51
|
Wang X, Lai R, Su X, Chen G, Liang Z. Edaravone attenuates lipopolysaccharide-induced acute respiratory distress syndrome associated early pulmonary fibrosis via amelioration of oxidative stress and transforming growth factor-β1/Smad3 signaling. Biochem Biophys Res Commun 2018; 495:706-712. [DOI: 10.1016/j.bbrc.2017.10.165] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 10/29/2017] [Indexed: 12/12/2022]
|
52
|
Singh R, Dagar P, Pal S, Basu B, Shankar BS. Significant alterations of the novel 15 gene signature identified from macrophage-tumor interactions in breast cancer. Biochim Biophys Acta Gen Subj 2017; 1862:669-683. [PMID: 29248526 DOI: 10.1016/j.bbagen.2017.12.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 11/09/2017] [Accepted: 12/11/2017] [Indexed: 12/21/2022]
Abstract
BACKGROUND Tumor microenvironment is composed of a largely altered extracellular matrix with different cell types. The complex interplay between macrophages and tumor cells through several soluble factors and signaling is an important factor in breast cancer progression. METHODS We have extended our earlier studies on monocyte and macrophage conditioned medium (MϕCM) and have carried out proteomic analysis to identify its constituents as well as validation. The 8-gene signature identified through macrophage-breast cancer cell interactions was queried in cBioportal for bioinformatic analyses. RESULTS Proteomic analysis (MALDI-TOF and LC-MS/MS) revealed integrin and matrix metalloproteinases in MϕCM which activated TGF-β1, IL-6, TGF- βRII and EGFR as well as its downstream STAT and SMAD signaling in breast cancer cells. Neutralization of pro-inflammatory cytokines (TNF-α. Il-1β, IL-6) abrogated the MϕCM induced migration but invasion to lesser extent. The 8- gene signature identified by macrophage-tumor interactions (TNF-α, IL-1β, IL-6, MMP1, MMP9, TGF-β1, TGF-βRII, EGFR) significantly co-occurred with TP53 mutation, WTAPP1 deletion and SLC12A5 amplification along with differential expression of PSAT1 and ESR1 at the mRNA level and TPD52and PRKCD at the protein level in TCGA (cBioportal). Together these genes form a novel 15 gene signature which is altered in 63.6% of TCGA (1105 samples) data and was associated with high risk and poor survival (p<0.05) in many breast cancer datasets (SurvExpress). CONCLUSIONS These results highlight the importance of macrophage signaling in breast cancer and the prognostic role of the15-gene signature. GENERAL SIGNIFICANCE Our study may facilitate novel prognostic markers based on tumor-macrophage interaction.
Collapse
Affiliation(s)
- Rajshri Singh
- Radiation Biology & Health Sciences Division, Bio-Science Group, Bhabha Atomic Research Centre, Mumbai 400 085, India; HomiBhabha National Institute, Anushaktinagar, Mumbai 400 094, India
| | - Priya Dagar
- Radiation Biology & Health Sciences Division, Bio-Science Group, Bhabha Atomic Research Centre, Mumbai 400 085, India
| | - Shyama Pal
- Radiation Biology & Health Sciences Division, Bio-Science Group, Bhabha Atomic Research Centre, Mumbai 400 085, India
| | - Bhakti Basu
- HomiBhabha National Institute, Anushaktinagar, Mumbai 400 094, India; Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Bhavani S Shankar
- Radiation Biology & Health Sciences Division, Bio-Science Group, Bhabha Atomic Research Centre, Mumbai 400 085, India; HomiBhabha National Institute, Anushaktinagar, Mumbai 400 094, India.
