51
|
Kassaw TS, Megerssa YC, Woldemariyam FT. Occurrence of Aflatoxins in Poultry Feed in Selected Chicken Rearing Villages of Bishoftu Ethiopia. VETERINARY MEDICINE (AUCKLAND, N.Z.) 2022; 13:277-286. [PMID: 36277466 PMCID: PMC9586162 DOI: 10.2147/vmrr.s384148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/28/2022] [Indexed: 11/13/2022]
Abstract
Background Aflatoxins (AFs) are major contaminants of feed used in the poultry industry that negatively affect animal and human health. In Ethiopia, previous studies on AFs mainly considered cattle feed and milk but scarce information exists for poultry feeds. Methods The aim of this study was to determine the occurrence of AFs in poultry feed in selected chicken rearing villages of Bishoftu. The study was conducted from December 2018 to May 2019. Thirty-three compound poultry feed samples were collected and analyzed for aflatoxin B1 (AFB1), aflatoxin B2 (AFB2), aflatoxin G1 (AFG1), aflatoxin G2 (AFG2) and total AFs (AFT) using high performance liquid chromatography (HPLC). The moisture content of the samples was also determined. Results The result indicated that 31 (94%) from a total of 33 samples were contaminated with AFs. The mean levels of AFB1, AFB2, AFG1, AFG2 and AFT were 70.11 µg/kg, 13.50 µg/kg, 88.55 µg/kg, 18.00 µg/kg and 190.18 µg/kg, respectively. This study found AFs at a level above the limit of FDA regulatory levels of 20 µg/kg in 25 (72.75%) samples for AFT and 22 (66.67%) samples for AFB1. The analysis of moisture content of the samples, ranges from 7.33% to 11.17%, indicating all were at optimal value (<12%). Conclusion The study showed the high contamination of AFs in poultry feeds with optimal moisture content and hence further investigations are needed to address the cause. The study also supports the need for preventive strategies of AFs contamination in poultry feeds in Bishoftu.
Collapse
Affiliation(s)
- Tadesse Sisay Kassaw
- Department of Biomedical Sciences, College of Veterinary Medicine and Agriculture, Addis Ababa University, Bishoftu, Ethiopia
| | - Yoseph Cherinet Megerssa
- Department of Biomedical Sciences, College of Veterinary Medicine and Agriculture, Addis Ababa University, Bishoftu, Ethiopia,Correspondence: Yoseph Cherinet Megerssa, Department of Biomedical Sciences, College of Veterinary Medicine and Agriculture, Addis Ababa University, Bishoftu, Ethiopia, Tel +251911804383, Email
| | - Fanos Tadesse Woldemariyam
- Department of Biomedical Sciences, College of Veterinary Medicine and Agriculture, Addis Ababa University, Bishoftu, Ethiopia,KU Leuven, Department of Biosystems, Division of Animal and Human Health Engineering, Laboratory of Host Pathogen Interaction, Leuven, Belgium
| |
Collapse
|
52
|
Faraji H, Yazdi FT, Razmi N. The influence of ultraviolet radiation on aflatoxin producing Aspergillus species' isolated from Iranian rice. Toxicol Rep 2022; 9:1528-1536. [PMID: 36518428 PMCID: PMC9742913 DOI: 10.1016/j.toxrep.2022.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 06/24/2022] [Accepted: 07/09/2022] [Indexed: 02/07/2023] Open
Abstract
Cereal grains are a favorable habitat for aflatoxin- producing fungus to develop. the current investigation was carried out to evaluate the quantity and kind of contaminated imported grains and rice generated in the province of Shiraz, Iran. A total of 60 random rice samples were taken from paddy fields in October and November 2020. Aspergillus genera were detected using PCR. HPLC was used to determine the quantity and type of aflatoxin and mycotoxins in samples collected. Irradiation studies were carried out utilizing a collimated beam system with wavelengths ranging from 200 to 360 nm. The quality of rice was assessed using UV light therapy on some of the changed factors, such as amylose content, aroma, and brightness [P < 0.05]. Aspergillus genera were found in 33.3% [20 samples of 60] of rice samples after morphological and molecular analysis of the ITS gene. According to the sequencing experiment, 12 strains [60%] were identified as Aspergillus flavus, whereas 8 strains [40%] were identified as Aspergillus parasiticus. Ver-1 and afl-R genes were positive in 12/12 [100%] Aspergillus flavus and 87.5% in Aspergillus parasiticus. According to the HPLC findings, three Aspergillus parasiticus strains [37.5%] were able to create all four types of aflatoxins, and aflatoxins B1, B2, G1, G2 were produced by 16.6% of Aspergillus flavus strains. Aflatoxin-1 (AFG1) was lowered to 35.1, 48.2, 59.9, and 65.2%, significantly, at doses of 1.22, 2.44, 3.66, and 4.88 Jcm-2 [P < 0.01]. Furthermore, at doses of 1.22, 2.44, 3.66, and 4.88 Jcm-2, AFB2 and AFG2 was shown to be reduced by 13.1%, 11.7%, 30.3%, and 28.9%. [P < 0.05]. At a maximum dose of 4.88 Jcm-2, AFB1 was shown to be extremely susceptible to UV irradiation, with a > 70% decrease seen [P < 0.001]. Our findings imply that UV irradiation with lower energy and lower danger can help minimize aflatoxin contamination in food.
Collapse
Affiliation(s)
- Hamed Faraji
- Department of Microbiology, College of Sciences, Agriculture and Modern Technology, Shiraz Branch, Islamic Azad University, Shiraz, Iran
| | - Farideh Tabatabaee Yazdi
- Department of Microbiology, College of Sciences, Agriculture and Modern Technology, Shiraz Branch, Islamic Azad University, Shiraz, Iran
- Department of Food Science Industry Faculty of Agriculture, Ferdowsi University of Mashhad, Iran
| | - Nematollah Razmi
- Department of Microbiology, College of Sciences, Agriculture and Modern Technology, Shiraz Branch, Islamic Azad University, Shiraz, Iran
| |
Collapse
|
53
|
Farooq MS, Uzair M, Raza A, Habib M, Xu Y, Yousuf M, Yang SH, Ramzan Khan M. Uncovering the Research Gaps to Alleviate the Negative Impacts of Climate Change on Food Security: A Review. FRONTIERS IN PLANT SCIENCE 2022; 13:927535. [PMID: 35903229 PMCID: PMC9315450 DOI: 10.3389/fpls.2022.927535] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 06/15/2022] [Indexed: 05/05/2023]
Abstract
Climatic variability has been acquiring an extensive consideration due to its widespread ability to impact food production and livelihoods. Climate change has the potential to intersperse global approaches in alleviating hunger and undernutrition. It is hypothesized that climate shifts bring substantial negative impacts on food production systems, thereby intimidating food security. Vast developments have been made addressing the global climate change, undernourishment, and hunger for the last few decades, partly due to the increase in food productivity through augmented agricultural managements. However, the growing population has increased the demand for food, putting pressure on food systems. Moreover, the potential climate change impacts are still unclear more obviously at the regional scales. Climate change is expected to boost food insecurity challenges in areas already vulnerable to climate change. Human-induced climate change is expected to impact food quality, quantity, and potentiality to dispense it equitably. Global capabilities to ascertain the food security and nutritional reasonableness facing expeditious shifts in biophysical conditions are likely to be the main factors determining the level of global disease incidence. It can be apprehended that all food security components (mainly food access and utilization) likely be under indirect effect via pledged impacts on ménage, incomes, and damages to health. The corroboration supports the dire need for huge focused investments in mitigation and adaptation measures to have sustainable, climate-smart, eco-friendly, and climate stress resilient food production systems. In this paper, we discussed the foremost pathways of how climate change impacts our food production systems as well as the social, and economic factors that in the mastery of unbiased food distribution. Likewise, we analyze the research gaps and biases about climate change and food security. Climate change is often responsible for food insecurity issues, not focusing on the fact that food production systems have magnified the climate change process. Provided the critical threats to food security, the focus needs to be shifted to an implementation oriented-agenda to potentially cope with current challenges. Therefore, this review seeks to have a more unprejudiced view and thus interpret the fusion association between climate change and food security by imperatively scrutinizing all factors.
Collapse
Affiliation(s)
- Muhammad Shahbaz Farooq
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- National Institute for Genomics and Advanced Biotechnology, Islamabad, Pakistan
| | - Muhammad Uzair
- National Institute for Genomics and Advanced Biotechnology, Islamabad, Pakistan
| | - Ali Raza
- College of Agriculture, Oil Crops Research Institute, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
| | - Madiha Habib
- National Institute for Genomics and Advanced Biotechnology, Islamabad, Pakistan
| | - Yinlong Xu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | | | - Seung Hwan Yang
- Department of Biotechnology, Chonnam National University, Yeosu, South Korea
| | | |
Collapse
|
54
|
Detoxifying aflatoxin contaminated peanuts by high concentration of H2O2 at moderate temperature and catalase inactivation. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
55
|
Dietary Exposure to Aflatoxins in Some Randomly Selected Foods and Cancer Risk Estimations of Cereals Consumed on a Ghanaian Market. J FOOD QUALITY 2022. [DOI: 10.1155/2022/5770836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Aflatoxins have gained so much reputation among all mycotoxins due to their notoriety in causing countless adverse health effects on humans as well as animals. It continues to be a major concern in food safety globally. In this study, total and constitutive aflatoxins levels as well as the carcinogenic risks posed by 110 food and feed samples (55 cereals, 20 nuts and oils, 18 animal feed, and 18 fruits and vegetables) collected from the Ho Central market in the Volta region, Ghana, were assessed. Using high-performance liquid chromatography connected to a fluorescent detector (HPLC-FLD), levels of total aflatoxins (AFtotal) and aflatoxins constituents, namely, AFB1, AFB2, AFG1, and AFG2, were analyzed. By using the model prescribed by Joint FAO/WHO Expert Committee on Food Additives (JECFA), the risks posed by the food and feed samples were determined. The degrees of toxicity were in the ranges of 0.78–234.73 μg/kg, 0.47–21.6 μg/kg, 1.01–13.75 μg/kg, and 0.66–5.51 μg/kg, respectively, for AFB1, AFB2, AFG1, and AFG2. Out of the samples analyzed for AFtotal, about 51 (46.4%) exceeded the limits of GSA and were in the range 10.63 ± 1.20–236.28 ± 4.2 μg/kg. While for EFSA, 71 (64.54%) exceeded and ranged between 4.72 ± 0.28 and 236.28 ± 4.2 μg/kg. Furthermore, estimated daily intake (EDI) of 27.10–283.70 ng/kg·bw/day, margin of exposure (MOE) of 1.409–14.76, average potency of 0–0.00396 ng aflatoxins/kg·bw/day, and cancer risks with a range of 0.107–1.122 cases/100,000 person/yr were observed. Taken together, it could be concluded that consuming cereals pose adverse effects on human health regardless of the age of the consumer.
