51
|
Siddique YH, Naz F, Rahul, Varshney H. Comparative study of rivastigmine and galantamine on the transgenic Drosophila model of Alzheimer's disease. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2022; 3:100120. [PMID: 35992376 PMCID: PMC9389239 DOI: 10.1016/j.crphar.2022.100120] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 12/13/2022] Open
Abstract
Alzheimer's Disease (AD) is characterized as a progressive neurodegenerative disease most commonly associated with memory deficits and cognitive decline. The formation of amyloid plaques and neurofibrillary tangles are important pathological markers of AD. The accumulation of amyloid plaques and neurofibrillary tangles leads to the loss of neurons including the cholinergic neurons thus decreasing the levels of acetylcholine (a neurotransmitter). To reduce the AD symptoms cholinesterase inhibitors are widely used to decrease the hydrolysis of acetylcholine released from presynaptic neurons. In the present study we have studied the effect of rivastigmine and galantamine (commonly used cholinesterase inhibitors) on the transgenic Drosophila model of AD expressing human Aβ-42 in the neurons. The effect of similar doses of rivastigmine and galantamine (i.e. 0.1,1 and 10 mM) was studied on the climbing ability, lifespan, oxidative stress markers, caspase 9 and 3, acetylcholinesterase activity and on the formation of Aβ-42 aggregates. The results suggest that the rivastigmine is more potent in reducing the oxidative stress and improving climbing ability of AD flies. Both the drugs were found to be effective in increasing the lifespan of AD flies. Galantamine was found to be a more potent inhibitor of acetylcholinesterase compared to rivastigmine. Galantamine prevents the formation of Aβ-42 aggregates more effectively compared to rivastigmine.
Collapse
Affiliation(s)
- Yasir Hasan Siddique
- Drosophila Transgenic Laboratory, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh-202002, Uttar Pradesh, India
| | - Falaq Naz
- Drosophila Transgenic Laboratory, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh-202002, Uttar Pradesh, India
| | - Rahul
- Drosophila Transgenic Laboratory, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh-202002, Uttar Pradesh, India
| | - Himanshi Varshney
- Drosophila Transgenic Laboratory, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh-202002, Uttar Pradesh, India
| |
Collapse
|
52
|
Wang Y, Chuang CY, Hawkins CL, Davies MJ. Activation and Inhibition of Human Matrix Metalloproteinase-9 (MMP9) by HOCl, Myeloperoxidase and Chloramines. Antioxidants (Basel) 2022; 11:antiox11081616. [PMID: 36009335 PMCID: PMC9405048 DOI: 10.3390/antiox11081616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 11/24/2022] Open
Abstract
Matrix metalloproteinase-9 (MMP9, gelatinase B) plays a key role in the degradation of extracellular-matrix (ECM) proteins in both normal physiology and multiple pathologies, including those linked with inflammation. MMP9 is excreted as an inactive proform (proMMP9) by multiple cells, and particularly neutrophils. The proenzyme undergoes subsequent processing to active forms, either enzymatically (e.g., via plasmin and stromelysin-1/MMP3), or via the oxidation of a cysteine residue in the prodomain (the “cysteine-switch”). Activated leukocytes, including neutrophils, generate O2− and H2O2 and release myeloperoxidase (MPO), which catalyzes hypochlorous acid (HOCl) formation. Here, we examine the reactivity of HOCl and a range of low-molecular-mass and protein chloramines with the pro- and activated forms of MMP9. HOCl and an enzymatic MPO/H2O2/Cl− system were able to generate active MMP9, as determined by fluorescence-activity assays and gel zymography. The inactivation of active MMP9 also occurred at high HOCl concentrations. Low (nM—low μM) concentrations of chloramines formed by the reaction of HOCl with amino acids (taurine, lysine, histidine), serum albumin, ECM proteins (laminin and fibronectin) and basement membrane extracts (but not HEPES chloramines) also activate proMMP9. This activation is diminished by the competitive HOCl-reactive species, methionine. These data indicate that HOCl-mediated oxidation and MMP-mediated ECM degradation are synergistic and interdependent. As previous studies have shown that modified ECM proteins can also stimulate the cellular expression of MMP proteins, these processes may contribute to a vicious cycle of increasing ECM degradation during disease development.
Collapse
Affiliation(s)
- Yihe Wang
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Christine Y Chuang
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Clare L Hawkins
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Michael J Davies
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, 2200 Copenhagen, Denmark
| |
Collapse
|
53
|
Ramiro-Cortijo D, Gila-Diaz A, Herranz Carrillo G, Cañas S, Gil-Ramírez A, Ruvira S, Martin-Cabrejas MA, Arribas SM. Influence of Neonatal Sex on Breast Milk Protein and Antioxidant Content in Spanish Women in the First Month of Lactation. Antioxidants (Basel) 2022; 11:antiox11081472. [PMID: 36009190 PMCID: PMC9405477 DOI: 10.3390/antiox11081472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/16/2022] [Accepted: 07/26/2022] [Indexed: 11/16/2022] Open
Abstract
Breast milk (BM) is the best food for newborns. Male sex is associated with a higher risk of fetal programming, prematurity, and adverse postnatal outcome, being that BM is an important health determinant. BM composition is dynamic and modified by several factors, including lactation period, prematurity, maternal nutritional status, and others. This study was designed to evaluate the influence of sex on BM composition during the first month of lactation, focused on macronutrients and antioxidants. Forty-eight breastfeeding women and their fifty-five newborns were recruited at the Hospital Clínico San Carlos (Madrid, Spain). Clinical sociodemographic data and anthropometric parameters were collected. BM samples were obtained at days 7, 14, and 28 of lactation to assess fat (Mojonnier method), protein (Bradford method), and biomarkers of oxidative status: total antioxidant capacity (ABTS and FRAP methods), thiol groups, reduced glutathione, superoxide dismutase and catalase activities, lipid peroxidation, and protein oxidation (spectrophotometric methods). Linear mixed models with random effects adjusted by maternal anthropometry, neonatal Z-scores at birth, and gestational age were used to assess the main effects of sex, lactation period, and their interaction. BM from mothers with male neonates exhibited significantly higher protein, ABTS, FRAP, and GSH levels, while catalase showed the opposite trend. No differences between sexes were observed in SOD, total thiols, and oxidative damage biomarkers. Most changes were observed on day 7 of lactation. Adjusted models demonstrated a significant association between male sex and proteins (β = 2.70 ± 1.20; p-Value = 0.048). In addition, total antioxidant capacity by ABTS (β = 0.11 ± 0.06) and GSH (β = 1.82 ± 0.94) showed a positive trend near significance (p-Value = 0.056; p-Value = 0.064, respectively). In conclusion, transitional milk showed sex differences in composition with higher protein and GSH levels in males. This may represent an advantage in the immediate perinatal period, which may help to counteract the worse adaptation of males to adverse intrauterine environments and prematurity.
Collapse
Affiliation(s)
- David Ramiro-Cortijo
- Department of Physiology, Faculty of Medicine, Universidad Autónoma de Madrid, C/Arzobispo Morcillo, 2, 28029 Madrid, Spain; (D.R.-C.); (A.G.-D.); (S.R.)
- Food, Oxidative Stress and Cardiovascular Health (FOSCH) Research Group, Universidad Autónoma de Madrid, Ciudad Universitaria de Cantoblanco, 28049 Madrid, Spain; (S.C.); (A.G.-R.); (M.A.M.-C.)
| | - Andrea Gila-Diaz
- Department of Physiology, Faculty of Medicine, Universidad Autónoma de Madrid, C/Arzobispo Morcillo, 2, 28029 Madrid, Spain; (D.R.-C.); (A.G.-D.); (S.R.)
- Food, Oxidative Stress and Cardiovascular Health (FOSCH) Research Group, Universidad Autónoma de Madrid, Ciudad Universitaria de Cantoblanco, 28049 Madrid, Spain; (S.C.); (A.G.-R.); (M.A.M.-C.)
| | - Gloria Herranz Carrillo
- Division of Neonatology, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), C/Profesor Martin Lagos s/n, 28040 Madrid, Spain;
| | - Silvia Cañas
- Food, Oxidative Stress and Cardiovascular Health (FOSCH) Research Group, Universidad Autónoma de Madrid, Ciudad Universitaria de Cantoblanco, 28049 Madrid, Spain; (S.C.); (A.G.-R.); (M.A.M.-C.)
- Department of Agricultural Chemistry and Food Science, Faculty of Science, Universidad Autónoma de Madrid, Ciudad Universitaria de Cantoblanco, 28049 Madrid, Spain
- Institute of Food Science Research, CIAL (UAM-CSIC), Universidad Autonoma de Madrid, C/Nicolás Cabrera, 9, 28049 Madrid, Spain
| | - Alicia Gil-Ramírez
- Food, Oxidative Stress and Cardiovascular Health (FOSCH) Research Group, Universidad Autónoma de Madrid, Ciudad Universitaria de Cantoblanco, 28049 Madrid, Spain; (S.C.); (A.G.-R.); (M.A.M.-C.)
- Department of Agricultural Chemistry and Food Science, Faculty of Science, Universidad Autónoma de Madrid, Ciudad Universitaria de Cantoblanco, 28049 Madrid, Spain
- Institute of Food Science Research, CIAL (UAM-CSIC), Universidad Autonoma de Madrid, C/Nicolás Cabrera, 9, 28049 Madrid, Spain
| | - Santiago Ruvira
- Department of Physiology, Faculty of Medicine, Universidad Autónoma de Madrid, C/Arzobispo Morcillo, 2, 28029 Madrid, Spain; (D.R.-C.); (A.G.-D.); (S.R.)
- Food, Oxidative Stress and Cardiovascular Health (FOSCH) Research Group, Universidad Autónoma de Madrid, Ciudad Universitaria de Cantoblanco, 28049 Madrid, Spain; (S.C.); (A.G.-R.); (M.A.M.-C.)
- PhD Programme in Pharmacology and Physiology, Doctoral School, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - María A. Martin-Cabrejas
- Food, Oxidative Stress and Cardiovascular Health (FOSCH) Research Group, Universidad Autónoma de Madrid, Ciudad Universitaria de Cantoblanco, 28049 Madrid, Spain; (S.C.); (A.G.-R.); (M.A.M.-C.)
- Department of Agricultural Chemistry and Food Science, Faculty of Science, Universidad Autónoma de Madrid, Ciudad Universitaria de Cantoblanco, 28049 Madrid, Spain
- Institute of Food Science Research, CIAL (UAM-CSIC), Universidad Autonoma de Madrid, C/Nicolás Cabrera, 9, 28049 Madrid, Spain
| | - Silvia M. Arribas
- Department of Physiology, Faculty of Medicine, Universidad Autónoma de Madrid, C/Arzobispo Morcillo, 2, 28029 Madrid, Spain; (D.R.-C.); (A.G.-D.); (S.R.)
- Food, Oxidative Stress and Cardiovascular Health (FOSCH) Research Group, Universidad Autónoma de Madrid, Ciudad Universitaria de Cantoblanco, 28049 Madrid, Spain; (S.C.); (A.G.-R.); (M.A.M.-C.)
- Correspondence:
| |
Collapse
|
54
|
Detection of protein oxidation products by fluorescence spectroscopy and trilinear data decomposition: Proof of concept. Food Chem 2022; 396:133732. [PMID: 35872499 DOI: 10.1016/j.foodchem.2022.133732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 06/21/2022] [Accepted: 07/15/2022] [Indexed: 11/19/2022]
Abstract
Current analytical methods studying protein oxidation modifications require laborious sample preparation and chromatographic methods. Fluorescence spectroscopy is an alternative, as many protein oxidation products are fluorescent. However, the complexity of the signal causes misinterpretation and quantification errors if single emission spectra are used. Here, we analyzed the entire fluorescence excitation-emission matrix using the trilinear decomposition method parallel factor analysis (PARAFAC). Two sample sets were used: a calibration set based on known mixtures of tryptophan, tyrosine, and four oxidation products, and a second sample set of oxidized protein solutions containing UV-illuminated β-lactoglobulin. The PARAFAC model succeeded in resolving the signals of the model systems into the pure fluorophore components and estimating their concentrations. The estimated concentrations for the illuminated β-lactoglobulin samples were validated by liquid chromatography-mass spectrometry. Our approach is a promising tool for reliable identification and quantification of fluorescent protein oxidation products, even in a complex protein system.
Collapse
|
55
|
Li S, Guo X, Shen Y, Pan J, Dong X. Effects of oxygen concentrations in modified atmosphere packaging on pork quality and protein oxidation. Meat Sci 2022; 189:108826. [PMID: 35429825 DOI: 10.1016/j.meatsci.2022.108826] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 03/12/2022] [Accepted: 04/08/2022] [Indexed: 10/18/2022]
Abstract
This study aimed to investigate the effects of oxygen concentrations in modified atmosphere packaging (MAP) on pork color and protein oxidation under refrigerated storage. Pork steaks were vacuum packaged or MAP packed with different levels of oxygen (40%, 60% and 80%), and stored for 14 days at 4 °C. After storage, the instrumental color, purge loss, cooking loss and shear fore were measured, and levels of protein oxidation in both the sarcoplasmic and myofibrillar proteins were quantified separately by the determination of carbonyl contents, thiol contents, loss of specific amino acid residues, and formation of α-aminoadipic semialdehyde. Results suggested that 40% of oxygen in MAP was sufficient to obtain highest redness, and higher oxygen levels showed little improvement but led to further protein carbonylation and meat toughening. Meanwhile, the sarcoplasmic proteins seemed to be more vulnerable to protein oxidation than the myofibrillar proteins. In particular, the formation of α-aminoadipic semialdehyde might contribute little to the carbonylation of both protein fractions, and possible reasons were discussed.
Collapse
Affiliation(s)
- Shengjie Li
- School of Food Science and Technology, Dalian Polytechnic University, Ganjingzi #1, 116304 Dalian, Liaoning, China; National Engineering Research Center of Seafood, Ganjingzi #1, 116304 Dalian, Liaoning, China.
| | - Xiuxia Guo
- School of Food Science and Technology, Dalian Polytechnic University, Ganjingzi #1, 116304 Dalian, Liaoning, China
| | - Yuqing Shen
- School of Food Science and Technology, Dalian Polytechnic University, Ganjingzi #1, 116304 Dalian, Liaoning, China
| | - Jinfeng Pan
- School of Food Science and Technology, Dalian Polytechnic University, Ganjingzi #1, 116304 Dalian, Liaoning, China; National Engineering Research Center of Seafood, Ganjingzi #1, 116304 Dalian, Liaoning, China
| | - Xiuping Dong
- School of Food Science and Technology, Dalian Polytechnic University, Ganjingzi #1, 116304 Dalian, Liaoning, China; National Engineering Research Center of Seafood, Ganjingzi #1, 116304 Dalian, Liaoning, China
| |
Collapse
|
56
|
Murphy MP, Bayir H, Belousov V, Chang CJ, Davies KJA, Davies MJ, Dick TP, Finkel T, Forman HJ, Janssen-Heininger Y, Gems D, Kagan VE, Kalyanaraman B, Larsson NG, Milne GL, Nyström T, Poulsen HE, Radi R, Van Remmen H, Schumacker PT, Thornalley PJ, Toyokuni S, Winterbourn CC, Yin H, Halliwell B. Guidelines for measuring reactive oxygen species and oxidative damage in cells and in vivo. Nat Metab 2022; 4:651-662. [PMID: 35760871 PMCID: PMC9711940 DOI: 10.1038/s42255-022-00591-z] [Citation(s) in RCA: 601] [Impact Index Per Article: 200.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 05/19/2022] [Indexed: 01/14/2023]
Abstract
Multiple roles of reactive oxygen species (ROS) and their consequences for health and disease are emerging throughout biological sciences. This development has led researchers unfamiliar with the complexities of ROS and their reactions to employ commercial kits and probes to measure ROS and oxidative damage inappropriately, treating ROS (a generic abbreviation) as if it were a discrete molecular entity. Unfortunately, the application and interpretation of these measurements are fraught with challenges and limitations. This can lead to misleading claims entering the literature and impeding progress, despite a well-established body of knowledge on how best to assess individual ROS, their reactions, role as signalling molecules and the oxidative damage that they can cause. In this consensus statement we illuminate problems that can arise with many commonly used approaches for measurement of ROS and oxidative damage, and propose guidelines for best practice. We hope that these strategies will be useful to those who find their research requiring assessment of ROS, oxidative damage and redox signalling in cells and in vivo.
