51
|
Horak J, Dolnikova A, Cumaogullari O, Cumova A, Navvabi N, Vodickova L, Levy M, Schneiderova M, Liska V, Andera L, Vodicka P, Opattova A. MiR-140 leads to MRE11 downregulation and ameliorates oxaliplatin treatment and therapy response in colorectal cancer patients. Front Oncol 2022; 12:959407. [PMID: 36324569 PMCID: PMC9618941 DOI: 10.3389/fonc.2022.959407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 09/01/2022] [Indexed: 12/02/2022] Open
Abstract
Cancer therapy failure is a fundamental challenge in cancer treatment. One of the most common reasons for therapy failure is the development of acquired resistance of cancer cells. DNA-damaging agents are frequently used in first-line chemotherapy regimens and DNA damage response, and DNA repair pathways are significantly involved in the mechanisms of chemoresistance. MRE11, a part of the MRN complex involved in double-strand break (DSB) repair, is connected to colorectal cancer (CRC) patients’ prognosis. Our previous results showed that single-nucleotide polymorphisms (SNPs) in the 3′ untranslated region (3′UTR) microRNA (miRNA) binding sites of MRE11 gene are associated with decreased cancer risk but with shorter survival of CRC patients, which implies the role of miRNA regulation in CRC. The therapy of colorectal cancer utilizes oxaliplatin (oxalato(trans-l-1,2-diaminocyclohexane)platinum), which is often compromised by chemoresistance development. There is, therefore, a crucial clinical need to understand the cellular processes associated with drug resistance and improve treatment responses by applying efficient combination therapies. The main aim of this study was to investigate the effect of miRNAs on the oxaliplatin therapy response of CRC patients. By the in silico analysis, miR-140 was predicted to target MRE11 and modulate CRC prognosis. The lower expression of miR-140 was associated with the metastatic phenotype (p < 0.05) and poor progression-free survival (odds ratio (OR) = 0.4, p < 0.05). In the in vitro analysis, we used miRNA mimics to increase the level of miR-140 in the CRC cell line. This resulted in decreased proliferation of CRC cells (p < 0.05). Increased levels of miR-140 also led to increased sensitivity of cancer cells to oxaliplatin (p < 0.05) and to the accumulation of DNA damage. Our results, both in vitro and in vivo, suggest that miR-140 may act as a tumor suppressor and plays an important role in DSB DNA repair and, consequently, CRC therapy response.
Collapse
Affiliation(s)
- Josef Horak
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine Czech Academy of Sciences (CAS), Prague, Czechia
- Third Faculty of Medicine, Charles University, Prague, Czechia
| | - Alexandra Dolnikova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine Czech Academy of Sciences (CAS), Prague, Czechia
- First Faculty of Medicine, Charles University, Prague, Czechia
| | - Ozge Cumaogullari
- Eastern Mediterranean University, Dr. Fazıl Küçük Faculty of Medicine, North Cyprus, Turkey
- Gazimağusa State Hospital, Molecular Genetics Research Laboratory, North Cyprus, Turkey
| | - Andrea Cumova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine Czech Academy of Sciences (CAS), Prague, Czechia
- First Faculty of Medicine, Charles University, Prague, Czechia
| | - Nazila Navvabi
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine Czech Academy of Sciences (CAS), Prague, Czechia
- Biomedical Center in Pilsen, Charles University, Pilsen, Czechia
| | - Ludmila Vodickova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine Czech Academy of Sciences (CAS), Prague, Czechia
- First Faculty of Medicine, Charles University, Prague, Czechia
- Biomedical Center in Pilsen, Charles University, Pilsen, Czechia
| | - Miroslav Levy
- Surgical Department, 1.st Medical Faculty, Charles University and Thomayer Hospital, Prague, Czechia
| | - Michaela Schneiderova
- Department of Surgery, University Hospital Kralovske Vinohrady and 3rd Faculty of Medicine, Charles University, Prague, Czechia
| | - Vaclav Liska
- Biomedical Center in Pilsen, Charles University, Pilsen, Czechia
- Department of Surgery, Medical Faculty in Pilsen, Charles University, Pilsen, Czechia
| | - Ladislav Andera
- Institute of Biotechnology, Czech Academy of Sciences (CAS), Vestec, Czechia
| | - Pavel Vodicka
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine Czech Academy of Sciences (CAS), Prague, Czechia
- First Faculty of Medicine, Charles University, Prague, Czechia
- Biomedical Center in Pilsen, Charles University, Pilsen, Czechia
- *Correspondence: Alena Opattova, ; Pavel Vodicka,
| | - Alena Opattova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine Czech Academy of Sciences (CAS), Prague, Czechia
- First Faculty of Medicine, Charles University, Prague, Czechia
- Biomedical Center in Pilsen, Charles University, Pilsen, Czechia
- *Correspondence: Alena Opattova, ; Pavel Vodicka,
| |
Collapse
|
52
|
Taylor MJ, Thompson AM, Alhajlah S, Tuxworth RI, Ahmed Z. Inhibition of Chk2 promotes neuroprotection, axon regeneration, and functional recovery after CNS injury. SCIENCE ADVANCES 2022; 8:eabq2611. [PMID: 36103534 PMCID: PMC9473583 DOI: 10.1126/sciadv.abq2611] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
DNA double-strand breaks occur in many acute and long-term neurological conditions, including neurodegeneration, neurotrauma, and stroke. Nonrepaired breaks chronically activate the DNA damage response in neurons, leading to neural dysfunction and apoptosis. Here, we show that targeting of the central ATM-Chk2 pathway regulating the response to double-strand breaks slows neural decline in Drosophila models of chronic neurodegeneration. Inhibitors of ATM-Chk2, but not the parallel ATR-Chk1 pathway, also promote marked, functional recovery after acute central nervous system injury in rats, suggesting that inhibiting nonhomologous end-joining rather than homologous recombination is crucial for neuroprotection. We demonstrate that the Chk2 inhibitor, prexasertib, which has been evaluated in phase 2 clinical trials for cancer, has potent neuroprotective effects and represents a new treatment option to promote functional recovery after spinal cord or optic nerve injury.
Collapse
Affiliation(s)
- Matthew J. Taylor
- Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Adam M. Thompson
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Sharif Alhajlah
- Applied Medical Science College, Shaqra University, Addawadmi, Riyadh, Saudi Arabia
| | - Richard I. Tuxworth
- Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Zubair Ahmed
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
- Centre for Trauma Sciences Research, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
53
|
Brobbey C, Liu L, Yin S, Gan W. The Role of Protein Arginine Methyltransferases in DNA Damage Response. Int J Mol Sci 2022; 23:ijms23179780. [PMID: 36077176 PMCID: PMC9456308 DOI: 10.3390/ijms23179780] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/25/2022] [Accepted: 08/27/2022] [Indexed: 11/16/2022] Open
Abstract
In response to DNA damage, cells have developed a sophisticated signaling pathway, consisting of DNA damage sensors, transducers, and effectors, to ensure efficient and proper repair of damaged DNA. During this process, posttranslational modifications (PTMs) are central events that modulate the recruitment, dissociation, and activation of DNA repair proteins at damage sites. Emerging evidence reveals that protein arginine methylation is one of the common PTMs and plays critical roles in DNA damage response. Protein arginine methyltransferases (PRMTs) either directly methylate DNA repair proteins or deposit methylation marks on histones to regulate their transcription, RNA splicing, protein stability, interaction with partners, enzymatic activities, and localization. In this review, we summarize the substrates and roles of each PRMTs in DNA damage response and discuss the synergistic anticancer effects of PRMTs and DNA damage pathway inhibitors, providing insight into the significance of arginine methylation in the maintenance of genome integrity and cancer therapies.
Collapse
|
54
|
DNA Repair Inhibitors Potentiate Fractionated Radiotherapy More Than Single-Dose Radiotherapy in Breast Cancer Cells. Cancers (Basel) 2022; 14:cancers14153794. [PMID: 35954456 PMCID: PMC9367425 DOI: 10.3390/cancers14153794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/01/2022] [Accepted: 08/01/2022] [Indexed: 12/10/2022] Open
Abstract
Pharmacological inhibitors of DNA damage response (DDR) proteins, such as the ataxia-telangiectasia mutated (ATM) and ataxia-telangiectasia and Rad3-related (ATR) kinases and poly (ADP-ribose) polymerase (PARP), have been developed to overcome tumor radioresistance. Despite demonstrating radiosensitization preclinically, they have performed suboptimally in clinical trials, possibly due to an incomplete understanding of the influence of DDR inhibition on ionizing radiation (IR) dose fractionation and sublethal damage repair. Hence, this study aimed to evaluate the radiosensitizing ability under fractionation of ATM inhibitor AZD0156, ATR inhibitor AZD6738 and PARP inhibitor AZD2281 (olaparib), utilizing MDA-MB-231 and MCF-7 human breast cancer cells. Clonogenic assays were performed to assess cell survival and sublethal damage repair after treatment with DDR inhibitors and either single-dose or fractionated IR. Immunofluorescence microscopy was utilized to evaluate DNA double-strand break repair kinetics. Cell cycle distributions were investigated using flow cytometry. All inhibitors showed significant radiosensitization, which was significantly greater following fractionated IR than single-dose IR. They also led to more unrepaired DNA double-strand breaks at 24 h post-IR. This study provides preclinical evidence for the role of AZD0156, AZD6738 and olaparib as radiosensitizing agents. Still, it highlights the need to evaluate these drugs in fractionated settings mirroring clinical practice to optimize the trial design.
Collapse
|
55
|
Finney M, Romanowski J, Adelman ZN. Strategies to improve homology-based repair outcomes following CRISPR-based gene editing in mosquitoes: lessons in how to keep any repair disruptions local. Virol J 2022; 19:128. [PMID: 35908059 PMCID: PMC9338592 DOI: 10.1186/s12985-022-01859-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 07/18/2022] [Indexed: 11/10/2022] Open
Abstract
Programmable gene editing systems such as CRISPR-Cas have made mosquito genome engineering more practical and accessible, catalyzing the development of cutting-edge genetic methods of disease vector control. This progress, however, has been limited by the low efficiency of homology-directed repair (HDR)-based sequence integration at DNA double-strand breaks (DSBs) and a lack of understanding about DSB repair in mosquitoes. Innovative efforts to optimize HDR sequence integration by inhibiting non-homologous end joining or promoting HDR have been performed in mammalian systems, however many of these approaches have not been applied to mosquitoes. Here, we review some of the most relevant steps of DNA DSB repair choice and highlight promising approaches that influence this choice to enhance HDR in the context of mosquito gene editing.
Collapse
Affiliation(s)
- Micaela Finney
- Department of Entomology, Texas A&M University, 329A Minnie Belle Heep Center, 370 Olsen Blvd, College Station, TX, 77843, USA
| | - Joseph Romanowski
- Department of Entomology, Texas A&M University, 329A Minnie Belle Heep Center, 370 Olsen Blvd, College Station, TX, 77843, USA
| | - Zach N Adelman
- Department of Entomology, Texas A&M University, 329A Minnie Belle Heep Center, 370 Olsen Blvd, College Station, TX, 77843, USA.
| |
Collapse
|
56
|
Rana M, Perotti A, Bisset LM, Smith JD, Lamden E, Khan Z, Ismail MK, Ellis K, Armstrong KA, Hodder SL, Bertoli C, Meneguello L, de Bruin RAM, Morris JR, Romero-Canelon I, Tucker JHR, Hodges NJ. A ferrocene-containing nucleoside analogue targets DNA replication in pancreatic cancer cells. Metallomics 2022; 14:mfac041. [PMID: 35689667 PMCID: PMC9320222 DOI: 10.1093/mtomcs/mfac041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 05/11/2022] [Indexed: 11/14/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a disease that remains refractory to existing treatments including the nucleoside analogue gemcitabine. In the current study we demonstrate that an organometallic nucleoside analogue, the ferronucleoside 1-(S,Rp), is cytotoxic in a panel of PDAC cell lines including gemcitabine-resistant MIAPaCa2, with IC50 values comparable to cisplatin. Biochemical studies show that the mechanism of action is inhibition of DNA replication, S-phase cell cycle arrest and stalling of DNA-replication forks, which were directly observed at single molecule resolution by DNA-fibre fluorography. In agreement with this, transcriptional changes following treatment with 1-(S,Rp) include activation of three of the four genes (HUS1, RAD1, RAD17) of the 9-1-1 check point complex clamp and two of the three genes (MRE11, NBN) that form the MRN complex as well as activation of multiple downstream targets. Furthermore, there was evidence of phosphorylation of checkpoint kinases 1 and 2 as well as RPA1 and gamma H2AX, all of which are considered biochemical markers of replication stress. Studies in p53-deficient cell lines showed activation of CDKN1A (p21) and GADD45A by 1-(S,Rp) was at least partially independent of p53. In conclusion, because of its potency and activity in gemcitabine-resistant cells, 1-(S,Rp) is a promising candidate molecule for development of new treatments for PDAC.
