51
|
Kašuba V, Tariba Lovaković B, Lucić Vrdoljak A, Katić A, Kopjar N, Micek V, Milić M, Pizent A, Želježić D, Žunec S. Evaluation of Toxic Effects Induced by Sub-Acute Exposure to Low Doses of α-Cypermethrin in Adult Male Rats. TOXICS 2022; 10:toxics10120717. [PMID: 36548550 PMCID: PMC9785956 DOI: 10.3390/toxics10120717] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/14/2022] [Accepted: 11/21/2022] [Indexed: 05/14/2023]
Abstract
To contribute new information to the pyrethroid pesticide α-cypermethrin toxicity profile, we evaluated its effects after oral administration to Wistar rats at daily doses of 2.186, 0.015, 0.157, and 0.786 mg/kg bw for 28 days. Evaluations were performed using markers of oxidative stress, cholinesterase (ChE) activities, and levels of primary DNA damage in plasma/whole blood and liver, kidney, and brain tissue. Consecutive exposure to α-cypermethrin affected the kidney, liver, and brain weight of rats. A significant increase in concentration of the thiobarbituric acid reactive species was observed in the brain, accompanied by a significant increase in glutathione peroxidase (GPx) activity. An increase in GPx activity was also observed in the liver of all α-cypermethrin-treated groups, while GPx activity in the blood was significantly lower than in controls. A decrease in ChE activities was observed in the kidney and liver. Treatment with α-cypermethrin induced DNA damage in the studied cell types at almost all of the applied doses, indicating the highest susceptibility in the brain. The present study showed that, even at very low doses, exposure to α-cypermethrin exerts genotoxic effects and sets in motion the antioxidative mechanisms of cell defense, indicating the potential hazards posed by this insecticide.
Collapse
|
52
|
Zhang LB, Yan Y, He J, Wang PP, Chen X, Lan TY, Guo YX, Wang JP, Luo J, Yan ZR, Xu Y, Tao QW. Epimedii Herba: An ancient Chinese herbal medicine in the prevention and treatment of rheumatoid arthritis. Front Chem 2022; 10:1023779. [PMID: 36465876 PMCID: PMC9712800 DOI: 10.3389/fchem.2022.1023779] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 11/02/2022] [Indexed: 08/29/2023] Open
Abstract
Rheumatoid arthritis (RA) is a chronic, progressive inflammatory and systemic autoimmune disease resulting in severe joint destruction, lifelong suffering and considerable disability. Diverse prescriptions of traditional Chinese medicine (TCM) containing Epimedii Herba (EH) achieve greatly curative effects against RA. The present review aims to systemically summarize the therapeutic effect, pharmacological mechanism, bioavailability and safety assessment of EH to provide a novel insight for subsequent studies. The search terms included were "Epimedii Herba", "yinyanghuo", "arthritis, rheumatoid" and "Rheumatoid Arthritis", and relevant literatures were collected on the database such as Google Scholar, Pubmed, Web of Science and CNKI. In this review, 15 compounds from EH for the treatment of RA were summarized from the aspects of anti-inflammatory, immunoregulatory, cartilage and bone protective, antiangiogenic and antioxidant activities. Although EH has been frequently used to treat RA in clinical practice, studies on mechanisms of these activities are still scarce. Various compounds of EH have the multifunctional traits in the treatment of RA, so EH may be a great complementary medicine option and it is necessary to pay more attention to further research and development.
Collapse
Affiliation(s)
- Liu-Bo Zhang
- Department of TCM Rheumatism, Department of Pharmacy, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
- China-Japan Friendship Clinical Medical College & School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Yu Yan
- Department of TCM Rheumatism, Department of Pharmacy, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Jun He
- Department of TCM Rheumatism, Department of Pharmacy, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Pei-Pei Wang
- China-Japan Friendship Clinical Medical College & School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Xin Chen
- School of Chinese Medicine, Shenyang Pharmaceutical University, Shenyang, China
| | - Tian-Yi Lan
- Department of TCM Rheumatism, Department of Pharmacy, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
- China-Japan Friendship Clinical Medical College & School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Yu-Xuan Guo
- Department of TCM Rheumatism, Department of Pharmacy, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
- China-Japan Friendship Clinical Medical College & School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Jin-Ping Wang
- Department of TCM Rheumatism, Department of Pharmacy, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Jing Luo
- Department of TCM Rheumatism, Department of Pharmacy, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Ze-Ran Yan
- Department of TCM Rheumatism, Department of Pharmacy, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Yuan Xu
- Department of TCM Rheumatism, Department of Pharmacy, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Qing-Wen Tao
- Department of TCM Rheumatism, Department of Pharmacy, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
53
|
Li Y, Liu S, Zhao C, Zhang Z, Nie D, Tang W, Li Y. The Chemical Composition and Antibacterial and Antioxidant Activities of Five Citrus Essential Oils. Molecules 2022; 27:molecules27207044. [PMID: 36296637 PMCID: PMC9607008 DOI: 10.3390/molecules27207044] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/06/2022] [Accepted: 10/17/2022] [Indexed: 11/16/2022] Open
Abstract
Increasing concerns over the use of antimicrobial growth promoters in animal production has prompted the need to explore the use of natural alternatives such as phytogenic compounds and probiotics. Citrus EOs have the potential to be used as an alternative to antibiotics in animals. The purpose of this research was to study the antibacterial and antioxidant activities of five citrus EOs, grapefruit essential oil (GEO), sweet orange EO (SEO), bergamot EO (BEO), lemon EO (LEO) and their active component d-limonene EO (DLEO). The chemical composition of EOs was analyzed by gas chromatography–mass spectrometry (GC-MS). The antibacterial activities of the EOs on three bacteria (Escherichia coli, Salmonella and Lactobacillus acidophilus) were tested by measuring the minimum inhibitory concentration (MIC), minimal bactericidal concentration (MBC) and inhibition zone diameter (IZD). The antioxidant activities of EOs were evaluated by measuring the free radical scavenging activities of DPPH and ABTS. We found that the active components of the five citrus EOs were mainly terpenes, and the content of d-limonene was the highest. The antibacterial test showed that citrus EOs had selective antibacterial activity, and the LEO had the best selective antibacterial activity. Similarly, the LEO had the best scavenging ability for DPPH radicals, and DLEO had the best scavenging ability for ABTS. Although the main compound of the five citrus EOs was d-limonene, the selective antibacterial and antioxidant activity of them might not be primarily attributed to the d-limonene, but some other compounds’ combined action.
Collapse
|
54
|
Chen Y, Lin Q, Wang J, Mu J, Liang Y. Proteins, polysaccharides and their derivatives as macromolecular antioxidant supplements: A review of in vitro screening methods and strategies. Int J Biol Macromol 2022; 224:958-971. [DOI: 10.1016/j.ijbiomac.2022.10.181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/16/2022] [Accepted: 10/20/2022] [Indexed: 11/05/2022]
|
55
|
Mineral and Phenolic Composition of Erodium guttatum Extracts and Investigation of Their Antioxidant Properties in Diabetic Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4229981. [PMID: 36193070 PMCID: PMC9526627 DOI: 10.1155/2022/4229981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022]
Abstract
Erodium guttatum is widely used in folk medicine in many countries to treat various ailments such as urinary inflammation, diabetes, constipation, and eczema. The aim of this study is the determination of mineral and phenolic compounds of E. guttatum extracts as well as the investigation of their antidiabetic and antioxidant properties. The mineral composition was determined by the methods of inductively coupled plasma atomic emission spectroscopy analysis. Phytochemical contents of total polyphenols, total flavonoids, and catechic tannins were estimated by colorimetric dosages. The phenolic composition was identified by high-resolution mass spectrometry (HRMS) analysis. The antioxidant activity of E. guttatum extracts was measured in vitro by five methods (DPPH, ABTS, FRAP, H2O2, and xanthine oxidase) and in vivo by assaying the malondialdehyde marker (MDA), superoxide dismutase (SOD), catalase (CAT), and glutathione (GSH). The obtained results showed that the root plant material is rich in minerals such as k, Ca, and Mg. The methanolic extract of E. guttatum is the richest in polyphenols (389.20 ± 1.55 mg EAG/gE), tannins (289.70 ± 3.57 mg EC/gE), and flavonoids (432.5 ± 3.21 mg ER/gE). Concerning the ESI-HRMS analysis, it showed the presence of numerous bioactive compounds, including shikimic acid, rottlerine, gallic acid, and vanillic acid. Moreover, the aqueous and alcoholic extracts of E. guttatum exhibited antiradical and antioxidant activity in five tests used, with the best effect of the methanolic extract. Moreover, findings showed that in vivo investigations confirmed those obtained in vitro. On the other hand, E. guttatum showed important antidiabetic effects in vivo. Indeed, diabetic mice treated with extracts of E. guttatum were able to significantly reduce MDA levels and increase the secretion of enzymatic and nonenzymatic antioxidants (SOD, CAT, and GSH, respectively). However, the antioxidant activity of the extracts might be attributed to the abundance of bioactive molecules; as results, this work serves as a foundation for additional pharmacological research.
Collapse
|
56
|
Yuwong Wanyu B, Emégam Kouémou N, Sotoing Taiwe G, Temkou Ngoupaye G, Tamanji Ndzweng L, Lambou Fotio A, Nguepi Dongmo MS, Ngo Bum E. Dichrocephala integrifolia Aqueous Extract Antagonises Chronic and Binges Ethanol Feeding-Induced Memory Dysfunctions: Insights into Antioxidant and Anti-Inflammatory Mechanisms. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:1620816. [PMID: 36110196 PMCID: PMC9470300 DOI: 10.1155/2022/1620816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 08/07/2022] [Indexed: 11/28/2022]
Abstract
Ethanol consumption is widely accepted despite its addictive properties and its mind-altering effects. This study aimed to assess the effects of Dichrocephala integrifolia against, memory impairment, on a mouse model of chronic and binges ethanol feeding. Mice were divided, into groups of 8 animals each, and received distilled water, Dichrocephala integrifolia aqueous extract (25; 50; 100; or 200 mg/kg) or memantine (200 mg/kg) once a day, while fe, with Lieber-DeCarli control (sham group only) or Lieber-DeCarli ethanol diet ad libitum for 28 days. The Y maze and the novel object recognition (NOR) tests were used to evaluate spatial short-term and recognition memory, respectively. Malondialdehyde, nitric oxide, glutathione levels, and proinflammatory cytokines (Il-1β, TNF-α, and Il-6) were evaluated in brain homogenates following behavioral assessments. The results showed that chronic ethanol administration in mice was associated with a significant (p < 0.001) reduction in the spontaneous alternation percentage and the discrimination index, in the Y maze and the NOR tests, respectively. It significantly (p < 0.01) increased oxidative stress and inflammation markers levels in the brain. Dichrocephala integrifolia (100 and 200 mg/kg) as well as memantine (200 mg/kg) significantly (p < 0.001) increased the percentage of spontaneous alternation and the discrimination index, in the Y maze and NOR tests, respectively. Dichrocephala integrifolia (100 and 200 mg/kg) likewise memantine (200 mg/kg) significantly (p < 0.01) alleviated ethanol-induced increase, in the brain malondialdehyde level, nitric oxide, Il-1β, TNF-α, and Il-6. From these findings, it can be concluded that Dichrocephala integrifolia counteracted memory impairment, oxidative stress, and neuroinflammation induced by chronic ethanol consumption in mice.
