51
|
Roberts JS, Atanasova KR, Lee J, Diamond G, Deguzman J, Hee Choi C, Yilmaz Ö. Opportunistic Pathogen Porphyromonas gingivalis Modulates Danger Signal ATP-Mediated Antibacterial NOX2 Pathways in Primary Epithelial Cells. Front Cell Infect Microbiol 2017; 7:291. [PMID: 28725637 PMCID: PMC5495830 DOI: 10.3389/fcimb.2017.00291] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 06/14/2017] [Indexed: 12/15/2022] Open
Abstract
Porphyromonas gingivalis, a major opportunistic pathogen in the etiology of chronic periodontitis, successfully survives in human gingival epithelial cells (GECs). P. gingivalis abrogates the effects of a host danger molecule, extracellular ATP (eATP)/P2X7 signaling, such as the generation of reactive oxygen species (ROS) via the mitochondria and NADPH oxidases (NOX) from primary GECs. However, antimicrobial functions of ROS production are thoroughly investigated in myeloid-lineage immune cells and have not been well-understood in epithelial cells. Therefore, this study characterizes antibacterial NOX2 generated ROS and host downstream effects in P. gingivalis infected human primary GECs. We examined the expression of NOX isoforms in the GECs and demonstrate eATP stimulation increased the mRNA expression of NOX2 (p < 0.05). Specific peptide inhibition of NOX2 significantly reduced eATP-mediated ROS as detected by DCFDA probe. The results also showed P. gingivalis infection can temporally modulate NOX2 pathway by reorganizing the localization and activation of cytosolic molecules (p47phox, p67phox, and Rac1) during 24 h of infection. Investigation into downstream biocidal factors of NOX2 revealed an eATP-induced increase in hypochlorous acid (HOCl) in GECs detected by R19-S fluorescent probe, which is significantly reduced by a myeloperoxidase (MPO) inhibitor. MPO activity of the host cells was assayed and found to be positively affected by eATP treatment and/or infection. However, P. gingivalis significantly reduced the MPO product, bactericidal HOCl, in early times of infection upon eATP stimulation. Analysis of the intracellular levels of a major host-antioxidant, glutathione during early infection revealed a substantial decrease (p < 0.05) in reduced glutathione indicative of scavenging of HOCl by P. gingivalis infection and eATP treatment. Examination of the mRNA expression of key enzymes in the glutathione synthesis pathway displayed a marked increase (p < 0.05) in glutamate cysteine ligase (GCL) subunits GCLc and GCLm, glutathione synthetase, and glutathione reductase during the infection. These suggest P. gingivalis modulates the danger signal eATP-induced NOX2 signaling and also induces host glutathione synthesis to likely avoid HOCl mediated clearance. Thus, we characterize for the first time in epithelial cells, an eATP/NOX2-ROS-antibacterial pathway and demonstrate P. gingivalis can circumvent this important antimicrobial defense system potentially for successful persistence in human epithelial tissues.
Collapse
Affiliation(s)
- JoAnn S Roberts
- Department of Oral Health Sciences, Medical University of South CarolinaCharleston, SC, United States
| | - Kalina R Atanasova
- Department of Periodontology, University of FloridaGainesville, FL, United States
| | - Jungnam Lee
- Department of Periodontology, University of FloridaGainesville, FL, United States
| | - Gill Diamond
- Department of Oral Biology, University of FloridaGainesville, FL, United States
| | - Jeff Deguzman
- Department of Periodontology, University of FloridaGainesville, FL, United States
| | - Chul Hee Choi
- Department of Microbiology and Medical Science, School of Medicine, Chungnam National UniversityDaejeon, South Korea
| | - Özlem Yilmaz
- Department of Oral Health Sciences, Medical University of South CarolinaCharleston, SC, United States.,Department of Microbiology and Immunology, Medical University of South CarolinaCharleston, SC, United States
| |
Collapse
|
52
|
Menden HL, Xia S, Mabry SM, Navarro A, Nyp MF, Sampath V. Nicotinamide Adenine Dinucleotide Phosphate Oxidase 2 Regulates LPS-Induced Inflammation and Alveolar Remodeling in the Developing Lung. Am J Respir Cell Mol Biol 2017; 55:767-778. [PMID: 27438994 DOI: 10.1165/rcmb.2016-0006oc] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
In premature infants, sepsis is associated with alveolar simplification manifesting as bronchopulmonary dysplasia. The redox-dependent mechanisms underlying sepsis-induced inflammation and alveolar remodeling in the immature lung remain unclear. We developed a neonatal mouse model of sepsis-induced lung injury to investigate whether nicotinamide adenine dinucleotide phosphate oxidase 2 (NOX2) regulates Toll-like receptor (TLR)-mediated inflammation and alveolar remodeling. Six-day-old NOX2+/+ and NOX2-/- mice were injected with intraperitoneal LPS to induce sepsis. Lung inflammation and canonical TLR signaling were assessed 24 hours after LPS. Alveolar development was examined in 15-day-old mice after LPS on Day 6. The in vivo efficacy of a NOX2 inhibitor (NOX2-I) on NOX2 complex assembly and sepsis-induced lung inflammation were examined. Lung cytokine expression and neutrophil influx induced with sepsis in NOX2+/+ mice was decreased by >50% in NOX2-/- mice. LPS-induced TLR4 signaling evident by inhibitor of NF-κB kinase-β and mitogen-activated protein kinase phosphorylation, and nuclear factor-κB/AP-1 translocation were attenuated in NOX2-/- mice. LPS increased matrix metalloproteinase 9 while decreasing elastin and keratinocyte growth factor levels in NOX2+/+ mice. An LPS-induced increase in matrix metalloproteinase 9 and decrease in fibroblast growth factor 7 and elastin were not evident in NOX2-/- mice. An LPS-induced reduction in radial alveolar counts and increased mean linear intercepts were attenuated in NOX2-/- mice. LPS-induced NOX2 assembly evident by p67phox/gp91phox coimmunoprecipitation was disrupted with NOX2-I. NOX2-I also mitigated LPS-induced cytokine expression, TLR pathway signaling, and alveolar simplification. In a mouse model of neonatal sepsis, NOX2 regulates proinflammatory TLR signaling and alveolar remodeling induced by a single dose of LPS. Our results provide mechanistic insight into the regulation of sepsis-induced alveolar remodeling in the developing lung.
Collapse
Affiliation(s)
- Heather L Menden
- Department of Pediatrics, Division of Neonatology, Children's Mercy Hospital, Kansas City, Missouri
| | - Sheng Xia
- Department of Pediatrics, Division of Neonatology, Children's Mercy Hospital, Kansas City, Missouri
| | - Sherry M Mabry
- Department of Pediatrics, Division of Neonatology, Children's Mercy Hospital, Kansas City, Missouri
| | - Angels Navarro
- Department of Pediatrics, Division of Neonatology, Children's Mercy Hospital, Kansas City, Missouri
| | - Michael F Nyp
- Department of Pediatrics, Division of Neonatology, Children's Mercy Hospital, Kansas City, Missouri
| | - Venkatesh Sampath
- Department of Pediatrics, Division of Neonatology, Children's Mercy Hospital, Kansas City, Missouri
| |
Collapse
|
53
|
Rojas M, Lemtalsi T, Toque HA, Xu Z, Fulton D, Caldwell RW, Caldwell RB. NOX2-Induced Activation of Arginase and Diabetes-Induced Retinal Endothelial Cell Senescence. Antioxidants (Basel) 2017; 6:antiox6020043. [PMID: 28617308 PMCID: PMC5488023 DOI: 10.3390/antiox6020043] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Revised: 05/30/2017] [Accepted: 06/09/2017] [Indexed: 12/19/2022] Open
Abstract
Increases in reactive oxygen species (ROS) and decreases in nitric oxide (NO) have been linked to vascular dysfunction during diabetic retinopathy (DR). Diabetes can reduce NO by increasing ROS and by increasing activity of arginase, which competes with nitric oxide synthase (NOS) for their commons substrate l-arginine. Increased ROS and decreased NO can cause premature endothelial cell (EC) senescence leading to defective vascular repair. We have previously demonstrated the involvement of NADPH oxidase 2 (NOX2)-derived ROS, decreased NO and overactive arginase in DR. Here, we investigated their impact on diabetes-induced EC senescence. Studies using diabetic mice and retinal ECs treated with high glucose or H2O2 showed that increases in ROS formation, elevated arginase expression and activity, and decreased NO formation led to premature EC senescence. NOX2 blockade or arginase inhibition prevented these effects. EC senescence was also increased by inhibition of NOS activity and this was prevented by treatment with a NO donor. These results indicate that diabetes/high glucose-induced activation of arginase and decreases in NO bioavailability accelerate EC senescence. NOX2-generated ROS contribute importantly to this process. Blockade of NOX2 or arginase represents a strategy to prevent diabetes-induced premature EC senescence by preserving NO bioavailability.
Collapse
Affiliation(s)
- Modesto Rojas
- Vascular Biology Center, Augusta University, 1459 Laney Walker Boulevard, Augusta, GA 30912-2500, USA.
- VA Medical Center, One Freedom Way, Augusta, GA 30904-6285, USA.
| | - Tahira Lemtalsi
- Vascular Biology Center, Augusta University, 1459 Laney Walker Boulevard, Augusta, GA 30912-2500, USA.
- VA Medical Center, One Freedom Way, Augusta, GA 30904-6285, USA.
| | - Haroldo A Toque
- Department of Pharmacology & Toxicology, Augusta University, 1459 Laney Walker, Boulevard, Augusta, GA 30912-2500, USA.
| | - Zhimin Xu
- Vascular Biology Center, Augusta University, 1459 Laney Walker Boulevard, Augusta, GA 30912-2500, USA.
- VA Medical Center, One Freedom Way, Augusta, GA 30904-6285, USA.
| | - David Fulton
- Vascular Biology Center, Augusta University, 1459 Laney Walker Boulevard, Augusta, GA 30912-2500, USA.
- Department of Pharmacology & Toxicology, Augusta University, 1459 Laney Walker, Boulevard, Augusta, GA 30912-2500, USA.
| | - Robert William Caldwell
- Department of Pharmacology & Toxicology, Augusta University, 1459 Laney Walker, Boulevard, Augusta, GA 30912-2500, USA.
| | - Ruth B Caldwell
- Vascular Biology Center, Augusta University, 1459 Laney Walker Boulevard, Augusta, GA 30912-2500, USA.
- VA Medical Center, One Freedom Way, Augusta, GA 30904-6285, USA.
| |
Collapse
|
54
|
Ghoshal P, Singla B, Lin H, Feck DM, Cantu-Medellin N, Kelley EE, Haigh S, Fulton D, Csányi G. Nox2-Mediated PI3K and Cofilin Activation Confers Alternate Redox Control of Macrophage Pinocytosis. Antioxid Redox Signal 2017; 26:902-916. [PMID: 27488058 PMCID: PMC5455614 DOI: 10.1089/ars.2016.6639] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
AIMS Internalization of extracellular fluid and its solute by macropinocytosis requires dynamic reorganization of actin cytoskeleton, membrane ruffling, and formation of large endocytic vacuolar compartments, called macropinosomes, inside the cell. Although instigators of macropinocytosis, such as growth factors and phorbol esters, stimulate NADPH oxidase (Nox) activation and signal transduction mediators upstream of Nox assembly, including Rac1 and protein kinase C (PKC), are involved in macropinocytosis, the role of Nox enzymes in macropinocytosis has never been investigated. This study was designed to examine the role of Nox2 and the potential downstream redox signaling involved in macropinocytosis. RESULTS Phorbol myristate acetate activation of human and murine macrophages stimulated membrane ruffling, macropinosome formation, and subsequent uptake of macromolecules by macropinocytosis. Mechanistically, we found that pharmacological blockade of PKC, transcriptional knockdown of Nox2, and scavenging of intracellular superoxide anion abolished phorbol ester-induced macropinocytosis. We observed that Nox2-derived reactive oxygen species via inhibition of phosphatase and tensin homolog and activation of the phosphoinositide-3-kinase (PI3K)/Akt pathway lead to activation of actin-binding protein cofilin, membrane ruffling, and macropinocytosis. Similarly, activation of macropinocytosis by macrophage colony-stimulating factor involves Nox2-mediated cofilin activation. Furthermore, peritoneal chimera experiments indicate that macropinocytotic uptake of lipids in hypercholesterolemic ApoE-/- mice was attenuated in Nox2y/- macrophages compared with wild-type controls. Innovation and Conclusion: In summary, these findings demonstrate a novel Nox2-mediated mechanism of solute uptake via macropinocytosis, with broad implications for both general cellular physiology and pathological processes. The redox mechanism described here may also identify new targets in atherosclerosis and other disease conditions involving macropinocytosis. Antioxid. Redox Signal. 26, 902-916.
Collapse
Affiliation(s)
- Pushpankur Ghoshal
- 1 Vascular Biology Center, Augusta University , Medical College of Georgia, Augusta, Georgia
| | - Bhupesh Singla
- 1 Vascular Biology Center, Augusta University , Medical College of Georgia, Augusta, Georgia
| | - Huiping Lin
- 1 Vascular Biology Center, Augusta University , Medical College of Georgia, Augusta, Georgia
| | - Douglas M Feck
- 2 Vascular Medicine Institute, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Nadiezhda Cantu-Medellin
- 2 Vascular Medicine Institute, University of Pittsburgh , Pittsburgh, Pennsylvania.,3 Department of Pharmacology and Chemical Biology, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Eric E Kelley
- 2 Vascular Medicine Institute, University of Pittsburgh , Pittsburgh, Pennsylvania.,3 Department of Pharmacology and Chemical Biology, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Stephen Haigh
- 1 Vascular Biology Center, Augusta University , Medical College of Georgia, Augusta, Georgia
| | - David Fulton
- 1 Vascular Biology Center, Augusta University , Medical College of Georgia, Augusta, Georgia .,4 Department of Pharmacology and Toxicology, Augusta University , Medical College of Georgia, Augusta, Georgia
| | - Gábor Csányi
- 1 Vascular Biology Center, Augusta University , Medical College of Georgia, Augusta, Georgia .,4 Department of Pharmacology and Toxicology, Augusta University , Medical College of Georgia, Augusta, Georgia
| |
Collapse
|
55
|
Kwon BI, Kim TW, Shin K, Kim YH, Yuk CM, Yuk JM, Shin DM, Jo EK, Lee CH, Lee SH. Enhanced Th2 cell differentiation and function in the absence of Nox2. Allergy 2017; 72:252-265. [PMID: 27253713 DOI: 10.1111/all.12944] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2016] [Indexed: 01/05/2023]
Abstract
BACKGROUND Patients with chronic granulomatous disease (CGD), whom inherit abnormal function of NADPH oxidase 2 (Nox2), suffer from hyperinflammatory responses in lung as well as bacterial and fungal infection. There have been studies to reveal the function of Nox2 in hyperinflammatory diseases, especially in asthma, but the exact role of Nox2 in asthma is still unclear and controversial. Therefore, we attempted to clarify the exact role of Nox2 in asthma, using various experimental asthma models. METHODS Asthma phenotypes were analyzed in response to various allergen-induced experimental asthma using Nox2-deficient mice and recombinase gene-activating-1-deficient mice. To understand the underlying mechanisms of exaggerated Th2 effector functions, we investigated the degree of T-cell activation, levels of activation-induced cell death (AICD), and regulatory T (Treg)-cell differentiation in Nox2-deficient T cells. RESULTS Asthma phenotypes were increased through enhanced Th2 differentiation and function in Nox2-null mice regardless of dose and route of various allergens. Nox2-deficient T cells also showed hyperactivation, reduced AICD, and diminished Treg-cell differentiation through increased AKT phosphorylation (T308/S473) and enhanced mitochondrial ROS production. CONCLUSION Our findings indicate that Nox2 deficiency results in exaggerated experimental asthma, which is caused by enhanced Th2 effector function in a T-cell-intrinsic manner.