Collapse
|
56
|
Antifungal activity and detoxification by Candida albicans against Aspergillus parasiticus and aflatoxin production. J Verbrauch Lebensm 2022. [DOI: 10.1007/s00003-022-01381-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
57
|
Decomposing Aflatoxins in Peanuts Using Advanced Oxidation Processes by UV and H2O2. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02844-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
58
|
|
59
|
Green and sustainable technologies for the decontamination of fungi and mycotoxins in rice: A review. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.04.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
60
|
Salisu B, Anua SM, Wan Rosli WI, Mazlan N, Haron R. Ultra-fast RP-HPLC-FD-DAD for quantification of total aflatoxins in maize, rice, wheat, peanut and poultry feed without sample clean up, and population exposure risk assessment in Katsina, Nigeria: an optimization study. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2022; 57:541-553. [PMID: 35531950 DOI: 10.1080/03601234.2022.2073151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
This study reports the development and validation of a simple, yet efficient method called the ultra-fast reverse phase high-performance liquid chromatography with fluorescence and photodiode array detector (UF-RP-HPLC-FD-DAD) to extract and quantify the total aflatoxin from grains and poultry feed. The proposed method is used to determine the total aflatoxin content in 150 samples of maize, rice, wheat, peanut and poultry feed obtained from open markets in a state in Nigeria. The extent of consumer exposure to aflatoxins and the risk of developing hepatocellular carcinoma (HCC) are evaluated. The UF-RP-HPLC-FD-DAD method was found to be satisfactorily accurate, sensitive and reliable as ascertained by its excellent validation outcomes (R2 > 0.999, LoD < 0.08 ng g-1, LoQ < 0.2 ng g-1, recovery = 90-102%). The aflatoxin levels in food grains and poultry feed samples obtained in this study implied a moderate dietary exposure of between 10.67 and 20.77 ng/kg BW/day, in which the risk of developing HCC was estimated to be between 6.27 and 21.40% per 100,000 adults/year. Hence, greater monitoring of marketed food and feed is required, besides the deployment of strict controls and preventive techniques to minimize the population's exposure to a high dietary level of aflatoxins.
Collapse
Affiliation(s)
- Baha'uddeen Salisu
- School of Health Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
- Department of Microbiology, Umaru Musa Yar'adua University, Katsina, Nigeria
| | - Siti Marwanis Anua
- School of Health Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Wan Ishak Wan Rosli
- School of Health Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Nurzafirah Mazlan
- Borneo Marine Research Institute, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu, Sabah, Malaysia
| | - Rosliza Haron
- School of Health Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| |
Collapse
|
61
|
AFM1 Secretion and Efficacy of NovasilTM Clay in Kenyan Dairy Cows. DAIRY 2022. [DOI: 10.3390/dairy3020018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The occurrence of aflatoxin M1 (AFM1) in milk has been widely reported in Kenya, with levels freqently exceeding national and international thresholds. Exposure to aflatoxin increases the risk of hepatic cancers and can also have other negative health impacts in children such as growth impairment and immunosuppression. Anti-mycotoxin agents (AMAs) included in contaminated feeds can greatly reduce the amount of AFM1 released in milk. A 45-day trial was designed to assess secretion of AFM1 in milk from individual cows fed commercial Kenyan dairy feed, as well as the efficacy of Novasil™ Plus in reducing the levels. A four-by-four Latin square cross-over design was used for the experiment. Four cows were fed on naturally contaminated with AFB1 feed, with levels ranging from 19 to 47 µg/kg, and either no binder or inclusion of binder at the rate of 0.6 or 1.2%. Milk samples were collected each day and analyzed for AFM1. The results showed that AFM1 levels in the milk varied between the cows, even when fed similar levels of contaminated feed. On average, inclusion of 0.6% binder into the diet resulted in 34% decline in milk AFM1 levels, while 1.2% binder dose resulted in a decline of 45%. Significant reduction in AFM1 secretion was observed in all experimental units (p < 0.005), though only minimal reduction was recorded in one of the units (Cow 4) compared to the other three. This trial shows novel data on aflatoxin exposure and excretion in Kenyan dairy cows in a field setting where AFB1 level is uncontrolled. We demonstrate significant reduction in AFM1 secretion in milk using AMA, though AFM1 levels were still above the recommended EC standard of 50 ŋg/kg. This study suggests that AMAs alone cannot be relied on to reduce AFM1 in milk to safe levels. Training and good feeding practices are recommended in addition to use of AMAs.
Collapse
|
62
|
Liu B, Peng J, Wu Q, Zhao Y, Shang H, Wang S. A novel screening on the specific peptide by molecular simulation and development of the electrochemical immunosensor for aflatoxin B1 in grains. Food Chem 2022; 372:131322. [PMID: 34818740 DOI: 10.1016/j.foodchem.2021.131322] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 08/26/2021] [Accepted: 10/02/2021] [Indexed: 01/03/2023]
Abstract
In this work, based on a specific antibody was obtained from the Protein Data Bank (PDB), a library of the specific peptides of aflatoxin B1 (AFB1) was constructed by combining key amino acids, amino acid mutations and molecular docking. Then, the porous gold nanoparticles (porous AuNPs) were fabricated on the surface of a glassy carbon electrode (GCE). A novel, sensitive and no-label signal immunosensor was developed by signal enhancement with the specific peptide as the recognition element for the detection of AFB1 in cereals. Under the optimal conditions, the limit of detection (S/N = 3) was 9.4 × 10-4 μg·L-1, and the linear range was 0.01 μg·L-1 to 20 μg·L-1. The recovery results were 88.4%∼102.0%, which indicated an excellent accuracy. This sensor is an ideal candidate for screening the peptides of AFB1, and a novel immunosensor was used to detect AFB1 in cereals.
Collapse
Affiliation(s)
- Bing Liu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Jiaxuan Peng
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Qiuyue Wu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yaoshuai Zhao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Hua Shang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| |
Collapse
|
63
|
Al-Owaisi A, Al-Sadi AM, Al-Sabahi JN, Sathish Babu SP, Al-Harrasi MMA, Hashil Al-Mahmooli I, Abdel-Jalil R, Velazhahan R. In vitro detoxification of aflatoxin B1 by aqueous extracts of medicinal herbs. ALL LIFE 2022. [DOI: 10.1080/26895293.2022.2049900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Arwa Al-Owaisi
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat, Sultanate of Oman
| | - Abdullah Mohammed Al-Sadi
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat, Sultanate of Oman
| | - Jamal Nasser Al-Sabahi
- Central Analytical Laboratory, College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat, Sultanate of Oman
| | - S. P. Sathish Babu
- Central Analytical and Applied Research Unit, College of Science, Sultan Qaboos University, Muscat, Sultanate of Oman
| | - Majida Mohammed Ali Al-Harrasi
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat, Sultanate of Oman
| | - Issa Hashil Al-Mahmooli
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat, Sultanate of Oman
| | - Raid Abdel-Jalil
- Department of Chemistry, College of Science, Sultan Qaboos University, Muscat, Sultanate of Oman
| | - Rethinasamy Velazhahan
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat, Sultanate of Oman
| |
Collapse
|
64
|
Babaee R, Karami-Osboo R, Mirabolfathy M. Evaluation of the use of Ozone, UV-C and Citric acid in reducing aflatoxins in pistachio nut. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2021.104276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
65
|
Effect of some traditional processing operations on the chemical, functional, antioxidant, glycaemic index and glycaemic load of groundnut (Arachis hypogea L.) seed flour. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01320-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
66
|
Wang J, Ding X, Gao H, Fan S. Reshaping Food Policy and Governance to Incentivize and Empower Disadvantaged Groups for Improving Nutrition. Nutrients 2022; 14:648. [PMID: 35277007 PMCID: PMC8838405 DOI: 10.3390/nu14030648] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/27/2022] [Accepted: 01/31/2022] [Indexed: 12/24/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has exacerbated global malnutrition challenges, disrupted food supply chains, and left poor and vulnerable people unable to produce and access safe and affordable food, especially in developing countries. Food policy and governance are currently malfunctioning, despite their recognized roles in improving food security and public nutrition in many local and national contexts. This article reviews existing food policies and governance with implications for disadvantaged groups in the food systems, particularly smallholder farmers, women, and small- and medium-sized enterprises (SMEs), highlighting the importance of reshaping food policies and governance. To end malnutrition in the post-COVID era, multiple sectors, including health, agriculture, social protection, education, and infrastructure, must make greater collaborative efforts to develop and implement food and nutrition policies. Several recommendations for reshaping food policy interventions and governance are summarized.
Collapse
Affiliation(s)
| | | | - Haixiu Gao
- Academy of Global Food Economics and Policy, College of Economics and Management, China Agricultural University, Beijing 100083, China; (J.W.); (X.D.); (S.F.)
| | | |
Collapse
|
67
|
Owumi SE, Irozuru CE, Arunsi UO, Faleke HO, Oyelere AK. Caffeic acid mitigates aflatoxin B1-mediated toxicity in the male rat reproductive system by modulating inflammatory and apoptotic responses, testicular function, and the redox-regulatory systems. J Food Biochem 2022; 46:e14090. [PMID: 35112365 DOI: 10.1111/jfbc.14090] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/26/2021] [Accepted: 01/06/2022] [Indexed: 12/13/2022]
Abstract
Aflatoxin B1 (AFB1 ) is a toxic metabolite of public health concern. The present study investigates the protective effects of caffeic acid (CA) against AFB1 -induced oxidative stress, inflammation, and apoptosis in the hypothalamus, epididymis, and testis of male rats. Five experimental rat cohorts (n = 6) were treated per os for 28 consecutive days as follows: Control (Corn oil 2 ml/kg body weight), AFB1 alone (50μg/kg), CA alone (40 mg/kg) and the co-treated rat cohorts (AFB1 : 50μg/kg + CA1: 20 or 40 mg/kg). Following sacrifice, the biomarkers of hypothalamic, epididymal, and testicular toxicities, antioxidant enzyme activities, myeloperoxidase (MPO) activity, as well as levels of nitric oxide (NO), reactive oxygen and nitrogen (RONS) species and lipid peroxidation (LPO) were analysed spectrophotometrically. Besides, the concentration of tumour necrosis factor-alpha (TNF-α), Bcl-2 and Bax proteins were assessed using ELISA. Results showed that the AFB1 -induced decrease in biomarkers of testicular, epididymal and hypothalamic toxicity was significantly (p < .05) alleviated in rats coexposed to CA. Moreover, the reduction of antioxidant status and the increase in RONS and LPO were lessened (p < .05) in rats co-treated with CA. AFB1 mediated increase in TNF-α, Bax, NO and MPO activity were reduced (p< .05) in the hypothalamus, epididymis, and testis of rats coexposed to CA. In addition, Bcl-2 levels were reduced in rats treated with CA dose-dependently. Light microscopic examination showed that histopathological lesions severity induced by AFB1 were alleviated in rats coexposed to CA. Taken together, the amelioration of AFB1 -induced neuronal and reproductive toxicities by CA involves anti-inflammatory, antioxidant, antiapoptotic mechanisms in rats. PRACTICAL APPLICATIONS: The beneficial antioxidant effects of caffeic acid (CA) are attributed to CA delocalized aromatic rings and free electrons, easily donated to stabilize reactive oxygen species. We report in vivo findings on CA and AfB1 mediated oxidative stress and reproductive dysfunction in rats. CA conjugated esters including chlorogenic acids are widely distributed in plants, and they act as a dietary source of natural defense against infections. CA can chelate heavy metals and reduce production of damaging free radicals to cellular macromolecules. Along these lines, CA can stabilize aflatoxin B1-epoxide as well and avert deleterious conjugates from forming with deoxyribonucleic acids. Hence CA, as a dietary phytochemical can protect against the damaging effects of toxins including aflatoxin B1 that contaminate food. CA dose-dependently abated oxidative, inflammatory, and apoptotic stimuli, improved functional characteristics of spermatozoa and reproductive hormone levels, and prevented histological alterations in experimental rats' hypothalamus and reproductive organs brought about by AFB1 toxicity.