| |
Collapse
|
53
|
Yang J, Zhou CZ, Zhu R, Fan H, Liu XX, Duan XY, Tang Q, Shou ZX, Zuo DM. miR-200b-containing microvesicles attenuate experimental colitis associated intestinal fibrosis by inhibiting epithelial-mesenchymal transition. J Gastroenterol Hepatol 2017; 32:1966-1974. [PMID: 28370348 DOI: 10.1111/jgh.13797] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 03/06/2017] [Accepted: 03/28/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIM Epithelial-mesenchymal transition (EMT), characterized by the decrease of E-cadherin (E-Cad) and increase in vimentin and alpha-smooth muscle actin (α-SMA), was demonstrated to participate in inflammatory bowel disease-related fibrosis. miR-200b plays an anti-fibrosis role in inhibiting EMT by targeting ZEB1 and ZEB2. But the stability of exogenous miR-200b in blood limits its application. Microvesicles (MVs), which can transfer miRNAs among cells and prevent them from degradation, may provide an excellent transport system for the delivery of miR-200b in the treatment of fibrosis. METHODS Bone marrow mesenchymal stem cells (BMSCs) were transfected with lentivirus to overexpress miR-200b. The MVs packaged with miRNA-200b were harvested for the anti-fibrotic treatment using in vitro (transforming growth factor beta 1-mediated EMT in intestinal epithelial cells: IEC-6) and in vivo (TNBS-induced intestinal fibrosis in rats) models. The pathological morphology was observed, and the fibrosis related proteins, such as E-Cad, vimentin, α-SMA, ZEB1, and ZEB2, were detected. RESULTS MiR-200b-MVs would significantly reverse the morphology in TGF-β1-treated IEC-6 cells and improve the TNBS-induced colon fibrosis histologically. The treatment of miR-200b-MVs increased miR-200b levels both in the IEC-6 cells and colon, resulting in a significant prevention EMT and alleviation of fibrosis. The expression of E-Cad was increased, and the expressions of vimentin and α-SMA were decreased. ZBE1 and ZEB2, the targets of miR-200b, were also decreased. CONCLUSIONS miR-200b could be transferred from genetically modified BMSCs to the target cells or tissue by MVs. The mechanisms of miR-200b-MVs in inhibiting colonic fibrosis were related to suppressing the development of EMT by targeting ZEB1and ZEB2.
Collapse
Affiliation(s)
- Jia Yang
- Department of Integrated Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cheng-Zhi Zhou
- Department of Integrated Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Cardiology, The Affiliated Hospital of Hubei University of Traditional Chinese Medicine, Wuhan, China
| | - Rui Zhu
- Department of Integrated Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Heng Fan
- Department of Integrated Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xing-Xing Liu
- Department of Integrated Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xue-Yun Duan
- Department of Pharmacy, The Affiliated Hospital of Hubei University of Traditional Chinese Medicine, Wuhan, China
| | - Qing Tang
- Department of Integrated Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhe-Xing Shou
- Department of Integrated Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dong-Mei Zuo
- Department of Integrated Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
54
|
Ezegbunam W, Foronjy R. Posttranscriptional control of airway inflammation. WILEY INTERDISCIPLINARY REVIEWS-RNA 2017; 9. [PMID: 29071794 DOI: 10.1002/wrna.1455] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 09/07/2017] [Accepted: 09/08/2017] [Indexed: 12/18/2022]
Abstract
Acute inflammation in the lungs is a vital protective response, efficiently and swiftly eliminating inciters of tissue injury. However, in respiratory diseases characterized by chronic inflammation, such as chronic obstructive pulmonary disease and asthma, enhanced expression of inflammatory mediators leads to tissue damage and impaired lung function. Although transcription is an essential first step in the induction of proinflammatory genes, tight regulation of inflammation requires more rapid, flexible responses. Increasing evidence shows that such responses are achieved by posttranscriptional mechanisms directly affecting mRNA stability and translation initiation. RNA-binding proteins, microRNAs, and long noncoding RNAs interact with messenger RNA and each other to impact the stability and/or translation of mRNAs implicated in lung inflammation. Recent research has shown that these biological processes play a central role in the pathogenesis of several important pulmonary conditions. This review will highlight several posttranscriptional control mechanisms that influence lung inflammation and the known associations of derangements in these mechanisms with common respiratory diseases. WIREs RNA 2018, 9:e1455. doi: 10.1002/wrna.1455 This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Structure and Dynamics > Influence of RNA Structure in Biological Systems RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications RNA Turnover and Surveillance > Regulation of RNA Stability.
