically, strain and strain rate respectively explained 33% and 28% of the reduction in fractional anisotropy, 51% and 29% of the change in neurofilament expression and 51% and 30% of microglia density changes. The work provides evidence that strain and strain rate in the first milliseconds after injury are important factors in determining patterns of glial and axonal injury and serve as experimental validators of our computational model of traumatic brain injury. Our results provide support for the use of this model in understanding the relationship of biomechanics and neuropathology and can guide the development of head protection systems, such as airbags and helmets.
Collapse
Affiliation(s)
- Cornelius K Donat
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK
- Royal British Legion Centre for Blast Injury Studies, Imperial College London, London, UK
| | - Maria Yanez Lopez
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
| | - Magdalena Sastre
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Nicoleta Baxan
- Biological Imaging Centre, Central Biomedical Services, Imperial College London, London, UK
| | - Marc Goldfinger
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Reneira Seeamber
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Franziska Müller
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Polly Davies
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Peter Hellyer
- Centre for Neuroimaging Sciences, King’s College London, London, UK
| | | | - Steve Gentleman
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - David J Sharp
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK
- Royal British Legion Centre for Blast Injury Studies, Imperial College London, London, UK
- UK Dementia Research Institute, Care Research and Technology Centre; Imperial College London, London, UK
| | - Mazdak Ghajari
- Royal British Legion Centre for Blast Injury Studies, Imperial College London, London, UK
- Design Engineering, Imperial College London, UK
| |
Collapse
|
69
|
Biologic Effect of Hydrogen Sulfide and Its Role in Traumatic Brain Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2020:7301615. [PMID: 33425216 PMCID: PMC7773448 DOI: 10.1155/2020/7301615] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 11/27/2020] [Accepted: 12/05/2020] [Indexed: 12/21/2022]
Abstract
Ever since endogenous hydrogen sulfide (H2S) was found in mammals in 1989, accumulated evidence has demonstrated that H2S functions as a novel neurological gasotransmitter in brain tissues and may play a key role in traumatic brain injury. It has been proved that H2S has an antioxidant, anti-inflammatory, and antiapoptosis function in the neuron system and functions as a neuroprotective factor against secondary brain injury. In addition, H2S has other biologic effects such as regulating the intracellular concentration of Ca2+, facilitating hippocampal long-term potentiation (LTP), and activating ATP-sensitive K channels. Due to the toxic nature of H2S when exceeding the physiological dose in the human body, only a small amount of H2S-related therapies was applied to clinical treatment. Therefore, it has huge therapeutic potential and has great hope for recovering patients with traumatic brain injury.
Collapse
|
70
|
Weaver JL. The Kinetics of Intestinal Permeability in a Mouse Model of Traumatic Brain Injury. CURRENT PROTOCOLS IN MOUSE BIOLOGY 2020; 10:e86. [PMID: 33264493 DOI: 10.1002/cpmo.86] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Traumatic brain injury (TBI) is a leading cause of morbidity and mortality among trauma patients. Increased intestinal permeability plays an important role in the inflammatory process that accompanies TBI, and therapies that prevent this permeability change may improve outcomes in TBI patients. Different animal models have been developed to test permeability changes, but there has been no agreement on when permeability should be tested after TBI. Here, we describe a method for creating the TBI mouse model and for measuring intestinal permeability. We also detail our permeability measurements at different time points after TBI to help guide future experimental design. The TBI is made using a controlled cortical impact model with the cortical impactor set to speed 6 m/s, depth 3 mm, dwell time 0.2 s, and tip size 3 mm to produce a severe TBI. Permeability is measured at 2, 4, 6, and 24 hr after TBI by removing a piece of terminal ileum, tying the ends, filling the lumen with FITC-labeled dextran, and then measuring how much of the dextran moves into the surrounding solution bath over time using a fluorescent plate reader. Our results show that peak permeability occurs between 4 and 6 hr after TBI. We recommend that future experiments incorporate permeability measurements 4 to 6 hr after TBI in order to take advantage of this peak permeability. © 2020 Wiley Periodicals LLC. Basic Protocol: Mouse CCI traumatic brain injury model and intestinal permeability measurement.
Collapse
Affiliation(s)
- Jessica L Weaver
- Department of Surgery, University of California San Diego, San Diego, California
| |
Collapse
|
71
|
Nieves MD, Furmanski O, Doughty ML. Sensorimotor dysfunction in a mild mouse model of cortical contusion injury without significant neuronal loss is associated with increases in inflammatory proteins with innate but not adaptive immune functions. J Neurosci Res 2020; 99:1533-1549. [PMID: 33269491 DOI: 10.1002/jnr.24766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/16/2020] [Accepted: 11/01/2020] [Indexed: 12/12/2022]
Abstract
Traumatic brain injury is a leading cause of mortality and morbidity in the United States. Acute trauma to the brain triggers chronic secondary injury mechanisms that contribute to long-term neurological impairment. We have developed a single, unilateral contusion injury model of sensorimotor dysfunction in adult mice. By targeting a topographically defined neurological circuit with a mild impact, we are able to track sustained behavioral deficits in sensorimotor function in the absence of tissue cavitation or neuronal loss in the contused cortex of these mice. Stereological histopathology and multiplex enzyme-linked immunosorbent assay proteomic screening confirm contusion resulted in chronic gliosis and the robust expression of innate immune cytokines and monocyte attractant chemokines IL-1β, IL-5, IL-6, TNFα, CXCL1, CXCL2, CXCL10, CCL2, and CCL3 in the contused cortex. In contrast, the expression of neuroinflammatory proteins with adaptive immune functions was not significantly modulated by injury. Our data support widespread activation of innate but not adaptive immune responses, confirming an association between sensorimotor dysfunction with innate immune activation in the absence of tissue or neuronal loss in our mice.
