51
|
Lin HR, Wu YH, Yen WC, Yang CM, Chiu DTY. Diminished COX-2/PGE2-Mediated Antiviral Response Due to Impaired NOX/MAPK Signaling in G6PD-Knockdown Lung Epithelial Cells. PLoS One 2016; 11:e0153462. [PMID: 27097228 PMCID: PMC4838297 DOI: 10.1371/journal.pone.0153462] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 03/30/2016] [Indexed: 11/18/2022] Open
Abstract
Glucose-6-phosphate dehydrogenase (G6PD) provides the reducing agent NADPH to meet the cellular needs for reductive biosynthesis and the maintenance of redox homeostasis. G6PD-deficient cells experience a high level of oxidative stress and an increased susceptibility to viral infections. Cyclooxygenase-2 (COX-2) is a key mediator in the regulation of viral replication and inflammatory response. In the current study, the role of G6PD on the inflammatory response was determined in both scramble control and G6PD-knockdown (G6PD-kd) A549 cells upon tumor necrosis factor-α (TNF-α) stimulation. A decreased expression pattern of induced COX-2 and reduced production of downstream PGE2 occurred upon TNF-α stimulation in G6PD-kd A549 cells compared with scramble control A549 cells. TNF-α-induced antiviral activity revealed that decreased COX-2 expression enhanced the susceptibility to coronavirus 229E infection in G6PD-kd A549 cells and was a result of the decreased phosphorylation levels of MAPK (p38 and ERK1/2) and NF-κB. The impaired inflammatory response in G6PD-kd A549 cells was found to be mediated through NADPH oxidase (NOX) signaling as elucidated by cell pretreatment with a NOX2-siRNA or NOX inhibitor, diphenyleneiodonium chloride (DPI). In addition, NOX activity with TNF-α treatment in G6PD-kd A549 cells was not up-regulated and was coupled with a decrease in NOX subunit expression at the transcriptional level, implying that TNF-α-mediated NOX signaling requires the participation of G6PD. Together, these data suggest that G6PD deficiency affects the cellular inflammatory response and the decreased TNF-α-mediated antiviral response in G6PD-kd A549 cells is a result of dysregulated NOX/MAPK/NF-κB/COX-2 signaling.
Collapse
Affiliation(s)
- Hsin-Ru Lin
- Molecular Medicine Research Center, Chang Gung University, Taoyuan City, Taiwan
| | - Yi-Hsuan Wu
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan City, Taiwan
| | - Wei-Chen Yen
- Graduate Institute of Biomedical Science, College of Medicine, Chang Gung University, Taoyuan City, Taiwan
| | - Chuen-Mao Yang
- Healthy Aging Research Center, Chang Gung University, Taoyuan City, Taiwan
- Department of physiology and pharmacology, College of Medicine, Chang Gung University, Taoyuan City, Taiwan
- * E-mail: (DTYC); (CMY)
| | - Daniel Tsun-Yee Chiu
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan City, Taiwan
- Healthy Aging Research Center, Chang Gung University, Taoyuan City, Taiwan
- Department of Pediatric Hematology, Chang Gung Memorial Hospital, Lin-Kou, Taiwan
- * E-mail: (DTYC); (CMY)
| |
Collapse
|
52
|
Malik AR. Association of increased lipid peroxide levels in the aorta in comparison to the pulmonary artery with the presence of coronary artery disease. Biomed Rep 2016; 4:479-484. [PMID: 27073637 DOI: 10.3892/br.2016.614] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 02/17/2016] [Indexed: 02/07/2023] Open
Abstract
Atherosclerosis predominantly affects systemic arteries as compared to pulmonary arteries; however, the reasons for this differential predilection are not clear. Oxidative damage caused by free radicals is a key initiating event in atherogenesis and the lungs are able to produce large quantities of free radicals even under physiological conditions. The present study investigated whether pulmonary venous blood reaching the aorta contained greater quantities of lipid peroxides, a marker of oxidative stress, compared to the pulmonary artery. Aortic and pulmonary artery blood samples were collected at the time of cardiac catheterization from 45 consecutive patients (38% female) without acute coronary event and free of other medical disorders, who were scheduled to undergo coronary angiography for anginal chest pain. Lipid peroxides were measured in terms of malondialdehyde (MDA). MDA levels were significantly higher in the aorta compared to the pulmonary artery (4.93±1.97 vs. 3.36±1.14 nmol/ml; P<0.001); the difference was significant in patients with angiographic coronary artery disease (CAD) (P<0.001) compared to the patients without CAD (P=0.071). Higher aortic MDA levels were associated with the presence of CAD even following adjustment for major risk factors. The results of the present study demonstrate that aortic blood contains significantly greater levels of lipid peroxides compared to pulmonary artery. This differential oxidative stress between systemic and pulmonary arteries could provide a mechanistic explanation for their difference in the propensity to develop atherosclerosis.
Collapse
Affiliation(s)
- Abdul Rauoof Malik
- Department of Cardiology, Sher-I-Kashmir Institute of Medical Sciences, Srinagar, Jammu and Kashmir 190011, India; Department of Medicine, College of Medicine, King Khalid University, Aseer Central Hospital, Abha 61421, Kingdom of Saudi Arabia
| |
Collapse
|
53
|
Nishida M, Kumagai Y, Ihara H, Fujii S, Motohashi H, Akaike T. Redox signaling regulated by electrophiles and reactive sulfur species. J Clin Biochem Nutr 2016; 58:91-8. [PMID: 27013774 PMCID: PMC4788399 DOI: 10.3164/jcbn.15-111] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Accepted: 09/10/2015] [Indexed: 01/23/2023] Open
Abstract
Redox signaling is a key modulator of oxidative stress induced by nonspecific insults of biological molecules generated by reactive oxygen species. Current redox biology is revisiting the traditional concept of oxidative stress, such that toxic effects of reactive oxygen species are protected by diverse antioxidant systems upregulated by oxidative stress responses that are physiologically mediated by redox-dependent cell signaling pathways. Redox signaling is thus precisely regulated by endogenous electrophilic substances that are generated from reactive oxygen species and nitric oxide and its derivative reactive species during stress responses. Among electrophiles formed endogenously, 8-nitroguanosine 3',5'-cyclic monophosphate (8-nitro-cGMP) has unique cell signaling functions, and pathways for its biosynthesis, signaling mechanism, and metabolism in cells have been clarified. Reactive sulfur species such as cysteine hydropersulfides that are abundant in cells are likely involved in 8-nitro-cGMP metabolism. These new aspects of redox biology may stimulate innovative and multidisciplinary research in cell and stem cell biology; infectious diseases, cancer, metabolic syndrome, ageing, and neurodegenerative diseases; and other oxidative stress-related disorders. This review focuses on the most recent progress in the biosynthesis, cell signaling, and metabolism of 8-nitro-cGMP, which is a likely target for drug development and lead to discovery of novel therapeutics for many diseases.
Collapse
Affiliation(s)
- Motohiro Nishida
- Division of Cardiocirculatory Signaling, Okazaki Institute for Integrative Bioscience (National Institute for Physiological Sciences), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki 444-8787, Japan; Department of Translational Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi 332-0012, Japan
| | - Yoshito Kumagai
- Environmental Biology Section, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Japan
| | - Hideshi Ihara
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai 599-8531, Japan
| | - Shigemoto Fujii
- Department of Environmental Health Sciences and Molecular Toxicology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Hozumi Motohashi
- Department of Gene Expression Regulation, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Takaaki Akaike
- Department of Environmental Health Sciences and Molecular Toxicology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| |
Collapse
|
54
|
Abstract
Reactive oxygen species (ROS) cause damage to macromolecules such as proteins, lipids and DNA and alters their structure and function. When generated outside the cell, ROS can induce damage to anti-proteinases. Anti-proteinases are proteins that are involved in the control and regulation of proteolytic enzymes. The damage caused to anti-proteinase barrier disturbs the proteinase-anti-proteinases balance and uncontrolled proteolysis at the site of injury promotes tissue damage. Studies have shown that ROS damages anti-proteinase shield of the body by inactivating key members such as alpha-2-macroglobulin, alpha-1-antitrypsin. Hypochlorous acid inactivates α-1-antitrypsin by oxidizing a critical reactive methionine residue. Superoxide and hypochlorous acid are physiological inactivators of alpha-2-macroglobulin. The damage to anti-proteinase barrier induced by ROS is a hallmark of diseases such as atherosclerosis, emphysema and rheumatoid arthritis. Thus, understanding the behaviour of ROS-induced damage to anti-proteinases may helps us in development of strategies that could control these inflammatory reactions and diseases.
Collapse
Affiliation(s)
- Tooba Siddiqui
- a Department of Biochemistry , Faculty of Life Science, Aligarh Muslim University , Aligarh , India and
| | - Mohammad Khalid Zia
- a Department of Biochemistry , Faculty of Life Science, Aligarh Muslim University , Aligarh , India and
| | - Syed Saqib Ali
- a Department of Biochemistry , Faculty of Life Science, Aligarh Muslim University , Aligarh , India and
| | - Ahmed Abdur Rehman
- a Department of Biochemistry , Faculty of Life Science, Aligarh Muslim University , Aligarh , India and
| | - Haseeb Ahsan
- b Department of Biochemistry , Faculty of Dentistry, Jamia Millia Islamia , New Delhi , India
| | - Fahim Halim Khan
- a Department of Biochemistry , Faculty of Life Science, Aligarh Muslim University , Aligarh , India and
| |
Collapse
|
55
|
Kim HJ, Kim CH, Kim MJ, Ryu JH, Seong SY, Kim S, Lim SJ, Holtzman MJ, Yoon JH. The Induction of Pattern-Recognition Receptor Expression against Influenza A Virus through Duox2-Derived Reactive Oxygen Species in Nasal Mucosa. Am J Respir Cell Mol Biol 2015; 53:525-35. [PMID: 25751630 DOI: 10.1165/rcmb.2014-0334oc] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
We studied the relative roles of Duox2-derived reactive oxygen species (ROS) in host defense against influenza A virus (IAV) infection in normal human nasal epithelial cells and mouse nasal mucosa. We found that Duox2 primarily generated ROS rapidly after IAV infection in normal human nasal epithelial cells and that knockdown of Duox2 aggravated IAV infection. In addition, Duox2-derived ROS enhancement significantly suppressed IAV infection in nasal epithelium. In particular, Duox2-derived ROS were required for the induction of retinoic acid-inducible gene (RIG)-I and melanoma differentiation-associated protein 5 (MDA5) transcription. After intranasal IAV inoculation into mice, viral infection was significantly aggravated from 3 days postinoculation (dpi) in the nasal mucosa, and the IAV viral titer was highest at 7 dpi. Both RIG-I and MDA5 messenger RNA levels increased dominantly in mouse nasal mucosa from 3 dpi; consistent with this, RIG-I and MDA5 proteins were also induced after IAV infection. RIG-I and MDA5 messenger RNA levels were induced to a lower extent in the nasal mucosa of the mice that were inoculated with Duox2 short hairpin RNA, and the IAV viral titer was significantly higher in nasal lavage. Taken together, Duox2-derived ROS are necessary for the innate immune response and trigger the induction of RIG-I and MDA5 to resist IAV infection in human nasal epithelium and mouse nasal mucosa.
Collapse
Affiliation(s)
- Hyun Jik Kim
- 1 Department of Otorhinolaryngology, Seoul National University College of Medicine, Seoul, Korea.,2 The Airway Mucus Institute
| | - Chang-Hoon Kim
- 3 Department of Otorhinolaryngology.,2 The Airway Mucus Institute
| | - Min-Ji Kim
- 4 Research Center for Natural Human Defense System, Yonsei University College of Medicine, Seoul, Korea
| | - Ji-Hwan Ryu
- 4 Research Center for Natural Human Defense System, Yonsei University College of Medicine, Seoul, Korea
| | | | - Sujin Kim
- 4 Research Center for Natural Human Defense System, Yonsei University College of Medicine, Seoul, Korea
| | - Su Jin Lim
- 1 Department of Otorhinolaryngology, Seoul National University College of Medicine, Seoul, Korea
| | - Michael J Holtzman
- 5 Department of Medicine, Drug Discovery Program, Pulmonary and Critical Care Medicine, and.,6 Department of Cell Biology, Washington University School of Medicine, St. Louis, Missouri; and
| | - Joo-Heon Yoon
- 3 Department of Otorhinolaryngology.,2 The Airway Mucus Institute.,7 BK 21 Project for Medical Science, and.,4 Research Center for Natural Human Defense System, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
56
|
Heppner DE, van der Vliet A. Redox-dependent regulation of epidermal growth factor receptor signaling. Redox Biol 2015; 8:24-7. [PMID: 26722841 PMCID: PMC4710793 DOI: 10.1016/j.redox.2015.12.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 12/06/2015] [Indexed: 02/07/2023] Open
Abstract
Tyrosine phosphorylation-dependent cell signaling represents a unique feature of multicellular organisms, and is important in regulation of cell differentiation and specialized cell functions. Multicellular organisms also contain a diverse family of NADPH oxidases (NOXs) that have been closely linked with tyrosine kinase-based cell signaling and regulate tyrosine phosphorylation via reversible oxidation of cysteine residues that are highly conserved within many proteins involved in this signaling pathway. An example of redox-regulated tyrosine kinase signaling involves the epidermal growth factor receptor (EGFR), a widely studied receptor system with diverse functions in normal cell biology as well as pathologies associated with oxidative stress such as cancer. The purpose of this Graphical Redox Review is to highlight recently emerged concepts with respect to NOX-dependent regulation of this important signaling pathway.