Collapse
Affiliation(s)
- Wendy Ezegbunam
- Division of Pulmonary and Critical Care Medicine, Department of Medicine and Cell Biology, SUNY Downstate Medical Center, Brooklyn, NY, USA
| | - Robert Foronjy
- Division of Pulmonary and Critical Care Medicine, Department of Medicine and Cell Biology, SUNY Downstate Medical Center, Brooklyn, NY, USA
| |
Collapse
|
55
|
Song C, Wang L, Ye G, Song X, He Y, Qiu X. Residual Ammonium Persulfate in Nanoparticles Has Cytotoxic Effects on Cells through Epithelial-Mesenchymal Transition. Sci Rep 2017; 7:11769. [PMID: 28924225 PMCID: PMC5603593 DOI: 10.1038/s41598-017-12328-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 09/07/2017] [Indexed: 12/13/2022] Open
Abstract
Ammonium persulfate (APS), a low molecular weight chemical compound with strong oxidizing properties, should to be totally removed during preparation of nanomaterials due to its cytotoxicity. APS exerts its oxidative stress effects mainly on cell membrane, but its intracellular influence remains unclear. Here, we designed a facile negatively-charged carboxylic gelatin-methyacrylate (carbox-GelMA) nanoparticle (NP) as a cargo-carrier through the catalytic and oxidizing action of APS in W/O system. The formed APS-loaded carbox-GelMA NPs (APS/NPs) were transported into the lysosome in MCF-7 breast cancer cells. The intracellular APS/NPs produced a high level of oxidative stress in lysosome and induced epithelial-mesenchymal transition (EMT). Consequently, the MCF-7 cells challenged with APS/NPs had a strong metastatic and invasive capability in vitro and in vivo. This study highlights that a facile APS-loaded nanocarrier has cyctotoxicity on cells through EMT. Unexpectedly, we found a novel pathway inducing EMT via lysosomal oxidative stress.
Collapse
Affiliation(s)
- Chen Song
- Deparment of Anatomy, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangdong, Guangzhou, 510515, China
| | - Leyu Wang
- Deparment of Anatomy, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangdong, Guangzhou, 510515, China.
| | - Genlan Ye
- Deparment of Anatomy, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangdong, Guangzhou, 510515, China
| | - Xiaoping Song
- Deparment of Anatomy, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangdong, Guangzhou, 510515, China
| | - Yutong He
- Deparment of Anatomy, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangdong, Guangzhou, 510515, China
| | - Xiaozhong Qiu
- Deparment of Anatomy, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangdong, Guangzhou, 510515, China.
| |
Collapse
|
56
|
Xu X, Sun S, Xie F, Ma J, Tang J, He S, Bai L. Advanced Oxidation Protein Products Induce Epithelial-Mesenchymal Transition of Intestinal Epithelial Cells via a PKC δ-Mediated, Redox-Dependent Signaling Pathway. Antioxid Redox Signal 2017; 27:37-56. [PMID: 27565419 DOI: 10.1089/ars.2015.6611] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
AIMS Epithelial-mesenchymal transition (EMT) has been considered a fundamental mechanism in complications of Crohn's disease (CD), especially intestinal fibrosis. However, the mechanism underlying EMT regulation in intestinal fibrosis remains unclear. This study aimed to investigate the role of advanced oxidation protein products (AOPPs) in the occurrence of intestinal EMT. RESULTS AOPPs accumulated in CD tissues and were associated with EMT marker expression in fibrotic lesions from CD patients. Challenge with AOPPs induced intestinal epithelial cell (IEC) phenotype transdifferentiation, fibroblast-like phenotype acquisition, and production of extracellular matrix, both in vitro and in vivo. The effect of AOPPs was mainly mediated by a protein kinase C (PKC) δ-mediated redox-dependent pathway, including phosphorylation of PKC δ, recruitment of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, production of reactive oxygen species, and NF-κB p65 activation. Inhibition of AOPP-redox signaling activation effectively blocked AOPP-induced EMT in vitro. Studies performed in normal rats showed that chronic administration of AOPPs triggered the occurrence of EMT in rat intestinal epithelia, accompanied by disruption of intestinal integrity, and by promotion of collagen deposition. These effects could be reversed by inhibition of NADPH oxidase. Innovation and Conclusion: This is the first study to demonstrate that AOPPs triggered the occurrence of EMT in IECs in vitro and in vivo through PKC δ-mediated redox-dependent signaling. Our study identifies the role of AOPPs and, in turn, EMT in intestinal fibrosis and provides novel potential targets for the treatment of intestinal fibrotic diseases. Antioxid. Redox Signal. 27, 37-56.