Collapse
Affiliation(s)
- Bertrand Yuwong Wanyu
- Department of Animal Biology and Conservation, Faculty of Science, University of Buea, P.O. Box 63, Buea, Cameroon
| | - Nadège Emégam Kouémou
- Department of Animal Biology and Conservation, Faculty of Science, University of Buea, P.O. Box 63, Buea, Cameroon
| | - Germain Sotoing Taiwe
- Department of Animal Biology and Conservation, Faculty of Science, University of Buea, P.O. Box 63, Buea, Cameroon
| | - Gwladys Temkou Ngoupaye
- Department of Animal Biology, Faculty of Science, University of Dschang, P.O. Box 67, Dschang, Cameroon
| | - Linda Tamanji Ndzweng
- Department of Animal Biology and Conservation, Faculty of Science, University of Buea, P.O. Box 63, Buea, Cameroon
| | - Agathe Lambou Fotio
- Department of Animal Biology and Conservation, Faculty of Science, University of Buea, P.O. Box 63, Buea, Cameroon
| | | | - Elisabeth Ngo Bum
- Department of Biological Sciences, Faculty of Science, University of Maroua, P.O. Box 52, Maroua, Cameroon
| |
Collapse
|
57
|
Azmy AM, Abd Elbaki BT, Ali MA, Mahmoud AA. Effect of ozone versus naringin on testicular injury in experimentally induced ulcerative colitis in adult male albino rats. Ultrastruct Pathol 2022; 46:439-461. [DOI: 10.1080/01913123.2022.2132337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Abeer M. Azmy
- Medical Histology and Cell Biology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Bassant T. Abd Elbaki
- Medical Histology and Cell Biology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Mohammed A. Ali
- Medical Histology and Cell Biology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Abeer A Mahmoud
- Medical Histology and Cell Biology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
58
|
Machado FR, Araujo SM, Funguetto ACR, Bortolotto VC, Fernandes EJ, Mustafa Dahleh Mustafa M, Haas SE, Guerra GP, Prigol M, Boeira SP. Relationship between toxicity and oxidative stress of the nanoencapsulated colchicine in a model of Drosophila melanogaster. Free Radic Res 2022; 56:577-594. [PMID: 36641780 DOI: 10.1080/10715762.2022.2146500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Drug repurposing allows searching for new biological targets, especially against emerging diseases such as Covid-19. Drug colchicine (COL) presents recognized anti-inflammatory action, while the nanotechnology purpose therapies with low doses, efficacy, and decrease the drug's side-effects. This study aims to evaluate the effects of COL and colchicine nanocapsules (NCCOL) on survival, LC50, activity locomotor, and oxidative stress parameters, elucidating the toxicity profile in acute and chronic exposure in Drosophila melanogaster. Three-day-old flies were investigated into groups: Control, 0.001, 0.0025, 0.005, and 0.010 mg/mL of COL or NCCOL. The survival rate, open field test, LC50, oxidative stress markers (reactive species (RS) production, thiobarbituric acid reactive substances), antioxidant enzyme activity (catalase (CAT), superoxide dismutase (SOD), glutathione S-transferase), protein thiols, nonprotein thiols, acetylcholinesterase activity, and cell viability were measured. As a result, acute exposure to the COL decreases the number of crosses in the open field and increases CAT activity. NCCOL reduced RS levels, increased lipoperoxidation and SOD activity. Chronic exposure to the COL and NCCOL in high concentrations implied high mortality and enzymatic inhibition of the CAT and AChE, and only the COL caused locomotor damage in the open field test. Thus, NCCOL again reduced the formation of RS while COL increased. In this comparative study, NCCOL was less toxic to the antioxidant system than COL and showed notable involvement of oxidative stress as one of their toxicity mechanisms. Future studies are needed to elucidate all aspects of nanosafety related to the NCCOL.
Collapse
Affiliation(s)
- Franciéle Romero Machado
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactives Molecules - LaftamBio, Federal University of Pampa, Itaqui, Brazil
| | - Stífani Machado Araujo
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactives Molecules - LaftamBio, Federal University of Pampa, Itaqui, Brazil
| | | | - Vandreza Cardoso Bortolotto
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactives Molecules - LaftamBio, Federal University of Pampa, Itaqui, Brazil
| | - Eliana Jardim Fernandes
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactives Molecules - LaftamBio, Federal University of Pampa, Itaqui, Brazil
| | - Munir Mustafa Dahleh Mustafa
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactives Molecules - LaftamBio, Federal University of Pampa, Itaqui, Brazil
| | - Sandra Elisa Haas
- Pharmacology Laboratory - LABFAR, Federal University of Pampa, Uruguaiana, Brazil
| | - Gustavo Petri Guerra
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactives Molecules - LaftamBio, Federal University of Pampa, Itaqui, Brazil
| | - Marina Prigol
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactives Molecules - LaftamBio, Federal University of Pampa, Itaqui, Brazil
| | - Silvana Peterini Boeira
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactives Molecules - LaftamBio, Federal University of Pampa, Itaqui, Brazil
| |
Collapse
|
59
|
Esposito L, Mastrocola D, Martuscelli M. Approaching to biogenic amines as quality markers in packaged chicken meat. Front Nutr 2022; 9:966790. [PMID: 36118774 PMCID: PMC9479628 DOI: 10.3389/fnut.2022.966790] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 07/25/2022] [Indexed: 11/20/2022] Open
Abstract
Following the chicken meat quality decay remains a tricky procedure. On one hand, food companies need of fast and affordable methods to keep constant higher sensory and safety standards, on the other hand, food scientists and operators find difficult conjugating these exigencies by means of univocal parameters. Food quality definition itself is, in fact, a multi-layered and composite concept in which many features play a part. Thus, here we propose an index that relies on biogenic amines (BAs) evolution. These compounds may indirectly inform about microbial contamination and wrong management, production, and storage conditions of meat and meat products. In this study, three cuts of chicken meat (breast filets, drumsticks, and legs) packed under modified atmosphere, under vacuum, and in air-packaging, stored at +4°C (until to 15 days), were analyzed. Some BAs were combined in an index (BAI) and their evolution was followed. The Thiobarbituric Acid Reactive Species assay (TBARS) was also used as a common reference method. Generally, BAI may better identify the beginning of quality impairment than lipid oxidation spreading. ANOVA statistical analysis has highlighted that the storage time is anyway the most detrimental factor for chicken decay when it is stored in refrigerated rooms (p > 0.01). Despite TBARS still remains a powerful tool for chicken goods, its exclusive use may not be enough to explain quality loss. On the contrary, BAI implementation in fresh meat can give a more complete information combining food safety exigencies with sensory attributes.
Collapse
|
60
|
Dietary Intervention with Blackcurrant Pomace Protects Rats from Testicular Oxidative Stress Induced by Exposition to Biodiesel Exhaust. Antioxidants (Basel) 2022; 11:antiox11081562. [PMID: 36009280 PMCID: PMC9404818 DOI: 10.3390/antiox11081562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/05/2022] [Accepted: 08/10/2022] [Indexed: 11/29/2022] Open
Abstract
The exposure to diesel exhaust emissions (DEE) contributes to negative health outcomes and premature mortality. At the same time, the health effects of the exposure to biodiesel exhaust emission are still in scientific debate. The aim of presented study was to investigate in an animal study the effects of exposure to DEE from two types of biodiesel fuels, 1st generation B7 biodiesel containing 7% of fatty acid methyl esters (FAME) or 2nd generation biodiesel (SHB20) containing 7% of FAME and 13% of hydrotreated vegetable oil (HVO), on the oxidative stress in testes and possible protective effects of dietary intervention with blackcurrant pomace (BC). Adult Fisher344/DuCrl rats were exposed by inhalation (6 h/day, 5 days/week for 4 weeks) to 2% of DEE from B7 or SHB20 fuel mixed with air. The animals from B7 (n = 14) and SHB20 (n = 14) groups subjected to filtered by a diesel particulate filter (DPF) or unfiltered DEE were maintained on standard feed. The rats from B7+BC (n = 12) or SHB20+BC (n = 12), exposed to DEE in the same way, were fed with feed supplemented containing 2% (m/m) of BC. The exposure to exhaust emissions from 1st and 2nd generation biodiesel resulted in induction of oxidative stress in the testes. Higher concentration of the oxidative stress markers thiobarbituric acid-reactive substances (TBARS), lipid hydroperoxides (LOOHs), 25-dihydroxycholesterols (25(OH)2Ch), and 7-ketocholesterol (7-KCh) level), as well as decreased level of antioxidant defense systems such as reduced glutathione (GSH), GSH/GSSG ratio, and increased level of oxidized glutathione (GSSG)) were found. Dietary intervention reduced the concentration of TBARS, 7-KCh, LOOHs, and the GSSG level, and elevated the GSH level in testes. In conclusion, DEE-induced oxidative stress in the testes was related to the biodiesel feedstock and the application of DPF. The SHB20 DEE without DPF technology exerted the most pronounced toxic effects. Dietary intervention with BC in rats exposed to DEE reduced oxidative stress in testes and improved antioxidative defense parameters, however the redox balance in the testes was not completely restored.
Collapse
|
61
|
Lipid Oxidation in Cured Meat Model Systems Containing Either Antioxidant or Prooxidant: A Comparative Study on the Determination of Malondialdehyde Concentration by Using Conventional, Test Kit and Chromatographic Assays. FOOD ANAL METHOD 2022. [DOI: 10.1007/s12161-022-02376-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
62
|
Evaluation of a Dietary Grape Extract on Oxidative Status, Intestinal Morphology, Plasma Acute-Phase Proteins and Inflammation Parameters of Weaning Piglets at Various Points of Time. Antioxidants (Basel) 2022; 11:antiox11081428. [PMID: 35892630 PMCID: PMC9394324 DOI: 10.3390/antiox11081428] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/14/2022] [Accepted: 07/20/2022] [Indexed: 11/17/2022] Open
Abstract
Reports of the underlying mechanisms of dietary grape extract (GE) in overcoming weaning challenges in piglets have been partly inconsistent. Furthermore, evaluations of the effects of GE at weaning in comparison to those of widely used therapeutic antibiotics have been scarce. To explore the mode of action of GE in selected tissues and plasma, we evaluated gut morphology, antioxidant and inflammation indices. Accordingly, 180 weaning piglets were allocated to three treatment groups: negative control (NC), NC and antibiotic treatment for the first 5 days of the trial (positive control, PC), and NC and GE (entire trial). The villus surface was positively affected by GE and PC on day 27/28 of the trial in the jejunum and on day 55/56 of the trial in the ileum. In the colon, NC tended (p < 0.10) to increase crypt parameters compared to PC on day 55/56. The PC group tended (p < 0.10) to increase catalase activity in the ileum and decrease Cu/Zn-SOD activity in the jejunum, both compared to NC. There were no additional effects on antioxidant measurements of tissue and plasma, tissue gene expression, or plasma acute-phase proteins. In conclusion, GE supplementation beneficially affected the villus surface of the small intestine. However, these changes were not linked to the antioxidant and anti-inflammatory properties of GE.
Collapse
|
63
|
Benchaâbane S, Ayad AS, Loucif-Ayad W, Soltani N. Multibiomarker responses after exposure to a sublethal concentration of thiamethoxam in the African honeybee (Apis mellifera intermissa). Comp Biochem Physiol C Toxicol Pharmacol 2022; 257:109334. [PMID: 35351619 DOI: 10.1016/j.cbpc.2022.109334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/15/2022] [Accepted: 03/23/2022] [Indexed: 11/03/2022]
Abstract
Thiamethoxam is an insecticide mainly used in agriculture to control insect pests. However, non-target insect species, such as honeybees, may also be impacted. In this study, adults of Apis mellifera intermissa were orally exposed under laboratory conditions to a sublethal concentration of thiamethoxam (CL25= 0.17 ng/μl) for 9 days and the effects were evaluated at the biochemical level, by monitoring specific oxidative stress and neuronal biomarkers. Results showed an increase in the antioxidant enzymes, glutatione-S-transferase (GST), catalase (CAT) and glutathione peroxidase (GPx) and in content of malondialdehyde (MDA). The activity of acetylcholinesterase (AChE) was downregulated as evidence of a neurotoxic action and no significant change was observed in glutathione (GSH). Exposure to the insecticide thiamethoxam induced oxidative stress and defense mechanisms affecting honeybee physiology.