Collapse
Affiliation(s)
- Michael P Murphy
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK.
| | - Hülya Bayir
- Department of Critical Care Medicine, Safar Center for Resuscitation Research, Children's Neuroscience Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Environmental and Occupational Health, Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Vsevolod Belousov
- Federal Center of Brain Research and Neurotechnologies, Moscow, Russian Federation
| | | | - Kelvin J A Davies
- Gerontology, Molecular & Computational Biology, and Biochemistry & Molecular Medicine, University of Southern California, Los Angeles, CA, USA
| | - Michael J Davies
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Tobias P Dick
- German Cancer Research Center, DKFZ-ZMBH Alliance and Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | | | - Henry J Forman
- Gerontology, Molecular & Computational Biology, and Biochemistry & Molecular Medicine, University of Southern California, Los Angeles, CA, USA
- School of Natural Sciences, University of California, Merced, Merced, CA, USA
| | - Yvonne Janssen-Heininger
- Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, London, UK
| | - David Gems
- University of Vermont, Burlington, VT, USA
| | - Valerian E Kagan
- Department of Environmental and Occupational Health, Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Nils-Göran Larsson
- Division of Molecular Metabolism, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Ginger L Milne
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | | | - Rafael Radi
- Universidad de la República, Montevideo, Uruguay
| | | | | | - Paul J Thornalley
- Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Shinya Toyokuni
- Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Christine C Winterbourn
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Huiyong Yin
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Barry Halliwell
- Department of Biochemistry and Life Sciences Institute Neurobiogy Programme, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
57
|
Shi H, El Kazzi M, Liu Y, Gao A, Schroder AL, Vuong S, Young PA, Rayner BS, Vreden C, King NJC, Witting PK. Multiplex analysis of mass imaging data: Application to the pathology of experimental myocardial infarction. Acta Physiol (Oxf) 2022; 235:e13790. [PMID: 35080155 PMCID: PMC9286669 DOI: 10.1111/apha.13790] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/12/2022] [Accepted: 01/18/2022] [Indexed: 12/28/2022]
Abstract
Aim Imaging mass cytometry (IMC) affords simultaneous immune‐labelling/imaging of multiple antigens in the same tissue. Methods utilizing multiplex data beyond co‐registration are lacking. This study developed and applied an innovative spatial analysis workflow for multiplex imaging data to IMC data determined from cardiac tissues and revealed the mechanism(s) of neutrophil‐mediated post‐myocardial‐infarction damage. Methods IMC produced multiplex images with various redox/inflammatory markers. The cardiac peri‐infarct zone (PIZ) was determined to be up to 240 µm from the infarct border based on the presence of neutrophils. The tissue region beyond the infarct was defined as the remote area (RA). ImageJ was used to quantify the immunoreactivity. Functional assessments included infarct size, cell necro/apoptosis, total thiol assay and echocardiogram. Results Expression of damage markers decreased in order from the infarct area to PIZ and then RA, reflecting the neutrophil density in the regions. Concentrically spaced “shoreline contour analysis” around the cardiac infarct extending into the PIZ showed that immunoreactivity for damage markers decreased linearly with increasing distance from the infarct, concomitant with a decreasing neutrophil‐myeloperoxidase (MPO) gradient from the infarct to the PIZ. Stratifying by concentric bands around individual MPO+‐signal identified that the immunoreactivity of haem‐oxygenase‐1 (HO‐1) and phosphorylated‐p38 mitogen‐activated protein kinase (pP38) peaked near neutrophils. Furthermore, spatial dependence between neutrophils and markers of cardiac cellular damage was confirmed by nearest‐neighbour distance analysis. Post‐infarction tissue exhibited declined functional parameters that were associated with neutrophil migration from the infarct to PIZ. Conclusion This image‐based quantitative protocol revealed the spatial association and provided potential molecular pathways responsible for neutrophil‐mediated damage post‐infarction.
Collapse
Affiliation(s)
- Han Shi
- Redox Biology Group Discipline of Pathology Faculty of Medicine and Health Charles Perkins Centre The University of Sydney Sydney New South Wales Australia
| | - Mary El Kazzi
- Redox Biology Group Discipline of Pathology Faculty of Medicine and Health Charles Perkins Centre The University of Sydney Sydney New South Wales Australia
| | - Yuyang Liu
- Redox Biology Group Discipline of Pathology Faculty of Medicine and Health Charles Perkins Centre The University of Sydney Sydney New South Wales Australia
| | - Antony Gao
- Redox Biology Group Discipline of Pathology Faculty of Medicine and Health Charles Perkins Centre The University of Sydney Sydney New South Wales Australia
| | - Angie L. Schroder
- Redox Biology Group Discipline of Pathology Faculty of Medicine and Health Charles Perkins Centre The University of Sydney Sydney New South Wales Australia
| | - Sally Vuong
- The Heart Research Institute Faculty of Medicine and Health The University of Sydney Sydney New South Wales Australia
| | - Pamela A. Young
- Australian Centre for Microscopy & Microanalysis Charles Perkins Centre The University of Sydney Sydney New South Wales Australia
| | - Benjamin S. Rayner
- The Heart Research Institute Faculty of Medicine and Health The University of Sydney Sydney New South Wales Australia
| | - Caryn Vreden
- Immunopathology Group Discipline of Pathology Faculty of Medicine and Health Charles Perkins Centre The University of Sydney Sydney New South Wales Australia
- Sydney Cytometry Facility and Ramaciotti Facility for Human Systems Biology The University of Sydney Sydney New South Wales Australia
| | - Nicholas J. C. King
- Immunopathology Group Discipline of Pathology Faculty of Medicine and Health Charles Perkins Centre The University of Sydney Sydney New South Wales Australia
- Sydney Cytometry Facility and Ramaciotti Facility for Human Systems Biology The University of Sydney Sydney New South Wales Australia
- Marie Bashir Institute for Infectious Disease and Biosecurity The University of Sydney Sydney New South Wales Australia
- The University of Sydney Nano Institute The University of Sydney Sydney New South Wales Australia
| | - Paul K. Witting
- Redox Biology Group Discipline of Pathology Faculty of Medicine and Health Charles Perkins Centre The University of Sydney Sydney New South Wales Australia
- The University of Sydney Nano Institute The University of Sydney Sydney New South Wales Australia
| |
Collapse
|
58
|
Huang H, Yi J, Fan Y. Influence of peroxyl radical-induced oxidation on structural characteristics, emulsifying, and foaming properties of α-lactalbumin. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
59
|
Metabolic Response to Tick-Borne Encephalitis Virus Infection and Bacterial Co-Infections. Pathogens 2022; 11:pathogens11040384. [PMID: 35456059 PMCID: PMC9030592 DOI: 10.3390/pathogens11040384] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/20/2022] [Accepted: 03/21/2022] [Indexed: 02/05/2023] Open
Abstract
Ticks are vectors of various pathogens, including tick-borne encephalitis virus and bacteria such as B. burgdorferi and A. phagocytophilum, causing infections/co-infections, which are still a diagnostic and therapeutic problem. Therefore, the aim of this study was to compare the effects of TBEV infection/bacterial co-infection on metabolic changes in the blood of patients before and after treatment. It was found that those infections promote plasma ROS enhanced generation and antioxidant defence reduction, especially in relation to glutathione and thioredoxin systems, despite the increased effectiveness of Nrf2 transcription factor in granulocytes. Observed oxidative stress promotes the oxidative modifications of phospholipids containing polyunsaturated fatty acids (LA, AA, EPA) with increased lipid peroxidation (estimated as 8-isoPGF2α, 4-HNE). It is accompanied by protein modifications measured as 4-HNE-protein adducts, carbonyl groups, dityrosine increase, and tryptophan level decrease, which promote structural and functional modification of the following transcription factors: Nrf2 and NFkB inhibitors. The lower level of 8-iso-PGF2α in co-infections indicates an impairment of the body’s ability to intensify inflammation and fight co-infections, while an increased level of Trx after therapy may contribute to the intensification of the inflammatory process. The obtained results indicate the potential possibility of using the assessed metabolic parameters to introduce targeted pharmacotherapy in cases of TBEV infections/bacterial co-infections.
Collapse
|
60
|
Vieira-Rocha MS, Rodriguez-Rodriguez P, Ferreira-Duarte M, Faria M, Sousa JB, Morato M, Arribas SM, Diniz C. Fetal Undernutrition Modifies Vascular RAS Balance Enhancing Oxidative Damage and Contributing to Remodeling. Int J Mol Sci 2022; 23:1233. [PMID: 35163158 PMCID: PMC8835999 DOI: 10.3390/ijms23031233] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/18/2022] [Accepted: 01/21/2022] [Indexed: 12/21/2022] Open
Abstract
Fetal stress is known to increase susceptibility to cardiometabolic diseases and hypertension in adult age in a process known as fetal programming. This study investigated the relationship between vascular RAS, oxidative damage and remodeling in fetal programming. Six-month old Sprague-Dawley offspring from mothers that were fed ad libitum (CONTROL) or with 50% intake during the second half of gestation (maternal undernutrition, MUN) were used. qPCR or immunohistochemistry were used to obtain the expression of receptors and enzymes. Plasma levels of carbonyls were measured by spectrophotometry. In mesenteric arteries from MUN rats we detected an upregulation of ACE, ACE2, AT1 receptors and NADPH oxidase, and lower expression of AT2, Mas and MrgD receptors compared to CONTROL. Systolic and diastolic blood pressure and plasma levels of carbonyls were higher in MUN than in CONTROL. Vascular morphology evidenced an increased media/lumen ratio and adventitia/lumen ratio, and more connective tissue in MUN compared to CONTROL. In conclusion, fetal undernutrition indices RAS alterations and oxidative damage which may contribute to the remodeling of mesenteric arteries, and increase the risk of adverse cardiovascular events and hypertension.
Collapse
Affiliation(s)
- Maria Sofia Vieira-Rocha
- Laboratory of Pharmacology, Department of Drug Science, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (M.F.-D.); (J.B.S.); (M.M.)
- LAQV/REQUIMTE, Faculty of Pharmacy, University of Porto, 4099-002 Porto, Portugal;
| | - Pilar Rodriguez-Rodriguez
- Department of Physiology, Faculty of Medicine, Universidad Autonoma de Madrid, 28049 Madrid, Spain; (P.R.-R.); (S.M.A.)
| | - Mariana Ferreira-Duarte
- Laboratory of Pharmacology, Department of Drug Science, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (M.F.-D.); (J.B.S.); (M.M.)
- LAQV/REQUIMTE, Faculty of Pharmacy, University of Porto, 4099-002 Porto, Portugal;
| | - Miguel Faria
- LAQV/REQUIMTE, Faculty of Pharmacy, University of Porto, 4099-002 Porto, Portugal;
- Laboratory of Bromatology and Hydrology, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4099-002 Porto, Portugal
| | - Joana Beatriz Sousa
- Laboratory of Pharmacology, Department of Drug Science, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (M.F.-D.); (J.B.S.); (M.M.)
- LAQV/REQUIMTE, Faculty of Pharmacy, University of Porto, 4099-002 Porto, Portugal;
| | - Manuela Morato
- Laboratory of Pharmacology, Department of Drug Science, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (M.F.-D.); (J.B.S.); (M.M.)
- LAQV/REQUIMTE, Faculty of Pharmacy, University of Porto, 4099-002 Porto, Portugal;
| | - Silvia Magdalena Arribas
- Department of Physiology, Faculty of Medicine, Universidad Autonoma de Madrid, 28049 Madrid, Spain; (P.R.-R.); (S.M.A.)
| | - Carmen Diniz
- Laboratory of Pharmacology, Department of Drug Science, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (M.F.-D.); (J.B.S.); (M.M.)
- LAQV/REQUIMTE, Faculty of Pharmacy, University of Porto, 4099-002 Porto, Portugal;
| |
Collapse
|
61
|
Hipper E, Blech M, Hinderberger D, Garidel P, Kaiser W. Photo-Oxidation of Therapeutic Protein Formulations: From Radical Formation to Analytical Techniques. Pharmaceutics 2021; 14:72. [PMID: 35056968 PMCID: PMC8779573 DOI: 10.3390/pharmaceutics14010072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/09/2021] [Accepted: 12/14/2021] [Indexed: 12/25/2022] Open
Abstract
UV and ambient light-induced modifications and related degradation of therapeutic proteins are observed during manufacturing and storage. Therefore, to ensure product quality, protein formulations need to be analyzed with respect to photo-degradation processes and eventually protected from light exposure. This task usually demands the application and combination of various analytical methods. This review addresses analytical aspects of investigating photo-oxidation products and related mediators such as reactive oxygen species generated via UV and ambient light with well-established and novel techniques.
Collapse
Affiliation(s)
- Elena Hipper
- Institute of Chemistry, Martin-Luther-Universität Halle-Wittenberg, von-Danckelmann-Platz 4, 06120 Halle (Saale), Germany; (E.H.); (D.H.)
| | - Michaela Blech
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, PDB, Birkendorfer Strasse 65, 88397 Biberach an der Riss, Germany;
| | - Dariush Hinderberger
- Institute of Chemistry, Martin-Luther-Universität Halle-Wittenberg, von-Danckelmann-Platz 4, 06120 Halle (Saale), Germany; (E.H.); (D.H.)
| | - Patrick Garidel
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, PDB, Birkendorfer Strasse 65, 88397 Biberach an der Riss, Germany;
| | - Wolfgang Kaiser
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, PDB, Birkendorfer Strasse 65, 88397 Biberach an der Riss, Germany;
| |
Collapse
|
62
|
Fuentes-Lemus E, Hägglund P, López-Alarcón C, Davies MJ. Oxidative Crosslinking of Peptides and Proteins: Mechanisms of Formation, Detection, Characterization and Quantification. Molecules 2021; 27:15. [PMID: 35011250 PMCID: PMC8746199 DOI: 10.3390/molecules27010015] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/17/2021] [Accepted: 12/18/2021] [Indexed: 12/14/2022] Open
Abstract
Covalent crosslinks within or between proteins play a key role in determining the structure and function of proteins. Some of these are formed intentionally by either enzymatic or molecular reactions and are critical to normal physiological function. Others are generated as a consequence of exposure to oxidants (radicals, excited states or two-electron species) and other endogenous or external stimuli, or as a result of the actions of a number of enzymes (e.g., oxidases and peroxidases). Increasing evidence indicates that the accumulation of unwanted crosslinks, as is seen in ageing and multiple pathologies, has adverse effects on biological function. In this article, we review the spectrum of crosslinks, both reducible and non-reducible, currently known to be formed on proteins; the mechanisms of their formation; and experimental approaches to the detection, identification and characterization of these species.