Collapse
Affiliation(s)
- Xiaoping Xu
- 1 Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University , Guangzhou, China
| | - Shibo Sun
- 2 Department of Hepatobiliary Surgery, Nanfang Hospital, Southern Medical University , Guangzhou, China
| | - Fang Xie
- 1 Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University , Guangzhou, China
| | - Juanjuan Ma
- 1 Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University , Guangzhou, China
| | - Jing Tang
- 1 Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University , Guangzhou, China
| | - Shuying He
- 1 Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University , Guangzhou, China
| | - Lan Bai
- 1 Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University , Guangzhou, China
| |
Collapse
|
57
|
Ojiaku CA, Yoo EJ, Panettieri RA. Transforming Growth Factor β1 Function in Airway Remodeling and Hyperresponsiveness. The Missing Link? Am J Respir Cell Mol Biol 2017; 56:432-442. [PMID: 27854509 DOI: 10.1165/rcmb.2016-0307tr] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The pathogenesis of asthma includes a complex interplay among airway inflammation, hyperresponsiveness, and remodeling. Current evidence suggests that airway structural cells, including bronchial smooth muscle cells, myofibroblasts, fibroblasts, and epithelial cells, mediate all three aspects of asthma pathogenesis. Although studies show a connection between airway remodeling and changes in bronchomotor tone, the relationship between the two remains unclear. Transforming growth factor β1 (TGF-β1), a growth factor elevated in the airway of patients with asthma, plays a role in airway remodeling and in the shortening of various airway structural cells. However, the role of TGF-β1 in mediating airway hyperresponsiveness remains unclear. In this review, we summarize the literature addressing the role of TGF-β1 in airway remodeling and shortening. Through our review, we aim to further elucidate the role of TGF-β1 in asthma pathogenesis and the link between airway remodeling and airway hyperresponsiveness in asthma and to define TGF-β1 as a potential therapeutic target for reducing asthma morbidity and mortality.
Collapse
Affiliation(s)
- Christie A Ojiaku
- 1 Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; and.,2 Rutgers Institute for Translational Medicine and Science, Child Health Institute, Rutgers University, New Brunswick, New Jersey
| | - Edwin J Yoo
- 1 Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; and.,2 Rutgers Institute for Translational Medicine and Science, Child Health Institute, Rutgers University, New Brunswick, New Jersey
| | - Reynold A Panettieri
- 2 Rutgers Institute for Translational Medicine and Science, Child Health Institute, Rutgers University, New Brunswick, New Jersey
| |
Collapse
|
58
|
Shang S, Li J, Zhao Y, Xi Z, Lu Z, Li B, Yang X, Li R. Oxidized graphene-aggravated allergic asthma is antagonized by antioxidant vitamin E in Balb/c mice. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:1784-1793. [PMID: 27796986 DOI: 10.1007/s11356-016-7903-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 10/11/2016] [Indexed: 06/06/2023]
Abstract
Nanomaterials have been widely used in a number of applications; however, these nanomaterials may potentially be risky for human health, particularly for the respiratory system. In this study, we used a mouse asthma model to study whether graphene oxide (GO), a promising carbonaceous nanomaterial with unique physicochemical properties, aggravates allergic asthma via the oxidative stress pathway. Mice were sensitized with ovalbumin (OVA) to trigger immune reactions, while vitamin E (Ve) was administered as an antioxidant. Our results showed that GO aggravated OVA-induced allergic asthma in mice, as suggested by increased reactive oxygen species (ROS), elevated total immunoglobulin E (IgE), upregulated Th2 response, and the aggravation of allergic asthma symptoms, such as airway remolding, collagen deposition with mucus hypersecretion, and airway hyperresponsiveness (AHR). The administration of Ve dramatically attenuated all of the above effects. In conclusion, Ve showed anti-allergic properties in antagonizing the exacerbation of allergic asthma induced by GO, providing a new possibility for the treatment of allergic asthma.
Collapse
Affiliation(s)
- Shuai Shang
- Laboratory of Environmental Biomedicine, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Science, Central China Normal University, Wuhan, Hubei Province, 430079, China
| | - Jinquan Li
- Laboratory of Environmental Biomedicine, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Science, Central China Normal University, Wuhan, Hubei Province, 430079, China
- National Centre for International Research of Low-carbon and Green Buildings, Chongqing University, Chongqing, 400045, People's Republic of China
| | - Yun Zhao
- Laboratory of Environmental Biomedicine, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Science, Central China Normal University, Wuhan, Hubei Province, 430079, China
| | - Zhuge Xi
- Institute of Health and Environmental Medicine, Dali Road, Heping District, Tianjin, 300050, People's Republic of China
| | - Zhisong Lu
- Institute for Clean Energy and Advanced Materials, Southwest University, Chongqing, 400715, People's Republic of China
| | - Baizhan Li
- National Centre for International Research of Low-carbon and Green Buildings, Chongqing University, Chongqing, 400045, People's Republic of China
| | - Xu Yang
- Laboratory of Environmental Biomedicine, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Science, Central China Normal University, Wuhan, Hubei Province, 430079, China.