Collapse
Affiliation(s)
- S Benchaâbane
- Laboratory of Applied Animal Biology, Department of Biology, Faculty of Sciences, Badji Mokhtar University, Annaba 23000, Algeria.
| | - A S Ayad
- Laboratory of Applied Animal Biology, Department of Biology, Faculty of Sciences, Badji Mokhtar University, Annaba 23000, Algeria
| | - W Loucif-Ayad
- Laboratory of Applied Animal Biology, Department of Biology, Faculty of Sciences, Badji Mokhtar University, Annaba 23000, Algeria; Faculty of Medicine, Badji Mokhtar University, Annaba 23000, Algeria
| | - N Soltani
- Laboratory of Applied Animal Biology, Department of Biology, Faculty of Sciences, Badji Mokhtar University, Annaba 23000, Algeria
| |
Collapse
|
64
|
Lotfy K, Khalil S. Effect of plasma-activated water on microbial quality and physicochemical properties of fresh beef. OPEN PHYSICS 2022; 20:573-586. [DOI: 10.1515/phys-2022-0049] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Abstract
This work studies the influence of plasma-activated water (PAW) on the decontamination of beef and its influence on the color, pH, the thiobarbituric acid reactive substance values (TBARS), and total volatile basic nitrogen (TVBN) values of meat. PAW was generated using non-thermal atmospheric pressure plasma jet (NTAPPJ). He + 0.2% N2 and He + 0.2% O2 were used as worker gas to generate PAW. The PAW produced by the He + O2 plasma system exhibited a higher potential for decontamination of beef than that produced by the He + N2 plasma system. The lightness value (L*) of treated beef does not exhibit a noticeable difference with the control one. TBARS values of all treated beef were lower than the rancidity threshold but significantly greater than that of control samples. The TVBN value of control beef samples reached the decay threshold after 18 days of stockpiling, but treated beef remained good. This work reveals that PAW can potentially inhibit the growth of microorganisms in beef.
Collapse
Affiliation(s)
- Khaled Lotfy
- Department of Biology, Faculty of Science, Branch of Tayma, University of Tabuk , P.O. Box 741 , 71491 Tabuk , Kingdom of Saudi Arabia
- King Marriott Higher, Institute of Engineering and Technology , 23713 Alexandria , Egypt
| | - Sayed Khalil
- Physics Department, Faculty of Science, Sohag University , Sohag , Egypt
- University College, Umm Al-Qura University , Alqunfadah , Saudi Arabia
| |
Collapse
|
65
|
Maternal Fluoride Exposure Exerts Different Toxicity Patterns in Parotid and Submandibular Glands of Offspring Rats. Int J Mol Sci 2022; 23:ijms23137217. [PMID: 35806221 PMCID: PMC9266858 DOI: 10.3390/ijms23137217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/09/2022] [Accepted: 06/13/2022] [Indexed: 12/19/2022] Open
Abstract
There is currently a controversial and heated debate about the safety and ethical aspects of fluoride (F) used for human consumption. Thus, this study assessed the effects of prenatal and postnatal F exposure of rats on the salivary glands of their offspring. Pregnant rats were exposed to 0, 10, or 50 mg F/L from the drinking water, from the first day of gestation until offspring weaning (42 days). The offspring rats were euthanized for the collection of the parotid (PA) and submandibular (SM) glands, to assess the oxidative biochemistry and to perform morphometric and immunohistochemical analyses. F exposure was associated with a decrease in the antioxidant competence of PA in the 10 mg F/L group, contrasting with the increase observed in the 50 mg F/L group. On the other hand, the antioxidant competence of the SM glands was decreased at both concentrations. Moreover, both 10 and 50 mg F/L groups showed lower anti-α-smooth muscle actin immunostaining area in SM, while exposure to 50 mg F/L was associated with changes in gland morphometry by increasing the duct area in both glands. These findings demonstrate a greater susceptibility of the SM glands of the offspring to F at high concentration in comparison to PA, reinforcing the need to adhere to the optimum F levels recommended by the regulatory agencies. Such findings must be interpreted with caution, especially considering their translational meaning.
Collapse
|
66
|
Thiamine Demonstrates Bio-Preservative and Anti-Microbial Effects in Minced Beef Meat Storage and Lipopolysaccharide (LPS)-Stimulated RAW 264.7 Macrophages. Animals (Basel) 2022; 12:ani12131646. [PMID: 35804544 PMCID: PMC9264808 DOI: 10.3390/ani12131646] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/16/2022] [Accepted: 06/25/2022] [Indexed: 12/22/2022] Open
Abstract
This study assessed the anti-inflammatory effect of thiamine (TA) in lipopolysaccharide-stimulated RAW264.7 cells and also assessed the preservative properties of TA in minced beef. TA demonstrated a concentration-dependent antimicrobial effect on microbial contaminants. Inhibition zones and MIC from the effect of TA on the tested bacterial strains were respectively within the ranges 15−20 mm and 62.5−700 µg/mL. TA significantly (p < 0.05) decreased all the pro-inflammatory factors [(nitric oxide (NO), prostaglandin E2 (PGE2), TNF-α, IL-6, IL-1β, and nuclear factor-κB (NF-κB)] monitored relative to LPS-stimulated RAW264.7 cells. TA inhibited the expression of both iNOS and COX-2. In minced beef flesh, the growth of Listeria monocytogenes was inhibited by TA. TA improved physicochemical and microbiological parameters of stored minced beef meat compared to control. Principal component analyses and heat maps elucidate the quality of the tested meats.
Collapse
|
67
|
An mTOR and DNA-PK dual inhibitor CC-115 hinders non-small cell lung cancer cell growth. Cell Death Dis 2022; 8:293. [PMID: 35717530 PMCID: PMC9206683 DOI: 10.1038/s41420-022-01082-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 12/13/2022]
Abstract
Molecularly-targeted agents are still urgently needed for better non-small cell lung cancer (NSCLC) therapy. CC-115 is a potent DNA-dependent protein kinase (DNA-PK) and mammalian target of rapamycin (mTOR) dual blocker. We evaluated its activity in different human NSCLC cells. In various primary human NSCLC cells and A549 cells, CC-115 potently inhibited viability, cell proliferation, cell cycle progression, and hindered cell migration/invasion. Apoptosis was provoked in CC-115-stimulated NSCLC cells. The dual inhibitor, however, was unable to induce significant cytotoxic and pro-apoptotic activity in the lung epithelial cells. In primary NSCLC cells, CC-115 blocked activation of mTORC1/2 and DNA-PK. Yet, CC-115-induced primary NSCLC cell death was more potent than combined inhibition of DNA-PK plus mTOR. Further studies found that CC-115 provoked robust oxidative injury in primary NSCLC cells, which appeared independent of mTOR-DNA-PK dual blockage. In vivo studies showed that CC-115 oral administration in nude mice remarkably suppressed primary NSCLC cell xenograft growth. In CC-115-treated NSCLC xenograft tissues, mTOR-DNA-PK dual inhibition and oxidative injury were detected. Together, CC-115 potently inhibits NSCLC cell growth.
Collapse
|
68
|
Zoubiri H, Tahar A, AitAbderrhmane S, Saidani M, Koceir EA. Oral Cholecalciferol Supplementation in Sahara Black People with Chronic Kidney Disease Modulates Cytokine Storm, Oxidative Stress Damage and Athero-Thromboembolic Risk. Nutrients 2022; 14:nu14112285. [PMID: 35684085 PMCID: PMC9182799 DOI: 10.3390/nu14112285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/26/2022] [Accepted: 05/26/2022] [Indexed: 11/16/2022] Open
Abstract
The 25-hydroxyvitamin D3 (25OHD3) deficiency in chronic kidney disease (CKD) is associated with immune system dysfunction (pro-inflammatory cytokines storm) through macrophages renal infiltration, oxidative stress (OxS) damage and athero-thromboembolic risk. Conversely, cholecalciferol supplementation (25OHD-S) prevents kidney fibrosis by inhibition of vascular calcification and nephrotic apoptosis (nephrons reduction). The objective of this study was to investigate the pleiotropic effects of 25OHD-S on immunomodulation, antioxidant status and in protecting against thromboembolic events in deficiency CKD Black and White individuals living in the Southern Sahara (SS). The oral 25OHD-S was evaluated in 60,000 IU/month/36 weeks versus in 2000 IU/day/24 weeks in Black (n = 156) and White (n = 150). Total serum vitamin D was determined by liquid chromatography-tandem mass spectrometry. All biomarkers of pro-inflammatory cytokines (PIC) were assessed by ELISA tests. OxS markers were assessed by Randox kits. Homocysteine and lipoproteine (a) were evaluated by biochemical methods as biomarkers of atherothromboembolic risk. All statistical analyses were performed with Student’s t-test and one-way ANOVA. The Pearson test was used to calculate the correlation coefficient. The means will be significantly different at a level of p value < 0.05. Multiple logistic regressions were performed using Epi-info and Statview software. Vitamin D deficiency alters the PIC profile, OxS damage and atherothrombogenic biomarkers in both SS groups in the same manner; however, these disorders are more acute in Black compared to White SS individuals. The results showed that the serum 25OHD3 concentrations became normal (>75 nmol/L or >30 ng/mL) in the two groups. We have shown that the dose and duration of 25OHD-S treatment are not similar in Black SS residents compared to White SS subjects, whilst the same inhabit the south Sahara environment. It appears that a high dose intermittent over a long period (D60: 36 weeks) was more efficient in Black people; while a lower dose for a short time is sufficient (D2: 24 weeks) in their White counterparts. The oral 25OHD-S attenuates PIC overproduction and OxS damage, but does not reduce athero-thromboembolic risk, particularly in Black SS residents.
Collapse
Affiliation(s)
- Houda Zoubiri
- Laboratory of Biology and Organisms Physiology, Team of Bioenergetics and Intermediary Metabolism Nutrition and Dietetics in Human Pathologies Post Graduate School, University of Sciences and Technology Houari Boumediene, El Alia, Bab Ezzouar, Algiers 16123, Algeria; (H.Z.); (A.T.)
- Biology and Physiology Laboratory, Ecole Nationale Supérieure de Kouba, Algiers 16308, Algeria
| | - Amina Tahar
- Laboratory of Biology and Organisms Physiology, Team of Bioenergetics and Intermediary Metabolism Nutrition and Dietetics in Human Pathologies Post Graduate School, University of Sciences and Technology Houari Boumediene, El Alia, Bab Ezzouar, Algiers 16123, Algeria; (H.Z.); (A.T.)
| | | | - Messaoud Saidani
- Clinical Nephrology Exploration Dialysis and Kidney Transplantation Unit, University Hospital Center of Beni Messous, Algiers 16014, Algeria;
| | - Elhadj-Ahmed Koceir
- Laboratory of Biology and Organisms Physiology, Team of Bioenergetics and Intermediary Metabolism Nutrition and Dietetics in Human Pathologies Post Graduate School, University of Sciences and Technology Houari Boumediene, El Alia, Bab Ezzouar, Algiers 16123, Algeria; (H.Z.); (A.T.)
- Correspondence: ; Tel.: +213-6-66-74-27-70; Fax: +213-(0)21-24-72-17
| |
Collapse
|
69
|
Kim MJ, Chilakala R, Jo HG, Lee SJ, Lee DS, Cheong SH. Anti-Obesity and Anti-Hyperglycemic Effects of Meretrix lusoria Protamex Hydrolysate in ob/ob Mice. Int J Mol Sci 2022; 23:ijms23074015. [PMID: 35409375 PMCID: PMC8999646 DOI: 10.3390/ijms23074015] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/01/2022] [Accepted: 04/02/2022] [Indexed: 12/27/2022] Open
Abstract
Meretrix lusoria (M. lusoria) is an economically important shellfish which is widely distributed in South Eastern Asia that contains bioactive peptides, proteins, and enzymes. In the present study, the extracted meat content of M. lusoria was enzymatic hydrolyzed using four different commercial proteases (neutrase, protamex, alcalase, and flavourzyme). Among the enzymatic hydrolysates, M. lusoria protamex hydrolysate (MLPH) fraction with MW ≤ 1 kDa exhibited the highest free radical scavenging ability. The MLPH fraction was further purified and an amino acid sequence (KDLEL, 617.35 Da) was identified by LC-MS/MS analysis. The purpose of this study was to investigate the anti-obesity and anti-hyperglycemic effects of MLPH containing antioxidant peptides using ob/ob mice. Treatment with MLPH for 6 weeks reduced body and organ weight and ameliorated the effects of hepatic steatosis and epididymal fat, including a constructive effect on hepatic and serum marker parameters. Moreover, hepatic antioxidant enzyme activities were upregulated and impaired glucose tolerance was improved in obese control mice. In addition, MLPH treatment markedly suppressed mRNA expression related to lipogenesis and hyperglycemia through activation of AMPK phosphorylation. These findings suggest that MLPH has anti-obesity and anti-hyperglycemic potential and could be effectively applied as a functional food ingredient or pharmaceutical.