Collapse
Affiliation(s)
- Michael D Nieves
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.,Department of Anatomy, Physiology & Genetics, F.E. Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.,Graduate Program in Neuroscience, F.E. Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Orion Furmanski
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.,Department of Anatomy, Physiology & Genetics, F.E. Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Martin L Doughty
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.,Department of Anatomy, Physiology & Genetics, F.E. Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.,Graduate Program in Neuroscience, F.E. Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| |
Collapse
|
72
|
Antagonism of Protease-Activated Receptor 4 Protects Against Traumatic Brain Injury by Suppressing Neuroinflammation via Inhibition of Tab2/NF-κB Signaling. Neurosci Bull 2020; 37:242-254. [PMID: 33111257 DOI: 10.1007/s12264-020-00601-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 07/19/2020] [Indexed: 12/23/2022] Open
Abstract
Traumatic brain injury (TBI) triggers the activation of the endogenous coagulation mechanism, and a large amount of thrombin is released to curb uncontrollable bleeding through thrombin receptors, also known as protease-activated receptors (PARs). However, thrombin is one of the most critical factors in secondary brain injury. Thus, the PARs may be effective targets against hemorrhagic brain injury. Since the PAR1 antagonist has an increased bleeding risk in clinical practice, PAR4 blockade has been suggested as a more promising treatment. Here, we explored the expression pattern of PAR4 in the brain of mice after TBI, and explored the effect and possible mechanism of BMS-986120 (BMS), a novel selective and reversible PAR4 antagonist on secondary brain injury. Treatment with BMS protected against TBI in mice. mRNA-seq analysis, Western blot, and qRT-PCR verification in vitro showed that BMS significantly inhibited thrombin-induced inflammation in astrocytes, and suggested that the Tab2/ERK/NF-κB signaling pathway plays a key role in this process. Our findings provide reliable evidence that blocking PAR4 is a safe and effective intervention for TBI, and suggest that BMS has a potential clinical application in the management of TBI.
Collapse
|
73
|
McGeown JP, Hume PA, Theadom A, Quarrie KL, Borotkanics R. Nutritional interventions to improve neurophysiological impairments following traumatic brain injury: A systematic review. J Neurosci Res 2020; 99:573-603. [PMID: 33107071 DOI: 10.1002/jnr.24746] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 10/02/2020] [Accepted: 10/07/2020] [Indexed: 12/25/2022]
Abstract
Traumatic brain injury (TBI) accounts for significant global health burden. Effects of TBI can become chronic even following mild injury. There is a need to develop effective therapies to attenuate the damaging effects of TBI and improve recovery outcomes. This literature review using a priori criteria (PROSPERO; CRD42018100623) summarized 43 studies between January 1998 and July 2019 that investigated nutritional interventions (NUT) delivered with the objective of altering neurophysiological (NP) outcomes following TBI. Risk of bias was assessed for included studies, and NP outcomes recorded. The systematic search resulted in 43 of 3,748 identified studies met inclusion criteria. No studies evaluated the effect of a NUT on NP outcomes of TBI in humans. Biomarkers of morphological changes and apoptosis, oxidative stress, and plasticity, neurogenesis, and neurotransmission were the most evaluated NP outcomes across the 43 studies that used 2,897 animals. The risk of bias was unclear in all reviewed studies due to poorly detailed methodology sections. Taking these limitations into account, anti-oxidants, branched chain amino acids, and ω-3 polyunsaturated fatty acids have shown the most promising pre-clinical results for altering NP outcomes following TBI. Refinement of pre-clinical methodologies used to evaluate effects of interventions on secondary damage of TBI would improve the likelihood of translation to clinical populations.
Collapse
Affiliation(s)
- Joshua P McGeown
- Sports Performance Research Institute New Zealand (SPRINZ), Faculty of Health and Environmental Science, Auckland University of Technology, Auckland, New Zealand.,Traumatic Brain Injury Network, Auckland University of Technology, Auckland, New Zealand
| | - Patria A Hume
- Sports Performance Research Institute New Zealand (SPRINZ), Faculty of Health and Environmental Science, Auckland University of Technology, Auckland, New Zealand.,Traumatic Brain Injury Network, Auckland University of Technology, Auckland, New Zealand.,National Institute of Stroke and Applied Neuroscience (NISAN), Faculty of Health and Environmental Science, Auckland University of Technology, Auckland, New Zealand
| | - Alice Theadom
- Traumatic Brain Injury Network, Auckland University of Technology, Auckland, New Zealand.,National Institute of Stroke and Applied Neuroscience (NISAN), Faculty of Health and Environmental Science, Auckland University of Technology, Auckland, New Zealand
| | | | - Robert Borotkanics
- Sports Performance Research Institute New Zealand (SPRINZ), Faculty of Health and Environmental Science, Auckland University of Technology, Auckland, New Zealand
| |
Collapse
|
74
|
Ondek K, Brevnova O, Jimenez-Ornelas C, Vergara A, Zwienenberg M, Gurkoff G. A new model of repeat mTBI in adolescent rats. Exp Neurol 2020; 331:113360. [PMID: 32442552 DOI: 10.1016/j.expneurol.2020.113360] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 05/02/2020] [Accepted: 05/15/2020] [Indexed: 11/25/2022]
Abstract
Sports-related injury is frequently associated with repeated diffuse and mild traumatic brain injury (mTBI). We combined two existing models for inducing TBI in rats, the Impact Acceleration and Controlled Cortical Impact models, to create a new method relevant to the study of cognitive sequelae of repeat mTBI in adolescent athletes. Repeated mTBI, such as those incurred in sports, can result in a wide range of outcomes, with many individuals experiencing no chronic sequela while others develop profound cognitive and behavioral impairments, typically in the absence of lasting motor symptoms or gross tissue loss appreciable antemortem. It is critical to develop models of mTBI and repeat mTBI that have the flexibility to assess multiple parameters related to injury (e.g. number and magnitude of impacts, inter-injury interval, etc) that are associated with brain vulnerability compared to normal recovery. We designed a 3D-printed plastic implant to permanently secure a metal disc to the skull of adolescent rats in order to induce multiple injuries without performing multiple survival surgeries and also to minimize pre-injury anesthesia time. Rats were randomly assigned to sham injury (n = 12), single injury (n = 12; injury on P41), or repeat injury (n = 14; injuries on P35, P38, and P41) groups. Compared to single injury and sham injury, repeat injuries caused increased toe pinch reflex latency (F(2,34) = 4.126, p < .05) and diminished weight gain (F(2, 34) = 4.767, p < .05). Spatial navigation was tested using Morris water maze, beginning one week after the final injury (P48). While there were no differences between groups during acquisition, both single and repeat injuries resulted in deficits on probe trial performance (p < .01 and p < .05 respectively). Single injury animals also exhibited a deficit in working memory deficit across three days of testing (p < .05). Neither injury group had neuronal loss in the hilus or CA3, according to stereological quantification of NeuN. Therefore, by implanting a helmet we have created a relevant model of sports-related injury and repeated mTBI that results in subtle but significant changes in cognitive outcome in the absence of significant hippocampal cell death.