Collapse
Affiliation(s)
- Eduardo Fuentes-Lemus
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, 2200 Copenhagen, Denmark; (E.F.-L.); (P.H.)
| | - Per Hägglund
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, 2200 Copenhagen, Denmark; (E.F.-L.); (P.H.)
| | - Camilo López-Alarcón
- Departamento de Química Física, Facultad de Química y de Farmacia, Pontificia Universidad Catolica de Chile, Santiago 7820436, Chile;
| | - Michael J. Davies
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, 2200 Copenhagen, Denmark; (E.F.-L.); (P.H.)
| |
Collapse
|
63
|
Fuentes-Lemus E, Jiang S, Hägglund P, Davies MJ. High concentrations of casein proteins exacerbate radical chain reactions and increase the extent of oxidative damage. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.107060] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
64
|
Demirci-Çekiç S, Özkan G, Avan AN, Uzunboy S, Çapanoğlu E, Apak R. Biomarkers of Oxidative Stress and Antioxidant Defense. J Pharm Biomed Anal 2021; 209:114477. [PMID: 34920302 DOI: 10.1016/j.jpba.2021.114477] [Citation(s) in RCA: 191] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/27/2021] [Accepted: 11/11/2021] [Indexed: 12/13/2022]
Abstract
A number of reactive oxygen and nitrogen species are produced during normal metabolism in human body. These species can be both radical and non-radical and have varying degrees of reactivity. Although they have some important functions in the human body, such as contributing to signal transmission and the immune system, their presence must be balanced by the antioxidant defense system. The human body has an excellent intrinsic enzymatic antioxidant system in addition to different non-enzymatic antioxidants having small molecular masses. An extrinsic source of antioxidants are foodstuffs such as fruits, vegetables, herbs and spices, mostly rich in polyphenols. When the delicate biochemical balance between oxidants and antioxidants is disturbed in favor of oxidants, "oxidative stress" conditions emerge, under which reactive species can cause oxidative damage to biomacromolecules such as proteins, carbohydrates, lipids and DNA. This oxidative damage is often associated with cancer, aging, and neurodegenerative disorders. Because reactive species are extremely short-lived, it is almost impossible to measure their concentrations directly. Although there are certain methods such as ESR / EPR that serve this purpose, they have some disadvantages and are quite costly systems. Therefore, products generated from oxidative damage of proteins, lipids and DNA are often used to quantify the extent of oxidative damage rather than direct measurement of reactive species. These oxidative damage products are usually known as biomarkers. Determination of the concentrations of these biomarkers and changes in the concentration of protective antioxidants can provide useful information for avoiding certain diseases and keep healthy conditions.
Collapse
Affiliation(s)
- Sema Demirci-Çekiç
- Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpasa, Avcilar, 34320 Istanbul, Turkey
| | - Gülay Özkan
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical Uviversity, Istanbul, Turkey
| | - Aslı Neslihan Avan
- Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpasa, Avcilar, 34320 Istanbul, Turkey
| | - Seda Uzunboy
- Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpasa, Avcilar, 34320 Istanbul, Turkey
| | - Esra Çapanoğlu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical Uviversity, Istanbul, Turkey.
| | - Reşat Apak
- Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpasa, Avcilar, 34320 Istanbul, Turkey; Turkish Academy of Sciences (TUBA), Vedat Dalokay St. No. 112, Cankaya, 06670 Ankara, Turkey.
| |
Collapse
|
65
|
Akamo AJ, Akinloye DI, Ugbaja RN, Adeleye OO, Dosumu OA, Eteng OE, Antiya MC, Amah G, Ajayi OA, Faseun SO. Naringin prevents cyclophosphamide-induced erythrocytotoxicity in rats by abrogating oxidative stress. Toxicol Rep 2021; 8:1803-1813. [PMID: 34760624 PMCID: PMC8567332 DOI: 10.1016/j.toxrep.2021.10.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 09/30/2021] [Accepted: 10/24/2021] [Indexed: 01/02/2023] Open
Abstract
Earlier reports have shown that Cyclophosphamide (CYCP), an anti-malignant drug, elicited cytotoxicity; and that naringin has several beneficial potentials against oxidative stress and dyslipidaemias. We investigated the influence of naringin on free radical scavenging, cellular integrity, cellular ATP, antioxidants, oxidative stress, and lipid profiles in the CYCP-induced erythrocytotoxicity rat model. Rats were pretreated orally by gavage for fourteen consecutive days with three doses (50, 100, and 200 mg/kg) naringin before single CYCP (200 mg/kg, i.p.) administration. Afterwards, the rats were sacrificed. Naringin concentrations required for 50 % scavenging hydrogen peroxide and nitric oxide radical were 0.27 mg/mL and 0.28 mg/mL, respectively. Naringin pretreatment significantly (p < 0.05) protected erythrocytes plasma membrane architecture and integrity by abolishing CYCP-induced decrease in the activity of erythrocyte LDH (a marker of ATP). Pretreatment with naringin remarkably (p < 0.05) reversed CYCP-induced decreases in the erythrocytes glutathione levels, activities of glutathione-S-transferase, catalase, glutathione peroxidase, and glutathione reductase; attenuated CYCP-mediated increases in erythrocytes levels of malondialdehyde, nitric oxide, and major lipids (cholesterol, triacylglycerol, phospholipids, and non-esterified fatty acids). Taken together, different acute pretreatment doses of naringin might avert CYCP-mediated erythrocytes dysfunctions via its antioxidant, free-radical scavenging, and anti-dyslipidaemia properties.
Collapse
Key Words
- AP-1, activator protein 1
- ATP, adenosine triphosphate
- Antioxidants
- BHT, butylated hydroxytoluene
- C31H28N2Na4O13S, xylenol tetrasodium
- C5FeN6Na2O, sodium nitroprusside
- CAT, catalase
- CDNB, 1-chloro-2,4-dinitrobenzene
- CYCP, cyclophosphamide
- Cu(NO3)2.3H2O, copper II nitrate
- Cyclophosphamide
- DNA, deoxyribonucleic acid
- DTNB, 5,5ˈ-dithiobis(2-nitrobenzoic acid)
- Erythrocytotoxicity
- FeSO4.7H2O, Iron (II) sulfate heptahydrate
- G6PDH, glucose-6-phosphate dehydrogenase
- GSH, reduced glutathione
- GSPx, glutathione peroxidase
- GSR, glutathione reductase
- GSSG, oxidized glutathione
- GST, glutathione-S-transferase
- H2O2, hydrogen peroxide
- H3PO3, phosphoric acid
- HO•, hydroxyl radical
- HSCs, hepatic stellate cells
- K2HPO4, dipotassium hydrogen phosphate
- KCl, potassium chloride
- LDH, lactate dehydrogenase
- Lipid profile
- MAPKs, mitogen-activated protein kinases
- MDA, malondialdehyde
- MMP, matrix metalloprotease
- NAD+, nicotinamide adenine dinucleotide
- NADH, nicotinamide adenine dinucleotide reduced
- NADPH, nicotinamide adenine dinucleotide phosphate reduced
- NF-κB, nuclear factor kappa B
- NH4OH, ammonium hydroxide
- NO, nitric oxide
- NO2−, nitrite
- NO3−, nitrate
- NOAEL, no-observed-adverse-effect level
- Na2HPO4, disodium hydrogen phosphate
- NaH2PO4, sodium dihydrogen phosphate
- Naringin
- Nrf2, nuclear factor-erythroid factor 2-related factor 2
- O2HbFe2+, oxyhemoglobin
- O2•–, superoxide radical
- OONO−, peroxynitrite radical
- Oxidative stress
- PBS, phosphate-buffered saline
- PUFA, Polyunsaturated fatty acids
- R-Smad, Smad activated receptor
- RNS, reactive nitrogen species
- ROS, reactive oxygen species
- SOD, superoxide dismutase
- TBA, 2-thiobarbituric acid
- TBARS, thiobarbituric acid reactive substances
- TGF-β, transforming growth factor-β
- TLR, toll-like receptor
- TROOH, total hydroperoxide
- VLDL, very low density lipoprotein
- eNOS, endothelial nitric oxide synthase
- i.p., intraperitoneally
- mRNA, messenger ribonucleic acid
- metHb, methemoglobin
- α-SMA, alpha smooth muscle actin
- •NO, nitric oxide radical
Collapse
Affiliation(s)
- Adio J. Akamo
- Department of Biochemistry, Federal University of Agriculture, Abeokuta, Ogun State, Nigeria
| | - Dorcas I. Akinloye
- Department of Biochemistry, Federal University of Agriculture, Abeokuta, Ogun State, Nigeria
| | - Regina N. Ugbaja
- Department of Biochemistry, Federal University of Agriculture, Abeokuta, Ogun State, Nigeria
| | - Oluwagbemiga O. Adeleye
- Department of Animal Production and Health, Federal University of Agriculture, Abeokuta, Ogun State, Nigeria
| | - Oluwatosin A. Dosumu
- Department of Biochemistry, Federal University of Agriculture, Abeokuta, Ogun State, Nigeria
| | - Ofem E. Eteng
- Department of Biochemistry, Federal University of Agriculture, Abeokuta, Ogun State, Nigeria
| | - Moses C. Antiya
- Department of Biochemistry, Federal University of Agriculture, Abeokuta, Ogun State, Nigeria
| | - Gogonte Amah
- Department of Biochemistry, Benjamin Carson (SRN) School of Medicine, Babcock University, Ilisan, Ogun State, Nigeria
| | - Oluwafunke A. Ajayi
- Department of Biochemistry, Federal University of Agriculture, Abeokuta, Ogun State, Nigeria
| | - Samuel O. Faseun
- Department of Biochemistry, Federal University of Agriculture, Abeokuta, Ogun State, Nigeria
| |
Collapse
|
66
|
Mukhtar-Un-Nisar Andrabi S, Tamanna S, Rahul, Naz F, Siddique YH. Toxic potential of sodium hypochlorite in the third instar larvae of transgenic Drosophila melanogaster (hsp70-lacZ) Bg9. TOXIN REV 2021. [DOI: 10.1080/15569543.2021.1955711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
| | - Sadaf Tamanna
- Department of Conservative Dentistry & Endodontics, Aligarh Muslim University, Aligarh, India
| | - Rahul
- Drosophila Transgenic Laboratory, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Falaq Naz
- Drosophila Transgenic Laboratory, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Yasir Hasan Siddique
- Drosophila Transgenic Laboratory, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
67
|
Walweel K, Boon AC, See Hoe LE, Obonyo NG, Pedersen SE, Diab SD, Passmore MR, Hyslop K, Colombo SM, Bartnikowski NJ, Bouquet M, Wells MA, Black DM, Pimenta LP, Stevenson AK, Bisht K, Skeggs K, Marshall L, Prabhu A, James LN, Platts DG, Macdonald PS, McGiffin DC, Suen JY, Fraser JF. Brain stem death induces pro-inflammatory cytokine production and cardiac dysfunction in sheep model. Biomed J 2021; 45:776-787. [PMID: 34666219 PMCID: PMC9661508 DOI: 10.1016/j.bj.2021.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 08/12/2021] [Accepted: 10/07/2021] [Indexed: 11/23/2022] Open
Abstract
Introduction Organs procured following brain stem death (BSD) are the main source of organ grafts for transplantation. However, BSD is associated with inflammatory responses that may damage the organ and affect both the quantity and quality of organs available for transplant. Therefore, we aimed to investigate plasma and bronchoalveolar lavage (BAL) pro-inflammatory cytokine profiles and cardiovascular physiology in a clinically relevant 6-h ovine model of BSD. Methods Twelve healthy female sheep (37–42 Kg) were anaesthetized and mechanically ventilated prior to undergoing BSD induction and then monitored for 6 h. Plasma and BAL endothelin-1 and cytokines (IL-1β, 6, 8 and tumour necrosis factor alpha (TNF-α)) were assessed by ELISA. Differential white blood cell counts were performed. Cardiac function during BSD was also examined using echocardiography, and cardiac biomarkers (A-type natriuretic peptide and troponin I were measured in plasma. Results Plasma concentrations big ET-1, IL-6, IL-8, TNF-α and BAL IL-8 were significantly (p < 0.01) increased over baseline at 6 h post-BSD. Increased numbers of neutrophils were observed in the whole blood (3.1 × 109 cells/L [95% confidence interval (CI) 2.06–4.14] vs. 6 × 109 cells/L [95%CI 3.92–7.97]; p < 0.01) and BAL (4.5 × 109 cells/L [95%CI 0.41–9.41] vs. 26 [95%CI 12.29–39.80]; p = 0.03) after 6 h of BSD induction vs baseline. A significant increase in ANP production (20.28 pM [95%CI 16.18–24.37] vs. 78.68 pM [95%CI 53.16–104.21]; p < 0.0001) and cTnI release (0.039 ng/mL vs. 4.26 [95%CI 2.69–5.83] ng/mL; p < 0.0001), associated with a significant reduction in heart contractile function, were observed between baseline and 6 h. Conclusions BSD induced systemic pro-inflammatory responses, characterized by increased neutrophil infiltration and cytokine production in the circulation and BAL fluid, and associated with reduced heart contractile function in ovine model of BSD.
