51
|
Ivy N, Mukherjee T, Bhattacharya S, Ghosh A, Sharma P. Arsenic contamination in groundwater and food chain with mitigation options in Bengal delta with special reference to Bangladesh. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:1261-1287. [PMID: 35841495 DOI: 10.1007/s10653-022-01330-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
Bangladesh, situated in Bengal delta, is one of the worst affected countries by arsenic contamination in groundwater. Most of the people in the country are dependent on groundwater for domestic and irrigation purposes. Currently, 61 districts out of 64 districts of Bangladesh are affected by arsenic contamination. Drinking arsenic contaminated groundwater is the main pathway of arsenic exposure in the population. Additionally, the use of arsenic-contaminated groundwater for irrigation purpose in crop fields in Bangladesh has elevated arsenic concentration in surface soil and in the plants. In many arsenic-affected countries, including Bangladesh, rice is reported to be one of the significant sources of arsenic contamination. This review discussed scenario of groundwater arsenic contamination and transmission of arsenic through food chain in Bangladesh. The study further highlighted the human health perspectives of arsenic exposure in Bangladesh with possible mitigation and remediation options employed in the country.
Collapse
Affiliation(s)
- Nishita Ivy
- School of Ecology and Environment Studies, Nalanda University, Rajgir, Nalanda, Bihar, India
| | | | - Sayan Bhattacharya
- School of Ecology and Environment Studies, Nalanda University, Rajgir, Nalanda, Bihar, India
| | - Abhrajyoti Ghosh
- Department of Biochemistry, Bose Institute, Kolkata, West Bengal, India
| | - Prabhakar Sharma
- School of Ecology and Environment Studies, Nalanda University, Rajgir, Nalanda, Bihar, India.
| |
Collapse
|
52
|
Patel B, Gundaliya R, Desai B, Shah M, Shingala J, Kaul D, Kandya A. Groundwater arsenic contamination: impacts on human health and agriculture, ex situ treatment techniques and alleviation. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:1331-1358. [PMID: 35962925 DOI: 10.1007/s10653-022-01334-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
Groundwater is consumed by a large number of people as their primary source of drinking water globally. Among all the countries worldwide, nations in South Asia, particularly India and Bangladesh, have severe problem of groundwater arsenic (As) contamination so are on our primary focus in this study. The objective of this review study is to provide a viewpoint about the source of As, the effect of As on human health and agriculture, and available treatment technologies for the removal of As from water. The source of As can be either natural or anthropogenic and exposure mediums can either be air, drinking water, or food. As-polluted groundwater may lead to a reduction in crop yield and quality as As enters the food chain and disrupts it. Chronic As exposure through drinking water is highly associated with the disruption of many internal systems and organs in the human body including cardiovascular, respiratory, nervous, and endocrine systems, soft organs, and skin. We have critically reviewed a complete spectrum of the available ex situ technologies for As removal including oxidation, coagulation-flocculation, adsorption, ion exchange, and membrane process. Along with that, pros and cons of different techniques have also been scrutinized on the basis of past literatures reported. Among all the conventional techniques, coagulation is the most efficient technique, and considering the advanced and emerging techniques, electrocoagulation is the most prominent option to be adopted. At last, we have proposed some mitigation strategies to be followed with few long and short-term ideas which can be adopted to overcome this epidemic.
Collapse
Affiliation(s)
- Bhavi Patel
- Department of Civil Engineering, School of Technology, Pandit Deendayal Energy University, Gandhinagar, Gujarat, India
| | - Rohan Gundaliya
- Department of Civil Engineering, School of Technology, Pandit Deendayal Energy University, Gandhinagar, Gujarat, India
| | - Bhavya Desai
- Department of Civil Engineering, School of Technology, Pandit Deendayal Energy University, Gandhinagar, Gujarat, India
| | - Manan Shah
- Department of Chemical Engineering School of Technology, Pandit Deendayal Energy University, Gandhinagar, Gujarat, India.
| | - Jainish Shingala
- School of Petroleum Technology, Pandit Deendayal Energy University, Gandhinagar, Gujarat, India
| | - Daya Kaul
- Department of Civil Engineering, School of Technology, Pandit Deendayal Energy University, Gandhinagar, Gujarat, India
| | - Anurag Kandya
- Department of Civil Engineering, School of Technology, Pandit Deendayal Energy University, Gandhinagar, Gujarat, India
| |
Collapse
|
53
|
Zheng C, Yang ZB, Xu XX, Cheng Z. Assessing the risk of human exposure to bioaccessible arsenic from total diet through market food consumption in Chengdu, China. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:2065-2076. [PMID: 35789313 DOI: 10.1007/s10653-022-01325-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
To assess the daily intake of total arsenic (tAs) and arsenic speciation and their potential health risks, different food groups, including vegetables, rice, meat, viscera, freshwater fish, and seafood from Chengdu, China were analyzed. The concentrations of tAs ranged from 41.3 to 1185 μg kg-1 with a median of 238 μg kg-1, and 26.0% of tAs in the food groups was of inorganic toxic form. The median concentration of As(V) in rice (184 ± 21.6 μg kg-1) was approximately 2 to 6 times higher than those in other food groups. The bioaccessible inorganic arsenic (iAs) concentrations of the food items obtained from the local markets of Chengdu ranged from 1.07 to 24.6 μg kg-1 (mean of 6.04 μg kg-1). Rice contributed toward the largest amount of daily iAs intake (66.2%). The mean daily iAs intake from vegetable, meat and viscera contributed 10.7%, 12.5% and 6.04% of total iAs intake, respectively. The actual concentration of arsenic in the food exposed to the human body depends on oral bioaccessible fraction. The oral bioaccessibility estimated daily intake (μg kg-1 bw d-1) of tAs and iAs for the residents of Chengdu was 0.32 and 0.16. Health risk assessments carried out based on bioaccessible iAs concentrations showed that the food items were safe for consumption from the iAs perspective.
Collapse
Affiliation(s)
- Chao Zheng
- College of Environment Science, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zhan-Biao Yang
- College of Environment Science, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiao-Xun Xu
- College of Environment Science, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zhang Cheng
- College of Environment Science, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
54
|
Etesami H, Jeong BR, Raheb A. Arsenic (As) resistant bacteria with multiple plant growth-promoting traits: Potential to alleviate As toxicity and accumulation in rice. Microbiol Res 2023; 272:127391. [PMID: 37121023 DOI: 10.1016/j.micres.2023.127391] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 04/14/2023] [Accepted: 04/20/2023] [Indexed: 05/02/2023]
Abstract
A currently serious agronomic concern for paddy soils is arsenic (As) contamination. Paddy soils are mostly utilized for rice cultivation. Arsenite (As(III)) is prevalent in paddy soils, and its high mobility and toxicity make As uptake by rice substantially greater than that by other food crops. Globally, interest has increased towards using As-resistant plant growth-promoting bacteria (PGPB) to improve plant metal tolerance, promote plant growth, and immobilize As to prevent its uptake and accumulation in the edible parts of rice as much as possible. This review focuses on the As-resistant PGPB characteristics influencing rice growth and the mechanisms by which they function to alleviate As toxicity stress in rice plants. Several recent examples of mechanisms responsible for decreasing the availability of As to rice and coping with As stresses facilitated by the PGPB with multiple PGP traits (e.g., phosphate and silicate solubilization, the production of 1-aminocyclopropane-1-carboxylate deaminase, phytohormones, and siderophore, N2 fixation, sulfate reduction, the biosorption, bioaccumulation, methylation, and volatilization of As, and arsenite oxidation) are also reviewed. In addition, future research needs about the application of As-resistant PGPB with PGP traits to mitigate As accumulation in rice plants are described.
Collapse
Affiliation(s)
- Hassan Etesami
- Department of Soil Science, College of Agriculture and Natural Resources, University of Tehran, Tehran, Iran.
| | - Byoung Ryong Jeong
- Department of Horticulture, College of Agriculture & Life Sciences, Gyeongsang National University (GNU), Jinju 52828, South Korea
| | - Alireza Raheb
- Department of Soil Science, College of Agriculture and Natural Resources, University of Tehran, Tehran, Iran
| |
Collapse
|
55
|
Farhan A, Zulfiqar M, Samiah, Rashid EU, Nawaz S, Iqbal HM, Jesionowski T, Bilal M, Zdarta J. Removal of Toxic Metals from Water by Nanocomposites through Advanced Remediation Processes and Photocatalytic Oxidation. CURRENT POLLUTION REPORTS 2023; 9:338-358. [DOI: 10.1007/s40726-023-00253-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/20/2023] [Indexed: 12/17/2024]
Abstract
Abstract
Purpose of Review
Heavy and toxic metals are becoming more prevalent in the water sources of the globe, which has detrimental repercussions for both human health and the health of ecosystems. The summary of recent findings on treatment possibilities of toxic metal species by nanomaterials should facilitate the development of more advanced techniques of their removal.
Recent Findings
The high concentrations of chromium, mercury, and arsenic identified in wastewater cause a hazard to human health. There is a wide variety of nanoadsorbents and nanophotocatalysts used for heavy/hazardous metal removal. Recent research has resulted in the production of advanced nanostructures that exhibit extraordinary heavy/hazardous metal adsorption effectiveness and photocatalytic diminution of metal ions. These nanostructures have physically and chemically tunable features.
Summary
In this review article, the use of carbon-based nanomaterials, polymer-based nanomaterials, and semiconductor-based nanomaterials are extensively discussed to remove mercury, chromium, and arsenic ions from wastewater by the adsorption process. Advanced nanomaterials involved in photocatalytic reduction are also comprehensively discussed.
Collapse
|
56
|
Zheng K, Zeng Z, Tian Q, Huang J, Zhong Q, Huo X. Epidemiological evidence for the effect of environmental heavy metal exposure on the immune system in children. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 868:161691. [PMID: 36669659 DOI: 10.1016/j.scitotenv.2023.161691] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 12/28/2022] [Accepted: 01/14/2023] [Indexed: 06/17/2023]
Abstract
Heavy metals exist widely in daily life, and exposure to heavy metals caused by environmental pollution has become a serious public health problem worldwide. Due to children's age-specific behavioral characteristics and imperfect physical function, the adverse health effects of heavy metals on children are much higher than in adults. Studies have found that heavy metal exposure is associated with low immune function in children. Although there are reviews describing the evidence for the adverse effects of heavy metal exposure on the immune system in children, the summary of evidence from epidemiological studies involving the level of immune molecules is not comprehensive. Therefore, this review summarizes the current epidemiological study on the effect of heavy metal exposure on childhood immune function from multiple perspectives, emphasizing its risks to the health of children's immune systems. It focuses on the effects of six heavy metals (lead (Pb), cadmium (Cd), arsenic (As), mercury (Hg), nickel (Ni), and manganese (Mn)) on children's innate immune cells, lymphocytes and their subpopulations, cytokines, total and specific immunoglobulins, and explores the immunotoxicological effects of heavy metals. The review finds that exposure to heavy metals, particularly Pb, Cd, As, and Hg, not only reduced lymphocyte numbers and suppressed adaptive immune responses in children, but also altered the innate immune response to impair the body's ability to fight pathogens. Epidemiological evidence suggests that heavy metal exposure alters cytokine levels and is associated with the development of inflammatory responses in children. Pb, As, and Hg exposure was associated with vaccination failure and decreased antibody titers, and increased risk of immune-related diseases in children by altering specific immunoglobulin levels. Cd, Ni and Mn showed activation effects on the immune response to childhood vaccination. Exposure age, sex, nutritional status, and co-exposure may influence the effects of heavy metals on immune function in children.
Collapse
Affiliation(s)
- Keyang Zheng
- Laboratory of Environmental Medicine and Developmental Toxicology, School of Environment, Jinan University, 855 East Xingye Avenue, Guangzhou 511443, Guangdong, China; Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, Guangdong, China
| | - Zhijun Zeng
- Laboratory of Environmental Medicine and Developmental Toxicology, School of Environment, Jinan University, 855 East Xingye Avenue, Guangzhou 511443, Guangdong, China
| | - Qianwen Tian
- Laboratory of Environmental Medicine and Developmental Toxicology, School of Environment, Jinan University, 855 East Xingye Avenue, Guangzhou 511443, Guangdong, China; Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, Guangdong, China
| | - Jintao Huang
- Laboratory of Environmental Medicine and Developmental Toxicology, School of Environment, Jinan University, 855 East Xingye Avenue, Guangzhou 511443, Guangdong, China; Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, Guangdong, China
| | - Qi Zhong
- Laboratory of Environmental Medicine and Developmental Toxicology, School of Environment, Jinan University, 855 East Xingye Avenue, Guangzhou 511443, Guangdong, China; Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, Guangdong, China
| | - Xia Huo
- Laboratory of Environmental Medicine and Developmental Toxicology, School of Environment, Jinan University, 855 East Xingye Avenue, Guangzhou 511443, Guangdong, China.
| |
Collapse
|
57
|
Liu J, Ye L, Jing C. Active microbial arsenic methylation in saline-alkaline paddy soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 865:161077. [PMID: 36572312 DOI: 10.1016/j.scitotenv.2022.161077] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/16/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Seawater rice has been cultivated to ensure food security. The salt-tolerant rice strains are resistant to saline and alkali but may be vulnerable to elevated arsenic (As) near coastal regions. Herein, the saline-alkaline paddy soil was incubated with natural irrigation river for three months to explore the mobility and transformation of As. The incubation results showed that 65 ± 1.2 % solid-bound As(V) was reduced to As(III) within two weeks with the release of As(III) to porewater. The dissolved As(III) was methylated after two weeks, resulting in dimethyl arsenate (DMA) as the dominant As species (87 %-100 %). The elevated As methylation was attributed to the most abundant arsenite methyltransferase gene (arsM) (4.1-10.4 × 107/g dry soil), over three orders of magnitude higher than As redox-related genes. The analysis of arsM operational taxonomic units (OTUs) suggested the highest sequence similarity to Proteobacteria (25.7-39.5 %), Actinobacteria (24.9-30.5 %), Gemmatimonadetes (7.5-11.9 %), Basidiomycota (5.1-12.5 %), and Chloroflexi (4.1-8.7 %). Specifically, Chloroflexi and Actinobacteria are salt-tolerant bacteria, probably responsible for As methylation. The As in grain was within a safe regulatory level, and the dominance of methylated As in porewater did not enhance its accumulation in rice grains.