Collapse
Affiliation(s)
- Solomon E Owumi
- Cancer Research and Molecular Biology Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Nigeria
| | - Chioma E Irozuru
- Molecular Drug Metabolism Research Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Nigeria
| | - Uche O Arunsi
- Department of Cancer Immunology and Biotechnology, School of Medicine, University of Nottingham, Nottingham, UK
| | - Hammed O Faleke
- Membrane Biochemistry and Biotechnology Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Nigeria
| | - Adegboyega K Oyelere
- School of Chemistry & Biochemistry, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
68
|
Mishra G, Panda BK, Ramirez WA, Jung H, Singh CB, Lee SH, Lee I. Application of SWIR hyperspectral imaging coupled with chemometrics for rapid and non-destructive prediction of Aflatoxin B1 in single kernel almonds. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112954] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
69
|
Kumar P, Mahato DK, Gupta A, Pandhi S, Mishra S, Barua S, Tyagi V, Kumar A, Kumar M, Kamle M. Use of essential oils and phytochemicals against the mycotoxins producing fungi for shelf‐life enhancement and food preservation. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15563] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Pradeep Kumar
- Applied Microbiology Lab Department of Forestry North Eastern Regional Institute of Science and Technology Nirjuli 791109 India
| | - Dipendra Kumar Mahato
- CASS Food Research Centre School of Exercise and Nutrition Sciences Deakin University Burwood VIC 3125 Australia
| | - Akansha Gupta
- Department of Dairy Science and Food Technology Institute of Agricultural Sciences Banaras Hindu University Varanasi 221005 India
| | - Shikha Pandhi
- Department of Dairy Science and Food Technology Institute of Agricultural Sciences Banaras Hindu University Varanasi 221005 India
| | - Sadhna Mishra
- Department of Dairy Science and Food Technology Institute of Agricultural Sciences Banaras Hindu University Varanasi 221005 India
- Faculty of Agricultural Sciences GLA University Mathura 281406 India
| | - Sreejani Barua
- Department of Agricultural and Food Engineering Indian Institute of Technology Kharagpur‐721302 India
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
| | - Vidhi Tyagi
- University School of Biotechnology Guru Gobind Singh Indraprastha University Sector 16C Dwarka New Delhi 110078 India
| | - Arvind Kumar
- Department of Dairy Science and Food Technology Institute of Agricultural Sciences Banaras Hindu University Varanasi 221005 India
| | - Manoj Kumar
- Chemical and Biochemical Processing Division ICAR—Central Institute for Research on Cotton Technology Mumbai 400019 India
| | - Madhu Kamle
- Applied Microbiology Lab Department of Forestry North Eastern Regional Institute of Science and Technology Nirjuli 791109 India
| |
Collapse
|
70
|
Kurup AH, Patras A, Pendyala B, Vergne MJ, Bansode RR. Evaluation of Ultraviolet-Light (UV-A) Emitting Diodes Technology on the Reduction of Spiked Aflatoxin B1 and Aflatoxin M1 in Whole Milk. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-021-02731-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
71
|
Gómez-Salazar JA, Ruiz-Hernández K, Martínez-Miranda MM, Castro-Ríos K. Postharvest strategies for decontamination of aflatoxins in cereals. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.2013254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Julián Andrés Gómez-Salazar
- Posgrado En Biociencias, Departamento De Alimentos, División De Ciencias De La Vida, Campus Irapuato-Salamanca, Universidad de Guanajuato, Irapuato, Guanajuato, México
| | - Karla Ruiz-Hernández
- Posgrado En Biociencias, Departamento De Alimentos, División De Ciencias De La Vida, Campus Irapuato-Salamanca, Universidad de Guanajuato, Irapuato, Guanajuato, México
| | | | - Katherin Castro-Ríos
- Grupo de Cromatografía Y Técnicas Afines, Universidad de Caldas, Manizales, Colombia
- Instituto de Investigación En Microbiología Y Biotecnología Agroindustrial, Universidad Católica de Manizales, Manizales, Colombia
| |
Collapse
|
72
|
Ofori-Attah E, Aning A, Ofosuhene M, Kumi J, Appiah-Opong R. Determination of aflatoxin levels in bokina beverage. Ghana Med J 2021; 55:292-297. [PMID: 35957926 PMCID: PMC9334962 DOI: 10.4314/gmj.v55i4.10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Objective The main aim of this study was to investigate levels of total aflatoxin and aflatoxin M1 in bokina, a home-made non-alcoholic beverage prepared from dairy milk, millet and sugar. Methods Bokina, dairy milk and millet were purchased monthly over a period of 7 months from bokina producers at Ashaiman and Nima, in Ghana. Total aflatoxin and aflatoxin M1 levels in these samples were measured using a fluorometric procedure and High-Performance Liquid Chromatography. Results Aflatoxin levels in bokina samples ranged from 1.0 to 21.0 ppb for Ashaiman samples and 1.0 to 23.0 ppb for Nima samples. Out of 21 samples from each site 1 from Ashiaman and 2 from Nima had levels total aflatoxin above the acceptable limit of 20 ppb. Similarly, total aflatoxin levels millet samples ranged from 1.0 to 55.0 ppb for Ashaiman and 5.0 to 53.0 ppb for Nima samples, with 2 samples from Ashiaman and 6 from Nima having levels above 20ppb. The levels of Aflatoxin M1 in milk ranged from 0.09 to 6.20 ppb for Ashaiman samples and 0.13 to 12.55 ppb for Nima samples. Out of the samples, 12 from Ashiaman and 10 from Nima (n=21) had levels of Aflatoxin M1 above the acceptable limit of 0.5 ppb. Conclusion Bokina samples tested were contaminated with aflatoxin. All doses of aflatoxin have a cumulative effect on the risk of cancer. Therefore, farmers and bokina producers must be educated on good storage practices and monitored to protect the public from aflatoxin exposure and toxicity. Funding The study was self-funded.
Collapse
Affiliation(s)
- Ebenezer Ofori-Attah
- Department of Clinical Pathology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Ghana
| | - Abigail Aning
- Department of Clinical Pathology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Ghana
| | - Mark Ofosuhene
- Department of Clinical Pathology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Ghana
| | - Justice Kumi
- Department of Clinical Pathology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Ghana
| | - Regina Appiah-Opong
- Department of Clinical Pathology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Ghana
| |
Collapse
|
73
|
Alilou S, Amirzehni M, Eslami PA. A simple fluorometric method for rapid screening of aflatoxins after their extraction by magnetic MOF-808/graphene oxide composite and their discrimination by HPLC. Talanta 2021; 235:122709. [PMID: 34517582 DOI: 10.1016/j.talanta.2021.122709] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 07/07/2021] [Accepted: 07/09/2021] [Indexed: 01/15/2023]
Abstract
Herein, a high-performance screening tool for the selective and sensitive monitoring of aflatoxins is reported based on their great quenching effect on the blue emission of graphene quantum dots (GQDs). To make a specific determination, a pre-extraction method was also developed using a new nano-sorbent based on the surface-imprinted Zr metal-organic framework on the magnetic graphene oxide (MGO/MOF-808@MIP). The adsorbing efficiency of the prepared composite was remarkably higher than the pristine MOF-808 or bare GO. The presence of GO nanosheets, as well as nanoporous MOF-808 provided a high accessible surface area to form the MIP layer. It provided a great number of MIP sites for high efficient and rapid extraction of aflatoxins. The presence of magnetic nanoparticles in the structure of nanocomposite also facilitated the extraction process using a magnetic solid-phase extraction (MSPE) system. The combination of this specific and high-performance extraction with simple fluorometric detection caused a potent screening tool for aflatoxins. The method was able to monitor the total aflatoxins content of food samples with a linear range of 0.05-8 ng mL-1, which was more sensitive than the fluorometric system without extraction (5-500 ng mL-1). More developments were made by the application of a high-performance liquid chromatography (HPLC) method for the discrimination of the extracted aflatoxins. The system showed high sensitivity and selectivity and was able to detect different aflatoxins with an acceptable resolution.
Collapse
Affiliation(s)
- Sevda Alilou
- Department of Chemistry, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Maliheh Amirzehni
- Department of Chemistry, Tabriz Branch, Islamic Azad University, Tabriz, Iran.
| | | |
Collapse
|
74
|
Vlajkov V, Grahovac M, Budakov D, Loc M, Pajčin I, Milić D, Novaković T, Grahovac J. Distribution, Genetic Diversity and Biocontrol of Aflatoxigenic Aspergillus flavus in Serbian Maize Fields. Toxins (Basel) 2021; 13:toxins13100687. [PMID: 34678980 PMCID: PMC8540170 DOI: 10.3390/toxins13100687] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/04/2021] [Accepted: 08/04/2021] [Indexed: 11/16/2022] Open
Abstract
Maize is one of the leading export products in the Republic of Serbia. As a country where economic development depends on agriculture, maize production plays a critical role as a crop of strategic importance. Potential aflatoxin contamination of maize poses a risk to food and feed safety and tremendous economic losses. No aflatoxin contamination of maize samples harvested in 2019 and 2020 in different localities in the Republic of Serbia was detected by the Enzyme-Linked Immunosorbent Assay (ELISA) test and High-Performance Liquid Chromatography (HPLC) method. On the other hand, the Cluster Amplification Patterns (CAP) analyses of the isolated Aspergillus flavus strains from 2019 maize samples confirmed the presence of key biosynthesis genes responsible for aflatoxin production. Artificial inoculation and subsequent HPLC analysis of the inoculated maize samples confirmed the high capacity of the A. flavus strains for aflatoxin production, pointing to a high risk of contamination under favorable conditions. Prevention of aflatoxin contamination is primarily based on A. flavus control, where biocontrol agents play a significant role as sustainable disease management tools. In this study, antagonistic activity screening of the novel strains belonging to the Bacillus genus indicated superior suppression of A. flavus strains by two Bacillus strains isolated from the rhizosphere of Phaseolus vulgaris.
Collapse
Affiliation(s)
- Vanja Vlajkov
- Faculty of Technology, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia; (I.P.); (J.G.)