Collapse
Affiliation(s)
- David E Heppner
- Department of Pathology and Laboratory Medicine, Vermont Lung Center, University of Vermont, Burlington, VT 05405, United States
| | - Albert van der Vliet
- Department of Pathology and Laboratory Medicine, Vermont Lung Center, University of Vermont, Burlington, VT 05405, United States.
| |
Collapse
|
57
|
Serrano CJ, Cuevas-Córdoba B, Macías-Segura N, González-Curiel RA, Martínez-Balderas VY, Enciso-Moreno L, Small P, Hernández-Pando R, Enciso-Moreno JA. Transcriptional profiles discriminate patients with pulmonary tuberculosis from non-tuberculous individuals depending on the presence of non-insulin diabetes mellitus. Clin Immunol 2015; 162:107-17. [PMID: 26628192 DOI: 10.1016/j.clim.2015.11.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 11/19/2015] [Accepted: 11/22/2015] [Indexed: 01/11/2023]
Abstract
Our objective was to identify transcriptional biomarkers in peripheral blood mononuclear cells (PBMC) that discriminate individuals with latent tuberculosis infection (LTBI) from those with pulmonary tuberculosis (PTB) in subjects with non-insulin-dependent diabetes mellitus (NIDDM) and in individuals without NIDDM. Using gene expression microarrays we identified differentially expressed genes from lungs of mice infected with Mycobacterium tuberculosis (Mtb) or a mutant (ΔsigH) representing a non-inflammatory model. Genes expressed in blood, with inflammatory related functions were evaluated in humans by RT-qPCR. NCF1 and ORM transcripts have the better discriminatory capacity to identify PTB subjects from LTBI and non-infected controls (NICs) independently of the presence of NIDDM. The sequential evaluation of the mRNA levels of NCF1 and ORM as multiple diagnostic tests showed 95% Sensitivity (Se) and 80% Specificity (Sp). In addition, FPR2 promises to be a good biomarker for the PTB detection in subjects with NIDDM (Se=100%; Sp=90%).
Collapse
Affiliation(s)
- Carmen J Serrano
- BioMedical Research Unit of Zacatecas, Mexican Institute of Social Security (IMSS), Zacatecas, Mexico
| | - Betzaida Cuevas-Córdoba
- BioMedical Research Unit of Zacatecas, Mexican Institute of Social Security (IMSS), Zacatecas, Mexico
| | - Noé Macías-Segura
- BioMedical Research Unit of Zacatecas, Mexican Institute of Social Security (IMSS), Zacatecas, Mexico; Department of Immunology, Faculty of Medicine, Autonomous University of San Luis Potosí (UASLP), SLP, Mexico
| | | | | | - Leonor Enciso-Moreno
- BioMedical Research Unit of Zacatecas, Mexican Institute of Social Security (IMSS), Zacatecas, Mexico
| | - Peter Small
- TB Program, Bill and Melinda Gates Foundation, Seattle, USA
| | - Rogelio Hernández-Pando
- Experimental Pathology Section, Department of Pathology, National Institute of Medical Sciences and Nutrition Salvador Zubirán, Mexico City, Mexico
| | | |
Collapse
|
58
|
Hristova M, Habibovic A, Veith C, Janssen-Heininger YMW, Dixon AE, Geiszt M, van der Vliet A. Airway epithelial dual oxidase 1 mediates allergen-induced IL-33 secretion and activation of type 2 immune responses. J Allergy Clin Immunol 2015; 137:1545-1556.e11. [PMID: 26597162 DOI: 10.1016/j.jaci.2015.10.003] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 09/23/2015] [Accepted: 10/02/2015] [Indexed: 11/16/2022]
Abstract
BACKGROUND The IL-1 family member IL-33 plays a critical role in type 2 innate immune responses to allergens and is an important mediator of allergic asthma. The mechanisms by which allergens provoke epithelial IL-33 secretion are still poorly understood. OBJECTIVE Based on previous findings indicating involvement of the NADPH oxidase dual oxidase 1 (DUOX1) in epithelial wound responses, we explored the potential involvement of DUOX1 in allergen-induced IL-33 secretion and potential alterations in airways of asthmatic patients. METHODS Cultured human or murine airway epithelial cells or mice were subjected to acute challenge with Alternaria alternata or house dust mite, and secretion of IL-33 and activation of subsequent type 2 responses were determined. The role of DUOX1 was explored by using small interfering RNA approaches and DUOX1-deficient mice. Cultured nasal epithelial cells from healthy subjects or asthmatic patients were evaluated for DUOX1 expression and allergen-induced responses. RESULTS In vitro or in vivo allergen challenge resulted in rapid airway epithelial IL-33 secretion, which depended critically on DUOX1-mediated activation of epithelial epidermal growth factor receptor and the protease calpain-2 through a redox-dependent mechanism involving cysteine oxidation within epidermal growth factor receptor and the tyrosine kinase Src. Primary nasal epithelial cells from patients with allergic asthma were found to express increased DUOX1 and IL-33 levels and demonstrated enhanced IL-33 secretion in response to allergen challenge compared with values seen in nasal epithelial cells from nonasthmatic subjects. CONCLUSION Our findings implicate epithelial DUOX1 as a pivotal mediator of IL-33-dependent activation of innate airway type 2 immune responses to common airborne allergens and indicate that enhanced DUOX1 expression and IL-33 secretion might present important contributing features of allergic asthma.
Collapse
Affiliation(s)
- Milena Hristova
- Department of Pathology and Laboratory Medicine, Vermont Lung Center, University of Vermont, Burlington, Vt
| | - Aida Habibovic
- Department of Pathology and Laboratory Medicine, Vermont Lung Center, University of Vermont, Burlington, Vt
| | - Carmen Veith
- Department of Pathology and Laboratory Medicine, Vermont Lung Center, University of Vermont, Burlington, Vt
| | | | - Anne E Dixon
- Department of Medicine, Vermont Lung Center, University of Vermont, Burlington, Vt
| | - Miklos Geiszt
- Department of Physiology and Lendület Peroxidase Enzyme Research Group, Semmelweis University, Budapest, Hungary
| | - Albert van der Vliet
- Department of Pathology and Laboratory Medicine, Vermont Lung Center, University of Vermont, Burlington, Vt.
| |
Collapse
|
59
|
Shuvaev VV, Brenner JS, Muzykantov VR. Targeted endothelial nanomedicine for common acute pathological conditions. J Control Release 2015; 219:576-595. [PMID: 26435455 DOI: 10.1016/j.jconrel.2015.09.055] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 09/24/2015] [Accepted: 09/25/2015] [Indexed: 12/16/2022]
Abstract
Endothelium, a thin monolayer of specialized cells lining the lumen of blood vessels is the key regulatory interface between blood and tissues. Endothelial abnormalities are implicated in many diseases, including common acute conditions with high morbidity and mortality lacking therapy, in part because drugs and drug carriers have no natural endothelial affinity. Precise endothelial drug delivery may improve management of these conditions. Using ligands of molecules exposed to the bloodstream on the endothelial surface enables design of diverse targeted endothelial nanomedicine agents. Target molecules and binding epitopes must be accessible to drug carriers, carriers must be free of harmful effects, and targeting should provide desirable sub-cellular addressing of the drug cargo. The roster of current candidate target molecules for endothelial nanomedicine includes peptidases and other enzymes, cell adhesion molecules and integrins, localized in different domains of the endothelial plasmalemma and differentially distributed throughout the vasculature. Endowing carriers with an affinity to specific endothelial epitopes enables an unprecedented level of precision of control of drug delivery: binding to selected endothelial cell phenotypes, cellular addressing and duration of therapeutic effects. Features of nanocarrier design such as choice of epitope and ligand control delivery and effect of targeted endothelial nanomedicine agents. Pathological factors modulate endothelial targeting and uptake of nanocarriers. Selection of optimal binding sites and design features of nanocarriers are key controllable factors that can be iteratively engineered based on their performance from in vitro to pre-clinical in vivo experimental models. Targeted endothelial nanomedicine agents provide antioxidant, anti-inflammatory and other therapeutic effects unattainable by non-targeted counterparts in animal models of common acute severe human disease conditions. The results of animal studies provide the basis for the challenging translation endothelial nanomedicine into the clinical domain.
Collapse
Affiliation(s)
- Vladimir V Shuvaev
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States; Center for Translational Targeted Therapeutics and Nanomedicine of the Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Jacob S Brenner
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States; Center for Translational Targeted Therapeutics and Nanomedicine of the Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Vladimir R Muzykantov
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States; Center for Translational Targeted Therapeutics and Nanomedicine of the Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States.
| |
Collapse
|
60
|
Padilha GA, Henriques I, Lopes-Pacheco M, Abreu SC, Oliveira MV, Morales MM, Lima LM, Barreiro EJ, Silva PL, Xisto DG, Rocco PRM. Therapeutic effects of LASSBio-596 in an elastase-induced mouse model of emphysema. Front Physiol 2015; 6:267. [PMID: 26483698 PMCID: PMC4588117 DOI: 10.3389/fphys.2015.00267] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 09/11/2015] [Indexed: 11/13/2022] Open
Abstract
Emphysema is an intractable pulmonary disease characterized by an inflammatory process of the airways and lung parenchyma and ongoing remodeling process in an attempt to restore lung structure. There is no effective drug therapy that regenerates lung tissue or prevents the progression of emphysema; current treatment is aimed at symptomatic relief. We hypothesized that LASSBio-596, a molecule with potent anti-inflammatory and immunomodulatory effects, might reduce pulmonary inflammation and remodeling and thus improve lung function in experimental emphysema. Emphysema was induced in BALB/c mice by intratracheal administration of porcine pancreatic elastase (0.1 IU) once weekly during 4 weeks. A control group received saline using the same protocol. After the last instillation of saline or elastase, dimethyl sulfoxide, or LASSBio-596 were administered intraperitoneally, once daily for 8 days. After 24 h, in elastase-induced emphysema animals, LASSBio-596 yielded: (1) decreased mean linear intercept, hyperinflation and collagen fiber content, (2) increased elastic fiber content, (3) reduced number of M1 macrophages, (4) decreased tumor necrosis factor-α, interleukin-1β, interleukin-6, and transforming growth factor-β protein levels in lung tissue, and increased vascular endothelial growth factor. These changes resulted in increased static lung elastance. In conclusion, LASSBio-596 therapy reduced lung inflammation, airspace enlargement, and small airway wall remodeling, thus improving lung function, in this animal model of elastase-induced emphysema.
Collapse
Affiliation(s)
- Gisele A. Padilha
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de JaneiroRio de Janeiro, Brazil
| | - Isabela Henriques
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de JaneiroRio de Janeiro, Brazil
| | - Miquéias Lopes-Pacheco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de JaneiroRio de Janeiro, Brazil
- Laboratory of Cellular and Molecular Physiology, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de JaneiroRio de Janeiro, Brazil
| | - Soraia C. Abreu
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de JaneiroRio de Janeiro, Brazil
| | - Milena V. Oliveira
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de JaneiroRio de Janeiro, Brazil
| | - Marcelo M. Morales
- Laboratory of Cellular and Molecular Physiology, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de JaneiroRio de Janeiro, Brazil
| | - Lidia M. Lima
- Laboratory of Evaluation and Synthesis of Bioactive Substances, Federal University of Rio de JaneiroRio de Janeiro, Brazil
| | - Eliezer J. Barreiro
- Laboratory of Evaluation and Synthesis of Bioactive Substances, Federal University of Rio de JaneiroRio de Janeiro, Brazil
| | - Pedro L. Silva
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de JaneiroRio de Janeiro, Brazil
| | - Debora G. Xisto
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de JaneiroRio de Janeiro, Brazil
| | - Patricia R. M. Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de JaneiroRio de Janeiro, Brazil
| |
Collapse
|
61
|
Altenhöfer S, Radermacher KA, Kleikers PWM, Wingler K, Schmidt HHHW. Evolution of NADPH Oxidase Inhibitors: Selectivity and Mechanisms for Target Engagement. Antioxid Redox Signal 2015; 23:406-27. [PMID: 24383718 PMCID: PMC4543484 DOI: 10.1089/ars.2013.5814] [Citation(s) in RCA: 405] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
SIGNIFICANCE Oxidative stress, an excess of reactive oxygen species (ROS) production versus consumption, may be involved in the pathogenesis of different diseases. The only known enzymes solely dedicated to ROS generation are nicotinamide adenine dinucleotide phosphate (NADPH) oxidases with their catalytic subunits (NOX). After the clinical failure of most antioxidant trials, NOX inhibitors are the most promising therapeutic option for diseases associated with oxidative stress. RECENT ADVANCES Historical NADPH oxidase inhibitors, apocynin and diphenylene iodonium, are un-specific and not isoform selective. Novel NOX inhibitors stemming from rational drug discovery approaches, for example, GKT137831, ML171, and VAS2870, show improved specificity for NADPH oxidases and moderate NOX isoform selectivity. Along with NOX2 docking sequence (NOX2ds)-tat, a peptide-based inhibitor, the use of these novel small molecules in animal models has provided preliminary in vivo evidence for a pathophysiological role of specific NOX isoforms. CRITICAL ISSUES Here, we discuss whether novel NOX inhibitors enable reliable validation of NOX isoforms' pathological roles and whether this knowledge supports translation into pharmacological applications. Modern NOX inhibitors have increased the evidence for pathophysiological roles of NADPH oxidases. However, in comparison to knockout mouse models, NOX inhibitors have limited isoform selectivity. Thus, their use does not enable clear statements on the involvement of individual NOX isoforms in a given disease. FUTURE DIRECTIONS The development of isoform-selective NOX inhibitors and biologicals will enable reliable validation of specific NOX isoforms in disease models other than the mouse. Finally, GKT137831, the first NOX inhibitor in clinical development, is poised to provide proof of principle for the clinical potential of NOX inhibition.