Collapse
Affiliation(s)
- Min Ju Kim
- Department of Marine Bio-Food Sciences, College of Fisheries and Ocean Sciences, Chonnam National University, Yeosu 59626, Korea; (M.J.K.); (R.C.); (H.G.J.)
| | - Ramakrishna Chilakala
- Department of Marine Bio-Food Sciences, College of Fisheries and Ocean Sciences, Chonnam National University, Yeosu 59626, Korea; (M.J.K.); (R.C.); (H.G.J.)
| | - Hee Geun Jo
- Department of Marine Bio-Food Sciences, College of Fisheries and Ocean Sciences, Chonnam National University, Yeosu 59626, Korea; (M.J.K.); (R.C.); (H.G.J.)
| | - Seung-Jae Lee
- Immunoregulatory Material Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup 56212, Korea;
| | - Dong-Sung Lee
- Department of Pharmacy, College of Pharmacy, Chosun University, Dong-gu, Gwangju 61452, Korea;
| | - Sun Hee Cheong
- Department of Marine Bio-Food Sciences, College of Fisheries and Ocean Sciences, Chonnam National University, Yeosu 59626, Korea; (M.J.K.); (R.C.); (H.G.J.)
- Correspondence: ; Tel.: +82-61-659-7215; Fax: +82-61-659-7219
| |
Collapse
|
70
|
Lin Y, Pi J, Jin P, Liu Y, Mai X, Li P, Fan H. Enzyme and microwave co-assisted extraction, structural characterization and antioxidant activity of polysaccharides from Purple-heart Radish. Food Chem 2022; 372:131274. [PMID: 34638061 DOI: 10.1016/j.foodchem.2021.131274] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 12/12/2022]
Abstract
A novel method of simultaneous extraction and separation of diverse polysaccharides from Purple-heart Radish was developed by integrating EAE with MAATPE. The effects of different enzymes, the ATPS composition, extraction temperature, time etc. were investigated by single-factor experiments and RSM. Under the optimum conditions, the extraction yields of PTP, PBP and total polysaccharides were 9.107 ± 0.391%, 32.506 ± 0.046% and 41.613 ± 0.437%, respectively. By means of HPGPC and PMP-HPLC, Mw of PTP and Mw of PBP were 15935 Da and 27962 Da, respectively. PTP and PBP were mainly composed of mannose, glucuronic acid, aminogalactose, glucose, galactose and arabinose. Moreover, both polysaccharides exhibited stronger antioxidant activities for scavenging multiple radicals and anti-lipid peroxidation. Compared to the conventional extraction methods, EAE-MAATPE achieved higher extraction efficiency due to the synergistic effect between EAE and MAATPE leading to rupture and enzymolysis of cell. Thus, EAE-MAATPE provided an efficient alternative to simultaneous extraction of different polysaccharides from natural products.
Collapse
Affiliation(s)
- Yuyang Lin
- School of Food Engineering and Biotechnology, Guangdong Industry Polytechnic, Guangzhou 510300, China; School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jiaju Pi
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Peiyi Jin
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yingtao Liu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xiaoman Mai
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Pingfan Li
- School of Food Engineering and Biotechnology, Guangdong Industry Polytechnic, Guangzhou 510300, China.
| | - Huajun Fan
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
71
|
Therapeutic Potential of Combined Therapy of Vitamin A and Vitamin C in the Experimental Autoimmune Encephalomyelitis (EAE) in Lewis Rats. Mol Neurobiol 2022; 59:2328-2347. [PMID: 35072933 DOI: 10.1007/s12035-022-02755-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 01/17/2022] [Indexed: 10/19/2022]
Abstract
Demyelination, inflammation, oxidative injury, and glial activation are the main pathological hallmarks of multiple sclerosis (MS). Vitamins, as essential micronutrients, seem to be crucial in the pathogenesis of MS, and particularly vitamins A and C were found to have a protective role in MS development or progression. In this study, the therapeutic potential of combined therapy of vitamins A and C on progression of experimental autoimmune encephalomyelitis (EAE) and myelin repair mechanisms was examined. EAE, an animal model of MS, was induced in female Lewis rats. The rats were treated with daily intraperitoneal injections of vitamins A and C and their combination. We found that co-supplementation of vitamins A and C mitigated neurological severity and EAE disease progression. Histological study confirmed a significant reduction in demyelination size, inflammation and immune cell infiltration as well as microglia and astrocyte activation following co-administration of vitamins A and C. Co-administration of vitamins A and C also decreased the levels of pro-inflammatory cytokines (TNF-α, IL1β) and iNOS and increased gene expressions of IL-10, Nrf-2, HO-1, and MBP. Combination therapy of vitamins A and C also increased the total antioxidant capacity and decreased levels of oxidative stress markers. Finally, we proved that co-administration of vitamins A and C has anti-apoptotic and neuroprotective impacts in EAE via decreasing caspase-3 and increasing BDNF and NeuN expressing cells. The present study suggests that combined therapy of vitamins A and C may be an effective strategy for development of alternative medicine in boosting myelin repair in demyelinating diseases.
Collapse
|
72
|
Oxidative stress alleviating potential of galactan exopolysaccharide from Weissella confusa KR780676 in yeast model system. Sci Rep 2022; 12:1089. [PMID: 35058551 PMCID: PMC8776969 DOI: 10.1038/s41598-022-05190-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 01/03/2022] [Indexed: 12/14/2022] Open
Abstract
In the present study, galactan exopolysaccharide (EPS) from Weissella confusa KR780676 was evaluated for its potential to alleviate oxidative stress using in vitro assays and in vivo studies in Saccharomyces cerevisiae (wild type) and its antioxidant (sod1∆, sod2∆, tsa1∆, cta2∆ and ctt1∆), anti-apoptotic (pep4∆ and fis1∆) and anti-aging (sod2∆, tsa1∆ and ctt1∆)) isogenic gene deletion mutants. Galactan exhibited strong DPPH and nitric oxide scavenging activity with an IC50 value of 450 and 138 µg/mL respectively. In the yeast mutant model, oxidative stress generated by H2O2 was extensively scavenged by galactan in the medium as confirmed using spot assays followed by fluorescencent DCF-DA staining and microscopic studies. Galactan treatment resulted in reduction in the ROS generated in the yeast mutant cells as demonstrated by decreased fluorescence intensity. Furthermore, galactan exhibited protection against oxidative damage through H2O2 -induced apoptosis inhibition in the yeast mutant strains (pep4∆ and fis1∆) leading to increased survival rate by neutralizing the oxidative stress. In the chronological life span assay, WT cells treated with galactan EPS showed 8% increase in viability whereas sod2∆ mutant showed 10–15% increase indicating pronounced anti-aging effects. Galactan from W. confusa KR780676 has immense potential to be used as a natural antioxidant for nutraceutical, pharmaceutical and food technological applications. As per our knowledge, this is the first report on in-depth assessment of in vivo antioxidant properties of a bacterial EPS in a yeast deletion model system.
Collapse
|
73
|
Lux PE, Fuchs L, Wiedmaier-Czerny N, Frank J. Oxidative stability of tocochromanols, carotenoids, and fatty acids in maize (Zea mays L.) porridges with varying phytate concentrations during cooking and in vitro digestion. Food Chem 2022; 378:132053. [PMID: 35033718 DOI: 10.1016/j.foodchem.2022.132053] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/06/2021] [Accepted: 01/02/2022] [Indexed: 01/01/2023]
Abstract
Phytic acid, the main storage form of phosphate in maize (Zea mays L.) grains, is known as antinutrient due to its chelating properties but may also prevent oxidation. Thus, the impact of phytic acid on the degradation of tocochromanols, carotenoids, fatty acids, and oxidation products in maize during cooking and subsequent in vitro digestion was examined. Maize porridges from low phytic acid maize flour with or without admixed phytate, or from high phytic acid maize flour were prepared, and digestion experiments conducted. HPLC-(MS) or GC-MS analyses revealed a significant decrease in tocochromanols, carotenoids, and unsaturated fatty acids in the digesta compared to the maize porridges while α-tocopherylquinone and malondialdehyde concentrations increased. The addition of phytic acid did not affect the digestive stabilities of total tocochromanols and carotenoids, but increased micellarisation efficiencies of carotenoids. In conclusion, phytate did not exert antioxidant effects in maize porridge during cooking or simulated digestion.
Collapse
Affiliation(s)
- Peter E Lux
- Institute of Nutritional Sciences, Department of Food Biofunctionality, University of Hohenheim, Garbenstrasse 28, 70599 Stuttgart, Germany
| | - Larissa Fuchs
- Institute of Nutritional Sciences, Department of Food Biofunctionality, University of Hohenheim, Garbenstrasse 28, 70599 Stuttgart, Germany
| | - Nina Wiedmaier-Czerny
- Institute of Food Chemistry, Department of Food Chemistry, University of Hohenheim, Garbenstrasse 28, 70599 Stuttgart, Germany
| | - Jan Frank
- Institute of Nutritional Sciences, Department of Food Biofunctionality, University of Hohenheim, Garbenstrasse 28, 70599 Stuttgart, Germany.
| |
Collapse
|
74
|
Analysing multivariate storage data of seafood spreads. A case study based on combining split-plot design, principal component analysis and partial least squares predictions. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
75
|
Acute and subacute effects of thymoquinone on acute methanol intoxication: An assessment based on serum TBARS and BDNF levels in rat model. MARMARA MEDICAL JOURNAL 2022. [DOI: 10.5472/marumj.1089689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
76
|
Effects of chilling rate on the freshness and microbial community composition of lamb carcasses. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112559] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
77
|
Vidal OL, Barros Santos MC, Batista AP, Andrigo FF, Baréa B, Lecomte J, Figueroa-Espinoza MC, Gontard N, Villeneuve P, Guillard V, Rezende CM, Bourlieu-Lacanal C, Larraz Ferreira MS. Active packaging films containing antioxidant extracts from green coffee oil by-products to prevent lipid oxidation. J FOOD ENG 2022. [DOI: 10.1016/j.jfoodeng.2021.110744] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
78
|
Rezende LG, Tasso TT, Candido PHS, Baptista MS. Assessing Photosensitized Membrane Damage: Available Tools and Comprehensive Mechanisms. Photochem Photobiol 2021; 98:572-590. [PMID: 34931324 DOI: 10.1111/php.13582] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 12/15/2021] [Indexed: 11/30/2022]
Abstract
Lipids are important targets of the photosensitized oxidation reactions, forming important signaling molecules, disorganizing and permeabilizing membranes, and consequently inducing a variety of biological responses. Although the initial steps of the photosensitized oxidative damage in lipids are known to occur by both Type I and Type II mechanisms, the progression of the peroxidation reaction, which leads to important end-point biological responses, is poorly known. There are many experimental tools used to study the products of lipid oxidation, but neither the methods nor their resulting observations were critically compared. In this article, we will review the tools most frequently used and the key concepts raised by them in order to rationalize a comprehensive model for the initiation and the progression steps of the photoinduced lipid oxidation.