Collapse
Affiliation(s)
- Marium Rana
- School of Biosciences, The University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- School of Chemistry, The University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Alessio Perotti
- School of Biosciences, The University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Lucy M Bisset
- School of Biosciences, The University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - James D Smith
- School of Biosciences, The University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Emma Lamden
- School of Biosciences, The University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Zahra Khan
- School of Biosciences, The University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Media K Ismail
- Department of pharmacy, college of pharmacy, Knowledge University, 44001 Erbil, Kurdistan Region, Iraq
| | - Katherine Ellis
- Institute of Cancer and Genomic Sciences, and The University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Katie A Armstrong
- School of Biosciences, The University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Samantha L Hodder
- School of Biosciences, The University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Cosetta Bertoli
- MRC Laboratory or Molecular Cell Biology, University College London, London, WC1E 6BT, UK
| | - Leticia Meneguello
- MRC Laboratory or Molecular Cell Biology, University College London, London, WC1E 6BT, UK
| | - Robertus A M de Bruin
- MRC Laboratory or Molecular Cell Biology, University College London, London, WC1E 6BT, UK
| | - Joanna R Morris
- Institute of Cancer and Genomic Sciences, and The University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Isolda Romero-Canelon
- School of Pharmacy, The University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - James H R Tucker
- School of Chemistry, The University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Nikolas J Hodges
- School of Biosciences, The University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| |
Collapse
|
57
|
Alblihy A, Ali R, Algethami M, Shoqafi A, Toss MS, Brownlie J, Tatum NJ, Hickson I, Moran PO, Grabowska A, Jeyapalan JN, Mongan NP, Rakha EA, Madhusudan S. Targeting Mre11 overcomes platinum resistance and induces synthetic lethality in XRCC1 deficient epithelial ovarian cancers. NPJ Precis Oncol 2022; 6:51. [PMID: 35853939 PMCID: PMC9296550 DOI: 10.1038/s41698-022-00298-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 07/04/2022] [Indexed: 11/11/2022] Open
Abstract
Platinum resistance is a clinical challenge in ovarian cancer. Platinating agents induce DNA damage which activate Mre11 nuclease directed DNA damage signalling and response (DDR). Upregulation of DDR may promote chemotherapy resistance. Here we have comprehensively evaluated Mre11 in epithelial ovarian cancers. In clinical cohort that received platinum- based chemotherapy (n = 331), Mre11 protein overexpression was associated with aggressive phenotype and poor progression free survival (PFS) (p = 0.002). In the ovarian cancer genome atlas (TCGA) cohort (n = 498), Mre11 gene amplification was observed in a subset of serous tumours (5%) which correlated highly with Mre11 mRNA levels (p < 0.0001). Altered Mre11 levels was linked with genome wide alterations that can influence platinum sensitivity. At the transcriptomic level (n = 1259), Mre11 overexpression was associated with poor PFS (p = 0.003). ROC analysis showed an area under the curve (AUC) of 0.642 for response to platinum-based chemotherapy. Pre-clinically, Mre11 depletion by gene knock down or blockade by small molecule inhibitor (Mirin) reversed platinum resistance in ovarian cancer cells and in 3D spheroid models. Importantly, Mre11 inhibition was synthetically lethal in platinum sensitive XRCC1 deficient ovarian cancer cells and 3D-spheroids. Selective cytotoxicity was associated with DNA double strand break (DSB) accumulation, S-phase cell cycle arrest and increased apoptosis. We conclude that pharmaceutical development of Mre11 inhibitors is a viable clinical strategy for platinum sensitization and synthetic lethality in ovarian cancer.
Collapse
Affiliation(s)
- Adel Alblihy
- Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham, NG7 3RD, UK
- Medical Center, King Fahad Security College (KFSC), Riyadh, 11461, Saudi Arabia
| | - Reem Ali
- Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham, NG7 3RD, UK
| | - Mashael Algethami
- Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham, NG7 3RD, UK
| | - Ahmed Shoqafi
- Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham, NG7 3RD, UK
| | - Michael S Toss
- Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham, NG7 3RD, UK
- Department of Pathology, Nottingham University Hospitals, City Hospital Campus, Nottingham, NG5 1PB, UK
| | - Juliette Brownlie
- Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham, NG7 3RD, UK
| | - Natalie J Tatum
- Cancer Research UK Newcastle Drug Discovery Unit, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Ian Hickson
- Cancer Research UK Newcastle Drug Discovery Unit, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Paloma Ordonez Moran
- Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham, NG7 3RD, UK
| | - Anna Grabowska
- Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham, NG7 3RD, UK
| | - Jennie N Jeyapalan
- Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham, NG7 3RD, UK
| | - Nigel P Mongan
- Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham, NG7 3RD, UK
- Department of Pharmacology, Weill Cornell Medicine, New York, 10065, NY, USA
| | - Emad A Rakha
- Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham, NG7 3RD, UK
- Department of Pathology, Nottingham University Hospitals, City Hospital Campus, Nottingham, NG5 1PB, UK
| | - Srinivasan Madhusudan
- Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham, NG7 3RD, UK.
- Department of Oncology, Nottingham University Hospitals, Nottingham, NG51PB, UK.
| |
Collapse
|
58
|
Zhang Y, Wu L, Wang Z, Wang J, Roychoudhury S, Tomasik B, Wu G, Wang G, Rao X, Zhou R. Replication Stress: A Review of Novel Targets to Enhance Radiosensitivity-From Bench to Clinic. Front Oncol 2022; 12:838637. [PMID: 35875060 PMCID: PMC9305609 DOI: 10.3389/fonc.2022.838637] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 06/15/2022] [Indexed: 11/22/2022] Open
Abstract
DNA replication is a process fundamental in all living organisms in which deregulation, known as replication stress, often leads to genomic instability, a hallmark of cancer. Most malignant tumors sustain persistent proliferation and tolerate replication stress via increasing reliance to the replication stress response. So whilst replication stress induces genomic instability and tumorigenesis, the replication stress response exhibits a unique cancer-specific vulnerability that can be targeted to induce catastrophic cell proliferation. Radiation therapy, most used in cancer treatment, induces a plethora of DNA lesions that affect DNA integrity and, in-turn, DNA replication. Owing to radiation dose limitations for specific organs and tumor tissue resistance, the therapeutic window is narrow. Thus, a means to eliminate or reduce tumor radioresistance is urgently needed. Current research trends have highlighted the potential of combining replication stress regulators with radiation therapy to capitalize on the high replication stress of tumors. Here, we review the current body of evidence regarding the role of replication stress in tumor progression and discuss potential means of enhancing tumor radiosensitivity by targeting the replication stress response. We offer new insights into the possibility of combining radiation therapy with replication stress drugs for clinical use.
Collapse
Affiliation(s)
- Yuewen Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Wu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhao Wang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinpeng Wang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shrabasti Roychoudhury
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
| | - Bartlomiej Tomasik
- Department of Oncology and Radiotherapy, Medical University of Gdansk, Gdansk, Poland
| | - Gang Wu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Geng Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinrui Rao
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Zhou
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
59
|
Ahmed Z, Tuxworth RI. The brain-penetrant ATM inhibitor, AZD1390, promotes axon regeneration and functional recovery in preclinical models of spinal cord injury. Clin Transl Med 2022; 12:e962. [PMID: 35818848 PMCID: PMC9274214 DOI: 10.1002/ctm2.962] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/14/2022] [Accepted: 06/20/2022] [Indexed: 11/10/2022] Open
Affiliation(s)
- Zubair Ahmed
- Neuroscience and Ophthalmology, Institute of Inflammation and AgeingUniversity of BirminghamBirminghamUK
- Centre for Trauma Sciences ResearchUniversity of BirminghamBirminghamUK
| | - Richard I. Tuxworth
- Centre for Trauma Sciences ResearchUniversity of BirminghamBirminghamUK
- Birmingham Centre for Genome Biology, Institute of Cancer and Genomic SciencesUniversity of BirminghamBirminghamUK
| |
Collapse
|
60
|
Wang Y, Wang Y, Zang J, Chen H, He Y. ZmPRD1 is essential for double-strand break formation, but is not required for bipolar spindle assembly during maize meiosis. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:3386-3400. [PMID: 35201286 DOI: 10.1093/jxb/erac075] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
Homologs of PUTATIVE RECOMBINATION INITIATION DEFECT 1 (PRD1) are known to be essential for meiotic double-strand break (DSB) formation in mouse (Mus musculus), Arabidopsis, and rice (Oryza sativa). Recent research has shown that rice PRD1 also plays an unanticipated role in meiotic bipolar spindle assembly, revealing that PRD1 has multiple functions in plant meiosis. In this study, we characterize the meiotic function of PRD1 in maize (Zea mays; ZmPRD1). Our results show that Zmprd1 mutant plants display normal vegetative growth but have complete male and female sterility. Meiotic DSB formation is fully abolished in mutant meiocytes, leading to failure in homologous pairing, synapsis, and recombination. ZmPRD1 exhibits a different pattern of chromosome localization compared to its rice homologs. The ZmPRD1 protein interacts with several DSB-forming proteins, but does not directly interact with the kinetochore proteins REC8 and SGO1. Possibly as a result of this, there are no significant abnormalities of bipolar spindle assembly in Zmprd1 meiocytes. Overall, our results demonstrate that ZmPRD1 is essential for DSB formation and homologous recombination in maize meiosis. However, the recently-identified function of PRD1 in bipolar spindle assembly during rice meiosis is not conserved in maize.
Collapse
Affiliation(s)
- Yazhong Wang
- MOE Key Laboratory of Crop Heterosis and Utilization, National Maize Improvement Center of China, China Agricultural University, Beijing, China
| | - Yan Wang
- MOE Key Laboratory of Crop Heterosis and Utilization, National Maize Improvement Center of China, China Agricultural University, Beijing, China
| | - Jie Zang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Huabang Chen
- State Key Laboratory of Plant Cell and Chromosome Engineering, Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yan He
- MOE Key Laboratory of Crop Heterosis and Utilization, National Maize Improvement Center of China, China Agricultural University, Beijing, China
| |
Collapse
|
61
|
Maleki Dana P, Sadoughi F, Mirzaei H, Asemi Z, Yousefi B. DNA damage response and repair in the development and treatment of brain tumors. Eur J Pharmacol 2022; 924:174957. [DOI: 10.1016/j.ejphar.2022.174957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 04/03/2022] [Accepted: 04/11/2022] [Indexed: 11/03/2022]
|
62
|
Hu C, Wallace N. Beta HPV Deregulates Double-Strand Break Repair. Viruses 2022; 14:948. [PMID: 35632690 PMCID: PMC9146468 DOI: 10.3390/v14050948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 02/04/2023] Open
Abstract
Beta human papillomavirus (beta HPV) infections are common in adults. Certain types of beta HPVs are associated with nonmelanoma skin cancer (NMSC) in immunocompromised individuals. However, whether beta HPV infections promote NMSC in the immunocompetent population is unclear. They have been hypothesized to increase genomic instability stemming from ultraviolet light exposure by disrupting DNA damage responses. Implicit in this hypothesis is that the virus encodes one or more proteins that impair DNA repair signaling. Fluorescence-based reporters, next-generation sequencing, and animal models have been used to test this primarily in cells expressing beta HPV E6/E7. Of the two, beta HPV E6 appears to have the greatest ability to increase UV mutagenesis, by attenuating two major double-strand break (DSB) repair pathways, homologous recombination, and non-homologous end-joining. Here, we review this dysregulation of DSB repair and emerging approaches that can be used to further these efforts.
Collapse
Affiliation(s)
| | - Nicholas Wallace
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA;
| |
Collapse
|
63
|
Wanderley CWS, Correa TS, Scaranti M, Cunha FQ, Barroso-Sousa R. Targeting PARP1 to Enhance Anticancer Checkpoint Immunotherapy Response: Rationale and Clinical Implications. Front Immunol 2022; 13:816642. [PMID: 35572596 PMCID: PMC9094400 DOI: 10.3389/fimmu.2022.816642] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 03/25/2022] [Indexed: 11/13/2022] Open
Abstract
Reinvigorating the antitumor immune response using immune checkpoint inhibitors (ICIs) has revolutionized the treatment of several malignancies. However, extended use of ICIs has resulted in a cancer-specific response. In tumors considered to be less immunogenic, the response rates were low or null. To overcome resistance and improve the beneficial effects of ICIs, novel strategies focused on ICI-combined therapies have been tested. In particular, poly ADP-ribose polymerase inhibitors (PARPi) are a class of agents with potential for ICI combined therapy. PARPi impairs single-strand break DNA repair; this mechanism involves synthetic lethality in tumor cells with deficient homologous recombination. More recently, novel evidence indicated that PAPRi has the potential to modulate the antitumor immune response by activating antigen-presenting cells, infiltrating effector lymphocytes, and upregulating programmed death ligand-1 in tumors. This review covers the current advances in the immune effects of PARPi, explores the potential rationale for combined therapy with ICIs, and discusses ongoing clinical trials.