Collapse
Affiliation(s)
- Katelynn Ondek
- Department of Neurological Surgery, University of California, Davis School of Medicine, 4800 Y St Suite 3740, Sacramento, CA 95817, United States of America; Center for Neuroscience, University of California, Davis, 1544 Newton Ct, Davis, CA 95818, United States of America.
| | - Olga Brevnova
- Department of Neurological Surgery, University of California, Davis School of Medicine, 4800 Y St Suite 3740, Sacramento, CA 95817, United States of America.
| | - Consuelo Jimenez-Ornelas
- Department of Neurological Surgery, University of California, Davis School of Medicine, 4800 Y St Suite 3740, Sacramento, CA 95817, United States of America.
| | - Audrey Vergara
- Department of Neurological Surgery, University of California, Davis School of Medicine, 4800 Y St Suite 3740, Sacramento, CA 95817, United States of America.
| | - Marike Zwienenberg
- Department of Neurological Surgery, University of California, Davis School of Medicine, 4800 Y St Suite 3740, Sacramento, CA 95817, United States of America.
| | - Gene Gurkoff
- Department of Neurological Surgery, University of California, Davis School of Medicine, 4800 Y St Suite 3740, Sacramento, CA 95817, United States of America; Center for Neuroscience, University of California, Davis, 1544 Newton Ct, Davis, CA 95818, United States of America.
| |
Collapse
|
75
|
Dal Pozzo V, Crowell B, Briski N, Crockett DP, D’Arcangelo G. Reduced Reelin Expression in the Hippocampus after Traumatic Brain Injury. Biomolecules 2020; 10:biom10070975. [PMID: 32610618 PMCID: PMC7407987 DOI: 10.3390/biom10070975] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/22/2020] [Accepted: 06/25/2020] [Indexed: 01/06/2023] Open
Abstract
Traumatic brain injury (TBI) is a relatively common occurrence following accidents or violence, and often results in long-term cognitive or motor disability. Despite the high health cost associated with this type of injury, presently there are no effective treatments for many neurological symptoms resulting from TBI. This is due in part to our limited understanding of the mechanisms underlying brain dysfunction after injury. In this study, we used the mouse controlled cortical impact (CCI) model to investigate the effects of TBI, and focused on Reelin, an extracellular protein that critically regulates brain development and modulates synaptic activity in the adult brain. We found that Reelin expression decreases in forebrain regions after TBI, and that the number of Reelin-expressing cells decrease specifically in the hippocampus, an area of the brain that plays an important role in learning and memory. We also conducted in vitro experiments using mouse neuronal cultures and discovered that Reelin protects hippocampal neuronal cells from glutamate-induced neurotoxicity, a well-known secondary effect of TBI. Together our findings suggest that the loss of Reelin expression may contribute to neuronal death in the hippocampus after TBI, and raise the possibility that increasing Reelin levels or signaling activity may promote functional recovery.
Collapse
Affiliation(s)
- Valentina Dal Pozzo
- Graduate Program in Neuroscience, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA;
- Department of Cell Biology and Neuroscience, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA; (B.C.); (N.B.)
| | - Beth Crowell
- Department of Cell Biology and Neuroscience, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA; (B.C.); (N.B.)
| | - Nicholas Briski
- Department of Cell Biology and Neuroscience, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA; (B.C.); (N.B.)
| | - David P. Crockett
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA;
| | - Gabriella D’Arcangelo
- Department of Cell Biology and Neuroscience, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA; (B.C.); (N.B.)
- Correspondence:
| |
Collapse
|
76
|
Siebold L, Krueger AC, Abdala JA, Figueroa JD, Bartnik-Olson B, Holshouser B, Wilson CG, Ashwal S. Cosyntropin Attenuates Neuroinflammation in a Mouse Model of Traumatic Brain Injury. Front Mol Neurosci 2020; 13:109. [PMID: 32670020 PMCID: PMC7332854 DOI: 10.3389/fnmol.2020.00109] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 05/22/2020] [Indexed: 12/21/2022] Open
Abstract
Aim: Traumatic brain injury (TBI) is a leading cause of mortality/morbidity and is associated with chronic neuroinflammation. Melanocortin receptor agonists including adrenocorticotropic hormone (ACTH) ameliorate inflammation and provide a novel therapeutic approach. We examined the effect of long-acting cosyntropin (CoSyn), a synthetic ACTH analog, on the early inflammatory response and functional outcome following experimental TBI. Methods: The controlled cortical impact model was used to induce TBI in mice. Mice were assigned to injury and treatment protocols resulting in four experimental groups including sham + saline, sham + CoSyn, TBI + saline, and TBI + CoSyn. Treatment was administered subcutaneously 3 h post-injury and daily injections were given for up to 7 days post-injury. The early inflammatory response was evaluated at 3 days post-injury through the evaluation of cytokine expression (IL1β and TNFα) and immune cell response. Quantification of immune cell response included cell counts of microglia/macrophages (Iba1+ cells) and neutrophils (MPO+ cells) in the cortex and hippocampus. Behavioral testing (n = 10–14 animals/group) included open field (OF) and novel object recognition (NOR) during the first week following injury and Morris water maze (MWM) at 10–15 days post-injury. Results: Immune cell quantification showed decreased accumulation of Iba1+ cells in the perilesional cortex and CA1 region of the hippocampus for CoSyn-treated TBI animals compared to saline-treated. Reduced numbers of MPO+ cells were also found in the perilesional cortex and hippocampus in CoSyn treated TBI mice compared to their saline-treated counterparts. Furthermore, CoSyn treatment reduced IL1β expression in the cortex of TBI mice. Behavioral testing showed a treatment effect of CoSyn for NOR with CoSyn increasing the discrimination ratio in both TBI and Sham groups, indicating increased memory performance. CoSyn also decreased latency to find platform during the early training period of the MWM when comparing CoSyn to saline-treated TBI mice suggesting moderate improvements in spatial memory following CoSyn treatment. Conclusion: Reduced microglia/macrophage accumulation and neutrophil infiltration in conjunction with moderate improvements in spatial learning in our CoSyn treated TBI mice suggests a beneficial anti-inflammatory effect of CoSyn following TBI.