Collapse
Affiliation(s)
- Sebastian Altenhöfer
- Department of Pharmacology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University , Maastricht, the Netherlands
| | - Kim A Radermacher
- Department of Pharmacology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University , Maastricht, the Netherlands
| | - Pamela W M Kleikers
- Department of Pharmacology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University , Maastricht, the Netherlands
| | - Kirstin Wingler
- Department of Pharmacology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University , Maastricht, the Netherlands
| | - Harald H H W Schmidt
- Department of Pharmacology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University , Maastricht, the Netherlands
| |
Collapse
|
62
|
Wieczfinska J, Sokolowska M, Pawliczak R. NOX Modifiers-Just a Step Away from Application in the Therapy of Airway Inflammation? Antioxid Redox Signal 2015; 23:428-45. [PMID: 24383678 PMCID: PMC4543397 DOI: 10.1089/ars.2013.5783] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
SIGNIFICANCE NADPH oxidase (NOX) enzymes, which are widely expressed in different airway cell types, not only contribute to the maintenance of physiological processes in the airways but also participate in the pathogenesis of many acute and chronic diseases. Therefore, the understanding of NOX isoform regulation, expression, and the manner of their potent inhibition might lead to effective therapeutic approaches. RECENT ADVANCES The study of the role of NADPH oxidases family in airway physiology and pathophysiology should be considered as a work in progress. While key questions still remain unresolved, there is significant progress in terms of our understanding of NOX importance in airway diseases as well as a more efficient way of using NOX modifiers in human settings. CRITICAL ISSUES Agents that modify the activity of NADPH enzyme components would be considered useful tools in the treatment of various airway diseases. Nevertheless, profound knowledge of airway pathology, as well as the mechanisms of NOX regulation is needed to develop potent but safe NOX modifiers. FUTURE DIRECTIONS Many compounds seem to be promising candidates for development into useful therapeutic agents, but their clinical potential is yet to be demonstrated. Further analysis of basic mechanisms in human settings, high-throughput compound scanning, clinical trials with new and existing molecules, and the development of new drug delivery approaches are the main directions of future studies on NOX modifiers. In this article, we discuss the current knowledge with regard to NOX isoform expression and regulation in airway inflammatory diseases as well as the aptitudes and therapeutic potential of NOX modifiers.
Collapse
Affiliation(s)
- Joanna Wieczfinska
- 1 Department of Immunopathology, Faculty of Biomedical Sciences and Postgraduate Training, Medical University of Lodz , Lodz, Poland
| | - Milena Sokolowska
- 2 Critical Care Medicine Department, Clinical Center, National Institutes of Health , Bethesda, Maryland
| | - Rafal Pawliczak
- 1 Department of Immunopathology, Faculty of Biomedical Sciences and Postgraduate Training, Medical University of Lodz , Lodz, Poland
| |
Collapse
|
63
|
Santillo M, Colantuoni A, Mondola P, Guida B, Damiano S. NOX signaling in molecular cardiovascular mechanisms involved in the blood pressure homeostasis. Front Physiol 2015. [PMID: 26217233 PMCID: PMC4493385 DOI: 10.3389/fphys.2015.00194] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Blood pressure homeostasis is maintained by several mechanisms regulating cardiac output, vascular resistances, and blood volume. At cellular levels, reactive oxygen species (ROS) signaling is involved in multiple molecular mechanisms controlling blood pressure. Among ROS producing systems, NADPH oxidases (NOXs), expressed in different cells of the cardiovascular system, are the most important enzymes clearly linked to the development of hypertension. NOXs exert a central role in cardiac mechanosensing, endothelium-dependent relaxation, and Angiotensin-II (Ang-II) redox signaling regulating vascular tone. The central role of NOXs in redox-dependent cardiovascular cell functions renders these enzymes a promising pharmacological target for the treatment of cardiovascular diseases, including hypertension. The aim of the present review is to focus on the physiological role of the cardiovascular NOX-generating ROS in the molecular and cellular mechanisms affecting blood pressure.
Collapse
Affiliation(s)
- Mariarosaria Santillo
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli "Federico II" Naples, Italy
| | - Antonio Colantuoni
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli "Federico II" Naples, Italy
| | - Paolo Mondola
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli "Federico II" Naples, Italy
| | - Bruna Guida
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli "Federico II" Naples, Italy
| | - Simona Damiano
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli "Federico II" Naples, Italy
| |
Collapse
|
64
|
LU HUIXIA, WU QI, YANG HUIJUN. DUOX2 promotes the elimination of the Klebsiella pneumoniae strain K5 from T24 cells through the reactive oxygen species pathway. Int J Mol Med 2015; 36:551-8. [DOI: 10.3892/ijmm.2015.2234] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 05/25/2015] [Indexed: 11/06/2022] Open
|
65
|
Zhang YS, Liu B, Luo XJ, Li TB, Zhang JJ, Peng JJ, Zhang XJ, Ma QL, Hu CP, Li YJ, Peng J, Li Q. Nuclear cardiac myosin light chain 2 modulates NADPH oxidase 2 expression in myocardium: a novel function beyond muscle contraction. Basic Res Cardiol 2015; 110:38. [PMID: 25982880 DOI: 10.1007/s00395-015-0494-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 05/02/2015] [Accepted: 05/08/2015] [Indexed: 12/21/2022]
Abstract
Recent studies demonstrated that NADPH oxidase 2 (NOX2) expression in myocardium after ischemia-reperfusion (IR) is significantly upregulated. However, the underlying mechanisms remain unknown. This study aims to determine if nuclear cardiac myosin light chain 2 (MYL2), a well-known regulatory subunit of myosin, functions as a transcription factor to promote NOX2 expression following myocardial IR in a phosphorylation-dependent manner. We examined the phosphorylation status of nuclear MYL2 (p-MYL2) in a rat model of myocardial IR (left main coronary artery subjected to 1 h ligation and 3 h reperfusion) injury, which showed IR injury and upregulated NOX2 expression as expected, accompanied by elevated H₂O₂ and nuclear p-MYL2 levels; these effects were attenuated by inhibition of myosin light chain kinase (MLCK). Next, we explored the functional relationship of nuclear p-MYL2 with NOX2 expression in H9c2 cell model of hypoxia-reoxygenation (HR) injury. In agreement with our in vivo findings, HR treatment increased apoptosis, NOX2 expression, nuclear p-MYL2 and H₂O₂ levels, and the increases were ameliorated by inhibition of MLCK or knockdown of MYL2. Finally, molecular biology techniques including co-immunoprecipitation (Co-IP), chromatin immunoprecipitation (ChIP), DNA pull-down and luciferase reporter gene assay were utilized to decipher the molecular mechanisms. We found that nuclear p-MYL2 binds to the consensus sequence AGCTCC in NOX2 gene promoter, interacts with RNA polymerase II and transcription factor IIB to form a transcription preinitiation complex, and thus activates NOX2 gene transcription. Our results demonstrate that nuclear MYL2 plays an important role in IR injury by transcriptionally upregulating NOX2 expression to enhance oxidative stress in a phosphorylation-dependent manner.
Collapse
Affiliation(s)
- Yi-Shuai Zhang
- Department of Pharmacology, School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Pecorelli A, Natrella F, Belmonte G, Miracco C, Cervellati F, Ciccoli L, Mariottini A, Rocchi R, Vatti G, Bua A, Canitano R, Hayek J, Forman H, Valacchi G. NADPH oxidase activation and 4-hydroxy-2-nonenal/aquaporin-4 adducts as possible new players in oxidative neuronal damage presents in drug-resistant epilepsy. Biochim Biophys Acta Mol Basis Dis 2015; 1852:507-19. [DOI: 10.1016/j.bbadis.2014.11.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 10/27/2014] [Accepted: 11/17/2014] [Indexed: 12/20/2022]
|
67
|
Cho DY, Le W, Bravo DT, Hwang PH, Illek B, Fischer H, Nayak JV. Air pollutants cause release of hydrogen peroxide and interleukin-8 in a human primary nasal tissue culture model. Int Forum Allergy Rhinol 2014; 4:966-71. [PMID: 25400124 DOI: 10.1002/alr.21413] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 07/22/2014] [Accepted: 08/12/2014] [Indexed: 12/12/2022]
Abstract
BACKGROUND A component of primary innate defense of the nasal mucosa against inhaled pathogens includes continuous, low-level release of hydrogen peroxide (H2 O2 ) into luminal secretions. Epidemiologically, an association exists between poor air quality and increased prevalence of sinonasal disease. To understand the effects of particulate matter (PM) in nasal mucosa, we studied the release of H2 O2 and interleukin 8 (IL-8) after PM exposure. METHODS Human nasal specimens were collected from surgery and cultured in serum-free growth medium. Cell integrity and recovery during culture was monitored by lactate dehydrogenase (LDH) release into the medium. Cultures were exposed to PM for 24 hours in the presence/absence of diphenyleneiodonium sulfate (DPI; a nicotinamide adenine dinucleotide phosphate [NADPH] oxidase inhibitor). Luminex cytokine and Amplex-Red H2 O2 assays were performed. RESULTS LDH levels dropped rapidly within 2 days, indicative of stabilization and cell recovery after harvest. All cultures released H2 O2 into the medium. Exposure to PM (20 μg/cm(2) ) increased H2 O2 levels significantly (94.6 ± 7.7 nM) compared to untreated controls (55.8 ± 4.0 nM; p = 0.001). PM-induced H2 O2 production was partially inhibited by DPI (80.1 ± 3.8nM), indicating that cellular NADPH oxidase may be a primary source of H2 O2 production. Exposure to PM increased IL-8 levels in a dose-dependent fashion (control = 2301 ± 412 MFI; 20 μg/cm(2) = 5002 ± 1327 MFI; 40 μg/cm(2) = 8219 ± 1090 MFI; p = 0.022). CONCLUSION PM increases the quantity of H2 O2 released by nasal epithelial cells, indicating that PM can contribute to oxidative stress in part by activating a normal cellular defense mechanism. Exposure to PM resulted in elevated IL-8 levels and mucin production in explants. Efforts to reduce airborne PM may lead to reduced H2 O2 and mucin production in sinonasal epithelium.
Collapse
Affiliation(s)
- Do-Yeon Cho
- Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL; Children's Hospital Oakland Research Institute, Oakland, CA
| | | | | | | | | | | | | |
Collapse
|
68
|
Kim MJ, Ryu JC, Kwon Y, Lee S, Bae YS, Yoon JH, Ryu JH. Dual oxidase 2 in lung epithelia is essential for hyperoxia-induced acute lung injury in mice. Antioxid Redox Signal 2014; 21:1803-18. [PMID: 24766345 PMCID: PMC4203470 DOI: 10.1089/ars.2013.5677] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
AIMS Acute lung injury (ALI) induced by excessive hyperoxia has been employed as a model of oxidative stress imitating acute respiratory distress syndrome. Under hyperoxic conditions, overloading quantities of reactive oxygen species (ROS) are generated in both lung epithelial and endothelial cells, leading to ALI. Some NADPH oxidase (NOX) family enzymes are responsible for hyperoxia-induced ROS generation in lung epithelial and endothelial cells. However, the molecular mechanisms of ROS production in type II alveolar epithelial cells (AECs) and ALI induced by hyperoxia are poorly understood. RESULTS In this study, we show that dual oxidase 2 (DUOX2) is a key NOX enzyme that affects hyperoxia-induced ROS production, particularly in type II AECs, leading to lung injury. In DUOX2 mutant mice (DUOX2(thyd/thyd)) or mice in which DUOX2 expression is knocked down in the lungs, hyperoxia-induced ALI was significantly lower than in wild-type (WT) mice. DUOX2 was mainly expressed in type II AECs, but not endothelial cells, and hyperoxia-induced ROS production was markedly reduced in primary type II AECs isolated from DUOX2(thyd/thyd) mice. Furthermore, DUOX2-generated ROS are responsible for caspase-mediated cell death, inducing ERK and JNK phophorylation in type II AECs. INNOVATION To date, no role for DUOX2 has been defined in hyperoxia-mediated ALI despite it being a NOX homologue and major ROS source in lung epithelium. CONCLUSION Here, we present the novel finding that DUOX2-generated ROS induce AEC death, leading to hyperoxia-induced lung injury.