Collapse
Affiliation(s)
- Carlos Wagner S. Wanderley
- Center for Research in Inflammatory Diseases (CRID), Ribeirao Preto Medical School, Ribeirao Preto, Brazil
- Department of Pharmacology, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto, Brazil
| | | | | | - Fernando Queiroz Cunha
- Center for Research in Inflammatory Diseases (CRID), Ribeirao Preto Medical School, Ribeirao Preto, Brazil
- Department of Pharmacology, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto, Brazil
| | | |
Collapse
|
64
|
Dalmasso B, Puccini A, Catalano F, Borea R, Iaia ML, Bruno W, Fornarini G, Sciallero S, Rebuzzi SE, Ghiorzo P. Beyond BRCA: The Emerging Significance of DNA Damage Response and Personalized Treatment in Pancreatic and Prostate Cancer Patients. Int J Mol Sci 2022; 23:4709. [PMID: 35563100 PMCID: PMC9099822 DOI: 10.3390/ijms23094709] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 12/07/2022] Open
Abstract
The BRCA1/2 germline and/or somatic pathogenic variants (PVs) are key players in the hereditary predisposition and therapeutic response for breast, ovarian and, more recently, pancreatic and prostate cancers. Aberrations in other genes involved in homologous recombination and DNA damage response (DDR) pathways are being investigated as promising targets in ongoing clinical trials. However, DDR genes are not routinely tested worldwide. Due to heterogeneity in cohort selection and dissimilar sequencing approaches across studies, neither the burden of PVs in DDR genes nor the prevalence of PVs in genes in common among pancreatic and prostate cancer can be easily quantified. We aim to contextualize these genes, altered in both pancreatic and prostate cancers, in the DDR process, to summarize their hereditary and somatic burden in different studies and harness their deficiency for cancer treatments in the context of currently ongoing clinical trials. We conclude that the inclusion of DDR genes, other than BRCA1/2, shared by both cancers considerably increases the detection rate of potentially actionable variants, which are triplicated in pancreatic and almost doubled in prostate cancer. Thus, DDR alterations are suitable targets for drug development and to improve the outcome in both pancreatic and prostate cancer patients. Importantly, this will increase the detection of germline pathogenic variants, thereby patient referral to genetic counseling.
Collapse
Affiliation(s)
- Bruna Dalmasso
- IRCCS Ospedale Policlinico San Martino, Genetics of Rare Cancers, 16132 Genoa, Italy; (B.D.); (W.B.)
| | - Alberto Puccini
- IRCCS Ospedale Policlinico San Martino, Medical Oncology Unit 1, 16132 Genoa, Italy; (A.P.); (F.C.); (R.B.); (M.L.I.); (G.F.); (S.S.)
| | - Fabio Catalano
- IRCCS Ospedale Policlinico San Martino, Medical Oncology Unit 1, 16132 Genoa, Italy; (A.P.); (F.C.); (R.B.); (M.L.I.); (G.F.); (S.S.)
| | - Roberto Borea
- IRCCS Ospedale Policlinico San Martino, Medical Oncology Unit 1, 16132 Genoa, Italy; (A.P.); (F.C.); (R.B.); (M.L.I.); (G.F.); (S.S.)
| | - Maria Laura Iaia
- IRCCS Ospedale Policlinico San Martino, Medical Oncology Unit 1, 16132 Genoa, Italy; (A.P.); (F.C.); (R.B.); (M.L.I.); (G.F.); (S.S.)
| | - William Bruno
- IRCCS Ospedale Policlinico San Martino, Genetics of Rare Cancers, 16132 Genoa, Italy; (B.D.); (W.B.)
- Department of Internal Medicine and Medical Specialties, University of Genoa, 16132 Genoa, Italy;
| | - Giuseppe Fornarini
- IRCCS Ospedale Policlinico San Martino, Medical Oncology Unit 1, 16132 Genoa, Italy; (A.P.); (F.C.); (R.B.); (M.L.I.); (G.F.); (S.S.)
| | - Stefania Sciallero
- IRCCS Ospedale Policlinico San Martino, Medical Oncology Unit 1, 16132 Genoa, Italy; (A.P.); (F.C.); (R.B.); (M.L.I.); (G.F.); (S.S.)
| | - Sara Elena Rebuzzi
- Department of Internal Medicine and Medical Specialties, University of Genoa, 16132 Genoa, Italy;
- Ospedale San Paolo, Medical Oncology, 17100 Savona, Italy
| | - Paola Ghiorzo
- IRCCS Ospedale Policlinico San Martino, Genetics of Rare Cancers, 16132 Genoa, Italy; (B.D.); (W.B.)
- Department of Internal Medicine and Medical Specialties, University of Genoa, 16132 Genoa, Italy;
| |
Collapse
|
65
|
Schnöller LE, Albrecht V, Brix N, Nieto AE, Fleischmann DF, Niyazi M, Hess J, Belka C, Unger K, Lauber K, Orth M. Integrative analysis of therapy resistance and transcriptomic profiling data in glioblastoma cells identifies sensitization vulnerabilities for combined modality radiochemotherapy. Radiat Oncol 2022; 17:79. [PMID: 35440003 PMCID: PMC9020080 DOI: 10.1186/s13014-022-02052-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/04/2022] [Indexed: 02/06/2023] Open
Abstract
Background Inherent resistance to radio/chemotherapy is one of the major reasons for early recurrence, treatment failure, and dismal prognosis of glioblastoma. Thus, the identification of resistance driving regulators as prognostic and/or predictive markers as well as potential vulnerabilities for combined modality treatment approaches is of pivotal importance. Methods We performed an integrative analysis of treatment resistance and DNA damage response regulator expression in a panel of human glioblastoma cell lines. mRNA expression levels of 38 DNA damage response regulators were analyzed by qRT-PCR. Inherent resistance to radiotherapy (single-shot and fractionated mode) and/or temozolomide treatment was assessed by clonogenic survival assays. Resistance scores were extracted by dimensionality reduction and subjected to correlation analyses with the mRNA expression data. Top-hit candidates with positive correlation coefficients were validated by pharmacological inhibition in clonogenic survival assays and DNA repair analyses via residual γH2AX/53BP1-foci staining. Results Inherent resistance to single-shot and similarly also to fractionated radiotherapy showed strong positive correlations with mRNA expression levels of known vulnerabilities of GBM, including PARP1, NBN, and BLM, as well as ATR and LIG4—two so far underestimated targets. Inhibition of ATR by AZD-6738 resulted in robust and dose-dependent radiosensitization of glioblastoma cells, whereas LIG4 inhibition by L189 had no noticeable impact. Resistance against temozolomide showed strong positive correlation with mRNA expression levels of MGMT as to be expected. Interestingly, it also correlated with mRNA expression levels of ATM, suggesting a potential role of ATM in the context of temozolomide resistance in glioblastoma cells. ATM inhibition exhibited slight sensitization effects towards temozolomide treatment in MGMT low expressing glioblastoma cells, thus encouraging further characterization. Conclusions Here, we describe a systematic approach integrating clonogenic survival data with mRNA expression data of DNA damage response regulators in human glioblastoma cell lines to identify markers of inherent therapy resistance and potential vulnerabilities for targeted sensitization. Our results provide proof-of-concept for the feasibility of this approach, including its limitations. We consider this strategy to be adaptable to other cancer entities as well as other molecular data qualities, and its upscaling potential in terms of model systems and observational data levels deserves further investigation.
Collapse
Affiliation(s)
- Leon Emanuel Schnöller
- Department of Radiation Oncology, University Hospital, LMU München, Marchioninistrasse 15, 81377, Munich, Germany
| | - Valerie Albrecht
- Department of Radiation Oncology, University Hospital, LMU München, Marchioninistrasse 15, 81377, Munich, Germany
| | - Nikko Brix
- Department of Radiation Oncology, University Hospital, LMU München, Marchioninistrasse 15, 81377, Munich, Germany
| | - Alexander Edward Nieto
- Department of Radiation Oncology, University Hospital, LMU München, Marchioninistrasse 15, 81377, Munich, Germany
| | - Daniel Felix Fleischmann
- Department of Radiation Oncology, University Hospital, LMU München, Marchioninistrasse 15, 81377, Munich, Germany.,German Cancer Consortium (DKTK), Munich, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Maximilian Niyazi
- Department of Radiation Oncology, University Hospital, LMU München, Marchioninistrasse 15, 81377, Munich, Germany.,German Cancer Consortium (DKTK), Munich, Germany
| | - Julia Hess
- Research Unit Radiation Cytogenetics, Helmholtz Center Munich, German Research Center for Environmental Health GmbH, Neuherberg, Germany.,Clinical Cooperation Group 'Personalized Radiotherapy in Head and Neck Cancer' Helmholtz Center Munich, German Research Center for Environmental Health GmbH, Neuherberg, Germany
| | - Claus Belka
- Department of Radiation Oncology, University Hospital, LMU München, Marchioninistrasse 15, 81377, Munich, Germany.,German Cancer Consortium (DKTK), Munich, Germany.,Clinical Cooperation Group 'Personalized Radiotherapy in Head and Neck Cancer' Helmholtz Center Munich, German Research Center for Environmental Health GmbH, Neuherberg, Germany
| | - Kristian Unger
- Research Unit Radiation Cytogenetics, Helmholtz Center Munich, German Research Center for Environmental Health GmbH, Neuherberg, Germany.,Clinical Cooperation Group 'Personalized Radiotherapy in Head and Neck Cancer' Helmholtz Center Munich, German Research Center for Environmental Health GmbH, Neuherberg, Germany
| | - Kirsten Lauber
- Department of Radiation Oncology, University Hospital, LMU München, Marchioninistrasse 15, 81377, Munich, Germany.,German Cancer Consortium (DKTK), Munich, Germany.,Clinical Cooperation Group 'Personalized Radiotherapy in Head and Neck Cancer' Helmholtz Center Munich, German Research Center for Environmental Health GmbH, Neuherberg, Germany
| | - Michael Orth
- Department of Radiation Oncology, University Hospital, LMU München, Marchioninistrasse 15, 81377, Munich, Germany.
| |
Collapse
|
66
|
Muoio D, Laspata N, Fouquerel E. Functions of ADP-ribose transferases in the maintenance of telomere integrity. Cell Mol Life Sci 2022; 79:215. [PMID: 35348914 PMCID: PMC8964661 DOI: 10.1007/s00018-022-04235-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/03/2022] [Accepted: 03/07/2022] [Indexed: 12/21/2022]
Abstract
The ADP-ribose transferase (ART) family comprises 17 enzymes that catalyze mono- or poly-ADP-ribosylation, a post-translational modification of proteins. Present in all subcellular compartments, ARTs are implicated in a growing number of biological processes including DNA repair, replication, transcription regulation, intra- and extra-cellular signaling, viral infection and cell death. Five members of the family, PARP1, PARP2, PARP3, tankyrase 1 and tankyrase 2 are mainly described for their crucial functions in the maintenance of genome stability. It is well established that the most describedrole of PARP1, 2 and 3 is the repair of DNA lesions while tankyrases 1 and 2 are crucial for maintaining the integrity of telomeres. Telomeres, nucleoprotein complexes located at the ends of eukaryotic chromosomes, utilize their unique structure and associated set of proteins to orchestrate the mechanisms necessary for their own protection and replication. While the functions of tankyrases 1 and 2 at telomeres are well known, several studies have also brought PARP1, 2 and 3 to the forefront of telomere protection. The singular quality of the telomeric environment has highlighted protein interactions and molecular pathways distinct from those described throughout the genome. The aim of this review is to provide an overview of the current knowledge on the multiple roles of PARP1, PARP2, PARP3, tankyrase 1 and tankyrase 2 in the maintenance and preservation of telomere integrity.
Collapse
Affiliation(s)
- Daniela Muoio
- UPMC Cancer Institute and Department of Pharmacology and Chemical Biology at the University of Pittsburgh, Hillman Cancer Center, 5115 Centre Avenue, Pittsburgh, PA, 15213, USA
| | - Natalie Laspata
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 233 S. 10th street, Philadelphia, PA, 19107, USA
| | - Elise Fouquerel
- UPMC Cancer Institute and Department of Pharmacology and Chemical Biology at the University of Pittsburgh, Hillman Cancer Center, 5115 Centre Avenue, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
67
|
Li Z, Wang B, Yu Q, Shi Y, Li L. 12-Plex DiLeu Isobaric Labeling Enabled High-Throughput Investigation of Citrullination Alterations in the DNA Damage Response. Anal Chem 2022; 94:3074-3081. [PMID: 35129972 PMCID: PMC9055876 DOI: 10.1021/acs.analchem.1c04073] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Protein citrullination is a key post-translational modification (PTM) that leads to the loss of positive charge on arginine and consequent protein structural and functional changes. Though it has been indicated to play critical roles in various physiological and pathological processes, effective analytical tools are largely limited due to a few challenges such as the small mass shift induced by this PTM and its low-abundance nature. Recently, we developed a biotin thiol tag, which enabled large-scale profiling of protein citrullination from complex biological samples via mass spectrometry. However, a high-throughput quantitative approach is still in great need to further improve the understanding of this PTM. In this study, we report an efficient pipeline using our custom-developed N,N-dimethyl leucine isobaric tags to achieve a multiplexed quantitative analysis of citrullination from up to 12 samples for the first time. We then apply this strategy to investigating citrullination alterations in response to DNA damage stress using human cell lines. We unveil important biological functions regulated by protein citrullination and observe hypercitrullination on RNA-binding proteins and DNA repair proteins, respectively. Our results reveal the involvement of citrullination in DNA damage pathways and may provide new insights into DNA-damage-related disease pathogenesis.