- Correspondence: (V.V.); (M.G.)
| | - Mila Grahovac
- Faculty of Agriculture, University of Novi Sad, Trg Dositeja Obradovića 8, 21000 Novi Sad, Serbia; (D.B.); (M.L.); (D.M.); (T.N.)
- Correspondence: (V.V.); (M.G.)
| | - Dragana Budakov
- Faculty of Agriculture, University of Novi Sad, Trg Dositeja Obradovića 8, 21000 Novi Sad, Serbia; (D.B.); (M.L.); (D.M.); (T.N.)
| | - Marta Loc
- Faculty of Agriculture, University of Novi Sad, Trg Dositeja Obradovića 8, 21000 Novi Sad, Serbia; (D.B.); (M.L.); (D.M.); (T.N.)
| | - Ivana Pajčin
- Faculty of Technology, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia; (I.P.); (J.G.)
| | - Dragan Milić
- Faculty of Agriculture, University of Novi Sad, Trg Dositeja Obradovića 8, 21000 Novi Sad, Serbia; (D.B.); (M.L.); (D.M.); (T.N.)
| | - Tihomir Novaković
- Faculty of Agriculture, University of Novi Sad, Trg Dositeja Obradovića 8, 21000 Novi Sad, Serbia; (D.B.); (M.L.); (D.M.); (T.N.)
| | - Jovana Grahovac
- Faculty of Technology, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia; (I.P.); (J.G.)
| |
Collapse
|
75
|
Soares Mateus AR, Barros S, Pena A, Sanches Silva A. Mycotoxins in Pistachios ( Pistacia vera L.): Methods for Determination, Occurrence, Decontamination. Toxins (Basel) 2021; 13:682. [PMID: 34678975 PMCID: PMC8538126 DOI: 10.3390/toxins13100682] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/15/2021] [Accepted: 09/17/2021] [Indexed: 12/28/2022] Open
Abstract
The consumption of pistachios (Pistacia vera L.) has been increasing, given their important benefit to human health. In addition to being an excellent nutritional source, they have been associated with chemical hazards, such as mycotoxins, resulting in fungal contamination and its secondary metabolism. Aflatoxins (AFs) are the most common mycotoxins in pistachio and the most toxic to humans, with hepatotoxic effects. More mycotoxins such as ochratoxin A (OTA), fumonisins (FBs), zearalenone (ZEA) and trichothecenes (T2, HT2 and DON) and emerging mycotoxins have been involved in nuts. Because of the low levels of concentration and the complexity of the matrix, the determination techniques must be very sensitive. The present paper carries out an extensive review of the state of the art of the determination of mycotoxins in pistachios, concerning the trends in analytical methodologies for their determination and the levels detected as a result of its contamination. Screening methods based on immunoassays are useful due to their simplicity and rapid response. Liquid chromatography (LC) is the gold standard with new improvements to enhance accuracy, precision and sensitivity and a lower detection limit. The reduction of Aspergillus' and aflatoxins' contamination is important to minimize the public health risks. While prevention, mostly in pre-harvest, is the most effective and preferable measure to avoid mycotoxin contamination, there is an increased number of decontamination processes which will also be addressed in this review.
Collapse
Affiliation(s)
- Ana Rita Soares Mateus
- Faculty of Pharmacy, University of Coimbra, Polo III, Azinhaga de Stª Comba, 3000-548 Coimbra, Portugal; (A.R.S.M.); (A.S.S.)
- National Institute for Agricultural and Veterinary Research (INIAV), I.P., Rua dos Lagidos, Lugar da Madalena, 4485-655 Vila do Conde, Portugal;
| | - Sílvia Barros
- National Institute for Agricultural and Veterinary Research (INIAV), I.P., Rua dos Lagidos, Lugar da Madalena, 4485-655 Vila do Conde, Portugal;
| | - Angelina Pena
- Faculty of Pharmacy, University of Coimbra, Polo III, Azinhaga de Stª Comba, 3000-548 Coimbra, Portugal; (A.R.S.M.); (A.S.S.)
- LAQV, REQUIMTE, Laboratory of Bromatology and Pharmacognosy, Faculty of Pharmacy, University of Coimbra, Polo III, Azinhaga de Stª Comba, 3000-548 Coimbra, Portugal
| | - Ana Sanches Silva
- Faculty of Pharmacy, University of Coimbra, Polo III, Azinhaga de Stª Comba, 3000-548 Coimbra, Portugal; (A.R.S.M.); (A.S.S.)
- National Institute for Agricultural and Veterinary Research (INIAV), I.P., Rua dos Lagidos, Lugar da Madalena, 4485-655 Vila do Conde, Portugal;
- Center for Study in Animal Science (CECA), ICETA, University of Oporto, 55142 Oporto, Portugal
| |
Collapse
|
76
|
Madeen EP, Maldarelli F, Groopman JD. Environmental Pollutants, Mucosal Barriers, and Pathogen Susceptibility; The Case for Aflatoxin B 1 as a Risk Factor for HIV Transmission and Pathogenesis. Pathogens 2021; 10:1229. [PMID: 34684180 PMCID: PMC8537633 DOI: 10.3390/pathogens10101229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 12/02/2022] Open
Abstract
HIV transmission risk is dependent on the infectivity of the HIV+ partner and personal susceptibility risk factors of the HIV- partner. The mucosal barrier, as the internal gatekeeper between environment and self, concentrates and modulates the internalization of ingested pathogens and pollutants. In this review, we summarize the localized effects of HIV and dietary toxin aflatoxin B1 (AFB1), a common pollutant in high HIV burden regions, e.g., at the mucosal barrier, and evidence for pollutant-viral interactions. We compiled literature on HIV and AFB1 geographic occurrences, mechanisms of action, related co-exposures, personal risk factors, and HIV key determinants of health. AFB1 exposure and HIV sexual transmission hotspots geographically co-localize in many low-income countries. AFB1 distributes to sexual mucosal tissues generating inflammation, microbiome changes and a reduction of mucosal barrier integrity, effects that are risk factors for increasing HIV susceptibility. AFB1 exposure has a positive correlation to HIV viral load, a risk factor for increasing the infectivity of the HIV+ partner. The AFB1 exposure and metabolism generates inflammation that recruits HIV susceptible cells and generates chemokine/cytokine activation in tissues exposed to HIV. Although circumstantial, the available evidence makes a compelling case for studies of AFB1 exposure as a risk factor for HIV transmission, and a modifiable new component for combination HIV prevention efforts.
Collapse
Affiliation(s)
- Erin P. Madeen
- Department of Cancer Prevention, National Institute of Health, Shady Grove, MD 21773, USA
- HIV Dynamics and Replication Program, NCI-Frederick, Frederick, MD 21703, USA;
| | - Frank Maldarelli
- HIV Dynamics and Replication Program, NCI-Frederick, Frederick, MD 21703, USA;
| | - John D. Groopman
- Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA;
| |
Collapse
|
77
|
Gibellato S, Dalsóquio L, do Nascimento I, Alvarez T. Current and promising strategies to prevent and reduce aflatoxin contamination in grains and food matrices. WORLD MYCOTOXIN J 2021. [DOI: 10.3920/wmj2020.2559] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Mycotoxins are secondary metabolites produced by filamentous fungi that colonise various crops around the world and cause major damage to the agro-industrial sector on a global scale. Considering the estimative of population growth in the next decades, it is of fundamental importance the implementation of practices that help prevent the economics and social impacts of aflatoxin contamination. Even though various approaches have been developed – including physical, chemical and biological approaches – there is not yet one that strikes a balance in terms of safety, food quality and cost, especially when considering large scale application. In this review, we present a compilation of advantages and disadvantages of different strategies for prevention and reduction of aflatoxin contamination. Biological approaches represent the trend in innovations mainly due to their specificity and versatility, since it is possible to consider the utilisation of whole microorganisms, culture supernatants, purified enzymes or even genetic engineering. However, challenges related to improvement of the efficiency of such methods and ensuring safety of treated foods still need to be overcome.
Collapse
Affiliation(s)
- S.L. Gibellato
- Graduate Programme in Industrial Biotechnology, Universidade Positivo, Curitiba, Paraná, 81280-330, Brazil
| | - L.F. Dalsóquio
- Bioprocesses and Biotechnology Engineering, Universidade Positivo, Curitiba, Paraná, 81280-330, Brazil
| | - I.C.A. do Nascimento
- Bioprocesses and Biotechnology Engineering, Universidade Positivo, Curitiba, Paraná, 81280-330, Brazil
| | - T.M. Alvarez
- Graduate Programme in Industrial Biotechnology, Universidade Positivo, Curitiba, Paraná, 81280-330, Brazil
- Bioprocesses and Biotechnology Engineering, Universidade Positivo, Curitiba, Paraná, 81280-330, Brazil
| |
Collapse
|
78
|
Zhou C, Okonkwo CE, Inyinbor AA, Yagoub AEA, Olaniran AF. Ultrasound, infrared and its assisted technology, a promising tool in physical food processing: A review of recent developments. Crit Rev Food Sci Nutr 2021; 63:1587-1611. [PMID: 34404303 DOI: 10.1080/10408398.2021.1966379] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Traditional food processing techniques can no longer meet the ever increasing demand for high quality food across the globe due to its low process efficiency, high energy consumption and low product yield. This review article is focused on the mechanism and application of Infrared (IR) and ultrasound (US) technologies in physical processing of food. We herein present the individual use of IR and US (both mono-frequency and multi-frequency levels) as well as IR and US supported with other thermal and non-thermal technologies to improve their food processing performance. IR and US are recent thermal and non-thermal technologies which have now been successfully used in food industries to solve the demerits of conventional processing technologies. These environmentally-friendly technologies are characterized by low energy consumption, reduced processing time, high mass-transfer rates, better nutrient retention, better product quality, less mechanical damage and improved shelf life. This work could be, with no doubt, useful to the scientific world and food industries by providing insights on recent advances in the use of US and IR technology, which can be applied to improve food processing technologies for better quality and safer products.