Collapse
Affiliation(s)
- Lorraine Siebold
- Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, United States.,The Lawrence D. Longo MD Center for Perinatal Biology, Loma Linda University, Loma Linda, CA, United States
| | - Amy C Krueger
- Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Jonathan A Abdala
- The Lawrence D. Longo MD Center for Perinatal Biology, Loma Linda University, Loma Linda, CA, United States
| | - Johnny D Figueroa
- Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, United States.,Center for Health Disparities and Molecular Medicine, School of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Brenda Bartnik-Olson
- Department of Radiology, Loma Linda University Medical Center, Loma Linda, CA, United States
| | - Barbara Holshouser
- Department of Radiology, Loma Linda University Medical Center, Loma Linda, CA, United States
| | - Christopher G Wilson
- Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, United States.,The Lawrence D. Longo MD Center for Perinatal Biology, Loma Linda University, Loma Linda, CA, United States.,Department of Pediatrics, Loma Linda University Medical Center, Loma Linda, CA, United States
| | - Stephen Ashwal
- Department of Pediatrics, Loma Linda University Medical Center, Loma Linda, CA, United States
| |
Collapse
|
77
|
The effectiveness of hyperbaric oxygen modalities against vascular component of traumatic brain injury. BRAIN HEMORRHAGES 2020. [DOI: 10.1016/j.hest.2020.04.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|
78
|
Early AN, Gorman AA, Van Eldik LJ, Bachstetter AD, Morganti JM. Effects of advanced age upon astrocyte-specific responses to acute traumatic brain injury in mice. J Neuroinflammation 2020; 17:115. [PMID: 32290848 PMCID: PMC7158022 DOI: 10.1186/s12974-020-01800-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 04/01/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Older-age individuals are at the highest risk for disability from a traumatic brain injury (TBI). Astrocytes are the most numerous glia in the brain, necessary for brain function, yet there is little known about unique responses of astrocytes in the aged-brain following TBI. METHODS Our approach examined astrocytes in young adult, 4-month-old, versus aged, 18-month-old mice, at 1, 3, and 7 days post-TBI. We selected these time points to span the critical period in the transition from acute injury to presumably irreversible tissue damage and disability. Two approaches were used to define the astrocyte contribution to TBI by age interaction: (1) tissue histology and morphological phenotyping, and (2) transcriptomics on enriched astrocytes from the injured brain. RESULTS Aging was found to have a profound effect on the TBI-induced loss of astrocyte function needed for maintaining water transport and edema-namely, aquaporin-4. The aged brain also demonstrated a progressive exacerbation of astrogliosis as a function of time after injury. Moreover, clasmatodendrosis, an underrecognized astrogliopathy, was found to be significantly increased in the aged brain, but not in the young brain. As a function of TBI, we observed a transitory refraction in the number of these astrocytes, which rebounded by 7 days post-injury in the aged brain. Transcriptomic data demonstrated disproportionate changes in genes attributed to reactive astrocytes, inflammatory response, complement pathway, and synaptic support in aged mice following TBI compared to young mice. Additionally, our data highlight that TBI did not evoke a clear alignment with the previously defined "A1/A2" dichotomy of reactive astrogliosis. CONCLUSIONS Overall, our findings point toward a progressive phenotype of aged astrocytes following TBI that we hypothesize to be maladaptive, shedding new insights into potentially modifiable astrocyte-specific mechanisms that may underlie increased fragility of the aged brain to trauma.
Collapse
Affiliation(s)
- Alexandria N Early
- Sanders-Brown Center on Aging, University of Kentucky, Room 433, Sanders-Brown Bldg., 800 S. Limestone Street, Lexington, KY, 40536, USA.,Department of Neuroscience, University of Kentucky, Lexington, KY, 40536, USA
| | - Amy A Gorman
- Sanders-Brown Center on Aging, University of Kentucky, Room 433, Sanders-Brown Bldg., 800 S. Limestone Street, Lexington, KY, 40536, USA
| | - Linda J Van Eldik
- Sanders-Brown Center on Aging, University of Kentucky, Room 433, Sanders-Brown Bldg., 800 S. Limestone Street, Lexington, KY, 40536, USA.,Department of Neuroscience, University of Kentucky, Lexington, KY, 40536, USA.,Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, 40536, USA
| | - Adam D Bachstetter
- Sanders-Brown Center on Aging, University of Kentucky, Room 433, Sanders-Brown Bldg., 800 S. Limestone Street, Lexington, KY, 40536, USA.,Department of Neuroscience, University of Kentucky, Lexington, KY, 40536, USA.,Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, 40536, USA
| | - Josh M Morganti
- Sanders-Brown Center on Aging, University of Kentucky, Room 433, Sanders-Brown Bldg., 800 S. Limestone Street, Lexington, KY, 40536, USA. .,Department of Neuroscience, University of Kentucky, Lexington, KY, 40536, USA. .,Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, 40536, USA.
| |
Collapse
|
79
|
Khodaei S, Avramescu S, Wang DS, Sheng H, Chan NK, Lecker I, Fernandez-Escobar A, Lei G, Dewar MB, Whissell PD, Baker AJ, Orser BA. Inhibiting α5 Subunit-Containing γ-Aminobutyric Acid Type A Receptors Attenuates Cognitive Deficits After Traumatic Brain Injury. Crit Care Med 2020; 48:533-544. [PMID: 32205600 DOI: 10.1097/ccm.0000000000004161] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
OBJECTIVES Cognitive deficits after traumatic brain injury are a leading cause of disability worldwide, yet no effective pharmacologic treatments exist to improve cognition. Traumatic brain injury increases proinflammatory cytokines, which trigger excess function of α5 subunit-containing γ-aminobutyric acid type A receptors. In several models of brain injury, drugs that inhibit α5 subunit-containing γ-aminobutyric acid type A receptor function improve cognitive performance. Thus, we postulated that inhibiting α5 subunit-containing γ-aminobutyric acid type A receptors would improve cognitive performance after traumatic brain injury. In addition, because traumatic brain injury reduces long-term potentiation in the hippocampus, a cellular correlate of memory, we studied whether inhibition of α5 subunit-containing γ-aminobutyric acid type A receptors attenuated deficits in long-term potentiation after traumatic brain injury. DESIGN Experimental animal study. SETTING Research laboratory. SUBJECTS Adult male mice and hippocampal brain slices. INTERVENTIONS Anesthetized mice were subjected to traumatic brain injury with a closed-head, free-weight drop method. One week later, the mice were treated with L-655,708 (0.5 mg/kg), an inhibitor that is selective for α5 subunit-containing γ-aminobutyric acid type A receptors, 30 minutes before undergoing behavioral testing. Problem-solving abilities were assessed using the puzzle box assay, and memory performance was studied with novel object recognition and object place recognition assays. In addition, hippocampal slices were prepared 1 week after traumatic brain injury, and long-term potentiation was studied using field recordings in the cornu Ammonis 1 region of slices that were perfused with L-655,708 (100 nM). MEASUREMENTS AND MAIN RESULTS Traumatic brain injury increased the time required to solve difficult but not simple tasks in the puzzle box assay and impaired memory in the novel object recognition and object place recognition assays. L-655,708 improved both problem solving and memory in the traumatic brain injury mice. Traumatic brain injury reduced long-term potentiation in the hippocampal slices, and L-655,708 attenuated this reduction. CONCLUSIONS Pharmacologic inhibition of α5 subunit-containing γ-aminobutyric acid type A receptors attenuated cognitive deficits after traumatic brain injury and enhanced synaptic plasticity in hippocampal slices. Collectively, these results suggest that α5 subunit-containing γ-aminobutyric acid type A receptors are novel targets for pharmacologic treatment of traumatic brain injury-induced persistent cognitive deficits.