Collapse
Affiliation(s)
- Zihui Li
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Bin Wang
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Qinying Yu
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Yatao Shi
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States,School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States,Corresponding Author: . Phone: +1-608-265-8491. Fax: +1-608-262-5345
| |
Collapse
|
68
|
Hu C, Bugbee T, Dacus D, Palinski R, Wallace N. Beta human papillomavirus 8 E6 allows colocalization of non-homologous end joining and homologous recombination repair factors. PLoS Pathog 2022; 18:e1010275. [PMID: 35148356 PMCID: PMC8836322 DOI: 10.1371/journal.ppat.1010275] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 01/12/2022] [Indexed: 12/30/2022] Open
Abstract
Beta human papillomavirus (β-HPV) are hypothesized to make DNA damage more mutagenic and potentially more carcinogenic. Double strand breaks (DSBs) are the most deleterious DNA lesion. They are typically repaired by homologous recombination (HR) or non-homologous end joining (NHEJ). HR occurs after DNA replication while NHEJ can occur at any point in the cell cycle. HR and NHEJ are not thought to occur in the same cell at the same time. HR is restricted to cells in phases of the cell cycle where homologous templates are available, while NHEJ occurs primarily during G1. β-HPV type 8 protein E6 (8E6) attenuates both repair pathways. We use a series of immunofluorescence microscopy and flow cytometry experiments to better define the impact of this attenuation. We found that 8E6 causes colocalization of HR factors (RPA70 and RAD51) with an NHEJ factor (activated DNA-PKcs or pDNA-PKcs) at persistent DSBs. 8E6 also causes RAD51 foci to form during G1. The initiation of NHEJ and HR at the same lesion could lead to antagonistic DNA end processing. Further, HR cannot be readily completed in an error-free manner during G1. Both aberrant repair events would cause deletions. To determine if these mutations were occurring, we used next generation sequencing of the 200kb surrounding a CAS9-induced DSB. 8E6 caused a 21-fold increase in deletions. Chemical and genetic inhibition of p300 as well as an 8E6 mutant that is incapable of destabilizing p300 demonstrates that 8E6 is acting via p300 destabilization. More specific chemical inhibitors of DNA repair provided mechanistic insight by mimicking 8E6-induced dysregulation of DNA repair in a virus-free system. Specifically, inhibition of NHEJ causes RAD51 foci to form in G1 and colocalization of RAD51 with pDNA-PKcs. Our previous work shows that a master transcription regulator, p300, facilitates two major DNA double strand break (DSB) repair pathways: non-homologous end joining (NHEJ) and homologous recombination (HR). By degrading p300, beta genus human papillomavirus 8 protein E6 (8E6) hinders pDNA-PKcs resolution, an essential step during NHEJ. NHEJ and HR are known to compete, with only one pathway initiating repair of a DSB. NHEJ tends to be used in G1 and HR occurs in S/G2. Here, we show that 8E6 allows NHEJ and HR to initiate at the same break site. We show that 8E6 allows HR to initiate in G1, suggesting that NHEJ starts but fails before HR is initiated at the same DSB. Next generation sequencing of the region surrounding a CAS9-induced DSB supports our hypothesis that this dysregulation of DSB repair is mutagenic as 8E6 caused a 15- to 20-fold increase in mutations associated with a CAS9-induced DSB. These studies support the putative role of HPV8 infections in non-melanoma skin cancer development.
Collapse
Affiliation(s)
- Changkun Hu
- Division of Biology, Kansas State University, Manhattan, Kansas, United States of America
| | - Taylor Bugbee
- Division of Biology, Kansas State University, Manhattan, Kansas, United States of America
| | - Dalton Dacus
- Division of Biology, Kansas State University, Manhattan, Kansas, United States of America
| | - Rachel Palinski
- Kansas State Veterinary Diagnostic Laboratory, Kansas State University, Manhattan, Kansas, United States of America
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, Kansas, United States of America
| | - Nicholas Wallace
- Division of Biology, Kansas State University, Manhattan, Kansas, United States of America
- * E-mail:
| |
Collapse
|
69
|
Jack A, Kim Y, Strom AR, Lee DSW, Williams B, Schaub JM, Kellogg EH, Finkelstein IJ, Ferro LS, Yildiz A, Brangwynne CP. Compartmentalization of telomeres through DNA-scaffolded phase separation. Dev Cell 2022; 57:277-290.e9. [PMID: 35077681 PMCID: PMC8988007 DOI: 10.1016/j.devcel.2021.12.017] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 08/25/2021] [Accepted: 12/15/2021] [Indexed: 12/20/2022]
Abstract
Telomeres form unique nuclear compartments that prevent degradation and fusion of chromosome ends by recruiting shelterin proteins and regulating access of DNA damage repair factors. To understand how these dynamic components protect chromosome ends, we combine in vivo biophysical interrogation and in vitro reconstitution of human shelterin. We show that shelterin components form multicomponent liquid condensates with selective biomolecular partitioning on telomeric DNA. Tethering and anomalous diffusion prevent multiple telomeres from coalescing into a single condensate in mammalian cells. However, telomeres coalesce when brought into contact via an optogenetic approach. TRF1 and TRF2 subunits of shelterin drive phase separation, and their N-terminal domains specify interactions with telomeric DNA in vitro. Telomeric condensates selectively recruit telomere-associated factors and regulate access of DNA damage repair factors. We propose that shelterin mediates phase separation of telomeric chromatin, which underlies the dynamic yet persistent nature of the end-protection mechanism.
Collapse
Affiliation(s)
- Amanda Jack
- Biophysics Graduate Group, University of California, Berkeley, CA 94720, USA
| | - Yoonji Kim
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Amy R Strom
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Daniel S W Lee
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Byron Williams
- Molecular Biology and Genetics, Cornell University, Ithaca, NY 14850, USA
| | - Jeffrey M Schaub
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | | | - Ilya J Finkelstein
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA; Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Luke S Ferro
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA.
| | - Ahmet Yildiz
- Biophysics Graduate Group, University of California, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA; Physics Department, University of California, Berkeley, CA 94720, USA.
| | - Clifford P Brangwynne
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA; Howard Hughes Medical Institute, Princeton University, Princeton NJ 08544, USA.
| |
Collapse
|
70
|
Targeting PARP proteins in acute leukemia: DNA damage response inhibition and therapeutic strategies. J Hematol Oncol 2022; 15:10. [PMID: 35065680 PMCID: PMC8783444 DOI: 10.1186/s13045-022-01228-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/12/2022] [Indexed: 02/06/2023] Open
Abstract
The members of the Poly(ADP‐ribose) polymerase (PARP) superfamily are involved in several biological processes and, in particular, in the DNA damage response (DDR). The most studied members, PARP1, PARP2 and PARP3, act as sensors of DNA damages, in order to activate different intracellular repair pathways, including single-strand repair, homologous recombination, conventional and alternative non-homologous end joining. This review recapitulates the functional role of PARPs in the DDR pathways, also in relationship with the cell cycle phases, which drives our knowledge of the mechanisms of action of PARP inhibitors (PARPi), encompassing inhibition of single-strand breaks and base excision repair, PARP trapping and sensitization to antileukemia immune responses. Several studies have demonstrated a preclinical activity of the current available PARPi, olaparib, rucaparib, niraparib, veliparib and talazoparib, as single agent and/or in combination with cytotoxic, hypomethylating or targeted drugs in acute leukemia, thus encouraging the development of clinical trials. We here summarize the most recent preclinical and clinical findings and discuss the synthetic lethal interactions of PARPi in acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL). Despite the low frequency of genomic alterations of PARP and other DDR-related genes in acute leukemia, selective vulnerabilities have been reported in several disease subgroups, along with a “BRCAness phenotype.” AML carrying the RUNX1-RUNX1T1 or PML-RARA fusion genes or mutations in signaling genes (FLT3-ITD in combination with TET2 or TET2 and DNMT3A deficiency), cohesin complex members (STAG2), TP53 and BCOR as co-occurring lesions, IDH1/2 and ALL cases expressing the TCF3-HLF chimera or TET1 was highly sensitive to PARPi in preclinical studies. These data, along with the warning coming from the observation of cases of therapy-related myeloid malignancies among patients receiving PARPi for solid tumors treatment, indicate that PARPi represents a promising strategy in a personalized medicine setting. The characterization of the clonal and subclonal genetic background and of the DDR functionality is crucial to select acute leukemia patients that will likely benefit of PARPi-based therapeutic regimens.
Collapse
|
71
|
Wu HY, Zheng Y, Laciak AR, Huang NN, Koszelak-Rosenblum M, Flint AJ, Carr G, Zhu G. Structure and Function of SNM1 Family Nucleases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1414:1-26. [PMID: 35708844 DOI: 10.1007/5584_2022_724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
Three human nucleases, SNM1A, SNM1B/Apollo, and SNM1C/Artemis, belong to the SNM1 gene family. These nucleases are involved in various cellular functions, including homologous recombination, nonhomologous end-joining, cell cycle regulation, and telomere maintenance. These three proteins share a similar catalytic domain, which is characterized as a fused metallo-β-lactamase and a CPSF-Artemis-SNM1-PSO2 domain. SNM1A and SNM1B/Apollo are exonucleases, whereas SNM1C/Artemis is an endonuclease. This review contains a summary of recent research on SNM1's cellular and biochemical functions, as well as structural biology studies. In addition, protein structure prediction by the artificial intelligence program AlphaFold provides a different view of the proteins' non-catalytic domain features, which may be used in combination with current results from X-ray crystallography and cryo-EM to understand their mechanism more clearly.
Collapse
|
72
|
Hausmann M, Hildenbrand G, Pilarczyk G. Networks and Islands of Genome Nano-architecture and Their Potential Relevance for Radiation Biology : (A Hypothesis and Experimental Verification Hints). Results Probl Cell Differ 2022; 70:3-34. [PMID: 36348103 DOI: 10.1007/978-3-031-06573-6_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The cell nucleus is a complex biological system in which simultaneous reactions and functions take place to keep the cell as an individualized, specialized system running well. The cell nucleus contains chromatin packed in various degrees of density and separated in volumes of chromosome territories and subchromosomal domains. Between the chromatin, however, there is enough "free" space for floating RNA, proteins, enzymes, ATPs, ions, water molecules, etc. which are trafficking by super- and supra-diffusion to the interaction points where they are required. It seems that this trafficking works somehow automatically and drives the system perfectly. After exposure to ionizing radiation causing DNA damage from single base damage up to chromatin double-strand breaks, the whole system "cell nucleus" responds, and repair processes are starting to recover the fully functional and intact system. In molecular biology, many individual epigenetic pathways of DNA damage response or repair of single and double-strand breaks are described. How these responses are embedded into the response of the system as a whole is often out of the focus of consideration. In this article, we want to follow the hypothesis of chromatin architecture's impact on epigenetic pathways and vice versa. Based on the assumption that chromatin acts like an "aperiodic solid state within a limited volume," functionally determined networks and local topologies ("islands") can be defined that drive the appropriate repair process at a given damage site. Experimental results of investigations of the chromatin nano-architecture and DNA repair clusters obtained by means of single-molecule localization microscopy offer hints and perspectives that may contribute to verifying the hypothesis.
Collapse
Affiliation(s)
- Michael Hausmann
- Kirchhoff-Institute for Physics, Heidelberg University, Heidelberg, Germany.
| | - Georg Hildenbrand
- Kirchhoff-Institute for Physics, Heidelberg University, Heidelberg, Germany
| | - Götz Pilarczyk
- Kirchhoff-Institute for Physics, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
73
|
van Wijk LM, Nilas AB, Vrieling H, Vreeswijk MPG. RAD51 as a functional biomarker for homologous recombination deficiency in cancer: a promising addition to the HRD toolbox? Expert Rev Mol Diagn 2021; 22:185-199. [PMID: 34913794 DOI: 10.1080/14737159.2022.2020102] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Carcinomas with defects in the homologous recombination (HR) pathway are sensitive to PARP inhibitors (PARPi). A robust method to identify HR-deficient (HRD) carcinomas is therefore of utmost clinical importance. Currently available DNA-based HRD tests either scan HR-related genes such as BRCA1 and BRCA2 for the presence of pathogenic variants or identify HRD-related genomic scars or mutational signatures by using whole-exome or whole-genome sequencing data. As an alternative to DNA-based tests, functional HRD tests have been developed that assess the actual ability of tumors to accumulate RAD51 protein at DNA double strand breaks as a proxy for HR proficiency. AREAS COVERED This review presents an overview of currently available HRD tests and discuss the pros and cons of the different methodologies including their sensitivity for the identification of HRD tumors, their concordance with other HRD tests, and their capacity to predict therapy response. EXPERT OPINION With the increasing use of PARP inhibitors in the treatment of several cancers there is an urgent need to implement HRD testing in routine clinical practice. To this end, calibration of HRD thresholds and clinical validation of both DNA-based and RAD51-based HRD tests should have top-priority in the coming years.