Collapse
Affiliation(s)
- Jing Liu
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Li Ye
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Chuanyong Jing
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
58
|
Abstract
In recent times Gallbladder cancer (GBC) incidences increased many folds in India and are being reported from arsenic hotspots identified in Bihar. The study aims to establish association between arsenic exposure and gallbladder carcinogenesis. In the present study, n = 200 were control volunteers and n = 152 confirmed gallbladder cancer cases. The studied GBC patient's biological samples-gallbladder tissue, gallbladder stone, bile, blood and hair samples were collected for arsenic estimation. Moreover, n = 512 gallbladder cancer patients blood samples were also evaluated for the presence of arsenic to understand exposure level in the population. A significantly high arsenic concentration (p < 0.05) was detected in the blood samples with maximum concentration 389 µg/L in GBC cases in comparison to control. Similarly, in the gallbladder cancer patients, there was significantly high arsenic concentration observed in gallbladder tissue with highest concentration of 2166 µg/kg, in gallbladder stones 635 µg/kg, in bile samples 483 µg/L and in hair samples 6980 µg/kg respectively. Moreover, the n = 512 gallbladder cancer patient's blood samples study revealed very significant arsenic concentration in the population of Bihar with maximum arsenic concentration as 746 µg/L. The raised arsenic concentration in the gallbladder cancer patients' biological samples-gallbladder tissue, gallbladder stone, bile, blood, and hair samples was significantly very high in the arsenic exposed area. The study denotes that the gallbladder disease burden is very high in the arsenic exposed area of Bihar. The findings do provide a strong link between arsenic contamination and increased gallbladder carcinogenesis.
Collapse
|
59
|
Patel KS, Pandey PK, Martín-Ramos P, Corns WT, Varol S, Bhattacharya P, Zhu Y. A review on arsenic in the environment: contamination, mobility, sources, and exposure. RSC Adv 2023; 13:8803-8821. [PMID: 36936841 PMCID: PMC10020839 DOI: 10.1039/d3ra00789h] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/09/2023] [Indexed: 03/19/2023] Open
Abstract
Arsenic is one of the regulated hazard materials in the environment and a persistent pollutant creating environmental, agricultural and health issues and posing a serious risk to humans. In the present review, sources and mobility of As in various compartments of the environment (air, water, soil and sediment) around the World are comprehensively investigated, along with measures of health hazards. Multiple atomic spectrometric approaches have been applied for total and speciation analysis of As chemical species. The LoD values are basically under 1 μg L-1, which is sufficient for the analysis of As or its chemical species in environmental samples. Both natural and anthropogenic sources contributed to As in air, while fine particulate matter tends to have higher concentrations of arsenic and results in high concentrations of As up to a maximum of 1660 ng m-3 in urban areas. Sources for As in natural waters (as dissolved or in particulate form) can be attributed to natural deposits, agricultural and industrial effluents, for which the maximum concentration of 2000 μg L-1 was found in groundwater. Sources for As in soil can be the initial contents, fossil fuel burning products, industrial effluents, pesticides, and so on, with a maximum reported concentration up to 4600 mg kg-1. Sources for As in sediments can be attributed to their reservoirs, with a maximum reported concentration up to 2500 mg kg-1. It is notable that some reported concentrations of As in the environment are several times higher than permissible limits. However, many aspects of arsenic environmental chemistry including contamination of the environment, quantification, mobility, removal and health hazards are still unclear.
Collapse
Affiliation(s)
- Khageshwar Singh Patel
- Department of Applied Sciences, Amity University Manth (Kharora), State Highway 9 Raipur-493225 CG India
| | - Piyush Kant Pandey
- Amity University Manth (Kharora), State Highway 9 Raipur-493225 CG India
| | - Pablo Martín-Ramos
- Department of Agricultural and Environmental Sciences, EPS, Instituto de Investigación en Ciencias Ambientales de Aragón (IUCA), University of Zaragoza Carretera de Cuarte, s/n 22071 Huesca Spain
| | - Warren T Corns
- PS Analytical Ltd, Arthur House Unit 11 Cray fields Industrial Estate Orpington Kent BR5 3HP UK
| | - Simge Varol
- Department of Geological Engineering, Faculty of Engineering, Suleyman Demirel University Çünür Isparta-32260 Turkey
| | - Prosun Bhattacharya
- KTH-International Groundwater Arsenic Research Group, Department of Sustainable Development, Environmental Science and Engineering, KTH Royal Institute of Technology Teknikringen 10B SE-100 44 Stockholm Sweden
| | - Yanbei Zhu
- Environmental Standards Research Group, Research Institute for Material and Chemical Measurement, National Metrology Institute of Japan (NMIJ), National Institute of Advanced Industrial Science and Technology (AIST) 1-1-1 Umezono, Tsukuba Ibaraki 305-8563 Japan
| |
Collapse
|
60
|
Characterization and Quantification of Arsenic Species in Foodstuffs of Plant Origin by HPLC/ICP-MS. Life (Basel) 2023; 13:life13020511. [PMID: 36836868 PMCID: PMC9965120 DOI: 10.3390/life13020511] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/20/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
Arsenic is a well-known carcinogenic, mutagenic and toxic element and occurs in the environment both as inorganic arsenic (iAs) and organoarsenical compounds (oAsCs). Since the toxicity of arsenic compounds depends on their chemical form, the identification and determination of arsenic species are essential. Recently, the European Food Safety Authority, following the European Commission request, published a report on chronic dietary exposure to iAs and recommended the development and validation of analytical methods with adequate sensitivity and refined extraction procedures for this determination. Moreover, the authority called upon new arsenic speciation data for complex food matrices such as seaweeds, grains and grain-based products. Looking at this context, an optimized, sensitive and fast analytical method using high performance liquid chromatography followed by inductively coupled plasma-mass spectrometry (HPLC/ICP-MS) was developed for the determination of iAs (sum of arsenite-AsIII and arsenate-AsV) and the most relevant oAsCs, arsenobetaine, dimethylarsinic acid and monomethylarsonic acid. The method was validated with satisfactory results in terms of linearity, sensitivity, selectivity, precision, recovery, uncertainty, ruggedness and matrix effect, and then successfully applied for the analysis of several matrices, i.e., processed and unprocessed cereal and cereal products, fruits, vegetables, legumes, seaweeds, nuts and seeds. The results obtained indicate that not only seaweed and rice matrices but also many cereals, legumes and plant-based foods for infants and young children contain significant concentrations of iAs and oAsCs. These findings contribute to the data collection necessary to assess the role of these matrices in the total arsenic exposure and if specific maximum limits have to be established.
Collapse
|
61
|
Hackethal C, Pabel U, Jung C, Schwerdtle T, Lindtner O. Chronic dietary exposure to total arsenic, inorganic arsenic and water-soluble organic arsenic species based on results of the first German total diet study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160261. [PMID: 36402324 DOI: 10.1016/j.scitotenv.2022.160261] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/12/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
For risk assessment purposes, the dietary exposure to total arsenic and inorganic arsenic was estimated within the first German total diet study (BfR MEAL Study) for the whole population in Germany. Therefore, occurrence data of 356 different foods from the BfR MEAL Study were combined with consumption data from German nutrition surveys. Due to the different toxicological potentials of other water-soluble organic arsenic species present in rice-based foods, fish and seafood, dietary exposure to dimethylarsinic acid, monomethylarsonic acid and arsenobetaine was assessed in consumers in Germany through such foods for the first time. Related to the bodyweight, dietary exposure to total arsenic and inorganic arsenic in infants and young children (0.5-<5 years) were higher than in adolescents/adults (≥14 years). The highest median exposure estimates to inorganic arsenic resulted for the age group of infants from 0.5 to <1 year under modified lower bound conditions and for young children from 1 to <2 years under upper bound conditions (0.17 μg kg-1 bodyweight day-1-0.24 μg kg-1 bodyweight day-1 and 0.26 μg kg-1 bodyweight day-1-0.34 μg kg-1 bodyweight day-1, respectively). 'Grains and grain-based products' (especially rice) were identified as the main contributors for dietary exposure to total arsenic and inorganic arsenic for all age classes. Especially, for infants and young children, high consumption of rice-based foods and fish fingers is driving the dietary exposure to dimethylarsinic acid. The dietary exposure calculations indicate that a further reduction of dietary exposure to inorganic arsenic and further investigations to water-soluble organic arsenic species are necessary.
Collapse
Affiliation(s)
- Christin Hackethal
- German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Straße 8-10, 10589 Berlin, Germany; Institute of Nutritional Science (IEW), University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany.
| | - Ulrike Pabel
- German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Straße 8-10, 10589 Berlin, Germany.
| | - Christian Jung
- German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Straße 8-10, 10589 Berlin, Germany.
| | - Tanja Schwerdtle
- German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Straße 8-10, 10589 Berlin, Germany; Institute of Nutritional Science (IEW), University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany.
| | - Oliver Lindtner
- German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Straße 8-10, 10589 Berlin, Germany.
| |
Collapse
|
62
|
Shukla A, Gupta A, Srivastava S. Bacterial consortium (Priestia endophytica NDAS01F, Bacillus licheniformis NDSA24R, and Priestia flexa NDAS28R) and thiourea mediated amelioration of arsenic stress and growth improvement of Oryza sativa L. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 195:14-24. [PMID: 36584629 DOI: 10.1016/j.plaphy.2022.12.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 12/19/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
The present study analyzed the effects of individual microbes and their consortium (Priestia endophytica NDAS01F, Bacillus licheniformis NDSA24R, and P. flexa NDAS28R) either alone or in interaction with thiourea (TU) on growth and responses of rice plants subjected to As stress (50 mg kg-1 in soil) in a pot experiment. The bacteria used in the experiment were isolated from As contaminated fields of Nadia, West Bengal and showed significant As removal potential in in vitro experiment. The results revealed significant growth improvement, biomass accumulation, and decline in malondialdehyde levels in rice plants in bacterial and TU treatments as compared to control As treatment. The best results were observed in a bacterial consortium (B1-2-3), which induced a profound increase of 65%, 43%, 127% and 83% in root length, shoot length, leaf width and fresh weight, respectively. Sulfur metabolism and cell wall synthesis were stimulated upon bacterial and TU amendment in plants. The maximum reduction in As concentration was observed in B2 in roots (-55%) and in B1-2-3 in shoot (-83%). The combined treatment of B1-2-3 + TU proved to be less effective as compared to that of B1-2-3 in terms of As reduction and growth improvement. Hence, the usage of bacterial consortium obtained in the present work is a sustainable approach, which might find relevance in field conditions to achieve As reduction in rice grains and to attain higher growth of plants without the need for additional TU supplementation.
Collapse
Affiliation(s)
- Anurakti Shukla
- Plant Stress Biology Laboratory, Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, 221005, U.P, India
| | - Ankita Gupta
- Plant Stress Biology Laboratory, Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, 221005, U.P, India
| | - Sudhakar Srivastava
- Plant Stress Biology Laboratory, Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, 221005, U.P, India.
| |
Collapse
|
63
|
Jeong S, Ahn C, Kwon JS, Kim K, Jeung EB. Effects of Sodium Arsenite on the Myocardial Differentiation in Mouse Embryonic Bodies. TOXICS 2023; 11:142. [PMID: 36851018 PMCID: PMC9965385 DOI: 10.3390/toxics11020142] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/26/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
Arsenic in inorganic form is a known human carcinogen; even low levels of arsenic can interfere with the endocrine system. In mammalian development, arsenic exposure can cause a malformation of fetuses and be lethal. This study examined the effects of sodium arsenite (SA) as the inorganic form of arsenic in embryonic bodies (EBs) with three germ layers in the developmental stage. This condition is closer to the physiological condition than a 2D cell culture. The SA treatment inhibited EBs from differentiating into cardiomyocytes. A treatment with 1 μM SA delayed the initiation of beating, presenting successful cardiomyocyte differentiation. In particular, mitochondria function analysis showed that SA downregulated the transcription level of the Complex IV gene. SA increased the fission form of mitochondrion identified by the mitochondria number and length. In addition, a treatment with D-penicillamine, an arsenic chelator, restored the beat of EBs against SA, but not mitochondrial dysfunction. These findings suggest that SA is a toxicant that induces mitochondrial damage and interferes with myocardial differentiation and embryogenesis. This study suggests that more awareness of SA exposure during pregnancy is required because even minuscule amounts have irreversible adverse effects on embryogenesis through mitochondria dysfunction.
Collapse
Affiliation(s)
- SunHwa Jeong
- Laboratory of Veterinary Biochemistry and Molecular Biology, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Changhwan Ahn
- Laboratory of Veterinary Physiology, College of Veterinary Medicine, Jeju National University, Jeju 63243, Republic of Korea
- Veterinary Medical Research Institute, Jeju National University, Jeju 63243, Republic of Korea
| | - Jin-Sook Kwon
- Laboratory of Veterinary Biochemistry and Molecular Biology, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - KangMin Kim
- Laboratory of Veterinary Biochemistry and Molecular Biology, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Eui-Bae Jeung
- Laboratory of Veterinary Biochemistry and Molecular Biology, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
| |
Collapse
|
64
|
Wang W, Yi Z, Liang Q, Zhen J, Wang R, Li M, Zeng L, Li Y. In Situ Deposition of Gold Nanoparticles and L-Cysteine on Screen-Printed Carbon Electrode for Rapid Electrochemical Determination of As(III) in Water and Tea. BIOSENSORS 2023; 13:130. [PMID: 36671965 PMCID: PMC9856477 DOI: 10.3390/bios13010130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/08/2023] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
In this study, a screen-printed carbon electrode (SPCE) based on in situ deposition modification was developed for the sensitive, rapid, easy and convenient determination of As(III) in water and tea by linear sweep anodic stripping voltammetry (LSASV). The screen-printed carbon electrodes were placed in a solution consisting of As(III) solution, chlorauric acid and L-cysteine. Under certain electrical potential, the chloroauric acid was reduced to gold nanoparticles (AuNPs) on the SPCE. L-cysteine was self-assembled onto AuNPs and promoted the enrichment of As(III), thus enhancing the determination specificity and sensitivity of As(III). The method achieved a limit of determination (LOD) of 0.91 ppb (µg L-1), a linear range of 1~200 µg L-1, an inter-assay coefficient of variation of 5.3% and good specificity. The developed method was successfully applied to the determination of As(III) in tap water and tea samples, with a recovery rate of 93.8%~105.4%, and further validated by inductively coupled plasma mass spectrometry (ICP-MS). The developed method is rapid, convenient and accurate, holding great promise in the on-site determination of As(III) in tap water and tea leaves, and it can be extended to the detection of other samples.