| | - Rui Li
- Laboratory of Environmental Biomedicine, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Science, Central China Normal University, Wuhan, Hubei Province, 430079, China.
| |
Collapse
|
59
|
Gohy ST, Hupin C, Pilette C, Ladjemi MZ. Chronic inflammatory airway diseases: the central role of the epithelium revisited. Clin Exp Allergy 2016; 46:529-42. [PMID: 27021118 DOI: 10.1111/cea.12712] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The respiratory epithelium plays a critical role for the maintenance of airway integrity and defense against inhaled particles. Physical barrier provided by apical junctions and mucociliary clearance clears inhaled pathogens, allergens or toxics, to prevent continuous stimulation of adaptive immune responses. The "chemical barrier", consisting of several anti-microbial factors such as lysozyme and lactoferrin, constitutes another protective mechanism of the mucosae against external aggressions before adaptive immune response starts. The reconstruction of damaged respiratory epithelium is crucial to restore this barrier. This review examines the role of the airway epithelium through recent advances in health and chronic inflammatory diseases in the lower conducting airways (in asthma and chronic obstructive pulmonary disease). Better understanding of normal and altered epithelial functions continuously provides new insights into the physiopathology of chronic airway diseases and should help to identify new epithelial-targeted therapies.
Collapse
Affiliation(s)
- S T Gohy
- Université catholique de Louvain (UCL), Institute of Experimental and Clinical Research, Pole of Pneumology, ENT and Dermatology, Brussels, Belgium.,Department of Pneumology, Cliniques universitaires St-Luc, Brussels, Belgium
| | - C Hupin
- Université catholique de Louvain (UCL), Institute of Experimental and Clinical Research, Pole of Pneumology, ENT and Dermatology, Brussels, Belgium
| | - C Pilette
- Université catholique de Louvain (UCL), Institute of Experimental and Clinical Research, Pole of Pneumology, ENT and Dermatology, Brussels, Belgium.,Department of Pneumology, Cliniques universitaires St-Luc, Brussels, Belgium.,Institute for Walloon Excellence in Lifesciences and Biotechnology (WELBIO), Brussels, Belgium
| | - M Z Ladjemi
- Université catholique de Louvain (UCL), Institute of Experimental and Clinical Research, Pole of Pneumology, ENT and Dermatology, Brussels, Belgium.,Institute for Walloon Excellence in Lifesciences and Biotechnology (WELBIO), Brussels, Belgium
| |
Collapse
|
60
|
Yang J, Wang T, Li Y, Yao W, Ji X, Wu Q, Han L, Han R, Yan W, Yuan J, Ni C. Earthworm extract attenuates silica-induced pulmonary fibrosis through Nrf2-dependent mechanisms. J Transl Med 2016; 96:1279-1300. [PMID: 27775689 DOI: 10.1038/labinvest.2016.101] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 08/05/2016] [Accepted: 08/25/2016] [Indexed: 12/15/2022] Open
Abstract
Silicosis is an occupational pulmonary fibrosis caused by inhalation of silica (SiO2) and there are no ideal drugs to treat this disease. Earthworm extract (EE), a natural nutrient, has been reported to have anti-inflammatory, antioxidant, and anti-apoptosis effects. The purpose of the current study was to test the protective effects of EE against SiO2-induced pulmonary fibrosis and to explore the underlying mechanisms using both in vivo and in vitro models. We found that treatment with EE significantly reduced lung inflammation and fibrosis and improved lung structure and function in SiO2-instilled mice. Further mechanistic investigations revealed that EE administration markedly inhibited SiO2-induced oxidative stress, mitochondrial apoptotic pathway, and epithelial-mesenchymal transition in HBE and A549 cells. Furthermore, we demonstrate that Nrf2 activation partly mediates the interventional effects of EE against SiO2-induced pulmonary fibrosis. Our study has identified EE to be a potential anti-oxidative, anti-inflammatory, and anti-fibrotic drug for silicosis.