Collapse
Affiliation(s)
- Min-Ji Kim
- Research Center for Natural Human Defense System, Yonsei University College of Medicine, Seoul, South Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Jae-Chan Ryu
- Research Center for Natural Human Defense System, Yonsei University College of Medicine, Seoul, South Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Younghee Kwon
- Research Center for Natural Human Defense System, Yonsei University College of Medicine, Seoul, South Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Suhee Lee
- Department of Life Science, Ewha Womans University, Seoul, South Korea
| | - Yun Soo Bae
- Department of Life Science, Ewha Womans University, Seoul, South Korea
| | - Joo-Heon Yoon
- Research Center for Natural Human Defense System, Yonsei University College of Medicine, Seoul, South Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, South Korea
- The Airway Mucus Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Ji-Hwan Ryu
- Research Center for Natural Human Defense System, Yonsei University College of Medicine, Seoul, South Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
69
|
van der Vliet A, Janssen-Heininger YMW. Hydrogen peroxide as a damage signal in tissue injury and inflammation: murderer, mediator, or messenger? J Cell Biochem 2014; 115:427-35. [PMID: 24122865 DOI: 10.1002/jcb.24683] [Citation(s) in RCA: 156] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Accepted: 09/24/2013] [Indexed: 12/17/2022]
Abstract
Tissue injury and inflammation are associated with increased production of reactive oxygen species (ROS), which have the ability to induce oxidative injury to various biomolecules resulting in protein dysfunction, genetic instability, or cell death. However, recent observations indicate that formation of hydrogen peroxide (H2 O2 ) during tissue injury is also an essential feature of the ensuing wound healing response, and functions as an early damage signal to control several critical aspects of the wound healing process. Because innate oxidative wound responses must be tightly coordinated to avoid chronic inflammation or tissue injury, a more complete understanding is needed regarding the origins and dynamics of ROS production, and their critical biological targets. This prospect highlights the current experimental evidence implicating H2 O2 in early epithelial wound responses, and summarizes technical advances and approaches that may help distinguish its beneficial actions from its more deleterious actions in conditions of chronic tissue injury or inflammation.
Collapse
Affiliation(s)
- Albert van der Vliet
- Department of Pathology, College of Medicine, University of Vermont, Burlington, Vermont, 05405
| | | |
Collapse
|
70
|
Direct and indirect air particle cytotoxicity in human alveolar epithelial cells. Toxicol In Vitro 2014; 28:796-802. [DOI: 10.1016/j.tiv.2014.02.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 02/18/2014] [Accepted: 02/21/2014] [Indexed: 11/21/2022]
|
71
|
Gupta A, Grove A. Ligand-binding pocket bridges DNA-binding and dimerization domains of the urate-responsive MarR homologue MftR from Burkholderia thailandensis. Biochemistry 2014; 53:4368-80. [PMID: 24955985 PMCID: PMC4100783 DOI: 10.1021/bi500219t] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
![]()
Members of the multiple antibiotic
resistance regulator (MarR)
family often regulate gene activity by responding to a specific ligand.
In the absence of ligand, most MarR proteins function as repressors,
while ligand binding causes attenuated DNA binding and therefore increased
gene expression. Previously, we have shown that urate is a ligand
for MftR (major facilitator transport regulator), which is encoded
by the soil bacterium Burkholderia thailandensis.
We show here that both mftR and the divergently oriented
gene mftP encoding a major facilitator transport
protein are upregulated in the presence of urate. MftR binds two cognate
sites in the mftR-mftP intergenic region with equivalent
affinity and sensitivity to urate. Mutagenesis of four conserved residues
previously reported to be involved in urate binding to Deinococcus
radiodurans HucR and Rhizobium radiobacter PecS significantly reduced protein stability and DNA binding affinity
but not ligand binding. These data suggest that residues equivalent
to those implicated in ligand binding to HucR and PecS serve structural
roles and that MftR relies on distinct residues for ligand binding.
MftR exhibits a two-step melting transition suggesting independent
unfolding of the dimerization and DNA-binding regions; urate binding
or mutations in the predicted ligand-binding sites result in one-step
unfolding transitions. We suggest that MftR binds the ligand in a
cleft between the DNA-binding lobes and the dimer interface but that
the mechanism of ligand-mediated attenuation of DNA binding differs
from that proposed for other urate-responsive MarR homologues. Since
DNA binding by MftR is attenuated at 37 °C, our data also suggest
that MftR responds to both ligand and a thermal upshift by attenuated
DNA binding and upregulation of the genes under its control.
Collapse
Affiliation(s)
- Ashish Gupta
- Department of Biological Sciences, Louisiana State University , Baton Rouge, Louisiana 70803, United States
| | | |
Collapse
|
72
|
Herrera EA, Krause B, Ebensperger G, Reyes RV, Casanello P, Parra-Cordero M, Llanos AJ. The placental pursuit for an adequate oxidant balance between the mother and the fetus. Front Pharmacol 2014; 5:149. [PMID: 25009498 PMCID: PMC4068002 DOI: 10.3389/fphar.2014.00149] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 06/06/2014] [Indexed: 11/13/2022] Open
Abstract
The placenta is the exchange organ that regulates metabolic processes between the mother and her developing fetus. The adequate function of this organ is clearly vital for a physiologic gestational process and a healthy baby as final outcome. The umbilico-placental vasculature has the capacity to respond to variations in the materno-fetal milieu. Depending on the intensity and the extensity of the insult, these responses may be immediate-, mediate-, and long-lasting, deriving in potential morphostructural and functional changes later in life. These adjustments usually compensate the initial insults, but occasionally may switch to long-lasting remodeling and dysfunctional processes, arising maladaptation. One of the most challenging conditions in modern perinatology is hypoxia and oxidative stress during development, both disorders occurring in high-altitude and in low-altitude placental insufficiency. Hypoxia and oxidative stress may induce endothelial dysfunction and thus, reduction in the perfusion of the placenta and restriction in the fetal growth and development. This Review will focus on placental responses to hypoxic conditions, usually related with high-altitude and placental insufficiency, deriving in oxidative stress and vascular disorders, altering fetal and maternal health. Although day-to-day clinical practice, basic and clinical research are clearly providing evidence of the severe impact of oxygen deficiency and oxidative stress establishment during pregnancy, further research on umbilical and placental vascular function under these conditions is badly needed to clarify the myriad of questions still unsettled.
Collapse
Affiliation(s)
- Emilio A Herrera
- Laboratorio de Función y Reactividad Vascular, Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile Santiago, Chile ; International Center for Andean Studies, Universidad de Chile Santiago, Chile
| | - Bernardo Krause
- División de Obstetricia y Ginecología, Facultad de Medicina, Pontificia Universidad Católica de Chile Santiago, Chile
| | - German Ebensperger
- Laboratorio de Función y Reactividad Vascular, Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile Santiago, Chile
| | - Roberto V Reyes
- Laboratorio de Función y Reactividad Vascular, Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile Santiago, Chile
| | - Paola Casanello
- División de Obstetricia y Ginecología, Facultad de Medicina, Pontificia Universidad Católica de Chile Santiago, Chile ; División de Pediatría, Facultad de Medicina, Pontificia Universidad Católica de Chile Santiago, Chile
| | - Mauro Parra-Cordero
- Unidad Materno-Fetal, Hospital Clínico Universidad de Chile, Universidad de Chile Santiago, Chile
| | - Anibal J Llanos
- Laboratorio de Función y Reactividad Vascular, Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile Santiago, Chile ; International Center for Andean Studies, Universidad de Chile Santiago, Chile
| |
Collapse
|
73
|
Lee JH, Kagan E. Role of nicotinamide adenine dinucleotide phosphate oxidase in mediating vesicant-induced interleukin-6 secretion in human airway epithelial cells. Am J Respir Cell Mol Biol 2014; 50:713-22. [PMID: 24164541 DOI: 10.1165/rcmb.2012-0527oc] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Aerosolized exposure to the chemical warfare vesicant sulfur mustard and its analog nitrogen mustard (HN2) is known to induce airway lesions associated with secretion of proinflammatory cytokines such as IL-6. We have shown recently that HN2 challenge induced IL-6 secretion in human airway epithelial cells, a process mediated via epidermal growth factor receptor (EGFR) signaling. In this study, we evaluated the role of redox signaling in regulating HN2-induced, EGFR-mediated IL-6 secretions in primary cultured normal human bronchial epithelial cells (NHBECs) in the air-liquid interface. HN2-induced EGFR phosphorylation and IL-6 secretion in NHBECs were inhibited by the antioxidant N-acetyl-L-cysteine (NAC) and by the flavoprotein inhibitor diphenyleneiodonium chloride (DPI). These observations suggested that the inflammatory response in NHBECs after HN2 challenge was mediated via oxidative stress. HN2 exposure induced increased reactive oxygen species (ROS) formation and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity in NHBECs, findings that were inhibited by NAC and DPI treatment. Among NADPH oxidase isoforms, mRNA expression of dual oxidase (DUOX)1 and DUOX2 were up-regulated by HN2. Furthermore, knockdown of DUOX1 or DUOX2 by short hairpin RNA resulted in inhibition of ROS generation, EGFR pathway activation, and IL-6 secretion in NHBECs. These results provide evidence that redox signaling plays a pivotal role in the HN2-induced airway inflammation and underscore the importance of DUOX1 and DUOX2 in vesicant-induced IL-6 secretion in human airway epithelial cells.
Collapse
Affiliation(s)
- Ji-Hyeon Lee
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | | |
Collapse
|
74
|
Meitzler JL, Antony S, Wu Y, Juhasz A, Liu H, Jiang G, Lu J, Roy K, Doroshow JH. NADPH oxidases: a perspective on reactive oxygen species production in tumor biology. Antioxid Redox Signal 2014; 20:2873-89. [PMID: 24156355 PMCID: PMC4026372 DOI: 10.1089/ars.2013.5603] [Citation(s) in RCA: 145] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
SIGNIFICANCE Reactive oxygen species (ROS) promote genomic instability, altered signal transduction, and an environment that can sustain tumor formation and growth. The NOX family of NADPH oxidases, membrane-bound epithelial superoxide and hydrogen peroxide producers, plays a critical role in the maintenance of immune function, cell growth, and apoptosis. The impact of NOX enzymes in carcinogenesis is currently being defined and may directly link chronic inflammation and NOX ROS-mediated tumor formation. RECENT ADVANCES Increased interest in the function of NOX enzymes in tumor biology has spurred a surge of investigative effort to understand the variability of NOX expression levels in tumors and the effect of NOX activity on tumor cell proliferation. These initial efforts have demonstrated a wide variance in NOX distribution and expression levels across numerous cancers as well as in common tumor cell lines, suggesting that much remains to be discovered about the unique role of NOX-related ROS production within each system. Progression from in vitro cell line studies toward in vivo tumor tissue screening and xenograft models has begun to provide evidence supporting the importance of NOX expression in carcinogenesis. CRITICAL ISSUES A lack of universally available, isoform-specific antibodies and animal tumor models of inducible knockout or over-expression of NOX isoforms has hindered progress toward the completion of in vivo studies. FUTURE DIRECTIONS In vivo validation experiments and the use of large, existing gene expression data sets should help define the best model systems for studying the NOX homologues in the context of cancer.