Collapse
Affiliation(s)
- Lise M van Wijk
- Department of Human Genetics, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| | - Andreea B Nilas
- Department of Human Genetics, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| | - Harry Vrieling
- Department of Human Genetics, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| | - Maaike P G Vreeswijk
- Department of Human Genetics, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| |
Collapse
|
74
|
De Falco M, De Felice M. Take a Break to Repair: A Dip in the World of Double-Strand Break Repair Mechanisms Pointing the Gaze on Archaea. Int J Mol Sci 2021; 22:ijms222413296. [PMID: 34948099 PMCID: PMC8708640 DOI: 10.3390/ijms222413296] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 12/24/2022] Open
Abstract
All organisms have evolved many DNA repair pathways to counteract the different types of DNA damages. The detection of DNA damage leads to distinct cellular responses that bring about cell cycle arrest and the induction of DNA repair mechanisms. In particular, DNA double-strand breaks (DSBs) are extremely toxic for cell survival, that is why cells use specific mechanisms of DNA repair in order to maintain genome stability. The choice among the repair pathways is mainly linked to the cell cycle phases. Indeed, if it occurs in an inappropriate cellular context, it may cause genome rearrangements, giving rise to many types of human diseases, from developmental disorders to cancer. Here, we analyze the most recent remarks about the main pathways of DSB repair with the focus on homologous recombination. A thorough knowledge in DNA repair mechanisms is pivotal for identifying the most accurate treatments in human diseases.
Collapse
|
75
|
Merighi A, Gionchiglia N, Granato A, Lossi L. The Phosphorylated Form of the Histone H2AX (γH2AX) in the Brain from Embryonic Life to Old Age. Molecules 2021; 26:7198. [PMID: 34885784 PMCID: PMC8659122 DOI: 10.3390/molecules26237198] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/25/2021] [Accepted: 11/25/2021] [Indexed: 12/12/2022] Open
Abstract
The γ phosphorylated form of the histone H2AX (γH2AX) was described more than 40 years ago and it was demonstrated that phosphorylation of H2AX was one of the first cellular responses to DNA damage. Since then, γH2AX has been implicated in diverse cellular functions in normal and pathological cells. In the first part of this review, we will briefly describe the intervention of H2AX in the DNA damage response (DDR) and its role in some pivotal cellular events, such as regulation of cell cycle checkpoints, genomic instability, cell growth, mitosis, embryogenesis, and apoptosis. Then, in the main part of this contribution, we will discuss the involvement of γH2AX in the normal and pathological central nervous system, with particular attention to the differences in the DDR between immature and mature neurons, and to the significance of H2AX phosphorylation in neurogenesis and neuronal cell death. The emerging picture is that H2AX is a pleiotropic molecule with an array of yet not fully understood functions in the brain, from embryonic life to old age.
Collapse
Affiliation(s)
| | | | | | - Laura Lossi
- Department of Veterinary Sciences, University of Turin, I-10095 Grugliasco, Italy; (A.M.); (N.G.); (A.G.)
| |
Collapse
|
76
|
Balian A, Hernandez FJ. Nucleases as molecular targets for cancer diagnosis. Biomark Res 2021; 9:86. [PMID: 34809722 PMCID: PMC8607607 DOI: 10.1186/s40364-021-00342-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 11/03/2021] [Indexed: 11/17/2022] Open
Abstract
Early cancer diagnosis is a crucial element to improved treatment options and survival. Great research efforts have been made in the search for better performing cancer diagnostic biomarkers. However, the quest continues as novel biomarkers with high accuracy for an early diagnosis remain an unmet clinical need. Nucleases, which are enzymes capable of cleaving nucleic acids, have been long considered as potential cancer biomarkers. The implications of nucleases are key for biological functions, their presence in different cellular counterparts and catalytic activity led the enthusiasm towards investigating the role of nucleases as promising cancer biomarkers. However, the most essential feature of these proteins, which is their enzymatic activity, has not been fully exploited. This review discusses nucleases interrogated as cancer biomarkers, providing a glimpse of their physiological roles. Moreover, it highlights the potential of harnessing the enzymatic activity of cancer-associated nucleases as a novel diagnostic biomarker using nucleic acid probes as substrates.
Collapse
Affiliation(s)
- Alien Balian
- Department of Physics, Chemistry and Biology, Linköping University, 58185, Linköping, Sweden
- Wallenberg Centre for Molecular Medicine, Linköping University, Linköping, Sweden
| | - Frank J Hernandez
- Department of Physics, Chemistry and Biology, Linköping University, 58185, Linköping, Sweden.
- Wallenberg Centre for Molecular Medicine, Linköping University, Linköping, Sweden.
| |
Collapse
|
77
|
Paulsen T, Malapati P, Shibata Y, Wilson B, Eki R, Benamar M, Abbas T, Dutta A. MicroDNA levels are dependent on MMEJ, repressed by c-NHEJ pathway, and stimulated by DNA damage. Nucleic Acids Res 2021; 49:11787-11799. [PMID: 34718766 PMCID: PMC8599734 DOI: 10.1093/nar/gkab984] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/05/2021] [Accepted: 10/27/2021] [Indexed: 12/23/2022] Open
Abstract
Extrachromosomal circular DNA (eccDNA) are present within all eukaryotic organisms and actively contribute to gene expression changes. MicroDNA (200-1000bp) are the most abundant type of eccDNA and can amplify tRNA, microRNA, and novel si-like RNA sequences. Due to the heterogeneity of microDNA and the limited technology to directly quantify circular DNA molecules, the specific DNA repair pathways that contribute to microDNA formation have not been fully elucidated. Using a sensitive and quantitative assay that quantifies eight known abundant microDNA, we report that microDNA levels are dependent on resection after double-strand DNA break (DSB) and repair by Microhomology Mediated End Joining (MMEJ). Further, repair of DSB without resection by canonical Non-Homologous End Joining (c-NHEJ) diminishes microDNA formation. MicroDNA levels are induced locally even by a single site-directed DSB, suggesting that excision of genomic DNA by two closely spaced DSB is not necessary for microDNA formation. Consistent with all this, microDNA levels accumulate as cells undergo replication in S-phase, when DNA breaks and repair are elevated, and microDNA levels are decreased if DNA synthesis is prevented. Thus, formation of microDNA occurs during the repair of endogenous or induced DNA breaks by resection-based DNA repair pathways.
Collapse
Affiliation(s)
- Teressa Paulsen
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA.,Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Pumoli Malapati
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Yoshiyuki Shibata
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA.,Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294-0024, USA
| | - Briana Wilson
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Rebeka Eki
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA.,Department of Radiation Oncology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Mouadh Benamar
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA.,Department of Radiation Oncology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Tarek Abbas
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA.,Department of Radiation Oncology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Anindya Dutta
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA.,Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294-0024, USA
| |
Collapse
|
78
|
Lecinski S, Shepherd JW, Frame L, Hayton I, MacDonald C, Leake MC. Investigating molecular crowding during cell division and hyperosmotic stress in budding yeast with FRET. CURRENT TOPICS IN MEMBRANES 2021; 88:75-118. [PMID: 34862033 PMCID: PMC7612257 DOI: 10.1016/bs.ctm.2021.09.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Cell division, aging, and stress recovery triggers spatial reorganization of cellular components in the cytoplasm, including membrane bound organelles, with molecular changes in their compositions and structures. However, it is not clear how these events are coordinated and how they integrate with regulation of molecular crowding. We use the budding yeast Saccharomyces cerevisiae as a model system to study these questions using recent progress in optical fluorescence microscopy and crowding sensing probe technology. We used a Förster Resonance Energy Transfer (FRET) based sensor, illuminated by confocal microscopy for high throughput analyses and Slimfield microscopy for single-molecule resolution, to quantify molecular crowding. We determine crowding in response to cellular growth of both mother and daughter cells, in addition to osmotic stress, and reveal hot spots of crowding across the bud neck in the burgeoning daughter cell. This crowding might be rationalized by the packing of inherited material, like the vacuole, from mother cells. We discuss recent advances in understanding the role of crowding in cellular regulation and key current challenges and conclude by presenting our recent advances in optimizing FRET-based measurements of crowding while simultaneously imaging a third color, which can be used as a marker that labels organelle membranes. Our approaches can be combined with synchronized cell populations to increase experimental throughput and correlate molecular crowding information with different stages in the cell cycle.
Collapse
Affiliation(s)
- Sarah Lecinski
- Department of Physics, University of York, York, United Kingdom
| | - Jack W Shepherd
- Department of Physics, University of York, York, United Kingdom; Department of Biology, University of York, York, United Kingdom
| | - Lewis Frame
- School of Natural Sciences, University of York, York, United Kingdom
| | - Imogen Hayton
- Department of Biology, University of York, York, United Kingdom
| | - Chris MacDonald
- Department of Biology, University of York, York, United Kingdom
| | - Mark C Leake
- Department of Physics, University of York, York, United Kingdom; Department of Biology, University of York, York, United Kingdom.
| |
Collapse
|
79
|
Ravichandran A, Clegg J, Adams MN, Hampson M, Fielding A, Bray LJ. 3D Breast Tumor Models for Radiobiology Applications. Cancers (Basel) 2021; 13:5714. [PMID: 34830869 PMCID: PMC8616164 DOI: 10.3390/cancers13225714] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/28/2021] [Accepted: 11/07/2021] [Indexed: 12/17/2022] Open
Abstract
Breast cancer is a leading cause of cancer-associated death in women. The clinical management of breast cancers is normally carried out using a combination of chemotherapy, surgery and radiation therapy. The majority of research investigating breast cancer therapy until now has mainly utilized two-dimensional (2D) in vitro cultures or murine models of disease. However, there has been significant uptake of three-dimensional (3D) in vitro models by cancer researchers over the past decade, highlighting a complimentary model for studies of radiotherapy, especially in conjunction with chemotherapy. In this review, we underline the effects of radiation therapy on normal and malignant breast cells and tissues, and explore the emerging opportunities that pre-clinical 3D models offer in improving our understanding of this treatment modality.
Collapse
Affiliation(s)
- Akhilandeshwari Ravichandran
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; (A.R.); (J.C.); (M.H.)
- ARC Training Centre for Cell and Tissue Engineering Technologies, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia;
| | - Julien Clegg
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; (A.R.); (J.C.); (M.H.)
- ARC Training Centre for Cell and Tissue Engineering Technologies, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia;
| | - Mark N. Adams
- ARC Training Centre for Cell and Tissue Engineering Technologies, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia;
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Madison Hampson
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; (A.R.); (J.C.); (M.H.)
| | - Andrew Fielding
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD 4000, Australia;
| | - Laura J. Bray
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; (A.R.); (J.C.); (M.H.)
- ARC Training Centre for Cell and Tissue Engineering Technologies, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia;
| |
Collapse
|
80
|
Elkafas H, Badary O, Elmorsy E, Kamel R, Yang Q, Al-Hendy A. Endocrine-Disrupting Chemicals and Vitamin D Deficiency in the Pathogenesis of Uterine Fibroids. JOURNAL OF ADVANCED PHARMACY RESEARCH 2021; 5:260-275. [PMID: 34746367 DOI: 10.21608/aprh.2021.66748.1124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Uterine fibroids (UFs) are the most prevalent gynecologic neoplasm, affecting 70-80% of women over their lifespan. Although UFs are benign they can become life-threatening and require invasive surgeries such as myomectomy and hysterectomy. Notwithstanding the significant negative influence UFs have on female reproductive health, very little is known about early events that initiate tumor development. Several risk factors for UFs have been identified including vitamin D deficiency, inflammation, DNA repair deficiency, and environmental exposures to endocrine-disrupting chemicals (EDCs). EDCs have come under scrutiny recently due to their role in UF development. Epidemiologic studies have found an association between increased risk for early UF diagnosis and in utero EDC exposure. Environmental exposure to EDCs during uterine development increases UF incidence in a UF animal model. Notably, several studies demonstrated that abnormal myometrial stem cells (MMSCs) are the cell origin for UFs development. Our recent studies demonstrated that early-life EDC exposure reprogrammed the MMSCs toward a pro-fibroid landscape and altered the DNA repair and inflammation pathways. Notably, Vitamin D3 (VITD3) as a natural compound shrank the UF growth concomitantly with the reversion of several abnormal biological pathways and ameliorated the developmental exposure-induced DNA damage and pro-inflammation pathway in primed MMSCs. This review highlights and emphasizes the importance of multiple pathway interactions in the context of hypovitaminosis D at the MMSCs level and provides proof-of-concept information that can help develop a safe, long-term, durable, and non-surgical therapeutic option for UFs.