Collapse
Affiliation(s)
- Wenjing Wang
- School of Food Science and Engineering, Foshan University, Foshan 528231, China
| | - Zhijian Yi
- School of Food Science and Engineering, Foshan University, Foshan 528231, China
| | - Qiongxin Liang
- School of Food Science and Engineering, Foshan University, Foshan 528231, China
| | - Junjie Zhen
- Guangdong Langyuan Biotechnology Co., Ltd., Foshan 528313, China
| | - Rui Wang
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Fudan University, Shanghai 200438, China
| | - Mei Li
- School of Food Science and Engineering, Foshan University, Foshan 528231, China
| | - Lingwen Zeng
- School of Food Science and Engineering, Foshan University, Foshan 528231, China
- Wuhan Zhongkezhikang Biotechnology Co., Ltd., Wuhan 430223, China
| | - Yongfang Li
- School of Food Science and Engineering, Foshan University, Foshan 528231, China
| |
Collapse
|
65
|
Vezza ME, Pramparo RDP, Wevar Oller AL, Agostini E, Talano MA. Promising co-inoculation strategies to reduce arsenic toxicity in soybean. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:88066-88077. [PMID: 35821321 DOI: 10.1007/s11356-022-21443-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
Arsenic (As) is the cause for concern worldwide due to its high toxicity. Its presence in agricultural soils and groundwater adversely affects soybean (Glycine max L.) growth and yield and also endangers food safety. Plant growth-promoting rhizobacteria (PGPR) could be used as part of cost-effective and eco-friendly strategies to mitigate As phytotoxicity. However, simple inoculation of soybean with PGPR Bradyrhizobium japonicum E109 (E109), a common practice in Argentina, is not effective in counteracting the effects of As exposure. Our aim was to assess whether the response of soybean to arsenate (AsV) and arsenite (AsIII) could be helpfully modulated by co-inoculating E109 with the free-living PGPRs Azospirillum brasilense Cd (Cd) or Bacillus pumilus SF5 (SF5). Co-inoculation with E109 + SF5 alleviated As-induced depletion of chlorophyll a and b, and carotenoid content, reaching an increase of 26, 28 y 31%, respectively. It also enhanced nodulation (15-19%) under As exposure. E109 + Cd and E109 + SF5 induced changes in the antioxidant system, which could be related to the maintenance of redox homeostasis. Moreover, As accumulation was reduced by 53% in aerial parts of plants inoculated with E109 + Cd, and by 16% in the roots of those inoculated with E109 + SF5. The strains selected show interesting potential for the development of biotechnological schemes to improve soybean yield while guaranteeing safer food production.
Collapse
Affiliation(s)
- Mariana Elisa Vezza
- Departamento de Biología Molecular, FCEFQyN, Instituto de Biotecnología Ambiental Y Salud, INBIAS-CONICET, Universidad Nacional de Río Cuarto (UNRC), Ruta Nacional 36 Km 601, 5800, Río Cuarto, Córdoba, CP, Argentina
| | - Romina Del Pilar Pramparo
- Departamento de Biología Molecular, FCEFQyN, Instituto de Biotecnología Ambiental Y Salud, INBIAS-CONICET, Universidad Nacional de Río Cuarto (UNRC), Ruta Nacional 36 Km 601, 5800, Río Cuarto, Córdoba, CP, Argentina
| | - Ana Laura Wevar Oller
- Departamento de Biología Molecular, FCEFQyN, Instituto de Biotecnología Ambiental Y Salud, INBIAS-CONICET, Universidad Nacional de Río Cuarto (UNRC), Ruta Nacional 36 Km 601, 5800, Río Cuarto, Córdoba, CP, Argentina
| | - Elizabeth Agostini
- Departamento de Biología Molecular, FCEFQyN, Instituto de Biotecnología Ambiental Y Salud, INBIAS-CONICET, Universidad Nacional de Río Cuarto (UNRC), Ruta Nacional 36 Km 601, 5800, Río Cuarto, Córdoba, CP, Argentina.
| | - Melina Andrea Talano
- Departamento de Biología Molecular, FCEFQyN, Instituto de Biotecnología Ambiental Y Salud, INBIAS-CONICET, Universidad Nacional de Río Cuarto (UNRC), Ruta Nacional 36 Km 601, 5800, Río Cuarto, Córdoba, CP, Argentina
| |
Collapse
|
66
|
Gupta A, Dubey P, Kumar M, Roy A, Sharma D, Khan MM, Bajpai AB, Shukla RP, Pathak N, Hasanuzzaman M. Consequences of Arsenic Contamination on Plants and Mycoremediation-Mediated Arsenic Stress Tolerance for Sustainable Agriculture. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11233220. [PMID: 36501260 PMCID: PMC9735799 DOI: 10.3390/plants11233220] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/10/2022] [Accepted: 11/22/2022] [Indexed: 05/13/2023]
Abstract
Arsenic contamination in water and soil is becoming a severe problem. It is toxic to the environment and human health. It is usually found in small quantities in rock, soil, air, and water which increase due to natural and anthropogenic activities. Arsenic exposure leads to several diseases such as vascular disease, including stroke, ischemic heart disease, and peripheral vascular disease, and also increases the risk of liver, lungs, kidneys, and bladder tumors. Arsenic leads to oxidative stress that causes an imbalance in the redox system. Mycoremediation approaches can potentially reduce the As level near the contaminated sites and are procuring popularity as being eco-friendly and cost-effective. Many fungi have specific metal-binding metallothionein proteins, which are used for immobilizing the As concentration from the soil, thereby removing the accumulated As in crops. Some fungi also have other mechanisms to reduce the As contamination, such as biosynthesis of glutathione, cell surface precipitation, bioaugmentation, biostimulation, biosorption, bioaccumulation, biovolatilization, methylation, and chelation of As. Arsenic-resistant fungi and recombinant yeast have a significant potential for better elimination of As from contaminated areas. This review discusses the relationship between As exposure, oxidative stress, and signaling pathways. We also explain how to overcome the detrimental effects of As contamination through mycoremediation, unraveling the mechanism of As-induced toxicity.
Collapse
Affiliation(s)
- Anmol Gupta
- IIRC-3, Plant-Microbe Interaction and Molecular Immunology Laboratory, Department of Biosciences, Faculty of Science, Integral University, Lucknow 226026, Uttar Pradesh, India
| | - Priya Dubey
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow 226001, Uttar Pradesh, India
| | - Manoj Kumar
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion 7505101, Israel
- Correspondence: (M.K.); (M.H.)
| | - Aditi Roy
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow 226001, Uttar Pradesh, India
| | - Deeksha Sharma
- Plant Molecular Biology Laboratory, CSIR National Botanical Research Institute, Lucknow 226001, Uttar Pradesh, India
| | - Mohammad Mustufa Khan
- Department of Basic Medical Sciences, Integral Institute of Allied Health Sciences & Research (IIAHS&R), Integral University, Lucknow 226026, Uttar Pradesh, India
| | - Atal Bihari Bajpai
- Department of Botany, D.B.S. (PG) College, Dehradun 248001, Uttarakhand, India
| | | | - Neelam Pathak
- Department of Biochemistry, Dr. Rammanohar Lohia Avadh University, Ayodhya 224001, Uttar Pradesh, India
| | - Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh
- Correspondence: (M.K.); (M.H.)
| |
Collapse
|
67
|
Chen JY, Zeng JY, Ding S, Li J, Liu X, Guan DX, Ma LQ. Arsenic contents, speciation and bioaccessibility in rice grains from China: Regional and variety differences. JOURNAL OF HAZARDOUS MATERIALS 2022; 437:129431. [PMID: 35897189 DOI: 10.1016/j.jhazmat.2022.129431] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/11/2022] [Accepted: 06/18/2022] [Indexed: 06/15/2023]
Abstract
As the staple food for Asian countries and with its ability in arsenic accumulation, rice consumption becomes a dominant pathway for As exposure to humans. Here, we collected 108 rice samples from local markets and online sources in 13 major rice-producing regions in China, and determined As contents, speciation and bioaccessibility in the samples. Total As contents were 25-327 μg kg-1 (averaging 120), showing regional differences, with Hunan province being greater than other provinces at 180 vs 110. In rice grains, inorganic As was the dominant species, being 39.9-88.5 (61.1 %), but all being within the Chinese standard at 200 μg kg-1. Based on the modified physiologically-based extraction test (MPEBT), arsenic bioaccessibility in rice samples was 20.1-82.2 (52.3 %) in the gastric phase and 47.2-113 (81.2 %) in the intestinal phase. Strong positive correlation between total As and bioaccessible As suggested bioaccessible As was content-dependent. Based on the intestinal phase, the rice samples from northern region had lower As bioaccessibility than other regions (59.2 vs 83.2 %), and Japonica variety had lower As bioaccessibility than Indica variety (71.1 vs 83.1 %). This study suggests that rice from markets in China is safe, with their As contents and bioaccessibility showing regional and variety differences.
Collapse
Affiliation(s)
- Jia-Yi Chen
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jing-Yu Zeng
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Song Ding
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jie Li
- College of Geography and Environment, Shandong Normal University, Jinan 250358, China
| | - Xue Liu
- Institute of Environmental Remediation and Human Health, Southwest Forestry University, Kunming 650224, China
| | - Dong-Xing Guan
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lena Q Ma
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
68
|
Aldakheel RK, Gondal MA, Alsayed HN, Almessiere MA, Nasr MM, Shemsi AM. Rapid Determination and Quantification of Nutritional and Poisonous Metals in Vastly Consumed Ayurvedic Herbal Medicine (Rejuvenator Shilajit) by Humans Using Three Advanced Analytical Techniques. Biol Trace Elem Res 2022; 200:4199-4216. [PMID: 34800280 DOI: 10.1007/s12011-021-03014-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/01/2021] [Indexed: 10/19/2022]
Abstract
Shilajit is used commonly as Ayurvedic medicine worldwide which is Rasayana herbo-mineral substance and consumed to restore the energetic balance and to prevent diseases like cognitive disorders and Alzheimer. Locally, Shilajit is applied for patients diagnosed with bone fractures. For safety of the patients, the elemental analysis of Shilajit is imperative to evaluate its nutritional quality as well as contamination from heavy metals. The elemental composition of Shilajit was conducted using three advanced analytical techniques (LIBS, ICP, and EDX). For the comparative studies, the two Shilajit kinds mostly sold globally produced in India and Pakistan were collected. Our main focus is to highlight nutritional eminence and contamination of heavy metals to hinge on Shilajit therapeutic potential. In this work, laser-induced breakdown spectroscopy (LIBS) was applied for qualitative and quantitative analysis of the Shilajit. Our LIBS analysis revealed that Shilajit samples composed of several elements like Ca, S, K, Mg, Al, Na, Sr, Fe, P, Si, Mn, Ba, Zn, Ni, B, Cr, Co, Pb, Cu, As, Hg, Se, and Ti. Indian and Pakistani Shilajits were highly enriched with Ca, S, and K nutrients and contained Al, Sr, Mn, Ba, Zn, Ni, B, Cr, Pb, As, and Hg toxins in amounts that exceeded the standard permissible limit. Even though the content of most elements was comparable among both Shilajits, nutrients, and toxins, in general, were accentuated more in Indian Shilajit with the sole detection of Hg and Ti. The elemental quantification was done using self-developed calibration-free laser-induced breakdown spectroscopy (CF-LIBS) method, and LIBS results are in well agreement with the concentrations determined by standard ICP-OES/MS method. To verify our results by LIBS and ICP-OES/MS techniques, EDX spectroscopy was also conducted which confirmed the presence above mentioned elements. This work is highly significant for creating awareness among people suffering due to overdose of this product and save many human lives.
Collapse
Affiliation(s)
- R K Aldakheel
- Department of Physics, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, Saudi Arabia
- Department of Biophysics, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, Saudi Arabia
| | - M A Gondal
- Laser Research Group, Physics Department, IRC-Hydrogen & Energy Storage, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia.
- K.A. CARE Energy Research and Innovation Center, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia.
| | - Hasan N Alsayed
- Department of Orthopedic Surgery, College of Medicine, Imam Abdulrahman Bin Faisal University and King Fahd Hospital of the University, Dammam, Saudi Arabia
| | - M A Almessiere
- Department of Physics, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, Saudi Arabia
- Department of Biophysics, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, Saudi Arabia
| | - M M Nasr
- Physics Department, Riyadh Elm University, P.O. Box 321815, Riyadh, 11343, Saudi Arabia
| | - A M Shemsi
- Center for Environment and Marine Study, Research Institute, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| |
Collapse
|
69
|
Panthri M, Gupta M. An insight into the act of iron to impede arsenic toxicity in paddy agro-system. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 316:115289. [PMID: 35598452 DOI: 10.1016/j.jenvman.2022.115289] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/13/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
Surplus research on the widespread arsenic (As) revealed its disturbing role in obstructing the metabolic function of plants. Also, the predilection of As towards rice has been an interesting topic. Contrary to As, iron (Fe) is an essential micronutrient for all life forms. Past findings propound about the enhanced As-resistance in rice plants during Fe supplementation. Thus, considering the severity of As contamination and resulting exposure through rice crops, as well as the studied cross-talks between As and Fe, we found this topic of relevance. Keeping these in view, we bring this review discussing the presence of As-Fe in the paddy environment, the criticality of Fe plaque in As sequestration, and the effectiveness of various Fe forms to overcome As toxicity in rice. This type of interactive analysis for As and Fe is also crucial in the context of the involvement of Fe in cellular redox activities such as oxidative stress. Also, this piece of work highlights Fe biofortification approaches for better rice varieties with optimum intrinsic Fe and limited As. Though elaborated by others, we lastly present the acquisition and transport mechanisms of both As and Fe in rice tissues. Altogether we suggest that Fe supply and Fe plaque might be a prospective agronomical tool against As poisoning and for phytostabilization, respectively.