Collapse
Affiliation(s)
- Laura G Rezende
- Chemistry Department, Institute of Exact Sciences, Universidade Federal de Juiz de Fora, Juiz de Fora, Brazil
| | - Thiago T Tasso
- Chemistry Department, Institute of Exact Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Pedro H S Candido
- Biochemistry Department, Chemistry Institute, Universidade de São Paulo, Sao Paulo, Brazil
| | - Mauricio S Baptista
- Biochemistry Department, Chemistry Institute, Universidade de São Paulo, Sao Paulo, Brazil
| |
Collapse
|
79
|
Amphiphilic chitosan-polyaminoxyls loaded with daunorubicin: Synthesis, antioxidant activity, and drug delivery capacity. Int J Biol Macromol 2021; 193:965-979. [PMID: 34751143 DOI: 10.1016/j.ijbiomac.2021.10.170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/15/2021] [Accepted: 10/21/2021] [Indexed: 11/24/2022]
Abstract
The binding of aminoxyls to polymers extends their potential use as antioxidants and EPR-reporting groups and opens up new horizons for tailoring new smart materials. In this work, we synthesized and characterized non-sulfated and N-sulfated water-soluble amphiphilic chitosans with a critical micelle concentration of 0.02-0.05 mg/mL that contain 13-18% of aminoglycosides bound with various aminoxyls. Chitosan-polyaminoxyls (CPAs) formed micelles with hydrodynamic radii Rh of ca. 100 nm. The EPR spectra of CPAs were found to depend on the rigidity of the aminoxyl-polymer bond and structural changes caused by sulfation. CPAs demonstrated antioxidant capacity/activity in three tests against reactive oxygen species (ROS) of various nature. The charge of micelles and structure of aminoxyls significantly affected their antioxidant properties. CPAs were low toxic against tumor (HepG2, HeLa, A-172) and non-cancerous (Vero) cells (IC50 > 0.8 mM of aminoglycosides). Sulfated CPAs showed better water solubility and the ability of binding and retaining the anti-tumor antibiotic daunorubicin (DAU). DAU-loaded micelles of CPAs (CPAs-DAU) demonstrated a 1.5-4-fold potentiation of DAU cytotoxicity against several cell lines. CPAs-DAU micelles were found to affect the cell cycle in a manner markedly different from that of free DAU. Our results demonstrated the ability of CPAs to act as bioactive drug delivery vehicles.
Collapse
|
80
|
Core-Shell Iron-Nickel Hexacyanoferrate Nanoparticle-Based Sensors for Hydrogen Peroxide Scavenging Activity. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9120344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
To access hydrogen peroxide scavenging activity, we propose a sensor based on core-shell iron-nickel hexacyanoferrate nanoparticles. On the one hand, the sensor preparation procedure is simple: syringing the nanoparticles suspension with subsequent annealing. On the other hand, the sensor demonstrates a stable response to 0.05 mM of H2O2 within one hour, which is sufficient for the evaluation of antioxidant activity (AO). The analytical performance characteristics of the sensor (0.5–0.6 A M−1 cm−2, detection limit 1.5 × 10−7 M and linear dynamic range 1–1000 µM) are leads to advantages over the sensor based on Prussian Blue films. The pseudo-first-order constant of hydrogen peroxide scavenging was chosen as a characteristic value of AO. The latter for trolox (standard antioxidant) was found to be linearly dependent on its concentration, thus allowing for the evaluation of antioxidant activity in trolox equivalents. The approach was validated by analyzing real beverage samples. Both the simplicity of sensor preparation and an expressiveness of analytical procedure would obviously provide a wide use of the proposed approach in the evaluation of antioxidant activity.
Collapse
|
81
|
Liu SH, Chen YC, Tzeng HP, Chiang MT. Fish oil enriched ω-3 fatty acids ameliorates protein synthesis/degradation imbalance, inflammation, and wasting in muscles of diet-induced obese rats. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
82
|
Kostopoulou E, Kalaitzopoulou E, Papadea P, Skipitari M, Rojas Gil AP, Spiliotis BE, Georgiou CD. Oxidized lipid-associated protein damage in children and adolescents with type 1 diabetes mellitus: New diagnostic/prognostic clinical markers. Pediatr Diabetes 2021; 22:1135-1142. [PMID: 34633133 DOI: 10.1111/pedi.13271] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 09/21/2021] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Type 1 diabetes mellitus (DM1), a chronic metabolic disorder of autoimmune origin, has been associated with oxidative stress (OS), which plays a central role in the onset, progression, and long-term complications of DM1. The markers of OS lipid peroxidation products, lipid hydroperoxides (LOOH), and also malondialdehyde (MDA) and thiobarbituric reactive substances (TBARS) that oxidatively modify proteins (Pr) (i.e., PrMDA and PrTBARS, respectively), have been associated with DM2, DM1, diabetic neuropathy, and microalbuminuria. OBJECTIVE/SUBJECTS Here, we investigated LOOH, PrMDA and PrTBARS in 50 children and adolescents with DM1 and 21 controls. RESULTS The novel OS marker PrTBARS was assessed for the first time in children and adolescents with DM1. LOOH and the pair PrMDA/PrTBARS, representing early and late peroxidation stages, respectively, are found to be significantly higher (130%, 50/90%, respectively, at p < 0.001) in patients with DM1 compared to controls. The studied OS parameters did not differ with age, age at diagnosis, sex, duration of DM1, presence of recent ketosis/ketoacidosis, or mode of treatment. CONCLUSIONS We propose that LOOH, PrMDA and the new marker PrTBARS could serve as potential diagnostic clinical markers for identifying OS in children and adolescents with DM1, and may, perhaps, hold promise as a prognostic tool for future complications associated with the disease.
Collapse
Affiliation(s)
- Eirini Kostopoulou
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics, University of Patras School of Medicine, Patras, Greece
| | | | | | | | - Andrea Paola Rojas Gil
- Faculty of Health Sciences, Department of Nursing, University of Peloponnese, Tripoli, Greece
| | - Bessie E Spiliotis
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics, University of Patras School of Medicine, Patras, Greece
| | | |
Collapse
|
83
|
Varga-Visi É, Kozma V, Szabó A. Correlation between CIELAB colour coordinates and malondialdehyde eqiuvalents in sausage with paprika stored under refrigerated conditions. ACTA ALIMENTARIA 2021. [DOI: 10.1556/066.2021.00118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Abstract
Sensory properties of foods mainly affect purchasing decisions. In case of sausages, deterioration of pigments of meat and spices cause discolouration, while lipid oxidation leads to the formation of off-odours, and these two processes are connected. Lipid oxidation promotes the conversion of pigments, while the formation of metmyoglobin accelerates lipid oxidation. The scope of the study was to investigate the relationship between the amount of malondialdehyde equivalents (MDA) and CIELAB colour coordinates in a Hungarian sausage with paprika, sliced and stored under refrigerated conditions for 10 weeks. We detected negative correlation (P < 0.001) between the MDA-level and a* and b*; and positive correlation (P < 0.001) between the MDA-level and L*. The observed correlation between MDA level and colour coordinates supports the assumption that the oxidation of lipids and pigments are interrelated in the case of sausage with paprika.
Collapse
Affiliation(s)
- É. Varga-Visi
- Department of Physiology and Animal Health, Institute of Physiology and Nutrition, Hungarian University of Agriculture and Life Sciences Kaposvár Campus, Guba S. u. 40, H-7400, Kaposvár, Hungary
| | - V. Kozma
- Department of Physiology and Animal Health, Institute of Physiology and Nutrition, Hungarian University of Agriculture and Life Sciences Kaposvár Campus, Guba S. u. 40, H-7400, Kaposvár, Hungary
| | - A. Szabó
- Department of Physiology and Animal Health, Institute of Physiology and Nutrition, Hungarian University of Agriculture and Life Sciences Kaposvár Campus, Guba S. u. 40, H-7400, Kaposvár, Hungary
| |
Collapse
|
84
|
Lee M, Song JH, Choi EJ, Yun YR, Lee KW, Chang JY. UPLC-QTOF-MS/MS and GC-MS Characterization of Phytochemicals in Vegetable Juice Fermented Using Lactic Acid Bacteria from Kimchi and Their Antioxidant Potential. Antioxidants (Basel) 2021; 10:antiox10111761. [PMID: 34829632 PMCID: PMC8614894 DOI: 10.3390/antiox10111761] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 10/30/2021] [Accepted: 11/01/2021] [Indexed: 12/22/2022] Open
Abstract
This study aims to investigate fermentative metabolites in probiotic vegetable juice from four crop varieties (Brassica oleracea var. capitata, B. oleracea var. italica, Daucus carota L., and Beta vulgaris) and their antioxidant properties. Vegetable juice was inoculated with two lactic acid bacteria (LAB) (Companilactobacillus allii WiKim39 and Lactococcus lactis WiKim0124) isolated from kimchi and their properties were evaluated using untargeted UPLC-QTOF-MS/MS and GC-MS. The samples were also evaluated for radical (DPPH• and OH•) scavenging activities, lipid peroxidation, and ferric-reducing antioxidant power. The fermented vegetable juices exhibited high antioxidant activities and increased amounts of total phenolic compounds. Fifteen compounds and thirty-two volatiles were identified using UPLC-QTOF-MS/MS and GC-MS, respectively. LAB fermentation significantly increased the contents of d-leucic acid, indole-3-lactic acid, 3-phenyllactic acid, pyroglutamic acid, γ-aminobutyric acid, and gluconic acid. These six metabolites showed a positive correlation with antioxidant properties. Thus, vegetable juices fermented with WiKim39 and WiKim0124 can be considered as novel bioactive health-promoting sources.
Collapse
Affiliation(s)
- Moeun Lee
- Research and Development Division, World Institute of Kimchi, Gwangju 61755, Korea; (M.L.); (J.H.S.); (E.J.C.); (Y.-R.Y.)
- Biomodulation Major, Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea
| | - Jung Hee Song
- Research and Development Division, World Institute of Kimchi, Gwangju 61755, Korea; (M.L.); (J.H.S.); (E.J.C.); (Y.-R.Y.)
| | - Eun Ji Choi
- Research and Development Division, World Institute of Kimchi, Gwangju 61755, Korea; (M.L.); (J.H.S.); (E.J.C.); (Y.-R.Y.)
| | - Ye-Rang Yun
- Research and Development Division, World Institute of Kimchi, Gwangju 61755, Korea; (M.L.); (J.H.S.); (E.J.C.); (Y.-R.Y.)
| | - Ki Won Lee
- Biomodulation Major, Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea
- Advanced Institutes of Convergence Technology, Seoul National University, Suwon 16229, Korea
- Correspondence: (K.W.L.); (J.Y.C.)
| | - Ji Yoon Chang
- Research and Development Division, World Institute of Kimchi, Gwangju 61755, Korea; (M.L.); (J.H.S.); (E.J.C.); (Y.-R.Y.)
- Correspondence: (K.W.L.); (J.Y.C.)
| |
Collapse
|
85
|
Tellez CS, Juri DE, Phillips LM, Do K, Thomas CL, Willink R, Dye WW, Wu G, Zhou Y, Irshad H, Kishida S, Kiyono T, Belinsky SA. Comparative Genotoxicity and Mutagenicity of Cigarette, Cigarillo, and Shisha Tobacco Products in Epithelial and Cardiac Cells. Toxicol Sci 2021; 184:67-82. [PMID: 34390580 PMCID: PMC8557423 DOI: 10.1093/toxsci/kfab101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Epidemiology studies link cigarillos and shisha tobacco (delivered through a hookah waterpipe) to increased risk for cardiopulmonary diseases. Here we performed a comparative chemical constituent analysis between 3 cigarettes, 3 cigarillos, and 8 shisha tobacco products. The potency for genotoxicity and oxidative stress of each product's generated total particulate matter (TPM) was also assessed using immortalized oral, lung, and cardiac cell lines to represent target tissues. Levels of the carcinogenic carbonyl formaldehyde were 32- to 95-fold greater, while acrolein was similar across the shisha aerosols generated by charcoal heating compared to cigarettes and cigarillos. Electric-mediated aerosol generation dramatically increased acrolein to levels exceeding those in cigarettes and cigarillos by up to 43-fold. Equivalent cytotoxic-mediated cell death and dose response for genotoxicity through induction of mutagenicity and DNA strand breaks was seen between cigarettes and cigarillos, while minimal to no effect was observed with shisha tobacco products. In contrast, increased potency of TPM from cigarillos compared to cigarettes for inducing oxidative stress via reactive oxygen radicals and lipid peroxidation across cell lines was evident, while positivity was seen for shisha tobacco products albeit at much lower levels. Together, these studies provide new insight into the potential harmful effects of cigarillos for causing tobacco-associated diseases. The high level of carbonyls in shisha products, that in turn is impacted by the heating mechanism, reside largely in the gas phase which will distribute throughout the respiratory tract and systemic circulation to likely increase genotoxic stress.