Collapse
Affiliation(s)
- B.-I. Kwon
- Graduate School of Medical Science and Engineering (GSMSE); Biomedical Research Center; KAIST Institute of the BioCentury; Korea Advanced Institute of Science and Technology (KAIST); Daejeon Korea
- K-herb Research Center; Korea Institute of Oriental Medicine; Daejeon Korea
| | - T. W. Kim
- Graduate School of Medical Science and Engineering (GSMSE); Biomedical Research Center; KAIST Institute of the BioCentury; Korea Advanced Institute of Science and Technology (KAIST); Daejeon Korea
| | - K. Shin
- Graduate School of Medical Science and Engineering (GSMSE); Biomedical Research Center; KAIST Institute of the BioCentury; Korea Advanced Institute of Science and Technology (KAIST); Daejeon Korea
- Department of Dermatology; School of Medicine; Pusan National University; Busan Korea
| | - Y. H. Kim
- Graduate School of Medical Science and Engineering (GSMSE); Biomedical Research Center; KAIST Institute of the BioCentury; Korea Advanced Institute of Science and Technology (KAIST); Daejeon Korea
- Korean Medicine Convergence Research Division; Korea Institute of Oriental Medicine; Daejeon Korea
| | - C. M. Yuk
- Graduate School of Medical Science and Engineering (GSMSE); Biomedical Research Center; KAIST Institute of the BioCentury; Korea Advanced Institute of Science and Technology (KAIST); Daejeon Korea
| | - J.-M. Yuk
- Department of Microbiology; Infection Signaling Network Research Center; Chungnam National University School of Medicine; Daejeon Korea
| | - D.-M. Shin
- Department of Microbiology; Infection Signaling Network Research Center; Chungnam National University School of Medicine; Daejeon Korea
| | - E.-K. Jo
- Department of Microbiology; Infection Signaling Network Research Center; Chungnam National University School of Medicine; Daejeon Korea
| | - C.-H. Lee
- Animal Model Center; Korea Research Institute of Bioscience and Biotechnology; Daejeon Korea
| | - S.-H. Lee
- Graduate School of Medical Science and Engineering (GSMSE); Biomedical Research Center; KAIST Institute of the BioCentury; Korea Advanced Institute of Science and Technology (KAIST); Daejeon Korea
| |
Collapse
|
56
|
|
57
|
Meyer MR, Fredette NC, Daniel C, Sharma G, Amann K, Arterburn JB, Barton M, Prossnitz ER. Obligatory role for GPER in cardiovascular aging and disease. Sci Signal 2016; 9:ra105. [PMID: 27803283 DOI: 10.1126/scisignal.aag0240] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Pharmacological activation of the heptahelical G protein-coupled estrogen receptor (GPER) by selective ligands counteracts multiple aspects of cardiovascular disease. We thus expected that genetic deletion or pharmacological inhibition of GPER would further aggravate such disease states, particularly with age. To the contrary, we found that genetic ablation of Gper in mice prevented cardiovascular pathologies associated with aging by reducing superoxide (⋅O2-) formation by NADPH oxidase (Nox) specifically through reducing the expression of the Nox isoform Nox1 Blocking GPER activity pharmacologically with G36, a synthetic, small-molecule, GPER-selective blocker (GRB), decreased Nox1 abundance and ⋅O2- production to basal amounts in cells exposed to angiotensin II and in mice chronically infused with angiotensin II, reducing arterial hypertension. Thus, this study revealed a role for GPER activity in regulating Nox1 abundance and associated ⋅O2--mediated structural and functional damage that contributes to disease pathology. Our results indicated that GRBs represent a new class of drugs that can reduce Nox abundance and activity and could be used for the treatment of chronic disease processes involving excessive ⋅O2- formation, including arterial hypertension and heart failure.
Collapse
Affiliation(s)
- Matthias R Meyer
- University of New Mexico Health Sciences Center, Department of Internal Medicine, Albuquerque, NM 87131, USA
| | - Natalie C Fredette
- University of New Mexico Health Sciences Center, Department of Internal Medicine, Albuquerque, NM 87131, USA
| | - Christoph Daniel
- Friedrich-Alexander-University of Erlangen-Nürnberg, Department of Nephropathology, 91054 Erlangen, Germany
| | - Geetanjali Sharma
- University of New Mexico Health Sciences Center, Department of Internal Medicine, Albuquerque, NM 87131, USA
| | - Kerstin Amann
- Friedrich-Alexander-University of Erlangen-Nürnberg, Department of Nephropathology, 91054 Erlangen, Germany
| | - Jeffrey B Arterburn
- New Mexico State University, Department of Chemistry and Biochemistry, Las Cruces, NM 88003, USA
| | - Matthias Barton
- University of Zürich, Molecular Internal Medicine, 8057 Zürich, Switzerland
| | - Eric R Prossnitz
- University of New Mexico Health Sciences Center, Department of Internal Medicine, Albuquerque, NM 87131, USA.,University of New Mexico Comprehensive Cancer Center, Albuquerque, NM 87131, USA
| |
Collapse
|
58
|
Kumar A, Barrett JP, Alvarez-Croda DM, Stoica BA, Faden AI, Loane DJ. NOX2 drives M1-like microglial/macrophage activation and neurodegeneration following experimental traumatic brain injury. Brain Behav Immun 2016; 58:291-309. [PMID: 27477920 PMCID: PMC5067217 DOI: 10.1016/j.bbi.2016.07.158] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 07/20/2016] [Accepted: 07/27/2016] [Indexed: 12/16/2022] Open
Abstract
Following traumatic brain injury (TBI), activation of microglia and peripherally derived inflammatory macrophages occurs in association with tissue damage. This neuroinflammatory response may have beneficial or detrimental effects on neuronal survival, depending on the functional polarization of these cells along a continuum from M1-like to M2-like activation states. The mechanisms that regulate M1-like and M2-like activation after TBI are not well understood, but appear in part to reflect the redox state of the lesion microenvironment. NADPH oxidase (NOX2) is a critical enzyme system that generates reactive oxygen species in microglia/macrophages. After TBI, NOX2 is strongly up-regulated in M1-like, but not in M2-like polarized cells. Therefore, we hypothesized that NOX2 drives M1-like neuroinflammation and contributes to neurodegeneration and loss of neurological function after TBI. In the present studies we inhibited NOX2 activity using NOX2-knockout mice or the selective peptide inhibitor gp91ds-tat. We show that NOX2 is highly up-regulated in infiltrating macrophages after injury, and that NOX2 deficiency reduces markers of M1-like activation, limits tissue loss and neurodegeneration, and improves motor recovery after moderate-level control cortical injury (CCI). NOX2 deficiency also promotes M2-like activation after CCI, through increased IL-4Rα signaling in infiltrating macrophages, suggesting that NOX2 acts as a critical switch between M1- and M2-like activation states after TBI. Administration of gp91ds-tat to wild-type CCI mice starting at 24h post-injury reduces deficits in cognitive function and increased M2-like activation in the hippocampus. Collectively, our data indicate that increased NOX2 activity after TBI drives M1-like activation that contributes to inflammatory-mediated neurodegeneration, and that inhibiting this pathway provides neuroprotection, in part by altering M1-/M2-like balance towards the M2-like neuroinflammatory response.
Collapse
Affiliation(s)
- Alok Kumar
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - James P. Barrett
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Dulce-Mariely Alvarez-Croda
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, USA,Posgrado en Neuroetologia, Universidad Veracruzana, Xalapa, Mexico,Centro de Investigaciones Cerebrales, Universidad Veracruzana, Xalapa, Mexico
| | - Bogdan A. Stoica
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Alan I. Faden
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - David J. Loane
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, USA,Correspondence: David J. Loane PhD, Department of Anesthesiology, University of Maryland School of Medicine, 655 West Baltimore Street, #6-011, Baltimore, MD 21201. Tel: 410-706-5188 Fax: 410-706-1639,
| |
Collapse
|
59
|
Cifuentes-Pagano ME, Meijles DN, Pagano PJ. Nox Inhibitors & Therapies: Rational Design of Peptidic and Small Molecule Inhibitors. Curr Pharm Des 2016; 21:6023-35. [PMID: 26510437 DOI: 10.2174/1381612821666151029112013] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 10/27/2015] [Indexed: 12/15/2022]
Abstract
Oxidative stress-related diseases underlie many if not all of the major leading causes of death in United States and the Western World. Thus, enormous interest from both academia and pharmaceutical industry has been placed on the development of agents which attenuate oxidative stress. With that in mind, great efforts have been placed in the development of inhibitors of NADPH oxidase (Nox), the major enzymatic source of reactive oxygen species and oxidative stress in many cells and tissue. The regulation of a catalytically active Nox enzyme involves numerous protein-protein interactions which, in turn, afford numerous targets for inhibition of its activity. In this review, we will provide an updated overview of the available Nox inhibitors, both peptidic and small molecules, and discuss the body of data related to their possible mechanisms of action and specificity towards each of the various isoforms of Nox. Indeed, there have been some very notable successes. However, despite great commitment by many in the field, the need for efficacious and well-characterized, isoform-specific Nox inhibitors, essential for the treatment of major diseases as well as for delineating the contribution of a given Nox in physiological redox signalling, continues to grow.
Collapse
Affiliation(s)
| | | | - Patrick J Pagano
- Department of Pharmacology & Chemical Biology, Vascular Medicine Institute, University of Pittsburgh School of Medicine, Biomedical Science Tower, 12th Floor, Room E1247, 200 Lothrop St., Pittsburgh, PA 15261, USA.
| |
Collapse
|
60
|
Yasuda Y, Feng GG, Li J, Nakamura E, Hayashi H, Sato M, Fujiwara Y, Kinoshita H. High oxygen modifies vasodilator effect of cysteine via enhanced oxidative stress and thromboxane production in the rat mesenteric artery. Pflugers Arch 2016; 468:1555-64. [PMID: 27389323 DOI: 10.1007/s00424-016-1857-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 06/28/2016] [Accepted: 06/30/2016] [Indexed: 01/09/2023]
Abstract
Whether high oxygen is harmful to the vascular function is unclear. The present study examined if high oxygen modifies vasodilator effect of cysteine via enhanced oxidative stress and thromboxane production. Rat mesenteric arteries with endothelium at 95 or 50 % oxygen were subjected to isometric force recordings, measurement of thromboxane B2 levels, determination of superoxide and peroxynitrite levels and evaluation of NADPH oxidase subunit protein expression, respectively. L-cysteine (0.01-3 mM) constricted or dilated arteries at 95 and 50 % oxygen, respectively. Thromboxane receptor antagonist SQ-29,548 (1 μM) abolished the constriction at 95 % oxygen. L-cysteine (3 mM) increased levels of thromboxane B2 in arteries upon 95 % oxygen application. L-cysteine relaxed arteries treated with superoxide inhibitor tiron (2 mM) or NADPH oxidase inhibitor gp91ds-tat (1 μM) irrespective of the oxygen concentration while ATP-sensitive K(+) channel inhibitor glibenclamide (1 μM) and cystathionine-γ-lyase (CSE) inhibitor DL-propargylglycine (10 mM) similarly abolished the relaxation. L-cysteine (3 mM) with 95 % oxygen augmented levels of superoxide as well as nitrotyrosine within the artery, concomitantly with enhanced membrane protein expression of NADPH oxidase subunit p47phox. The higher concentration of oxygen attenuates L-cysteine-induced vasodilation via superoxide production mediated by NADPH oxidase along with thromboxane A2 production, resulting in vasoconstriction. The increased levels of superoxide, as well as peroxynitrite, coexist with the impaired vasodilation related to ATP-sensitive K(+) channels and CSE. Higher oxygen with plasma cysteine may cause oxidative stress and vasoconstrictor prostanoid production in blood vessels.