Collapse
Affiliation(s)
- Shahin Khodaei
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Sinziana Avramescu
- Department of Anesthesia, University of Toronto, Toronto, ON, Canada
- Department of Anesthesia, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Dian-Shi Wang
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Heping Sheng
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Nathan K Chan
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Irene Lecker
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | | | - Gang Lei
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Michael B Dewar
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Paul D Whissell
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Andrew J Baker
- Department of Anesthesia, University of Toronto, Toronto, ON, Canada
- Department of Anesthesia, St. Michael's Hospital, Toronto, ON, Canada
| | - Beverley A Orser
- Department of Physiology, University of Toronto, Toronto, ON, Canada
- Department of Anesthesia, University of Toronto, Toronto, ON, Canada
- Department of Anesthesia, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| |
Collapse
|
80
|
Sun YY, Zhu L, Sun ZL, Feng DF. CRMP2 improves memory deficits by enhancing the maturation of neuronal dendritic spines after traumatic brain injury. Exp Neurol 2020; 328:113253. [PMID: 32084454 DOI: 10.1016/j.expneurol.2020.113253] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 02/12/2020] [Accepted: 02/17/2020] [Indexed: 11/28/2022]
Abstract
Our recent study investigated the role of collapsin response mediator protein-2 (CRMP2) on dendritic spine morphology and memory function after traumatic brain injury (TBI). First, we examined the density and morphology of dendritic spines in Thy1-GFP mice on the 1 st day (P1D) and 7th day (P7D) after controlled cortical impact injury (CCI). The dendritic spine density in the hippocampus was decreased on P1D, in which mainly mushroom-type and thin-type spines were lost. The density of dendritic spines was increased on P7D, most of which were of the thin type. Next, we explored the expression of CRMP2 on P1D and P7D. CRMP2 expression was decreased on P1D, but the levels of the CRMP2 breakdown product were increased. On P7D, the expression pattern was the opposite. Then, we constructed CRMP2 overexpression and knockdown plasmids and transfected them into cultured neurons in vitro. CRMP2 increased the dendritic spine density of cultured neurons and the proportion of mushroom-type spines, while CRMP2-shRNA reduced the dendritic spine density and the proportion of mushroom-type spines. To determine the role of CRMP2 in dendritic spines after TBI, we stereotactically injected the CRMP2 overexpression and knockdown viruses into the hippocampus and found that CRMP2 increased the dendritic spine density and the proportion of mushroom-type spines after TBI. Meanwhile, as suggested by the morphological changes, fear conditioning behavioral experiments confirmed that CRMP2 improved memory deficits after TBI.
Collapse
Affiliation(s)
- Yi-Yu Sun
- Department of Neurosurgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201999, China
| | - Liang Zhu
- Department of Neurosurgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201999, China
| | - Zhao-Liang Sun
- Department of Neurosurgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201999, China
| | - Dong-Fu Feng
- Department of Neurosurgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201999, China; Institute of Traumatic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 201999, China.
| |
Collapse
|
81
|
Leconte C, Benedetto C, Lentini F, Simon K, Ouaazizi C, Taib T, Cho A, Plotkine M, Mongeau R, Marchand-Leroux C, Besson VC. Histological and Behavioral Evaluation after Traumatic Brain Injury in Mice: A Ten Months Follow-Up Study. J Neurotrauma 2020; 37:1342-1357. [PMID: 31830858 DOI: 10.1089/neu.2019.6679] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Traumatic brain injury (TBI) is a chronic pathology, inducing long-term deficits that remain understudied in pre-clinical studies. In this context, exploration, anxiety-like behavior, cognitive flexibility, and motor coordination were assessed until 5 and 10 months after an experimental TBI in the adult mouse, using two cohorts. In order to differentiate age, surgery, and remote gray and white matter lesions, three groups (unoperated, sham-operated, and TBI) were studied. TBI induced delayed motor coordination deficits at the pole test, 4.5 months after injury, that could be explained by gray and white matter damages in ipsilateral nigrostriatal structures (striatum, internal capsule) that were spreading to new structures between cohorts, at 5 versus 10 months after the injury. Further, TBI induced an enhanced exploratory behavior during stressful situations (active phase during actimetry test, object exploration in an open field), risk-taking behaviors in the elevated plus maze 5 months after injury, and a cognitive inflexibility in the Barnes maze that persisted until 9 months after the injury. These behavioral modifications could be related to the white and gray matter lesions observed in ipsi- and contralateral limbic structures (amygdala, hilus/cornu ammonis 4, hypothalamus, external capsule, corpus callosum, and cingular cortex) that were spreading to new structures between cohorts, at 5 months versus 10 months after the injury. The present study corroborates clinical findings on TBI and provides a relevant rodent chronic model which could help in validating pharmacological strategies against the chronic consequences of TBI.