Collapse
Affiliation(s)
- K Walweel
- Critical Care Research Group, Level 3, Clinical Sciences Building, The Prince Charles Hospital, Rode Road, Brisbane, Australia.
| | - A C Boon
- Critical Care Research Group, Level 3, Clinical Sciences Building, The Prince Charles Hospital, Rode Road, Brisbane, Australia
| | - L E See Hoe
- Critical Care Research Group, Level 3, Clinical Sciences Building, The Prince Charles Hospital, Rode Road, Brisbane, Australia
| | - N G Obonyo
- Critical Care Research Group, Level 3, Clinical Sciences Building, The Prince Charles Hospital, Rode Road, Brisbane, Australia; Initiative to Develop African Research Leaders, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | - S E Pedersen
- Critical Care Research Group, Level 3, Clinical Sciences Building, The Prince Charles Hospital, Rode Road, Brisbane, Australia
| | - S D Diab
- Critical Care Research Group, Level 3, Clinical Sciences Building, The Prince Charles Hospital, Rode Road, Brisbane, Australia
| | - M R Passmore
- Critical Care Research Group, Level 3, Clinical Sciences Building, The Prince Charles Hospital, Rode Road, Brisbane, Australia
| | - K Hyslop
- Critical Care Research Group, Level 3, Clinical Sciences Building, The Prince Charles Hospital, Rode Road, Brisbane, Australia
| | - S M Colombo
- Critical Care Research Group, Level 3, Clinical Sciences Building, The Prince Charles Hospital, Rode Road, Brisbane, Australia; University of Milan, Italy
| | | | - M Bouquet
- Critical Care Research Group, Level 3, Clinical Sciences Building, The Prince Charles Hospital, Rode Road, Brisbane, Australia
| | - M A Wells
- Critical Care Research Group, Level 3, Clinical Sciences Building, The Prince Charles Hospital, Rode Road, Brisbane, Australia; School of Medical Science, Griffith University, Australia
| | - D M Black
- Critical Care Research Group, Level 3, Clinical Sciences Building, The Prince Charles Hospital, Rode Road, Brisbane, Australia
| | - L P Pimenta
- Critical Care Research Group, Level 3, Clinical Sciences Building, The Prince Charles Hospital, Rode Road, Brisbane, Australia
| | - A K Stevenson
- Critical Care Research Group, Level 3, Clinical Sciences Building, The Prince Charles Hospital, Rode Road, Brisbane, Australia
| | - K Bisht
- Mater Research Institute, University of Queensland, Australia
| | - K Skeggs
- Critical Care Research Group, Level 3, Clinical Sciences Building, The Prince Charles Hospital, Rode Road, Brisbane, Australia; Princess Alexandra Hospital, Woolloongabba, Brisbane, Australia
| | - L Marshall
- Princess Alexandra Hospital, Woolloongabba, Brisbane, Australia
| | - A Prabhu
- The Prince Charles Hospital, Rode Road, Brisbane, Australia
| | - L N James
- Princess Alexandra Hospital, Woolloongabba, Brisbane, Australia
| | - D G Platts
- Critical Care Research Group, Level 3, Clinical Sciences Building, The Prince Charles Hospital, Rode Road, Brisbane, Australia
| | - P S Macdonald
- Cardiac Mechanics Research Laboratory, St. Vincent's Hospital and the Victor Chang Cardiac Research Institute, Victoria Street, Darlinghurst, Sydney, Australia
| | - D C McGiffin
- Cardiothoracic Surgery and Transplantation, The Alfred Hospital, Melbourne, Australia
| | - J Y Suen
- Critical Care Research Group, Level 3, Clinical Sciences Building, The Prince Charles Hospital, Rode Road, Brisbane, Australia.
| | - J F Fraser
- Critical Care Research Group, Level 3, Clinical Sciences Building, The Prince Charles Hospital, Rode Road, Brisbane, Australia.
| |
Collapse
|
68
|
Joyner PM. Protein Adducts and Protein Oxidation as Molecular Mechanisms of Flavonoid Bioactivity. Molecules 2021; 26:molecules26165102. [PMID: 34443698 PMCID: PMC8401221 DOI: 10.3390/molecules26165102] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/16/2021] [Accepted: 08/20/2021] [Indexed: 02/05/2023] Open
Abstract
There are tens of thousands of scientific papers about flavonoids and their impacts on human health. However, despite the vast amount of energy that has been put toward studying these compounds, a unified molecular mechanism that explains their bioactivity remains elusive. One contributing factor to the absence of a general mechanistic explanation of their bioactivity is the complexity of flavonoid chemistry in aqueous solutions at neutral pH. Flavonoids have acidic protons, are redox active, and frequently auto-oxidize to produce an array of degradation products including electrophilic quinones. Flavonoids are also known to interact with specificity and high affinity with a variety of proteins, and there is evidence that some of these interactions may be covalent. This review summarizes the mechanisms of flavonoid oxidation in aqueous solutions at neutral pH and proposes the formation of protein-flavonoid adducts or flavonoid-induced protein oxidation as putative mechanisms of flavonoid bioactivity in cells. Nucleophilic residues in proteins may be able to form covalent bonds with flavonoid quinones; alternatively, specific amino acid residues such as cysteine, methionine, or tyrosine in proteins could be oxidized by flavonoids. In either case, these protein-flavonoid interactions would likely occur at specific binding sites and the formation of these types of products could effectively explain how flavonoids modify proteins in cells to induce downstream biochemical and cellular changes.
Collapse
Affiliation(s)
- P Matthew Joyner
- Natural Science Division, Pepperdine University, 24255 Pacific Coast Highway, Malibu, CA 90263, USA
| |
Collapse
|
69
|
Drygalski K, Fereniec E, Zalewska A, Krętowski A, Żendzian-Piotrowska M, Maciejczyk M. Phloroglucinol prevents albumin glycation as well as diminishes ROS production, glycooxidative damage, nitrosative stress and inflammation in hepatocytes treated with high glucose. Biomed Pharmacother 2021; 142:111958. [PMID: 34333287 DOI: 10.1016/j.biopha.2021.111958] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 12/18/2022] Open
Abstract
The treatment of diabetes mellitus aftermaths became one of medicine's most significant therapeutical and financial issues in the XXI century. Most of which are related to protein glycation and oxidative stress caused by long lasting periods of hyperglycemia. Thus, even within a venerable one, searching for new drugs, displaying anti-glycation and anti-oxidative properties seem useful as an additive therapy of diabetes. In this paper, we assessed the anti-glycating properties of phloroglucinol, a drug discovered in the XIX century and still used in many countries for its antispasmodic action. Herewith, we present its effect on protein glycation, glycoxidation, and oxidative damage in an albumin glycation/oxidation model and HepG2 cells treated with high glucose concentrations. The phloroglucinol showed the strongest and the widest protective effect within all analyzed antiglycating (aminoguanidine, pioglitazone) and anti-oxidative (vitamin C, GSH) agents. To the very best of our knowledge, this is the first study showing the properties of phloroglucinol in vitro what once is proven in other models might deepen its clinical applications.
Collapse
Affiliation(s)
- Krzysztof Drygalski
- Clinical Research Center, Medical University of Bialystok, Poland; Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, Poland.
| | | | - Anna Zalewska
- Experimental Dentistry Laboratory, Medical University of Bialystok, Poland
| | - Adam Krętowski
- Clinical Research Center, Medical University of Bialystok, Poland; Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, Poland
| | | | - Mateusz Maciejczyk
- Department of Hygiene, Epidemiology and Ergonomics, Medical University of Bialystok, Poland.
| |
Collapse
|
70
|
Selective and sensitive UHPLC-ESI-Orbitrap MS method to quantify protein oxidation markers. Talanta 2021; 234:122700. [PMID: 34364496 DOI: 10.1016/j.talanta.2021.122700] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/03/2021] [Accepted: 07/06/2021] [Indexed: 11/20/2022]
Abstract
A targeted UHPLC-MS/MS isotopic dilution method has been developed for the simultaneous quantification of 18 different free and protein-bound aromatic amino acid oxidation products in food and biological matrices. All analytes, including critical isomeric pairs of Tyr, o-Tyr, m-Tyr, and dioxyindolylalanine diastereomers were chromatographically resolved to obtain high selectivity, without the need for derivatizing or ion pairing agents. The results of method validation showed adequate retention time reproducibility [0.1-0.6% coefficient of variation (CV) for over 224 injections], accuracy (within ±1-20% of the nominal concentration), and precision (1-17% CV) for all target analytes. The lower limit of quantification was calculated in different matrices using both the Hubaux-Vos approach and accuracy and precision data showing values in the range of 0.2-15 ng/mL. Use of stable isotope-labelled internal standards compensated errors due to matrix effects and artefactual degradation of analytes. Both acid and enzymatic hydrolyses were tested to obtain the best possible results for the quantification of protein oxidation products, demonstrating the stability of target analytes under hydrolytic conditions. The method was successfully applied to quantify target analytes in serum, tissue, milk, infant formula, pork liver pâté, chicken meat and fish. The method was also applied to assess the role of Fenton's reagent in oxidizing Trp, Phe and Tyr residues in different proteins, with results showing o-Tyr, dioxyindolylalanine diastereomers, kynurenine, dityrosine being the main oxidation products. The Fenton chemistry favored the formation of o-Tyr over m-Tyr from Phe with 2-36 folds higher yields. 3-Nitrotyrosine, a marker of protein nitration, was also detected in samples treated with Fenton's reagent.
Collapse
|
71
|
Akamo AJ, Rotimi SO, Akinloye DI, Ugbaja RN, Adeleye OO, Dosumu OA, Eteng OE, Amah G, Obijeku A, Cole OE. Naringin prevents cyclophosphamide-induced hepatotoxicity in rats by attenuating oxidative stress, fibrosis, and inflammation. Food Chem Toxicol 2021; 153:112266. [PMID: 33992719 DOI: 10.1016/j.fct.2021.112266] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 05/09/2021] [Accepted: 05/11/2021] [Indexed: 02/06/2023]
Abstract
Cyclophosphamide (CYCP), a synthetic alkylating antineoplastic, disrupts both cancerous and non-cancerous cells to cause cancer regression and multi organotoxicity respectively. CYCP-induced hepatotoxicity is rare but possible. Evidence has shown that naringin has several beneficial potentials against oxidative stress, inflammation, and fibrosis. This study examined the chemoprotective potentials of naringin on exited radical scavenging, hepatic integrity, oxidative stress, fibrosis, and inflammation in CYCP-mediated hepatotoxicity. Rats were pre-treated orally by gavage for fourteen consecutive days with three doses (50, 100, and 200 mg/kg) of naringin before single CYCP (200 mg/kg, i.p.) administration. Subsequently, the rats were euthanized; blood and liver were removed, and assessed for serum and hepatic enzymes, oxidative stress, inflammation, and gene expression dynamics. Naringin concentrations required for 50% scavenging hydroxyl radical and 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulphonic acid) radical cation were 0.32 mg/mL and 0.39 mg/mL, respectively. Pretreatment with naringin significantly (p < 0.05) abolish CYCP-induced changes in the activities of serum and hepatic ALT, AST, GGT, ALP, and LDH. Pretreatment with naringin remarkably (p < 0.05) reversed CYCP-mediated increases in hepatic levels of malondialdehyde, hydroperoxide, and nitric oxide; reverse CYCP-induced decreases in the hepatic glutathione levels, activities of catalase, glutathione peroxidase, and glutathione reductase; and also attenuated CYCP-induced upregulation of expression of hepatic chemokine (C-C motif) ligand 2 (CCL2), interferon alpha1 (IFN-α1), interleukine-1β, interleukine-1 receptor, and transforming growth factor beta 1 (TGF-β1). Taken together, different doses of naringin can prevent CYCP-induced oxidants generation, hepatocytes dysfunctions, oxidative stress as well as inflammatory perturbations in rats when pre-administered for as few as 14 days.
Collapse
Affiliation(s)
- Adio J Akamo
- Department of Biochemistry, Federal University of Agriculture, Abeokuta, Ogun State, Nigeria.
| | - Solomon O Rotimi
- Biochemistry Unit and Molecular Biology Research Laboratory, Department of Biological Sciences, Covenant University, Ota, Ogun State, Nigeria
| | - Dorcas I Akinloye
- Department of Biochemistry, Federal University of Agriculture, Abeokuta, Ogun State, Nigeria
| | - Regina N Ugbaja
- Department of Biochemistry, Federal University of Agriculture, Abeokuta, Ogun State, Nigeria
| | - Oluwagbemiga O Adeleye
- Department of Animal Production and Health, Federal University of Agriculture, Abeokuta, Ogun State, Nigeria
| | - Oluwatosin A Dosumu
- Department of Biochemistry, Federal University of Agriculture, Abeokuta, Ogun State, Nigeria
| | - Ofem E Eteng
- Department of Biochemistry, Federal University of Agriculture, Abeokuta, Ogun State, Nigeria
| | - Gogonte Amah
- Department of Biochemistry, Benjamin Carson (SRN) School of Medicine, Babcock University, Ilisan, Ogun State, Nigeria
| | - Augustine Obijeku
- Department of Biochemistry, Federal University of Agriculture, Abeokuta, Ogun State, Nigeria
| | - Oluwatosin E Cole
- Department of Biochemistry, Federal University of Agriculture, Abeokuta, Ogun State, Nigeria
| |
Collapse
|
72
|
Color and structural modifications of alkaline extracted sunflower protein concentrates and isolates using L-cysteine and glutathione. Food Res Int 2021; 147:110574. [PMID: 34399547 DOI: 10.1016/j.foodres.2021.110574] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 06/21/2021] [Accepted: 06/27/2021] [Indexed: 11/22/2022]
Abstract
Alkaline sunflower protein extraction can be performed along with de-phenolization of sunflower seed proteins if greening is unwanted. This greening is promoted at alkaline pH when chlorogenic acid (CGA) oxidizes and reacts with amino acids such as lysine. Thiol-containing dough conditioners: L-cysteine hydrochloride and glutathione (GSH) were investigated as an alternative de-greening strategy to acidification and de-phenolization. Greening and browning inhibition of thiols (GSH and Cysteine) were modeled by a combination of additive and interaction effects of extraction pH (7.0 to 11.0) and thiol concentration (0.00 to 5.60 mM) randomly assigned by Response Surface Methodology (RSM). The powders with the highest greening were the controls (pH 8.9-9.3 and no added thiols) and powders at pH 10.41 with 0.82 mM thiols. From RSM, the maximum greening inhibition was achieved at pH 8.71 and 4.23 mM cysteine, and pH 8.51 and 3.78 mM GSH. However, cysteine caused more browning at alkaline pH than GSH. Furthermore, fluorescence spectroscopy showed that cysteine had a protective effect against alkaline unfolding, whereas GSH quenched fluorescence in a concentration-dependent manner. Overall, de-greening of alkaline extracted sunflower protein was achieved by adding cysteine or glutathione, but the thiols differed in their contribution to the browning and unfolding effect.
Collapse
|
73
|
Rodríguez-Sánchez E, Navarro-García JA, Aceves-Ripoll J, González-Lafuente L, Corbacho-Alonso N, Baldan-Martín M, Madruga F, Alvarez-Llamas G, Barderas MG, Ruilope LM, Ruiz-Hurtado G. Analysis of Global Oxidative Status Using Multimarker Scores Reveals a Specific Association Between Renal Dysfunction and Diuretic Therapy in Older Adults. J Gerontol A Biol Sci Med Sci 2021; 76:1198-1205. [PMID: 33423057 DOI: 10.1093/gerona/glab012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Indexed: 01/29/2023] Open
Abstract
Aging and chronic kidney disease (CKD) are important interrelated cardiovascular risk (CVR) factors linked to oxidative stress, but this relationship has not been well studied in older adults. We assessed the global oxidative status in an older population with normal to severely impaired renal function. We determined the oxidative status of 93 older adults (mean age 85 years) using multimarker scores. OxyScore was computed as index of systemic oxidative damage by analyzing carbonyl groups, oxidized low-density lipoprotein, 8-hydroxy-2'-deoxyguanosine, and xanthine oxidase activity. AntioxyScore was computed as index of antioxidant defense by analyzing catalase and superoxide dismutase (SOD) activity and total antioxidant capacity. OxyScore and AntioxyScore were higher in subjects with estimated glomerular filtration rate (eGFR) <60 mL/min/1.73 m2 than in peers with eGFR >60 mL/min/1.73 m2, with protein carbonyls, catalase, and SOD activity as major drivers. Older adults with a recent cardiovascular event had similar OxyScore and AntioxyScore as peers with eGFR >60 mL/min/1.73 m2. Multivariate linear regression analysis revealed that both indices were associated with decreased eGFR independently of traditional CVR factors. Interestingly, AntioxyScore was also associated with diuretic treatment, and a more pronounced increase was seen in subjects receiving combination therapy. The associations of AntioxyScore with diuretic treatment and eGFR were mutually independent. In conclusion, eGFR is the major contributor to the imbalance in oxidative stress in this older population. Given the association between oxidative stress, CKD, and CVR, the inclusion of renal function parameters in CVR estimators for older populations, such as the SCORE-OP, might improve their modest performance.