Collapse
Affiliation(s)
- Hoda Elkafas
- Department of Pharmacology and Toxicology, Egyptian Drug Authority (EDA) formally, (NODCAR), Cairo 35521, Egypt.,Department of Anesthesiology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Osama Badary
- Department of Clinical Pharmacy, Faculty of Pharmacy, British University in Egypt, Cairo 11837, Egypt
| | - Engy Elmorsy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Helwan University, Cairo 11795, Egypt
| | - Rehab Kamel
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Helwan University, Cairo 11795, Egypt
| | - Qiwei Yang
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL, 60637, USA
| | - Ayman Al-Hendy
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL, 60637, USA
| |
Collapse
|
81
|
Rahmanian N, Shokrzadeh M, Eskandani M. Recent advances in γH2AX biomarker-based genotoxicity assays: A marker of DNA damage and repair. DNA Repair (Amst) 2021; 108:103243. [PMID: 34710661 DOI: 10.1016/j.dnarep.2021.103243] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 10/04/2021] [Accepted: 10/19/2021] [Indexed: 02/06/2023]
Abstract
The phosphorylation of histone variant H2AX and formation of γH2AX is a primary response to the DNA double-strand breaks (DSBs). Detection of γH2AX is a robust and sensitive tool for diagnosis of DNA damage and repair in pre-clinical drug discovery investigations. In addition, the replication stress also leads to the formation of γH2AX and cell death and so γH2AX can serve as a surrogate marker of drug-induced cytotoxicity. Recent advances in genomic research offer an opportunity to detect γH2AX as a specific biomarker for quantitative analysis of DNA damages and repair using high content screening technology and quantitative imaging analysis. The proposed approaches identify a wide range of genetic disorders and are applied in combination with other assays in drug discovery and also for the evaluation of the efficacy of various developmental drugs. In the current review, we provide recent insights into the potential of γH2AX biomarker as a powerful tool in genotoxicity analyses for the monitoring and managing of cancer diseases.
Collapse
Affiliation(s)
- Nazanin Rahmanian
- Pharmaceutical Sciences Research Center, Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammad Shokrzadeh
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Morteza Eskandani
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
82
|
Sanchez A, Lee D, Kim DI, Miller KM. Making Connections: Integrative Signaling Mechanisms Coordinate DNA Break Repair in Chromatin. Front Genet 2021; 12:747734. [PMID: 34659365 PMCID: PMC8514019 DOI: 10.3389/fgene.2021.747734] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 08/31/2021] [Indexed: 01/25/2023] Open
Abstract
DNA double-strand breaks (DSBs) are hazardous to genome integrity and can promote mutations and disease if not handled correctly. Cells respond to these dangers by engaging DNA damage response (DDR) pathways that are able to identify DNA breaks within chromatin leading ultimately to their repair. The recognition and repair of DSBs by the DDR is largely dependent on the ability of DNA damage sensing factors to bind to and interact with nucleic acids, nucleosomes and their modified forms to target these activities to the break site. These contacts orientate and localize factors to lesions within chromatin, allowing signaling and faithful repair of the break to occur. Coordinating these events requires the integration of several signaling and binding events. Studies are revealing an enormously complex array of interactions that contribute to DNA lesion recognition and repair including binding events on DNA, as well as RNA, RNA:DNA hybrids, nucleosomes, histone and non-histone protein post-translational modifications and protein-protein interactions. Here we examine several DDR pathways that highlight and provide prime examples of these emerging concepts. A combination of approaches including genetic, cellular, and structural biology have begun to reveal new insights into the molecular interactions that govern the DDR within chromatin. While many questions remain, a clearer picture has started to emerge for how DNA-templated processes including transcription, replication and DSB repair are coordinated. Multivalent interactions with several biomolecules serve as key signals to recruit and orientate proteins at DNA lesions, which is essential to integrate signaling events and coordinate the DDR within the milieu of the nucleus where competing genome functions take place. Genome architecture, chromatin structure and phase separation have emerged as additional vital regulatory mechanisms that also influence genome integrity pathways including DSB repair. Collectively, recent advancements in the field have not only provided a deeper understanding of these fundamental processes that maintain genome integrity and cellular homeostasis but have also started to identify new strategies to target deficiencies in these pathways that are prevalent in human diseases including cancer.
Collapse
Affiliation(s)
- Anthony Sanchez
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, United States.,Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, United States
| | - Doohyung Lee
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, United States.,Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, United States
| | - Dae In Kim
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, United States.,Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, United States
| | - Kyle M Miller
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, United States.,Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, United States.,Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX, United States
| |
Collapse
|
83
|
Kim H, Choi H, Im JS, Park SY, Shin G, Yoo JH, Kim G, Lee JK. Stable maintenance of the Mre11-Rad50-Nbs1 complex is sufficient to restore the DNA double-strand break response in cells lacking RecQL4 helicase activity. J Biol Chem 2021; 297:101148. [PMID: 34473993 PMCID: PMC8495703 DOI: 10.1016/j.jbc.2021.101148] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 08/16/2021] [Accepted: 08/30/2021] [Indexed: 11/30/2022] Open
Abstract
The proper cellular response to DNA double-strand breaks (DSBs) is critical for maintaining the integrity of the genome. RecQL4, a DNA helicase of which mutations are associated with Rothmund-Thomson syndrome (RTS), is required for the DNA DSB response. However, the mechanism by which RecQL4 performs these essential roles in the DSB response remains unknown. Here, we show that RecQL4 and its helicase activity are required for maintaining the stability of the Mre11-Rad50-Nbs1 (MRN) complex on DSB sites during a DSB response. We found using immunocytochemistry and live-cell imaging that the MRN complex is prematurely disassembled from DSB sites in a manner dependent upon Skp2-mediated ubiquitination of Nbs1 in RecQL4-defective cells. This early disassembly of the MRN complex could be prevented by altering the ubiquitination site of Nbs1 or by expressing a deubiquitinase, Usp28, which sufficiently restored homologous recombination repair and ATM, a major checkpoint kinase against DNA DSBs, activation abilities in RTS, and RecQL4-depleted cells. These results suggest that the essential role of RecQL4 in the DSB response is to maintain the stability of the MRN complex on DSB sites and that defects in the DSB response in cells of patients with RTS can be recovered by controlling the stability of the MRN complex.
Collapse
Affiliation(s)
- Hyunsup Kim
- Interdisciplinary Graduate Program in Genetic Engineering, Seoul National University, Seoul, Korea
| | - Hyemin Choi
- Department of Biology Education, Seoul National University, Seoul, Korea
| | - Jun-Sub Im
- Department of Biology Education, Seoul National University, Seoul, Korea
| | - Soon-Young Park
- Department of Biology Education, Seoul National University, Seoul, Korea
| | - Gwangsu Shin
- Interdisciplinary Graduate Program in Genetic Engineering, Seoul National University, Seoul, Korea
| | - Jung-Ho Yoo
- Department of Biology Education, Seoul National University, Seoul, Korea
| | - Gyungmin Kim
- Department of Biology Education, Seoul National University, Seoul, Korea
| | - Joon-Kyu Lee
- Interdisciplinary Graduate Program in Genetic Engineering, Seoul National University, Seoul, Korea; Department of Biology Education, Seoul National University, Seoul, Korea.
| |
Collapse
|
84
|
ZGRF1 promotes end resection of DNA homologous recombination via forming complex with BRCA1/EXO1. Cell Death Discov 2021; 7:260. [PMID: 34552057 PMCID: PMC8458317 DOI: 10.1038/s41420-021-00633-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 08/16/2021] [Accepted: 08/26/2021] [Indexed: 11/08/2022] Open
Abstract
To maintain genomic stability, the mammalian cells has evolved a coordinated response to DNA damage, including activation of DNA repair and cell cycle checkpoint processes. Exonuclease 1 (EXO1)-dependent excision of DNA ends is important for the initiation of homologous recombination (HR) repair of DNA breaks, which is thought to play a key role in activating the ATR-CHK1 pathway to induce G2/M cell cycle arrest. But the mechanism is still not fully understood. Here, we report that ZGRF1 forms complexes with EXO1 as well as other repair proteins and promotes DNA repair through HR. ZGRF1 is recruited to DNA damage sites in a MDC1-RNF8-BRCA1 dependent manner. Furthermore, ZGRF1 is important for the recruitment of RPA2 to DNA damage sites and the following ATR-CHK1 mediated G2/M checkpoint in response to irradiation. ZGRF1 null cells show increased sensitivity to many DNA-damaging agents, especially PARPi and irradiation. Collectively,our findings identify ZGRF1 as a novel regulator of DNA end resection and G2/M checkpoint. ZGRF1 is a potential target of radiation and PARPi cancer therapy.
Collapse
|
85
|
Zhang M, Serna-Salas S, Damba T, Borghesan M, Demaria M, Moshage H. Hepatic stellate cell senescence in liver fibrosis: Characteristics, mechanisms and perspectives. Mech Ageing Dev 2021; 199:111572. [PMID: 34536446 DOI: 10.1016/j.mad.2021.111572] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 08/15/2021] [Accepted: 09/10/2021] [Indexed: 02/08/2023]
Abstract
Myofibroblasts play an important role in fibrogenesis. Hepatic stellate cells are the main precursors of myofibroblasts. Cellular senescence is the terminal cell fate in which proliferating cells undergo irreversible cell cycle arrest. Senescent hepatic stellate cells were identified in liver fibrosis. Senescent hepatic stellate cells display decreased collagen production and proliferation. Therefore, induction of senescence could be a protective mechanism against progression of liver fibrosis and the concept of therapy-induced senescence has been proposed to treat liver fibrosis. In this review, characteristics of senescent hepatic stellate cells and the essential signaling pathways involved in senescence are reviewed. Furthermore, the potential impact of senescent hepatic stellate cells on other liver cell types are discussed. Senescent cells are cleared by the immune system. The persistence of senescent cells can remodel the microenvironment and interact with inflammatory cells to induce aging-related dysfunction. Therefore, senolytics, a class of compounds that selectively induce death of senescent cells, were introduced as treatment to remove senescent cells and consequently decrease the disadvantageous effects of persisting senescent cells. The effects of senescent hepatic stellate cells in liver fibrosis need further investigation.
Collapse
Affiliation(s)
- Mengfan Zhang
- Dept. of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Sandra Serna-Salas
- Dept. of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Turtushikh Damba
- Dept. of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; School of Pharmacy, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| | - Michaela Borghesan
- European Research Institute on the Biology of Aging (ERIBA), University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Marco Demaria
- European Research Institute on the Biology of Aging (ERIBA), University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Han Moshage
- Dept. of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.
| |
Collapse
|
86
|
Garbarino J, Eckroate J, Sundaram RK, Jensen RB, Bindra RS. Loss of ATRX confers DNA repair defects and PARP inhibitor sensitivity. Transl Oncol 2021; 14:101147. [PMID: 34118569 PMCID: PMC8203843 DOI: 10.1016/j.tranon.2021.101147] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/24/2021] [Accepted: 05/31/2021] [Indexed: 02/01/2023] Open
Abstract
Alpha Thalassemia/Mental Retardation Syndrome X-Linked (ATRX) is mutated frequently in gliomas and represents a potential target for cancer therapies. ATRX is known to function as a histone chaperone that helps incorporate histone variant, H3.3, into the genome. Studies have implicated ATRX in key DNA damage response (DDR) pathways but a distinct role in DNA repair has yet to be fully elucidated. To further investigate the function of ATRX in the DDR, we created isogenic wild-type (WT) and ATRX knockout (KO) model cell lines using CRISPR-based gene targeting. These studies revealed that loss of ATRX confers sensitivity to poly(ADP)-ribose polymerase (PARP) inhibitors, which was linked to an increase in replication stress, as detected by increased activation of the ataxia telangiectasia and Rad3-related (ATR) signaling axis. ATRX mutations frequently co-occur with mutations in isocitrate dehydrogenase-1 and -2 (IDH1/2), and the latter mutations also induce HR defects and PARP inhibitor sensitivity. We found that the magnitude of PARP inhibitor sensitivity was equal in the context of each mutation alone, although no further sensitization was observed in combination, suggesting an epistatic interaction. Finally, we observed enhanced synergistic tumor cell killing in ATRX KO cells with ATR and PARP inhibition, which is commonly seen in HR-defective cells. Taken together, these data reveal that ATRX may be used as a molecular marker for DDR defects and PARP inhibitor sensitivity, independent of IDH1/2 mutations. These data highlight the important role of common glioma-associated mutations in the regulation of DDR, and novel avenues for molecularly guided therapeutic intervention.