Collapse
Affiliation(s)
- Claire Leconte
- EA 4475, "Pharmacologie de la Circulation Cérébrale," Faculté de Pharmacie de Paris, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Chiara Benedetto
- EA 4475, "Pharmacologie de la Circulation Cérébrale," Faculté de Pharmacie de Paris, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Federica Lentini
- EA 4475, "Pharmacologie de la Circulation Cérébrale," Faculté de Pharmacie de Paris, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Kristin Simon
- EA 4475, "Pharmacologie de la Circulation Cérébrale," Faculté de Pharmacie de Paris, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Chahid Ouaazizi
- EA 4475, "Pharmacologie de la Circulation Cérébrale," Faculté de Pharmacie de Paris, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Toufik Taib
- EA 4475, "Pharmacologie de la Circulation Cérébrale," Faculté de Pharmacie de Paris, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Angelo Cho
- EA 4475, "Pharmacologie de la Circulation Cérébrale," Faculté de Pharmacie de Paris, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Michel Plotkine
- EA 4475, "Pharmacologie de la Circulation Cérébrale," Faculté de Pharmacie de Paris, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Raymond Mongeau
- EA 4475, "Pharmacologie de la Circulation Cérébrale," Faculté de Pharmacie de Paris, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Catherine Marchand-Leroux
- EA 4475, "Pharmacologie de la Circulation Cérébrale," Faculté de Pharmacie de Paris, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Valérie C Besson
- EA 4475, "Pharmacologie de la Circulation Cérébrale," Faculté de Pharmacie de Paris, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
82
|
Yu J, Zhang Y, Ma H, Zeng R, Liu R, Wang P, Jin X, Zhao Y. Epitranscriptomic profiling of N6-methyladenosine-related RNA methylation in rat cerebral cortex following traumatic brain injury. Mol Brain 2020; 13:11. [PMID: 31992337 PMCID: PMC6986156 DOI: 10.1186/s13041-020-0554-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 01/19/2020] [Indexed: 12/31/2022] Open
Abstract
Background N6-methyladenosine (m6A) is the most prevalent post-transcriptional modification of eukaryotic mRNA. It has been reported that there is a stimulus-dependent regulation of m6A in the mammalian central nervous system in response to sensory experience, learning, and injury. The mRNA m6A methylation pattern in rat cortex after traumatic brain injury (TBI) has not been investigated. Results In this study, we conducted a genome-wide profiling of mRNA m6A methylation in rat cortex via methylated RNA immunoprecipitation sequencing (MeRIP-Seq). After TBI, the expressions of METTL14 and FTO were significantly down-regulated in rat cerebral cortex. Using MeRIP-Seq, we identified a total of 2165 significantly changed peaks, of which 1062 were significantly up-regulated and 1103 peaks were significantly down-regulated. These m6A peaks were located across 1850 genes. The analysis of both m6A peaks and mRNA expression revealed that there were 175 mRNA significantly altered methylation and expression levels after TBI. Moreover, it was found that functional FTO is necessary to repair neurological damage caused by TBI but has no effect on the spatial learning and memory abilities of TBI rats by using FTO inhibitor FB23–2. Conclusion This study explored the m6A methylation pattern of mRNA after TBI in rat cortex and identified FTO as possible intervention targets in the epigenetic modification of TBI.
Collapse
Affiliation(s)
- Jiangtao Yu
- Emergency Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Yuxian Zhang
- Emergency Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Haoli Ma
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Rong Zeng
- Emergency Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Ruining Liu
- Emergency Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Pengcheng Wang
- Emergency Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Xiaoqing Jin
- Emergency Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.,Hubei Clinical Research Center for Emergency and Resuscitation, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Yan Zhao
- Emergency Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China. .,Hubei Clinical Research Center for Emergency and Resuscitation, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
83
|
Activated CD8+ T Cells Cause Long-Term Neurological Impairment after Traumatic Brain Injury in Mice. Cell Rep 2019; 29:1178-1191.e6. [DOI: 10.1016/j.celrep.2019.09.046] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 08/08/2019] [Accepted: 09/16/2019] [Indexed: 12/28/2022] Open
|
84
|
Liu S, Jin R, Xiao AY, Chen R, Li J, Zhong W, Feng X, Li G. Induction of Neuronal PI3Kγ Contributes to Endoplasmic Reticulum Stress and Long-Term Functional Impairment in a Murine Model of Traumatic Brain Injury. Neurotherapeutics 2019; 16:1320-1334. [PMID: 31187475 PMCID: PMC6985432 DOI: 10.1007/s13311-019-00748-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Phosphoinositide 3-kinase γ (PI3Kγ) expressed in immune cells is linked to neuroinflammation in several neurological diseases. However, the expression and role of PI3Kγ in preclinical traumatic brain injury (TBI) have not been investigated. In WT mice, we found that TBI induced rapid and extensive expression of PI3Kγ in neurons within the perilesional cortex and the ipsilateral hippocampal subfields (CA1, CA3), which peaked between 1 and 3 days and declined significantly 7 days after TBI. Intriguingly, the induction of neuronal PI3Kγ in these subregions of the brain spatiotemporally coincided with both the TBI-induced activation of the neuronal ER stress pathway (p-eIF2α, ATF4, and CHOP) and neuronal cell death (marked by TUNEL-positive neurons) 3 days after TBI. Further, we show that the absence of PI3Kγ in knockout mice profoundly reduced the TBI-induced activation of the ER stress pathway and neuronal cell death. White matter disruption is a better predictor of long-term clinical outcomes than focal lesion size. We show that PI3Kγ deficiency not only reduced brain tissue loss but also alleviated white matter injury (determined by axonal injury and demyelination) up to 28 days after TBI. Importantly, PI3Kγ-knockout mice exhibited greater functional recovery including forepaw use, sensorimotor balance and coordination, and spatial learning and memory up to 28 days after TBI. These results unveil a previously unappreciated role for neuronal PI3Kγ in the regulation of ER stress associated with neuronal cell death, white matter damage, and long-term functional impairment after TBI.
Collapse
Affiliation(s)
- Shan Liu
- Department of Neurosurgery and Neuroscience Institute, Penn State University Hershey Medical Center, Hershey, PA, 17033, USA
| | - Rong Jin
- Department of Neurosurgery and Neuroscience Institute, Penn State University Hershey Medical Center, Hershey, PA, 17033, USA
| | - Adam Y Xiao
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA, 71103, USA
| | - Rui Chen
- Department of Neurosurgery, Louisiana State University Health Sciences Center, Shreveport, LA, 71103, USA
| | - Jarvis Li
- Hershey High School, Hershey, PA, 17033, USA
| | - Wei Zhong
- Department of Neurosurgery and Neuroscience Institute, Penn State University Hershey Medical Center, Hershey, PA, 17033, USA
| | - Xiaozhou Feng
- Department of Pharmacology, Penn State University Hershey Medical Center, Hershey, PA, 17033, USA
| | - Guohong Li
- Department of Neurosurgery and Neuroscience Institute, Penn State University Hershey Medical Center, Hershey, PA, 17033, USA.