Collapse
Affiliation(s)
- Medha Panthri
- Ecotoxicogenomics Lab, Department of Biotechnology, Jamia Millia Islamia, New Delhi, 110025, India
| | - Meetu Gupta
- Ecotoxicogenomics Lab, Department of Biotechnology, Jamia Millia Islamia, New Delhi, 110025, India.
| |
Collapse
|
70
|
Mirza Z, Haque MM, Gupta M. WRKY transcription factors: a promising way to deal with arsenic stress in rice. Mol Biol Rep 2022; 49:10895-10904. [PMID: 35941412 DOI: 10.1007/s11033-022-07772-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 06/30/2022] [Accepted: 07/05/2022] [Indexed: 11/30/2022]
Abstract
Arsenic (As) is a global carcinogenic contaminant, and is one of the significant environmental constraints that limits the development and yield of crop plants. It is always tagged along with rice as rice takes up As and tends to accumulate it in grains. This amassment makes a way for As to get into the food chain that leads to unforeseen human health risks. Being viewed as parallel with toxicity, As in rice is an important global risk that calls for an urgent solution. WRKY Transcription Factors (TFs) seems to be promising in this area. The classical and substantial progress in the molecular mechanism of WRKY TFs, strengthened the understanding of innovative solutions for dealing with As in rice. Here, we review the potential of WRKY TFs under As stressed rice as a genetic solution and also provide insights into As and rice. Further, we develop an understanding of WRKY TF gene family and its regulation in rice. To date, studies on the role of WRKY TFs under As stressed rice are lacking. This area needs to be explored more so that this gene family can be utilized as an effective genetic tool that can break the As cycle to develop low or As free rice cultivar.
Collapse
Affiliation(s)
- Zainab Mirza
- Ecotoxicogenomics Lab, Department of Biotechnology, Jamia Millia Islamia, 25, New Delhi, India
| | - Mohammad Mahfuzul Haque
- Ecotoxicogenomics Lab, Department of Biotechnology, Jamia Millia Islamia, 25, New Delhi, India
| | - Meetu Gupta
- Ecotoxicogenomics Lab, Department of Biotechnology, Jamia Millia Islamia, 25, New Delhi, India.
| |
Collapse
|
71
|
Li MD, Fu L, Lv BB, Xiang Y, Xiang HX, Xu DX, Zhao H. Arsenic induces ferroptosis and acute lung injury through mtROS-mediated mitochondria-associated endoplasmic reticulum membrane dysfunction. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 238:113595. [PMID: 35525119 DOI: 10.1016/j.ecoenv.2022.113595] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/22/2022] [Accepted: 04/30/2022] [Indexed: 06/14/2023]
Abstract
The goal of this study was to analyze whether mitochondria-associated endoplasmic reticulum membrane (MAMs) dysfunction mediated arsenic (As)-evoked pulmonary ferroptosis and acute lung injury (ALI). As exposure led to alveolar structure damage, inflammatory cell infiltration and pulmonary function decline in mice. Ferritin, the marker of iron overload, was increased, GPX4, the index of lipid peroxidation, was decreased in As-exposed lungs and pulmonary epithelial cells (MLE-12). Pretreatment with ferrostatin-1 (Fer-1), the inhibitor of ferroptosis, alleviated As-evoked ALI. In addition, As-induced non-heme iron deposition was inhibited in Fer-1 pretreated-mice. Moreover, As-triggered mitochondria damage and ferroptosis were mitigated in Fer-1 pretreated-MLE-12 cells. Mechanistically, PERK phosphorylation and mitofusin-2 (Mfn-2) reduction was observed in As-exposed MLE-12 cells and mice lungs. Additionally, the interaction between PERK and Mfn-2 was downregulated and MAMs dysfunction was observed in As-exposed MLE-12 cells. Intriguingly, PERK inhibitor and Mfn-2-overexpression all mitigated As-induced ferroptosis in MLE-12 cells. Additionally, CLPP and mtHSP70, the markers of mitochondrial stress, were upregulated, mitochondrial ROS (mtROS) was elevated, mitochondrial membrane potential (MMP) and ATP were decreased in As-exposed MLE-12 cells. Mitoquinone mesylate (MitoQ), a novel mitochondrial-targeted antioxidant, alleviated As-induced excess mtROS, mitochondrial stress, MAMs dysfunction in pulmonary epithelial cells. Similarly, in vivo experiments indicated that MitoQ pretreatment countered As-induced pulmonary ferroptosis and ALI. These data indicated that mtROS-initiated MAMs dysfunction is, at least partially, implicated in As-evoked ferroptosis and ALI.
Collapse
Affiliation(s)
- Meng-Die Li
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China; Department of Toxicology, Anhui Medical University, Hefei 230032, China
| | - Lin Fu
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China; Department of Toxicology, Anhui Medical University, Hefei 230032, China.
| | - Bian-Bian Lv
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China; Department of Toxicology, Anhui Medical University, Hefei 230032, China
| | - Ying Xiang
- Department of Respiratory and Critical Care Medicine, Lu'an People's Hospital of Anhui Province, Lu'an, Anhui 237000, China
| | - Hui-Xian Xiang
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China
| | - De-Xiang Xu
- Department of Toxicology, Anhui Medical University, Hefei 230032, China.
| | - Hui Zhao
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China.
| |
Collapse
|
72
|
Abstract
Arsenic poisoning constitutes a major threat to humans, causing various health problems. Almost everywhere across the world certain “hotspots” have been detected, putting in danger the local populations, due to the potential consumption of water or food contaminated with elevated concentrations of arsenic. According to the relevant studies, Asia shows the highest percentage of significantly contaminated sites, followed by North America, Europe, Africa, South America and Oceania. The presence of arsenic in ecosystems can originate from several natural or anthropogenic activities. Arsenic can be then gradually accumulated in different food sources, such as vegetables, rice and other crops, but also in seafood, etc., and in water sources (mainly in groundwater, but also to a lesser extent in surface water), potentially used as drinking-water supplies, provoking their contamination and therefore potential health problems to the consumers. This review reports the major areas worldwide that present elevated arsenic concentrations in food and water sources. Furthermore, it also discusses the sources of arsenic contamination at these sites, as well as selected treatment technologies, aiming to remove this pollutant mainly from the contaminated waters and thus the reduction and prevention of population towards arsenic exposure.
Collapse
|
73
|
Khan MI, Ahmad MF, Ahmad I, Ashfaq F, Wahab S, Alsayegh AA, Kumar S, Hakeem KR. Arsenic Exposure through Dietary Intake and Associated Health Hazards in the Middle East. Nutrients 2022; 14:2136. [PMID: 35631276 PMCID: PMC9146532 DOI: 10.3390/nu14102136] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 02/01/2023] Open
Abstract
Dietary arsenic (As) contamination is a major public health issue. In the Middle East, the food supply relies primarily on the import of food commodities. Among different age groups the main source of As exposure is grains and grain-based food products, particularly rice and rice-based dietary products. Rice and rice products are a rich source of core macronutrients and act as a chief energy source across the world. The rate of rice consumption ranges from 250 to 650 g per day per person in South East Asian countries. The source of carbohydrates through rice is one of the leading causes of human As exposure. The Gulf population consumes primarily rice and ready-to-eat cereals as a large proportion of their meals. Exposure to arsenic leads to an increased risk of non-communicable diseases such as dysbiosis, obesity, metabolic syndrome, diabetes, chronic kidney disease, chronic heart disease, cancer, and maternal and fetal complications. The impact of arsenic-containing food items and their exposure on health outcomes are different among different age groups. In the Middle East countries, neurological deficit disorder (NDD) and autism spectrum disorder (ASD) cases are alarming issues. Arsenic exposure might be a causative factor that should be assessed by screening the population and regulatory bodies rechecking the limits of As among all age groups. Our goals for this review are to outline the source and distribution of arsenic in various foods and water and summarize the health complications linked with arsenic toxicity along with identified modifiers that add heterogeneity in biological responses and suggest improvements for multi-disciplinary interventions to minimize the global influence of arsenic. The development and validation of diverse analytical techniques to evaluate the toxic levels of different As contaminants in our food products is the need of the hour. Furthermore, standard parameters and guidelines for As-containing foods should be developed and implemented.
Collapse
Affiliation(s)
- Mohammad Idreesh Khan
- Department of Clinical Nutrition, College of Applied Health Sciences in Arras, Qassim University, Buraydah 58883, Saudi Arabia;
| | - Md Faruque Ahmad
- Department of Clinical Nutrition, College of Applied Medical Sciences, Jazan University, Jazan 45142, Saudi Arabia; (F.A.); (A.A.A.)
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha 62529, Saudi Arabia;
| | - Fauzia Ashfaq
- Department of Clinical Nutrition, College of Applied Medical Sciences, Jazan University, Jazan 45142, Saudi Arabia; (F.A.); (A.A.A.)
| | - Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia
| | - Abdulrahman A. Alsayegh
- Department of Clinical Nutrition, College of Applied Medical Sciences, Jazan University, Jazan 45142, Saudi Arabia; (F.A.); (A.A.A.)
| | - Sachil Kumar
- Department of Forensic Chemistry, College of Forensic Sciences, Naif Arab University for Security Sciences (NAUSS), Riyadh 14812, Saudi Arabia;
| | - Khalid Rehman Hakeem
- Department of Biological Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Princess Dr. Najla Bint Saud Al- Saud Center for Excellence Research in Biotechnology, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Public Health, Daffodil International University, Dhaka 1207, Bangladesh
| |
Collapse
|
74
|
Speciation of Arsenic(III) and Arsenic(V) in Plant-Based Drinks. Foods 2022; 11:foods11101441. [PMID: 35627011 PMCID: PMC9140929 DOI: 10.3390/foods11101441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/13/2022] [Accepted: 05/13/2022] [Indexed: 02/07/2023] Open
Abstract
Recently, food products based only on plants have become increasingly popular and are often found on store shelves. It is a specific market response to the growing demand for, and interest in, plant foods. Cow's milk has also gained its counterpart in the form of plant-based beverages, based on cereals, nuts or legumes. The emergence of an increasingly wide range of plant-based food products has also led to increased research on safe plant food consumption. This study was conducted to quantify total arsenic content and its species (arsenic(III) and (V)) in samples of plant-based beverages purchased at Polish markets. Speciation analysis of arsenic was performed by high-performance liquid chromatography combined with inductively coupled plasma mass spectrometry. The presented study was conducted on six selected plant-based beverages, including almond, millet, soybean, rice, coconut and oat. An analysis using size exclusion chromatography was performed. In order to initially visualize the content of the observed elements and the particle size of the compounds in which they occur, at first the samples were subjected to the size-exclusion chromatography. Speciation analysis of arsenic was carried out using anion-exchange liquid chromatography, combined with inductively coupled plasma mass spectrometry. The presented method was validated with certified reference material (CRM rice flour).
Collapse
|
75
|
Song YP, Lv JW, Zhao Y, Chen X, Zhang ZC, Fan YJ, Zhang C, Gao L, Huang Y, Wang H, Xu DX. DNA hydroxymethylation reprogramming of β-oxidation genes mediates early-life arsenic-evoked hepatic lipid accumulation in adult mice. JOURNAL OF HAZARDOUS MATERIALS 2022; 430:128511. [PMID: 35739688 DOI: 10.1016/j.jhazmat.2022.128511] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 02/10/2022] [Accepted: 02/15/2022] [Indexed: 06/15/2023]
Abstract
The metabolic disorders are becoming an epidemic disease endangering public health in countries. Environmental factors are mainly reason for the growth of metabolic disorders. Previous research suggests that DNA methylation is a potential mechanism. Recently, it has been reported that DNA hydroxymethylation is also a stable marker of epigenetic reprogramming. Hence, the study aims to investigate whether DNA hydroxymehylation mediates early-life environmental stress-evoked metabolic disorder in adulthood. Mice were orally administered with arsenic (As), an environmental stressor, throughout pregnancy. We show that early-life As exposure induces glucose intolerance and hepatic lipid accumulation in adulthood. Early-life As exposure alters epigenetic reprogramming and expression of lipid metabolism-related genes including β-oxidation-specific genes in adulthood. Of interest, early-life As exposure alters epigenetic reprogramming of hepatic lipid metabolism partially through reducing DNA hydroxymethylation modification of β-oxidation-related genes in developing liver. Mechanistically, early-life As exposure suppresses ten-eleven translocation (TET) activity through downregulating isocitrate dehydrogenases (Idh) and reducing alpha-ketoglutarate (α-KG) content in the developing liver. In addition, early-life As exposure inhibits TET1 binding to CpG-rich fragments of β-oxidation-related genes in developing liver. This study provide novel evidence that early-life environmental stress leads to later life metabolic disorders by altering hepatic DNA hydroxymethylation reprogramming.
Collapse
Affiliation(s)
- Ya-Ping Song
- Department of Toxicology, Anhui Medical University, Hefei 230032, China
| | - Jin-Wei Lv
- Department of Toxicology, Anhui Medical University, Hefei 230032, China
| | - Ying Zhao
- Department of Toxicology, Anhui Medical University, Hefei 230032, China
| | - Xu Chen
- Department of Toxicology, Anhui Medical University, Hefei 230032, China
| | - Zhi-Cheng Zhang
- Department of Toxicology, Anhui Medical University, Hefei 230032, China
| | - Yi-Jun Fan
- Department of Toxicology, Anhui Medical University, Hefei 230032, China
| | - Cheng Zhang
- Department of Toxicology, Anhui Medical University, Hefei 230032, China
| | - Lan Gao
- Department of Toxicology, Anhui Medical University, Hefei 230032, China
| | - Yichao Huang
- Department of Toxicology, Anhui Medical University, Hefei 230032, China
| | - Hua Wang
- Department of Toxicology, Anhui Medical University, Hefei 230032, China
| | - De-Xiang Xu
- Department of Toxicology, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
76
|
Ostovar M, Saberi N, Ghiassi R. Selenium contamination in water; analytical and removal methods: a comprehensive review. SEP SCI TECHNOL 2022. [DOI: 10.1080/01496395.2022.2074861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Mojtaba Ostovar
- Faculty of Civil Engineering, K. N. Toosi University of Technology, Tehran, Iran
| | - Nima Saberi
- Department of Geological Sciences and Geological Engineering, Queen’s University, Kingston, ON, Canada
| | - Reza Ghiassi
- Water and Environmental Measurement and Monitoring Labour, School of Civil Engineering, College of Engineering, University of Tehran, Tehran, Iran
| |
Collapse
|
77
|
Zaheer MS, Ali HH, Erinle KO, Wani SH, Okon OG, Nadeem MA, Nawaz M, Bodlah MA, Waqas MM, Iqbal J, Raza A. Inoculation of Azospirillum brasilense and exogenous application of trans-zeatin riboside alleviates arsenic induced physiological damages in wheat (Triticum aestivum). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:33909-33919. [PMID: 35031990 DOI: 10.1007/s11356-021-18106-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 12/09/2021] [Indexed: 06/14/2023]
Abstract
Due to increased industrialization, arsenic (As) in the soil has become a serious issue for wheat production since past few decades. We investigated the role of Azospirillum brasilense and trans-zeatin riboside (tZR) in the mitigation of arsenic toxicity in wheat for 2 years (2018-2019 and 2019-2020) in pot experiments. Wheat plants grown in soil artificially spiked with arsenic (50, 70, and 100 μM) was left alone or amended with A. brasilense, tZR, or their combination as mitigation strategies. A treatment without arsenic or amendments was maintained as control. Arsenic-induced physiological damages were noticed in the wheat plants. Detrimental effects on the plant physiological functions, such as disruption of cell membrane stability, reduced water uptake, and stomatal functions, were noticed with increase in As toxicity. Application of biological amendments reversed the effects of As toxicity by increasing wheat plant growth rate, leaf area, and photosynthesis and also yield. Therefore, application of tZR and wheat seed inoculation with A. brasilense could be a sustainable and environmentally friendly strategy to mitigate arsenic-induced crop physiological damages.