Collapse
Affiliation(s)
- Jennifer Garbarino
- Department of Molecular Biochemistry and Biophysics, Yale University, New Haven, CT 06511, USA
| | - Jillian Eckroate
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Ranjini K Sundaram
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Ryan B Jensen
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06511, USA.
| | - Ranjit S Bindra
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06511, USA.
| |
Collapse
|
87
|
Dybas JM, Lum KK, Kulej K, Reyes ED, Lauman R, Charman M, Purman CE, Steinbock RT, Grams N, Price AM, Mendoza L, Garcia BA, Weitzman MD. Adenovirus Remodeling of the Host Proteome and Host Factors Associated with Viral Genomes. mSystems 2021; 6:e0046821. [PMID: 34463575 DOI: 10.1128/msystems.00468-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 08/09/2021] [Indexed: 12/22/2022] Open
Abstract
Viral infections are associated with extensive remodeling of the cellular proteome. Viruses encode gene products that manipulate host proteins to redirect cellular processes or subvert antiviral immune responses. Adenovirus (AdV) encodes proteins from the early E4 region which are necessary for productive infection. Some cellular antiviral proteins are known to be targeted by AdV E4 gene products, resulting in their degradation or mislocalization. However, the full repertoire of host proteome changes induced by viral E4 proteins has not been defined. To identify cellular proteins and processes manipulated by viral products, we developed a global, unbiased proteomics approach to analyze changes to the host proteome during infection with adenovirus serotype 5 (Ad5) virus. We used whole-cell proteomics to measure total protein abundances in the proteome during Ad5 infection. Since host antiviral proteins can antagonize viral infection by associating with viral genomes and inhibiting essential viral processes, we used Isolation of Proteins on Nascent DNA (iPOND) proteomics to identify proteins associated with viral genomes during infection with wild-type Ad5 or an E4 mutant virus. By integrating these proteomics data sets, we identified cellular factors that are degraded in an E4-dependent manner or are associated with the viral genome in the absence of E4 proteins. We further show that some identified proteins exert inhibitory effects on Ad5 infection. Our systems-level analysis reveals cellular processes that are manipulated during Ad5 infection and points to host factors counteracted by early viral proteins as they remodel the host proteome to promote efficient infection. IMPORTANCE Viral infections induce myriad changes to the host cell proteome. As viruses harness cellular processes and counteract host defenses, they impact abundance, post-translational modifications, interactions, or localization of cellular proteins. Elucidating the dynamic changes to the cellular proteome during viral replication is integral to understanding how virus-host interactions influence the outcome of infection. Adenovirus encodes early gene products from the E4 genomic region that are known to alter host response pathways and promote replication, but the full extent of proteome modifications they mediate is not known. We used an integrated proteomics approach to quantitate protein abundance and protein associations with viral DNA during virus infection. Systems-level analysis identifies cellular proteins and processes impacted in an E4-dependent manner, suggesting ways that adenovirus counteracts potentially inhibitory host defenses. This study provides a global view of adenovirus-mediated proteome remodeling, which can serve as a model to investigate virus-host interactions of DNA viruses.
Collapse
Affiliation(s)
- Joseph M Dybas
- Division of Protective Immunity and Division of Cancer Pathobiology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Krystal K Lum
- Division of Protective Immunity and Division of Cancer Pathobiology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Katarzyna Kulej
- Division of Protective Immunity and Division of Cancer Pathobiology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Emigdio D Reyes
- Division of Protective Immunity and Division of Cancer Pathobiology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Richard Lauman
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Penn Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Matthew Charman
- Division of Protective Immunity and Division of Cancer Pathobiology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Caitlin E Purman
- Division of Protective Immunity and Division of Cancer Pathobiology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Robert T Steinbock
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Nicholas Grams
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Alexander M Price
- Division of Protective Immunity and Division of Cancer Pathobiology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Lydia Mendoza
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Benjamin A Garcia
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Penn Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Matthew D Weitzman
- Division of Protective Immunity and Division of Cancer Pathobiology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Penn Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
88
|
Tsai YY, Su CH, Tarn WY. p53 Activation in Genetic Disorders: Different Routes to the Same Destination. Int J Mol Sci 2021; 22:9307. [PMID: 34502215 PMCID: PMC8430931 DOI: 10.3390/ijms22179307] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 12/18/2022] Open
Abstract
The tumor suppressor p53 is critical for preventing neoplastic transformation and tumor progression. Inappropriate activation of p53, however, has been observed in a number of human inherited disorders that most often affect development of the brain, craniofacial region, limb skeleton, and hematopoietic system. Genes related to these developmental disorders are essentially involved in transcriptional regulation/chromatin remodeling, rRNA metabolism, DNA damage-repair pathways, telomere maintenance, and centrosome biogenesis. Perturbation of these activities or cellular processes may result in p53 accumulation in cell cultures, animal models, and perhaps humans as well. Mouse models of several p53 activation-associated disorders essentially recapitulate human traits, and inactivation of p53 in these models can alleviate disorder-related phenotypes. In the present review, we focus on how dysfunction of the aforementioned biological processes causes developmental defects via excessive p53 activation. Notably, several disease-related genes exert a pleiotropic effect on those cellular processes, which may modulate the magnitude of p53 activation and establish or disrupt regulatory loops. Finally, we discuss potential therapeutic strategies for genetic disorders associated with p53 misactivation.
Collapse
|
89
|
Ackerson SM, Romney C, Schuck PL, Stewart JA. To Join or Not to Join: Decision Points Along the Pathway to Double-Strand Break Repair vs. Chromosome End Protection. Front Cell Dev Biol 2021; 9:708763. [PMID: 34322492 PMCID: PMC8311741 DOI: 10.3389/fcell.2021.708763] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 06/17/2021] [Indexed: 01/01/2023] Open
Abstract
The regulation of DNA double-strand breaks (DSBs) and telomeres are diametrically opposed in the cell. DSBs are considered one of the most deleterious forms of DNA damage and must be quickly recognized and repaired. Telomeres, on the other hand, are specialized, stable DNA ends that must be protected from recognition as DSBs to inhibit unwanted chromosome fusions. Decisions to join DNA ends, or not, are therefore critical to genome stability. Yet, the processing of telomeres and DSBs share many commonalities. Accordingly, key decision points are used to shift DNA ends toward DSB repair vs. end protection. Additionally, DSBs can be repaired by two major pathways, namely homologous recombination (HR) and non-homologous end joining (NHEJ). The choice of which repair pathway is employed is also dictated by a series of decision points that shift the break toward HR or NHEJ. In this review, we will focus on these decision points and the mechanisms that dictate end protection vs. DSB repair and DSB repair choice.
Collapse
Affiliation(s)
- Stephanie M Ackerson
- Department of Biological Sciences, University of South Carolina, Columbia, SC, United States
| | - Carlan Romney
- Department of Biological Sciences, University of South Carolina, Columbia, SC, United States
| | - P Logan Schuck
- Department of Biological Sciences, University of South Carolina, Columbia, SC, United States
| | - Jason A Stewart
- Department of Biological Sciences, University of South Carolina, Columbia, SC, United States
| |
Collapse
|
90
|
Raimundo L, Calheiros J, Saraiva L. Exploiting DNA Damage Repair in Precision Cancer Therapy: BRCA1 as a Prime Therapeutic Target. Cancers (Basel) 2021; 13:cancers13143438. [PMID: 34298653 PMCID: PMC8303227 DOI: 10.3390/cancers13143438] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/21/2021] [Accepted: 07/07/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Chemical inhibition of central DNA damage repair (DDR) proteins has become a promising approach in precision cancer therapy. In particular, BRCA1 and its DDR-associated proteins constitute important targets for developing DNA repair inhibiting drugs. This review provides relevant insights on DDR biology and pharmacology, aiming to boost the development of more effective DDR targeted therapies. Abstract Precision medicine aims to identify specific molecular alterations, such as driver mutations, allowing tailored and effective anticancer therapies. Poly(ADP)-ribose polymerase inhibitors (PARPi) are the prototypical example of targeted therapy, exploiting the inability of cancer cells to repair DNA damage. Following the concept of synthetic lethality, PARPi have gained great relevance, particularly in BRCA1 dysfunctional cancer cells. In fact, BRCA1 mutations culminate in DNA repair defects that can render cancer cells more vulnerable to therapy. However, the efficacy of these drugs has been greatly affected by the occurrence of resistance due to multi-connected DNA repair pathways that may compensate for each other. Hence, the search for additional effective agents targeting DNA damage repair (DDR) is of crucial importance. In this context, BRCA1 has assumed a central role in developing drugs aimed at inhibiting DNA repair activity. Collectively, this review provides an in-depth understanding of the biology and regulatory mechanisms of DDR pathways, highlighting the potential of DDR-associated molecules, particularly BRCA1 and its interconnected partners, in precision cancer medicine. It also affords an overview about what we have achieved and a reflection on how much remains to be done in this field, further addressing encouraging clues for the advance of DDR targeted therapy.
Collapse
|
91
|
Fernandez A, O’Leary C, O’Byrne KJ, Burgess J, Richard DJ, Suraweera A. Epigenetic Mechanisms in DNA Double Strand Break Repair: A Clinical Review. Front Mol Biosci 2021; 8:685440. [PMID: 34307454 PMCID: PMC8292790 DOI: 10.3389/fmolb.2021.685440] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/24/2021] [Indexed: 12/14/2022] Open
Abstract
Upon the induction of DNA damage, the chromatin structure unwinds to allow access to enzymes to catalyse the repair. The regulation of the winding and unwinding of chromatin occurs via epigenetic modifications, which can alter gene expression without changing the DNA sequence. Epigenetic mechanisms such as histone acetylation and DNA methylation are known to be reversible and have been indicated to play different roles in the repair of DNA. More importantly, the inhibition of such mechanisms has been reported to play a role in the repair of double strand breaks, the most detrimental type of DNA damage. This occurs by manipulating the chromatin structure and the expression of essential proteins that are critical for homologous recombination and non-homologous end joining repair pathways. Inhibitors of histone deacetylases and DNA methyltransferases have demonstrated efficacy in the clinic and represent a promising approach for cancer therapy. The aims of this review are to summarise the role of histone deacetylase and DNA methyltransferase inhibitors involved in DNA double strand break repair and explore their current and future independent use in combination with other DNA repair inhibitors or pre-existing therapies in the clinic.
Collapse
Affiliation(s)
- Alejandra Fernandez
- Centre for Genomics and Personalised Health, School of Biomedical Sciences and Translational Research Institute, Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Connor O’Leary
- Centre for Genomics and Personalised Health, School of Biomedical Sciences and Translational Research Institute, Queensland University of Technology (QUT), Brisbane, QLD, Australia
- Princess Alexandra Hospital, Woolloongabba, QLD, Australia
| | - Kenneth J O’Byrne
- Centre for Genomics and Personalised Health, School of Biomedical Sciences and Translational Research Institute, Queensland University of Technology (QUT), Brisbane, QLD, Australia
- Princess Alexandra Hospital, Woolloongabba, QLD, Australia
| | - Joshua Burgess
- Centre for Genomics and Personalised Health, School of Biomedical Sciences and Translational Research Institute, Queensland University of Technology (QUT), Brisbane, QLD, Australia
- Princess Alexandra Hospital, Woolloongabba, QLD, Australia
| | - Derek J Richard
- Centre for Genomics and Personalised Health, School of Biomedical Sciences and Translational Research Institute, Queensland University of Technology (QUT), Brisbane, QLD, Australia
- Princess Alexandra Hospital, Woolloongabba, QLD, Australia
| | - Amila Suraweera
- Centre for Genomics and Personalised Health, School of Biomedical Sciences and Translational Research Institute, Queensland University of Technology (QUT), Brisbane, QLD, Australia
- Princess Alexandra Hospital, Woolloongabba, QLD, Australia
| |
Collapse
|
92
|
Xue C, Greene EC. DNA Repair Pathway Choices in CRISPR-Cas9-Mediated Genome Editing. Trends Genet 2021; 37:639-656. [PMID: 33896583 PMCID: PMC8187289 DOI: 10.1016/j.tig.2021.02.008] [Citation(s) in RCA: 186] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 12/14/2022]
Abstract
Many clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9)-based genome editing technologies take advantage of Cas nucleases to induce DNA double-strand breaks (DSBs) at desired locations within a genome. Further processing of the DSBs by the cellular DSB repair machinery is then necessary to introduce desired mutations, sequence insertions, or gene deletions. Thus, the accuracy and efficiency of genome editing are influenced by the cellular DSB repair pathways. DSBs are themselves highly genotoxic lesions and as such cells have evolved multiple mechanisms for their repair. These repair pathways include homologous recombination (HR), classical nonhomologous end joining (cNHEJ), microhomology-mediated end joining (MMEJ) and single-strand annealing (SSA). In this review, we briefly highlight CRISPR-Cas9 and then describe the mechanisms of DSB repair. Finally, we summarize recent findings of factors that can influence the choice of DNA repair pathway in response to Cas9-induced DSBs.
Collapse
Affiliation(s)
- Chaoyou Xue
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Eric C Greene
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
93
|
Bahreyni-Toossi MT, Azimian H, Aghaee-Bakhtiari SH, Mahmoudi M, Sadat-Darbandi M, Zafari N. Radiation-induced DNA damage and altered expression of p21, cyclin D1 and Mre11 genes in human fibroblast cell lines with different radiosensitivity. Mutat Res 2021; 823:111760. [PMID: 34390933 DOI: 10.1016/j.mrfmmm.2021.111760] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 06/26/2021] [Accepted: 08/03/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE Radiotherapy plays a pivotal role in the treatment of cancer. One of the main challenges in this treatment modality is radiation-induced complications in some patients affected by high radiosensitivity (RS). The differences in RS are determined mainly by genetic factors. Therefore, identifying the genes and mechanisms that affect RS in different cells is essential for evaluating radiotherapy outcomes. In the present study, the ability to repair DNA double-stranded breaks (DSB) is evaluated, followed by examining the expression levels of CDKN1A (p21), cyclinD1, and Mre11 genes in human fibroblasts with different RSs. MATERIALS & METHODS Cellular RS was measured by survival fraction at 2 Gy (SF2). The γ-H2AX assay was used for assessing DNA repair capacity. Eventually, gene expression levels from each cell line 4 and 24 h after irradiation (at 2, 4, and 8 Gy) were measured by real-time PCR. RESULTS The SF2 values for the cell lines ranged from 0.286 to 0.641, and RS differences of fibroblast cells were identified. Among the studied genes, the expression of Mre11 was the most important. Analysis of the real-time PCR data showed that changes in Mre11 gene expression (4 h after 8 Gy irradiation) were directly correlated with the RS (R2 = 0.905). The difference in the expression of the p21 gene (4 h after 4 Gy irradiation) was also promising. Finally, the flow cytometry analysis showed that the radioresistant cell lines quickly repaired DBS damages. However, the repair process was slow in the radiosensitive cell line, and the residual damage is significantly higher than other cell lines (P < 0.01). CONCLUSIONS This study indicates that changes in the expression of p21 and Mre11 genes play an important role in cell response to radiation and thus these genes can be introduced as biomarkers to predict RS in normal cell lines.