Collapse
Affiliation(s)
- Jingjin Yang
- Department of Occupational Medicine and Environmental Health and Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Ting Wang
- Department of Pathology, The Affiliated Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Yan Li
- Department of Occupational Medicine and Environmental Health and Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Wenxi Yao
- Department of Occupational Medicine and Environmental Health and Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Xiaoming Ji
- Department of Occupational Medicine and Environmental Health and Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Qiuyun Wu
- Department of Occupational Medicine and Environmental Health and Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Lei Han
- Department of Occupational Medicine and Environmental Health and Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Ruhui Han
- Department of Occupational Medicine and Environmental Health and Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Weiwen Yan
- Department of Occupational Medicine and Environmental Health and Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jiali Yuan
- Department of Occupational Medicine and Environmental Health and Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Chunhui Ni
- Department of Occupational Medicine and Environmental Health and Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
61
|
|
62
|
Kolahian S, Fernandez IE, Eickelberg O, Hartl D. Immune Mechanisms in Pulmonary Fibrosis. Am J Respir Cell Mol Biol 2016; 55:309-22. [DOI: 10.1165/rcmb.2016-0121tr] [Citation(s) in RCA: 176] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
63
|
The Expression of NOX4 in Smooth Muscles of Small Airway Correlates with the Disease Severity of COPD. BIOMED RESEARCH INTERNATIONAL 2016; 2016:2891810. [PMID: 27656649 PMCID: PMC5021463 DOI: 10.1155/2016/2891810] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 06/23/2016] [Accepted: 07/18/2016] [Indexed: 12/23/2022]
Abstract
Airway smooth muscle (ASM) remodeling is a hallmark in chronic obstructive pulmonary disease (COPD), and nicotinamide-adenine dinucleotide phosphate (NADPH) oxidases (NOXs) produced reactive oxygen species (ROS) play a crucial role in COPD pathogenesis. In the present study, the expression of NOX4 and its correlation with the ASM hypertrophy/hyperplasia, clinical pulmonary functions, and the expression of transforming growth factor β (TGF-β) in the ASM of COPD small airways were investigated by semiquantitative morphological and/or immunohistochemistry staining methods. The results showed that an elevated expression of NOX4 and TGF-β, along with an increased volume of ASM mass, was found in the ASM of small airways in COPD patients. The abundance of NOX4 protein in the ASM was increased with disease severity and inversely correlated with the pulmonary functions in COPD patients. In addition, the expression of NOX4 and ASM marker α-SMA was colocalized, and the increased NOX4 expression was found to accompany an upregulated expression of TGF-β in the ASM of small airways of COPD lung. These results indicate that NOX4 may be a key regulator in ASM remodeling of small airway, in part through a mechanism interacting with TGF-β signaling in the pathogenesis of COPD, which warrants further investigation.
Collapse
|
64
|
Zhang L, Zhao S, Yuan L, Wu H, Jiang H, Luo G. Placental Growth Factor Triggers Epithelial-to-Mesenchymal Transition-like Changes in Rat Type II Alveolar Epithelial Cells: Activation of Nuclear Factor κB Signalling Pathway. Basic Clin Pharmacol Toxicol 2016; 119:498-504. [PMID: 27154788 DOI: 10.1111/bcpt.12616] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 04/29/2016] [Indexed: 12/20/2022]
Affiliation(s)
- Liang Zhang
- Department of Neonatology; The First Affiliated Hospital of China Medical University; Shenyang Liaoning China
| | - Shuang Zhao
- Department of Pediatrics; Shenyang Fourth People's Hospital; Shenyang Liaoning China
| | - Lijie Yuan
- Department of Biochemistry and Molecular Biology; Harbin Medical University (Daqing Campus); Daqing Heilongjiang China
| | - Hongmin Wu
- Department of Neonatology; The First Affiliated Hospital of China Medical University; Shenyang Liaoning China
| | - Hong Jiang
- Department of Pediatrics; The First Affiliated Hospital of China Medical University; Shenyang Liaoning China
| | - Gang Luo
- Department of Pediatrics; The First Affiliated Hospital of China Medical University; Shenyang Liaoning China
| |
Collapse
|
65
|