Collapse
Affiliation(s)
- Muhammad Saqlain Zaheer
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan.
| | - Hafiz Haider Ali
- Sustainable Development Study Center (SDSC), Government College University, Katchery Road, Lahore, Pakistan.
| | - Kehinde O Erinle
- School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Shabir Hussain Wani
- Mountain Research Centre for Field Crops, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Jammu and Kashmir, Khudwani, Anantnag, 192101, India
| | - Okon Godwin Okon
- Department of Botany, Akwa Ibom State University, Ikot Akpaden, Nigeria
| | - Muhammad Azhar Nadeem
- Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, Sivas, 58140, Turkey
| | - Muhammad Nawaz
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Muhammad Adnan Bodlah
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Muhammad Mohsin Waqas
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Javaid Iqbal
- Department of Plant Protection, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia
| | - Ali Raza
- Department of Agronomy, College of Agriculture, University of Sargodha, Sargodha, Pakistan
- Department of Biological Sciences, University of Sialkot, Sialkot, Pakistan
| |
Collapse
|
78
|
Upadhyay MK, Majumdar A, Srivastava AK, Bose S, Suprasanna P, Srivastava S. Antioxidant enzymes and transporter genes mediate arsenic stress reduction in rice (Oryza sativa L.) upon thiourea supplementation. CHEMOSPHERE 2022; 292:133482. [PMID: 34979210 DOI: 10.1016/j.chemosphere.2021.133482] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/07/2021] [Accepted: 12/29/2021] [Indexed: 06/14/2023]
Abstract
Thiourea (TU) is a chemo-priming agent and non-physiological reactive oxygen species (ROS) scavenger whose application has been found to reduce As accumulation in rice grains along with improved growth and yield. The present field study explored TU-mediated mechanistic changes in silicon (Si) assimilation in root/shoot, biochemical and molecular mechanisms of arsenic (As) stress amelioration in rice cultivars. Gosai and Satabdi (IET-4786) rice cultivars were selected for field experiment at three different places; control field and two other As contaminated experimental fields (EF1 and EF2) in West Bengal, India. The average As reduction was observed to be 9.5% and 19.8% whereas the yield increment was 8.8% and 17.7% for gosai and satabdi, respectively among all the three experimental fields. The positive interrelation was also observed between improved internal ultrastructure anatomy and enhanced Si assimilation (36%-423%) upon TU application. The level of photosynthetic pigments was increased by 29.8%-99.2%. Further, activities of antioxidant enzymes were harmonically altered in TU supplemented plants. The expression of various As related transporter genes in flag leaf and developing grains (inflorescence) was changed in both the rice cultivars (gosai and satabdi). It was also presumably responsible for observed As reduction in grains. Thus, TU application was found to be an efficient and sustainable agronomic practice for amelioration of As toxicity in rice plants in As contaminated field conditions.
Collapse
Affiliation(s)
- Munish Kumar Upadhyay
- Plant Stress Biology Laboratory, Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Arnab Majumdar
- Department of Earth Sciences, Indian Institute of Science Education and Research-Kolkata, Mohanpur, 741246, West Bengal, India
| | - Ashish Kumar Srivastava
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra, 400085, India; Homi Bhabha National Centre, Mumbai, Maharashtra, 400094, India
| | - Sutapa Bose
- Department of Earth Sciences, Indian Institute of Science Education and Research-Kolkata, Mohanpur, 741246, West Bengal, India
| | - Penna Suprasanna
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra, 400085, India
| | - Sudhakar Srivastava
- Plant Stress Biology Laboratory, Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India.
| |
Collapse
|
79
|
Rathi BS, Kumar PS. Continuous electrodeionization on the removal of toxic pollutant from aqueous solution. CHEMOSPHERE 2022; 291:132808. [PMID: 34762876 DOI: 10.1016/j.chemosphere.2021.132808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/21/2021] [Accepted: 11/04/2021] [Indexed: 06/13/2023]
Abstract
Arsenic is among the most harmful pollutants and can create severe public health effects from such a small volume of water. Electrodeionization was used to eradicate arsenic ions from groundwater in this research. Electrodeionization system incorporates hybrid electro dialysis/ion exchange to remove and concentrate Arsenic ions from water, then reuses the processed water. The findings indicate that Electrodeionization will remove arsenic from liquids at intensities varies from 5 to 25 ppm in batch recirculation mode and 5-15 ppm in continuous column analysis. Although the device demonstrated the maximum ion percentage removal, of about 100 percent, when operated at a low voltage range from 5 to 20 V. A number of column studies were conducted to establish the breakthrough curves with concentrations ranging from 5 to 15 ppm, applied voltages ranging from 5 to 20 V, and flow rates ranging from 5 to 20 mL/min. For the present work, Arsenic was eliminated up to 98.8 percent in the trials reported here, with energy usage in the Electrodeionization unit varying around 3.88 and 60.7 kW h per kilogram of removed arsenic. This demonstrates the application's ability and productivity in removing Arsenic from aqueous solutions.
Collapse
Affiliation(s)
- B Senthil Rathi
- Department of Chemical Engineering, St. Joseph's College of Engineering, Chennai, 600119, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India.
| |
Collapse
|
80
|
Chakraborty A, Ghosh S, Biswas B, Pramanik S, Nriagu J, Bhowmick S. Epigenetic modifications from arsenic exposure: A comprehensive review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 810:151218. [PMID: 34717984 DOI: 10.1016/j.scitotenv.2021.151218] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 06/13/2023]
Abstract
Arsenic is a notorious element with the potential to harm exposed individuals in ways that include cancerous and non-cancerous health complications. Millions of people across the globe (especially in South and Southeast Asian countries including China, Vietnam, India and Bangladesh) are currently being unknowingly exposed to precarious levels of arsenic. Among the diverse effects associated with such arsenic levels of exposure is the propensity to alter the epigenome. Although a large volume of literature exists on arsenic-induced genotoxicity, cytotoxicity, and inter-individual susceptibility due to active research on these subject areas from the last millennial, it is only recently that attention has turned on the ramifications and mechanisms of arsenic-induced epigenetic changes. The present review summarizes the possible mechanisms involved in arsenic induced epigenetic alterations. It focuses on the mechanisms underlying epigenome reprogramming from arsenic exposure that result in improper cell signaling and dysfunction of various epigenetic components. The mechanistic information articulated from the review is used to propose a number of novel therapeutic strategies with a potential for ameliorating the burden of worldwide arsenic poisoning.
Collapse
Affiliation(s)
- Arijit Chakraborty
- Kolkata Zonal Center, CSIR-National Environmental Engineering Research Institute (NEERI), Kolkata, West Bengal 700107, India
| | - Soma Ghosh
- Kolkata Zonal Center, CSIR-National Environmental Engineering Research Institute (NEERI), Kolkata, West Bengal 700107, India
| | - Bratisha Biswas
- Kolkata Zonal Center, CSIR-National Environmental Engineering Research Institute (NEERI), Kolkata, West Bengal 700107, India
| | - Sreemanta Pramanik
- Kolkata Zonal Center, CSIR-National Environmental Engineering Research Institute (NEERI), Kolkata, West Bengal 700107, India
| | - Jerome Nriagu
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, 109 Observatory Street, Ann Arbor, MI 48109-2029, USA
| | - Subhamoy Bhowmick
- Kolkata Zonal Center, CSIR-National Environmental Engineering Research Institute (NEERI), Kolkata, West Bengal 700107, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
81
|
Loukola-Ruskeeniemi K, Müller I, Reichel S, Jones C, Battaglia-Brunet F, Elert M, Le Guédard M, Hatakka T, Hellal J, Jordan I, Kaija J, Keiski RL, Pinka J, Tarvainen T, Turkki A, Turpeinen E, Valkama H. Risk management for arsenic in agricultural soil-water systems: lessons learned from case studies in Europe. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127677. [PMID: 34774350 DOI: 10.1016/j.jhazmat.2021.127677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 10/29/2021] [Accepted: 10/29/2021] [Indexed: 06/13/2023]
Abstract
Chronic exposure to arsenic may be detrimental to health. We investigated the behaviour, remediation and risk management of arsenic in Freiberg, Germany, characterized by past mining activities, and near Verdun in France, where World War I ammunition was destroyed. The main results included: (1) pot experiments using a biologically synthesized adsorbent (sorpP) with spring barley reduced the mobility of arsenic, (2) the Omega-3 Index ecotoxicological tests verified that sorpP reduced the uptake and toxicity of arsenic in plants, (3) reverse osmosis membrane systems provided 99.5% removal efficiency of arsenic from surface water, (4) the sustainability assessment revealed that adsorption and coagulation-filtration processes were the most feasible options for the treatment of surface waters with significant arsenic concentrations, and (5) a model was developed for assessing health risk due to arsenic exposure. Risk management is the main option for extensive areas, while remediation options that directly treat the soil can only be considered in small areas subject to sensitive use. We recommend the risk management procedure developed in Germany for other parts of the world where both geogenic and anthropogenic arsenic is present in agricultural soil and water. Risk management measures have been successful both in Freiberg and in Verdun.
Collapse
Affiliation(s)
| | - Ingo Müller
- Saxon State Office for Environment, Agriculture and Geology, Dep. 42 Soil, Contaminated Sites, Halsbrückerstr. 31a, 09599 Freiberg, Germany
| | - Susan Reichel
- G.E.O.S. Ingenieur-gesellschaft mbH, Postfach 1162, 09581 Freiberg, Germany
| | - Celia Jones
- Kemakta Konsult AB, Box 126 55, 112 93 Stockholm, Sweden
| | | | - Mark Elert
- Kemakta Konsult AB, Box 126 55, 112 93 Stockholm, Sweden
| | - Marina Le Guédard
- LEB Aquitaine Transfert-ADERA, 71. Avenue Edouard Bourlaux, CS20032, 33140 Villenave d'Ornon, France
| | - Tarja Hatakka
- Geological Survey of Finland, P.O. Box 96, FI-02151 Espoo, Finland
| | - Jennifer Hellal
- BRGM, 3 avenue Claude Guillemin, BP 36009, 45060 Orléans Cedex 2, France
| | - Isabel Jordan
- G.E.O.S. Ingenieur-gesellschaft mbH, Postfach 1162, 09581 Freiberg, Germany
| | - Juha Kaija
- Geological Survey of Finland, P.O. Box 96, FI-02151 Espoo, Finland
| | - Riitta L Keiski
- University of Oulu, Environmental and Chemical Engineering Research Unit, University of Oulu, P.O. Box 4300, FI-90014, Finland
| | - Jana Pinka
- G.E.O.S. Ingenieur-gesellschaft mbH, Postfach 1162, 09581 Freiberg, Germany
| | - Timo Tarvainen
- Geological Survey of Finland, P.O. Box 96, FI-02151 Espoo, Finland
| | - Auli Turkki
- University of Oulu, Environmental and Chemical Engineering Research Unit, University of Oulu, P.O. Box 4300, FI-90014, Finland
| | - Esa Turpeinen
- University of Oulu, Environmental and Chemical Engineering Research Unit, University of Oulu, P.O. Box 4300, FI-90014, Finland
| | - Hanna Valkama
- University of Oulu, Environmental and Chemical Engineering Research Unit, University of Oulu, P.O. Box 4300, FI-90014, Finland
| |
Collapse
|
82
|
Parker GH, Gillie CE, Miller JV, Badger DE, Kreider ML. Human Health Risk Assessment of Arsenic, Cadmium, Lead, and Mercury Ingestion from Baby Foods. Toxicol Rep 2022; 9:238-249. [PMID: 35198407 PMCID: PMC8850323 DOI: 10.1016/j.toxrep.2022.02.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 01/28/2022] [Accepted: 02/02/2022] [Indexed: 12/07/2022] Open
Abstract
As, Cd and Pb detected in baby foods containing fruit, grain, and root vegetables. Select product HIs exceeded 1 for As and Pb using conservative assumptions. Cancer risks exceeded 10−6 and were driven by As from grain products. Analysis revealed minimal risk under most scenarios using conservative assumptions.
Recently, the U.S. House of Representatives reported on the presence of heavy metals in raw ingredients used in baby foods and in finished baby food products themselves. In light of these concerns, this study aimed to evaluate potential risks associated with the presence of heavy metals in baby food products. We analyzed 36 baby food samples representing four ingredient categories (fruit; leguminous vegetable; root vegetable; or grain) for arsenic (As), cadmium (Cd), mercury (Hg), and lead (Pb). We assessed the potential lifetime cancer and non-cancer health risks posed to infants and toddlers following daily consumption of these chemicals in each food type, based on established daily food-specific ingestion rates. Daily doses were compared against selected reference values and oral slope factors to determine non-cancer hazard indices (HIs) and lifetime cancer risks. Hazard indices indicated a potential for non-cancer risk (e.g., HIs > 1.0) under only a few exposure scenarios, including for As and Pb under selected product type and age/concentration assumptions. Increases in lifetime cancer risks for all analytes across the ingredient categories evaluated ranged from 3.75 × 10−5 to 5.54 × 10−5; cancer risks were primarily driven by As from grain products. Though a limited set of exposure scenarios indicated a potential for health risk, the exposure assumptions in this assessment were conservative, and the heavy metal concentrations we found in baby foods are similar to those observed in similar whole foods. Based on these findings and the limited scenarios under which risks were identified, this study indicates that an infant’s typical intake of baby food is unlikely to pose health risks from heavy metals above accepted tolerable risk levels under most exposure scenarios.