Collapse
Affiliation(s)
- Jennifer L Meitzler
- 1 Laboratory of Molecular Pharmacology of the Center for Cancer Research, National Cancer Institute, National Institutes of Health , Bethesda, Maryland
| | | | | | | | | | | | | | | | | |
Collapse
|
75
|
De Deken X, Corvilain B, Dumont JE, Miot F. Roles of DUOX-mediated hydrogen peroxide in metabolism, host defense, and signaling. Antioxid Redox Signal 2014; 20:2776-93. [PMID: 24161126 DOI: 10.1089/ars.2013.5602] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
SIGNIFICANCE Among the NADPH oxidases, the dual oxidases, DUOX1 and DUOX2, constitute a distinct subfamily initially called thyroid oxidases, based on their high level of expression in thyroid tissue. Genetic alterations causing inherited hypothyroidism clearly demonstrate their physiological implication in thyroid hormonogenesis. However, a growing list of biological functions triggered by DUOX-dependent reactive oxygen species (ROS) in highly differentiated mucosae have recently emerged. RECENT ADVANCES A role of DUOX enzymes as ROS providers for lactoperoxidase-mediated killing of invading pathogens has been well established and a role in bacteria chemorepulsion has been proposed. Control of DUOX expression and activity by inflammatory molecules and immune receptor activation consolidates their contributions to innate immune defense of mucosal surfaces. Recent studies conducted in ancestral organisms have identified effectors of DUOX redox signaling involved in wound healing including epithelium regeneration and leukocyte recruitment. Moreover, local generation of hydrogen peroxide (H2O2) by DUOX has also been suggested to constitute a positive feedback loop to promote receptor signaling activation. CRITICAL ISSUES A correct balance between H2O2 generation and detoxification mechanisms must be properly maintained to avoid oxidative damages. Overexpression of DUOX genes has been associated with an increasing number of chronic inflammatory diseases. Furthermore, H2O2-mediated DNA damage supports a mutagenic function promoting tumor development. FUTURE DIRECTIONS Despite the high sequence similarity shared between DUOX1 and DUOX2, the two isoforms present distinct regulations, tissue expression and catalytic functions. The phenotypic characterization of novel DUOX/DUOXA invalidated animal models will be very useful for defining their medical importance in pathological conditions.
Collapse
Affiliation(s)
- Xavier De Deken
- Faculté de Médecine, Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB) , Brussels, Belgium
| | | | | | | |
Collapse
|
76
|
Yang P, Huang S, Yan X, Huang G, Dong X, Zheng T, Yuan D, Wang R, Li R, Tan Y, Xu A. Origin of the phagocytic respiratory burst and its role in gut epithelial phagocytosis in a basal chordate. Free Radic Biol Med 2014; 70:54-67. [PMID: 24560860 DOI: 10.1016/j.freeradbiomed.2014.02.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 01/27/2014] [Accepted: 02/10/2014] [Indexed: 11/23/2022]
Abstract
The vertebrate phagocytic respiratory burst (PRB) is a highly specific and efficient mechanism for reactive oxygen species (ROS) production. This mechanism is mediated by NADPH oxidase 2 (NOX2) and used by vertebrate phagocytic leukocytes to destroy internalized microbes. Here we demonstrate the presence of the PRB in a basal chordate, the amphioxus Branchiostoma belcheri tsingtauense (bbt). We show that using the antioxidant NAC to scavenge the production of ROS significantly decreased the survival rates of infected amphioxus, indicating that ROS are indispensable for efficient antibacterial responses. Amphioxus NOX enzymes and cytosolic factors were found to colocalize in the epithelial cells of the gill, intestine, and hepatic cecum and could be upregulated after exposure to microbial pathogens. The ROS production in epithelial cell lysates could be reconstructed by supplementing recombinant cytosolic factors, including bbt-p47phox, bbt-p67phox, bbt-p47phox, and bbt-Rac; the restored ROS production could be inhibited by anti-bbt-NOX2 and anti-bbt-p67phox antibodies. We also reveal that the gut epithelial lining cells of the amphioxus are competent at bacterial phagocytosis, and there is evidence that the PRB machinery could participate in the initiation of this phagocytic process. In conclusion, we report the presence of the classical PRB machinery in nonvertebrates and provide the first evidence for the possible role of PRB in epithelial cell immunity and phagocytosis.
Collapse
Affiliation(s)
- Ping Yang
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, College of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People׳s Republic of China
| | - Shengfeng Huang
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, College of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People׳s Republic of China
| | - Xinyu Yan
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, College of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People׳s Republic of China
| | - Guangrui Huang
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, College of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People׳s Republic of China
| | - Xiangru Dong
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, College of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People׳s Republic of China
| | - Tingting Zheng
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, College of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People׳s Republic of China
| | - Dongjuan Yuan
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, College of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People׳s Republic of China
| | - Ruihua Wang
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, College of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People׳s Republic of China
| | - Rui Li
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, College of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People׳s Republic of China
| | - Ying Tan
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, College of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People׳s Republic of China
| | - Anlong Xu
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, College of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People׳s Republic of China; Beijing University of Chinese Medicine, Beijing 100029, People׳s Republic of China.
| |
Collapse
|
77
|
Bautista-Ortega J, Cortes-Cuevas A, Ellis EA, Ruiz-Feria CA. Supplemental L-arginine and vitamins E and C preserve xanthine oxidase activity in the lung of broiler chickens grown under hypobaric hypoxia. Poult Sci 2014; 93:979-88. [PMID: 24706976 DOI: 10.3382/ps.2013-03698] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The effects of l-Arg, vitamin C (VC), and vitamin E (VE) on xanthine- (XO) and NAD(P)H-oxidase (NOX) activities, and nitric oxide (NO) availability of hypoxic broilers were evaluated. Chickens were kept in wire cages with free access to feed and water. One-day-old chicks were assigned to 1 of 3 diets: control (CTL; ME 3,200 kcal/kg, CP 23%), high Arg (HA; CTL + Arg 0.8%), or high Arg plus VE and VC (AEC; HA + 200 IU of VE/kg of feed + 500 mg of VC/L of water), and grown under hypobaric hypoxia (HYP) from d 7 to 30. A fourth group of birds was fed the CTL diet and grown under normoxia (CTL-NOR). At d 30, chickens were euthanized, their lungs fixed in vivo, excised, and processed for cyto- and histochemistry. The enzymes XO and NOX were localized and activities assessed histochemically and in lung homogenates. The NO depletion was assessed through nitrotyrosine immunocytochemistry colloidal gold particles (NTY). The XO and NOX localized in cell membranes and within vesicles of pulmonary vessel endothelial cells. The XO activity was higher in CTL-NOR birds (586 ± 43 reflectance units) than in both AEC-HYP (456 ± 39) and HA-HYP birds (394 ± 31), whereas CTL-HYP birds had the lowest XO activity (313 ± 27). The NO depletion was not affected by dietary or hypoxia conditions in clinically healthy birds; nevertheless, hypoxic birds that developed pulmonary hypertension had higher NTY levels (less NO, 145 ± 19) than hypoxic but clinically healthy birds (56 ± 11). Thus, the concurrent supplementation of Arg, VE, and VC restored XO activity without affecting NOX activity or NO availability. The dual role of XO, which produces superoxide and uric acid, may have buffered the effects of superoxide in broiler chickens grown under hypobaric hypoxia.
Collapse
Affiliation(s)
- J Bautista-Ortega
- Department of Poultry Science, Texas A&M University, College Station 77843-2472
| | | | | | | |
Collapse
|
78
|
Nadeem A, Siddiqui N, Alharbi NO, Alharbi MM, Imam F, Sayed-Ahmed MM. Glutathione modulation during sensitization as well as challenge phase regulates airway reactivity and inflammation in mouse model of allergic asthma. Biochimie 2014; 103:61-70. [PMID: 24742380 DOI: 10.1016/j.biochi.2014.04.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 04/01/2014] [Indexed: 12/15/2022]
Abstract
Glutathione, being a major intracellular redox regulator has been shown to be implicated in regulation of airway reactivity and inflammation. However, no study so far has investigated the effect of glutathione depletion/repletion during sensitization and challenge phases separately, which could provide an important insight into the pathophysiology of allergic asthma. The aim of the present study was to evaluate the role of glutathione depletion/repletion during sensitization and challenge phases separately in a mouse model of allergic asthma. Buthionine sulphoximine (BSO), an inhibitor of gamma-glutamylcysteine synthetase or N-acetyl cysteine (NAC), a thiol donor were used for depletion or repletion of glutathione levels respectively during both sensitization and challenge phases separately followed by assessment of airway reactivity, inflammation and oxidant-antioxidant balance in allergic mice. Depletion of glutathione with BSO during sensitization as well as challenge phase worsened allergen induced airway reactivity/inflammation and caused greater oxidant-antioxidant imbalance as reflected by increased NADPH oxidase expression/reactive oxygen species (ROS) generation/lipid peroxides formation and decreased total antioxidant capacity. On the other hand, repletion of glutathione pool by NAC during sensitization and challenge phases counteracted allergen induced airway reactivity/inflammation and restored oxidant-antioxidant balance through a decrease in NADPH oxidase expression/ROS generation/lipid peroxides formation and increase in total antioxidant capacity. Taken together, these findings suggest that depletion or repletion of glutathione exacerbates or ameliorates allergic asthma respectively by regulation of airway oxidant-antioxidant balance. This might have implications towards increased predisposition to allergy by glutathione depleting environmental pollutants.
Collapse
Affiliation(s)
- Ahmed Nadeem
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.
| | - Nahid Siddiqui
- Amity Institute of Biotechnology, Amity University, Noida, India
| | - Naif O Alharbi
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad M Alharbi
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Faisal Imam
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed M Sayed-Ahmed
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
79
|
Hristova M, Veith C, Habibovic A, Lam YW, Deng B, Geiszt M, Janssen-Heininger YM, van der Vliet A. Identification of DUOX1-dependent redox signaling through protein S-glutathionylation in airway epithelial cells. Redox Biol 2014; 2:436-46. [PMID: 24624333 PMCID: PMC3949091 DOI: 10.1016/j.redox.2013.12.030] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 12/23/2013] [Accepted: 12/23/2013] [Indexed: 11/22/2022] Open
Abstract
The NADPH oxidase homolog dual oxidase 1 (DUOX1) plays an important role in innate airway epithelial responses to infection or injury, but the precise molecular mechanisms are incompletely understood and the cellular redox-sensitive targets for DUOX1-derived H2O2 have not been identified. The aim of the present study was to survey the involvement of DUOX1 in cellular redox signaling by protein S-glutathionylation, a major mode of reversible redox signaling. Using human airway epithelial H292 cells and stable transfection with DUOX1-targeted shRNA as well as primary tracheal epithelial cells from either wild-type or DUOX1-deficient mice, DUOX1 was found to be critical in ATP-stimulated transient production of H2O2 and increased protein S-glutathionylation. Using cell pre-labeling with biotin-tagged GSH and analysis of avidin-purified proteins by global proteomics, 61 S-glutathionylated proteins were identified in ATP-stimulated cells compared to 19 in untreated cells. Based on a previously established role of DUOX1 in cell migration, various redox-sensitive proteins with established roles in cytoskeletal dynamics and/or cell migration were evaluated for S-glutathionylation, indicating a critical role for DUOX1 in ATP-stimulated S-glutathionylation of β-actin, peroxiredoxin 1, the non-receptor tyrosine kinase Src, and MAPK phosphatase 1. Overall, our studies demonstrate the importance of DUOX1 in epithelial redox signaling through reversible S-glutathionylation of a range of proteins, including proteins involved in cytoskeletal regulation and MAPK signaling pathways involved in cell migration. ATP-mediated activation of DUOX1 results in increased protein S-glutathionylation. ATP stimulation promotes S-glutathionylation of a number of diverse proteins. DUOX1-dependent S-glutathionylation affects proteins involved in cell migration.
Collapse
Affiliation(s)
- Milena Hristova
- Department of Pathology, Vermont Lung Center, College of Medicine, University of Vermont, Burlington, VT 05405, United States
| | - Carmen Veith
- Department of Pathology, Vermont Lung Center, College of Medicine, University of Vermont, Burlington, VT 05405, United States
| | - Aida Habibovic
- Department of Pathology, Vermont Lung Center, College of Medicine, University of Vermont, Burlington, VT 05405, United States
| | - Ying-Wai Lam
- Department of Biology, College of Arts and Sciences, University of Vermont, Burlington, VT 05405, United States
| | - Bin Deng
- Department of Biology, College of Arts and Sciences, University of Vermont, Burlington, VT 05405, United States
| | - Miklos Geiszt
- Department of Physiology, Faculty of Medicine, and “Lendulet” Peroxidase Enzyme Research Group, Semmelweis University, Budapest, Hungary
| | - Yvonne M.W. Janssen-Heininger
- Department of Pathology, Vermont Lung Center, College of Medicine, University of Vermont, Burlington, VT 05405, United States
| | - Albert van der Vliet
- Department of Pathology, Vermont Lung Center, College of Medicine, University of Vermont, Burlington, VT 05405, United States
- Correspondence to: Department of Pathology, University of Vermont, D205 Given Medical Building, 89 Beaumont Avenue, Burlington, VT 05405, United States. Tel.: +1 802 656 8638; fax: +1 802 656 8892.
| |
Collapse
|
80
|
Carnesecchi S, Dunand-Sauthier I, Zanetti F, Singovski G, Deffert C, Donati Y, Cagarelli T, Pache JC, Krause KH, Reith W, Barazzone-Argiroffo C. NOX1 is responsible for cell death through STAT3 activation in hyperoxia and is associated with the pathogenesis of acute respiratory distress syndrome. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2014; 7:537-551. [PMID: 24551274 PMCID: PMC3925898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 12/21/2013] [Indexed: 06/03/2023]
Abstract
Reactive oxygen species (ROS) contribute to alveolar cell death in acute respiratory distress syndrome (ARDS) and we previously demonstrated that NOX1-derived ROS contributed to hyperoxia-induced alveolar cell death in mice. The study investigates whether NOX1 expression is modulated in epithelial cells concomitantly to cell death and associated to STAT3 signaling in the exudative phase of ARDS. In addition, the role of STAT3 activation in NOX1-dependent epithelial cell death was confirmed by using a lung epithelial cell line and in mice exposed to hyperoxia. NOX1 expression, cell death and STAT3 staining were evaluated in the lungs of control and ARDS patients by immunohistochemistry. In parallel, a stable NOX1-silenced murine epithelial cell line (MLE12) and NOX1-deficient mice were used to characterize signalling pathways. In the present study, we show that NOX1 is detected in alveolar epithelial cells of ARDS patients in the exudative stage. In addition, increased alveolar epithelial cell death and phosphorylated STAT3 are observed in ARDS patients and associated with NOX1 expression. Phosphorylated STAT3 is also correlated with TUNEL staining. We also confirmed that NOX1-dependent STAT3 activation participates to alveolar epithelial cell death. Silencing and acute inhibition of NOX1 in MLE12 led to decreased cell death and cleaved-caspase 3 induced by hyperoxia. Additionally, hyperoxia-induced STAT3 phosphorylation is dependent on NOX1 expression and associated with cell death in MLE12 and mice. This study demonstrates that NOX1 is involved in human ARDS pathophysiology and is responsible for the damage occurring in alveolar epithelial cells at least in part via STAT3 signalling pathways.