Collapse
Affiliation(s)
- Yoshitaka Yasuda
- Department of Anesthesiology, Aichi Medical University School of Medicine, 1-1 Yazako Karimata, Nagakute, Aichi, 480-1195, Japan
| | - Guo-Gang Feng
- Department of Pharmacology, Aichi Medical University School of Medicine, 1-1 Yazako Karimata, Nagakute, Aichi, 480-1195, Japan
| | - Jiazheng Li
- Department of Anesthesiology, Aichi Medical University School of Medicine, 1-1 Yazako Karimata, Nagakute, Aichi, 480-1195, Japan
| | - Emi Nakamura
- Department of Anesthesiology, Aichi Medical University School of Medicine, 1-1 Yazako Karimata, Nagakute, Aichi, 480-1195, Japan
| | - Hisaki Hayashi
- Department of Physiology, Aichi Medical University School of Medicine, 1-1 Yazako Karimata, Nagakute, Aichi, 480-1195, Japan
| | - Motohiko Sato
- Department of Physiology, Aichi Medical University School of Medicine, 1-1 Yazako Karimata, Nagakute, Aichi, 480-1195, Japan
| | - Yoshihiro Fujiwara
- Department of Anesthesiology, Aichi Medical University School of Medicine, 1-1 Yazako Karimata, Nagakute, Aichi, 480-1195, Japan
| | - Hiroyuki Kinoshita
- Department of Anesthesiology, Aichi Medical University School of Medicine, 1-1 Yazako Karimata, Nagakute, Aichi, 480-1195, Japan.
| |
Collapse
|
61
|
A NOX2/Egr-1/Fyn pathway delineates new targets for TKI-resistant malignancies. Oncotarget 2016; 6:23631-46. [PMID: 26136341 PMCID: PMC4695141 DOI: 10.18632/oncotarget.4604] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 06/12/2015] [Indexed: 12/13/2022] Open
Abstract
Tyrosine kinase inhibitors (TKI) have improved CML response rates, and some are effective against resistance-promoting point mutations in BCR-ABL1. However, in the absence of point mutations, resistance still occurs. Here, we identify a novel pathway mediating resistance which connects p47phox, the organizer subunit of NADPH oxidase-2 (NOX2), with early growth response-1 (Egr-1) and the Src family kinase Fyn. We found up-regulation of p47phox, Egr-1, and Fyn mRNA and protein using paired isogenic CML cell lines and mined data. Isolation of CD34+ cells and tissue microarray staining from blast crisis CML patients confirmed in vivo over-expression of components of this pathway. Knockdown studies revealed that p47phox modulated reactive oxygen species and Egr-1 expression, which, in turn, controlled Fyn expression. Interestingly, Fyn knockdown sensitized TKI-resistant cells to dasatinib, a dual BCR-ABL1/Src inhibitor. Egr-1 knockdown had similar effects, indicating the utility of targeting Fyn expression over activation. Pointedly, p47phox knockdown also restored TKI-sensitivity, indicating that targeting the NOX2 complex can overcome resistance. The NOX2/Egr-1/Fyn pathway was also conserved within TKI-resistant EGFRΔIII-expressing glioblastoma and patient-derived glioblastoma stem cells. Thus, our findings suggest that targeting the NOX2/Egr-1/Fyn pathway may have clinical implications within multiple cancer types; particularly where efficacy of TKI is compromised.
Collapse
|
62
|
Abstract
Reactive oxygen species (ROS) and oxidative stress have long been linked to aging and diseases prominent in the elderly such as hypertension, atherosclerosis, diabetes and atrial fibrillation (AF). NADPH oxidases (Nox) are a major source of ROS in the vasculature and are key players in mediating redox signalling under physiological and pathophysiological conditions. In this review, we focus on the Nox-mediated ROS signalling pathways involved in the regulation of 'longevity genes' and recapitulate their role in age-associated vascular changes and in the development of age-related cardiovascular diseases (CVDs). This review is predicated on burgeoning knowledge that Nox-derived ROS propagate tightly regulated yet varied signalling pathways, which, at the cellular level, may lead to diminished repair, the aging process and predisposition to CVDs. In addition, we briefly describe emerging Nox therapies and their potential in improving the health of the elderly population.
Collapse
|
63
|
Meijles DN, Fan LM, Ghazaly MM, Howlin B, Krönke M, Brooks G, Li JM. p22phox C242T Single-Nucleotide Polymorphism Inhibits Inflammatory Oxidative Damage to Endothelial Cells and Vessels. Circulation 2016; 133:2391-403. [PMID: 27162237 DOI: 10.1161/circulationaha.116.021993] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 05/09/2016] [Indexed: 02/03/2023]
Abstract
BACKGROUND The NADPH oxidase, by generating reactive oxygen species, is involved in the pathophysiology of many cardiovascular diseases and represents a therapeutic target for the development of novel drugs. A single-nucleotide polymorphism, C242T of the p22(phox) subunit of NADPH oxidase, has been reported to be negatively associated with coronary heart disease and may predict disease prevalence. However, the underlying mechanisms remain unknown. METHODS AND RESULTS With the use of computer molecular modeling, we discovered that C242T single-nucleotide polymorphism causes significant structural changes in the extracellular loop of p22(phox) and reduces its interaction stability with Nox2 subunit. Gene transfection of human pulmonary microvascular endothelial cells showed that C242T p22(phox) significantly reduced Nox2 expression but had no significant effect on basal endothelial O2 (.-) production or the expression of Nox1 and Nox4. When cells were stimulated with tumor necrosis factor-α (or high glucose), C242T p22(phox) significantly inhibited tumor necrosis factor-α-induced Nox2 maturation, O2 (.-) production, mitogen-activated protein kinases and nuclear factor κB activation, and inflammation (all P<0.05). These C242T effects were further confirmed using p22(phox) short-hairpin RNA-engineered HeLa cells and Nox2(-/-) coronary microvascular endothelial cells. Clinical significance was investigated by using saphenous vein segments from non-coronary heart disease subjects after phlebotomies. TT (C242T) allele was common (prevalence of ≈22%) and, in comparison with CC, veins bearing TT allele had significantly lower levels of Nox2 expression and O2 (.-) generation in response to high-glucose challenge. CONCLUSIONS C242T single-nucleotide polymorphism causes p22(phox) structural changes that inhibit endothelial Nox2 activation and oxidative response to tumor necrosis factor-α or high-glucose stimulation. C242T single-nucleotide polymorphism may represent a natural protective mechanism against inflammatory cardiovascular diseases.
Collapse
Affiliation(s)
- Daniel N Meijles
- From Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, UK (D.N.M., G.B., J.-M.L.); Faculty of Engineering and Physical Sciences, University of Surrey, UK (D.N.M., M.M.G., B.H.); Department of Cardiology, Royal Berkshire Hospital, UK (L.M.F.); and Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Germany (M.K.)
| | - Lampson M Fan
- From Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, UK (D.N.M., G.B., J.-M.L.); Faculty of Engineering and Physical Sciences, University of Surrey, UK (D.N.M., M.M.G., B.H.); Department of Cardiology, Royal Berkshire Hospital, UK (L.M.F.); and Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Germany (M.K.)
| | - Maziah M Ghazaly
- From Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, UK (D.N.M., G.B., J.-M.L.); Faculty of Engineering and Physical Sciences, University of Surrey, UK (D.N.M., M.M.G., B.H.); Department of Cardiology, Royal Berkshire Hospital, UK (L.M.F.); and Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Germany (M.K.)
| | - Brendan Howlin
- From Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, UK (D.N.M., G.B., J.-M.L.); Faculty of Engineering and Physical Sciences, University of Surrey, UK (D.N.M., M.M.G., B.H.); Department of Cardiology, Royal Berkshire Hospital, UK (L.M.F.); and Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Germany (M.K.)
| | - Martin Krönke
- From Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, UK (D.N.M., G.B., J.-M.L.); Faculty of Engineering and Physical Sciences, University of Surrey, UK (D.N.M., M.M.G., B.H.); Department of Cardiology, Royal Berkshire Hospital, UK (L.M.F.); and Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Germany (M.K.)
| | - Gavin Brooks
- From Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, UK (D.N.M., G.B., J.-M.L.); Faculty of Engineering and Physical Sciences, University of Surrey, UK (D.N.M., M.M.G., B.H.); Department of Cardiology, Royal Berkshire Hospital, UK (L.M.F.); and Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Germany (M.K.)
| | - Jian-Mei Li
- From Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, UK (D.N.M., G.B., J.-M.L.); Faculty of Engineering and Physical Sciences, University of Surrey, UK (D.N.M., M.M.G., B.H.); Department of Cardiology, Royal Berkshire Hospital, UK (L.M.F.); and Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Germany (M.K.).
| |
Collapse
|
64
|
De Silva TM, Miller AA. Cerebral Small Vessel Disease: Targeting Oxidative Stress as a Novel Therapeutic Strategy? Front Pharmacol 2016; 7:61. [PMID: 27014073 PMCID: PMC4794483 DOI: 10.3389/fphar.2016.00061] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 03/04/2016] [Indexed: 12/25/2022] Open
Abstract
Cerebral small vessel disease (SVD) is a major contributor to stroke, and a leading cause of cognitive impairment and dementia. Despite the devastating effects of cerebral SVD, the pathogenesis of cerebral SVD is still not completely understood. Moreover, there are no specific pharmacological strategies for its prevention or treatment. Cerebral SVD is characterized by marked functional and structural abnormalities of the cerebral microcirculation. The clinical manifestations of these pathological changes include lacunar infarcts, white matter hyperintensities, and cerebral microbleeds. The main purpose of this review is to discuss evidence implicating oxidative stress in the arteriopathy of both non-amyloid and amyloid (cerebral amyloid angiopathy) forms of cerebral SVD and its most important risk factors (hypertension and aging), as well as its contribution to cerebral SVD-related brain injury and cognitive impairment. We also highlight current evidence of the involvement of the NADPH oxidases in the development of oxidative stress, enzymes that are a major source of reactive oxygen species in the cerebral vasculature. Lastly, we discuss potential pharmacological strategies for oxidative stress in cerebral SVD, including some of the historical and emerging NADPH oxidase inhibitors.
Collapse
Affiliation(s)
- T. Michael De Silva
- Department of Pharmacology, Biomedicine Discovery Institute, Monash UniversityMelbourne, VIC, Australia
| | - Alyson A. Miller
- Cerebrovascular and Stroke Laboratory, School of Health and Biomedical Sciences, RMIT UniversityMelbourne, VIC, Australia
| |
Collapse
|
65
|
Bimodal role of NADPH oxidases in the regulation of biglycan-triggered IL-1β synthesis. Matrix Biol 2015; 49:61-81. [PMID: 26689330 DOI: 10.1016/j.matbio.2015.12.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 11/19/2015] [Accepted: 12/10/2015] [Indexed: 12/17/2022]
Abstract
Biglycan, a ubiquitous proteoglycan, acts as a danger signal when released from the extracellular matrix. As such, biglycan triggers the synthesis and maturation of interleukin-1β (IL-1β) in a Toll-like receptor (TLR) 2-, TLR4-, and reactive oxygen species (ROS)-dependent manner. Here, we discovered that biglycan autonomously regulates the balance in IL-1β production in vitro and in vivo by modulating expression, activity and stability of NADPH oxidase (NOX) 1, 2 and 4 enzymes via different TLR pathways. In primary murine macrophages, biglycan triggered NOX1/4-mediated ROS generation, thereby enhancing IL-1β expression. Surprisingly, biglycan inhibited IL-1β due to enhancement of NOX2 synthesis and activation, by selectively interacting with TLR4. Synthesis of NOX2 was mediated by adaptor molecule Toll/IL-1R domain-containing adaptor inducing IFN-β (TRIF). Via myeloid differentiation primary response protein (MyD88) as well as Rac1 activation and Erk phosphorylation, biglycan triggered translocation of the cytosolic NOX2 subunit p47(phox) to the plasma membrane, an obligatory step for NOX2 activation. In contrast, by engaging TLR2, soluble biglycan stimulated the expression of heat shock protein (HSP) 70, which bound to NOX2, and consequently impaired the inhibitory function of NOX2 on IL-1β expression. Notably, a genetic background lacking biglycan reduced HSP70 expression, rescued the enhanced renal IL-1β production and improved kidney function of Nox2(-/y) mice in a model of renal ischemia reperfusion injury. Here, we provide a novel mechanism where the danger molecule biglycan influences NOX2 synthesis and activation via different TLR pathways, thereby regulating inflammation severity. Thus, selective inhibition of biglycan-TLR2 or biglycan-TLR4 signaling could be a novel therapeutic approach in ROS-mediated inflammatory diseases.
Collapse
|
66
|
Khayrullina G, Bermudez S, Byrnes KR. Inhibition of NOX2 reduces locomotor impairment, inflammation, and oxidative stress after spinal cord injury. J Neuroinflammation 2015; 12:172. [PMID: 26377802 PMCID: PMC4574142 DOI: 10.1186/s12974-015-0391-8] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 09/03/2015] [Indexed: 12/12/2022] Open
Abstract
Background Spinal cord injury (SCI) results in the activation of the NADPH oxidase (NOX) enzyme, inducing production of reactive oxygen species (ROS). We hypothesized that the NOX2 isoform plays an integral role in post-SCI inflammation and functional deficits. Methods Moderate spinal cord contusion injury was performed in adult male mice, and flow cytometry, western blot, and immunohistochemistry were used to assess NOX2 activity and expression, inflammation, and M1/M2 microglia/macrophage polarization from 1 to 28 days after injury. The NOX2-specific inhibitor, gp91ds-tat, was injected into the intrathecal space immediately after impact. The Basso Mouse Scale (BMS) was used to assess locomotor function at 24 h post-injury and weekly thereafter. Results Our findings show that gp91ds-tat treatment significantly improved functional recovery through 28 days post-injury and reduced inflammatory cell concentrations in the injured spinal cord at 24 h and 7 days post-injury. In addition, a number of oxidative stress markers were reduced in expression at 24 h after gp91ds-tat treatment, which was accompanied by a reduction in M1 polarization marker expression. Conclusion Based on our findings, we now conclude that inhibition of NOX2 significantly improves outcome after SCI, most likely via acute reductions in oxidative stress and inflammation. NOX2 inhibition may therefore have true potential as a therapy after SCI.
Collapse
Affiliation(s)
- Guzal Khayrullina
- Anatomy, Physiology and Genetics Department, Uniformed Services University, Room B2048, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA.
| | - Sara Bermudez
- Anatomy, Physiology and Genetics Department, Uniformed Services University, Room B2048, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA.
| | - Kimberly R Byrnes
- Anatomy, Physiology and Genetics Department, Uniformed Services University, Room B2048, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA.
| |
Collapse
|
67
|
DiStasi MR, Mund JA, Bohlen HG, Miller SJ, Ingram DA, Dalsing MC, Unthank JL. Impaired compensation to femoral artery ligation in diet-induced obese mice is primarily mediated via suppression of collateral growth by Nox2 and p47phox. Am J Physiol Heart Circ Physiol 2015; 309:H1207-17. [PMID: 26297224 DOI: 10.1152/ajpheart.00180.2015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 08/20/2015] [Indexed: 02/07/2023]
Abstract
The present study was undertaken to establish the role of NADPH oxidase (Nox) in impaired vascular compensation to arterial occlusion that occurs in the presence of risk factors associated with oxidative stress. Diet-induced obese (DIO) mice characterized by multiple comorbidities including diabetes and hyperlipidemia were used as a preclinical model. Arterial occlusion was induced by distal femoral artery ligation in lean and DIO mice. Proximal collateral arteries were identified as the site of major (∼70%) vascular resistance to calf perfusion by distal arterial pressures, which decreased from ∼80 to ∼30 mmHg with ligation in both lean and DIO mice. Two weeks after ligation, significant vascular compensation occurred in lean but not DIO mice as evidenced by increased perfusion (147 ± 48% vs. 49 ± 29%) and collateral diameter (151 ± 30% vs. 44 ± 17%). Vascular mRNA expression of p22(phox), Nox2, Nox4, and p47(phox) were all increased in DIO mice. Treatment of DIO mice with either apocynin or Nox2ds-tat or with whole body ablation of either Nox2 or p47(phox) ameliorated the impairment in both collateral growth and hindlimb perfusion. Multiparametric flow cytometry analysis demonstrated elevated levels of circulating monocytes in DIO mice without impaired mobilization and demargination after femoral artery ligation. These results establish collateral resistance as the major limitation to calf perfusion in this preclinical model, demonstrate than monocyte mobilization and demarginatin is not suppressed, implicate Nox2-p47(phox) interactions in the impairment of vascular compensation to arterial occlusion in DIO mice, and suggest that selective Nox component suppression/inhibition may be effective as either primary or adjuvant therapy for claudicants.