Collapse
Affiliation(s)
- Elena Rodríguez-Sánchez
- Cardiorenal Translational Laboratory, Institute of Research i+12, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - José Alberto Navarro-García
- Cardiorenal Translational Laboratory, Institute of Research i+12, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Jennifer Aceves-Ripoll
- Cardiorenal Translational Laboratory, Institute of Research i+12, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Laura González-Lafuente
- Cardiorenal Translational Laboratory, Institute of Research i+12, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Nerea Corbacho-Alonso
- Department of Vascular Physiopathology, Hospital Nacional de Parapléjicos, SESCAM, Toledo, Spain
| | - Montserrat Baldan-Martín
- Department of Vascular Physiopathology, Hospital Nacional de Parapléjicos, SESCAM, Toledo, Spain
| | - Felipe Madruga
- Departament of Geriatrics, Hospital Virgen del Valle, SESCAM, Toledo, Spain
| | - Gloria Alvarez-Llamas
- Departament of Immunology, IIS-Fundación Jimenez Diaz, Madrid, Spain.,REDINREN, Madrid, Spain
| | - María G Barderas
- Department of Vascular Physiopathology, Hospital Nacional de Parapléjicos, SESCAM, Toledo, Spain
| | - Luis M Ruilope
- Cardiorenal Translational Laboratory, Institute of Research i+12, Hospital Universitario 12 de Octubre, Madrid, Spain.,European University of Madrid, Spain
| | - Gema Ruiz-Hurtado
- Cardiorenal Translational Laboratory, Institute of Research i+12, Hospital Universitario 12 de Octubre, Madrid, Spain.,CIBER-CV, Hospital Universitario 12 de Octubre, Madrid, Spain
| |
Collapse
|
74
|
Sauerland M, Mertes R, Morozzi C, Eggler AL, Gamon LF, Davies MJ. Kinetic assessment of Michael addition reactions of alpha, beta-unsaturated carbonyl compounds to amino acid and protein thiols. Free Radic Biol Med 2021; 169:1-11. [PMID: 33819622 DOI: 10.1016/j.freeradbiomed.2021.03.040] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/23/2021] [Accepted: 03/29/2021] [Indexed: 12/14/2022]
Abstract
Humans have extensive adverse exposure to alpha,beta-unsaturated carbonyl compounds (ABuCs) as these are major toxins in smoke and exhaust fumes, as well as products of lipid peroxidation. In contrast, another ABuC, dimethylfumarate, is used to treat psoriasis and multiple sclerosis. ABuCs undergo Michael adduction with amine, imidazole and thiol groups, with reaction at Cys residues predominating. Here we report rate constants, k2, for ABuCs (acrolein, crotonaldehyde, dimethylfumarate, cyclohex-1-en-2-one, cyclopent-1-en-2-one) with Cys residues present on N-Ac-Cys, GSH, bovine serum albumin, creatine kinase, papain, glyceraldehyde-3-phosphate dehydrogenase, and both wild-type and the C151S mutant of Keap-1. k2 values for N-Ac-Cys and GSH vary by > 250-fold, indicating a marked ABuC structure dependence, with acrolein the most reactive. There is also considerable variation in k2 between protein Cys groups, with these significantly greater than for GSH. A linear inverse correlation for acrolein with the thiol pKa indicates that the thiolate anion is the reactive species. The modest k2 for GSH rationalizes the detection of protein adducts of ABuCs in cells. The k2 values for dimethylfumarate also vary markedly, with the Cys151 residue on Keap-1 being particularly reactive, with the C151S mutant giving a much lower k2 value. The data for crotonaldehyde, dimethylfumarate, and cyclohex-1-en-2-one show little correlation with the Cys pKa values, indicating that steric/electronic interactions, rather than Cys ionization are important. These data indicate that protein Cys residues, and particularly Cys151 on Keap-1, react readily with dimethylfumarate, and this may help rationalize the use of this compound as a therapeutic agent.
Collapse
Affiliation(s)
- Max Sauerland
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Ralf Mertes
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Chiara Morozzi
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Aimee L Eggler
- Department of Chemistry, Villanova University, Villanova, PA, 19085, USA
| | - Luke F Gamon
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Michael J Davies
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, 2200, Denmark.
| |
Collapse
|
75
|
Salama SA, Abd-Allah GM, Mohamadin AM, Elshafey MM, Gad HS. Ergothioneine mitigates cisplatin-evoked nephrotoxicity via targeting Nrf2, NF-κB, and apoptotic signaling and inhibiting γ-glutamyl transpeptidase. Life Sci 2021; 278:119572. [PMID: 33964294 DOI: 10.1016/j.lfs.2021.119572] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 04/18/2021] [Accepted: 04/25/2021] [Indexed: 01/24/2023]
Abstract
AIM Cisplatin is a potent chemotherapeutic agent whose therapeutic application is hindered by the associated nephrotoxicity. Cisplatin-evoked nephrotoxicity has been largely attributed to the induction of oxidative stress and inflammatory responses. The current study aimed at investigating the ability of ergothioneine to mitigate cisplatin-evoked nephrotoxicity and to elucidate the underlining molecular mechanisms. MAIN METHODS Wistar rats were treated with a daily dose of ergothioneine (70 mg/kg, po) for fourteen days and a single dose of cisplatin (5 mg/kg, ip) on day ten. On day fifteen, kidneys and blood specimens were collected and subjected to Western blotting, ELISA, histopathological, and spectrophotometric analysis. KEY FINDINGS Ergothioneine significantly enhanced renal function in cisplatin-treated rats as manifested by increased GFR and decreased serum creatinine and blood urea nitrogen. Ergothioneine effectively reduced the cisplatin-induced oxidative stress and mitigated apoptosis and the histopathological changes. Mechanistically, ergothioneine induced the expression of the antioxidant transcription factor Nrf2 and up-regulated its downstream targets NQO1 and HO-1. Equally important, ergothioneine inhibited γ-glutamyl transpeptidase that plays crucial roles in biotransformation of cisplatin into a toxic metabolite. Additionally, it reduced the pro-apoptotic protein p53 and the inflammatory transcription factor NF-κB along with its downstream pro-inflammatory cytokines TNF-α and IL-1β. SIGNIFICANCE The results of the current work shed the light on the ameliorating effect of ergothioneine on cisplatin-evoked nephrotoxicity that is potentially mediated through modulation of Nrf2, p53, and NF-κB signaling and inhibition of γ-glutamyl transpeptidase. This findings support the potential application of ergothioneine in controlling cisplatin-associated nephrotoxicity although clinical investigations are warranted.
Collapse
Affiliation(s)
- Samir A Salama
- Division of Biochemistry, Department of Pharmacology, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia.
| | - Gamil M Abd-Allah
- Department of Biochemistry, Faculty of Pharmacy, Al-Azhar University, Cairo 11751, Egypt; Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Badr city, Cairo 11829, Egypt
| | - Ahmed M Mohamadin
- Department of Biochemistry, Faculty of Pharmacy, Al-Azhar University, Cairo 11751, Egypt
| | - Mostafa M Elshafey
- Department of Biochemistry, Faculty of Pharmacy, Al-Azhar University, Cairo 11751, Egypt
| | - Hesham S Gad
- Department of Biochemistry, Faculty of Pharmacy, Al-Azhar University, Cairo 11751, Egypt
| |
Collapse
|
76
|
Fuentes-Lemus E, Mariotti M, Hägglund P, Leinisch F, Fierro A, Silva E, Davies MJ, López-Alarcón C. Oxidation of lysozyme induced by peroxyl radicals involves amino acid modifications, loss of activity, and formation of specific crosslinks. Free Radic Biol Med 2021; 167:258-270. [PMID: 33731307 DOI: 10.1016/j.freeradbiomed.2021.03.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/05/2021] [Accepted: 03/06/2021] [Indexed: 12/21/2022]
Abstract
The present work examined the oxidation and crosslinking of the anti-bacterial enzyme lysozyme (Lyso), which is present in multiple biological fluids, and released from the cytoplasmic granules of macrophages and neutrophils at sites of infection and inflammation. It is therefore widely exposed to oxidants including peroxyl radicals (ROO•). We hypothesized that exposure to ROO• would generate specific modifications and inter- and intra-protein crosslinks via radical-radical reactions. Lyso was incubated with AAPH (2,2'-azobis(2-methylpropionamidine) dihydrochloride) as a ROO• source. Enzymatic activity was assessed, while oxidative modifications were detected and quantified using electrophoresis and liquid chromatography (UPLC) with fluorescence or mass detection (MS). Computational models of AAPH-Lyso interactions were developed. Exposure of Lyso to AAPH (10 and 100 mM for 3 h, and 20 mM for 1 h), at 37 °C, decreased enzymatic activity. 20 mM AAPH showed the highest efficiency of Lyso inactivation (1.78 mol of Lyso inactivated per ROO•). Conversion of Met to its sulfoxide, and to a lesser extent, Tyr oxidation to 3,4-dihydroxyphenylalanine and diTyr, were detected by UPLC-MS. Extensive transformation of Trp, involving short chain reactions, to kynurenine, oxindole, hydroxytryptophan, hydroperoxides or di-alcohols, and N-formyl-kynurenine was detected, with Trp62, Trp63 and Trp108 the most affected residues. Interactions of AAPH inside the negatively-charged catalytic pocket of Lyso, with Trp108, Asp52, and Glu35, suggest that Trp108 oxidation mediates, at least partly, Lyso inactivation. Crosslinks between Tyr20-Tyr23 (intra-molecular), and Trp62-Tyr23 (inter-molecular), were detected with both proximity (Tyr20-Tyr23), and chain flexibility (Trp62) appearing to favor the formation of covalent crosslinks.
Collapse
Affiliation(s)
| | - Michele Mariotti
- University of Copenhagen, Department of Biomedical Sciences, Copenhagen, Denmark
| | - Per Hägglund
- University of Copenhagen, Department of Biomedical Sciences, Copenhagen, Denmark
| | - Fabian Leinisch
- University of Copenhagen, Department of Biomedical Sciences, Copenhagen, Denmark
| | - Angélica Fierro
- Pontificia Universidad Católica de Chile(,) Facultad de Química y de Farmacia, Departamento de Química Orgánica, Santiago, Chile
| | - Eduardo Silva
- Pontificia Universidad Católica de Chile, Facultad de Química y de Farmacia, Departamento de Química Física, Santiago, Chile
| | - Michael J Davies
- University of Copenhagen, Department of Biomedical Sciences, Copenhagen, Denmark.
| | - Camilo López-Alarcón
- Pontificia Universidad Católica de Chile, Facultad de Química y de Farmacia, Departamento de Química Física, Santiago, Chile.
| |
Collapse
|
77
|
Ávila F, Ravello N, Manriquez C, Jiménez-Aspee F, Schmeda-Hirschmann G, Theoduloz C. Antiglycating Effect of Phenolics from the Chilean Currant Ribes cucullatum under Thermal Treatment. Antioxidants (Basel) 2021; 10:antiox10050665. [PMID: 33922890 PMCID: PMC8146124 DOI: 10.3390/antiox10050665] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/07/2021] [Accepted: 04/09/2021] [Indexed: 01/18/2023] Open
Abstract
Numerous dietary polyphenols possess antiglicating activity, but the effects of thermal treatment on this activity are mostly unknown. The effect of thermal treatment in the antiglycating activity of polyphenolic enriched extracts (PEEs) from Ribes cucullatum towards glyoxal-induced glycation of sarcoplasmic proteins was assessed. Sarcoplasmic proteins from chicken, beef, salmon, and turkey, were incubated 2 h at 60 °C with and without glyoxal and different concentrations of PEEs (0.25, 0.5, 1, and 5 mg/mL). The antiglycating activity was evaluated by: (1) Lys and Arg consumption, (2) Carboxymethyl lysine (CML) generation, and (3) lipid-derived electrophiles inhibition in a gastric digestion model. Protective effects were observed against CML generation in proteins and a decrease of electrophiles in the gastric digestion model. A dose-dependent consumption of Lys and Arg in proteins/PEEs samples, indicated the possible occurrence of quinoproteins generation from the phenolics. Protein/PEEs incubations were assessed by: (1) High pressure liquid chromatography analysis, (2) Gel electrophoresis (SDS-PAGE), and (3) Redox cycling staining of quinoproteins. Protein/PEEs incubations produced: (1) Decrease in phenolics, (2) increase of protein crosslinking, and (3) dose-dependent generation of quinoproteins. We demonstrate that phenolic compounds from R. cucullatum under thermal treatment act as antiglycating agents, but oxidative reactions occurs at high concentrations, generating protein crosslinking and quinoproteins.
Collapse
Affiliation(s)
- Felipe Ávila
- Escuela de Nutrición y Dietética, Facultad de Ciencias de la Salud, Campus Lircay, Universidad de Talca, Talca 3460000, Chile; (N.R.); (C.M.)
- Correspondence: ; Tel.: +56-71-2418964
| | - Natalia Ravello
- Escuela de Nutrición y Dietética, Facultad de Ciencias de la Salud, Campus Lircay, Universidad de Talca, Talca 3460000, Chile; (N.R.); (C.M.)
| | - Camila Manriquez
- Escuela de Nutrición y Dietética, Facultad de Ciencias de la Salud, Campus Lircay, Universidad de Talca, Talca 3460000, Chile; (N.R.); (C.M.)
| | - Felipe Jiménez-Aspee
- Department of Food Biofunctionality, Institute of Nutritional Sciences, University of Hohenheim, 70599 Stuttgart, Germany;
| | - Guillermo Schmeda-Hirschmann
- Laboratorio de Química de Productos Naturales, Instituto de Química de Recursos Naturales, Campus Lircay, Universidad de Talca, Talca 3460000, Chile;
| | - Cristina Theoduloz
- Laboratorio de Cultivo Celular, Facultad de Ciencias de la Salud, Campus Lircay, Universidad de Talca, Talca 3460000, Chile;
| |
Collapse
|
78
|
Flouda K, Mercer J, Davies MJ, Hawkins CL. Role of myeloperoxidase-derived oxidants in the induction of vascular smooth muscle cell damage. Free Radic Biol Med 2021; 166:165-177. [PMID: 33631301 DOI: 10.1016/j.freeradbiomed.2021.02.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 02/14/2021] [Indexed: 01/12/2023]
Abstract
Myeloperoxidase (MPO) is released by activated immune cells and forms the oxidants hypochlorous acid (HOCl) and hypothiocyanous acid (HOSCN) from the competing substrates chloride and thiocyanate. MPO and the overproduction of HOCl are strongly linked with vascular cell dysfunction and inflammation in atherosclerosis. HOCl is highly reactive and causes marked cell dysfunction and death, whereas data with HOSCN are conflicting, and highly dependent on the nature of the cell type. In this study we have examined the reactivity of HOCl and HOSCN with human coronary artery smooth muscle cells (HCASMC), given the key role of this cell type in maintaining vascular function. HOCl reacts rapidly with the cells, resulting in extensive cell death by both necrosis and apoptosis, and increased levels of intracellular calcium. In contrast, HOSCN reacts more slowly, with cell death occurring only after prolonged incubation, and in the absence of the accumulation of intracellular calcium. Exposure of HCASMC to HOCl also influences mitochondrial respiration, decreases glycolysis, lactate release, the production of ATP, cellular thiols and glutathione levels. These changes occurred to varying extents on exposure of the cells to HOSCN, where evidence was also obtained for the reversible modification of cellular thiols. HOCl also induced alterations in the mRNA expression of multiple inflammatory and phenotypic genes. Interestingly, the extent and nature of these changes was highly dependent on the specific cell donor used, with more marked effects observed in cells isolated from diseased compared to healthy vessels. Overall, these data provide new insight into pathways promoting vascular dysfunction during chronic inflammation, support the use of thiocyanate as a means to modulate MPO-induced cellular damage in atherosclerosis.