Collapse
Affiliation(s)
- Stephanie Carnesecchi
- Department of PediatricsGeneva, Switzerland
- Department of Pathology and Immunology, Medical School, University of GenevaSwitzerland
| | | | - Filippo Zanetti
- Department of PediatricsGeneva, Switzerland
- Department of Pathology and Immunology, Medical School, University of GenevaSwitzerland
| | - Grigory Singovski
- Department of PediatricsGeneva, Switzerland
- Department of Pathology and Immunology, Medical School, University of GenevaSwitzerland
| | - Christine Deffert
- Department of Pathology and Immunology, Medical School, University of GenevaSwitzerland
| | - Yves Donati
- Department of PediatricsGeneva, Switzerland
- Department of Pathology and Immunology, Medical School, University of GenevaSwitzerland
| | - Thomas Cagarelli
- Department of PediatricsGeneva, Switzerland
- Department of Pathology and Immunology, Medical School, University of GenevaSwitzerland
| | - Jean-Claude Pache
- Department of Pathology and Immunology, Medical School, University of GenevaSwitzerland
| | - Karl-Heinz Krause
- Department of Pathology and Immunology, Medical School, University of GenevaSwitzerland
| | - Walter Reith
- Department of Pathology and Immunology, Medical School, University of GenevaSwitzerland
| | - Constance Barazzone-Argiroffo
- Department of PediatricsGeneva, Switzerland
- Department of Pathology and Immunology, Medical School, University of GenevaSwitzerland
| |
Collapse
|
81
|
Kim SH, Lee WJ. Role of DUOX in gut inflammation: lessons from Drosophila model of gut-microbiota interactions. Front Cell Infect Microbiol 2014; 3:116. [PMID: 24455491 PMCID: PMC3887270 DOI: 10.3389/fcimb.2013.00116] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 12/23/2013] [Indexed: 02/06/2023] Open
Abstract
It is well-known that certain bacterial species can colonize the gut epithelium and induce inflammation in the mucosa, whereas other species are either benign or beneficial to the host. Deregulation of the gut-microbe interactions may lead to a pathogenic condition in the host, such as chronic inflammation, tissue injuries, and even cancer. However, our current understanding of the molecular mechanisms that underlie gut-microbe homeostasis and pathogenesis remains limited. Recent studies have used Drosophila as a genetic model to provide novel insights into the causes and consequences of bacterial-induced colitis in the intestinal mucosa. The present review discusses the interactions that occur between gut-associated bacteria and host gut immunity, particularly the bacterial-induced intestinal dual oxidase (DUOX) system. Several lines of evidence showed that the bacterial-modulated DUOX system is involved in microbial clearance, intestinal epithelial cell renewal (ECR), redox-dependent modulation of signaling pathways, cross-linking of biomolecules, and discrimination between symbionts and pathogens. Further genetic studies on the Drosophila DUOX system and on gut-associated bacteria with a distinct ability to activate DUOX may provide critical information related to the homeostatic inflammation as well as etiology of chronic inflammatory diseases, which will enhance our understanding on the mucosal inflammatory diseases frequently observed in the microbe-contacting epithelia of humans.
Collapse
Affiliation(s)
- Sung-Hee Kim
- School of Biological Science and Institute of Molecular Biology and Genetics, Seoul National University Seoul, South Korea ; National Creative Research Initiative Center for Symbiosystem, Seoul National University Seoul, South Korea
| | - Won-Jae Lee
- School of Biological Science and Institute of Molecular Biology and Genetics, Seoul National University Seoul, South Korea ; National Creative Research Initiative Center for Symbiosystem, Seoul National University Seoul, South Korea
| |
Collapse
|
82
|
Endothelial targeting of liposomes encapsulating SOD/catalase mimetic EUK-134 alleviates acute pulmonary inflammation. J Control Release 2014; 177:34-41. [PMID: 24412573 DOI: 10.1016/j.jconrel.2013.12.035] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Revised: 12/26/2013] [Accepted: 12/30/2013] [Indexed: 12/24/2022]
Abstract
Production of excessive levels of reactive oxygen species (ROS) in the vascular endothelium is a common pathogenic pathway in many dangerous conditions, including acute lung injury, ischemia-reperfusion, and inflammation. Ineffective delivery of antioxidants to the endothelium limits their utility for management of these conditions. In this study, we devised a novel translational antioxidant intervention targeted to the vascular endothelium using PEG-liposomes loaded with EUK-134 (EUK), a potent superoxide dismutase/catalase mimetic. EUK loaded into antibody-coated liposomes (size 197.8±4.5 nm diameter, PDI 0.179±0.066) exerted partial activity in the intact carrier, while full activity was recovered upon liposome disruption. For targeting we used antibodies (Abs) to platelet-endothelial cell adhesion molecule (PECAM-1). Both streptavidin-biotin and SATA/SMCC conjugation chemistries provided binding of 125-150 Ab molecules per liposome. Ab/EUK/liposomes, but not IgG/EUK/liposomes: i) bound to endothelial cells and inhibited cytokine-induced inflammatory activation in vitro; and, ii) accumulated in lungs after intravascular injection, providing >60% protection against pulmonary edema in endotoxin-challenged mice (vs <6% protection afforded by IgG/liposome/EUK counterpart). Since the design elements of this drug delivery system are already in clinical use (PEG-liposomes, antibodies, SATA/SMCC conjugation), it is an attractive candidate for translational interventions using antioxidant molecules such as EUK and other clinically acceptable drugs.
Collapse
|
83
|
Saito K, Mori S, Date F, Ono M. Epigallocatechin gallate inhibits oxidative stress-induced DNA damage and apoptosis in MRL-Faslprmice with autoimmune sialadenitis via upregulation of heme oxygenase-1 and Bcl-2. Autoimmunity 2014; 47:13-22. [DOI: 10.3109/08916934.2013.850079] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
84
|
Santos CXC, Nabeebaccus AA, Shah AM, Camargo LL, Filho SV, Lopes LR. Endoplasmic reticulum stress and Nox-mediated reactive oxygen species signaling in the peripheral vasculature: potential role in hypertension. Antioxid Redox Signal 2014; 20:121-34. [PMID: 23472786 PMCID: PMC3880927 DOI: 10.1089/ars.2013.5262] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
SIGNIFICANCE Reactive oxygen species (ROS) are produced during normal endoplasmic reticulum (ER) metabolism. There is accumulating evidence showing that under stress conditions such as ER stress, ROS production is increased via enzymes of the NADPH oxidase (Nox) family, especially via the Nox2 and Nox4 isoforms, which are involved in the regulation of blood pressure. Hypertension is a major contributor to cardiovascular and renal disease, and it has a complex pathophysiology involving the heart, kidney, brain, vessels, and immune system. ER stress activates the unfolded protein response (UPR) signaling pathway that has prosurvival and proapoptotic components. RECENT ADVANCES Here, we summarize the evidence regarding the association of Nox enzymes and ER stress, and its potential contribution in the setting of hypertension, including the role of other conditions that can lead to hypertension (e.g., insulin resistance and diabetes). CRITICAL ISSUES A better understanding of this association is currently of great interest, as it will provide further insights into the cellular mechanisms that can drive the ER stress-induced adaptive versus maladaptive pathways linked to hypertension and other cardiovascular conditions. More needs to be learnt about the precise signaling regulation of Nox(es) and ER stress in the cardiovascular system. FUTURE DIRECTIONS The development of specific approaches that target individual Nox isoforms and the UPR signaling pathway may be important for the achievement of therapeutic efficacy in hypertension.
Collapse
Affiliation(s)
- Celio X C Santos
- 1 Cardiovascular Division, King's College London British Heart Foundation Centre of Excellence , London, United Kingdom
| | | | | | | | | | | |
Collapse
|
85
|
Abstract
Fibrosis is defined as increased fibroblast proliferation and deposition of extracellular matrix components with potential clinical ramifications including organ dysfunction and failure. Fibrosis is a characteristic finding of various skin diseases which can have life-threatening consequences. These implications call for research into this topic as only a few treatments targeting fibrosis are available. In this review, we discuss oxidative stress and its role in skin fibrosis. Recent studies have implicated the importance of oxidative stress in a variety of cellular pathways directly and indirectly involved in the pathogenesis of skin fibrosis. The cellular pathways by which oxidative stress affects specific fibrotic skin disorders are also reviewed. Finally, we also describe various therapeutic approaches specifically targeting oxidative stress to prevent skin fibrosis. We believe oxidative stress is a relevant target, and understanding the role of oxidative stress in skin fibrosis will enhance knowledge of fibrotic skin diseases and potentially produce targeted therapeutic options.
Collapse
Affiliation(s)
- Anjali Shroff
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, Clinical Research – Dermatology, 5 East 98th Street- 5th floor, Box 1048, New York, NY USA
| | - Andrew Mamalis
- Department of Dermatology, University of California Davis, Sacramento, CA USA
- Dermatology Service, Sacramento VA Medical Center, Mather, CA USA
| | - Jared Jagdeo
- Department of Dermatology, University of California Davis, Sacramento, CA USA
- Dermatology Service, Sacramento VA Medical Center, Mather, CA USA
- Department of Dermatology, State University of New York Downstate Medical Center, Brooklyn, NY USA
| |
Collapse
|
86
|
Kim HJ, Kim CH, Ryu JH, Kim MJ, Park CY, Lee JM, Holtzman MJ, Yoon JH. Reactive oxygen species induce antiviral innate immune response through IFN-λ regulation in human nasal epithelial cells. Am J Respir Cell Mol Biol 2013; 49:855-65. [PMID: 23786562 DOI: 10.1165/rcmb.2013-0003oc] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
This study sought to explore the role of the IFN-related innate immune responses (IFN-β and IFN-λ) and of reactive oxygen species (ROS) after influenza A virus (IAV) infection for antiviral innate immune activity in normal human nasal epithelial (NHNE) cells that are highly exposed to IAV. Passage-2 NHNE cells were inoculated with the IAV WSN/33 for 1, 2, and 3 days to assess the capacity of IFN and the relationship between ROS generation and IFN-λ secretion for controlling IAV infection. Viral titers and IAV mRNA levels increased after infection. In concert with viral titers, we found that the generation of IFNs, such as IFN-β, IFN-λ1, and IFN-λ2/3, was induced after IAV infection until 3 days after infection. The induction of IFN-λ gene expression and protein secretion may be predominant after IAV infection. Similarly, we observed that intracellular ROS generation increased 60 minutes after IAV infection. Viral titers and mRNA levels of IAV were significantly higher in cases with scavenging ROS, in cases with an induced IFN-λ mRNA level, or where the secreted protein concentration of IFN-λ was attenuated after the suppression of ROS generation. Both mitochondrial and dual oxidase (Doux)2-generated ROS were correlated with IAV mRNA and viral titers. The inhibition of mitochondrial ROS generation and the knockdown of Duox2 gene expression highly increased IAV viral titers and decreased IFN-λ secretion. Our findings suggest that the production of ROS may be responsible for IFN-λ secretion to control IAV infection. Both mitochondria and Duox2 are possible sources of ROS generation, which is required to initiate an innate immune response in NHNE cells.