Collapse
Affiliation(s)
- Matthew R DiStasi
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana; Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana
| | - Julie A Mund
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana; Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana
| | - H Glenn Bohlen
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Steven J Miller
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana; Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - David A Ingram
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana; Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana; and Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana
| | - Michael C Dalsing
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Joseph L Unthank
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana; Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana;
| |
Collapse
|
68
|
Diebold BA, Smith SM, Li Y, Lambeth JD. NOX2 As a Target for Drug Development: Indications, Possible Complications, and Progress. Antioxid Redox Signal 2015; 23:375-405. [PMID: 24512192 PMCID: PMC4545678 DOI: 10.1089/ars.2014.5862] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 02/08/2014] [Indexed: 12/27/2022]
Abstract
SIGNIFICANCE NOX2 is important for host defense, and yet is implicated in a large number of diseases in which inflammation plays a role in pathogenesis. These include acute and chronic lung inflammatory diseases, stroke, traumatic brain injury, and neurodegenerative diseases, including Alzheimer's and Parkinson's Diseases. RECENT ADVANCES Recent drug development programs have targeted several NOX isoforms that are implicated in a variety of diseases. The focus has been primarily on NOX4 and NOX1 rather than on NOX2, due, in part, to concerns about possible immunosuppressive side effects. Nevertheless, NOX2 clearly contributes to the pathogenesis of many inflammatory diseases, and its inhibition is predicted to provide a novel therapeutic approach. CRITICAL ISSUES Possible side effects that might arise from targeting NOX2 are discussed, including the possibility that such inhibition will contribute to increased infections and/or autoimmune disorders. The state of the field with regard to existing NOX2 inhibitors and targeted development of novel inhibitors is also summarized. FUTURE DIRECTIONS NOX2 inhibitors show particular promise for the treatment of inflammatory diseases, both acute and chronic. Theoretical side effects include pro-inflammatory and autoimmune complications and should be considered in any therapeutic program, but in our opinion, available data do not indicate that they are sufficiently likely to eliminate NOX2 as a drug target, particularly when weighed against the seriousness of many NOX2-related indications. Model studies demonstrating efficacy with minimal side effects are needed to encourage future development of NOX2 inhibitors as therapeutic agents.
Collapse
Affiliation(s)
- Becky A. Diebold
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Susan M.E. Smith
- Department of Biology and Physics, Kennesaw State University, Kennesaw, Georgia
| | - Yang Li
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - J. David Lambeth
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
69
|
Altenhöfer S, Radermacher KA, Kleikers PWM, Wingler K, Schmidt HHHW. Evolution of NADPH Oxidase Inhibitors: Selectivity and Mechanisms for Target Engagement. Antioxid Redox Signal 2015; 23:406-27. [PMID: 24383718 PMCID: PMC4543484 DOI: 10.1089/ars.2013.5814] [Citation(s) in RCA: 405] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
SIGNIFICANCE Oxidative stress, an excess of reactive oxygen species (ROS) production versus consumption, may be involved in the pathogenesis of different diseases. The only known enzymes solely dedicated to ROS generation are nicotinamide adenine dinucleotide phosphate (NADPH) oxidases with their catalytic subunits (NOX). After the clinical failure of most antioxidant trials, NOX inhibitors are the most promising therapeutic option for diseases associated with oxidative stress. RECENT ADVANCES Historical NADPH oxidase inhibitors, apocynin and diphenylene iodonium, are un-specific and not isoform selective. Novel NOX inhibitors stemming from rational drug discovery approaches, for example, GKT137831, ML171, and VAS2870, show improved specificity for NADPH oxidases and moderate NOX isoform selectivity. Along with NOX2 docking sequence (NOX2ds)-tat, a peptide-based inhibitor, the use of these novel small molecules in animal models has provided preliminary in vivo evidence for a pathophysiological role of specific NOX isoforms. CRITICAL ISSUES Here, we discuss whether novel NOX inhibitors enable reliable validation of NOX isoforms' pathological roles and whether this knowledge supports translation into pharmacological applications. Modern NOX inhibitors have increased the evidence for pathophysiological roles of NADPH oxidases. However, in comparison to knockout mouse models, NOX inhibitors have limited isoform selectivity. Thus, their use does not enable clear statements on the involvement of individual NOX isoforms in a given disease. FUTURE DIRECTIONS The development of isoform-selective NOX inhibitors and biologicals will enable reliable validation of specific NOX isoforms in disease models other than the mouse. Finally, GKT137831, the first NOX inhibitor in clinical development, is poised to provide proof of principle for the clinical potential of NOX inhibition.
Collapse
Affiliation(s)
- Sebastian Altenhöfer
- Department of Pharmacology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University , Maastricht, the Netherlands
| | - Kim A Radermacher
- Department of Pharmacology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University , Maastricht, the Netherlands
| | - Pamela W M Kleikers
- Department of Pharmacology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University , Maastricht, the Netherlands
| | - Kirstin Wingler
- Department of Pharmacology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University , Maastricht, the Netherlands
| | - Harald H H W Schmidt
- Department of Pharmacology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University , Maastricht, the Netherlands
| |
Collapse
|
70
|
Wieczfinska J, Sokolowska M, Pawliczak R. NOX Modifiers-Just a Step Away from Application in the Therapy of Airway Inflammation? Antioxid Redox Signal 2015; 23:428-45. [PMID: 24383678 PMCID: PMC4543397 DOI: 10.1089/ars.2013.5783] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
SIGNIFICANCE NADPH oxidase (NOX) enzymes, which are widely expressed in different airway cell types, not only contribute to the maintenance of physiological processes in the airways but also participate in the pathogenesis of many acute and chronic diseases. Therefore, the understanding of NOX isoform regulation, expression, and the manner of their potent inhibition might lead to effective therapeutic approaches. RECENT ADVANCES The study of the role of NADPH oxidases family in airway physiology and pathophysiology should be considered as a work in progress. While key questions still remain unresolved, there is significant progress in terms of our understanding of NOX importance in airway diseases as well as a more efficient way of using NOX modifiers in human settings. CRITICAL ISSUES Agents that modify the activity of NADPH enzyme components would be considered useful tools in the treatment of various airway diseases. Nevertheless, profound knowledge of airway pathology, as well as the mechanisms of NOX regulation is needed to develop potent but safe NOX modifiers. FUTURE DIRECTIONS Many compounds seem to be promising candidates for development into useful therapeutic agents, but their clinical potential is yet to be demonstrated. Further analysis of basic mechanisms in human settings, high-throughput compound scanning, clinical trials with new and existing molecules, and the development of new drug delivery approaches are the main directions of future studies on NOX modifiers. In this article, we discuss the current knowledge with regard to NOX isoform expression and regulation in airway inflammatory diseases as well as the aptitudes and therapeutic potential of NOX modifiers.
Collapse
Affiliation(s)
- Joanna Wieczfinska
- 1 Department of Immunopathology, Faculty of Biomedical Sciences and Postgraduate Training, Medical University of Lodz , Lodz, Poland
| | - Milena Sokolowska
- 2 Critical Care Medicine Department, Clinical Center, National Institutes of Health , Bethesda, Maryland
| | - Rafal Pawliczak
- 1 Department of Immunopathology, Faculty of Biomedical Sciences and Postgraduate Training, Medical University of Lodz , Lodz, Poland
| |
Collapse
|
71
|
Quesada IM, Lucero A, Amaya C, Meijles DN, Cifuentes ME, Pagano PJ, Castro C. Selective inactivation of NADPH oxidase 2 causes regression of vascularization and the size and stability of atherosclerotic plaques. Atherosclerosis 2015; 242:469-75. [PMID: 26298737 DOI: 10.1016/j.atherosclerosis.2015.08.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 07/23/2015] [Accepted: 08/06/2015] [Indexed: 11/28/2022]
Abstract
BACKGROUND A variety of NADPH oxidase (Nox) isoforms including Noxs 1, 2, 4 and 5 catalyze the formation of reactive oxygen species (ROS) in the vascular wall. The Nox2 isoform complex has arguably received the greatest attention in the progression of atherogenesis in animal models. Thus, in the current study we postulated that specific Nox2 oxidase inhibition could reverse or attenuate atherosclerosis in mice fed a high-fat diet. METHODS We evaluated the effect of isoform-selective Nox2 assembly inhibitor on the progression and vascularization of atheromatous plaques. Apolipoprotein E-deficient mice (ApoE-/-) were fed a high fat diet for two months and treated over 15 days with Nox2ds-tat or control sequence (scrambled); 10 mg/kg/day, i.p. Mice were sacrificed and superoxide production in arterial tissue was detected by cytochrome C reduction assay and dihydroethidium staining. Plaque development was evaluated and the angiogenic markers VEGF, HIF1-α and visfatin were quantified by real time qRT-PCR. MMP-9 protein release and gelatinolytic activity was determined as a marker for vascularization. RESULTS Nox2ds-tat inhibited Nox-derived superoxide determined by cytochrome C in carotid arteries (2.3 ± 0.1 vs 1.7 ± 0.1 O2(•-) nmol/min*mg protein; P < 0.01) and caused a significant regression in atherosclerotic plaques in aorta (66 ± 6 μm(2) vs 37 ± 1 μm(2); scrmb vs. Nox2ds-tat; P < 0.001). Increased VEGF, HIF-1α, MMP-9 and visfatin expression in arterial tissue in response to high-fat diet were significantly attenuated by Nox2ds-tat which in turn impaired both MMP-9 protein expression and activity. CONCLUSION Given these results, it is quite evident that selective Nox inhibitors can reverse vascular pathology arising with atherosclerosis.
Collapse
Affiliation(s)
- I M Quesada
- Vascular Biology Lab, Institute of Medicine and Experimental Biology of Cuyo (IMBECU) CONICET, School of Medical Sciences, National University of Cuyo, Mendoza, Argentina
| | - A Lucero
- Vascular Biology Lab, Institute of Medicine and Experimental Biology of Cuyo (IMBECU) CONICET, School of Medical Sciences, National University of Cuyo, Mendoza, Argentina
| | - C Amaya
- Cellular and Molecular Biology Lab, Institute of Histology and Embryology (IHEM) CONICET, Mendoza, Argentina
| | - D N Meijles
- Department of Pharmacology & Chemical Biology and Vascular Medicine Institute, 200 Lothrop Street, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - M E Cifuentes
- Department of Pharmacology & Chemical Biology and Vascular Medicine Institute, 200 Lothrop Street, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - P J Pagano
- Department of Pharmacology & Chemical Biology and Vascular Medicine Institute, 200 Lothrop Street, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - C Castro
- Vascular Biology Lab, Institute of Medicine and Experimental Biology of Cuyo (IMBECU) CONICET, School of Medical Sciences, National University of Cuyo, Mendoza, Argentina.
| |
Collapse
|
72
|
Meyer MR, Fredette NC, Barton M, Prossnitz ER. Prostanoid-mediated contractions of the carotid artery become Nox2-independent with aging. AGE (DORDRECHT, NETHERLANDS) 2015; 37:9806. [PMID: 26228838 PMCID: PMC5005820 DOI: 10.1007/s11357-015-9806-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 06/21/2015] [Indexed: 06/04/2023]
Abstract
Aging is a major risk factor for carotid artery disease that may lead to stroke and dementia. Vascular effects associated with aging include increased vasomotor tone, as well as enhanced contractility to endothelial vasoconstrictor prostanoids and reduced nitric oxide (NO) bioactivity partly due to increased oxidative stress. We hypothesized that vascular NADPH oxidase (Nox)-derived superoxide may be involved in prostanoid- and NO-related functional aging. NO-mediated relaxations and prostanoid-mediated contractions to acetylcholine as well as phenylephrine-dependent contractions were investigated in the carotid artery from young (4 months) and aged mice (24 months). Gene expression of Nox subunits and endothelial NO synthase (eNOS) was determined in the carotid artery and aorta. In young mice, the thromboxane-prostanoid receptor antagonist SQ 29,548 fully blocked acetylcholine-induced contractions while reducing responses to phenylephrine by 75 %. The Nox2-targeted inhibitor Nox2ds-tat and the superoxide scavenger tempol reduced acetylcholine-stimulated, prostanoid-mediated contractions by 85 and 75 %, respectively, and phenylephrine-dependent contractions by 45 %. Unexpectedly, in aged mice, the substantial Nox2-dependent component of acetylcholine- and phenylephrine-induced, prostanoid-mediated contractions was abolished. In addition, endothelium-dependent, NO-mediated relaxations were impaired with aging. The expression of Nox subunits was greater in the aorta compared with the carotid artery, in which Nox1 was undetectable. eNOS gene expression was reduced in the aorta of aged compared to young mice. In conclusion, aging decreases prostanoid-mediated contractility in the carotid artery involving a loss of Nox2 activity and is associated with impaired endothelium-dependent, NO-mediated relaxation. These findings may contribute to a better understanding of the pathophysiology of carotid artery disease and the aging process.