Antognelli C, Gambelunghe A, Muzi G, Talesa VN. Glyoxalase I drives epithelial-to-mesenchymal transition via argpyrimidine-modified Hsp70, miR-21 and SMAD signalling in human bronchial cells BEAS-2B chronically exposed to crystalline silica Min-U-Sil 5: Transformation into a neoplastic-like phenotype. Free Radic Biol Med 2016; 92:110-125. [PMID: 26784015 DOI: 10.1016/j.freeradbiomed.2016.01.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 01/12/2016] [Accepted: 01/13/2016] [Indexed: 12/15/2022]
Abstract
Glyoxalase I (Glo1) is the main scavenging enzyme of methylglyoxal (MG), a potent precursor of advanced glycation end products (AGEs). AGEs are known to control multiple biological processes, including epithelial to mesenchymal transition (EMT), a multistep phenomenon associated with cell transformation, playing a major role in a variety of diseases, including cancer. Crystalline silica is a well-known occupational health hazard, responsible for a great number of human pulmonary diseases, such as silicosis. There is still much debate concerning the carcinogenic role of crystalline silica, mainly due to the lack of a causal demonstration between silica exposure and carcinogenesis. It has been suggested that EMT might play a role in crystalline silica-induced lung neoplastic transformation. The aim of this study was to investigate whether, and by means of which mechanism, the antiglycation defence Glo1 is involved in Min-U-Sil 5 (MS5) crystalline silica-induced EMT in BEAS-2B human bronchial epithelial cells chronically exposed, and whether this is associated with the beginning of a neoplastic-like transformation process. By using gene silencing/overexpression and scavenging/inhibitory agents, we demonstrated that MS5 induced hydrogen peroxide-mediated c-Jun-dependent Glo1 up-regulation which resulted in a decrease in the Argpyrimidine-modified Hsp70 protein level which triggered EMT in a novel mechanism involving miR-21 and SMAD signalling. The observed EMT was associated with a neoplastic-like phenotype. The results obtained provide a causal in vitro demonstration of the MS5 pro-carcinogenic transforming role and more importantly they provide new insights into the mechanisms involved in this process, thus opening new paths in research concerning the in vivo study of the carcinogenic potential of crystalline silica.
Collapse
Affiliation(s)
- Cinzia Antognelli
- Department of Experimental Medicine, School of Medicine and Surgery, University of Perugia, Piazzale L. Severi 1, 06129 Perugia, Italy.
| | - Angela Gambelunghe
- Department of Medicine, School of Medicine and Surgery, University of Perugia, Piazzale L. Severi 1, 06129 Perugia, Italy.
| | - Giacomo Muzi
- Department of Medicine, School of Medicine and Surgery, University of Perugia, Piazzale L. Severi 1, 06129 Perugia, Italy.
| | - Vincenzo Nicola Talesa
- Department of Experimental Medicine, School of Medicine and Surgery, University of Perugia, Piazzale L. Severi 1, 06129 Perugia, Italy.
| |
Collapse
|
66
|
The Protective Effect of Naringin against Bleomycin-Induced Pulmonary Fibrosis in Wistar Rats. Pulm Med 2016; 2016:7601393. [PMID: 26977316 PMCID: PMC4764747 DOI: 10.1155/2016/7601393] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 12/23/2015] [Accepted: 01/14/2016] [Indexed: 12/22/2022] Open
Abstract
The aim of the current study was to investigate the protective effect of naringin on bleomycin-induced pulmonary fibrosis in rats. Twenty-four Wistar rats randomly divided into four groups (control, bleomycin alone, bleomycin + naringin 40, and bleomycin + naringin 80) were used. Rats were administered a single dose of bleomycin (5 mg/kg; via the tracheal cannula) alone or followed by either naringin 40 mg/kg (orally) or naringin 80 mg/kg (orally) or water (1 mL, orally) for 14 days. Rats and lung tissue were weighed to determine the lung index. TNF-α and IL-1β levels, hydroxyproline content, and malondialdehyde (MDA) levels were assayed. Glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD) activities were determined. Tissue sections were stained with hematoxylin-eosin, Masson's trichrome, and 0.1% toluidine blue. TNF-α, IL-1β, and MDA levels and hydroxyproline content significantly increased (p < 0.01) and GPx and SOD activities significantly decreased in bleomycin group (p < 0.01). Naringin at a dose of 80 mg/kg body weight significantly decreased TNF-α and IL-1β activity, hydroxyproline content, and MDA level (p < 0.01) and increased GPx and SOD activities (p < 0.05). Histological evidence supported the results. These results show that naringin has the potential of reducing the toxic effects of bleomycin and may provide supportive therapy for conventional treatment methods for idiopathic pulmonary fibrosis.