Collapse
Affiliation(s)
- Cunshan Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Clinton E Okonkwo
- Department of Agricultural and Biosystems Engineering, College of Engineering, Landmark University, Omu-Aran, Kwara state, Nigeria
| | - Adejumoke A Inyinbor
- Department of Physical Sciences, Industrial Chemistry Programme, Landmark University, Omu-Aran, Kwara State, Nigeria
| | - Abu ElGasim A Yagoub
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Abiola F Olaniran
- Department of Food Science and Nutrition, College of Agricultural Sciences, Landmark University, Omu-Aran, Kwara state, Nigeria
| |
Collapse
|
79
|
Wenndt AJ, Sudini HK, Mehta R, Pingali P, Nelson R. Spatiotemporal assessment of post-harvest mycotoxin contamination in rural North Indian food systems. Food Control 2021; 126:108071. [PMID: 34345120 PMCID: PMC8075802 DOI: 10.1016/j.foodcont.2021.108071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 03/05/2021] [Accepted: 03/06/2021] [Indexed: 11/17/2022]
Abstract
The spatiotemporal trends in aflatoxin B1 (AFB1), fumonisin B1 (FB1), and deoxynivalenol (DON) accumulation were analyzed in a range of food commodities (maize, groundnut, pearl millet, rice, and wheat) in village settings in Unnao, Uttar Pradesh, India. Samples (n = 1549) were collected across six communities and six time points spanning a calendar year and were analyzed for mycotoxins using enzyme-linked immunosorbent assays. AFB1 and FB1 were common across surveyed villages, with moderate to high detection rates (45-75%) observed across commodities. AFB1 levels in maize and groundnuts and FB1 levels in maize and pearl millet frequently exceeded regulatory threshold levels of 15 μg/kg (AFB1) and 2 μg/g (FB1). DON was analyzed in wheat, with 3% of samples yielding detectable levels and none exceeding 1 μg/g. In rice, AFB1 levels were highest in the bran and husk and lower in the kernel. Commodity type significantly influenced AFB1 detection status, while commodity type, season, and visual quality influenced samples' legal status. Storage characteristics and household socioeconomic status indicators did not have significant effects on contamination. No significant effects of any variables on FB1 detection or legal status were observed. Data on mycotoxin contamination, combined with data on local dietary intake, were used to estimate spatiotemporal mycotoxin exposure profiles. Estimated seasonal per capita exposure levels for AFB1 (5.4-39.3 ng/kg body weight/day) and FB1 (~0-2.4 μg/kg body weight/day) exceeded provisional maximum tolerable daily intake levels (1 ng/kg body weight/day for AFB1 and 2 μg/kg body weight/day for FB1) in some seasons and locations. This study demonstrates substantial dietary mycotoxin exposure risk in Unnao food systems and serves as an evidentiary foundation for participatory food safety intervention in the region.
Collapse
Affiliation(s)
- Anthony J. Wenndt
- School of Integrative Plant Sciences, Cornell University, Ithaca, NY, USA
- Tata Cornell Institute for Agriculture & Nutrition, Cornell University, Ithaca, NY, USA
| | - Hari Kishan Sudini
- International Crops Research Institute for the Semi-Arid Tropics, Patancheru, Telangana, India
| | - Rukshan Mehta
- Nutrition & Health Sciences, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Prabhu Pingali
- Tata Cornell Institute for Agriculture & Nutrition, Cornell University, Ithaca, NY, USA
- Charles H. Dyson School of Applied Economics & Management, Cornell University, Ithaca, NY, USA
| | - Rebecca Nelson
- School of Integrative Plant Sciences, Cornell University, Ithaca, NY, USA
| |
Collapse
|
80
|
Aflatoxin contamination in food crops: causes, detection, and management: a review. FOOD PRODUCTION, PROCESSING AND NUTRITION 2021. [DOI: 10.1186/s43014-021-00064-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
AbstractMycotoxins are secondary metabolites produced by several fungal species and molds. Under favorable conditions like high temperature and moisture, they contaminate a large number of food commodities and regional crops during pre and post-harvesting. Aflatoxin is the main mycotoxin that harm animal and human health due to its carcinogenic nature. Aflatoxins are mainly released by Aspergillus flavus and Aspergillus parasiticus. AFB1 constitutes the most harmful type of aflatoxins and is a potent hepato-carcinogenic, mutagenic, teratogenic and it suppresses the immune system. To maintain food safety and to prevent aflatoxin contamination in food crops, combined approaches of using resistant varieties along with recommended farming practices should be followed. This review concentrates on various aspects of mycotoxin contamination in crops and recent methods to prevent or minimize the contamination.
Collapse
|
81
|
Hernandez C, Cadenillas L, Maghubi AE, Caceres I, Durrieu V, Mathieu C, Bailly JD. Mimosa tenuiflora Aqueous Extract: Role of Condensed Tannins in Anti-Aflatoxin B1 Activity in Aspergillus flavus. Toxins (Basel) 2021; 13:toxins13060391. [PMID: 34072350 PMCID: PMC8228179 DOI: 10.3390/toxins13060391] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 02/07/2023] Open
Abstract
Aflatoxin B1 (AFB1) is a potent carcinogenic mycotoxin that contaminates numerous crops pre- and post-harvest. To protect foods and feeds from such toxins without resorting to pesticides, the use of plant extracts has been increasingly studied. The most interesting candidate plants are those with strong antioxidative activity because oxidation reactions may interfere with AFB1 production. The present study investigates how an aqueous extract of Mimosa tenuiflora bark affects both the growth of Aspergillus flavus and AFB1 production. The results reveal a dose-dependent inhibition of toxin synthesis with no impact on fungal growth. AFB1 inhibition is related to a down-modulation of the cluster genes of the biosynthetic pathway and especially to the two internal regulators aflR and aflS. Its strong anti-oxidative activity also allows the aqueous extract to modulate the expression of genes involved in fungal oxidative-stress response, such as msnA, mtfA, atfA, or sod1. Finally, a bio-guided fractionation of the aqueous extract demonstrates that condensed tannins play a major role in the anti-aflatoxin activity of Mimosa tenuiflora bark.
Collapse
Affiliation(s)
- Christopher Hernandez
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, EI-Purpan, 313000 Toulouse, France; (C.H.); (L.C.); (A.E.M.); (I.C.)
- Laboratoire de Chimie Agro-Industrielle (LCA), Université de Toulouse, INRA, INPT, 4 Allée Emile Monso, 31030 Toulouse, France; (V.D.); (C.M.)
| | - Laura Cadenillas
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, EI-Purpan, 313000 Toulouse, France; (C.H.); (L.C.); (A.E.M.); (I.C.)
- Laboratoire de Chimie Agro-Industrielle (LCA), Université de Toulouse, INRA, INPT, 4 Allée Emile Monso, 31030 Toulouse, France; (V.D.); (C.M.)
| | - Anwar El Maghubi
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, EI-Purpan, 313000 Toulouse, France; (C.H.); (L.C.); (A.E.M.); (I.C.)
| | - Isaura Caceres
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, EI-Purpan, 313000 Toulouse, France; (C.H.); (L.C.); (A.E.M.); (I.C.)
| | - Vanessa Durrieu
- Laboratoire de Chimie Agro-Industrielle (LCA), Université de Toulouse, INRA, INPT, 4 Allée Emile Monso, 31030 Toulouse, France; (V.D.); (C.M.)
| | - Céline Mathieu
- Laboratoire de Chimie Agro-Industrielle (LCA), Université de Toulouse, INRA, INPT, 4 Allée Emile Monso, 31030 Toulouse, France; (V.D.); (C.M.)
- Centre d’Application et de Traitement des Agro-Ressources (CATAR), INPT, Toulouse, 4 Allée Emile Monso, 31030 Toulouse, France
| | - Jean-Denis Bailly
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, EI-Purpan, 313000 Toulouse, France; (C.H.); (L.C.); (A.E.M.); (I.C.)
- Correspondence: ; Tel.: +33-56-1193-229
| |
Collapse
|
82
|
García-Béjar B, Owens RA, Briones A, Arévalo-Villena M. Proteomic profiling and glycomic analysis of the yeast cell wall in strains with Aflatoxin B 1 elimination ability. Environ Microbiol 2021; 23:5305-5319. [PMID: 34029450 DOI: 10.1111/1462-2920.15606] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 05/18/2021] [Indexed: 11/27/2022]
Abstract
The use of microorganisms for Aflatoxin B1 elimination has been studied as a new alternative tool and it is known that cell wall carried out a critical role. For that reason, cell wall and soluble intracellular fraction of eight yeasts with AFB1 detoxification capability were analysed. The quantitative and qualitative comparative label-free proteomic allowed the identification of diverse common constituent proteins, which revealed that putative cell wall proteins entailed less than 10% of the total proteome. It was possible to characterize different enzymes linked to cell wall polysaccharides biosynthesis as well as other proteins related with the cell wall organization and regulation. Additionally, the concentration of the principal polysaccharides was determined which permitted us to observe that β-glucans concentration was higher than mannans in most of the samples. In order to better understand the biosorption role of the cell wall against the AFB1 , an antimycotic (Caspofungin) was used to damage the cell wall structure. This assay allowed the observation of an effect on the normal growth of those yeasts with damaged cell walls that were exposed to AFB1 . This effect was not observed in yeast with intact cell walls, which may reveal a protective role of this structure against mycotoxins.
Collapse
Affiliation(s)
- Beatriz García-Béjar
- Department of Analytical Chemistry and Food Technology, University of Castilla-La Mancha, Ciudad Real, 13071, Spain
| | - Rebecca A Owens
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Ana Briones
- Department of Analytical Chemistry and Food Technology, University of Castilla-La Mancha, Ciudad Real, 13071, Spain
| | - María Arévalo-Villena
- Department of Analytical Chemistry and Food Technology, University of Castilla-La Mancha, Ciudad Real, 13071, Spain
| |
Collapse
|
83
|
Aboagye-Nuamah F, Kwoseh CK, Maier DE. Toxigenic mycoflora, aflatoxin and fumonisin contamination of poultry feeds in Ghana. Toxicon 2021; 198:164-170. [PMID: 34019909 DOI: 10.1016/j.toxicon.2021.05.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 04/28/2021] [Accepted: 05/13/2021] [Indexed: 12/11/2022]
Abstract
The study was undertaken to identify the major mycotoxigenic fungi, aflatoxin and fumonisin levels in prepared poultry feeds in Ghana. Three hundred and fifty (350) prepared feed samples were randomly collected from 133 commercial poultry farms, 76 feed processors and eight (8) feed vendors in three major poultry producing regions of Ghana over two seasons. Fungi were isolated using the serial dilution method on potato dextrose agar and identified using standard methods of identification. Total aflatoxin and fumonisin levels were quantified using AgraStrip® Total Aflatoxin and Fumonisin Quantitative test Watex® from RomerLab, USA. Eight (8) different fungi were isolated from the feed samples with isolation frequency as follows: Aspergillus flavus (47%), A. niger (24%), A. fumigatus (17%), A. oryzae (3%), A. tamarii (2%), Penicillium sp. (3%), Colletotrichum sp. (4%) and Rhizopus sp. (0.1%). Feed samples collected during the rainy season recorded higher mean colony counts (3.39 ± 0.29) than that of the dry season (1.10 ± 0.18). Total aflatoxin and fumonisin levels ranged from 0 to 118 ppb with a mean of 57.25 ± 2.55 ppb, and 0.28-15 ppm with a mean of 1.54 ± 0.12 ppm, respectively. The study revealed co-occurrence of aflatoxin and fumonisin in all the feed samples. Significant correlations (r = 0.298, r = 0.694) (p < 0.05) were observed among the aflatoxin and fumonisin levels and the fungi isolated. Seventy-four percent (74%) of all the feed samples exceeded the 15 ppb Ghana Standards Authority threshold, the EU regulatory limit of 20 ppb and the FAO/WHO recommended maximum permissible limit of 30 ppb for poultry feeds. Although fumonisin levels were less than the EU guidance values of 20 ppm for poultry feeds, 20% of the samples were higher than the FAO/WHO maximum tolerable daily intake limit of 2 ppm. Proper handling of prepared feeds and ingredients could prevent or minimize toxigenic fungi contamination and lower the likelihood of mycotoxin development in poultry feeds.