Collapse
Affiliation(s)
- Matthias R Meyer
- Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, USA,
| | | | | | | |
Collapse
|
73
|
Santillo M, Colantuoni A, Mondola P, Guida B, Damiano S. NOX signaling in molecular cardiovascular mechanisms involved in the blood pressure homeostasis. Front Physiol 2015. [PMID: 26217233 PMCID: PMC4493385 DOI: 10.3389/fphys.2015.00194] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Blood pressure homeostasis is maintained by several mechanisms regulating cardiac output, vascular resistances, and blood volume. At cellular levels, reactive oxygen species (ROS) signaling is involved in multiple molecular mechanisms controlling blood pressure. Among ROS producing systems, NADPH oxidases (NOXs), expressed in different cells of the cardiovascular system, are the most important enzymes clearly linked to the development of hypertension. NOXs exert a central role in cardiac mechanosensing, endothelium-dependent relaxation, and Angiotensin-II (Ang-II) redox signaling regulating vascular tone. The central role of NOXs in redox-dependent cardiovascular cell functions renders these enzymes a promising pharmacological target for the treatment of cardiovascular diseases, including hypertension. The aim of the present review is to focus on the physiological role of the cardiovascular NOX-generating ROS in the molecular and cellular mechanisms affecting blood pressure.
Collapse
Affiliation(s)
- Mariarosaria Santillo
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli "Federico II" Naples, Italy
| | - Antonio Colantuoni
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli "Federico II" Naples, Italy
| | - Paolo Mondola
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli "Federico II" Naples, Italy
| | - Bruna Guida
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli "Federico II" Naples, Italy
| | - Simona Damiano
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli "Federico II" Naples, Italy
| |
Collapse
|
74
|
Mukawera E, Chartier S, Williams V, Pagano PJ, Lapointe R, Grandvaux N. Redox-modulating agents target NOX2-dependent IKKε oncogenic kinase expression and proliferation in human breast cancer cell lines. Redox Biol 2015; 6:9-18. [PMID: 26177467 PMCID: PMC4511630 DOI: 10.1016/j.redox.2015.06.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 06/16/2015] [Accepted: 06/17/2015] [Indexed: 12/11/2022] Open
Abstract
Oxidative stress is considered a causative factor in carcinogenesis, but also in the development of resistance to current chemotherapies. The appropriate usage of redox-modulating compounds is limited by the lack of knowledge of their impact on specific molecular pathways. Increased levels of the IKKε kinase, as a result of gene amplification or aberrant expression, are observed in a substantial number of breast carcinomas. IKKε not only plays a key role in cell transformation and invasiveness, but also in the development of resistance to tamoxifen. Here, we studied the effect of in vitro treatment with the redox-modulating triphenylmethane dyes, Gentian Violet and Brilliant Green, and nitroxide Tempol on IKKε expression and cell proliferation in the human breast cancer epithelial cell lines exhibiting amplification of IKKε, MCF-7 and ZR75.1. We show that Gentian Violet, Brilliant Green and Tempol significantly decrease intracellular superoxide anion levels and inhibit IKKε expression and cell viability. Treatment with Gentian Violet and Brilliant Green was associated with a reduced cyclin D1 expression and activation of caspase 3 and/or 7. Tempol decreased cyclin D1 expression in both cell lines, while activation of caspase 7 was only observed in MCF-7 cells. Silencing of the superoxide-generating NOX2 NADPH oxidase expressed in breast cancer cells resulted in the significant reduction of IKKε expression. Taken together, our results suggest that redox-modulating compounds targeting NOX2 could present a particular therapeutic interest in combination therapy against breast carcinomas exhibiting IKKε amplification. IKKε kinase is amplified in MCF7 and ZR75.1 breast cancer cells. Brilliant Green, Gentian Violet and Tempol reduce superoxide levels in MCF7 and ZR75.1 cells. Brilliant Green, Gentian Violet and Tempol inhibit IKKε expression in MCF7 and ZR75.1 cells. IKKε overexpression in breast cancer cells is dependent on NOX2. Brilliant Green, Gentian Violet and Tempol reduce MCF7 and ZR75.1 cell viability.
Collapse
Affiliation(s)
- Espérance Mukawera
- CRCHUM - Centre Hospitalier de l'Université de Montréal, 900 Rue Saint Denis, Montréal, QC, Canada H2X 0A9.
| | - Stefany Chartier
- CRCHUM - Centre Hospitalier de l'Université de Montréal, 900 Rue Saint Denis, Montréal, QC, Canada H2X 0A9.
| | - Virginie Williams
- CRCHUM - Centre Hospitalier de l'Université de Montréal, 900 Rue Saint Denis, Montréal, QC, Canada H2X 0A9; Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada H3C 3J7.
| | - Patrick J Pagano
- Department of Pharmacology and Chemical Biology, Vascular Medicine Institute, University of Pittsburgh, 200 Lothop Street, Pittsburgh, PA 15213, USA.
| | - Réjean Lapointe
- CRCHUM - Centre Hospitalier de l'Université de Montréal, 900 Rue Saint Denis, Montréal, QC, Canada H2X 0A9; Institut Du Cancer, 900 Rue Saint Denis, Montréal, QC, Canada H2X 0A9.
| | - Nathalie Grandvaux
- CRCHUM - Centre Hospitalier de l'Université de Montréal, 900 Rue Saint Denis, Montréal, QC, Canada H2X 0A9; Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada H3C 3J7.
| |
Collapse
|
75
|
Harrison IP, Selemidis S. Understanding the biology of reactive oxygen species and their link to cancer: NADPH oxidases as novel pharmacological targets. Clin Exp Pharmacol Physiol 2015; 41:533-42. [PMID: 24738947 DOI: 10.1111/1440-1681.12238] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 04/01/2014] [Accepted: 04/02/2014] [Indexed: 12/18/2022]
Abstract
Reactive oxygen species (ROS), the cellular products of myriad physiological processes, have long been understood to lead to cellular damage if produced in excess and to be a causative factor in cancer through the oxidation and nitration of various macromolecules. Reactive oxygen species influence various hallmarks of cancer, such as cellular proliferation and angiogenesis, through the promotion of cell signalling pathways intrinsic to these processes and can also regulate the function of key immune cells, such as macrophages and regulatory T cells, which promote angiogenesis in the tumour environment. Herein we emphasize the family of NADPH oxidase enzymes as the most likely source of ROS, which promote angiogenesis and tumourigenesis through signalling pathways within endothelial, immune and tumour cells. In this review we focus on the pharmacological inhibitors of NADPH oxidases and suggest that, compared with traditional anti-oxidants, they are likely to offer better alternatives for suppression of tumour angiogenesis. Despite the emerging enthusiasm towards the use of NADPH oxidase inhibitors for cancer therapy, this field is still in its infancy; in particular, there is a glaring lack of knowledge of the roles of NADPH oxidases in in vivo animal models and in human cancers. Certainly a clearer understanding of the relevant signalling pathways influenced by NADPH oxidases during angiogenesis in cancer is likely to yield novel therapeutic approaches.
Collapse
Affiliation(s)
- Ian P Harrison
- Department of Pharmacology, Monash University, Melbourne, Vic., Australia
| | | |
Collapse
|
76
|
La NADPH oxydase Nox4, une cible thérapeutique potentielle dans l’arthrose. BULLETIN DE L'ACADÉMIE NATIONALE DE MÉDECINE 2015. [DOI: 10.1016/s0001-4079(19)30941-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
77
|
Oxidized LDL activates blood platelets through CD36/NOX2-mediated inhibition of the cGMP/protein kinase G signaling cascade. Blood 2015; 125:2693-703. [PMID: 25710879 DOI: 10.1182/blood-2014-05-574491] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 02/03/2015] [Indexed: 11/20/2022] Open
Abstract
Oxidized low-density lipoprotein (oxLDL) promotes unregulated platelet activation in dyslipidemic disorders. Although oxLDL stimulates activatory signaling, it is unclear how these events drive accelerated thrombosis. Here, we describe a mechanism for oxLDL-mediated platelet hyperactivity that requires generation of reactive oxygen species (ROS). Under arterial flow, oxLDL triggered sustained generation of platelet intracellular ROS, which was blocked by CD36 inhibitors, mimicked by CD36-specific oxidized phospholipids, and ablated in CD36(-/-) murine platelets. oxLDL-induced ROS generation was blocked by the reduced NAD phosphate oxidase 2 (NOX2) inhibitor, gp91ds-tat, and absent in NOX2(-/-) mice. The synthesis of ROS by oxLDL/CD36 required Src-family kinases and protein kinase C (PKC)-dependent phosphorylation and activation of NOX2. In functional assays, oxLDL abolished guanosine 3',5'-cyclic monophosphate (cGMP)-mediated signaling and inhibited platelet aggregation and arrest under flow. This was prevented by either pharmacologic inhibition of NOX2 in human platelets or genetic ablation of NOX2 in murine platelets. Platelets from hyperlipidemic mice were also found to have a diminished sensitivity to cGMP when tested ex vivo, a phenotype that was corrected by infusion of gp91ds-tat into the mice. This study demonstrates that oxLDL and hyperlipidemia stimulate the generation of NOX2-derived ROS through a CD36-PKC pathway and may promote platelet hyperactivity through modulation of cGMP signaling.
Collapse
|
78
|
Korge P, Calmettes G, Weiss JN. Increased reactive oxygen species production during reductive stress: The roles of mitochondrial glutathione and thioredoxin reductases. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:514-25. [PMID: 25701705 DOI: 10.1016/j.bbabio.2015.02.012] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 02/09/2015] [Accepted: 02/12/2015] [Indexed: 01/22/2023]
Abstract
Both extremes of redox balance are known to cause cardiac injury, with mounting evidence revealing that the injury induced by both oxidative and reductive stress is oxidative in nature. During reductive stress, when electron acceptors are expected to be mostly reduced, some redox proteins can donate electrons to O2 instead, which increases reactive oxygen species (ROS) production. However, the high level of reducing equivalents also concomitantly enhances ROS scavenging systems involving redox couples such as NADPH/NADP+ and GSH/GSSG. Here our objective was to explore how reductive stress paradoxically increases net mitochondrial ROS production despite the concomitant enhancement of ROS scavenging systems. Using recombinant enzymes and isolated permeabilized cardiac mitochondria, we show that two normally antioxidant matrix NADPH reductases, glutathione reductase and thioredoxin reductase, generate H2O2 by leaking electrons from their reduced flavoprotein to O2 when electron flow is impaired by inhibitors or because of limited availability of their natural electron acceptors, GSSG and oxidized thioredoxin. The spillover of H2O2 under these conditions depends on H2O2 reduction by peroxiredoxin activity, which may regulate redox signaling in response to endogenous or exogenous factors. These findings may explain how ROS production during reductive stress overwhelms ROS scavenging capability, generating the net mitochondrial ROS spillover causing oxidative injury. These enzymes could potentially be targeted to increase cancer cell death or modulate H2O2-induced redox signaling to protect the heart against ischemia/reperfusion damage.
Collapse
Affiliation(s)
- Paavo Korge
- UCLA Cardiovascular Research Laboratory, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, United States; Department of Medicine (Cardiology), David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, United States
| | - Guillaume Calmettes
- UCLA Cardiovascular Research Laboratory, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, United States; Department of Medicine (Cardiology), David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, United States
| | - James N Weiss
- UCLA Cardiovascular Research Laboratory, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, United States; Department of Medicine (Cardiology), David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, United States; Department of Physiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, United States.
| |
Collapse
|
79
|
Loehr JA, Abo-Zahrah R, Pal R, Rodney GG. Sphingomyelinase promotes oxidant production and skeletal muscle contractile dysfunction through activation of NADPH oxidase. Front Physiol 2015; 5:530. [PMID: 25653619 PMCID: PMC4300905 DOI: 10.3389/fphys.2014.00530] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 12/27/2014] [Indexed: 11/13/2022] Open
Abstract
Elevated concentrations of sphingomyelinase (SMase) have been detected in a variety of diseases. SMase has been shown to increase muscle derived oxidants and decrease skeletal muscle force; however, the sub-cellular site of oxidant production has not been elucidated. Using redox sensitive biosensors targeted to the mitochondria and NADPH oxidase (Nox2), we demonstrate that SMase increased Nox2-dependent ROS and had no effect on mitochondrial ROS in isolated FDB fibers. Pharmacological inhibition and genetic knockdown of Nox2 activity prevented SMase induced ROS production and provided protection against decreased force production in the diaphragm. In contrast, genetic overexpression of superoxide dismutase within the mitochondria did not prevent increased ROS production and offered no protection against decreased diaphragm function in response to SMase. Our study shows that SMase induced ROS production occurs in specific sub-cellular regions of skeletal muscle; however, the increased ROS does not completely account for the decrease in muscle function.
Collapse
Affiliation(s)
- James A Loehr
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine Houston, TX, USA
| | - Reem Abo-Zahrah
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine Houston, TX, USA
| | - Rituraj Pal
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine Houston, TX, USA
| | - George G Rodney
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine Houston, TX, USA
| |
Collapse
|
80
|
Cheng AJ, Bruton JD, Lanner JT, Westerblad H. Antioxidant treatments do not improve force recovery after fatiguing stimulation of mouse skeletal muscle fibres. J Physiol 2014; 593:457-72. [PMID: 25630265 DOI: 10.1113/jphysiol.2014.279398] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 10/30/2014] [Indexed: 12/20/2022] Open
Abstract
The contractile performance of skeletal muscle declines during intense activities, i.e. fatigue develops. Fatigued muscle can enter a state of prolonged low-frequency force depression (PLFFD). PLFFD can be due to decreased tetanic free cytosolic [Ca(2+) ] ([Ca(2+) ]i ) and/or decreased myofibrillar Ca(2+) sensitivity. Increases in reactive oxygen and nitrogen species (ROS/RNS) may contribute to fatigue-induced force reductions. We studied whether pharmacological ROS/RNS inhibition delays fatigue and/or counteracts the development of PLFFD. Mechanically isolated mouse fast-twitch fibres were fatigued by sixty 150 ms, 70 Hz tetani given every 1 s. Experiments were performed in standard Tyrode solution (control) or in the presence of: NADPH oxidase (NOX) 2 inhibitor (gp91ds-tat); NOX4 inhibitor (GKT137831); mitochondria-targeted antioxidant (SS-31); nitric oxide synthase (NOS) inhibitor (l-NAME); the general antioxidant N-acetylcysteine (NAC); a cocktail of SS-31, l-NAME and NAC. Spatially and temporally averaged [Ca(2+) ]i and peak force were reduced by ∼20% and ∼70% at the end of fatiguing stimulation, respectively, with no marked differences between groups. PLFFD was similar in all groups, with 30 Hz force being decreased by ∼60% at 30 min of recovery. PLFFD was mostly due to decreased tetanic [Ca(2+) ]i in control fibres and in the presence of NOX2 or NOX4 inhibitors. Conversely, in fibres exposed to SS-31 or the anti ROS/RNS cocktail, tetanic [Ca(2+) ]i was not decreased during recovery so PLFFD was only caused by decreased myofibrillar Ca(2+) sensitivity. The cocktail also increased resting [Ca(2+) ]i and ultimately caused cell death. In conclusion, ROS/RNS-neutralizing compounds did not counteract the force decline during or after induction of fatigue.