Collapse
Affiliation(s)
| | - Hosein Azimian
- Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Mahmoud Mahmoudi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahdi Sadat-Darbandi
- Department of Medical Physics, Reza Radiotherapy and Oncology Center, Mashhad, Iran
| | - Navid Zafari
- Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
94
|
Abstract
Therapeutic gene editing with the clustered regularly interspaced short palindromic repeat (CRISPR)-Cas system offers significant improvements in specificity and programmability compared with previous methods. CRISPR editing strategies can be used ex vivo and in vivo with many theoretic disease applications. Off-target effects of CRISPR-mediated gene editing are an important outcome to be aware of, minimize, and detect. The current methods of regulatory approval for personalized therapies are complex and may be proved inefficient as these therapies are implemented more widely. The role of pathologists and laboratory medicine practitioners is vital to the clinical implementation of therapeutic gene editing.
Collapse
Affiliation(s)
- Elan Hahn
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Medical Sciences Building, Room 6231, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada.
| | - Matthew Hiemenz
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, California 90027, USA; Department of Pathology, Keck School of Medicine of USC, Los Angeles, California 90033, USA
| |
Collapse
|
95
|
Perfecting DNA double-strand break repair on transcribed chromatin. Essays Biochem 2021; 64:705-719. [PMID: 32309851 DOI: 10.1042/ebc20190094] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/29/2020] [Accepted: 04/01/2020] [Indexed: 02/07/2023]
Abstract
Timely repair of DNA double-strand break (DSB) entails coordination with the local higher order chromatin structure and its transaction activities, including transcription. Recent studies are uncovering how DSBs trigger transient suppression of nearby transcription to permit faithful DNA repair, failing of which leads to elevated chromosomal aberrations and cell hypersensitivity to DNA damage. Here, we summarize the molecular bases for transcriptional control during DSB metabolism, and discuss how the exquisite coordination between the two DNA-templated processes may underlie maintenance of genome stability and cell homeostasis.
Collapse
|
96
|
Hawkins CJ, Miles MA. Mutagenic Consequences of Sublethal Cell Death Signaling. Int J Mol Sci 2021; 22:ijms22116144. [PMID: 34200309 PMCID: PMC8201051 DOI: 10.3390/ijms22116144] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/03/2021] [Accepted: 06/05/2021] [Indexed: 02/06/2023] Open
Abstract
Many human cancers exhibit defects in key DNA damage response elements that can render tumors insensitive to the cell death-promoting properties of DNA-damaging therapies. Using agents that directly induce apoptosis by targeting apoptotic components, rather than relying on DNA damage to indirectly stimulate apoptosis of cancer cells, may overcome classical blocks exploited by cancer cells to evade apoptotic cell death. However, there is increasing evidence that cells surviving sublethal exposure to classical apoptotic signaling may recover with newly acquired genomic changes which may have oncogenic potential, and so could theoretically spur the development of subsequent cancers in cured patients. Encouragingly, cells surviving sublethal necroptotic signaling did not acquire mutations, suggesting that necroptosis-inducing anti-cancer drugs may be less likely to trigger therapy-related cancers. We are yet to develop effective direct inducers of other cell death pathways, and as such, data regarding the consequences of cells surviving sublethal stimulation of those pathways are still emerging. This review details the currently known mutagenic consequences of cells surviving different cell death signaling pathways, with implications for potential oncogenic transformation. Understanding the mechanisms of mutagenesis associated (or not) with various cell death pathways will guide us in the development of future therapeutics to minimize therapy-related side effects associated with DNA damage.
Collapse
Affiliation(s)
- Christine J. Hawkins
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3086, Australia;
| | - Mark A. Miles
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3086, Australia;
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia
- Correspondence:
| |
Collapse
|
97
|
Averbek S, Jakob B, Durante M, Averbeck NB. O-GlcNAcylation Affects the Pathway Choice of DNA Double-Strand Break Repair. Int J Mol Sci 2021; 22:ijms22115715. [PMID: 34071949 PMCID: PMC8198441 DOI: 10.3390/ijms22115715] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 12/13/2022] Open
Abstract
Exposing cells to DNA damaging agents, such as ionizing radiation (IR) or cytotoxic chemicals, can cause DNA double-strand breaks (DSBs), which are crucial to repair to maintain genetic integrity. O-linked β-N-acetylglucosaminylation (O-GlcNAcylation) is a post-translational modification (PTM), which has been reported to be involved in the DNA damage response (DDR) and chromatin remodeling. Here, we investigated the impact of O-GlcNAcylation on the DDR, DSB repair and chromatin status in more detail. We also applied charged particle irradiation to analyze differences of O-GlcNAcylation and its impact on DSB repair in respect of spatial dose deposition and radiation quality. Various techniques were used, such as the γH2AX foci assay, live cell microscopy and Fluorescence Lifetime Microscopy (FLIM) to detect DSB rejoining, protein accumulation and chromatin states after treating the cells with O-GlcNAc transferase (OGT) or O-GlcNAcase (OGA) inhibitors. We confirmed that O-GlcNAcylation of MDC1 is increased upon irradiation and identified additional repair factors related to Homologous Recombination (HR), CtIP and BRCA1, which were increasingly O-GlcNAcyated upon irradiation. This is consistent with our findings that the function of HR is affected by OGT inhibition. Besides, we found that OGT and OGA activity modulate chromatin compaction states, providing a potential additional level of DNA-repair regulation.
Collapse
Affiliation(s)
- Sera Averbek
- Department of Biophysics, GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany; (S.A.); (B.J.); (M.D.)
- Department of Biology, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - Burkhard Jakob
- Department of Biophysics, GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany; (S.A.); (B.J.); (M.D.)
| | - Marco Durante
- Department of Biophysics, GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany; (S.A.); (B.J.); (M.D.)
- Department of Physics, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - Nicole B. Averbeck
- Department of Biophysics, GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany; (S.A.); (B.J.); (M.D.)
- Correspondence:
| |
Collapse
|
98
|
Patel J, Baptiste BA, Kim E, Hussain M, Croteau DL, Bohr VA. DNA damage and mitochondria in cancer and aging. Carcinogenesis 2021; 41:1625-1634. [PMID: 33146705 DOI: 10.1093/carcin/bgaa114] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/23/2020] [Accepted: 10/28/2020] [Indexed: 12/21/2022] Open
Abstract
Age and DNA repair deficiencies are strong risk factors for developing cancer. This is reflected in the comorbidity of cancer with premature aging diseases associated with DNA damage repair deficiencies. Recent research has suggested that DNA damage accumulation, telomere dysfunction and the accompanying mitochondrial dysfunction exacerbate the aging process and may increase the risk of cancer development. Thus, an area of interest in both cancer and aging research is the elucidation of the dynamic crosstalk between the nucleus and the mitochondria. In this review, we discuss current research on aging and cancer with specific focus on the role of mitochondrial dysfunction in cancer and aging as well as how nuclear to mitochondrial DNA damage signaling may be a driving factor in the increased cancer incidence with aging. We suggest that therapeutic interventions aimed at the induction of autophagy and mediation of nuclear to mitochondrial signaling may provide a mechanism for healthier aging and reduced tumorigenesis.
Collapse
Affiliation(s)
- Jaimin Patel
- Laboratory of Molecular Gerontology, National Institute on Aging, Baltimore, MD, USA
| | - Beverly A Baptiste
- Laboratory of Molecular Gerontology, National Institute on Aging, Baltimore, MD, USA
| | - Edward Kim
- Laboratory of Molecular Gerontology, National Institute on Aging, Baltimore, MD, USA
| | - Mansoor Hussain
- Laboratory of Molecular Gerontology, National Institute on Aging, Baltimore, MD, USA
| | - Deborah L Croteau
- Laboratory of Molecular Gerontology, National Institute on Aging, Baltimore, MD, USA
| | - Vilhelm A Bohr
- Laboratory of Molecular Gerontology, National Institute on Aging, Baltimore, MD, USA
| |
Collapse
|
99
|
Abbasi S, Parmar G, Kelly RD, Balasuriya N, Schild-Poulter C. The Ku complex: recent advances and emerging roles outside of non-homologous end-joining. Cell Mol Life Sci 2021; 78:4589-4613. [PMID: 33855626 PMCID: PMC11071882 DOI: 10.1007/s00018-021-03801-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/29/2021] [Accepted: 02/24/2021] [Indexed: 12/15/2022]
Abstract
Since its discovery in 1981, the Ku complex has been extensively studied under multiple cellular contexts, with most work focusing on Ku in terms of its essential role in non-homologous end-joining (NHEJ). In this process, Ku is well-known as the DNA-binding subunit for DNA-PK, which is central to the NHEJ repair process. However, in addition to the extensive study of Ku's role in DNA repair, Ku has also been implicated in various other cellular processes including transcription, the DNA damage response, DNA replication, telomere maintenance, and has since been studied in multiple contexts, growing into a multidisciplinary point of research across various fields. Some advances have been driven by clarification of Ku's structure, including the original Ku crystal structure and the more recent Ku-DNA-PKcs crystallography, cryogenic electron microscopy (cryoEM) studies, and the identification of various post-translational modifications. Here, we focus on the advances made in understanding the Ku heterodimer outside of non-homologous end-joining, and across a variety of model organisms. We explore unique structural and functional aspects, detail Ku expression, conservation, and essentiality in different species, discuss the evidence for its involvement in a diverse range of cellular functions, highlight Ku protein interactions and recent work concerning Ku-binding motifs, and finally, we summarize the clinical Ku-related research to date.
Collapse
Affiliation(s)
- Sanna Abbasi
- Robarts Research Institute and Department of Biochemistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A 5B7, Canada
| | - Gursimran Parmar
- Robarts Research Institute and Department of Biochemistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A 5B7, Canada
| | - Rachel D Kelly
- Robarts Research Institute and Department of Biochemistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A 5B7, Canada
| | - Nileeka Balasuriya
- Robarts Research Institute and Department of Biochemistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A 5B7, Canada
| | - Caroline Schild-Poulter
- Robarts Research Institute and Department of Biochemistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A 5B7, Canada.
| |
Collapse
|
100
|
Kim K, Kirby TW, Perera L, London RE. Phosphopeptide interactions of the Nbs1 N-terminal FHA-BRCT1/2 domains. Sci Rep 2021; 11:9046. [PMID: 33907233 PMCID: PMC8079451 DOI: 10.1038/s41598-021-88400-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 04/05/2021] [Indexed: 11/21/2022] Open
Abstract
Human Nbs1, a component of the MRN complex involved in DNA double strand break repair, contains a concatenated N-terminal FHA-BRCT1/2 sequence that supports interaction with multiple phosphopeptide binding partners. MDC1 binding localizes Nbs1 to the damage site, while binding of CDK-phosphorylated CtIP activates additional ATM-dependent CtIP phosphorylation, modulating substrate-dependent resection. We have investigated the phosphopeptide binding characteristics of Nbs1 BRCT1/2 based on a molecular modeling approach that revealed structural homology with the tandem TopBP1 BRCT7/8 domains. Relevance of the model was substantiated by the ability of TopBP1-binding FANCJ phosphopeptide to interact with hsNbsBRCT1/2, albeit with lower affinity. The modeled BRCT1/2 is characterized by low pSer/pThr selectivity, preference for a cationic residue at the + 2 position, and an inter-domain binding cleft selective for hydrophobic residues at the + 3/ + 4 positions. These features provide insight into the basis for interaction of SDT motifs with the BRCT1/2 domains and allowed identification of CtIP pSer347- and pThr847-containing phosphopeptides as high and lower affinity ligands, respectively. Among other binding partners considered, rodent XRCC1 contains an SDT sequence in the second linker consistent with high-affinity Nbs1 binding, while human XRCC1 lacks this motif, but contains other phosphorylated sequences that exhibit low-affinity binding.
Collapse
Affiliation(s)
- Kyungmin Kim
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, 27709, USA
| | - Thomas W Kirby
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, 27709, USA
| | - Lalith Perera
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, 27709, USA
| | - Robert E London
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, 27709, USA.
| |
Collapse
|