Collapse
Affiliation(s)
- Francis Aboagye-Nuamah
- Department of Nursing and Applied Sciences, Methodist University College Ghana, Wenchi Campus, Ghana; Department of Crop and Soil Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana.
| | - Charles Kodia Kwoseh
- Department of Crop and Soil Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Dirk E Maier
- Department of Agricultural and Biosystems Engineering, Iowa State University of Science and Technology, Ames, IA, USA
| |
Collapse
|
84
|
Khalil OAA, Hammad AA, Sebaei AS. Aspergillus flavus and Aspergillus ochraceus inhibition and reduction of aflatoxins and ochratoxin A in maize by irradiation. Toxicon 2021; 198:111-120. [PMID: 33961848 DOI: 10.1016/j.toxicon.2021.04.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/22/2021] [Accepted: 04/29/2021] [Indexed: 11/19/2022]
Abstract
Grains are susceptible to contamination by molds; some cause spoilage and others produce certain mycotoxins that cause a serious health threat to humans and animals. Aspergillus flavus and Aspergillus ochraceus and their mycotoxins, aflatoxins and ochratoxin A, are natural contaminants of various agricultural commodities. Control of these molds and their mycotoxins in food commodities is of utmost importance; therefore, the target of this research was to explore the effects of gamma irradiation doses on the growth of A. flavus and A. ochraceus in artificially inoculated yellow maize as well as on the production of aflatoxin B1, ochratoxin A, and the formation of toxins in maize. The irradiated dose of 6.0 kGy was found to completely inhibit the growth of the two molds, while a dose of 4.5 kGy reduced the production of their mycotoxins. Maximum degradation of the formed aflatoxins and ochratoxin A in maize occurred at 20 kGy, with best reduction rates of 40.1%, 33.3%, and 61.1% observed for aflatoxin B1, aflatoxin B2, and ochratoxin A, respectively. We recommend grains irradiation by gamma radiation at 6.0 kGy to decontaminate mycotoxin-producing molds before they produce mycotoxins. The study represents a proactive, efficient, and potent method for avoiding potential contamination of fungus during grains storage and transfer for one to two months.
Collapse
Affiliation(s)
- Ola A A Khalil
- Radiation Microbiology Department, National Centre for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Ali A Hammad
- Radiation Microbiology Department, National Centre for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Ahmed Salem Sebaei
- Agricultural Research Center, Central Laboratory of Residue Analysis of Pesticides and Heavy Metals in Food, Ministry of Agriculture, Giza, 12311, Egypt.
| |
Collapse
|
85
|
Senghor AL, Ortega-Beltran A, Atehnkeng J, Jarju P, Cotty PJ, Bandyopadhyay R. Aflasafe SN01 is the First Biocontrol Product Approved for Aflatoxin Mitigation in Two Nations, Senegal and The Gambia. PLANT DISEASE 2021; 105:1461-1473. [PMID: 33332161 DOI: 10.1094/pdis-09-20-1899-re] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Aflatoxin contamination is caused by Aspergillus flavus and closely related fungi. In The Gambia, aflatoxin contamination of groundnut and maize, two staple and economically important crops, is common. Groundnut and maize consumers are chronically exposed to aflatoxins, sometimes at alarming levels, and this has severe consequences on their health and productivity. Aflatoxin contamination also impedes commercialization in local and international premium markets. In neighboring Senegal, an aflatoxin biocontrol product containing four atoxigenic isolates of A. flavus, Aflasafe SN01, has been registered and is approved for commercial use in groundnut and maize. We detected that the four genotypes composing Aflasafe SN01 are also native to The Gambia. The biocontrol product was tested during two years in 129 maize and groundnut fields and compared with corresponding untreated fields cropped by smallholder farmers in The Gambia. Treated crops contained up to 100% less aflatoxins than untreated crops. A large portion of the crops could have been commercialized in premium markets due to the low aflatoxin content (in many cases no detectable aflatoxins), both at harvest and after storage. Substantial aflatoxin reductions were also achieved when commercially produced groundnut received treatment. Here we report for the first time the use and effectiveness of an aflatoxin biocontrol product registered for use in two nations. With the current scale-out and -up efforts of Aflasafe SN01, a large number of farmers, consumers, and traders in The Gambia and Senegal will obtain health, income, and trade benefits.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
Collapse
Affiliation(s)
- A L Senghor
- La Direction de Protection Végétaux, BP20054 Dakar, Senegal
| | - A Ortega-Beltran
- International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria
| | - J Atehnkeng
- International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria
| | - P Jarju
- National Food Security, Processing and Marketing Corporation, Denton Bridge, Banjul, The Gambia
| | - P J Cotty
- United States Department of Agriculture, Agricultural Research Service, Tucson, AZ 85719, U.S.A
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China
| | - R Bandyopadhyay
- International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria
| |
Collapse
|
86
|
Joutsjoki VV, Korhonen HJ. Management strategies for aflatoxin risk mitigation in maize, dairy feeds and milk value chains—case study Kenya. FOOD QUALITY AND SAFETY 2021. [DOI: 10.1093/fqsafe/fyab005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Abstract
Widespread aflatoxin contamination of a great number of food and feed crops has important implications on global trade and health. Frequent occurrence of aflatoxin in maize and milk poses serious health risks to consumers because these commodities are staple foods in many African countries. This situation calls for development and implementation of rigorous aflatoxin control measures that encompass all value chains, focusing on farms where food and feed-based commodities prone to aflatoxin contamination are cultivated. Good agricultural practices (GAP) have proven to be an effective technology in mitigation and management of the aflatoxin risk under farm conditions. The prevailing global climate change is shown to increase aflatoxin risk in tropical and subtropical regions. Thus, there is an urgent need to devise and apply novel methods to complement GAP and mitigate aflatoxin contamination in the feed, maize and milk value chains. Also, creation of awareness on aflatoxin management through training of farmers and other stakeholders and enforcement of regular surveillance of aflatoxin in food and feed chains are recommended strategies. This literature review addresses the current situation of aflatoxin occurrence in maize, dairy feeds and milk produced and traded in Kenya and current technologies applied to aflatoxin management at the farm level. Finally, a case study in Kenya on successful application of GAP for mitigation of aflatoxin risk at small-scale farms will be reviewed.
Collapse
|
87
|
Wang C, Xu F, Baker R, Pinjari A, Bruckers L, Zhao Y, Stevenson A, Zhang G. Fungi carried over in jute bags – a smoking gun for aflatoxin contamination in the food supply chain. WORLD MYCOTOXIN J 2021. [DOI: 10.3920/wmj2020.2619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
India is the largest jute and fifth largest maize producing country in the world. In India maize is commonly stored and transported in jute bags which are used multiple times. Aflatoxin contamination of maize is a major issue in India. This study evaluated the potential impact of re-using jute bags on the risk of aflatoxin contamination of maize in the food supply chain. A total of 121 jute bags were collected in India; 95 had been used for maize and 26 bags were new. Significantly higher numbers of viable aflatoxigenic fungi were counted from re-used bags (27.8 times) (P<0.05), than the number from new bags. There was no significant difference between aflatoxin concentration found in the re-used jute bags and the new jute bags (P>0.05). Further analysis revealed that the aflatoxigenic fungal population (3.0 times) and aflatoxin concentration (1.2 times) were significantly higher in jute bags that had been used for maize with higher aflatoxin contamination (14-188.4 μg/kg total aflatoxins) than in those that had been used for maize with lower contamination (0.8-5.4 μg/kg total aflatoxins) (P<0.05). The significant positive correlation (P<0.05) between the aflatoxigenic fungal population of used jute bags and aflatoxin contamination of their packed maize indicated there is a risk of cross-contamination in the supply chain introduced by re-using jute bags. This is the first study to systematically reveal the potential impact of re-using jute bags on the fungal population and aflatoxin contamination risk. The application of readily applied treatments to re-used jute bags would help to minimise the aflatoxin contamination.
Collapse
Affiliation(s)
- C. Wang
- Mars Global Food Safety Center, Mars Inc., Yanqi Economic Development Zone, Huairou, Beijing 101407, China P.R
| | - F. Xu
- Mars Global Food Safety Center, Mars Inc., Yanqi Economic Development Zone, Huairou, Beijing 101407, China P.R
| | - R.C. Baker
- Mars Global Food Safety Center, Mars Inc., Yanqi Economic Development Zone, Huairou, Beijing 101407, China P.R
| | - A. Pinjari
- Mars International India Pvt, Ltd, Avusulonipally village, Wargal Mandal, Siddipet Distt. Telangana State, 502279, India
| | - L. Bruckers
- Interuniversity Institute for Biostatistics and Statistical Bioinformatics, University Hasselt, Agoralaan Building D, 3590 Diepenbeek, Belgium
| | - Y. Zhao
- Mars Global Food Safety Center, Mars Inc., Yanqi Economic Development Zone, Huairou, Beijing 101407, China P.R
| | - A. Stevenson
- Mars Global Food Safety Center, Mars Inc., Yanqi Economic Development Zone, Huairou, Beijing 101407, China P.R
| | - G. Zhang
- Mars Global Food Safety Center, Mars Inc., Yanqi Economic Development Zone, Huairou, Beijing 101407, China P.R
| |
Collapse
|
88
|
Mohammadi Shad Z, Oduola AA, Wilson S, Smith D, Shafiekhani S, Bruce R, Atungulu GG. New infrared heat treatment approaches to dry and combat fungal contamination of shelled corn. J Food Saf 2021. [DOI: 10.1111/jfs.12886] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zeinab Mohammadi Shad
- Department of Food Science, Division of Agriculture University of Arkansas Fayetteville Arkansas USA
| | - Abass A. Oduola
- Department of Food Science, Division of Agriculture University of Arkansas Fayetteville Arkansas USA
| | - Shantae Wilson
- Department of Food Science, Division of Agriculture University of Arkansas Fayetteville Arkansas USA
| | - Deandrae Smith
- Department of Food Science, Division of Agriculture University of Arkansas Fayetteville Arkansas USA
| | - Soraya Shafiekhani
- Department of Food Science, Division of Agriculture University of Arkansas Fayetteville Arkansas USA
| | - Rebecca Bruce
- Department of Food Science, Division of Agriculture University of Arkansas Fayetteville Arkansas USA
| | - Griffiths G. Atungulu
- Department of Food Science, Division of Agriculture University of Arkansas Fayetteville Arkansas USA
| |
Collapse
|
89
|
Physical and Chemical Methods for Reduction in Aflatoxin Content of Feed and Food. Toxins (Basel) 2021; 13:toxins13030204. [PMID: 33808964 PMCID: PMC7999035 DOI: 10.3390/toxins13030204] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 12/25/2022] Open
Abstract
Aflatoxins (AFs) are among the most harmful fungal secondary metabolites imposing serious health risks on both household animals and humans. The more frequent occurrence of aflatoxins in the feed and food chain is clearly foreseeable as a consequence of the extreme weather conditions recorded most recently worldwide. Furthermore, production parameters, such as unadjusted variety use and improper cultural practices, can also increase the incidence of contamination. In current aflatoxin control measures, emphasis is put on prevention including a plethora of pre-harvest methods, introduced to control Aspergillus infestations and to avoid the deleterious effects of aflatoxins on public health. Nevertheless, the continuous evaluation and improvement of post-harvest methods to combat these hazardous secondary metabolites are also required. Already in-use and emerging physical methods, such as pulsed electric fields and other nonthermal treatments as well as interventions with chemical agents such as acids, enzymes, gases, and absorbents in animal husbandry have been demonstrated as effective in reducing mycotoxins in feed and food. Although most of them have no disadvantageous effect either on nutritional properties or food safety, further research is needed to ensure the expected efficacy. Nevertheless, we can envisage the rapid spread of these easy-to-use, cost-effective, and safe post-harvest tools during storage and food processing.