Collapse
Affiliation(s)
- Arthur J Cheng
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | | | | | | |
Collapse
|
81
|
Vlahos R, Selemidis S. NADPH oxidases as novel pharmacologic targets against influenza A virus infection. Mol Pharmacol 2014; 86:747-59. [PMID: 25301784 DOI: 10.1124/mol.114.095216] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2025] Open
Abstract
Influenza A viruses represent a major global health care challenge, with imminent pandemics, emerging antiviral resistance, and long lag times for vaccine development, raising a pressing need for novel pharmacologic strategies that ideally target the pathology irrespective of the infecting strain. Reactive oxygen species (ROS) pervade all facets of cell biology with both detrimental and protective properties. Indeed, there is compelling evidence that activation of the NADPH oxidase 2 (NOX2) isoform of the NADPH oxidase family of ROS-producing enzymes promotes lung oxidative stress, inflammation, injury, and dysfunction resulting from influenza A viruses of low to high pathogenicity, as well as impeding virus clearance. By contrast, the dual oxidase isoforms produce ROS that provide vital protective antiviral effects for the host. In this review, we propose that inhibitors of NOX2 are better alternatives than broad-spectrum antioxidant approaches for treatment of influenza pathologies, for which clinical efficacy may have been limited owing to poor bioavailability and inadvertent removal of beneficial ROS. Finally, we briefly describe the current suite of NADPH oxidase inhibitors and the molecular features of the NADPH oxidase enzymes that could be exploited by drug discovery for development of more specific and novel inhibitors to prevent or treat disease caused by influenza.
Collapse
Affiliation(s)
- Ross Vlahos
- Respiratory Research Group, Lung Health Research Centre, Department of Pharmacology and Therapeutics, University of Melbourne (R.V.), and Oxidant and Inflammation Biology Group, Department of Pharmacology, Monash University (S.S.), Victoria, Australia
| | - Stavros Selemidis
- Respiratory Research Group, Lung Health Research Centre, Department of Pharmacology and Therapeutics, University of Melbourne (R.V.), and Oxidant and Inflammation Biology Group, Department of Pharmacology, Monash University (S.S.), Victoria, Australia
| |
Collapse
|
82
|
Brandes RP, Weissmann N, Schröder K. Nox family NADPH oxidases: Molecular mechanisms of activation. Free Radic Biol Med 2014; 76:208-26. [PMID: 25157786 DOI: 10.1016/j.freeradbiomed.2014.07.046] [Citation(s) in RCA: 518] [Impact Index Per Article: 47.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 07/29/2014] [Accepted: 07/30/2014] [Indexed: 11/21/2022]
Abstract
NADPH oxidases of the Nox family are important enzymatic sources of reactive oxygen species (ROS). Numerous homologue-specific mechanisms control the activity of this enzyme family involving calcium, free fatty acids, protein-protein interactions, intracellular trafficking, and posttranslational modifications such as phosphorylation, acetylation, or sumoylation. After a brief review on the classic pathways of Nox activation, this article will focus on novel mechanisms of homologue-specific activity control and on cell-specific aspects which govern Nox activity. From these findings of the recent years it must be concluded that the activity control of Nox enzymes is much more complex than anticipated. Moreover, depending on the cellular activity state, Nox enzymes are selectively activated or inactivated. The complex upstream signaling aspects of these events make the development of "intelligent" Nox inhibitors plausible, which selectively attenuate disease-related Nox-mediated ROS formation without altering physiological signaling ROS. This approach might be of relevance for Nox-mediated tissue injury in ischemia-reperfusion and inflammation and also for chronic Nox overactivation as present in cancer initiation and cardiovascular disease.
Collapse
Affiliation(s)
- Ralf P Brandes
- Institut für Kardiovaskuläre Physiologie, Goethe-Universität Frankfurt, Frankfurt, Germany.
| | - Norbert Weissmann
- ECCPS, Justus-Liebig-Universität, Member of the DZL, Giessen, Germany
| | - Katrin Schröder
- Institut für Kardiovaskuläre Physiologie, Goethe-Universität Frankfurt, Frankfurt, Germany
| |
Collapse
|
83
|
Abstract
Pulmonary arterial hypertension is a progressive disorder in which endothelial dysfunction and vascular remodeling obstruct small pulmonary arteries, resulting in increased pulmonary vascular resistance and pulmonary pressures. This leads to reduced cardiac output, right heart failure, and ultimately death. In this review, we attempt to answer some important questions commonly asked by patients diagnosed with pulmonary arterial hypertension pertaining to the disease, and aim to provide an explanation in terms of classification, diagnosis, pathophysiology, genetic causes, demographics, and prognostic factors. Furthermore, important molecular pathways that are central to the pathogenesis of pulmonary arterial hypertension are reviewed, including nitric oxide, prostacyclin, endothelin-1, reactive oxygen species, and endothelial and smooth muscle proliferation.
Collapse
Affiliation(s)
- Yen-Chun Lai
- From Vascular Medicine Institute (Y.-C.L., K.C.P., A.L.M., M.T.G.) and Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine (A.L.M., M.T.G.), University of Pittsburgh, PA
| | - Karin C Potoka
- From Vascular Medicine Institute (Y.-C.L., K.C.P., A.L.M., M.T.G.) and Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine (A.L.M., M.T.G.), University of Pittsburgh, PA
| | - Hunter C Champion
- From Vascular Medicine Institute (Y.-C.L., K.C.P., A.L.M., M.T.G.) and Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine (A.L.M., M.T.G.), University of Pittsburgh, PA
| | - Ana L Mora
- From Vascular Medicine Institute (Y.-C.L., K.C.P., A.L.M., M.T.G.) and Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine (A.L.M., M.T.G.), University of Pittsburgh, PA
| | - Mark T Gladwin
- From Vascular Medicine Institute (Y.-C.L., K.C.P., A.L.M., M.T.G.) and Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine (A.L.M., M.T.G.), University of Pittsburgh, PA.
| |
Collapse
|
84
|
Cifuentes-Pagano E, Meijles DN, Pagano PJ. The quest for selective nox inhibitors and therapeutics: challenges, triumphs and pitfalls. Antioxid Redox Signal 2014; 20:2741-54. [PMID: 24070014 PMCID: PMC4026400 DOI: 10.1089/ars.2013.5620] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
SIGNIFICANCE Numerous studies in animal models and human subjects corroborate that elevated levels of reactive oxygen species (ROS) play a pivotal role in the progression of multiple diseases. As a major source of ROS in many organ systems, the NADPH oxidase (Nox) has become a prime target for therapeutic development. RECENT ADVANCES In recent years, intense efforts have been dedicated to the development of pan- and isoform-specific Nox inhibitors as opposed to antioxidants that proved ineffective in clinical trials. Over the past decade, an array of compounds has been proposed in an attempt to fill this void. CRITICAL ISSUES Although many of these compounds have proven effective as Nox enzyme family inhibitors, isoform specificity has posed a formidable challenge to the scientific community. This review surveys the most prominent Nox inhibitors, and discusses potential isoform specificity, known mechanisms of action, and shortcomings. Some of these inhibitors hold substantial promise as targeted therapeutics. FUTURE DIRECTIONS Increased insight into the mechanisms of action and regulation of this family of enzymes as well as atomic structures of key Nox subunits are expected to give way to a broader spectrum of more potent, efficacious, and specific molecules. These lead molecules will assuredly serve as a basis for drug development aimed at treating a wide array of diseases associated with increased Nox activity.
Collapse
Affiliation(s)
- Eugenia Cifuentes-Pagano
- Department of Pharmacology and Chemical Biology, Vascular Medicine Institute, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
| | | | | |
Collapse
|
85
|
Yao M, Rogers NM, Csányi G, Rodriguez AI, Ross MA, St Croix C, Knupp H, Novelli EM, Thomson AW, Pagano PJ, Isenberg JS. Thrombospondin-1 activation of signal-regulatory protein-α stimulates reactive oxygen species production and promotes renal ischemia reperfusion injury. J Am Soc Nephrol 2014; 25:1171-86. [PMID: 24511121 PMCID: PMC4033366 DOI: 10.1681/asn.2013040433] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 10/29/2013] [Indexed: 01/08/2023] Open
Abstract
Ischemia reperfusion injury (IRI) causes tissue and organ injury, in part, through alterations in tissue blood flow and the production of reactive oxygen species. The cell surface receptor signal-regulatory protein-α (SIRP-α) is expressed on inflammatory cells and suppresses phagocytosis, but the function of SIRP-α in IRI has not been determined. We reported previously that the matricellular protein thrombospondin-1 is upregulated in IRI. Here, we report a novel interaction between thrombospondin-1 and SIRP-α on nonphagocytic cells. In cell-free experiments, thrombospondin-1 bound SIRP-α. In vascular smooth muscle cells and renal tubular epithelial cells, treatment with thrombospondin-1 led to phosphorylation of SIRP-α and downstream activation of Src homology domain 2-containing phosphatase-1. Thrombospondin-1 also stimulated phosphorylation of p47(phox) (an organizer subunit for nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 1/2) and increased production of superoxide, both of which were abrogated by knockdown or antibody blockade of SIRP-α. In rodent aortic rings, treatment with thrombospondin-1 increased the production of superoxide and inhibited nitric oxide-mediated vasodilation in a SIRP-α-dependent manner. Renal IRI upregulated the thrombospondin-1-SIRP-α signaling axis and was associated with increased superoxide production and cell death. A SIRP-α antibody that blocks thrombospondin-1 activation of SIRP-α mitigated the effects of renal IRI, increasing blood flow, suppressing production of reactive oxygen species, and preserving cellular architecture. A role for CD47 in SIRP-α activation in these pathways is also described. Overall, these results suggest that thrombospondin-1 binding to SIRP-α on nonphagocytic cells activates NADPH oxidase, limits vasodilation, and promotes renal IRI.
Collapse
Affiliation(s)
| | | | - Gábor Csányi
- Vascular Medicine Institute, Department of Pharmacology and Chemical Biology
| | - Andres I Rodriguez
- Vascular Medicine Institute, Department of Pharmacology and Chemical Biology
| | | | | | | | | | | | - Patrick J Pagano
- Vascular Medicine Institute, Department of Pharmacology and Chemical Biology
| | - Jeffrey S Isenberg
- Vascular Medicine Institute, Starzl Transplantation Institute, Department of Pharmacology and Chemical Biology, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
86
|
Thom SR, Bhopale VM, Yang M. Neutrophils generate microparticles during exposure to inert gases due to cytoskeletal oxidative stress. J Biol Chem 2014; 289:18831-45. [PMID: 24867949 DOI: 10.1074/jbc.m113.543702] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
This investigation was to elucidate the mechanism for microparticle (MP) formation triggered by exposures to high pressure inert gases. Human neutrophils generate MPs at a threshold of ∼186 kilopascals with exposures of 30 min or more. Murine cells are similar, but MP production occurs at a slower rate and continues for ∼4 h, whether or not cells remain under pressure. Neutrophils exposed to elevated gas but not hydrostatic pressure produce MPs according to the potency series: argon ≃ nitrogen > helium. Following a similar pattern, gases activate type-2 nitric-oxide synthase (NOS-2) and NADPH oxidase (NOX). MP production does not occur with neutrophils exposed to a NOX inhibitor (Nox2ds) or a NOS-2 inhibitor (1400W) or with cells from mice lacking NOS-2. Reactive species cause S-nitrosylation of cytosolic actin that enhances actin polymerization. Protein cross-linking and immunoprecipitation studies indicate that increased polymerization occurs because of associations involving vasodilator-stimulated phosphoprotein, focal adhesion kinase, the H(+)/K(+) ATPase β (flippase), the hematopoietic cell multidrug resistance protein ABC transporter (floppase), and protein-disulfide isomerase in proximity to short actin filaments. Using chemical inhibitors or reducing cell concentrations of any of these proteins with small inhibitory RNA abrogates NOS-2 activation, reactive species generation, actin polymerization, and MP production. These effects were also inhibited in cells exposed to UV light, which photoreverses S-nitrosylated cysteine residues and by co-incubations with the antioxidant ebselen or cytochalasin D. The autocatalytic cycle of protein activation is initiated by inert gas-mediated singlet O2 production.
Collapse
Affiliation(s)
- Stephen R Thom
- From the Department of Emergency Medicine, University of Maryland, Baltimore, Maryland 21201
| | - Veena M Bhopale
- From the Department of Emergency Medicine, University of Maryland, Baltimore, Maryland 21201
| | - Ming Yang
- From the Department of Emergency Medicine, University of Maryland, Baltimore, Maryland 21201
| |
Collapse
|
87
|
Early NADPH oxidase-2 activation is crucial in phenylephrine-induced hypertrophy of H9c2 cells. Cell Signal 2014; 26:1818-24. [PMID: 24794531 DOI: 10.1016/j.cellsig.2014.04.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 04/27/2014] [Indexed: 12/31/2022]
Abstract
Reactive oxygen species (ROS) produced by different NADPH oxidases (NOX) play a role in cardiomyocyte hypertrophy induced by different stimuli, such as angiotensin II and pressure overload. However, the role of the specific NOX isoforms in phenylephrine (PE)-induced cardiomyocyte hypertrophy is unknown. Therefore we aimed to determine the involvement of the NOX isoforms NOX1, NOX2 and NOX4 in PE-induced cardiomyocyte hypertrophy. Hereto rat neonatal cardiomyoblasts (H9c2 cells) were incubated with 100 μM PE to induce hypertrophy after 24 and 48h as determined via cell and nuclear size measurements using digital imaging microscopy, electron microscopy and an automated cell counter. Digital-imaging microscopy further revealed that in contrast to NOX1 and NOX4, NOX2 expression increased significantly up to 4h after PE stimulation, coinciding and co-localizing with ROS production in the cytoplasm as well as the nucleus. Furthermore, inhibition of NOX-mediated ROS production with apocynin, diphenylene iodonium (DPI) or NOX2 docking sequence (Nox2ds)-tat peptide during these first 4h of PE stimulation significantly inhibited PE-induced hypertrophy of H9c2 cells, both after 24 and 48h of PE stimulation. These data show that early NOX2-mediated ROS production is crucial in PE-induced hypertrophy of H9c2 cells.