Collapse
Affiliation(s)
- Hyun Jik Kim
- 1 Department of Otolaryngology and Head and Neck Surgery, Chung-Ang University College of Medicine, Seoul, Republic of South Korea
| | | | | | | | | | | | | | | |
Collapse
|
87
|
Abstract
Acute lung injury (ALI) and its more severe form of clinical manifestation, the acute respiratory distress syndrome is associated with significant dysfunction in air exchange due to inflammation of the lung parenchyma. Several factors contribute to the inflammatory process, including hypoxia (inadequate oxygen), hyperoxia (higher than normal partial pressure of oxygen), inflammatory mediators (such as cytokines), infections (viral and bacterial), and environmental conditions (such as cigarette smoke or noxious gases). However, studies over the past several decades suggest that oxidants formed in the various cells of the lung including endothelial, alveolar, and epithelial cells as well as lung macrophages and neutrophils in response to the factors mentioned above mediate the pathogenesis of ALI. Oxidants modify cellular proteins, lipids, carbohydrates, and DNA to cause their aberrant function. For example, oxidation of lipids changes membrane permeability. Interestingly, recent studies also suggest that spatially and temporally regulated production of oxidants plays an important role antimicrobial defense and immunomodulatory function (such as transcription factor activation). To counteract the oxidants an arsenal of antioxidants exists in the lung to maintain the redox status, but when overwhelmed tissue injury and exacerbation of inflammation occurs. We present below the current understanding of the pathogenesis of oxidant-mediated ALI.
Collapse
Affiliation(s)
- J Vidya Sarma
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | | |
Collapse
|
88
|
Choi H, Park JY, Kim HJ, Noh M, Ueyama T, Bae Y, Lee TR, Shin DW. Hydrogen peroxide generated by DUOX1 regulates the expression levels of specific differentiation markers in normal human keratinocytes. J Dermatol Sci 2013; 74:56-63. [PMID: 24332816 DOI: 10.1016/j.jdermsci.2013.11.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 11/07/2013] [Accepted: 11/19/2013] [Indexed: 10/26/2022]
Abstract
BACKGROUND Recent studies have demonstrated that the production of reactive oxygen species (ROS) itself plays an indispensable role in the process of differentiation in various tissues. However, it is unclear whether ROS have an effect on the differentiation of keratinocytes essential for the development of the epidermal permeability barrier. OBJECTIVE The aim of the study is to determine a major H2O2-generating source by ionomycin in normal human keratinocytes (NHKs), and elucidate the physiological role of H2O2 generated by identified dual oxidase 1 (DUOX1) on differentiation markers of NHKs. METHODS To detect H2O2 level generated by ionomycin in NHKs, luminal-HRP assays are performed. To examine the effects of DUOX1 on differentiation markers of NHKs, analysis of Q-RT-PCR, siRNA knockdown, and Western blot analysis were performed. RESULTS We found that levels of H2O2 generated by ionomycin, a Ca(2+) signal inducer, showed Ca(2+) dependence manner. In addition, DPI, an inhibitor of NOXes, significantly reversed the ionomycin-induced H2O2 level, and inhibited the mRNA expression levels of keratin 1, keratin 10, and filaggrin compared with other ROS generating system inhibitors. Interestingly, we demonstrated that extracellular Ca(2+) markedly up-regulated mRNA expression levels of DUOX1 among NADPH oxidase (NOX) isoforms. Knockdown of DUOX1 by RNA interference (RNAi) in NHKs significantly antagonized an increase of ionomycin-induced H2O2 level, and specifically decreased the expressions of several keratinocyte differentiation markers such as keratin 1, transglutaminase 3, desmoglein 1, and aquaporin 9. In addition, we also found that formation of cornified envelope was significantly reduced in DUOX1-knockdown NHKs. CONCLUSION These results suggest that DUOX1 is the major H2O2-producing source in NHKs stimulated with Ca(2+), and plays a significant role in regulating the expression of specific markers necessary for the normal differentiation of keratinocytes.
Collapse
Affiliation(s)
- Hyun Choi
- Bioscience Research Institute, Amorepacific Corporation R&D Center, Yongin-si, Gyeonggi-do 446-729, Republic of Korea
| | - Ju-Yearl Park
- Bioscience Research Institute, Amorepacific Corporation R&D Center, Yongin-si, Gyeonggi-do 446-729, Republic of Korea
| | - Hyoung-June Kim
- Bioscience Research Institute, Amorepacific Corporation R&D Center, Yongin-si, Gyeonggi-do 446-729, Republic of Korea
| | - Minsoo Noh
- College of Pharmacy, Seoul University, Seoul 151-742, Republic of Korea
| | - Takehiko Ueyama
- Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Kobe 657-8501, Republic of Korea
| | - Yunsoo Bae
- Department of Life Sciences, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Tae Ryong Lee
- Bioscience Research Institute, Amorepacific Corporation R&D Center, Yongin-si, Gyeonggi-do 446-729, Republic of Korea.
| | - Dong Wook Shin
- Bioscience Research Institute, Amorepacific Corporation R&D Center, Yongin-si, Gyeonggi-do 446-729, Republic of Korea.
| |
Collapse
|
89
|
Redox balance and cardioprotection. Basic Res Cardiol 2013; 108:392. [DOI: 10.1007/s00395-013-0392-7] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 09/24/2013] [Accepted: 10/14/2013] [Indexed: 12/11/2022]
|
90
|
Abstract
Endothelial cells represent important targets for therapeutic and diagnostic interventions in many cardiovascular, pulmonary, neurological, inflammatory, and metabolic diseases. Targeted delivery of drugs (especially potent and labile biotherapeutics that require specific subcellular addressing) and imaging probes to endothelium holds promise to improve management of these maladies. In order to achieve this goal, drug cargoes or their carriers including liposomes and polymeric nanoparticles are chemically conjugated or fused using recombinant techniques with affinity ligands of endothelial surface molecules. Cell adhesion molecules, constitutively expressed on the endothelial surface and exposed on the surface of pathologically altered endothelium—selectins, VCAM-1, PECAM-1, and ICAM-1—represent good determinants for such a delivery. In particular, PECAM-1 and ICAM-1 meet criteria of accessibility, safety, and relevance to the (patho)physiological context of treatment of inflammation, ischemia, and thrombosis and offer a unique combination of targeting options including surface anchoring as well as intra- and transcellular targeting, modulated by parameters of the design of drug delivery system and local biological factors including flow and endothelial phenotype. This review includes analysis of these factors and examples of targeting selected classes of therapeutics showing promising results in animal studies, supporting translational potential of these interventions.
Collapse
|
91
|
Dick AS, Ivanovska J, Kantores C, Belcastro R, Keith Tanswell A, Jankov RP. Cyclic stretch stimulates nitric oxide synthase-1-dependent peroxynitrite formation by neonatal rat pulmonary artery smooth muscle. Free Radic Biol Med 2013; 61:310-9. [PMID: 23619128 DOI: 10.1016/j.freeradbiomed.2013.04.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 02/27/2013] [Accepted: 04/16/2013] [Indexed: 11/28/2022]
Abstract
Peroxynitrite, the reaction product of nitric oxide and superoxide, contributes to the pathogenesis of chronic pulmonary hypertension in immature animals by stimulating proliferation of pulmonary arterial smooth muscle cells (PASMCs). Pulmonary vasoconstriction, secondary to hypoxia and other stimuli, leads to enhanced pulsatile stretch of cells in the vascular wall, particularly in smooth muscle, which we hypothesized would cause increased peroxynitrite generation. Our objectives in this study were to determine whether cyclic mechanical stretch, at supraphysiologic levels, would cause increased production of reactive oxygen species (ROS), nitric oxide, and peroxynitrite in vitro. Early passage neonatal rat PASMCs were seeded and grown to subconfluence on collagen-coated elastomer-bottom plates and subjected to cyclic mechanical stretch (10% ("physiologic") or 20% ("supraphysiologic") at 0.5 Hz) for up to 24 h. Compared to nonstretched controls and to cells subjected to 10% stretch, 20% stretch increased H2O2 (stable marker of ROS) and nitrate/nitrite (stable marker of nitric oxide) in conditioned medium. These effects were accompanied by increased peroxynitrite, as evidenced by increased in situ dihydroethidium fluorescence and immunoreactive nitrotyrosine and by increased expression of nitric oxide synthase (NOS)-1 and NADPH oxidase 4 (NOX4), but not NOS-2. Stretch-induced H2O2 release and increased dihydroethidium fluorescence were prevented by pretreatment with a superoxide scavenger, nonspecific inhibitors of NADPH oxidase or NOS, or a peroxynitrite decomposition catalyst. Short-interfering RNA-mediated knockdown of NOS-1 or NOX4 attenuated increased nitric oxide and H2O2 content, respectively, in stretched-cell-conditioned medium. Knockdown of NOS-1 also attenuated increased immunoreactive nitrotyrosine content and stretch-induced proliferation, whereas knockdown of NOS-2 had no effect. We conclude that increased peroxynitrite generation by neonatal rat PASMCs subjected to supraphysiologic levels of cyclic stretch is NOS-1-dependent and that increased ROS production is predominantly mediated by NADPH oxidase, specifically NOX4.
Collapse
Affiliation(s)
- Andrew S Dick
- Physiology & Experimental Medicine Program, Hospital for Sick Children Research Institute, Toronto, ON, Canada M5G 1X8
| | - Julijana Ivanovska
- Physiology & Experimental Medicine Program, Hospital for Sick Children Research Institute, Toronto, ON, Canada M5G 1X8
| | - Crystal Kantores
- Physiology & Experimental Medicine Program, Hospital for Sick Children Research Institute, Toronto, ON, Canada M5G 1X8
| | - Rosetta Belcastro
- Physiology & Experimental Medicine Program, Hospital for Sick Children Research Institute, Toronto, ON, Canada M5G 1X8
| | - A Keith Tanswell
- Physiology & Experimental Medicine Program, Hospital for Sick Children Research Institute, Toronto, ON, Canada M5G 1X8; Department of Physiology, Division of Neonatology, Department of Paediatrics, and Heart and Stroke Richard Lewar Centre of Excellence, University of Toronto, Toronto, ON, Canada M5S 1A8; Division of Neonatology, Department of Paediatrics, and Heart and Stroke Richard Lewar Centre of Excellence, University of Toronto, Toronto, ON, Canada M5S 1A8
| | - Robert P Jankov
- Physiology & Experimental Medicine Program, Hospital for Sick Children Research Institute, Toronto, ON, Canada M5G 1X8; Department of Physiology, Division of Neonatology, Department of Paediatrics, and Heart and Stroke Richard Lewar Centre of Excellence, University of Toronto, Toronto, ON, Canada M5S 1A8; Division of Neonatology, Department of Paediatrics, and Heart and Stroke Richard Lewar Centre of Excellence, University of Toronto, Toronto, ON, Canada M5S 1A8; Heart and Stroke Richard Lewar Centre of Excellence, University of Toronto, Toronto, ON, Canada M5S 1A8.
| |
Collapse
|
92
|
Magnani ND, Marchini T, Vanasco V, Tasat DR, Alvarez S, Evelson P. Reactive oxygen species produced by NADPH oxidase and mitochondrial dysfunction in lung after an acute exposure to Residual Oil Fly Ashes. Toxicol Appl Pharmacol 2013; 270:31-8. [DOI: 10.1016/j.taap.2013.04.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 03/28/2013] [Accepted: 04/01/2013] [Indexed: 12/24/2022]
|
93
|
QSYQ Attenuates Oxidative Stress and Apoptosis Induced Heart Remodeling Rats through Different Subtypes of NADPH-Oxidase. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:824960. [PMID: 23861715 PMCID: PMC3686095 DOI: 10.1155/2013/824960] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 05/08/2013] [Accepted: 05/11/2013] [Indexed: 11/17/2022]
Abstract
We aim to investigate the therapeutic effects of QSYQ, a drug of heart failure (HF) in clinical practice in China, on a rat heart failure (HF) model. 3 groups were divided: HF model group (LAD ligation), QSYQ group (LAD ligation and treated with QSYQ), and sham-operated group. After 4 weeks, rats were sacrificed for cardiac injury measurements. Rats with HF showed obvious histological changes including necrosis and inflammation foci, elevated ventricular remodeling markers levels(matrix metalloproteinases-2, MMP-2), deregulated ejection fraction (EF) value, increased formation of oxidative stress (Malondialdehyde, MDA), and up-regulated levels of apoptotic cells (caspase-3, p53 and tunnel) in myocardial tissue. Treatment of QSYQ improved cardiac remodeling through counter-acting those events. The improvement of QSYQ was accompanied with a restoration of NADPH oxidase 4 (NOX4) and NADPH oxidase 2 (NOX2) pathways in different patterns. Administration of QSYQ could attenuate LAD-induced HF, and AngII-NOX2-ROS-MMPs pathway seemed to be the critical potential targets for QSYQ to reduce the remodeling. Moreover, NOX4 was another key targets to inhibit the p53 and Caspase3, thus to reduce the hypertrophy and apoptosis, and eventually provide a synergetic cardiac protective effect.