Collapse
|
90
|
Pickova D, Ostry V, Malir F. A Recent Overview of Producers and Important Dietary Sources of Aflatoxins. Toxins (Basel) 2021; 13:186. [PMID: 33802572 PMCID: PMC7998637 DOI: 10.3390/toxins13030186] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/22/2021] [Accepted: 02/26/2021] [Indexed: 02/06/2023] Open
Abstract
Aflatoxins (AFs) are some of the most agriculturally important and harmful mycotoxins. At least 20 AFs have been identified to this date. Aflatoxin B1 (AFB1), the most potent fungal toxin, can cause toxicity in many species, including humans. AFs are produced by 22 species of Aspergillus section Flavi, 4 species of A. section Nidulantes, and 2 species of A. section Ochraceorosei. The most important and well-known AF-producing species of section Flavi are Aspergillus flavus, A. parasiticus, and A. nomius. AFs contaminate a wide range of crops (mainly groundnuts, pistachio nuts, dried figs, hazelnuts, spices, almonds, rice, melon seeds, Brazil nuts, and maize). Foods of animal origin (milk and animal tissues) are less likely contributors to human AF exposure. Despite the efforts to mitigate the AF concentrations in foods, and thus enhance food safety, AFs continue to be present, even at high levels. AFs thus remain a current and continuously pressing problem in the world.
Collapse
Affiliation(s)
- Darina Pickova
- Department of Biology, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, CZ-50003 Hradec Kralove, Czech Republic; (V.O.); (F.M.)
| | - Vladimir Ostry
- Department of Biology, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, CZ-50003 Hradec Kralove, Czech Republic; (V.O.); (F.M.)
- Center for Health, Nutrition and Food in Brno, National Institute of Public Health in Prague, Palackeho 3a, CZ-61242 Brno, Czech Republic
| | - Frantisek Malir
- Department of Biology, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, CZ-50003 Hradec Kralove, Czech Republic; (V.O.); (F.M.)
| |
Collapse
|
91
|
|
92
|
Logrieco A, Battilani P, Leggieri MC, Jiang Y, Haesaert G, Lanubile A, Mahuku G, Mesterházy A, Ortega-Beltran A, Pasti M, Smeu I, Torres A, Xu J, Munkvold G. Perspectives on Global Mycotoxin Issues and Management From the MycoKey Maize Working Group. PLANT DISEASE 2021; 105:525-537. [PMID: 32915118 DOI: 10.1094/pdis-06-20-1322-fe] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
During the last decade, there have been many advances in research and technology that have greatly contributed to expanded capabilities and knowledge in detection and measurement, characterization, biosynthesis, and management of mycotoxins in maize. MycoKey, an EU-funded Horizon 2020 project, was established to advance knowledge and technology transfer around the globe to address mycotoxin impacts in key food and feed chains. MycoKey included several working groups comprising international experts in different fields of mycotoxicology. The MycoKey Maize Working Group recently convened to gather information and strategize for the development and implementation of solutions to the maize mycotoxin problem in light of current and emerging technologies. This feature summarizes the Maize WG discussion and recommendations for addressing mycotoxin problems in maize. Discussions focused on aflatoxins, deoxynivalenol, fumonisins, and zearalenone, which are the most widespread and persistently important mycotoxins in maize. Although regional differences were recognized, there was consensus about many of the priorities for research and effective management strategies. For preharvest management, genetic resistance and selecting adapted maize genotypes, along with insect management, were among the most fruitful strategies identified across the mycotoxin groups. For postharvest management, the most important practices included timely harvest, rapid grain drying, grain cleaning, and carefully managed storage conditions. Remediation practices such as optical sorting, density separation, milling, and chemical detoxification were also suggested. Future research and communication priorities included advanced breeding technologies, development of risk assessment tools, and the development and dissemination of regionally relevant management guidelines.
Collapse
Affiliation(s)
- Antonio Logrieco
- National Council of Research, Institute of Sciences of Food Production, Bari, Italy
| | - Paola Battilani
- Department of Sustainable Crop Production, Universita Cattolica del Sacro Cuore, Campus di Piacenza, Piacenza, Italy
| | - Marco Camardo Leggieri
- Department of Sustainable Crop Production, Universita Cattolica del Sacro Cuore, Campus di Piacenza, Piacenza, Italy
| | - Yu Jiang
- Institute of Plant Protection, Liaoning Academy of Agricultural Sciences, Shenyang, China
| | - Geert Haesaert
- Faculty Bioscience Engineering, Department of Plants and Crops, Ghent University, Ghent, Belgium
| | - Alessandra Lanubile
- Department of Sustainable Crop Production, Universita Cattolica del Sacro Cuore, Campus di Piacenza, Piacenza, Italy
| | - George Mahuku
- International Institute of Tropical Agriculture, Dar es Salaam, Tanzania
| | | | | | - Marco Pasti
- Italian Corn Growers' Association, Eraclea, Italy
| | - Irina Smeu
- National Research & Development Institute for Food Bioresources-IBA Bucharest, Romania
| | - Adriana Torres
- Microbiology and Immunology Department, IMICO-Universidad Nacional de Río Cuarto, Rio Cuarto, Argentina
| | - Jing Xu
- Institute of Plant Protection, Liaoning Academy of Agricultural Sciences, Shenyang, China
| | - Gary Munkvold
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA
| |
Collapse
|
93
|
Recent Advances in Mycotoxin Analysis and Detection of Mycotoxigenic Fungi in Grapes and Derived Products. SUSTAINABILITY 2021. [DOI: 10.3390/su13052537] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Mycotoxins are secondary metabolites of filamentous fungi that can cause toxic effects in human and animal health. Most of the filamentous fungi that produce these mycotoxins belong to four genera, namely, Aspergillus, Penicillium, Fusarium, and Alternaria. Mycotoxigenic fungi, along with mycotoxins, create a constant and serious economic threat for agriculture in many terms, counting product losses due to crop contamination and food spoilage, as well malnutrition when considering nutritional quality degradation. Given the importance of robust and precise diagnostics of mycotoxins and the related producing fungi in the grape food chain, one of the most important agricultural sectors worldwide, the present review initially delivers a comprehensive presentation of mycotoxin reports on grape and derived products, including a wide range of commodities such as fresh grapes, raisins, wine, juices, and other processed products. Next, based on worldwide regulations’ requirements for mycotoxins, and referring to the relative literature, this work presents methodological approaches for mycotoxin determination, and stresses major methods for the detection of fungal species responsible for mycotoxin production. The principle of function and basic technical background on the available analytical and molecular biology techniques developed—including chromatography, mass spectrometry, immunochemical-based assays, biosensors, and molecular assays—is briefly given, and references for their application to grape and derived product testing are highlighted.
Collapse
|
94
|
Kaale L, Kimanya M, Macha I, Mlalila N. Aflatoxin contamination and recommendations to improve its control: a review. WORLD MYCOTOXIN J 2021. [DOI: 10.3920/wmj2020.2599] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Aflatoxin producing fungi cause contamination of food and feed resulting in health hazards and economic loss. It is imperative to develop workable control measures throughout the food chain to prevent and reduce aflatoxin contamination. This is a critical review of contemporary published papers in the field. It is a review of reports from the original aflatoxin researches conducted on foods, from 2015-2020. Most of the reports show high aflatoxin contaminations in food at levels that exceed a regulatory limit of 20 μg/kg and 4 μg/kg set for foods for human consumption in the USA and European Union, respectively. The highest aflatoxin concentration (3,760 μg/kg) was observed in maize. Some of the strategies being deployed in aflatoxin control include application of biocontrol agents, specifically of Aflasafe™, development of resistant crop varieties, and application of other good agricultural practices. We recommend the adoption of emerging technologies such as combined methods technology (CMT) or hurdle technology, one health concept (OHC), improved regulations, on-line monitoring of aflatoxins, and creative art intervention (CAI) to prevent or restrict the growth of target aflatoxin causative fungi.
Collapse
Affiliation(s)
- L.D. Kaale
- University of Dar es Salaam (UDSM), Department of Food Science and Technology, P.O. Box 35134, Dar es Salaam, Tanzania
| | - M.E. Kimanya
- School of Life Sciences and Bioengineering, Nelson Mandela African Institution of Science and Technology, P.O. Box 447, Arusha, Tanzania
| | - I.J. Macha
- University of Dar es Salaam (UDSM), Department of Mechanical and Industrial Engineering, P.O. Box 35131, Dar es Salaam, Tanzania
| | - N. Mlalila
- University of Dar es Salaam (UDSM), Department of Food Science and Technology, P.O. Box 35134, Dar es Salaam, Tanzania
- Ministry of Livestock and Fisheries, P.O. Box 2847, Dodoma, Tanzania
| |
Collapse
|
95
|
Sori O. Factors affecting groundnut market supply in Western Oromia, Ethiopia. Heliyon 2021; 7:e05892. [PMID: 33521346 PMCID: PMC7820476 DOI: 10.1016/j.heliyon.2020.e05892] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/10/2020] [Accepted: 12/29/2020] [Indexed: 11/29/2022] Open
Abstract
Groundnut production is important for consumption, income generation and improves food security of smallholder farmers in Western Oromia. Unlike its importance its production has less concern and it's marketing is challenged by the amount produced. The study aimed to analyze determinants of groundnut market supply in western Oromia region, Ethiopia. In order to do this, both primary and secondary data were used to collect qualitative and quantitative data. A multi-stage sampling technique was used to select samples of groundnut producers from the study area. Primary data were collected from randomly select 400 sampled groundnut producers through a semi-structured questionnaire. The multiple linear regression models was used to analyze determinants of groundnut market supply. The results of the model indicated that age, sex, educational level, access to credit services, number of livestock owned, land allocated for groundnut production and distance from the nearest market statistically and significantly affected market supply of the groundnut. Therefore, the study forward that government, non-governmental organization and financial institutions should give attention to grant credit, train farmers to properly utilize their land, develop and strengthening infrastructural service like road to improve groundnut production and sales thereby to increase benefits of farmers from the groundnut production in Western Oromia.