Collapse
|
88
|
DiStasi MR, Unthank JL, Miller SJ. Nox2 and p47(phox) modulate compensatory growth of primary collateral arteries. Am J Physiol Heart Circ Physiol 2014; 306:H1435-43. [PMID: 24633549 DOI: 10.1152/ajpheart.00828.2013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The role of NADPH oxidase (Nox) in both the promotion and impairment of compensatory collateral growth remains controversial because the specific Nox and reactive oxygen species involved are unclear. The aim of this study was to identify the primary Nox and reactive oxygen species associated with early stage compensatory collateral growth in young, healthy animals. Ligation of the feed arteries that form primary collateral pathways in rat mesentery and mouse hindlimb was used to assess the role of Nox during collateral growth. Changes in mesenteric collateral artery Nox mRNA expression determined by real-time PCR at 1, 3, and 7 days relative to same-animal control arteries suggested a role for Nox subunits Nox2 and p47(phox). Administration of apocynin or Nox2ds-tat suppressed collateral growth in both rat and mouse models, suggesting the Nox2/p47(phox) interaction was involved. Functional significance of p47(phox) expression was assessed by evaluation of collateral growth in rats administered p47(phox) small interfering RNA and in p47(phox-/-) mice. Diameter measurements of collateral mesenteric and gracilis arteries at 7 and 14 days, respectively, indicated no significant collateral growth compared with control rats or C57BL/6 mice. Chronic polyethylene glycol-conjugated catalase administration significantly suppressed collateral development in rats and mice, implying a requirement for H2O2. Taken together, these results suggest that Nox2, modulated at least in part by p47(phox), mediates early stage compensatory collateral development via a process dependent upon peroxide generation. These results have important implications for the use of antioxidants and the development of therapies for peripheral arterial disease.
Collapse
Affiliation(s)
- Matthew R DiStasi
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Joseph L Unthank
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana; and Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Steven J Miller
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana; and Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
89
|
Wang T, Green LA, Gupta SK, Kim C, Wang L, Almodovar S, Flores SC, Prudovsky IA, Jolicoeur P, Liu Z, Clauss M. Transfer of intracellular HIV Nef to endothelium causes endothelial dysfunction. PLoS One 2014; 9:e91063. [PMID: 24608713 PMCID: PMC3946685 DOI: 10.1371/journal.pone.0091063] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 02/07/2014] [Indexed: 12/17/2022] Open
Abstract
With effective antiretroviral therapy (ART), cardiovascular diseases (CVD) are emerging as a major cause of morbidity and death in the aging HIV-infected population. To address whether HIV-Nef, a viral protein produced in infected cells even when virus production is halted by ART, can lead to endothelial activation and dysfunction, we tested Nef protein transfer to and activity in endothelial cells. We demonstrated that Nef is essential for major endothelial cell activating effects of HIV-infected Jurkat cells when in direct contact with the endothelium. In addition, we found that Nef protein in endothelial cells is sufficient to cause apoptosis, ROS generation and release of monocyte attractant protein-1 (MCP-1). The Nef protein-dependent endothelial activating effects can be best explained by our observation that Nef protein rapidly transfers from either HIV-infected or Nef-transfected Jurkat cells to endothelial cells between these two cell types. These results are of in vivo relevance as we demonstrated that Nef protein induces GFP transfer from T cells to endothelium in CD4.Nef.GFP transgenic mice and Nef is present in chimeric SIV-infected macaques. Analyzing the signal transduction effects of Nef in endothelial cells, we found that Nef-induced apoptosis is mediated through ROS-dependent mechanisms, while MCP-1 production is NF-kB dependent. Together, these data indicate that inhibition of Nef-associated pathways may be promising new therapeutic targets for reducing the risk for cardiovascular disease in the HIV-infected population.
Collapse
Affiliation(s)
- Ting Wang
- Department of Microbiology & Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- Department of Cellular & Integrative Physiology and Indiana Center for Vascular Biology & Medicine, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- R. L. Roudebush VA Medical Center, Indianapolis, Indiana, United States
| | - Linden A. Green
- Department of Cellular & Integrative Physiology and Indiana Center for Vascular Biology & Medicine, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- R. L. Roudebush VA Medical Center, Indianapolis, Indiana, United States
| | - Samir K. Gupta
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Chul Kim
- Department of Cellular & Integrative Physiology and Indiana Center for Vascular Biology & Medicine, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Liang Wang
- Department of Cellular & Integrative Physiology and Indiana Center for Vascular Biology & Medicine, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- R. L. Roudebush VA Medical Center, Indianapolis, Indiana, United States
| | - Sharilyn Almodovar
- Department of Medicine, Pulmonary Sciences & Critical Care Medicine, University of Colorado, Denver, Colorado, United States of America
| | - Sonia C. Flores
- Department of Medicine, Pulmonary Sciences & Critical Care Medicine, University of Colorado, Denver, Colorado, United States of America
| | - Igor A. Prudovsky
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine, United States of America
| | - Paul Jolicoeur
- Institut de Recherches Cliniques de Montréal University of Montréal, Montréal, Quebec, Canada
| | - Ziyue Liu
- Department of Biostatistics, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Matthias Clauss
- Department of Microbiology & Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- Department of Cellular & Integrative Physiology and Indiana Center for Vascular Biology & Medicine, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- R. L. Roudebush VA Medical Center, Indianapolis, Indiana, United States
- * E-mail:
| |
Collapse
|
90
|
Abstract
The superoxide (O2 (∙-))-generating NADPH oxidase complex of phagocytes comprises a membrane-imbedded heterodimeric flavocytochrome, known as cytochrome b 558 (consisting of Nox2 and p22 (phox) ) and four cytosolic regulatory proteins, p47 (phox) , p67 (phox) , p40 (phox) , and the small GTPase Rac. Under physiological conditions, in the resting phagocyte, O2 (∙-) generation is initiated by engagement of membrane receptors by a variety of stimuli, followed by specific signal transduction sequences leading to the translocation of the cytosolic components to the membrane and their association with the cytochrome. A consequent conformational change in Nox2 initiates the electron "flow" along a redox gradient, from NADPH to oxygen, leading to the one-electron reduction of molecular oxygen to O2 (∙-). Methodological difficulties in the dissection of this complex mechanism led to the design "cell-free" systems (also known as "broken cells" or in vitro systems). In these, membrane receptor stimulation and all or part of the signal transduction sequence are missing, the accent being placed on the actual process of "NADPH oxidase assembly," thus on the formation of the complex between cytochrome b 558 and the cytosolic components and the resulting O2 (∙-) generation. Cell-free assays consist of a mixture of the individual components of the NADPH oxidase complex, derived from resting phagocytes or in the form of purified recombinant proteins, exposed in vitro to an activating agent (distinct from and unrelated to whole cell stimulants), in the presence of NADPH and oxygen. Activation is commonly quantified by measuring the primary product of the reaction, O2 (∙-), trapped immediately after its generation by an appropriate acceptor in a kinetic assay, permitting the calculation of the linear rate of O2 (∙-) production, but numerous variations exist, based on the assessment of reaction products or the consumption of substrates. Cell-free assays played a paramount role in the identification and characterization of the components of the NADPH oxidase complex, the deciphering of the mechanisms of assembly, the search for inhibitory drugs, and the diagnosis of various forms of chronic granulomatous disease (CGD).
Collapse
Affiliation(s)
- Edgar Pick
- The Julius Friedrich Cohnheim-Minerva Center for Phagocyte Research and the Ela Kodesz Institute of Host Defense against Infectious Diseases, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
91
|
Santos CXC, Nabeebaccus AA, Shah AM, Camargo LL, Filho SV, Lopes LR. Endoplasmic reticulum stress and Nox-mediated reactive oxygen species signaling in the peripheral vasculature: potential role in hypertension. Antioxid Redox Signal 2014; 20:121-34. [PMID: 23472786 PMCID: PMC3880927 DOI: 10.1089/ars.2013.5262] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
SIGNIFICANCE Reactive oxygen species (ROS) are produced during normal endoplasmic reticulum (ER) metabolism. There is accumulating evidence showing that under stress conditions such as ER stress, ROS production is increased via enzymes of the NADPH oxidase (Nox) family, especially via the Nox2 and Nox4 isoforms, which are involved in the regulation of blood pressure. Hypertension is a major contributor to cardiovascular and renal disease, and it has a complex pathophysiology involving the heart, kidney, brain, vessels, and immune system. ER stress activates the unfolded protein response (UPR) signaling pathway that has prosurvival and proapoptotic components. RECENT ADVANCES Here, we summarize the evidence regarding the association of Nox enzymes and ER stress, and its potential contribution in the setting of hypertension, including the role of other conditions that can lead to hypertension (e.g., insulin resistance and diabetes). CRITICAL ISSUES A better understanding of this association is currently of great interest, as it will provide further insights into the cellular mechanisms that can drive the ER stress-induced adaptive versus maladaptive pathways linked to hypertension and other cardiovascular conditions. More needs to be learnt about the precise signaling regulation of Nox(es) and ER stress in the cardiovascular system. FUTURE DIRECTIONS The development of specific approaches that target individual Nox isoforms and the UPR signaling pathway may be important for the achievement of therapeutic efficacy in hypertension.
Collapse
Affiliation(s)
- Celio X C Santos
- 1 Cardiovascular Division, King's College London British Heart Foundation Centre of Excellence , London, United Kingdom
| | | | | | | | | | | |
Collapse
|
92
|
Ranayhossaini DJ, Rodriguez AI, Sahoo S, Chen BB, Mallampalli RK, Kelley EE, Csanyi G, Gladwin MT, Romero G, Pagano PJ. Selective recapitulation of conserved and nonconserved regions of putative NOXA1 protein activation domain confers isoform-specific inhibition of Nox1 oxidase and attenuation of endothelial cell migration. J Biol Chem 2013; 288:36437-50. [PMID: 24187133 PMCID: PMC3868757 DOI: 10.1074/jbc.m113.521344] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Indexed: 11/06/2022] Open
Abstract
Excessive vascular and colon epithelial reactive oxygen species production by NADPH oxidase isoform 1 (Nox1) has been implicated in a number of disease states, including hypertension, atherosclerosis, and neoplasia. A peptide that mimics a putative activation domain of the Nox1 activator subunit NOXA1 (NOXA1 docking sequence, also known as NoxA1ds) potently inhibited Nox1-derived superoxide anion (O2·-) production in a reconstituted Nox1 cell-free system, with no effect on Nox2-, Nox4-, Nox5-, or xanthine oxidase-derived reactive oxygen species production as measured by cytochrome c reduction, Amplex Red fluorescence, and electron paramagnetic resonance. The ability of NoxA1ds to cross the plasma membrane was tested by confocal microscopy in a human colon cancer cell line exclusively expressing Nox1 (HT-29) using FITC-labeled NoxA1ds. NoxA1ds significantly inhibited whole HT-29 carcinoma cell-derived O2·- generation. ELISA and fluorescence recovery after photobleaching experiments indicate that NoxA1ds, but not its scrambled control, binds Nox1. FRET experiments conducted using Nox1-YFP and NOXA1-CFP illustrate that NoxA1ds disrupts the binding interaction between Nox1 and NOXA1, whereas a control peptide did not. Moreover, hypoxia-induced human pulmonary artery endothelial cell O2·- production was completely inhibited by NoxA1ds. Human pulmonary artery endothelial cell migration under hypoxic conditions was also reduced by pretreatment with NoxA1ds. Our data indicate that a peptide recapitulating a putative activation subdomain of NOXA1 (NoxA1ds) is a highly efficacious and selective inhibitor of Nox1 activity and establishes a critical interaction site for Nox1-NOXA1 binding required for enzyme activation.
Collapse
Affiliation(s)
- Daniel J. Ranayhossaini
- From the Vascular Medicine Institute and
- Departments of Pharmacology and Chemical Biology and
| | - Andres I. Rodriguez
- From the Vascular Medicine Institute and
- Departments of Pharmacology and Chemical Biology and
| | | | - Beibei B. Chen
- Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261 and
| | - Rama K. Mallampalli
- Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261 and
- the Medical Specialty Service Line, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, Pennsylvania 15240
| | - Eric E. Kelley
- From the Vascular Medicine Institute and
- Departments of Pharmacology and Chemical Biology and
| | - Gabor Csanyi
- From the Vascular Medicine Institute and
- Departments of Pharmacology and Chemical Biology and
| | - Mark T. Gladwin
- From the Vascular Medicine Institute and
- Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261 and
| | | | - Patrick J. Pagano
- From the Vascular Medicine Institute and
- Departments of Pharmacology and Chemical Biology and
| |
Collapse
|
93
|
Cellular and temporal expression of NADPH oxidase (NOX) isotypes after brain injury. J Neuroinflammation 2013; 10:155. [PMID: 24344836 PMCID: PMC3878417 DOI: 10.1186/1742-2094-10-155] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 12/09/2013] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Brain injury results in an increase in the activity of the reactive oxygen species generating NADPH oxidase (NOX) enzymes. Preliminary studies have shown that NOX2, NOX3, and NOX4 are the most prominently expressed NOX isotypes in the brain. However, the cellular and temporal expression profile of these isotypes in the injured and non-injured brain is currently unclear. METHODS Double immunofluorescence for NOX isotypes and brain cell types was performed at acute (24 hours), sub-acute (7 days), and chronic (28 days) time points after controlled cortical impact-induced brain injury or sham-injury in rats. RESULTS NOX2, NOX3, and NOX4 isotypes were found to be expressed in neurons, astrocytes, and microglia, and this expression was dependent on both cellular source and post-injury time. NOX4 was found in all cell types assessed, while NOX3 was positively identified in neurons only, and NOX2 was identified in microglia and neurons. NOX2 was the most responsive to injury, increasing primarily in microglia in response to injury. Quantitation of this isotype showed a significant increase in NOX2 expression at 24 hours, with reduced expression at 7 days and 28 days post-injury, although expression remained above sham levels at later time points. Cellular confirmation using purified primary or cell line culture demonstrated similar patterns in microglia, astrocytes, and neurons. Further, inhibition of NOX, and more specifically NOX2, reduced pro-inflammatory activity in microglia, demonstrating that NOX is not only up-regulated after stimulation, but may also play a significant role in post-injury neuroinflammation. CONCLUSIONS This study illustrates the expression profiles of NOX isotypes in the brain after injury, and demonstrates that NOX2, and to a lesser extent, NOX4, may be responsible for the majority of oxidative stress observed acutely after traumatic brain injury. These data may provide insight into the design of future therapeutic approaches.