Collapse
Affiliation(s)
| | | | | | - Deanna E. Badger
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Marisa L. Kreider
- Cardno ChemRisk now Stantec, Pittsburgh, PA, USA
- Corresponding author at: 20 Stanwix Street, Suite 505, Pittsburgh, PA, 15222, USA.
| |
Collapse
|
83
|
Hrubša M, Siatka T, Nejmanová I, Vopršalová M, Kujovská Krčmová L, Matoušová K, Javorská L, Macáková K, Mercolini L, Remião F, Máťuš M, Mladěnka P. Biological Properties of Vitamins of the B-Complex, Part 1: Vitamins B 1, B 2, B 3, and B 5. Nutrients 2022; 14:484. [PMID: 35276844 PMCID: PMC8839250 DOI: 10.3390/nu14030484] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/16/2022] [Accepted: 01/17/2022] [Indexed: 02/06/2023] Open
Abstract
This review summarizes the current knowledge on essential vitamins B1, B2, B3, and B5. These B-complex vitamins must be taken from diet, with the exception of vitamin B3, that can also be synthetized from amino acid tryptophan. All of these vitamins are water soluble, which determines their main properties, namely: they are partly lost when food is washed or boiled since they migrate to the water; the requirement of membrane transporters for their permeation into the cells; and their safety since any excess is rapidly eliminated via the kidney. The therapeutic use of B-complex vitamins is mostly limited to hypovitaminoses or similar conditions, but, as they are generally very safe, they have also been examined in other pathological conditions. Nicotinic acid, a form of vitamin B3, is the only exception because it is a known hypolipidemic agent in gram doses. The article also sums up: (i) the current methods for detection of the vitamins of the B-complex in biological fluids; (ii) the food and other sources of these vitamins including the effect of common processing and storage methods on their content; and (iii) their physiological function.
Collapse
Affiliation(s)
- Marcel Hrubša
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Kralove, Czech Republic; (M.H.); (M.V.); (P.M.)
| | - Tomáš Siatka
- Department of Pharmacognosy, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Kralove, Czech Republic; (T.S.); (K.M.)
| | - Iveta Nejmanová
- Department of Biological and Medical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Kralove, Czech Republic;
| | - Marie Vopršalová
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Kralove, Czech Republic; (M.H.); (M.V.); (P.M.)
| | - Lenka Kujovská Krčmová
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Kralove, Czech Republic;
- Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Králové, Sokolská 581, 500 05 Hradec Kralove, Czech Republic; (K.M.); (L.J.)
| | - Kateřina Matoušová
- Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Králové, Sokolská 581, 500 05 Hradec Kralove, Czech Republic; (K.M.); (L.J.)
| | - Lenka Javorská
- Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Králové, Sokolská 581, 500 05 Hradec Kralove, Czech Republic; (K.M.); (L.J.)
| | - Kateřina Macáková
- Department of Pharmacognosy, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Kralove, Czech Republic; (T.S.); (K.M.)
| | - Laura Mercolini
- Research Group of Pharmaco-Toxicological Analysis (PTA Lab), Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy;
| | - Fernando Remião
- UCIBIO—Applied Molecular Biosciences Unit, REQUINTE, Toxicology Laboratory, Biological Sciences Department Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal;
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Marek Máťuš
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, 83232 Bratislava, Slovak Republic
| | - Přemysl Mladěnka
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Kralove, Czech Republic; (M.H.); (M.V.); (P.M.)
| | | |
Collapse
|
84
|
Wang B, Cheng H, Lin C, Zhang X, Duan X, Wang Q, Xu D. Arsenic exposure analysis for children living in central China: From ingestion exposure to biomarkers. CHEMOSPHERE 2022; 287:132194. [PMID: 34509767 DOI: 10.1016/j.chemosphere.2021.132194] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/20/2021] [Accepted: 09/06/2021] [Indexed: 06/13/2023]
Abstract
Emerging evidence indicates that chronic low-dose arsenic (As) exposure can pose adverse health effects to children. This study aimed to systematically study the exposure risk induced by As ingestion in children living in Hubei Province, central China. The feasibility of first morning spot urine instead of 24-h urine as an environmental exposure biomarker was also explored. A total of 120 children aged 2-17 years were recruited from an urban area for the collection of biomarker samples (first morning and 24-h urine samples), environmental exposure samples (duplicate diets, drinking water, and soil), and related child-specific exposure factors. The external exposure risk, internal exposure level, and source of exposure to As in children were analyzed. The results indicated that As concentration in duplicated diets, water, and soil were 29.2 μg kg-1, 1.3 μg L-1, and 9.3 mg kg-1, respectively; these were all below the corresponding maximum allowable levels in China (the threshold value of As in most food, drinking water and soil are 0.5 mg⸱kg-1, 0.01 mg L-1, and 20 mg⸱kg-1, respectively). Dietary intake was the predominant exposure route, accounting for 90% of the total daily dose. The combined oral non-carcinogenic and carcinogenic risks all exceeded the corresponding maximum acceptable risk level. Therefore, As bioavailability should be investigated and used in health risk assessment. Multiple linear regression analysis indicated that urinary As was positively associated with dietary As, with a one-unit increase in daily As intake from the diet associating with 4.82 and 5.21 μg g-1 increases in 24-h urine and first morning urine, respectively. Furthermore, significant correlations with 24-h urine and external exposure metrics suggested that creatine-adjusted As concentrations in first morning urine could be an appropriate substitute of 24-h urine as exposure biomarkers.
Collapse
Affiliation(s)
- Beibei Wang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Hongguang Cheng
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing, 100875, PR China
| | - Chunye Lin
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing, 100875, PR China.
| | - Xuan Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing, 100875, PR China
| | - Xiaoli Duan
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Qin Wang
- Institute of Environmental Health and Related Product Safety, Chinese Center for Disease and Prevention, Beijing, 100021, PR China
| | - Dongqun Xu
- Institute of Environmental Health and Related Product Safety, Chinese Center for Disease and Prevention, Beijing, 100021, PR China
| |
Collapse
|
85
|
Lorenc W, Hanć A, Sajnóg A, Barałkiewicz D. LC/ICP-MS AND COMPLEMENTARY TECHNIQUES IN BESPOKE AND NONTARGETED SPECIATION ANALYSIS OF ELEMENTS IN FOOD SAMPLES. MASS SPECTROMETRY REVIEWS 2022; 41:32-50. [PMID: 32997814 DOI: 10.1002/mas.21662] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 08/31/2020] [Accepted: 09/15/2020] [Indexed: 06/11/2023]
Abstract
Chemical elements speciation analysis of food samples has been among the most important scientific topics over the last decades. Food samples are comprised of high variety of chemical compounds, from which many can interact with metals and metalloids, forming complex elemental species with various influence on the human body. It is particularly important not only to determine the amount of certain chemical element in food sample but also to identify the form in which given element occurs in given sample. Employment of bespoke and nontargeted speciation methods, with the use of liquid chromatography inductively coupled plasma mass spectrometry (LC/ICP-MS) and complementary techniques, provides more complete picture on the metals and metalloids speciation in food. This review discusses issues concerning speciation analysis of metals and metalloids in food samples with the use of LC/ICP-MS as a leading technique in elemental speciation nowadays and a complimentary technique intended for their identification. © 2020 John Wiley & Sons Ltd. Mass Spec Rev.
Collapse
Affiliation(s)
- Wiktor Lorenc
- Department of Trace Analysis, Faculty of Chemistry, Adam Mickiewicz University, Poznań, 8 Uniwersytetu Poznańskiego Street, Poznan, 61-614, Poland
| | | | | | | |
Collapse
|
86
|
Lv JW, Song YP, Zhang ZC, Fan YJ, Xu FX, Gao L, Zhang XY, Zhang C, Wang H, Xu DX. Gestational arsenic exposure induces anxiety-like behaviors in adult offspring by reducing DNA hydroxymethylation in the developing brain. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 227:112901. [PMID: 34673408 DOI: 10.1016/j.ecoenv.2021.112901] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/28/2021] [Accepted: 10/11/2021] [Indexed: 06/13/2023]
Abstract
Several studies found that reduction of 5-hydroxymethylcytosine (5hmC), a marker of DNA hydroxymethylation highly enriched in developing brain, is associated with anxiety-like behaviors. This study aimed to investigate whether gestational arsenic (As) exposure induces anxiety-like behaviors in adult offspring by reducing DNA hydroxymethylation in the developing brain. The dams drank ultrapure water containing NaAsO2 (15 mg/L) throughout pregnancy. Anxiety-like behaviors were evaluated and developing brain 5hmC was detected. Results showed that anxiety-like behaviors were observed in As-exposed adult offspring. In addition, 5hmC content was reduced in As-exposed fetal brain. Despite no difference on Tet1, Tet2 and Tet3 expression, TET activity was suppressed in As-exposed fetal brain. Mechanistically, alpha-ketoglutarate (α-KG), a cofactor for TET dioxygenases, was reduced and Idh2, a key enzymatic gene for mitochondrial α-KG synthesis, was downregulated in As-exposed fetal brain. Of interest, ascorbic acid, a cofactor for TET dioxygenases, reversed As-induced suppression of TET activity. Moreover, ascorbic acid attenuated As-induced reduction of 5hmC in fetal brain. In addition, ascorbic acid alleviated As-induced anxiety-like behaviors in adult offspring. Taken together, these results suggest that gestational As exposure induces anxiety-like behaviors in adult offspring, possibly at part, by inhibiting DNA hydroxymethylation in developing brain.
Collapse
Affiliation(s)
- Jin-Wei Lv
- Department of Toxicology, Anhui Medical University, Hefei 230032, China
| | - Ya-Ping Song
- Department of Toxicology, Anhui Medical University, Hefei 230032, China
| | - Zhi-Cheng Zhang
- Department of Toxicology, Anhui Medical University, Hefei 230032, China
| | - Yi-Jun Fan
- Department of Toxicology, Anhui Medical University, Hefei 230032, China
| | - Fei-Xiang Xu
- Department of Toxicology, Anhui Medical University, Hefei 230032, China
| | - Lan Gao
- Department of Toxicology, Anhui Medical University, Hefei 230032, China
| | - Xiao-Yi Zhang
- Department of Toxicology, Anhui Medical University, Hefei 230032, China
| | - Cheng Zhang
- Department of Toxicology, Anhui Medical University, Hefei 230032, China
| | - Hua Wang
- Department of Toxicology, Anhui Medical University, Hefei 230032, China
| | - De-Xiang Xu
- Department of Toxicology, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
87
|
Yan S, Yang J, Zhou S, Yan Y, Tang X, Ma Y, Hu H, Ye W. Biological soil crusts alleviate the stress of arsenic on rice germination and the underlying immobilization mechanisms. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 227:112839. [PMID: 34634600 DOI: 10.1016/j.ecoenv.2021.112839] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/22/2021] [Accepted: 09/26/2021] [Indexed: 06/13/2023]
Abstract
The high concentration of arsenic (As) in paddy soil has seriously threatened the growth of rice and human food safety. Biological soil crusts (BSC), which are ubiquitous in paddy fields, have been shown a high ability to capture trace metal elements. In the present study, we investigated the effectiveness and mechanism of BSC for immobilizing As, and tested their potential to alleviate the stress of As on rice germination. It is found that BSC can remove 77.8% of arsenic in solution with 3.5 mg L-1 initial As concentration. The As content in BSC reached 514.5 mg kg-1 after 216 h exposure, and the entrapped As was mainly distributed in BSC as a non-EDTA-exchangeable fraction, which might be intracellularly accumulated. Proteobacteria and Bacteroidetes were the dominant phyla in BSC after being exposed to As, playing a significant role in tolerating As and As biogeochemical cycling. The presence of BSC notably promoted the germination rate (18.3%) and dry biomass (103.4%) of rice seeds under 3.5 mg L-1 As stress while reducing the As content in plant roots (8.2-34.3%) and shoots (8.7-47.6%). These findings demonstrate that BSC have a great entrapping effect on As and highlight the importance of BSC in alleviating the stress on rice germination by As, providing a potential nature-based and low-cost strategy to decontaminate paddy fields polluted with As.
Collapse
Affiliation(s)
- Shiwei Yan
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, Anhui, PR China
| | - Jianhao Yang
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, Anhui, PR China
| | - Song Zhou
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, Anhui, PR China
| | - Yuetong Yan
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, Anhui, PR China
| | - Xianjin Tang
- Key Laboratory of Environment Remediation and Ecological Health (Zhejiang University), Ministry of Education, 310058, PR China
| | - Youhua Ma
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, Anhui, PR China
| | - Hongxiang Hu
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, Anhui, PR China.
| | - Wenling Ye
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, Anhui, PR China; Key Laboratory of Environment Remediation and Ecological Health (Zhejiang University), Ministry of Education, 310058, PR China.
| |
Collapse
|
88
|
Deng S, Wu Y, Duan H, Cavanagh JAE, Wang X, Qiu J, Li Y. Toxicity assessment of earthworm exposed to arsenate using oxidative stress and burrowing behavior responses and an integrated biomarker index. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 800:149479. [PMID: 34399332 DOI: 10.1016/j.scitotenv.2021.149479] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 07/07/2021] [Accepted: 08/01/2021] [Indexed: 06/13/2023]
Abstract
Arsenate (As-V) is a ubiquitous contaminant in soil as a result of excessive use of veterinary drugs and pesticides, causing enormous environmental risks. Multiple biomarkers have been used to assess the ecotoxicity of arsenic, however, the mechanisms of toxicity remain unclear. This paper describes the exposure of the earthworm (Eisenia fetida) to natural soil with different As-V concentrations for 28 days, then biomarkers from oxidative stress and burrowing behavior were quantified to evaluate As-V stress. Dynamic changes in reactive oxygen species (ROS), lipid peroxidation (MDA), adenosine triphosphate (ATP) content and antioxidant enzymes activity (Gpx, SOD, CAT) implied two stages of intensified stress responses and physiological adaptability. The transcriptional expression and regulation of antioxidant enzymes showed different responses. The mRNA expression of sod1 was up-regulated, while that of cat showed no significant change. The related regulators, nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1), showed dose-dependent activation, suggesting antioxidant defense induced by Nrf2 signaling. The burrowing behavior after 14-day exposure indicated that As-V inhibited burrowing activity, especially the burrow length and maximum burrow depth. These multiple biomarkers were integrated using a biomarker response index (BRI) model, which showed significant dose-effect relationship especially on day 28, and suggested that ATP was a sensitive and representative biomarker. This study provided evidence that burrowing activity, Nrf2 and HO-1 were useful biomarkers warranting inclusion into the BRI model. Arsenic toxicity was comprehensively understood through redox homeostasis regulation, biochemical and behavioral changes, and these results suggested new strategies for soil pollutants diagnosis.