Collapse
Affiliation(s)
- Oliyad Sori
- Department of Agricultural Economics, Wollega University, Ethiopia
| |
Collapse
|
96
|
Peles F, Sipos P, Kovács S, Győri Z, Pócsi I, Pusztahelyi T. Biological Control and Mitigation of Aflatoxin Contamination in Commodities. Toxins (Basel) 2021; 13:toxins13020104. [PMID: 33535580 PMCID: PMC7912779 DOI: 10.3390/toxins13020104] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/23/2021] [Accepted: 01/29/2021] [Indexed: 11/16/2022] Open
Abstract
Aflatoxins (AFs) are toxic secondary metabolites produced mostly by Aspergillus species. AF contamination entering the feed and food chain has been a crucial long-term issue for veterinarians, medicals, agroindustry experts, and researchers working in this field. Although different (physical, chemical, and biological) technologies have been developed, tested, and employed to mitigate the detrimental effects of mycotoxins, including AFs, universal methods are still not available to reduce AF levels in feed and food in the last decades. Possible biological control by bacteria, yeasts, and fungi, their excretes, the role of the ruminal degradation, pre-harvest biocontrol by competitive exclusion or biofungicides, and post-harvest technologies and practices based on biological agents currently used to alleviate the toxic effects of AFs are collected in this review. Pre-harvest biocontrol technologies can give us the greatest opportunity to reduce AF production on the spot. Together with post-harvest applications of bacteria or fungal cultures, these technologies can help us strictly reduce AF contamination without synthetic chemicals.
Collapse
Affiliation(s)
- Ferenc Peles
- Institute of Food Science, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Böszörményi str. 138, H-4032 Debrecen, Hungary;
| | - Péter Sipos
- Institute of Nutrition, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Böszörményi str. 138, H-4032 Debrecen, Hungary; (P.S.); (Z.G.)
| | - Szilvia Kovács
- Central Laboratory of Agricultural and Food Products, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Böszörményi str. 138, H-4032 Debrecen, Hungary;
| | - Zoltán Győri
- Institute of Nutrition, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Böszörményi str. 138, H-4032 Debrecen, Hungary; (P.S.); (Z.G.)
| | - István Pócsi
- Department of Molecular Biotechnology and Microbiology, Institute of Biotechnology, Faculty of Science and Technology, University of Debrecen, Egyetem Square 1, H-4032 Debrecen, Hungary;
| | - Tünde Pusztahelyi
- Central Laboratory of Agricultural and Food Products, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Böszörményi str. 138, H-4032 Debrecen, Hungary;
- Correspondence: ; Tel.: +36-20-210-9491
| |
Collapse
|
97
|
Moore GG. Practical considerations will ensure the continued success of pre-harvest biocontrol using non-aflatoxigenic Aspergillus flavus strains. Crit Rev Food Sci Nutr 2021; 62:4208-4225. [PMID: 33506687 DOI: 10.1080/10408398.2021.1873731] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
There is an important reason for the accelerated use of non-aflatoxigenic Aspergillus flavus to mitigate pre-harvest aflatoxin contamination… it effectively addresses the imperative need for safer food and feed. Now that we have decades of proof of the effectiveness of A. flavus as biocontrol, it is time to improve several aspects of this strategy. If we are to continue relying heavily on this form of aflatoxin mitigation, there are considerations we must acknowledge, and actions we must take, to ensure that we are best wielding this strategy to our advantage. These include its: (1) potential to produce other mycotoxins, (2) persistence in the field in light of several ecological factors, (3) its reproductive and genetic stability, (4) the mechanism(s) employed that allow it to elicit control over aflatoxigenic strains and species of agricultural importance and (5) supplemental alternatives that increase its effectiveness. There is a need to be consistent, practical and thoughtful when it comes to implementing this method of mycotoxin mitigation since these fungi are living organisms that have been adapting, evolving and surviving on this planet for tens-of-millions of years. This document will serve as a critical review of the literature regarding pre-harvest A. flavus biocontrol and will discuss opportunities for improvements.
Collapse
Affiliation(s)
- Geromy G Moore
- United States Department of Agriculture, Agricultural Research Service, New Orleans, USA
| |
Collapse
|
98
|
Mir SA, Dar BN, Shah MA, Sofi SA, Hamdani AM, Oliveira CAF, Hashemi Moosavi M, Mousavi Khaneghah A, Sant'Ana AS. Application of new technologies in decontamination of mycotoxins in cereal grains: Challenges, and perspectives. Food Chem Toxicol 2021; 148:111976. [PMID: 33422602 DOI: 10.1016/j.fct.2021.111976] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 12/27/2020] [Accepted: 12/31/2020] [Indexed: 12/20/2022]
Abstract
Emerging decontamination technologies have been attracted considerable attention to address the consumers' demand for high quality and safe food products. As one of the important foods in the human diet, cereals are usually stored for long periods, resulting in an increased risk of contamination by different hazards. Mycotoxins comprise one of the significant contaminants of cereals that lead to enormous economic losses to the industry and threats to human health. While prevention is the primary approach towards reducing human exposure to mycotoxins, decontamination methods have also been developed as complementary measures. However, some conventional methods (chemical treatments) do not fulfill industries' expectations due to limitations like safety, efficiency, and the destruction of food quality attributes. In this regard, novel techniques have been proposed to food to comply with the industry's demand and overcome conventional methods' limitations. Novel techniques have different efficiencies for removing or reducing mycotoxins depending on processing conditions, type of mycotoxin, and the food matrix. Therefore, this review provides an overview of novel mycotoxin decontamination technologies such as cold plasma, irradiation, and pulse light, which can be efficient for reducing mycotoxins with minimum adverse effects on the quality and nutritional properties of produce.
Collapse
Affiliation(s)
- Shabir Ahmad Mir
- Department of Food Science & Technology, Government College for Women, M. A. Road, Srinagar, Jammu & Kashmir, India
| | - B N Dar
- Department of Food Technology, Islamic University of Science & Technology, Awantipora, Jammu & Kashmir, India
| | - Manzoor Ahmad Shah
- Department of Food Science & Technology, Government PG College for Women, Gandhi Nagar, Jammu, Jammu & Kashmir, India
| | - Sajad Ahmad Sofi
- Department of Food Technology, Islamic University of Science & Technology, Awantipora, Jammu & Kashmir, India
| | - Afshan Mumtaz Hamdani
- Department of Food Science & Technology, Government College for Women, M. A. Road, Srinagar, Jammu & Kashmir, India
| | - Carlos A F Oliveira
- Department of Food Engineering, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, SP, Brazil
| | - Motahareh Hashemi Moosavi
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amin Mousavi Khaneghah
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, São Paulo, Brazil.
| | - Anderson S Sant'Ana
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, São Paulo, Brazil.
| |
Collapse
|
99
|
McGlynn KA, Petrick JL, El-Serag HB. Epidemiology of Hepatocellular Carcinoma. Hepatology 2021; 73 Suppl 1:4-13. [PMID: 32319693 PMCID: PMC7577946 DOI: 10.1002/hep.31288] [Citation(s) in RCA: 1256] [Impact Index Per Article: 314.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/22/2020] [Accepted: 04/10/2020] [Indexed: 02/06/2023]
Abstract
Liver cancer is a major contributor to the worldwide cancer burden. Incidence rates of this disease have increased in many countries in recent decades. As the principal histologic type of liver cancer, hepatocellular carcinoma (HCC) accounts for the great majority of liver cancer diagnoses and deaths. Hepatitis B virus (HBV) and hepatitis C virus (HCV) remain, at present, the most important global risk factors for HCC, but their importance will likely decline in the coming years. The effect of HBV vaccination of newborns, already seen in young adults in some countries, will be more notable as vaccinated cohorts age. In addition, effective treatments for chronic infections with both HBV and HCV should contribute to declines in the rates of viral-associated HCC. Unfortunately, the prevalence of metabolic risk factors for HCC, including metabolic syndrome, obesity, type II diabetes and non-alcoholic fatty liver disease (NAFLD) are increasing and may jointly become the major cause of HCC globally. Excessive alcohol consumption also remains an intractable risk factor, as does aflatoxin contamination of food crops in some parts of the world. While significant efforts in early diagnosis and better treatment are certainly needed for HCC, primary prevention efforts aimed at decreasing the prevalence of obesity and diabetes and controlling mycotoxin growth, are just as urgently required.
Collapse
Affiliation(s)
- Katherine A McGlynn
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD
| | | | | |
Collapse
|
100
|
Palade LM, Dore MI, Marin DE, Rotar MC, Taranu I. Assessment of Food By-Products' Potential for Simultaneous Binding of Aflatoxin B1 and Zearalenone. Toxins (Basel) 2020; 13:2. [PMID: 33374968 PMCID: PMC7822050 DOI: 10.3390/toxins13010002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/26/2020] [Accepted: 12/18/2020] [Indexed: 11/24/2022] Open
Abstract
In this study, eight food by-products were investigated as biosorbent approaches in removing mycotoxin load towards potential dietary inclusion in animal feed. Among these food-derived by-products, grape seed (GSM) and seabuckthorn (SBM) meals showed the most promising binding capacity for Aflatoxin B1 (AFB1) and Zearalenone (ZEA), measured as percent of adsorbed mycotoxin. Furthermore, we explored the mycotoxin sequestering potential by screening the effect of time, concentration, temperature and pH. Comparative binding efficacy was addressed by carrying out adsorption experiments in vitro. The highest mycotoxin adsorption was attained using 30 mg of by-product for both GSM (85.9% AFB1 and 83.7% ZEA) and SBM (68% AFB1 and 84.5% ZEA). Optimal settings for the experimental factors were predicted employing the response surface design. GSM was estimated to adsorb AFB1 optimally at a concentration of 29 mg/mL, pH 5.95 and 33.6 °C, and ZEA using 28 mg/mL at pH 5.76 and 31.7 °C. Favorable adsorption of AFB1 was estimated at 37.5 mg of SBM (pH 8.1; 35.6 °C), and of ZEA at 30.2 mg of SBM (pH 5.6; 29.3 °C). Overall, GSM revealed a higher binding capacity compared with SBM. In addition, the two by-products showed different specificity for the binary-mycotoxin system, with SBM having higher affinity towards ZEA than AFB1 (Kf = 0.418 and 1/n = 0.213 vs. Kf = 0.217 and 1/n = 0.341) and GSM for AFB1 in comparison with ZEA (Kf = 0.367 and 1/n = 0.248 vs. Kf = 0.343 and 1/n = 0.264). In conclusion, this study suggests that GSM and SBM represent viable alternatives to commercial biosorbent products.
Collapse
Affiliation(s)
- Laurentiu Mihai Palade
- National Research Development Institute for Animal Biology and Nutrition, 077015 IBNA Balotesti, Romania; (M.I.D.); (D.E.M.); (M.C.R.); (I.T.)
| | | | | | | | | |
Collapse
|