Collapse
Affiliation(s)
- Carmen S Tellez
- Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, NM, USA
| | - Daniel E Juri
- Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, NM, USA
| | - Loryn M Phillips
- Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, NM, USA
| | - Kieu Do
- Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, NM, USA
| | - Cindy L Thomas
- Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, NM, USA
| | - Randy Willink
- Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, NM, USA
| | - Wendy W Dye
- Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, NM, USA
| | - Guodong Wu
- Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, NM, USA
| | - Yue Zhou
- Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, NM, USA
| | - Hammad Irshad
- Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, NM, USA
| | - Shosei Kishida
- Departments of Biochemistry and Genetics, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Tohru Kiyono
- Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Chiba, Japan
| | - Steven A Belinsky
- Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, NM, USA
| |
Collapse
|
86
|
Decio P, Miotelo L, Pereira FDC, Roat TC, Marin-Morales MA, Malaspina O. Enzymatic responses in the head and midgut of Africanized Apis mellifera contaminated with a sublethal concentration of thiamethoxam. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 223:112581. [PMID: 34352576 DOI: 10.1016/j.ecoenv.2021.112581] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/08/2021] [Accepted: 07/28/2021] [Indexed: 06/13/2023]
Abstract
The increasing use of insecticides, promoted by the intensification of agriculture, has raised concerns about their influence on the decline of bee colonies, which play a fundamental role in pollination. Thus, it is fundamental to elucidate the effects of insecticides on bees. This study investigated the damage caused by a sublethal concentration of thiamethoxam - TMX (0.0227 ng/μL of feed) in the head and midgut of Africanized Apis mellifera, by analyzing the enzymatic biomarkers, oxidative stress, and occurrence of lipid peroxidation. The data showed that the insecticide increased acetylcholinesterase activity (AChE) and glutathione-S-transferase (GST), whereas carboxylesterase (CaE3) activity decreased in the heads. Our results indicate that the antioxidant enzymes were less active in the head because only glutathione peroxidase (GPX) showed alterations. In the midgut, there were no alkaline phosphatase (ALP) or superoxide dismutase (SOD) responses and a decrease in the activity of CaE was observed. Otherwise, there was an increase in GPX, and the TBARS (thiobarbituric acid reactive substances) assay also showed differences in the midgut. The TBARS (thiobarbituric acid reactive substances) assay also showed differences in the midgut. The results showed enzymes such as CaE3, GST, AChE, ALP, SOD, and GPX, as well as the TBARS assay, are useful biomarkers on bees. They may be used in combination as a promising tool for characterizing bee exposure to insecticides.
Collapse
Affiliation(s)
- Pâmela Decio
- São Paulo State University (Unesp), Institute of Biosciences, Av. 24A, 1515. CEP: 13506-900, Rio Claro, São Paulo, Brazil.
| | - Lucas Miotelo
- São Paulo State University (Unesp), Institute of Biosciences, Av. 24A, 1515. CEP: 13506-900, Rio Claro, São Paulo, Brazil
| | - Franco Dani Campos Pereira
- São Paulo State University (Unesp), Institute of Biosciences, Av. 24A, 1515. CEP: 13506-900, Rio Claro, São Paulo, Brazil; NUPEFEN - Núcleo de pesquisas em Educação Física, Estética e Nutrição, Claretiano University Center, Avenida Santo Antônio Maria Claret, 1724. CEP: 13503-257, Rio Claro, São Paulo, Brazil
| | - Thaisa Cristina Roat
- São Paulo State University (Unesp), Institute of Biosciences, Av. 24A, 1515. CEP: 13506-900, Rio Claro, São Paulo, Brazil
| | - Maria Aparecida Marin-Morales
- São Paulo State University (Unesp), Institute of Biosciences, Av. 24A, 1515. CEP: 13506-900, Rio Claro, São Paulo, Brazil
| | - Osmar Malaspina
- São Paulo State University (Unesp), Institute of Biosciences, Av. 24A, 1515. CEP: 13506-900, Rio Claro, São Paulo, Brazil
| |
Collapse
|
87
|
Wang D, Qi B, Xu Q, Zhang S, Xie F, Li Y. Effect of salt ions on an ultrasonically modified soybean lipophilic protein nanoemulsion. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Diqiong Wang
- College of Food Science Northeast Agricultural University Harbin Heilongjiang 150030 China
| | - Baokun Qi
- College of Food Science Northeast Agricultural University Harbin Heilongjiang 150030 China
| | - Qingqing Xu
- College of Food Science Northeast Agricultural University Harbin Heilongjiang 150030 China
| | - Shuang Zhang
- College of Food Science Northeast Agricultural University Harbin Heilongjiang 150030 China
| | - Fengying Xie
- College of Food Science Northeast Agricultural University Harbin Heilongjiang 150030 China
| | - Yang Li
- College of Food Science Northeast Agricultural University Harbin Heilongjiang 150030 China
- Heilongjiang Institute of Green Food Science Harbin Heilongjiang 150030 China
| |
Collapse
|
88
|
1,5-Benzodiazepin-2(3H)-ones: In Vitro Evaluation as Antiparkinsonian Agents. Antioxidants (Basel) 2021; 10:antiox10101584. [PMID: 34679721 PMCID: PMC8533176 DOI: 10.3390/antiox10101584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 10/03/2021] [Accepted: 10/05/2021] [Indexed: 01/08/2023] Open
Abstract
A new series of twenty-three 1,5-benzodiazepin-2(3H)-ones were synthesized and evaluated in the 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS), ferric reducing antioxidant power (FRAP), and 2,2-diphenyl-1-picrylhydrazyl (DPPH) assays as a new chemotype with antioxidant and good drug-like properties. All of the derivatives showed low cytotoxicity in comparison to curcumin against the human neuroblastoma SH-SY5Y and the human hepatoma HepG2 cell lines. Experimental solubility in bio-relevant media showed a good relationship with melting points in this series. Five compounds with the best antioxidant properties showed neuroprotectant activity against H2O2-induced oxidative stress in the SH-SY5Y cell line. From them, derivatives 4-phenyl-1H-1,5-benzodiazepin-2(3H)-one (18) and 4-(3,4,5-trimethoxyphenyl)-1H-1,5-benzodiazepin-2(3H)-one (20) yielded good neuroprotection activity in the same neuronal cell line under 6-OHD and MPP+ insults as in vitro models of mitochondrial dysfunction and oxidative stress in Parkinson’s disease (PD). Both compounds also demonstrated a significant reduction of intracellular Reactive Oxygen Species (ROS) and superoxide levels, in parallel with a good improvement of the Mitochondrial Membrane Potential (ΔΨm). Compared with curcumin, compound 18 better reduced lipid peroxidation levels, malondialdehyde (MDA), in SH-SY5Y cells under oxidative stress pressure and recovered intracellular glutathione synthetase (GSH) levels. Apoptosis and caspase-3 levels of SH-SY5Y under H2O2 pressure were also reduced after treatment with 18. Neuroprotection in neuron-like differentiated SH-SY5Y cells was also achieved with 18. In summary, this family of 1,5-benzodiazepin-2-ones with an interesting antioxidant and drug-like profile, with low cytotoxic and good neuroprotectant activity, constitutes a new promising chemical class with high potential for the development of new therapeutic agents against PD.
Collapse
|
89
|
Baschieri A, Amorati R. Methods to Determine Chain-Breaking Antioxidant Activity of Nanomaterials beyond DPPH •. A Review. Antioxidants (Basel) 2021; 10:1551. [PMID: 34679687 PMCID: PMC8533328 DOI: 10.3390/antiox10101551] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 12/15/2022] Open
Abstract
This review highlights the progress made in recent years in understanding the mechanism of action of nanomaterials with antioxidant activity and in the chemical methods used to evaluate their activity. Nanomaterials represent one of the most recent frontiers in the research for improved antioxidants, but further development is hampered by a poor characterization of the ''antioxidant activity'' property and by using oversimplified chemical methods. Inhibited autoxidation experiments provide valuable information about the interaction with the most important radicals involved in the lipid oxidation, namely alkylperoxyl and hydroperoxyl radicals, and demonstrate unambiguously the ability to stop the oxidation of organic materials. It is proposed that autoxidation methods should always complement (and possibly replace) the use of assays based on the quenching of stable radicals (such as DPPH• and ABTS•+). The mechanisms leading to the inhibition of the autoxidation (sacrificial and catalytic radical trapping antioxidant activity) are described in the context of nanoantioxidants. Guidelines for the selection of the appropriate testing conditions and of meaningful kinetic analysis are also given.
Collapse
Affiliation(s)
- Andrea Baschieri
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche (ISOF-CNR), Via P. Gobetti 101, 40129 Bologna, Italy;
| | - Riccardo Amorati
- Department of Chemistry “G. Ciamician”, University of Bologna, Via S. Giacomo 11, 40126 Bologna, Italy
| |
Collapse
|
90
|
Tellez CS, Juri DE, Phillips LM, Do K, Yingling CM, Thomas CL, Dye WW, Wu G, Kishida S, Kiyono T, Belinsky SA. Cytotoxicity and Genotoxicity of E-Cigarette Generated Aerosols Containing Diverse Flavoring Products and Nicotine in Oral Epithelial Cell Lines. Toxicol Sci 2021; 179:220-228. [PMID: 33226417 DOI: 10.1093/toxsci/kfaa174] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Electronic cigarettes are the most commonly used nicotine containing product among teenagers. The oral epithelium is the first site of exposure and our recent work revealed considerable diversity among e-liquids for composition and level of chemical constituents that impact nicotine deposition in a human oral-trachea cast and affect the formation of reactive carbonyls. Here, we evaluate the dose response for cytotoxicity and genotoxicity of e-cigarette-generated aerosols from 10 diverse flavored e-liquid products with and without nicotine compared with unflavored in 3 immortalized oral epithelial cell lines. Three e-liquids, Blue Pucker, Love Potion, and Jamestown caused ≥20% cell toxicity assessed by the neutral red uptake assay. Nine products induced significant levels of oxidative stress up to 2.4-fold quantified by the ROS-Glo assay in at least 1 cell line, with dose response seen for Love Potion with and without nicotine across all cell lines. Lipid peroxidation detected by the thiobarbituric acid reactive substances assay was less common among products; however, dose response increases up to 12-fold were seen for individual cell lines. Micronuclei formation indicative of genotoxicity was increased up to 5-fold for some products. Blue Pucker was the most genotoxic e-liquid, inducing micronuclei across all cell lines irrespective of nicotine status. A potency score derived from all assays identified Blue Pucker and Love Potion as the most hazardous e-liquids. These in vitro acute exposure studies provide new insight about the potential for some flavored vaping products to induce significant levels of oxidative stress and genotoxicity.