- Department of Neurosurgery, Louisiana State University Health Sciences Center, Shreveport, LA, 71103, USA.
| |
Collapse
|
85
|
Kinder HA, Baker EW, Howerth EW, Duberstein KJ, West FD. Controlled Cortical Impact Leads to Cognitive and Motor Function Deficits that Correspond to Cellular Pathology in a Piglet Traumatic Brain Injury Model. J Neurotrauma 2019; 36:2810-2826. [PMID: 31084390 DOI: 10.1089/neu.2019.6405] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Traumatic brain injury (TBI) is a leading cause of death and disability in the United States, with children who sustain a TBI having a greater risk of developing long-lasting cognitive, behavioral, and motor function deficits. This has led to increased interest in utilizing large animal models to study pathophysiologic and functional changes after injury in hopes of identifying novel therapeutic targets. In the present study, a controlled cortical impact (CCI) piglet TBI model was utilized to evaluate cognitive, motor, and histopathologic outcomes. CCI injury (4 m/sec velocity, 9 mm depression, 400 msec dwell time) was induced at the parietal cortex. Compared with normal pigs (n = 5), TBI pigs (n = 5) exhibited appreciable cognitive deficiencies, including significantly impaired spatial memory in spatial T-maze testing and a significant decrease in exploratory behaviors followed by marked hyperactivity in open field testing. Additionally, gait analysis revealed significant increases in cycle time and stance percent, significant decreases in hind reach, and a shift in the total pressure index from the front to the hind limb on the affected side, suggesting TBI impairs gait and balance. Pigs were sacrificed 28 days post-TBI and histological analysis revealed that TBI lead to a significant decrease in neurons and a significant increase in microglia activation and astrogliosis/astrocytosis at the perilesional area, a significant loss in neurons at the dorsal hippocampus, and significantly increased neuroblast proliferation at the subventricular zone. These data demonstrate a strong relationship between TBI-induced cellular changes and functional outcomes in our piglet TBI model that lay the framework for future studies that assess the ability of therapeutic interventions to contribute to functional improvements.
Collapse
Affiliation(s)
- Holly A Kinder
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia.,Department of Animal and Dairy Science, University of Georgia, Athens, Georgia
| | - Emily W Baker
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia.,Department of Animal and Dairy Science, University of Georgia, Athens, Georgia
| | - Elizabeth W Howerth
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia.,Department of Pathology, University of Georgia, Athens, Georgia
| | - Kylee J Duberstein
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia.,Department of Animal and Dairy Science, University of Georgia, Athens, Georgia
| | - Franklin D West
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia.,Department of Animal and Dairy Science, University of Georgia, Athens, Georgia
| |
Collapse
|
86
|
Mild, moderate and severe: terminology implications for clinical and experimental traumatic brain injury. Curr Opin Neurol 2019; 31:672-680. [PMID: 30379702 DOI: 10.1097/wco.0000000000000624] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
PURPOSE OF REVIEW When describing clinical or experimental traumatic brain injury (TBI), the adjectives 'mild,' 'moderate' and 'severe' are misleading. 'Mild' clinical TBI frequently results in long-term disability. 'Severe' rodent TBI actually resembles mild or complicated mild clinical TBI. RECENT FINDINGS Many mild TBI patients appear to have recovered completely but have postconcussive symptoms, deficits in cognitive and executive function and reduced cerebral blood flow. After moderate TBI, 31.8% of patients died or were discharged to skilled nursing or hospice. Among survivors of moderate and severe TBI, 44% were unable to return to work. On MRI, 88% of mild TBI patients have evidence of white matter damage, based on measurements of fractional anisotropy and mean diffusivity/apparent diffusion coefficient. After sports concussion, clinically recovered patients have abnormalities in functional connectivity on functional MRI. Methylphenidate improved fatigue and cognitive impairment and, combined with cognitive rehabilitation, improved memory and executive functioning. In comparison to clinical TB, because the entire spectrum of experimental rodent TBI, although defined as moderate or severe, more closely resembles mild or complicated mild clinical TBI. SUMMARY Many patients after mild or moderate TBI suffer long-term sequelae and should be considered a major target for translational research. Treatments that improve outcome in rodent TBI, even when the experimental injuries are defined as severe, might be most applicable to mild or moderate TBI.
Collapse
|
87
|
Campos-Pires R, Hirnet T, Valeo F, Ong BE, Radyushkin K, Aldhoun J, Saville J, Edge CJ, Franks NP, Thal SC, Dickinson R. Xenon improves long-term cognitive function, reduces neuronal loss and chronic neuroinflammation, and improves survival after traumatic brain injury in mice. Br J Anaesth 2019; 123:60-73. [PMID: 31122738 PMCID: PMC6676773 DOI: 10.1016/j.bja.2019.02.032] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 02/07/2019] [Accepted: 02/23/2019] [Indexed: 12/13/2022] Open
Abstract
Background Xenon is a noble gas with neuroprotective properties that can improve short and long-term outcomes in young adult mice after controlled cortical impact. This follow-up study investigates the effects of xenon on very long-term outcomes and survival. Methods C57BL/6N young adult male mice (n=72) received single controlled cortical impact or sham surgery and were treated with either xenon (75% Xe:25% O2) or control gas (75% N2:25% O2). Outcomes measured were: (i) 24 h lesion volume and neurological outcome score; (ii) contextual fear conditioning at 2 weeks and 20 months; (iii) corpus callosum white matter quantification; (iv) immunohistological assessment of neuroinflammation and neuronal loss; and (v) long-term survival. Results Xenon treatment significantly reduced secondary injury (P<0.05), improved short-term vestibulomotor function (P<0.01), and prevented development of very late-onset traumatic brain injury (TBI)-related memory deficits. Xenon treatment reduced white matter loss in the contralateral corpus callosum and neuronal loss in the contralateral hippocampal CA1 and dentate gyrus areas at 20 months. Xenon's long-term neuroprotective effects were associated with a significant (P<0.05) reduction in neuroinflammation in multiple brain areas involved in associative memory, including reduction in reactive astrogliosis and microglial cell proliferation. Survival was improved significantly (P<0.05) in xenon-treated animals compared with untreated animals up to 12 months after injury. Conclusions Xenon treatment after TBI results in very long-term improvements in clinically relevant outcomes and survival. Our findings support the idea that xenon treatment shortly after TBI may have long-term benefits in the treatment of brain trauma patients.