Collapse
Affiliation(s)
- Konstantina Flouda
- Department of Biomedical Sciences, University of Copenhagen, Panum, Blegdamsvej 3B, Copenhagen N, DK-2200, Denmark
| | - John Mercer
- Institute of Cardiovascular & Medical Sciences, University of Glasgow, 126 University Place, Glasgow, G12 8TA, United Kingdom
| | - Michael J Davies
- Department of Biomedical Sciences, University of Copenhagen, Panum, Blegdamsvej 3B, Copenhagen N, DK-2200, Denmark
| | - Clare L Hawkins
- Department of Biomedical Sciences, University of Copenhagen, Panum, Blegdamsvej 3B, Copenhagen N, DK-2200, Denmark.
| |
Collapse
|
79
|
Reyes JS, Fuentes-Lemus E, Aspée A, Davies MJ, Monasterio O, López-Alarcón C. M. jannaschii FtsZ, a key protein in bacterial cell division, is inactivated by peroxyl radical-mediated methionine oxidation. Free Radic Biol Med 2021; 166:53-66. [PMID: 33588048 DOI: 10.1016/j.freeradbiomed.2021.02.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/27/2021] [Accepted: 02/01/2021] [Indexed: 11/17/2022]
Abstract
Oxidation and inactivation of FtsZ is of interest due to the key role of this protein in bacterial cell division. In the present work, we studied peroxyl radical (from AAPH, 2,2'-azobis(2-methylpropionamidine)dihydrochloride) mediated oxidation of the highly stable FtsZ protein (MjFtsZ) from M. jannaschii, a thermophilic microorganism. MjFtsZ contains eleven Met, and single Tyr and Trp residues which would be expected to be susceptible to oxidation. We hypothesized that exposure of MjFtsZ to AAPH-derived radicals would induce Met oxidation, and cross-linking (via di-Tyr and di-Trp formation), with concomitant loss of its functional polymerization and depolymerization (GTPase) activities. Solutions containing MjFtsZ and AAPH (10 or 100 mM) were incubated at 37 °C for 3 h. Polymerization/depolymerization were assessed by light scattering, while changes in mass were analyzed by SDS-PAGE. Amino acid consumption was quantified by HPLC with fluorescence detection, or direct fluorescence (Trp). Oxidation products and modifications at individual Met residues were quantified by UPLC with mass detection. Oxidation inhibited polymerization-depolymerization activity, and yielded low levels of irreversible protein dimers. With 10 mM AAPH only Trp and Met were consumed giving di-alcohols, kynurenine and di-Trp (from Trp) and the sulfoxide (from Met). With 100 mM AAPH low levels of Tyr oxidation (but not di-Tyr formation) were also observed. Correlation with the functional analyses indicates that Met oxidation, and particularly Met164 is the key driver of MjFtsZ inactivation, probably as a result of the position of this residue at the protein-protein interface of longitudinal interactions and in close proximity to the GTP binding site.
Collapse
Affiliation(s)
- Juan Sebastián Reyes
- Departamento de Química Física, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Chile; Laboratorio de Biología Estructural y Molecular, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Chile
| | - Eduardo Fuentes-Lemus
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Denmark
| | - Alexis Aspée
- Departamento de Ciencias Del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Chile
| | - Michael J Davies
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Denmark
| | - Octavio Monasterio
- Laboratorio de Biología Estructural y Molecular, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Chile.
| | - Camilo López-Alarcón
- Departamento de Química Física, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Chile.
| |
Collapse
|
80
|
Yi Y, Xu W, Fan Y, Wang HX. Drosophila as an emerging model organism for studies of food-derived antioxidants. Food Res Int 2021; 143:110307. [PMID: 33992327 DOI: 10.1016/j.foodres.2021.110307] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/06/2021] [Accepted: 03/06/2021] [Indexed: 01/18/2023]
Abstract
Dietary supplementation with antioxidants provides health benefits by preventing diseases caused by oxidative stress and damage. Consequently, there has been growing interest in the study of antioxidative foods and their active ingredients. Oxidative stress and antioxidative responses are mechanistically conserved from Drosophila to mammals. Therefore, as a well-established model organism with a short life cycle and advantages of genetic manipulation, the fruit fly has been increasingly employed to assess functions of antioxidants in vivo. In this review, the antioxidative defense mechanisms, methods used and assays developed in Drosophila to evaluate antioxidant supplementation, are highlighted. The main manifestations of antioxidation include reduction of reactive species, up-regulation of endogenous antioxidants, inhibition on oxidative damage to biomacromolecules, enhanced resistance against oxidative stress and extension of lifespan, which are related to the activations of nuclear factor erythroid 2-related factor 2-antioxidant response element pathway and other adaptive responses. Moreover, the key considerations and future perspectives for the application of Drosophila models in the studies of food-derived antioxidants are discussed.
Collapse
Affiliation(s)
- Yang Yi
- College of Food Science & Engineering, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Wei Xu
- College of Food Science & Engineering, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Yun Fan
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK.
| | - Hong-Xun Wang
- College of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan 430023, China.
| |
Collapse
|
81
|
Pleiotropic Properties of Valsartan: Do They Result from the Antiglycooxidant Activity? Literature Review and In Vitro Study. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5575545. [PMID: 33763167 PMCID: PMC7946482 DOI: 10.1155/2021/5575545] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 02/13/2021] [Accepted: 02/16/2021] [Indexed: 12/15/2022]
Abstract
Valsartan belongs to angiotensin II type 1 (AT1) receptor blockers (ARB) used in cardiovascular diseases like heart failure and hypertension. Except for its AT1-antagonism, another mechanism of drug action has been suggested in recent research. One of the supposed actions refers to the positive impact on redox balance and reducing protein glycation. Our study is aimed at assessing the antiglycooxidant properties of valsartan in an in vitro model of oxidized bovine serum albumin (BSA). Glucose, fructose, ribose, glyoxal (GO), methylglyoxal (MGO), and chloramine T were used as glycation or oxidation agents. Protein oxidation products (total thiols, protein carbonyls (PC), and advanced oxidation protein products (AOPP)), glycooxidation products (tryptophan, kynurenine, N-formylkynurenine, and dityrosine), glycation products (amyloid-β structure, fructosamine, and advanced glycation end products (AGE)), and albumin antioxidant activity (total antioxidant capacity (TAC), DPPH assay, and ferric reducing antioxidant power (FRAP)) were measured in each sample. In the presence of valsartan, concentrations of protein oxidation and glycation products were significantly lower comparing to control. Moreover, albumin antioxidant activity was significantly higher in those samples. The drug's action was comparable to renowned antiglycation agents and antioxidants, e.g., aminoguanidine, metformin, Trolox, N-acetylcysteine, or alpha-lipoic acid. The conducted experiment proves that valsartan can ameliorate protein glycation and oxidation in vitro in various conditions. Available animal and clinical studies uphold this statement, but further research is needed to confirm it, as reduction of protein oxidation and glycation may prevent cardiovascular disease development.
Collapse
|
82
|
Jagaraj CJ, Parakh S, Atkin JD. Emerging Evidence Highlighting the Importance of Redox Dysregulation in the Pathogenesis of Amyotrophic Lateral Sclerosis (ALS). Front Cell Neurosci 2021; 14:581950. [PMID: 33679322 PMCID: PMC7929997 DOI: 10.3389/fncel.2020.581950] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 12/21/2020] [Indexed: 12/20/2022] Open
Abstract
The cellular redox state, or balance between cellular oxidation and reduction reactions, serves as a vital antioxidant defence system that is linked to all important cellular activities. Redox regulation is therefore a fundamental cellular process for aerobic organisms. Whilst oxidative stress is well described in neurodegenerative disorders including amyotrophic lateral sclerosis (ALS), other aspects of redox dysfunction and their contributions to pathophysiology are only just emerging. ALS is a fatal neurodegenerative disease affecting motor neurons, with few useful treatments. Hence there is an urgent need to develop more effective therapeutics in the future. Here, we discuss the increasing evidence for redox dysregulation as an important and primary contributor to ALS pathogenesis, which is associated with multiple disease mechanisms. Understanding the connection between redox homeostasis, proteins that mediate redox regulation, and disease pathophysiology in ALS, may facilitate a better understanding of disease mechanisms, and lead to the design of better therapeutic strategies.
Collapse
Affiliation(s)
- Cyril Jones Jagaraj
- Department of Biomedical Sciences, Macquarie University Centre for MND Research, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Sonam Parakh
- Department of Biomedical Sciences, Macquarie University Centre for MND Research, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Julie D Atkin
- Department of Biomedical Sciences, Macquarie University Centre for MND Research, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia.,Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, Australia
| |
Collapse
|
83
|
Salama SA, Omar HA. Modulating NF-κB, MAPK, and PI3K/AKT signaling by ergothioneine attenuates iron overload-induced hepatocellular injury in rats. J Biochem Mol Toxicol 2021; 35:e22729. [PMID: 33580994 DOI: 10.1002/jbt.22729] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/31/2020] [Accepted: 01/19/2021] [Indexed: 12/17/2022]
Abstract
The liver is highly susceptible to iron overload-evoked oxidative injury. Ergothioneine is a thio-histidine amino acid that has exhibited strong antioxidant and metal chelating activities. This study aimed at exploring the potential modulating effects of ergothioneine on iron-triggered liver injury. The results showed that ergothioneine inhibited iron-evoked inflammation and apoptosis as demonstrated by a significant reduction in tumor necrosis factor-α and interleukin-6 levels and in caspase-3 activity. Ergothioneine significantly improved liver cell survival as indicated by modulating phosphatidylinositol 3-kinase/protein kinase B signaling. Consistent with reduced necrotic cell death, ergothioneine diminished the iron-evoked histopathological changes and decreased serum activity of the liver enzymes. Mechanistically, ergothioneine reduced nuclear translocation of nuclear factor kappa B p65 and modulated p38 mitogen-activated protein kinase/c-Fos signaling. In addition, it enhanced the liver tissue antioxidant potential and curbed hepatic iron load. Together, these results point out the modulatory effects of ergothioneine on iron-evoked liver cell injury that are possibly mediated via anti-inflammatory, antioxidant, and possible iron chelation capabilities.
Collapse
Affiliation(s)
- Samir A Salama
- Division of Biochemistry, Department of Pharmacology, College of Pharmacy, Taif University, Taif, Saudi Arabia.,Department of Biochemistry, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Hany A Omar
- College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
84
|
Singh P, Pandey KB, Rizvi SI. Piperine protects oxidative modifications in human erythrocytes. J Basic Clin Physiol Pharmacol 2021; 33:163-167. [PMID: 33559462 DOI: 10.1515/jbcpp-2020-0100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 10/31/2020] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Piperine (1-piperoyl piperidine), a major alkaloid constituent of Piper nigrum L. and Piper longum L. has pleiotropic biological effects, but the mechanism(s) involved remain to be elucidated. The current study was conducted to examine the efficacy of antioxidant ability of piperine on t-BHP induced markers of oxidative stress in human erythrocytes. METHODS Healthy human erythrocytes and erythrocytes membrane was stressed with free radical inducer chemical; t-BHP (10-5 M), and the effects of piperine was measured against free radical mediated modification in lipid and protein content, -SH and GSH value with antioxidant potential. RESULTS The results demonstrate that treatment of erythrocytes with piperine (10-5 to 10-7 M) significantly (p<0.05) ameliorated the adverse consequences of oxidative stress as evidenced by prevention of oxidation of erythrocyte reduced glutathione, membrane thiols, proteins, and peroxidation of lipids; the effects were in correlation with ferric reducing and radical scavenging abilities of piperine. CONCLUSIONS The study concludes that piperine possesses potent anti-oxidant potential which may explain many of its observed biological effects.
Collapse
Affiliation(s)
- Prabhakar Singh
- Department of Biochemistry, University of Allahabad, Allahabad, Uttar Pradesh, India
| | | | - Syed Ibrahim Rizvi
- Department of Biochemistry, University of Allahabad, Allahabad, Uttar Pradesh, India
| |
Collapse
|
85
|
Flouda K, Gammelgaard B, Davies MJ, Hawkins CL. Modulation of hypochlorous acid (HOCl) induced damage to vascular smooth muscle cells by thiocyanate and selenium analogues. Redox Biol 2021; 41:101873. [PMID: 33550113 PMCID: PMC7868818 DOI: 10.1016/j.redox.2021.101873] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/12/2021] [Accepted: 01/14/2021] [Indexed: 02/08/2023] Open
Abstract
The production of hypochlorous acid (HOCl) by myeloperoxidase (MPO) plays a key role in immune defense, but also induces host tissue damage, particularly in chronic inflammatory pathologies, including atherosclerosis. This has sparked interest in the development of therapeutic approaches that decrease HOCl formation during chronic inflammation, including the use of alternative MPO substrates. Thiocyanate (SCN−) supplementation decreases HOCl production by favouring formation of hypothiocyanous acid (HOSCN), which is more selectively toxic to bacterial cells. Selenium-containing compounds are also attractive therapeutic agents as they react rapidly with HOCl and can be catalytically recycled. In this study, we examined the ability of SCN−, selenocyanate (SeCN−) and selenomethionine (SeMet) to modulate HOCl-induced damage to human coronary artery smooth muscle cells (HCASMC), which are critical to both normal vessel function and lesion formation in atherosclerosis. Addition of SCN− prevented HOCl-induced cell death, altered the pattern and extent of intracellular thiol oxidation, and decreased perturbations to calcium homeostasis and pro-inflammatory signaling. Protection was also observed with SeCN− and SeMet, though SeMet was less effective than SeCN− and SCN−. Amelioration of damage was detected with sub-stoichiometric ratios of the added compound to HOCl. The effects of SCN− are consistent with conversion of HOCl to HOSCN. Whilst SeCN− prevented HOCl-induced damage to a similar extent to SCN−, the resulting product hyposelenocyanous acid (HOSeCN), was more toxic to HCASMC than HOSCN. These results provide support for the use of SCN− and/or selenium analogues as scavengers, to decrease HOCl-induced cellular damage and HOCl production at inflammatory sites in atherosclerosis and other pathologies. HOCl induces extensive smooth muscle cell death and irreversible thiol oxidation. Addition of SCN− decreases the extent of HOCl-induced cell damage. SeCN− has similar protective effects to SCN− towards HOCl-induced cell damage. HOSeCN is less toxic than HOCl but more damaging than HOSCN. SeMet modulates HOCl-induced damage but less effectively than SCN− or SeCN−.
Collapse
Affiliation(s)
- Konstantina Flouda
- Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3B, Copenhagen, DK-2200, Denmark
| | - Bente Gammelgaard
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, Copenhagen, DK-2100, Denmark
| | - Michael J Davies
- Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3B, Copenhagen, DK-2200, Denmark
| | - Clare L Hawkins
- Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3B, Copenhagen, DK-2200, Denmark.
| |
Collapse
|
86
|
Myeloperoxidase Modulates Hydrogen Peroxide Mediated Cellular Damage in Murine Macrophages. Antioxidants (Basel) 2020; 9:antiox9121255. [PMID: 33321763 PMCID: PMC7764223 DOI: 10.3390/antiox9121255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/02/2020] [Accepted: 12/07/2020] [Indexed: 11/17/2022] Open
Abstract
Myeloperoxidase (MPO) is involved in the development of many chronic inflammatory diseases, in addition to its key role in innate immune defenses. This is attributed to the excessive production of hypochlorous acid (HOCl) by MPO at inflammatory sites, which causes tissue damage. This has sparked wide interest in the development of therapeutic approaches to prevent HOCl-induced cellular damage including supplementation with thiocyanate (SCN-) as an alternative substrate for MPO. In this study, we used an enzymatic system composed of glucose oxidase (GO), glucose, and MPO in the absence and presence of SCN-, to investigate the effects of generating a continuous flux of oxidants on macrophage cell function. Our studies show the generation of hydrogen peroxide (H2O2) by glucose and GO results in a dose- and time-dependent decrease in metabolic activity and cell viability, and the activation of stress-related signaling pathways. Interestingly, these damaging effects were attenuated by the addition of MPO to form HOCl. Supplementation with SCN-, which favors the formation of hypothiocyanous acid, could reverse this effect. Addition of MPO also resulted in upregulation of the antioxidant gene, NAD(P)H:quinone acceptor oxidoreductase 1. This study provides new insights into the role of MPO in the modulation of macrophage function, which may be relevant to inflammatory pathologies.