Collapse
Affiliation(s)
- Carmen S Tellez
- Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, New Mexico 87108
| | - Daniel E Juri
- Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, New Mexico 87108
| | - Loryn M Phillips
- Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, New Mexico 87108
| | - Kieu Do
- Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, New Mexico 87108
| | - Christin M Yingling
- Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, New Mexico 87108
| | - Cindy L Thomas
- Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, New Mexico 87108
| | - Wendy W Dye
- Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, New Mexico 87108
| | - Guodong Wu
- Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, New Mexico 87108
| | - Shosei Kishida
- Departments of Biochemistry and Genetics, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Tohru Kiyono
- Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Chiba, Japan
| | - Steven A Belinsky
- Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, New Mexico 87108
| |
Collapse
|
91
|
Martuscelli M, Esposito L, Mastrocola D. The Role of Coffee Silver Skin against Oxidative Phenomena in Newly Formulated Chicken Meat Burgers after Cooking. Foods 2021; 10:foods10081833. [PMID: 34441610 PMCID: PMC8394139 DOI: 10.3390/foods10081833] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/26/2021] [Accepted: 08/05/2021] [Indexed: 11/16/2022] Open
Abstract
Coffee Silver Skin (CSS) is the unique by-product discarded after the roasting of coffee beans. This research aimed to evaluate the effect of two levels of CSS (1.5% and 3%) added as a natural ingredient in new formulations of chicken meat burgers. This is one of the first studies proposing a "formulation approach" to control the emergence of off flavours after meat cooking. Physical, chemical, and sensory analyses were carried out, within the CSS content and the evolution of volatile organic compounds in different samples. Newly formulated chicken burgers could limit food waste, while also becoming a source of fibres, minerals, and bioactive molecules. CSS limited weight losses (after cooking process) to 10.50% (1.5% addition) and 11.05% (3% addition), significantly lower (p < 0.01) than the control (23.85%). In cooked burgers, the occurrence of hexanal was reduced from 55.1% (CTRL T0) to 11.7% (CSS T0 1.5%) to 0 (CSS T0 3%). As for the limitation of off-flavours, CSS also showed good activity, contrasting with the emergence of octanal, alcohols and other markers of lipid oxidation. From the sensory test carried out, the volatile profile of CSS does not seem to impair the flavour of burgers, though at higher percentages hydrocarbons and pyrazines are traceable. The thiobarbituric acid reactive substances (TBARS assay confirmed the protective effect of CSS against oxidation.
Collapse
|
92
|
Nasrnezhad R, Halalkhor S, Sadeghi F, Pourabdolhossein F. Piperine Improves Experimental Autoimmune Encephalomyelitis (EAE) in Lewis Rats Through its Neuroprotective, Anti-inflammatory, and Antioxidant Effects. Mol Neurobiol 2021; 58:5473-5493. [PMID: 34338970 DOI: 10.1007/s12035-021-02497-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/14/2021] [Indexed: 12/12/2022]
Abstract
Inflammation, demyelination, glial activation, and oxidative damage are the most pathological hallmarks of multiple sclerosis (MS). Piperine, a main bioactive alkaloid of black pepper, possesses antioxidant, anti-inflammatory, and neuroprotective properties whose therapeutic potential has been less studied in the experimental autoimmune encephalomyelitis (EAE) models. In this study, the efficiency of piperine on progression of EAE model and myelin repair mechanisms was investigated. EAE was induced in female Lewis rats and piperine and its vehicle were daily administrated intraperitoneally from day 8 to 29 post immunization. We found that piperine alleviated neurological deficits and EAE disease progression. Luxol fast blue and H&E staining and immunostaining of lumbar spinal cord cross sections confirmed that piperine significantly reduced the extent of demyelination, inflammation, immune cell infiltration, microglia, and astrocyte activation. Gene expression analysis in lumbar spinal cord showed that piperine treatment decreased the level of pro-inflammatory cytokines (TNF-α, IL-1β) and iNOS and enhanced IL-10, Nrf2, HO-1, and MBP expressions. Piperine supplementation also enhanced the total antioxidant capacity (FRAP) and reduced the level of oxidative stress marker (MDA) in the CNS of EAE rats. Finally, we found that piperine has anti-apoptotic and neuroprotective effect in EAE through reducing caspase-3 (apoptosis marker) and enhancing BDNF and NeuN expressing cells. This study strongly indicates that piperine has a beneficial effect on the EAE progression and could be considered as a potential therapeutic target for MS treatment. Upcoming clinical trials will provide a deeper understanding of piperine's role for the treatment of the MS.
Collapse
Affiliation(s)
- Reza Nasrnezhad
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran.,Department of Biochemistry, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Sohrab Halalkhor
- Department of Biochemistry, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Farzin Sadeghi
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Fereshteh Pourabdolhossein
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran. .,Department of Physiology, School of Medicine, Babol University of Medical Sciences, Babol, Iran.
| |
Collapse
|
93
|
Koelmel JP, Aristizabal-Henao JJ, Ni Z, Fedorova M, Kato S, Otoki Y, Nakagawa K, Lin EZ, Godri Pollitt KJ, Vasiliou V, Guingab JD, Garrett TJ, Williams TL, Bowden JA, Penumetcha M. A Novel Technique for Redox Lipidomics Using Mass Spectrometry: Application on Vegetable Oils Used to Fry Potatoes. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:1798-1809. [PMID: 34096708 DOI: 10.1021/jasms.1c00150] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Vegetables oils, rich in polyunsaturated fatty acids, are vulnerable to oxidation during manufacturing, processing, and food preparation. Currently, individual oxidation products are not well characterized, and hence, the health impacts of these unique lipid species remain unknown. Here, we introduce an extensive oxidized lipidomics in silico tandem mass spectrometry library and integrate these libraries within a user-friendly software covering a comprehensive redox lipidomics workflow. We apply this workflow to olive, soy, and walnut cooking oil; comparing unheated oil, oil after deep frying potatoes, and oil after oven frying potatoes. We annotated over a thousand oxidized triglycerides across 273 features (many coeluted). This software was validated against traditional chemical assays of oxidation, known oxidized lipids in castor oil, synthesized standards, and an alternate software LPPtiger. Development of these new software programs for redox lipidomics opens the door to characterize health implications of individual oxidation products.
Collapse
Affiliation(s)
- Jeremy P Koelmel
- School of Public Health, Yale University, New Haven, Connecticut, 06520, United States
| | - Juan J Aristizabal-Henao
- Center for Environmental and Human Toxicology & Department of Physiological Sciences, University of Florida, Gainesville, Florida 32608, United States
| | - Zhixu Ni
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, University of Leipzig, Leipzig 01403Germany
- Center for Biotechnology and Biomedicine, University of Leipzig, Leipzig, 04103, Germany
| | - Maria Fedorova
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, University of Leipzig, Leipzig 01403Germany
- Center for Biotechnology and Biomedicine, University of Leipzig, Leipzig, 04103, Germany
| | - Shunji Kato
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8577, Japan
| | - Yurika Otoki
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8577, Japan
| | - Kiyotaka Nakagawa
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8577, Japan
| | - Elizabeth Z Lin
- School of Public Health, Yale University, New Haven, Connecticut, 06520, United States
| | | | - Vasilis Vasiliou
- School of Public Health, Yale University, New Haven, Connecticut, 06520, United States
| | - Joy D Guingab
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, Florida 32610, United States
| | - Timothy J Garrett
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, Florida 32610, United States
- Department of Chemistry, University of Florida, Gainesville, Florida 32610, United States
| | - Traycie L Williams
- School of Nutrition, Kinesiology and Psychological Science, University of Central Missouri, Warrensburg, Missouri 64093, United States
| | - John A Bowden
- Center for Environmental and Human Toxicology & Department of Physiological Sciences, University of Florida, Gainesville, Florida 32608, United States
- Department of Chemistry, University of Florida, Gainesville, Florida 32610, United States
| | - Meera Penumetcha
- School of Nutrition, Kinesiology and Psychological Science, University of Central Missouri, Warrensburg, Missouri 64093, United States
| |
Collapse
|
94
|
Lee NH, Jung DS, Hong J. Antioxidant Properties and Protective Effects of Aerial Parts from Cnidium officinale Makino on Oxidative Stress-Induced Neuronal Cell Death. Prev Nutr Food Sci 2021; 26:200-208. [PMID: 34316485 PMCID: PMC8276706 DOI: 10.3746/pnf.2021.26.2.200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/01/2021] [Accepted: 04/05/2021] [Indexed: 11/17/2022] Open
Abstract
The rhizomes of Cnidium officinale Makino have been used as a
traditional medicine for many purposes, however, use of its aerial parts is very
limited. We investigated the antioxidant properties and protective effects of
the aerial parts (leaves and stems) from C. officinale on
H2O2-induced toxicity in SH-SY5Y neuroblastoma.
C. officinale methanol extracts (70%) were sequentially
fractionated using hexane (non-polar fraction, NF), ethyl acetate (intermediate
polar fraction, IF), and water (polar fraction, PF). Total phenolics and
flavonoids contents were highest in IF, followed by PF. IF also showed the
strongest radical scavenging activities against 2,2-diphenyl-2-picrylhydrazyl
and 2,2’-azinobis(3-ethylbenzo-thiazoline-6-sulfonic acid), as well as
superoxide, with the half maximal inhibitory concentrations of 13.2, 23.2, and
12.8 mg/mL, respectively. Furthermore, all fractions significantly inhibited
linoleic acid peroxidation induced by the Fenton reaction or by UV irradiation.
Both PF and IF protected against H2O2-induced SH-SY5Y
neuronal cell death by increasing the cell survival by 22.1∼47.7 and
35.9∼50.3% at concentrations of 25∼100 and 25∼400 μg/mL,
respectively, whereas NF was toxic to the cells at these concentrations. IF also
significantly decreased intracellular levels of reactive oxygen species by
7.72∼47.47% at a concentration of 25∼200 μg/mL. Our results
indicate that compounds from the aerial parts of C. officinale
have potent antioxidant activities, which may help rescue neuronal cells from
oxidative stress-induced injury. Therefore, the aerial parts, as well as the
rhizomes, of C. officinale may have medicinal applications.
Collapse
Affiliation(s)
- Na Hyun Lee
- Division of Applied Food System, College of Natural Science, Seoul Women's University, Seoul 01797, Korea
| | - Dong Sun Jung
- Division of Applied Food System, College of Natural Science, Seoul Women's University, Seoul 01797, Korea
| | - Jungil Hong
- Division of Applied Food System, College of Natural Science, Seoul Women's University, Seoul 01797, Korea
| |
Collapse
|
95
|
Šturm L, Poklar Ulrih N. Basic Methods for Preparation of Liposomes and Studying Their Interactions with Different Compounds, with the Emphasis on Polyphenols. Int J Mol Sci 2021; 22:6547. [PMID: 34207189 PMCID: PMC8234105 DOI: 10.3390/ijms22126547] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/11/2021] [Accepted: 06/15/2021] [Indexed: 12/11/2022] Open
Abstract
Studying the interactions between lipid membranes and various bioactive molecules (e.g., polyphenols) is important for determining the effects they can have on the functionality of lipid bilayers. This knowledge allows us to use the chosen compounds as potential inhibitors of bacterial and cancer cells, for elimination of viruses, or simply for keeping our healthy cells in good condition. As studying those effect can be exceedingly difficult on living cells, model lipid membranes, such as liposomes, can be used instead. Liposomal bilayer systems represent the most basic platform for studying those interactions, as they are simple, quite easy to prepare and relatively stable. They are especially useful for investigating the effects of bioactive compounds on the structure and kinetics of simple lipid membranes. In this review, we have described the most basic methods available for preparation of liposomes, as well as the essential techniques for studying the effects of bioactive compounds on those liposomes. Additionally, we have provided details for an easy laboratory implementation of some of the described methods, which should prove useful especially to those relatively new on this research field.