Collapse
Affiliation(s)
- Rita Campos-Pires
- Anaesthetics, Pain Medicine and Intensive Care Section, Department of Surgery and Cancer, UK; Royal British Legion Centre for Blast Injury Studies, Department of Bioengineering, Imperial College London, UK; Charing Cross Hospital Intensive Care Unit, Critical Care Directorate, Imperial College Healthcare NHS Trust, London, UK
| | - Tobias Hirnet
- Department of Anaesthesiology, Medical Centre of Johannes Gutenberg University, Mainz, Germany
| | - Flavia Valeo
- Anaesthetics, Pain Medicine and Intensive Care Section, Department of Surgery and Cancer, UK
| | - Bee Eng Ong
- Anaesthetics, Pain Medicine and Intensive Care Section, Department of Surgery and Cancer, UK
| | - Konstantin Radyushkin
- Mouse Behavioural Outcome Unit, Focus Program Translational Neurosciences, Johannes Gutenberg University, Mainz, Germany
| | - Jitka Aldhoun
- Anaesthetics, Pain Medicine and Intensive Care Section, Department of Surgery and Cancer, UK
| | - Joanna Saville
- Anaesthetics, Pain Medicine and Intensive Care Section, Department of Surgery and Cancer, UK
| | - Christopher J Edge
- Department of Life Sciences, Imperial College London, UK; Department of Anaesthetics, Royal Berkshire Hospital NHS Foundation Trust, Reading, UK
| | | | - Serge C Thal
- Department of Anaesthesiology, Medical Centre of Johannes Gutenberg University, Mainz, Germany.
| | - Robert Dickinson
- Anaesthetics, Pain Medicine and Intensive Care Section, Department of Surgery and Cancer, UK; Royal British Legion Centre for Blast Injury Studies, Department of Bioengineering, Imperial College London, UK.
| |
Collapse
|
88
|
Badaut J, Adami A, Huang L, Obenaus A. Noninvasive magnetic resonance imaging stratifies injury severity in a rodent model of male juvenile traumatic brain injury. J Neurosci Res 2019; 98:129-140. [PMID: 30916808 DOI: 10.1002/jnr.24415] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 02/06/2019] [Accepted: 03/01/2019] [Indexed: 12/13/2022]
Abstract
Age and severity are significant predictors of traumatic brain injury (TBI) outcomes in the immature brain. TBI studies have segregated TBI injury into three severity groups: mild, moderate, and severe. While mild TBI is most frequent form in children and adults, there is debate over the indicators used to denote mild injury. Clinically, magnetic resonance imaging (MRI) and computed tomography (CT) are used to diagnose the TBI severity when medically warranted. Herein, we induced mild, moderate, and severe TBI in juvenile rats (jTBI) using the controlled cortical impact model. We characterized the temporal and spatial injury after graded jTBI in vivo using high-field MRI at 0.25 (6 hr), 1 and 3 days post-injury (dpi) with comparative histology. Susceptibility-weighted imaging (SWI) for blood and T2-weighted imaging (T2WI) for edema were quantified over the 0.25-3 dpi. Edema volumes increased linearly with severity at 0.25 dpi that slowly continued to decrease over the 3 dpi. In contrast, blood volumes did not decrease over time. Mild TBI had the least amount of blood visible on SWI. Fluoro-jade B (FJB) staining for cell death confirmed increased cellular death with increasing severity and increased FJB + cells in the corpus callosum (CC). Interestingly, the strongest correlation was observed for cell death and the presence of extravascular blood. A clear understanding of acute brain injury (jTBI) and how blood/edema contribute to mild, moderate, and severe jTBI is needed prior to embarking on therapeutic interventions. Noninvasive imaging should be used in mild jTBI to verify lack of overt injury.
Collapse
Affiliation(s)
- Jerome Badaut
- CNRS UMR5287, University of Bordeaux, Bordeaux, France.,Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Arash Adami
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Lei Huang
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California.,Department of Neurosurgery, Loma Linda University School of Medicine, Loma Linda, California
| | - André Obenaus
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California.,Division of Biomedical Sciences, Center for Glial-Neuronal Interactions, UC Riverside, Riverside, California.,Department of Pediatrics, University of California Irvine, Irvine, California
| |
Collapse
|
89
|
Anthony Jalin AMA, Jin R, Wang M, Li G. EPPS treatment attenuates traumatic brain injury in mice by reducing Aβ burden and ameliorating neuronal autophagic flux. Exp Neurol 2019; 314:20-33. [PMID: 30639321 DOI: 10.1016/j.expneurol.2019.01.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 01/02/2019] [Accepted: 01/03/2019] [Indexed: 12/20/2022]
Abstract
Beta-amyloid (Aβ) burden and impaired neuronal autophagy contribute to secondary brain injury after traumatic brain injury (TBI). 4-(2-hydroxyethyl)-1-piperazinepropanesulphonic acid (EPPS) treatment has been reported to reduce Aβ aggregation and rescue behavioral deficits in Alzheimer's disease-like mice. Here, we investigated neuroprotective effects of EPPS in a mouse model of TBI. Mice subjected to controlled cortical impact (CCI) were treated with EPPS (120 mg/kg, orally) immediately after CCI and thereafter once daily for 3 or 7 days. We found that EPPS treatment profoundly reduced the accumulation of beta-amyloid precursor protein (β-APP) and Aβ over a widespread area detected in the pericontusional cortex, external capsule (EC), and hippocampal CA1 and CA3 at 3 days after TBI, accompanied by significant reduction in the TBI-induced diffuse axonal injury identified by increased immunoreactivity of SMI-32 (an indicator for axonal damage). We also found that EPPS treatment ameliorated the TBI-induced synaptic damage (as reflected by enhanced postsynaptic density 95, PSD-95), and impairment of autophagy flux in the neurons as reflected by reduced autophagy markers (LC3-II/LC3-I ratio and p62/SQSTM1) and increased lysosomal enzyme cathepsin D (CTSD) in neurons detected in the cortex and hippocampal CA1. As a result, EPPS treatment significantly reduced the TBI-induced early neuronal apoptosis (assessed by active caspase-3), and eventually prevented cortical tissue loss and hippocampal neuronal loss at 28 days after TBI. Additionally, we found that inhibition of autophagic flux with chloroquine by decreasing autophagosome-lysosome fusion significantly reversed the decreased expressions of neuronal p62/SQSTM1 and apoptosis by EPPS treatment. These data suggest that the neuroprotection by EPPS is, at least in part, related to improved autophagy flux. Finally, we found that EPPS treatment significantly improved the cortex-dependent motor and hippocampal-dependent cognitive deficits associated with TBI. Taken together, these findings support the further investigation of EPPS as a treatment for TBI.
Collapse
Affiliation(s)
| | - Rong Jin
- Department of Neurosurgery, Neuroscience Institute, Penn State Hershey Medical Center, Hershey 17033, USA.
| | - Min Wang
- Department of Neurosurgery, Neuroscience Institute, Penn State Hershey Medical Center, Hershey 17033, USA.
| | - Guohong Li
- Department of Neurosurgery, Neuroscience Institute, Penn State Hershey Medical Center, Hershey 17033, USA.
| |
Collapse
|
90
|
Ma X, Aravind A, Pfister BJ, Chandra N, Haorah J. Animal Models of Traumatic Brain Injury and Assessment of Injury Severity. Mol Neurobiol 2019; 56:5332-5345. [DOI: 10.1007/s12035-018-1454-5] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 12/07/2018] [Indexed: 10/27/2022]
|