Collapse
|
87
|
Bellmaine S, Schnellbaecher A, Zimmer A. Reactivity and degradation products of tryptophan in solution and proteins. Free Radic Biol Med 2020; 160:696-718. [PMID: 32911085 DOI: 10.1016/j.freeradbiomed.2020.09.002] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/06/2020] [Accepted: 09/02/2020] [Indexed: 12/13/2022]
Abstract
Tryptophan is one of the essential mammalian amino acids and is thus a required component in human nutrition, animal feeds, and cell culture media. However, this aromatic amino acid is highly susceptible to oxidation and is known to degrade into multiple products during manufacturing, storage, and processing. Many physical and chemical processes contribute to the degradation of this compound, primarily via oxidation or cleavage of the highly reactive indole ring. The central contributing factors are reactive oxygen species, such as singlet oxygen, hydrogen peroxide, and hydroxyl radicals; light and photosensitizers; metals; and heat. In a multi-component mixture, tryptophan also commonly reacts with carbonyl-containing compounds, leading to a wide variety of products. The purpose of this review is to summarize the current state of knowledge regarding the degradation and interaction products of tryptophan in complex liquid solutions and in proteins. For the purposes of context, a brief summary of the key pathways in tryptophan metabolism will be included, along with common methods and issues in tryptophan manufacturing. The review will focus on the conditions that lead to tryptophan degradation, the products generated in these processes, their known biological effects, and methods which may be applied to stabilize the amino acid.
Collapse
Affiliation(s)
- Stephanie Bellmaine
- Merck Life Science, Upstream R&D, Frankfurter Strasse 250, 64293, Darmstadt, Germany
| | - Alisa Schnellbaecher
- Merck Life Science, Upstream R&D, Frankfurter Strasse 250, 64293, Darmstadt, Germany
| | - Aline Zimmer
- Merck Life Science, Upstream R&D, Frankfurter Strasse 250, 64293, Darmstadt, Germany.
| |
Collapse
|
88
|
Hellwig M. Analysis of Protein Oxidation in Food and Feed Products. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:12870-12885. [PMID: 32237708 DOI: 10.1021/acs.jafc.0c00711] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Food and feed proteins are subject to oxidation reactions during production, processing, and storage. Several individual oxidized amino acids have been described in model systems and food; however, protein oxidation in food is still mostly assessed by the analysis of protein carbonylation. In the present review, the chemistry of protein oxidation and its implications for protein functionality, food flavor, and nutritional physiology are briefly summarized. Limitations of generic methods targeting redox-relevant functional groups and properties of typical reaction products, such as the determination of protein carbonyls and fluorescence spectroscopy, are presented. Methods for the quantitation of individual oxidation products of susceptible amino acids, such as cysteine, methionine, phenylalanine, tyrosine, and tryptophan, are reported. Special regard is paid to limitations resulting from the required hydrolysis procedures and unintended formation of the analytes during sample pretreatment. If available, results from food analysis obtained by different methods are compared. Suggestions and requirements for future works on protein oxidation in food and nutrition are given.
Collapse
Affiliation(s)
- Michael Hellwig
- Chair of Food Chemistry, Technische Universität Dresden, D-01062 Dresden, Germany
| |
Collapse
|
89
|
Marques M, Cordeiro M, Marinho M, Vian C, Vaz G, Alves B, Jardim R, Hort M, Dora C, Horn A. Curcumin-loaded nanoemulsion improves haemorrhagic stroke recovery in wistar rats. Brain Res 2020; 1746:147007. [DOI: 10.1016/j.brainres.2020.147007] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/16/2020] [Accepted: 06/30/2020] [Indexed: 12/14/2022]
|
90
|
Nitroxides Mitigate Neutrophil-Mediated Damage to the Myocardium after Experimental Myocardial Infarction in Rats. Int J Mol Sci 2020; 21:ijms21207650. [PMID: 33081101 PMCID: PMC7589606 DOI: 10.3390/ijms21207650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/09/2020] [Accepted: 10/12/2020] [Indexed: 02/05/2023] Open
Abstract
Reperfusion therapy increases survival post-acute myocardial infarction (AMI) while also stimulating secondary oxidant production and immune cell infiltration. Neutrophils accumulate within infarcted myocardium within 24 h post-AMI and release myeloperoxidase (MPO) that catalyses hypochlorous acid (HOCl) production while increasing oxidative stress and inflammation, thereby enhancing ventricular remodelling. Nitroxides inhibit MPO-mediated HOCl production, potentially ameliorating neutrophil-mediated damage. Aim: Assess the cardioprotective ability of nitroxide 4-methoxyTEMPO (4MetT) within the setting of AMI. Methods: Male Wistar rats were separated into 3 groups: SHAM, AMI/R, and AMI/R + 4MetT (15 mg/kg at surgery via oral gavage) and subjected to left descending coronary artery ligation for 30 min to generate an AMI, followed by reperfusion. One cohort of rats were sacrificed at 24 h post-reperfusion and another 28 days post-surgery (with 4MetT (15 mg/kg) administration twice daily). Results: 3-chlorotyrosine, a HOCl-specific damage marker, decreased within the heart of animals in the AMI/R + 4-MetT group 24 h post-AMI, indicating the drug inhibited MPO activity; however, there was no evident difference in either infarct size or myocardial scar size between the groups. Concurrently, MPO, NfκB, TNFα, and the oxidation marker malondialdehyde increased within the hearts, with 4-MetT only demonstrating a trend in decreasing MPO and TNF levels. Notably, 4MetT provided a significant improvement in cardiac function 28 days post-AMI, as assessed by echocardiography, indicating potential for 4-MetT as a treatment option, although the precise mechanism of action of the compound remains unclear.
Collapse
|
91
|
Reduced Proteasome Activity and Enhanced Autophagy in Blood Cells of Psoriatic Patients. Int J Mol Sci 2020; 21:ijms21207608. [PMID: 33066703 PMCID: PMC7589048 DOI: 10.3390/ijms21207608] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/09/2020] [Accepted: 10/12/2020] [Indexed: 02/06/2023] Open
Abstract
Psoriasis is a skin disease that is accompanied by oxidative stress resulting in modification of cell components, including proteins. Therefore, we investigated the relationship between the intensity of oxidative stress and the expression and activity of the proteasomal system as well as autophagy, responsible for the degradation of oxidatively modified proteins in the blood cells of patients with psoriasis. Our results showed that the caspase-like, trypsin-like, and chymotrypsin-like activity of the 20S proteasome in lymphocytes, erythrocytes, and granulocytes was lower, while the expression of constitutive proteasome and immunoproteasome subunits in lymphocytes was increased cells of psoriatic patients compared to healthy subjects. Conversely, the expression of constitutive subunits in erythrocytes, and both constitutive and immunoproteasomal subunits in granulocytes were reduced. However, a significant increase in the autophagy flux (assessed using LC3BII/LC3BI ratio) independent of the AKT pathway was observed. The levels of 4-HNE, 4-HNE-protein adducts, and proteins carbonyl groups were significantly higher in the blood cells of psoriatic patients. The decreased activity of the 20S proteasome together with the increased autophagy and the significantly increased level of proteins carbonyl groups and 4-HNE-protein adducts indicate a proteostatic imbalance in the blood cells of patients with psoriasis.
Collapse
|
92
|
Salama SA, Kabel AM. Taxifolin ameliorates iron overload-induced hepatocellular injury: Modulating PI3K/AKT and p38 MAPK signaling, inflammatory response, and hepatocellular regeneration. Chem Biol Interact 2020; 330:109230. [PMID: 32828744 DOI: 10.1016/j.cbi.2020.109230] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 07/30/2020] [Accepted: 08/18/2020] [Indexed: 02/06/2023]
Abstract
Although physiological levels of iron are essential for numerous biological processes, excess iron causes critical tissue injury. Under iron overload conditions, non-chelated iron generates reactive oxygen species that mediate iron-induced tissue injury with subsequent induction of apoptosis, necrosis, and inflammatory responses. Because liver is a central player in iron metabolism and storage, it is vulnerable to iron-induced tissue injury. Taxifolin is naturally occurring compound that has shown potent antioxidant and potential iron chelation competency. The aim of the current study was to investigate the potential protective effects of taxifolin against iron-induced hepatocellular injury and to elucidate the underlining mechanisms using rats as a mammalian model. The results of the current work indicated that taxifolin inhibited iron-induced apoptosis and enhanced hepatocellular survival as demonstrated by decreased activity of caspase-3 and activation of the pro-survival signaling PI3K/AKT, respectively. Western blotting analysis revealed that taxifolin enhanced liver regeneration as indicated by increased PCNA protein abundance. Taxifolin mitigated the iron-induced histopathological aberration and reduced serum activity of liver enzymes (ALT and AST), highlighting enhanced liver cell integrity. Mechanistically, taxifolin modulated the redox-sensitive MAPK signaling (p38/c-Fos) and improved redox status of the liver tissues as indicated by decreased lipid peroxidation and protein oxidation along with enhanced total antioxidant capacity. Interestingly, it decreased liver iron content and down-regulated the pro-inflammatory cytokines TNF-α, IL-6, and IL-1β. Collectively, these data highlight, for the first time, the ameliorating effects of taxifolin against iron overload-induced hepatocellular injury that is potentially mediated through anti-inflammatory, antioxidant, and potential iron chelation activities.
Collapse
Affiliation(s)
- Samir A Salama
- Division of Biochemistry, Department of Pharmacology and GTMR Unit, College of Pharmacy, Taif University, Taif, 21974, Saudi Arabia; Department of Biochemistry, Faculty of Pharmacy, Al-Azhar University, Cairo, 11751, Egypt.
| | - Ahmed M Kabel
- Department of Clinical Pharmacy, College of Pharmacy, Taif University, Taif, Saudi Arabia; Department of Pharmacology, Faculty of Medicine, Tanta University, Tanta, Egypt
| |
Collapse
|
93
|
A New Insight into Meloxicam: Assessment of Antioxidant and Anti-Glycating Activity in In Vitro Studies. Pharmaceuticals (Basel) 2020; 13:ph13090240. [PMID: 32927809 PMCID: PMC7558080 DOI: 10.3390/ph13090240] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/03/2020] [Accepted: 09/09/2020] [Indexed: 12/26/2022] Open
Abstract
Meloxicam is a non-steroidal anti-inflammatory drug, which has a preferential inhibitory effect to cyclooxyganase-2 (COX-2). Although the drug inhibits prostaglandin synthesis, the exact mechanism of meloxicam is still unknown. This is the first study to assess the effect of meloxicam on protein glyco-oxidation as well as antioxidant activity. For this purpose, we used an in vitro model of oxidized bovine serum albumin (BSA). Glucose, fructose, ribose, glyoxal and methylglyoxal were used as glycating agents, while chloramine T was used as an oxidant. We evaluated the antioxidant properties of albumin (2,2-di-phenyl-1-picrylhydrazyl radical scavenging capacity, total antioxidant capacity and ferric reducing antioxidant power), the intensity of protein glycation (Amadori products, advanced glycation end products) and glyco-oxidation (dityrosine, kynurenine, N-formylkynurenine, tryptophan and amyloid-β) as well as the content of protein oxidation products (advanced oxidation protein products, carbonyl groups and thiol groups). We have demonstrated that meloxicam enhances the antioxidant properties of albumin and prevents the protein oxidation and glycation under the influence of various factors such as sugars, aldehydes and oxidants. Importantly, the antioxidant and anti-glycating activity is similar to that of routinely used antioxidants such as captopril, Trolox, reduced glutathione and lipoic acid as well as protein glycation inhibitors (aminoguanidine). Pleiotropic action of meloxicam may increase the effectiveness of anti-inflammatory treatment in diseases with oxidative stress etiology.
Collapse
|
94
|
Adetunji AE, Sershen, Varghese B, Pammenter NW. Effects of Inorganic Salt Solutions on Vigour, Viability, Oxidative Metabolism and Germination Enzymes in Aged Cabbage and Lettuce Seeds. PLANTS (BASEL, SWITZERLAND) 2020; 9:1164. [PMID: 32916793 PMCID: PMC7569860 DOI: 10.3390/plants9091164] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/12/2020] [Accepted: 08/13/2020] [Indexed: 01/30/2025]
Abstract
This study assessed the potential of pre-hydration treatment with aqueous solutions (electrolysed [cathodic water; CW] and non-electrolysed) prepared from four different inorganic ion combinations: 1 mM CaCl2, 1 µm CaCl2 and 1 mM MgCl2 (CaMg, hereafter), 1 mM MgCl2 and 1 mM NaCl to invigorate controlled deteriorated (CDd) Brassicaoleracea (cabbage) and Lactucasativa (lettuce) seeds by assessing germination, vigour and biochemical markers (electrolyte leakage, lipid peroxidation products, protein carbonylation, and defence and germination associated enzymes) of oxidative stress. Additionally, the possible effects of pH of electrolysed CaMg and NaCl solutions were assessed. The inorganic salt solutions were applied to fresh seeds and seeds deteriorated to 75% viability (P75), 50% viability (P50) and 25% viability (P25); deionised water served as control. The pre-hydration treatment did not enhance normal seedling production in cabbage. However, Ca-containing and CW hydration treatments (CaCl2 CW, CaMg and CaMg CW [6.5], MgCl2 CW, NaCl CW and NaCl CW [6.5]) promoted normal seedling production of CDd lettuce seeds, while seedling vigour was enhanced by CaMg, CaMg CW (6.5), NaCl CW and NaCl CW (6.5) in CDd cabbage seeds, and CaCl2, CaCl2 CW, CaMg, CaMg CW (6.5), MgCl2 CW, NaCl CW and NaCl CW (6.5) in CDd lettuce seeds. The supplementation of Ca, a component of the ionised solutes, and/or the reducing potential of CW contributed to increased normal seedling production in lettuce seeds irrespective of the pH of treatment solutions or degree of deterioration. Overall, the pre-hydration treatments enhanced endogenous antioxidants leading to reduced levels of electrolyte leakage, lipid peroxidation, protein carbonylation, and enhanced germination enzyme activities in lettuce seeds. The study concluded that pre-hydration with selected inorganic salt solutions can invigorate debilitated lettuce seeds.