Collapse
Affiliation(s)
- Songge Deng
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yizhao Wu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hanqi Duan
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | | | - Xiuhong Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jiangping Qiu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yinsheng Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
89
|
Surai PF, Earle-Payne K, Kidd MT. Taurine as a Natural Antioxidant: From Direct Antioxidant Effects to Protective Action in Various Toxicological Models. Antioxidants (Basel) 2021; 10:1876. [PMID: 34942978 PMCID: PMC8698923 DOI: 10.3390/antiox10121876] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 11/21/2021] [Accepted: 11/23/2021] [Indexed: 12/18/2022] Open
Abstract
Natural antioxidants have received tremendous attention over the last 3 decades. At the same time, the attitude to free radicals is slowly changing, and their signalling role in adaptation to stress has recently received a lot of attention. Among many different antioxidants in the body, taurine (Tau), a sulphur-containing non-proteinogenic β-amino acid, is shown to have a special place as an important natural modulator of the antioxidant defence networks. Indeed, Tau is synthesised in most mammals and birds, and the Tau requirement is met by both synthesis and food/feed supply. From the analysis of recent data, it could be concluded that the direct antioxidant effect of Tau due to scavenging free radicals is limited and could be expected only in a few mammalian/avian tissues (e.g., heart and eye) with comparatively high (>15-20 mM) Tau concentrations. The stabilising effects of Tau on mitochondria, a prime site of free radical formation, are characterised and deserve more attention. Tau deficiency has been shown to compromise the electron transport chain in mitochondria and significantly increase free radical production. It seems likely that by maintaining the optimal Tau status of mitochondria, it is possible to control free radical production. Tau's antioxidant protective action is of great importance in various stress conditions in human life, and is related to commercial animal and poultry production. In various in vitro and in vivo toxicological models, Tau showed AO protective effects. The membrane-stabilizing effects, inhibiting effects on ROS-producing enzymes, as well as the indirect AO effects of Tau via redox balance maintenance associated with the modulation of various transcription factors (e.g., Nrf2 and NF-κB) and vitagenes could also contribute to its protective action in stress conditions, and thus deserve more attention.
Collapse
Affiliation(s)
- Peter F. Surai
- Vitagene and Health Research Centre, Bristol BS4 2RS, UK
- Department of Microbiology and Biochemistry, Faculty of Veterinary Medicine, Trakia University, 6000 Stara Zagora, Bulgaria
- Biochemistry and Physiology Department, Saint-Petersburg State University of Veterinary Medicine, 196084 St. Petersburg, Russia
- Department of Animal Nutrition, Faculty of Agricultural and Environmental Sciences, Szent Istvan University, H-2103 Gödöllo, Hungary
| | - Katie Earle-Payne
- NHS Greater Glasgow and Clyde, Renfrewshire Health and Social Care Centre, 10 Ferry Road, Renfrew PA4 8RU, UK;
| | - Michael T. Kidd
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA;
| |
Collapse
|
90
|
Biswas B, Chakraborty A, Chatterjee D, Pramanik S, Ganguli B, Majumdar KK, Nriagu J, Kulkarni KY, Bansiwal A, Labhasetwar P, Bhowmick S. Arsenic exposure from drinking water and staple food (rice): A field scale study in rural Bengal for assessment of human health risk. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 228:113012. [PMID: 34837872 DOI: 10.1016/j.ecoenv.2021.113012] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 10/02/2021] [Accepted: 11/17/2021] [Indexed: 06/13/2023]
Abstract
Arsenic is a well-known carcinogen with emerging reports showing a range of health outcomes even for low to moderate levels of exposure. This study deals with arsenic exposure and associated increased lifetime cancer risk for populations in arsenic-endemic regions of rural Bengal, where arsenic-safe drinking water is being supplied at present. We found a median total exposure of inorganic arsenic to be 2. 9 μg/Kg BW/day (5th and 95th percentiles were 1.1 μg/Kg BW/day and 7.9 μg/Kg BW/day); with major contribution from cooked rice intake (2.4 µg/Kg BW/day). A significant number of households drank arsenic safe water but used arsenic-rich water for rice cooking. As a result, 67% participants had inorganic arsenic intake above the JEFCA threshold value of 3 μg/Kg BW/day for cancer risk from only rice consumption when arsenic contaminated water was used for cooking (median: 3.5 μg/Kg BW/day) compared to 29% participants that relied on arsenic-free cooking water (median: 1.0 µg/kg BW/day). Arsenic in urine samples of study participants ranged from 31.7 to 520 µg/L and was significantly associated with the arsenic intake (r = 0.76); confirming the preponderance of arsenic exposure from cooked rice. The median arsenic attributable cancer risks from drinking water and cooked rice were estimated to be 2.4 × 10-5 and 2.7 × 10-4 respectively, which further emphasized the importance of arsenic exposure from staple diet. Our results show that any mitigation strategy should include both drinking water and local staple foods in order to minimize the potential health risks of arsenic exposure.
Collapse
Affiliation(s)
- Bratisha Biswas
- Kolkata Zonal Center, CSIR-National Environmental Engineering Research Institute (NEERI), Kolkata, West Bengal 700107, India
| | - Arijit Chakraborty
- Kolkata Zonal Center, CSIR-National Environmental Engineering Research Institute (NEERI), Kolkata, West Bengal 700107, India
| | - Debashis Chatterjee
- Department of Chemistry, University of Kalyani, Kalyani, Nadia, West Bengal 741235, India
| | - Sreemanta Pramanik
- Kolkata Zonal Center, CSIR-National Environmental Engineering Research Institute (NEERI), Kolkata, West Bengal 700107, India
| | - Bhaswati Ganguli
- Department of Statistics, University of Calcutta, 35 Bullygunge Circular Road, Kolkata, West Bengal 700 019, India
| | - Kunal Kanti Majumdar
- Department of Community Medicine, KPC Medical College and Hospital, Jadavpur, Kolkata, India
| | - Jerome Nriagu
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, 109 Observatory Street, Ann Arbor, MI 48109-2029, USA
| | - Ketki Y Kulkarni
- Sophisticated Environmental Analytical Facility (SAEF), CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur 440 020, India
| | - Amit Bansiwal
- Sophisticated Environmental Analytical Facility (SAEF), CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur 440 020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Pawan Labhasetwar
- Water Technology & Management Division, CSIR-National Environmental Engineering Research Institute, Nehru Marg, Nagpur 440020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Subhamoy Bhowmick
- Kolkata Zonal Center, CSIR-National Environmental Engineering Research Institute (NEERI), Kolkata, West Bengal 700107, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
91
|
Zhang Q, Zhang X, Li S, Liu H, Liu L, Huang Q, Hou Y, Liang X, Cui B, Zhang M, Xia L, Zhang L, Li C, Li J, Sun G, Tang N. Joint effect of urinary arsenic species and serum one-carbon metabolism nutrients on gestational diabetes mellitus: A cross-sectional study of Chinese pregnant women. ENVIRONMENT INTERNATIONAL 2021; 156:106741. [PMID: 34217037 DOI: 10.1016/j.envint.2021.106741] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 05/06/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Growing evidence indicates that arsenic (As) exposure can increase the risk of gestational diabetes mellitus (GDM). However, little is known about As species and GDM and the combined effect of As and one-carbon metabolism (OCM) on GDM. OBJECTIVES We aimed to examine the associations between As species and GDM and evaluate the potential interactions of folate, vitamin B12, and homocysteine (Hcy) with As species on GDM prevalence. METHOD We measured levels of arsenite (As3+), arsenate (As5+), dimethylarsinic acid (DMA), and arsenobetaine (AsB) species in urine and folate, vitamin B12, and Hcy in serum from 396 pregnant women in Tianjin, China. The diagnosis of GDM was based on an oral glucose tolerance test. Associations of As species in urine with GDM were evaluated using generalized linear models (GLMs) and Bayesian kernel machine regression (BKMR). Additive interactions of As and OCM with GDM were estimated by determining the relative excess risk due to interaction (RERI). RESULTS Of the 396 pregnant women, 89 were diagnosed with GDM. Continuous increases in urinary inorganic As were associated with GDM in the GLMs, with adjusted odds ratios of 2.12 (95% CI: 0.96, 4.71) for As3+, and 0.27 (95% CI: 0.07, 0.98) for As5+. The BKMR in estimating the exposure-response functions showed that As3+ and AsB were positively associated with GDM. However, As5+ showed a negative relationship with GDM. Although the additive interactions between As exposure and OCM indicators were not significant, we found that pregnant women with higher urinary As3+ and total As accompanied by lower serum vitamin B12 were more likely to have higher odds of GDM (3.12, 95% CI: 1.32, 7.38 and 3.10, 95% CI: 1.30, 7.38, respectively). CONCLUSIONS Our data suggest a positive relation between As3+ and GDM but a negative relation between As5+ and GDM. Potential additive interaction of As and OCM with GDM requires further investigation.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Xumei Zhang
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Shuying Li
- Department of Endocrinology, Tianjin Xiqing Hospital, Tianjin 300380, China
| | - Huihuan Liu
- Beichen District Women's and Children's Health Center, Tianjin 300400, China
| | - Liangpo Liu
- School of Public Health, Shanxi Medical University, Taiyuan 030001 China
| | - Qingyu Huang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Yaxing Hou
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Xiaoshan Liang
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Bo Cui
- Institute of Environmental and Operational Medicine, Academy of Military Medical Sciences, Tianjin 300050, China
| | - Ming Zhang
- Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen 518020, China
| | - Liting Xia
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Liwen Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Chen Li
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Jing Li
- Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Guifan Sun
- Key Laboratory of Arsenic-related Biological Effects and Prevention and Treatment in Liaoning Province, School of Public Health, China Medical University, Shenyang 110122, China
| | - Naijun Tang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China.
| |
Collapse
|
92
|
Monji H, Nematollahi A, Copat C, Ferrante M, Fallah AA. A comparison of the metals and metalloid levels in wild and cultured Capoeta damascina fish and assessment of its potential health risks to humans in Iran. TOXIN REV 2021. [DOI: 10.1080/15569543.2021.1987265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Hadi Monji
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord, Iran
- Elderly Health Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Amin Nematollahi
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord, Iran
| | - Chiara Copat
- Department of Medical, Surgical and Advanced Technologies “G.F. Ingrassia”, University of Catania, Catania, Italy
| | - Margherita Ferrante
- Department of Medical, Surgical and Advanced Technologies “G.F. Ingrassia”, University of Catania, Catania, Italy
| | - Aziz A. Fallah
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord, Iran
- Research Institute of Zoonotic Diseases, Shahrekord University, Shahrekord, Iran
| |
Collapse
|
93
|
Hussain MM, Bibi I, Niazi NK, Nawaz MF, Rinklebe J. Impact of organic and inorganic amendments on arsenic accumulation by rice genotypes under paddy soil conditions: A pilot-scale investigation to assess health risk. JOURNAL OF HAZARDOUS MATERIALS 2021; 420:126620. [PMID: 34329086 DOI: 10.1016/j.jhazmat.2021.126620] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 06/27/2021] [Accepted: 07/08/2021] [Indexed: 06/13/2023]
Abstract
In this study, we investigated the distinct effects of organic (farmyard manure (FYM), cow dung (CD), biogas slurry (BGS), sugarcane bagasse (SCB)) and inorganic (gypsum and lignite) amendments on arsenic (As) accumulation by two rice genotypes, Kainat (fine) and Basmati-385 (coarse), under As stress. Results showed that shoot As concentration was ~2-time greater in Kainat compared to Basmati-385 (3.1-28 vs. 1.7-16 mg kg-1 DW, respectively), with the minimum shoot As content observed with CD and SCB. In contrast to gypsum and lignite, grain As concentration was significantly reduced with CD and SCB for Kainat (0.29 and 0.24 mg kg-1 DW) and Basmati-385 (0.04 and 0.09 mg kg-1 DW). Data indicated that the CD and SCB also improved chlorophyll a and b contents, reduced lipid peroxidation and hydrogen peroxide production in both rice genotypes. Significantly, the CD and SCB decreased grain As concentration below the FAO safe As limit in rice grain (0.2 mg kg-1 DW), especially in coarse rice genotype (Basmati-385), resulting in negligible As-induced human health risk. This study highlights the significance of amendments and rice genotypes controlling As accumulation in rice grain, which should be considered prior to As remediation program of paddy soils for limiting exposure of humans to As via rice grain.
Collapse
Affiliation(s)
- Muhammad Mahroz Hussain
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan
| | - Irshad Bibi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan
| | - Nabeel Khan Niazi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan.
| | - Muhammad Farrakh Nawaz
- Department of Forestry & Range Management, Faculty of Agriculture, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water, and Waste-Management, Laboratory of Soil, and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; Department of Environment, Energy and Geoinformatics, Sejong University, Seoul 05006, South Korea; International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan 173212, Himachal Pradesh, India
| |
Collapse
|
94
|
Rehman MU, Khan R, Khan A, Qamar W, Arafah A, Ahmad A, Ahmad A, Akhter R, Rinklebe J, Ahmad P. Fate of arsenic in living systems: Implications for sustainable and safe food chains. JOURNAL OF HAZARDOUS MATERIALS 2021; 417:126050. [PMID: 34229383 DOI: 10.1016/j.jhazmat.2021.126050] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 04/27/2021] [Accepted: 04/29/2021] [Indexed: 06/13/2023]
Abstract
Arsenic, a group 1 carcinogen for humans, is abundant as compared to other trace elements in the environment and is present mainly in the Earth's crust and soil. The arsenic distributions in different geographical regions are dependent on their geological histories. Anthropogenic activities also contribute significantly to arsenic release into the environment. Arsenic presents several complications to humans, animals, and plants. The physiology of plants and their growth and development are affected by arsenic. Arsenic is known to cause cancer and several types of organ toxicity, such as cardiotoxicity, nephrotoxicity, and hepatotoxicity. In the environment, arsenic exists in variable forms both as inorganic and organic species. From arsenic containing compartments, plants can absorb and accumulate arsenic. Crops grown on these contaminated soils pose several-fold higher toxicity to humans compared with drinking water if arsenic enters the food chain. Information regarding arsenic transfer at different trophic levels in food chains has not been summarized until now. The present review focuses on the food chain perspective of arsenic, which affects all components of the food chain during its course. The circumstances that facilitate arsenic accumulation in flora and fauna, as components of the food chain, are outlined in this review.