Collapse
|
94
|
Proteomic analysis identifies an NADPH oxidase 1 (Nox1)-mediated role for actin-related protein 2/3 complex subunit 2 (ARPC2) in promoting smooth muscle cell migration. Int J Mol Sci 2013; 14:20220-35. [PMID: 24152438 PMCID: PMC3821612 DOI: 10.3390/ijms141020220] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 08/28/2013] [Accepted: 09/16/2013] [Indexed: 11/20/2022] Open
Abstract
A variety of vascular pathologies, including hypertension, restenosis and atherosclerosis, are characterized by vascular smooth muscle cell (VSMC) hypertrophy and migration. NADPH oxidase 1 (Nox1) plays a pivotal role in these phenotypes via distinct downstream signaling. However, the mediators differentiating these distinct phenotypes and their precise role in vascular disease are still not clear. The present study was designed to identify novel targets of VSMC Nox1 signaling using 2D Differential In-Gel Electrophoresis and Mass Spectrometry (2D-DIGE/MS). VSMC treatment with scrambled (Scrmb) or Nox1 siRNA and incubation with the oxidant hydrogen peroxide (H2O2; 50 μM, 3 h) followed by 2D-DIGE/MS on cell lysates identified 10 target proteins. Among these proteins, actin-related protein 2/3 complex subunit 2 (ARPC2) with no previous link to Nox isozymes, H2O2, or other reactive oxygen species (ROS), was identified and postulated to play an intermediary role in VSMC migration. Western blot confirmed that Nox1 mediates H2O2-induced ARPC2 expression in VSMC. Treatment with a p38 MAPK inhibitor (SB203580) resulted in reduced ARPC2 expression in H2O2-treated VSMC. Additionally, wound-healing “scratch” assay confirmed that H2O2 stimulates VSMC migration via Nox1. Importantly, gene silencing of ARPC2 suppressed H2O2-stimulated VSMC migration. These results demonstrate for the first time that Nox1-mediated VSMC migration involves ARPC2 as a downstream signaling target.
Collapse
|
95
|
Yang M, Kosterin P, Salzberg BM, Milovanova TN, Bhopale VM, Thom SR. Microparticles generated by decompression stress cause central nervous system injury manifested as neurohypophysial terminal action potential broadening. J Appl Physiol (1985) 2013; 115:1481-6. [PMID: 24052032 DOI: 10.1152/japplphysiol.00745.2013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The study goal was to use membrane voltage changes during neurohypophysial action potential (AP) propagation as an index of nerve function to evaluate the role that circulating microparticles (MPs) play in causing central nervous system injury in response to decompression stress in a murine model. Mice studied 1 h following decompression from 790 kPa air pressure for 2 h exhibit a 45% broadening of the neurohypophysial AP. Broadening did not occur if mice were injected with the MP lytic agent polyethylene glycol telomere B immediately after decompression, were rendered thrombocytopenic, or were treated with an inhibitor of nitric oxide synthase-2 (iNOS) prior to decompression, or in knockout (KO) mice lacking myeloperoxidase or iNOS. If MPs were harvested from control (no decompression) mice and injected into naive mice, no AP broadening occurred, but AP broadening was observed with injections of equal numbers of MPs from either wild-type or iNOS KO mice subjected to decompression stress. Although not required for AP broadening, MPs from decompressed mice, but not control mice, exhibit NADPH oxidase activation. We conclude that inherent differences in MPs from decompressed mice, rather than elevated MPs numbers, mediate neurological injury and that a component of the perivascular response to MPs involves iNOS. Additional study is needed to determine the mechanism of AP broadening and also mechanisms for MP generation associated with exposure to elevated gas pressure.
Collapse
Affiliation(s)
- Ming Yang
- Department of Emergency Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | | | | | | | | |
Collapse
|
96
|
Rodiño-Janeiro BK, Paradela-Dobarro B, Castiñeiras-Landeira MI, Raposeiras-Roubín S, González-Juanatey JR, Álvarez E. Current status of NADPH oxidase research in cardiovascular pharmacology. Vasc Health Risk Manag 2013; 9:401-28. [PMID: 23983473 PMCID: PMC3750863 DOI: 10.2147/vhrm.s33053] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The implications of reactive oxygen species in cardiovascular disease have been known for some decades. Rationally, therapeutic antioxidant strategies combating oxidative stress have been developed, but the results of clinical trials have not been as good as expected. Therefore, to move forward in the design of new therapeutic strategies for cardiovascular disease based on prevention of production of reactive oxygen species, steps must be taken on two fronts, ie, comprehension of reduction-oxidation signaling pathways and the pathophysiologic roles of reactive oxygen species, and development of new, less toxic, and more selective nicotinamide adenine dinucleotide phosphate (NADPH) oxidase inhibitors, to clarify both the role of each NADPH oxidase isoform and their utility in clinical practice. In this review, we analyze the value of NADPH oxidase as a therapeutic target for cardiovascular disease and the old and new pharmacologic agents or strategies to prevent NADPH oxidase activity. Some inhibitors and different direct or indirect approaches are available. Regarding direct NADPH oxidase inhibition, the specificity of NADPH oxidase is the focus of current investigations, whereas the chemical structure-activity relationship studies of known inhibitors have provided pharmacophore models with which to search for new molecules. From a general point of view, small-molecule inhibitors are preferred because of their hydrosolubility and oral bioavailability. However, other possibilities are not closed, with peptide inhibitors or monoclonal antibodies against NADPH oxidase isoforms continuing to be under investigation as well as the ongoing search for naturally occurring compounds. Likewise, some different approaches include inhibition of assembly of the NADPH oxidase complex, subcellular translocation, post-transductional modifications, calcium entry/release, electron transfer, and genetic expression. High-throughput screens for any of these activities could provide new inhibitors. All this knowledge and the research presently underway will likely result in development of new drugs for inhibition of NADPH oxidase and application of therapeutic approaches based on their action, for the treatment of cardiovascular disease in the next few years.
Collapse
Affiliation(s)
- Bruno K Rodiño-Janeiro
- Health Research Institute of Santiago de Compostela, Santiago de Compostela,
Spain
- European Molecular Biology Laboratory, Grenoble, France
| | | | | | - Sergio Raposeiras-Roubín
- Health Research Institute of Santiago de Compostela, Santiago de Compostela,
Spain
- Cardiology Department, University Clinic Hospital of Santiago de Compostela,
Santiago de Compostela, Spain
| | - José R González-Juanatey
- Health Research Institute of Santiago de Compostela, Santiago de Compostela,
Spain
- Cardiology Department, University Clinic Hospital of Santiago de Compostela,
Santiago de Compostela, Spain
- Medicine Department, University of Santiago de Compostela, Santiago de Compostela,
Spain
| | - Ezequiel Álvarez
- Health Research Institute of Santiago de Compostela, Santiago de Compostela,
Spain
- Medicine Department, University of Santiago de Compostela, Santiago de Compostela,
Spain
| |
Collapse
|
97
|
Cifuentes-Pagano E, Saha J, Csányi G, Ghouleh IA, Sahoo S, Rodríguez A, Wipf P, Pagano PJ, Skoda EM. Bridged tetrahydroisoquinolines as selective NADPH oxidase 2 (Nox2) inhibitors. MEDCHEMCOMM 2013; 4:1085-1092. [PMID: 24466406 PMCID: PMC3897123 DOI: 10.1039/c3md00061c] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
(1SR,4RS)-3,3-Dimethyl-1,2,3,4-tetrahydro-1,4-(epiminomethano)naphthalenes were synthesized in 2-3 steps from commercially available materials and assessed for specificity and effectiveness across a range of Nox isoforms. The N-pentyl and N-methylenethiophene substituted analogs 11g and 11h emerged as selective Nox2 inhibitors with cellular IC50 values of 20 and 32 μM, respectively.
Collapse
Affiliation(s)
- Eugenia Cifuentes-Pagano
- Vascular Medicine Institute, Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Jaideep Saha
- Vascular Medicine Institute, Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA ; Center for Chemical Methodologies and Library Development, Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Gábor Csányi
- Vascular Medicine Institute, Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Imad Al Ghouleh
- Vascular Medicine Institute, Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Sanghamitra Sahoo
- Vascular Medicine Institute, Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Andrés Rodríguez
- Vascular Medicine Institute, Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Peter Wipf
- Center for Chemical Methodologies and Library Development, Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15261, USA ; Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Patrick J Pagano
- Vascular Medicine Institute, Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA ;
| | - Erin M Skoda
- Center for Chemical Methodologies and Library Development, Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15261, USA ;
| |
Collapse
|
98
|
Norton CE, Broughton BRS, Jernigan NL, Walker BR, Resta TC. Enhanced depolarization-induced pulmonary vasoconstriction following chronic hypoxia requires EGFR-dependent activation of NAD(P)H oxidase 2. Antioxid Redox Signal 2013; 18:1777-88. [PMID: 22966991 PMCID: PMC3619151 DOI: 10.1089/ars.2012.4836] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
AIMS Chronic hypoxia (CH) enhances depolarization-induced myofilament Ca(2+) sensitization and resultant pulmonary arterial constriction through superoxide (O(2)(-))-dependent stimulation of RhoA. Because NAD(P)H oxidase (NOX) has been implicated in the development of pulmonary hypertension, we hypothesized that vascular smooth muscle (VSM) depolarization increases NOX-derived O(2)(-) production leading to myofilament Ca(2+) sensitization and augmented vasoconstrictor reactivity following CH. As epidermal growth factor receptor (EGFR) mediates Rac1-dependent NOX activation in renal mesangial cells, we further sought to examine the role EGFR plays in this response. RESULTS Vasoconstrictor responses to depolarizing concentrations of KCl were greater in lungs isolated from CH (4 wk, 0.5 atm) rats compared to normoxic controls, and this effect of CH was abolished by the general NOX inhibitor, apocynin. CH similarly augmented KCl-induced vasoconstriction and O(2)(-) generation (assessed using the fluorescent indicator, dihydroethidium) in Ca(2+)-permeabilized, pressurized small pulmonary arteries. These latter responses to CH were prevented by general inhibition of NOX isoforms (apocynin, diphenylene iodonium), and by selective inhibition of NOX 2 (gp91ds-tat), Rac1 (NSC 23766), and EGFR (AG 1478). Consistent with these observations, CH increased KCl-induced EGFR phosphorylation, and augmented depolarization-induced Rac1 activation in an EGFR-dependent manner. INNOVATION This study establishes a novel signaling axis in VSM linking membrane depolarization to contraction that is independent of Ca(2+) influx, and which mediates myofilament Ca(2+) sensitization in the hypertensive pulmonary circulation. CONCLUSION CH augments membrane depolarization-induced pulmonary VSM Ca(2+) sensitization and vasoconstriction through EGFR-dependent stimulation of Rac1 and NOX 2.
Collapse
Affiliation(s)
- Charles E Norton
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | | | | | | | | |
Collapse
|
99
|
Kahles T, Brandes RP. Which NADPH oxidase isoform is relevant for ischemic stroke? The case for nox 2. Antioxid Redox Signal 2013; 18:1400-17. [PMID: 22746273 PMCID: PMC3603497 DOI: 10.1089/ars.2012.4721] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
UNLABELLED Significance and Recent Advances: Ischemic stroke is the leading cause of disability and third in mortality in industrialized nations. Immediate restoration of cerebral blood flow is crucial to salvage brain tissue, but only few patients are eligible for recanalization therapy. Thus, the need for alternative neuroprotective strategies is huge, and antioxidant interventions have long been studied in this context. Reactive oxygen species (ROS) physiologically serve as signaling molecules, but excessive amounts of ROS, as generated during ischemia/reperfusion (I/R), contribute to tissue injury. CRITICAL ISSUES Nevertheless and despite a strong rational of ROS being a pharmacological target, all antioxidant interventions failed to improve functional outcome in human clinical trials. Antioxidants may interfere with physiological functions of ROS or do not reach the crucial target structures of ROS-induced injury effectively. FUTURE DIRECTIONS Thus, a potentially more promising approach is the inhibition of the source of disease-promoting ROS. Within recent years, NADPH oxidases (Nox) of the Nox family have been identified as mediators of neuronal pathology. As, however, several Nox homologs are expressed in neuronal tissue, and as many of the pharmacological inhibitors employed are rather unspecific, the concept of Nox as mediators of brain damage is far from being settled. In this review, we will discuss the contribution of Nox homologs to I/R injury at large as well as to neuronal damage in particular. We will illustrate that the current data provide evidence for Nox2 as the most important NADPH oxidase mediating cerebral injury.
Collapse
Affiliation(s)
- Timo Kahles
- Institut für Kardiovaskuläre Physiologie, Fachbereich Medizin der Goethe-Universität , Frankfurt am Main, Germany
| | | |
Collapse
|
100
|
Strategies Aimed at Nox4 Oxidase Inhibition Employing Peptides from Nox4 B-Loop and C-Terminus and p22 (phox) N-Terminus: An Elusive Target. Int J Hypertens 2013; 2013:842827. [PMID: 23606947 PMCID: PMC3626398 DOI: 10.1155/2013/842827] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 02/10/2013] [Indexed: 11/22/2022] Open
Abstract
Although NADPH oxidase 4 (Nox4) is the most abundant Nox isoform in systemic vascular endothelial and smooth muscle cells, its function in the vascular tissue is not entirely known. The literature describes a pathophysiological role for Nox4 in cardiovascular disease; however, some studies have reported that it has a protective role. To date, specific Nox4 inhibitors are not available; hence, the development of a pharmacologic tool to assess Nox4's pathophysiological role garners intense interest. In this study, we selected peptides corresponding to regions in the Nox4 oxidase complex critical to holoenzyme activity and postulated their utility as specific competitive inhibitors. Previous studies in our laboratory yielded selective inhibition of Nox2 using this strategy. We postulated that peptides mimicking the Nox4 B-loop and C-terminus and regions on p22phox inhibit Nox4 activity. To test our hypothesis, the inhibitory activity of Nox4 B-loop and C-terminal peptides as well as N-terminal p22phox peptides was assessed in a reconstituted Nox4 system. Our findings demonstrate that Nox4 inhibition is not achieved by preincubation with this comprehensive array of peptides derived from previously identified active regions. These findings suggest that Nox4 exists in a tightly assembled and active conformation which, unlike other Noxes, cannot be disrupted by conventional means.
Collapse
|