Collapse
|
94
|
Hayes P, Knaus UG. Balancing reactive oxygen species in the epigenome: NADPH oxidases as target and perpetrator. Antioxid Redox Signal 2013; 18:1937-45. [PMID: 23126619 DOI: 10.1089/ars.2012.4895] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
SIGNIFICANCE NADPH oxidases are important sources for regulated generation of reactive oxygen species (ROS). The main ROS produced are superoxide and hydrogen peroxide, both of which are redox signaling molecules in the context of various cellular functions. Redox imbalance due to excessive or insufficient ROS is a hallmark of pathophysiological aspects, including cancer development and progression. RECENT ADVANCES Epigenetic silencing of NADPH oxidases by hypermethylation of their promoter region or of the genes required for their assembly and activity occurs in diseases, such as lung cancer, and may represent an early stage of neoplastic transformation. CRITICAL ISSUES Loss of ROS-mediated signaling by epigenetic silencing may promote tumorigenesis. Conversely, increased oxidative stress caused by oncogene-induced overexpression of NADPH oxidases may also drive epigenetic instability. Thus, the cellular redox balance is likely vital in carcinogenesis. FUTURE DIRECTIONS NADPH oxidases may serve as prognostic tumor biomarker, especially when their individual expression is confined to accessible tissues, such as mucosal epithelia or blood. Further validation of NADPH oxidase/dual oxidase enzymes as candidate markers will require well controlled, large-scale clinical data sets. This review is focused on NADPH oxidases as targets of epigenetic changes in cancer and on the emerging role of ROS as inducers of epigenetic changes.
Collapse
Affiliation(s)
- Patti Hayes
- Conway Institute, University College Dublin, Dublin 4, Ireland
| | | |
Collapse
|
95
|
Lee I, Dodia C, Chatterjee S, Zagorski J, Mesaros C, Blair IA, Feinstein SI, Jain M, Fisher AB. A novel nontoxic inhibitor of the activation of NADPH oxidase reduces reactive oxygen species production in mouse lung. J Pharmacol Exp Ther 2013; 345:284-96. [PMID: 23475902 PMCID: PMC3629794 DOI: 10.1124/jpet.112.201079] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 03/07/2013] [Indexed: 01/25/2023] Open
Abstract
1-Hexadecyl-3-trifluoroethylglycero-sn-2-phosphomethanol (MJ33) is a fluorinated phospholipid analog that inhibits the phospholipase A2 (PLA2) activity of peroxiredoxin 6 (Prdx6). Prdx6 PLA2 activity is required for activation of NADPH oxidase 2 and subsequent generation of reactive oxygen species (ROS). In vitro, MJ33 inhibited agonist-stimulated production of ROS by the isolated perfused mouse lung, lung microvascular endothelial cells, and polymorphonuclear leukocytes. MJ33 (0.02-0.5 µmol MJ33/kg body weight) in mixed unilamellar liposomes was administered to C57BL/6 mice by either intratracheal (i.t.) or i.v. routes. Lung MJ33 content, measured by liquid chromatography/mass spectroscopy, showed uptake of 67-87% of the injected dose for i.t. and 23-42% for i.v. administration at 4 hours postinjection. PLA2 activity of lung homogenates was markedly inhibited (>85%) at 4 hours postadministration. Both MJ33 content and PLA2 activity gradually returned to near control levels over the subsequent 24-72 hours. Mice treated with MJ33 at 12.5-25 µmol/kg did not show changes (compared with control) in clinical symptomatology, body weight, hematocrit, and histology of lung, liver, and kidney during a 30- to 50-day observation period. Thus, the toxic dose of MJ33 was >25 µmol/kg, whereas the PLA2 inhibitory dose was approximately 0.02 µmol/kg, indicating a high margin of safety. MJ33 administered to mice prior to lung isolation markedly reduced ROS production and tissue lipid and protein oxidation during ischemia followed by reperfusion. Thus, MJ33 could be useful as a therapeutic agent to prevent ROS-mediated tissue injury associated with lung inflammation or in harvested lungs prior to transplantation.
Collapse
Affiliation(s)
- Intae Lee
- Institute for Environmental Medicine, University of Pennsylvania, 3620 Hamilton Walk, 1 John Morgan Building, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
96
|
Bindoli A, Rigobello MP. Principles in redox signaling: from chemistry to functional significance. Antioxid Redox Signal 2013; 18:1557-93. [PMID: 23244515 DOI: 10.1089/ars.2012.4655] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Reactive oxygen and nitrogen species are currently considered not only harmful byproducts of aerobic respiration but also critical mediators of redox signaling. The molecules and the chemical principles sustaining the network of cellular redox regulated processes are described. Special emphasis is placed on hydrogen peroxide (H(2)O(2)), now considered as acting as a second messenger, and on sulfhydryl groups, which are the direct targets of the oxidant signal. Cysteine residues of some proteins, therefore, act as sensors of redox conditions and are oxidized in a reversible reaction. In particular, the formation of sulfenic acid and disulfide, the initial steps of thiol oxidation, are described in detail. The many cell pathways involved in reactive oxygen species formation are reported. Central to redox signaling processes are the glutathione and thioredoxin systems controlling H(2)O(2) levels and, hence, the thiol/disulfide balance. Lastly, some of the most important redox-regulated processes involving specific enzymes and organelles are described. The redox signaling area of research is rapidly expanding, and future work will examine new pathways and clarify their importance in cellular pathophysiology.
Collapse
Affiliation(s)
- Alberto Bindoli
- Institute of Neuroscience (CNR), Department of Biomedical Sciences, University of Padova, Padova, Italy.
| | | |
Collapse
|
97
|
Raad H, Eskalli Z, Corvilain B, Miot F, De Deken X. Thyroid hydrogen peroxide production is enhanced by the Th2 cytokines, IL-4 and IL-13, through increased expression of the dual oxidase 2 and its maturation factor DUOXA2. Free Radic Biol Med 2013; 56:216-25. [PMID: 23010498 DOI: 10.1016/j.freeradbiomed.2012.09.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Revised: 08/22/2012] [Accepted: 09/06/2012] [Indexed: 02/07/2023]
Abstract
The dual oxidases (DUOX) 1 and 2 constitute the major components of the thyroid H(2)O(2)-generating system required for thyroid hormone synthesis. With their maturation factor, DUOXA1 or DUOXA2, they share the same bidirectional promoter allowing coexpression of DUOX/DUOXA in the same tissue. However, the molecular mechanisms regulating their transcription in the human thyroid gland are not well characterized yet. Inflammatory molecules associated with autoimmune thyroid diseases have been shown to repress the thyroid function by down-regulating the expression of the major thyroid differentiation markers. These findings led us to investigate the effects of the main cytokines involved in Hashimoto thyroiditis (IFN-γ) and Graves' diseases (IL-4/IL-13) on the transcriptional regulation of DUOX and their corresponding DUOXA genes in thyroid cells. Human thyrocytes exposed to the Th2 cytokines IL-4 and IL-13 showed up-regulation of DUOX2 and DUOXA2 genes but not DUOX1/DUOXA1. The DUOX2/DUOXA2 induction was rapid and associated with a significant increase of calcium-stimulated extracellular H(2)O(2) generation. IFN-γ treatment inhibited DUOX gene expression and repressed the Th2 cytokine-dependent DUOX2/DUOXA2 expression. In another DUOX-expressing model, the human intestinal Caco-2 cell line, expression of DUOX2 and DUOXA2 mRNA was also positively modulated by IL-4 and IL-13. Analysis of the IL-4 signaling pathway revealed that the JAK1-STAT6 cascade activated by the IL-4 type 2 receptor is required for DUOX2/DUOXA2 induction. The present data open new perspectives for a better understanding of the pathophysiology of thyroid autoimmune diseases considering DUOX2-mediated oxidative damages.
Collapse
Affiliation(s)
- Houssam Raad
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université libre de Bruxelles (ULB), 808 route de Lennik, Brussels, Belgium
| | | | | | | | | |
Collapse
|
98
|
Sham D, Wesley UV, Hristova M, van der Vliet A. ATP-mediated transactivation of the epidermal growth factor receptor in airway epithelial cells involves DUOX1-dependent oxidation of Src and ADAM17. PLoS One 2013; 8:e54391. [PMID: 23349873 PMCID: PMC3548788 DOI: 10.1371/journal.pone.0054391] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Accepted: 12/11/2012] [Indexed: 11/26/2022] Open
Abstract
The respiratory epithelium is subject to continuous environmental stress and its responses to injury or infection are largely mediated by transactivation of the epidermal growth factor receptor (EGFR) and downstream signaling cascades. Based on previous studies indicating involvement of ATP-dependent activation of the NADPH oxidase homolog DUOX1 in epithelial wound responses, the present studies were performed to elucidate the mechanisms by which DUOX1-derived H2O2 participates in ATP-dependent redox signaling and EGFR transactivation. ATP-mediated EGFR transactivation in airway epithelial cells was found to involve purinergic P2Y2 receptor stimulation, and both ligand-dependent mechanisms as well as ligand-independent EGFR activation by the non-receptor tyrosine kinase Src. Activation of Src was also essential for ATP-dependent activation of the sheddase ADAM17, which is responsible for liberation and activation of EGFR ligands. Activation of P2Y2R results in recruitment of Src and DUOX1 into a signaling complex, and transient siRNA silencing or stable shRNA transfection established a critical role for DUOX1 in ATP-dependent activation of Src, ADAM17, EGFR, and downstream wound responses. Using thiol-specific biotin labeling strategies, we determined that ATP-dependent EGFR transactivation was associated with DUOX1-dependent oxidation of cysteine residues within Src as well as ADAM17. In aggregate, our findings demonstrate that DUOX1 plays a central role in overall epithelial defense responses to infection or injury, by mediating oxidative activation of Src and ADAM17 in response to ATP-dependent P2Y2R activation as a proximal step in EGFR transactivation and downstream signaling.
Collapse
Affiliation(s)
- Derek Sham
- Department of Pathology, College of Medicine, University of Vermont, Burlington, Vermont, United States of America
| | - Umadevi V. Wesley
- Department of Microbiology and Molecular Genetics, College of Medicine, University of Vermont, Burlington, Vermont, United States of America
- Vermont Lung Center, University of Vermont, Burlington, Vermont, United States of America
| | - Milena Hristova
- Department of Pathology, College of Medicine, University of Vermont, Burlington, Vermont, United States of America
| | - Albert van der Vliet
- Department of Pathology, College of Medicine, University of Vermont, Burlington, Vermont, United States of America
- * E-mail:
| |
Collapse
|
99
|
Chen J, Zeng T, Bi Y, Zhong Z, Xie K, Zhao X. Docosahexaenoic acid (DHA) attenuated paraquat induced lung damage in mice. Inhal Toxicol 2013; 25:9-16. [DOI: 10.3109/08958378.2012.750405] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
100
|
Whey protein hydrolysates decrease IL-8 secretion in lipopolysaccharide (LPS)-stimulated respiratory epithelial cells by affecting LPS binding to Toll-like receptor 4. Br J Nutr 2013; 110:58-68. [PMID: 23286514 DOI: 10.1017/s0007114512004655] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
UNLABELLED Whey proteins (WP) exert anti-inflammatory and antioxidant effects. Hyperbaric pressurisation of whey increases its digestibility and changes the spectrum of peptides released during digestion. We have shown that dietary supplementation with pressurised whey improves nutritional status and systemic inflammation in patients with cystic fibrosis (CF). Both clinical indices are largely affected by airway processes, to which respiratory epithelial cells actively contribute. Here, we tested whether peptides released from the digestion of pressurised whey can attenuate the inflammatory responses of CF respiratory epithelial cells. Hydrolysates of pressurised WP (pWP) and native WP (nWP, control) were generated in vitro and tested for anti-inflammatory properties judged by the suppression of IL-8 production in CF and non-CF respiratory epithelial cell lines (CFTE29o- and 1HAEo-, respectively). We observed that, in both cell lines, pWP hydrolysate suppressed IL-8 production stimulated by lipopolysaccharide (LPS) to a greater magnitude compared with nWP hydrolysate. Neither hydrolysate suppressed IL-8 production induced by TNF-α or IL-1β, suggesting an effect on the Toll-like receptor (TLR) 4 pathway, the cellular sensor for LPS. Further, neither hydrolysate affected TLR4 expression or neutralised LPS. Both pWP and nWP hydrolysates similarly reduced LPS binding to surface TLR4, while pWP tended to more potently increase extracellular antioxidant capacity. IN CONCLUSION (1) anti-inflammatory properties of whey are enhanced by pressurisation; (2) suppression of IL-8 production may contribute to the clinical effects of pressurised whey supplementation on CF; (3) this effect may be partly explained by a combination of reduced LPS binding to TLR4 and enhanced extracellular antioxidant capacity.
Collapse
|