Collapse
Affiliation(s)
- Muneeb U Rehman
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Rehan Khan
- Department of Nano-Therapeutics, Institute of Nano Science & Technology, Habitat Centre, Phase 10, Sector 64, Mohali, Punjab 160062, India
| | - Andleeb Khan
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Wajhul Qamar
- Department of Pharmacology and Toxicology and Central Lab, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Azher Arafah
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Anas Ahmad
- Department of Nano-Therapeutics, Institute of Nano Science & Technology, Habitat Centre, Phase 10, Sector 64, Mohali, Punjab 160062, India
| | - Ajaz Ahmad
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Rukhsana Akhter
- Department of Clinical Biochemistry, Govt. Degree College (Baramulla), Khawaja Bagh, Baramulla, Jammu and Kashmir, India
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water, and Waste-Management, Laboratory of Soil, and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; Department of Environment, Energy and Geoinformatics, Sejong University, Seoul 05006, South Korea
| | - Parvaiz Ahmad
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
95
|
Srivastava S, Suprasanna P. MicroRNAs: Tiny, powerful players of metal stress responses in plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 166:928-938. [PMID: 34246107 DOI: 10.1016/j.plaphy.2021.07.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 06/14/2021] [Accepted: 07/04/2021] [Indexed: 06/13/2023]
Abstract
Metal contamination of the environment is a widespread problem threatening sustainable and safe crop production. Physio-biochemical and molecular mechanisms of plant responses to metal exposure have been studied to establish the best possible agronomical or biotechnological methods to tackle metal contamination. Metal stress tolerance is regulated by several molecular effectors among which microRNAs are one of the key master regulators of plant growth and stress responses in plants. MicroRNAs are known to coordinate multitude of plant responses to metal stress through antioxidant functions, root growth, hormonal signalling, transcription factors and metal transporters. The present review discusses integrative functions of microRNAs in the regulation of metal stress in plants, which will be useful for engineering stress tolerance traits for improved plant growth and productivity in metal stressed situations.
Collapse
Affiliation(s)
- Sudhakar Srivastava
- Plant Stress Biology Laboratory, Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, 221005, UP, India.
| | - Penna Suprasanna
- Nuclear Agriculture & Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, Maharashtra, India
| |
Collapse
|
96
|
Fang H, Zhang Q, Zhang S, Zhang T, Pan F, Cui Y, Thomsen ST, Jakobsen LS, Liu A, Pires SM. Risk-Benefit Assessment of Consumption of Rice for Adult Men in China. Front Nutr 2021; 8:694370. [PMID: 34368209 PMCID: PMC8342936 DOI: 10.3389/fnut.2021.694370] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/18/2021] [Indexed: 01/27/2023] Open
Abstract
Objective: To evaluate the health impact of current and alternative patterns of rice consumption in Chinese adult men (40-79 years of age). Methods: We applied a risk-benefit assessment (RBA) model that took into account the health effects of selenium (Se), cadmium (Cd), and inorganic arsenic (i-As). The health effects included the prevention of prostate cancer associated with exposure to Se, and an increased risk of lung, bladder, and skin cancer for i-As and chronic kidney disease (CKD) for Cd. We defined the baseline scenario (BS) as the current individual mean daily consumption of rice in the population of interest and two alternative scenarios (AS): AS1 = 50 g/day and AS2 = 200 g/day. We estimated the health impact for different age groups in terms of change in Disability-Adjusted Life Years (ΔDALY). Results: The BS of rice consumption was 71.5-105.4 g/day in different age groups of adult men in China. We estimated that for AS1, the mean ΔDALY was -2.76 to 46.2/100,000 adult men of 40-79 years old. For AS2, the mean ΔDALY was 41.3 to 130.8/100,000 individuals in this population group. Conclusion: Our results showed that, based on associated exposure to selenium, cadmium, and i-As in rice, the current consumption of rice does not pose a risk to adult men in China. Also, a lower (50 g/day) or higher (200 g/day) rice consumption will not bring larger beneficial effects.
Collapse
Affiliation(s)
- Haiqin Fang
- China Center for Food Safety and Risk Assessment, Beijing, China
| | - Quantao Zhang
- Yantai Huaxin Biomedical Science and Technology Co., Ltd, Yantai, China
| | - Shengjie Zhang
- School of Public Administration and Policy, Renmin University of China, Beijing, China
| | - Tongwei Zhang
- China Center for Food Safety and Risk Assessment, Beijing, China
| | - Feng Pan
- China Center for Food Safety and Risk Assessment, Beijing, China
| | - Yufeng Cui
- Liaoning Provincial Center for Disease Control and Prevention, Shenyang, China
| | - Sofie Theresa Thomsen
- Division of Diet, Disease Prevention and Toxicology, National Food Institute Technical University of Denmark, Lyngby, Denmark
| | - Lea S. Jakobsen
- Division of Diet, Disease Prevention and Toxicology, National Food Institute Technical University of Denmark, Lyngby, Denmark
| | - Aidong Liu
- China Center for Food Safety and Risk Assessment, Beijing, China
| | - Sara M. Pires
- Division of Diet, Disease Prevention and Toxicology, National Food Institute Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
97
|
El-Ghiaty MA, El-Kadi AO. Arsenic: Various species with different effects on cytochrome P450 regulation in humans. EXCLI JOURNAL 2021; 20:1184-1242. [PMID: 34512225 PMCID: PMC8419240 DOI: 10.17179/excli2021-3890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/02/2021] [Indexed: 11/22/2022]
Abstract
Arsenic is well-recognized as one of the most hazardous elements which is characterized by its omnipresence throughout the environment in various chemical forms. From the simple inorganic arsenite (iAsIII) and arsenate (iAsV) molecules, a multitude of more complex organic species are biologically produced through a process of metabolic transformation with biomethylation being the core of this process. Because of their differential toxicity, speciation of arsenic-based compounds is necessary for assessing health risks posed by exposure to individual species or co-exposure to several species. In this regard, exposure assessment is another pivotal factor that includes identification of the potential sources as well as routes of exposure. Identification of arsenic impact on different physiological organ systems, through understanding its behavior in the human body that leads to homeostatic derangements, is the key for developing strategies to mitigate its toxicity. Metabolic machinery is one of the sophisticated body systems targeted by arsenic. The prominent role of cytochrome P450 enzymes (CYPs) in the metabolism of both endobiotics and xenobiotics necessitates paying a great deal of attention to the possible effects of arsenic compounds on this superfamily of enzymes. Here we highlight the toxicologically relevant arsenic species with a detailed description of the different environmental sources as well as the possible routes of human exposure to these species. We also summarize the reported findings of experimental investigations evaluating the influence of various arsenicals on different members of CYP superfamily using human-based models.
Collapse
Affiliation(s)
- Mahmoud A. El-Ghiaty
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Ayman O.S. El-Kadi
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
98
|
Hussain MM, Bibi I, Niazi NK, Shahid M, Iqbal J, Shakoor MB, Ahmad A, Shah NS, Bhattacharya P, Mao K, Bundschuh J, Ok YS, Zhang H. Arsenic biogeochemical cycling in paddy soil-rice system: Interaction with various factors, amendments and mineral nutrients. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 773:145040. [PMID: 33581647 DOI: 10.1016/j.scitotenv.2021.145040] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/02/2021] [Accepted: 01/02/2021] [Indexed: 06/12/2023]
Abstract
Arsenic (As) contamination is a well-recognized environmental and health issue, threatening over 200 million people worldwide with the prime cases in South and Southeast Asian and Latin American countries. Rice is mostly cultivated under flooded paddy soil conditions, where As speciation and accumulation by rice plants is controlled by various geo-environmental (biotic and abiotic) factors. In contrast to other food crops, As uptake in rice has been found to be substantially higher due to the prevalence of highly mobile and toxic As species, arsenite (As(III)), under paddy soil conditions. In this review, we discussed the biogeochemical cycling of As in paddy soil-rice system, described the influence of critical factors such as pH, iron oxides, organic matter, microbial species, and pathways affecting As transformation and accumulation by rice. Moreover, we elucidated As interaction with organic and inorganic amendments and mineral nutrients. The review also elaborates on As (im)mobilization processes and As uptake by rice under the influence of different mineral nutrients and amendments in paddy soil conditions, as well as their role in mitigating As transfer to rice grain. This review article provides critical information on As contamination in paddy soil-rice system, which is important to develop suitable strategies and mitigation programs for limiting As exposure via rice crop, and meet the UN's key Sustainable Development Goals (SDGs: 2 (zero hunger), 3 (good health and well-being), 12 (responsible consumption and production), and 13 (climate action)).
Collapse
Affiliation(s)
- Muhammad Mahroz Hussain
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan
| | - Irshad Bibi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan.
| | - Nabeel Khan Niazi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan; School of Civil Engineering and Surveying, University of Southern Queensland, Toowoomba, Queensland, Australia.
| | - Muhammad Shahid
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, Pakistan
| | - Jibran Iqbal
- College of Natural and Health Sciences, Zayed University, P.O. Box 144534, Abu Dhabi, United Arab Emirates
| | - Muhammad Bilal Shakoor
- College of Earth and Environmental Sciences, University of the Punjab, Lahore 54000, Pakistan
| | - Arslan Ahmad
- KWR Water Cycle Research Institute, Groningenhaven 7, 3433 PE Nieuwegein, the Netherlands; Department of Environmental Technology, Wageningen University and Research (WUR), Droevendaalsesteeg 4, 6708 PB Wageningen, the Netherlands; KTH-International Groundwater Arsenic Research Group, Department of Sustainable Development, Environmental Science and Engineering, KTH Royal Institute of Technology, Teknikringen 10B, SE-100 44 Stockholm, Sweden
| | - Noor Samad Shah
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, Pakistan
| | - Prosun Bhattacharya
- KTH-International Groundwater Arsenic Research Group, Department of Sustainable Development, Environmental Science and Engineering, KTH Royal Institute of Technology, Teknikringen 10B, SE-100 44 Stockholm, Sweden
| | - Kang Mao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Jochen Bundschuh
- UNESCO Chair on Groundwater Arsenic within the 2030 Agenda for Sustainable Development, University of Southern Queensland, West Street, Toowoomba, 4350, Queensland, Australia
| | - Yong Sik Ok
- Korea Biochar Research Center, APRU Sustainable Waste Management Program, & Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Hua Zhang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| |
Collapse
|
99
|
Hackethal C, Kopp JF, Sarvan I, Schwerdtle T, Lindtner O. Total arsenic and water-soluble arsenic species in foods of the first German total diet study (BfR MEAL Study). Food Chem 2021; 346:128913. [PMID: 33418406 DOI: 10.1016/j.foodchem.2020.128913] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/10/2020] [Accepted: 12/14/2020] [Indexed: 12/23/2022]
Abstract
Arsenic can occur in foods as inorganic and organic forms. Inorganic arsenic is more toxic than most water-soluble organic arsenic compounds such as arsenobetaine, which is presumed to be harmless for humans. Within the first German total diet study, total arsenic, inorganic arsenic, arsenobetaine, dimethylarsinic acid and monomethylarsonic acid were analyzed in various foods. Highest levels of total arsenic were found in fish, fish products and seafood (mean: 1.43 mg kg-1; n = 39; min-max: 0.01-6.15 mg kg-1), with arsenobetaine confirmed as the predominant arsenic species (1.233 mg kg-1; n = 39; min-max: 0.01-6.23 mg kg-1). In contrast, inorganic arsenic was determined as prevalent arsenic species in terrestrial foods (0.02 mg kg-1; n = 38; min-max: 0-0.11 mg kg-1). However, the toxicity of arsenic species varies and measurements are necessary to gain information about the composition and changes of arsenic species in foods due to household processing of foods.
Collapse
Affiliation(s)
- Christin Hackethal
- German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Straße 8-10, 10589 Berlin, Germany; Institute of Nutritional Science (IEW), University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany.
| | - Johannes F Kopp
- Institute of Nutritional Science (IEW), University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany.
| | - Irmela Sarvan
- German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Straße 8-10, 10589 Berlin, Germany.
| | - Tanja Schwerdtle
- German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Straße 8-10, 10589 Berlin, Germany; Institute of Nutritional Science (IEW), University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany.
| | - Oliver Lindtner
- German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Straße 8-10, 10589 Berlin, Germany.
| |
Collapse
|
100
|
Zeng XC, Xu Y, He Z, Wang Y, Chen X. A powerful arsenite-oxidizing biofilm bioreactor derived from a single chemoautotrophic bacterial strain: Bioreactor construction, long-term operations and kinetic analysis. CHEMOSPHERE 2021; 273:129672. [PMID: 33524754 DOI: 10.1016/j.chemosphere.2021.129672] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 09/13/2020] [Accepted: 01/13/2021] [Indexed: 06/12/2023]
Abstract
Microbial oxidation of As(III) by biofilm bioreactors followed by adsorption is a promising and environment friendly approach to remediate As(III) contaminated groundwater; however, poor activity, stability and expandability of the bioreactors hampered their industrious applications. To resolve this issue, we constructed a new biofilm bioreactor using a powerful chemoautotrophic As(III)-oxidizing bacterium Rhizobium sp. A219. This strain has strong ability to form biofilms and possesses very high As(III)-oxidizing activities in both planktonic and biofilm forms. Perlites were used as the biofilm carriers. Long-term operations suggest that the bioreactor has very high efficiency, stability and scalability under different geochemical conditions, and it is cheap and easy to construct and operate. During the operations, it is only required to supply air, nothing else. All the common contaminants in groundwater slightly affected the bioreactor As(III)-oxidizing activity. The common contaminants in groundwater can be largely removed through assimilation by the bacterial cells as nutrition. The bioreactor completely oxidize 1.0, 5.0, 10.0, 20.0 and 30.0 mg/L As(III) in 12, 18, 20, 25 and 30 min, respectively. Approximately 18, 18, 12, 12 and 21 min were needed to oxidize 1.1 mg/L As(III) at 20, 25, 30, 35 and 40 °C, respectively. The bioreactor works well under the pH values of 5-8, and the most optimal was 7.0. The data suggest that this bioreactor possesses the highest efficiency and stability, and thus has the great potential for industrial applications among all the described As(III)-oxidizing bioreactors derived from a single bacterium.
Collapse
Affiliation(s)
- Xian-Chun Zeng
- State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan, 430070, People's Republic of China.
| | - Yifan Xu
- State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan, 430070, People's Republic of China
| | - Zhong He
- State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan, 430070, People's Republic of China
| | - Yanxin Wang
- State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan, 430070, People's Republic of China
| | - Xiaoming Chen
- State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan, 430070, People's Republic of China
| |
Collapse
|