Collapse
Affiliation(s)
| | - Sershen
- Department for Biodiversity and Conservation Biology, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa;
- Institute of Natural Resources, P.O. Box 100396, Scottsville 3209, South Africa
| | - Boby Varghese
- School of Life Sciences, University of KwaZulu-Natal, Durban 4001, South Africa; (B.V.); (N.W.P.)
| | - Norman W. Pammenter
- School of Life Sciences, University of KwaZulu-Natal, Durban 4001, South Africa; (B.V.); (N.W.P.)
| |
Collapse
|
95
|
Gila-Díaz A, Herranz Carrillo G, Cañas S, Saenz de Pipaón M, Martínez-Orgado JA, Rodríguez-Rodríguez P, López de Pablo ÁL, Martin-Cabrejas MA, Ramiro-Cortijo D, Arribas SM. Influence of Maternal Age and Gestational Age on Breast Milk Antioxidants During the First Month of Lactation. Nutrients 2020; 12:nu12092569. [PMID: 32854220 PMCID: PMC7551022 DOI: 10.3390/nu12092569] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/14/2020] [Accepted: 08/21/2020] [Indexed: 12/15/2022] Open
Abstract
Breast milk (BM) is beneficial due to its content in a wide range of different antioxidants, particularly relevant for preterm infants, who are at higher risk of oxidative stress. We hypothesize that BM antioxidants are adapted to gestational age and are negatively influenced by maternal age. Fifty breastfeeding women from two hospitals (Madrid, Spain) provided BM samples at days 7, 14 and 28 of lactation to assess total antioxidant capacity (ABTS), thiol groups, reduced glutathione (GSH), superoxide dismutase (SOD) and catalase activities, lipid peroxidation (malondialdehyde, MDA + 4-Hydroxy-Trans-2-Nonenal, HNE), protein oxidation (carbonyl groups) (spectrophotometry) and melatonin (ELISA). Mixed random-effects linear regression models were used to study the influence of maternal and gestational ages on BM antioxidants, adjusted by days of lactation. Regression models evidenced a negative association between maternal age and BM melatonin levels (β = -7.4 ± 2.5; p-value = 0.005); and a negative association between gestational age and BM total antioxidant capacity (β = -0.008 ± 0.003; p-value = 0.006), SOD activity (β = -0.002 ± 0.001; p-value = 0.043) and protein oxidation (β = -0.22 ± 0.07; p-value = 0.001). In conclusion, BM antioxidants are adapted to gestational age providing higher levels to infants with lower degree of maturation; maternal ageing has a negative influence on melatonin, a key antioxidant hormone.
Collapse
Affiliation(s)
- Andrea Gila-Díaz
- Department of Physiology, Faculty of Medicine, Universidad Autónoma de Madrid, C/Arzobispo Morcillo 2, 28029 Madrid, Spain; (A.G.-D.); (P.R.-R.); (Á.L.L.d.P.)
| | - Gloria Herranz Carrillo
- Division of Neonatology, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), C/Profesor Martín Lagos s/n, 28040 Madrid, Spain; (G.H.C.); (J.A.M.-O.)
| | - Silvia Cañas
- Department of Agricultural and Food Chemistry-CIAL, Faculty of Sciences, Universidad Autónoma de Madrid, Ciudad Universitaria de Cantoblanco, 28049 Madrid, Spain; (S.C.); (M.A.M.-C.)
| | - Miguel Saenz de Pipaón
- Department of Neonatology, Hospital La Paz, Paseo de la Castellana 216, 28046 Madrid, Spain;
| | - José Antonio Martínez-Orgado
- Division of Neonatology, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), C/Profesor Martín Lagos s/n, 28040 Madrid, Spain; (G.H.C.); (J.A.M.-O.)
| | - Pilar Rodríguez-Rodríguez
- Department of Physiology, Faculty of Medicine, Universidad Autónoma de Madrid, C/Arzobispo Morcillo 2, 28029 Madrid, Spain; (A.G.-D.); (P.R.-R.); (Á.L.L.d.P.)
| | - Ángel Luis López de Pablo
- Department of Physiology, Faculty of Medicine, Universidad Autónoma de Madrid, C/Arzobispo Morcillo 2, 28029 Madrid, Spain; (A.G.-D.); (P.R.-R.); (Á.L.L.d.P.)
| | - María A. Martin-Cabrejas
- Department of Agricultural and Food Chemistry-CIAL, Faculty of Sciences, Universidad Autónoma de Madrid, Ciudad Universitaria de Cantoblanco, 28049 Madrid, Spain; (S.C.); (M.A.M.-C.)
| | - David Ramiro-Cortijo
- Department of Physiology, Faculty of Medicine, Universidad Autónoma de Madrid, C/Arzobispo Morcillo 2, 28029 Madrid, Spain; (A.G.-D.); (P.R.-R.); (Á.L.L.d.P.)
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline avenue, 02215 Boston, MA, USA
- Correspondence: (D.R.-C.); (S.M.A.)
| | - Silvia M. Arribas
- Department of Physiology, Faculty of Medicine, Universidad Autónoma de Madrid, C/Arzobispo Morcillo 2, 28029 Madrid, Spain; (A.G.-D.); (P.R.-R.); (Á.L.L.d.P.)
- Correspondence: (D.R.-C.); (S.M.A.)
| |
Collapse
|
96
|
Rahul, Naz F, Jyoti S, Siddique YH. Effect of kaempferol on the transgenic Drosophila model of Parkinson's disease. Sci Rep 2020; 10:13793. [PMID: 32796885 PMCID: PMC7429503 DOI: 10.1038/s41598-020-70236-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/27/2020] [Indexed: 11/22/2022] Open
Abstract
The present study was aimed to study the effect of kaempferol, on the transgenic Drosophila model of Parkinson's disease. Kaempferol was added in the diet at final concentration of 10, 20, 30 and 40 µM and the effect was studied on various cognitive and oxidative stress markers. The results of the study showed that kaempferol, delayed the loss of climbing ability as well as the activity of PD flies in a dose dependent manner compared to unexposed PD flies. A dose-dependent reduction in oxidative stress markers was also observed. Histopathological examination of fly brains using anti-tyrosine hydroxylase immunostaining has revealed a significant dose-dependent increase in the expression of tyrosine hydroxylase in PD flies exposed to kaempferol. Molecular docking results revealed that kaempferol binds to human alpha synuclein at specific sites that might results in the inhibition of alpha synuclein aggregation and prevents the formation of Lewy bodies.
Collapse
Affiliation(s)
- Rahul
- Drosophila Transgenic Laboratory, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, 202002, India
| | - Falaq Naz
- Drosophila Transgenic Laboratory, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, 202002, India
| | - Smita Jyoti
- Drosophila Transgenic Laboratory, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, 202002, India
| | - Yasir Hasan Siddique
- Drosophila Transgenic Laboratory, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, 202002, India.
| |
Collapse
|
97
|
Ying S, Tan M, Feng G, Kuang Y, Chen D, Li J, Song J. Low-intensity Pulsed Ultrasound regulates alveolar bone homeostasis in experimental Periodontitis by diminishing Oxidative Stress. Am J Cancer Res 2020; 10:9789-9807. [PMID: 32863960 PMCID: PMC7449900 DOI: 10.7150/thno.42508] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 07/28/2020] [Indexed: 12/19/2022] Open
Abstract
Periodontitis is a widespread oral disease that results in the loss of alveolar bone. Low-intensity pulsed ultrasound (LIPUS), which is a new therapeutic option, promotes alveolar bone regeneration in periodontal bone injury models. This study investigated the protective effect of LIPUS on oxidative stress in periodontitis and the mechanism underlying this process. Methods: An experimental periodontitis model was induced by administering a ligature. Immunohistochemistry was performed to detect the expression levels of oxidative stress, osteogenic, and osteoclastogenic markers in vivo. Cell viability and osteogenic differentiation were analyzed using the Cell Counting Kit-8, alkaline phosphatase, and Alizarin Red staining assays. A reactive oxygen species assay kit, lipid peroxidation MDA assay kit, and western blotting were used to determine oxidative stress status in vitro. To verify the role of nuclear factor erythroid 2-related factor 2 (Nrf2), an oxidative regulator, during LIPUS treatment, the siRNA technique and Nrf2-/- mice were used. The PI3K/Akt inhibitor LY294002 was utilized to identify the effects of the PI3K-Akt/Nrf2 signaling pathway. Results: Alveolar bone resorption, which was experimentally induced by periodontitis in vivo, was alleviated by LIPUS via activation of Nrf2. Oxidative stress, induced via H2O2 treatment in vitro, inhibited cell viability and suppressed osteogenic differentiation. These effects were also alleviated by LIPUS treatment via Nrf2 activation. Nrf2 silencing blocked the antioxidant effect of LIPUS by diminishing heme oxygenase-1 expression. Nrf2-/- mice were susceptible to ligature-induced periodontitis, and the protective effect of LIPUS on alveolar bone dysfunction was weaker in these mice. Activation of Nrf2 by LIPUS was accompanied by activation of the PI3K/Akt pathway. The oxidative defense function of LIPUS was inhibited by exposure to LY294002 in vitro. Conclusions: These results demonstrated that LIPUS regulates alveolar bone homeostasis in periodontitis by attenuating oxidative stress via the regulation of PI3K-Akt/Nrf2 signaling. Thus, Nrf2 plays a pivotal role in the protective effect exerted by LIPUS against ligature-induced experimental periodontitis.
Collapse
|
98
|
Effects of l-Lysine on the physiochemical properties and sensory characteristics of salt-reduced reconstructed ham. Meat Sci 2020; 166:108133. [DOI: 10.1016/j.meatsci.2020.108133] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 03/19/2020] [Accepted: 03/24/2020] [Indexed: 12/14/2022]
|
99
|
Guo C, Davies MJ, Hawkins CL. Role of thiocyanate in the modulation of myeloperoxidase-derived oxidant induced damage to macrophages. Redox Biol 2020; 36:101666. [PMID: 32781424 PMCID: PMC7417949 DOI: 10.1016/j.redox.2020.101666] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/20/2020] [Accepted: 07/28/2020] [Indexed: 12/13/2022] Open
Abstract
Myeloperoxidase (MPO) is a vital component of the innate immune system, which produces the potent oxidant hypochlorous acid (HOCl) to kill invading pathogens. However, an overproduction of HOCl during chronic inflammatory conditions causes damage to host cells, which promotes disease, including atherosclerosis. As such, there is increasing interest in the use of thiocyanate (SCN-) therapeutically to decrease inflammatory disease, as SCN- is the favoured substrate for MPO, and a potent competitive inhibitor of HOCl formation. Use of SCN- by MPO forms hypothiocyanous acid (HOSCN), which can be less damaging to mammalian cells. In this study, we examined the ability of SCN- to modulate damage to macrophages induced by HOCl, which is relevant to lesion formation in atherosclerosis. Addition of SCN- prevented HOCl-mediated cell death, altered the extent and nature of thiol oxidation and the phosphorylation of mitogen activated protein kinases. These changes were dependent on the concentration of SCN- and were observed in some cases, at a sub-stoichiometric ratio of SCN-: HOCl. Co-treatment with SCN- also modulated HOCl-induced perturbations in the expression of various antioxidant and inflammatory genes. In general, the data reflect the conversion of HOCl to HOSCN, which can induce reversible modifications that are repairable by cells. However, our data also highlight the ability of HOSCN to increase pro-inflammatory gene expression and cytokine/chemokine release, which may be relevant to the use of SCN- therapeutically in atherosclerosis. Overall, this study provides further insight into the cellular pathways by which SCN- could exert protective effects on supplementation to decrease the development of chronic inflammatory diseases, such as atherosclerosis.
Collapse
Affiliation(s)
- Chaorui Guo
- Department of Biomedical Sciences, University of Copenhagen, Panum, Blegdamsvej 3B, Copenhagen, DK-2200, Denmark
| | - Michael J Davies
- Department of Biomedical Sciences, University of Copenhagen, Panum, Blegdamsvej 3B, Copenhagen, DK-2200, Denmark
| | - Clare L Hawkins
- Department of Biomedical Sciences, University of Copenhagen, Panum, Blegdamsvej 3B, Copenhagen, DK-2200, Denmark.
| |
Collapse
|
100
|
Liu Y, Burton T, Rayner BS, San Gabriel PT, Shi H, El Kazzi M, Wang X, Dennis JM, Ahmad G, Schroder AL, Gao A, Witting PK, Chami B. The role of sodium thiocyanate supplementation during dextran sodium sulphate-stimulated experimental colitis. Arch Biochem Biophys 2020; 692:108490. [PMID: 32721434 DOI: 10.1016/j.abb.2020.108490] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 07/01/2020] [Accepted: 07/08/2020] [Indexed: 12/15/2022]
Abstract
Ulcerative colitis is a condition characterised by the infiltration of leukocytes into the gastrointestinal wall. Leukocyte-MPO catalyses hypochlorous acid (HOCl) and hypothiocyanous acid (HOSCN) formation from chloride (Cl-) and thiocyanous (SCN-) anions, respectively. While HOCl indiscriminately oxidises biomolecules, HOSCN primarily targets low-molecular weight protein thiols. Oxidative damage mediated by HOSCN may be reversible, potentially decreasing MPO-associated host tissue destruction. This study investigated the effect of SCN- supplementation in a model of acute colitis. Female mice were supplemented dextran sodium sulphate (DSS, 3% w/v) in the presence of 10 mM Cl- or SCN- in drinking water ad libitum, or with salts (NaCl and NaSCN only) or water only (controls). Behavioural studies showed mice tolerated NaSCN and NaCl-treated water with water-seeking frequency. Ion-exchange chromatography showed increased fecal and plasma SCN- levels in thiocyanate supplemented mice; plasma SCN- reached similar fold-increase for smokers. Overall there was no difference in weight loss and clinical score, mucin levels, crypt integrity and extent of cellular infiltration between DSS/SCN- and DSS/Cl- groups. Neutrophil recruitment remained unchanged in DSS-treated mice, as assessed by fecal calprotectin levels. Total thiol and tyrosine phosphatase activity remained unchanged between DSS/Cl- and DSS/SCN- groups, however, colonic tissue showed a trend in decreased 3-chlorotyrosine (1.5-fold reduction, p < 0.051) and marked increase in colonic GCLC, the rate-limiting enzyme in glutathione synthesis. These data suggest that SCN- administration can modulate MPO activity towards a HOSCN-specific pathway, however, this does not alter the development of colitis within a DSS murine model.
Collapse
Affiliation(s)
- Yuyang Liu
- Discipline of Pathology, Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, NSW, 2006, Australia.
| | - Thomas Burton
- Animal Behavioural Facility, Charles Perkins Centre, School of Medical Sciences and the Bosch Institute, The University of Sydney, NSW, 2006, Australia.
| | - Benjamin Saul Rayner
- Heart Research Institute, Sydney Medical School, The University of Sydney, NSW, 2006, Australia.
| | - Patrick T San Gabriel
- Discipline of Pathology, Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, NSW, 2006, Australia.
| | - Han Shi
- Discipline of Pathology, Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, NSW, 2006, Australia.
| | - Mary El Kazzi
- Discipline of Pathology, Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, NSW, 2006, Australia.
| | - XiaoSuo Wang
- Discipline of Pathology, Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, NSW, 2006, Australia.
| | - Joanne M Dennis
- Discipline of Pathology, Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, NSW, 2006, Australia.
| | - Gulfam Ahmad
- Discipline of Pathology, Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, NSW, 2006, Australia.
| | - Angie L Schroder
- Discipline of Pathology, Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, NSW, 2006, Australia.
| | - Antony Gao
- Discipline of Pathology, Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, NSW, 2006, Australia.
| | - Paul Kenneth Witting
- Discipline of Pathology, Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, NSW, 2006, Australia.
| | - Belal Chami
- Discipline of Pathology, Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, NSW, 2006, Australia.
| |
Collapse
|