Collapse
Affiliation(s)
| | - Nataša Poklar Ulrih
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia;
| |
Collapse
|
96
|
Effects of pH on ultrasonic-modified soybean lipophilic protein nanoemulsions with encapsulated vitamin E. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111240] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
97
|
Tabernilla A, dos Santos Rodrigues B, Pieters A, Caufriez A, Leroy K, Van Campenhout R, Cooreman A, Gomes AR, Arnesdotter E, Gijbels E, Vinken M. In Vitro Liver Toxicity Testing of Chemicals: A Pragmatic Approach. Int J Mol Sci 2021; 22:5038. [PMID: 34068678 PMCID: PMC8126138 DOI: 10.3390/ijms22095038] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/04/2021] [Accepted: 05/05/2021] [Indexed: 02/07/2023] Open
Abstract
The liver is among the most frequently targeted organs by noxious chemicals of diverse nature. Liver toxicity testing using laboratory animals not only raises serious ethical questions, but is also rather poorly predictive of human safety towards chemicals. Increasing attention is, therefore, being paid to the development of non-animal and human-based testing schemes, which rely to a great extent on in vitro methodology. The present paper proposes a rationalized tiered in vitro testing strategy to detect liver toxicity triggered by chemicals, in which the first tier is focused on assessing general cytotoxicity, while the second tier is aimed at identifying liver-specific toxicity as such. A state-of-the-art overview is provided of the most commonly used in vitro assays that can be used in both tiers. Advantages and disadvantages of each assay as well as overall practical considerations are discussed.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Mathieu Vinken
- Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium; (A.T.); (B.d.S.R.); (A.P.); (A.C.); (K.L.); (R.V.C.); (A.C.); (A.R.G.); (E.A.); (E.G.)
| |
Collapse
|
98
|
Kergomard J, Paboeuf G, Barouh N, Villeneuve P, Schafer O, Wooster TJ, Bourlieu C, Vié V. Stability to oxidation and interfacial behavior at the air/water interface of minimally-processed versus processed walnut oil-bodies. Food Chem 2021; 360:129880. [PMID: 33989883 DOI: 10.1016/j.foodchem.2021.129880] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 01/12/2023]
Abstract
Oil bodies (OB), the form of triacylglycerol storage in seeds, are interesting natural assemblies for nutritional applications. In walnuts, OB contain an important amount of polyunsaturated fatty acids that could be interesting food ingredients but may be prone to oxidation. The oxidative and interfacial behavior of walnut OB, either minimally-processed or after processing, were compared with processed complex walnut juice. The good oxidative stability of minimally-processed OB over 10 days (PV ≤ 8.4 meq O2/kg, TBARS = 1.4 mmol eq MDA/kg) and of processed walnut complex matrixes over 20 days (PV ≤ 4.8 meq O2/kg, TBARS = 1.4 mmol eq MDA/kg) was evidenced. In comparison, processing of OB promoted their oxidation. The interfacial studies led to the proposition of a new model of adsorption for minimally-processed OB that will be useful to design functional emulsion or foam in which OB act as emulsifiers.
Collapse
Affiliation(s)
- Jeanne Kergomard
- IPR Institute of Physics, UMR UR1 CNRS 5261, Rennes 1 University, France; IATE, Univ Montpellier, INRAE, Institut Agro, Montpellier, France; QUALISUD, Univ Montpellier, CIRAD, Institut Agro, IRD, Univ Réunion, Montpellier, France
| | - Gilles Paboeuf
- IPR Institute of Physics, UMR UR1 CNRS 5261, Rennes 1 University, France; Univ Rennes 1, CNRS, ScanMAT - UMS 2001 F-35042 Rennes, France
| | - Nathalie Barouh
- QUALISUD, Univ Montpellier, CIRAD, Institut Agro, IRD, Univ Réunion, Montpellier, France
| | - Pierre Villeneuve
- QUALISUD, Univ Montpellier, CIRAD, Institut Agro, IRD, Univ Réunion, Montpellier, France
| | - Olivier Schafer
- Institute of Materials Science, Nestlé Research, Lausanne, Switzerland
| | - Tim J Wooster
- Institute of Materials Science, Nestlé Research, Lausanne, Switzerland
| | - Claire Bourlieu
- IATE, Univ Montpellier, INRAE, Institut Agro, Montpellier, France
| | - Véronique Vié
- IPR Institute of Physics, UMR UR1 CNRS 5261, Rennes 1 University, France; Univ Rennes 1, CNRS, ScanMAT - UMS 2001 F-35042 Rennes, France.
| |
Collapse
|
99
|
Nascimento Fraga L, Karoline de Souza Oliveira A, Pinheiro Aragão B, Alves de Souza D, Willian Propheta Dos Santos E, Alves Melo J, Mara de Oliveira E Silva A, Wisniewski Junior A, Bani Corrêa C, Regina Silva de Andrade Wartha E, Bacci L, Maria Montezano de Carvalho I. Mass spectrometry characterization, antioxidant activity, and cytotoxicity of the peel and pulp extracts of Pitomba. Food Chem 2021; 340:127929. [PMID: 32920302 DOI: 10.1016/j.foodchem.2020.127929] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 08/06/2020] [Accepted: 08/23/2020] [Indexed: 11/25/2022]
Abstract
The fruit of the Talisia esculenta tree, is largely consumed and appreciated for its bittersweet taste; however, detailed information on its constituent bioactive compounds is still scarce. Therefore, this study aims to screen the antioxidant activity by six methods and determine the chemical profile of the pitomba fruit peel and pulp by electrospray ionization-Fourier transform-mass spectrometry. This is the first study attempting to identify the bioactive compounds in the pitomba fruit peel. Consequently, 19 and 14 compounds were identified in the ethanolic and hexanic peel extracts, while 7 and 10 compounds were detected in the ethanolic and hexanic pulp extracts, respectively. The common compounds across the board were citric acid, ascorbic acid, and shikimic acid. In addition, the ethanolic peel extract exhibited a high 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity (54.21-81.41%). The obtained results highlight the importance the pitomba fruit as a promising source of natural compounds with high antioxidant activities.
Collapse
Affiliation(s)
- Layanne Nascimento Fraga
- Post-Graduate Program in in Nutrition Science, Federal University of Sergipe (UFS), Av. Marechal Rondon, S / n - Jardim Rosa Elze, São Cristóvão, SE 49100-000, Brazil.
| | - Anne Karoline de Souza Oliveira
- Post-Graduate Program in Health Science, Federal University of Sergipe (UFS), Av. Marechal Rondon, S / n - Jardim Rosa Elze, São Cristóvão, SE 49100-000, Brazil
| | - Bruna Pinheiro Aragão
- Post-Graduate Program in in Nutrition Science, Federal University of Sergipe (UFS), Av. Marechal Rondon, S / n - Jardim Rosa Elze, São Cristóvão, SE 49100-000, Brazil
| | - Daniel Alves de Souza
- Post-Graduate Program in in Nutrition Science, Federal University of Sergipe (UFS), Av. Marechal Rondon, S / n - Jardim Rosa Elze, São Cristóvão, SE 49100-000, Brazil
| | - Edmilson Willian Propheta Dos Santos
- Department of Morphology, Federal University of Sergipe (UFS), Av. Marechal Rondon, S / n - Jardim Rosa Elze, São Cristóvão, SE 49100-000, Brazil
| | - Josué Alves Melo
- Post-Graduate Program in Chemistry, Petroleum and Energy from Biomass Research Group (PEB), Federal University of Sergipe (UFS), Av. Marechal Rondon, S / n - Jardim Rosa Elze, São Cristóvão, SE 49100-000, Brazil
| | - Ana Mara de Oliveira E Silva
- Post-Graduate Program in in Nutrition Science, Federal University of Sergipe (UFS), Av. Marechal Rondon, S / n - Jardim Rosa Elze, São Cristóvão, SE 49100-000, Brazil
| | - Alberto Wisniewski Junior
- Post-Graduate Program in Chemistry, Petroleum and Energy from Biomass Research Group (PEB), Federal University of Sergipe (UFS), Av. Marechal Rondon, S / n - Jardim Rosa Elze, São Cristóvão, SE 49100-000, Brazil
| | - Cristiane Bani Corrêa
- Department of Morphology, Federal University of Sergipe (UFS), Av. Marechal Rondon, S / n - Jardim Rosa Elze, São Cristóvão, SE 49100-000, Brazil
| | - Elma Regina Silva de Andrade Wartha
- Post-Graduate Program in in Nutrition Science, Federal University of Sergipe (UFS), Av. Marechal Rondon, S / n - Jardim Rosa Elze, São Cristóvão, SE 49100-000, Brazil
| | - Leandro Bacci
- Department of Agronomic Engineering, Federal University of Sergipe (UFS), Av. Marechal Rondon, S / n - Jardim Rosa Elze, São Cristóvão, SE 49100-000, Brazil
| | - Izabela Maria Montezano de Carvalho
- Post-Graduate Program in in Nutrition Science, Federal University of Sergipe (UFS), Av. Marechal Rondon, S / n - Jardim Rosa Elze, São Cristóvão, SE 49100-000, Brazil
| |
Collapse
|
100
|
Akhtar MS, Rehman AU, Arshad H, Malik A, Fatima M, Tabassum T, Raza AR, Bukhsh M, Murtaza MA, Mehmood MH, Sultan A, Rasool G, Riaz M. In Vitro Antioxidant Activities and the Therapeutic Potential of Some Newly Synthesized Chalcones Against 4-Acetaminophenol Induced Hepatotoxicity in Rats. Dose Response 2021; 19:1559325821996955. [PMID: 33795997 PMCID: PMC7968038 DOI: 10.1177/1559325821996955] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/23/2021] [Accepted: 01/25/2021] [Indexed: 01/14/2023] Open
Abstract
The lack of safety and efficacy of existing hepatoprotective agents urge the need to explore novel hepatoprotective agents. The research work was planned to study the therapeutic potential of some newly synthesized chalcones against 4-acetaminophenol induced hepatotoxicity in rats. Male albino rats (N = 30) were divided into 6 groups of 5 animals each i.e. group I; Toxic control (4-acetaminophenol), group II; normal control (Normal saline), group III; Positive control (silymarin; 50 mg/kg bw) and groups IV-VI (test groups) treated with 3 chalcone analogues i-e 3a, 3f & 3 g (100, 150, 150 mg/kg bw, respectively). All the study group animals were administered with 4-acetaminophenol to induce hepatotoxicity except normal control. Following hepatotoxicity induction, test group animals were administered with selected doses of test compounds and toxic group animals left untreated. Liver enzymes including ALT, AST, ALP and serum bilirubin were determined photometrically. Antioxidant activities of test compounds were also determined. Histopathological examination of liver biopsies was also carried out through H & E staining. The test chalcones (3a, 3f & 3 g) significantly decreased the levels of liver enzymes and serum bilirubin toward normal and the pattern of results in the test group animals were comparable to silymarin administered animals indicating the hepatoprotective potential of test compounds. Moreover, the test chalcones (3a, 3f & 3 g) antagonized the effect of 4-acetaminophenol and thus, raised the catalase (CAT) and superoxide dismutase (SOD) while decreased the malondialdehyde (MDA) in experimental animals. The test chalcones (3a, 3f & 3 g) on histological examination of liver showed improvement of tissue morphology. The study concluded that the tested compounds have antioxidant potential and may act as hepatoprotective agent. However, in-depth studies are required to validate their safety and to elucidate the exact mechanism of action.
Collapse
Affiliation(s)
- Muhammad Shoaib Akhtar
- Department of Pharmacology, College of Pharmacy, University of Sargodha, Sargodha, Pakistan
| | - Aziz-Ur- Rehman
- Department of Pathobiology, College of Veterinary and Animal Sciences (Jhang Campus), University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Haroon Arshad
- Health Department, Government of the Punjab, Lahore, Pakistan
| | - Abdul Malik
- Department of Pharmacology, College of Pharmacy, University of Sargodha, Sargodha, Pakistan
| | - Muheer Fatima
- Department of Pharmacology, College of Pharmacy, University of Sargodha, Sargodha, Pakistan
| | - Tahira Tabassum
- Department of Pathology, Sargodha Medical College, University of Sargodha, Sargodha, Pakistan
| | - Abdul Rauf Raza
- Ibn-e-Sina Block, Department of Chemistry, University of Sargodha, Sargodha, Pakistan
| | - Munnaza Bukhsh
- Foundation University Medical College, Islamabad, Pakistan
| | - Mian Anjum Murtaza
- Institute of Food Science and Nutrition, University of Sargodha, Sargodha, Pakistan
| | - Malik Hassan Mehmood
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Ayesha Sultan
- Department of Chemistry, University of Education, Faisalabad Campus, Faisalabad, Pakistan
| | - Ghulam Rasool
- Department of Allied Health Sciences, Sargodha Medical College, University of Sargodha, Sargodha, Pakistan
| | - Muhammad Riaz
- Department of Allied Health Sciences, Sargodha Medical College, University of Sargodha, Sargodha, Pakistan
| |
Collapse
|