Collapse
|
67
|
Deng H, Xu H, Zhang X, Sun Y, Wang R, Brann D, Yang F. Protective effect of Ac-SDKP on alveolar epithelial cells through inhibition of EMT via TGF-β1/ROCK1 pathway in silicosis in rat. Toxicol Appl Pharmacol 2016; 294:1-10. [PMID: 26785300 DOI: 10.1016/j.taap.2016.01.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 01/12/2016] [Accepted: 01/14/2016] [Indexed: 11/16/2022]
Abstract
The epithelial-mesenchymal transition (EMT) is a critical stage during the development of silicosis fibrosis. In the current study, we hypothesized that the anti-fibrotic tetrapeptide, N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP) may exert its anti-fibrotic effects via activation of the TGF-β1/ROCK1 pathway, leading to inhibition of EMT. To address this hypothesis, we first examined the effect of Ac-SDKP upon EMT using an in vivo rat silicosis model, as well as in an in vitro model of TGF-β1-induced EMT. Confocal laser scanning microscopy was used to examine colocalization of surfactant protein A (SP-A), fibroblast specific protein-1 (FSP-1) and α-smooth muscle actin (α-SMA) in vivo. Western blot analysis was used to examine for changes in the protein levels of E-cadherin (E-cad) and SP-A (epithelial cell markers), vimentin (mesenchymal cell marker), α-SMA (active myofibroblast marker), and collagen I and III in both in vivo and in vitro experiments. Secondly, we utilized Western blot analysis and confocal laser scanning microscopy to examine the protein expression of TGF-β1 and ROCK1 in in vivo and in vitro studies. The results revealed that Ac-SDKP treatment prevented increases in the expression of mesenchymal markers as well as TGF-β1, ROCK1, collagen I and III. Furthermore, Ac-SDKP treatment prevented decreases in the expression of epithelial cell markers in both in vivo and in vitro experiments. Based on the results, we conclude that Ac-SDKP inhibits the transition of epithelial cell-myofibroblast in silicosis via activation of the TGF-β1/ROCK1 signaling pathway, which may serve as a novel mechanism by which it exerts its anti-fibrosis properties.
Collapse
Affiliation(s)
- Haijing Deng
- School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, China
| | - Hong Xu
- Medical Research Center, International Science and Technology Cooperation Base of Geriatric Medicine, North China University of Science and Technology, Tangshan, China
| | - Xianghong Zhang
- Pathology Department, Hebei Medical University, Shi Jiazhuang, China
| | - Yue Sun
- Medical Research Center, International Science and Technology Cooperation Base of Geriatric Medicine, North China University of Science and Technology, Tangshan, China
| | - Ruimin Wang
- Medical Research Center, International Science and Technology Cooperation Base of Geriatric Medicine, North China University of Science and Technology, Tangshan, China
| | - Darrell Brann
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Fang Yang
- Medical Research Center, International Science and Technology Cooperation Base of Geriatric Medicine, North China University of Science and Technology, Tangshan, China.
| |
Collapse
|
68
|
Xie L, Zhou D, Xiong J, You J, Zeng Y, Peng L. Paraquat induce pulmonary epithelial-mesenchymal transition through transforming growth factor-β1-dependent mechanism. ACTA ACUST UNITED AC 2015; 68:69-76. [PMID: 26603905 DOI: 10.1016/j.etp.2015.09.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 09/29/2015] [Indexed: 02/05/2023]
Abstract
Pulmonary fibrosis is prevalent in Paraquat (PQ) poisoning. Transforming growth factor β1 (TGF-β1)-induced epithelial-mesenchymal transition (EMT) of Type II alveolar epithelial cells (AT2) contributed to the pulmonary fibrosis in some pulmonary disease. In this study, we investigated whether PQ could induce EMT in AT2 through transforming growth factor β1 (TGF-β1) signal pathway in vitro. Morphological and phenotypic characterizations were evaluated on AT2 cell lines A549 cells in the presence of PQ with or without TGF-β1 inhibitors SB431542 for 5 days. As a result, PQ induced the transition of A549 cells from epithelial morphology to fibroblast-like morphology, associated with the acquisition of migratory properties. Phenotypically, PQ induced-EMT was characterized by loss of epithelial cell markers including E-cadherin and zonula occludens (ZO-1), while up-expressions of mesenchymal cell markers including α-smooth muscle actin (α-SMA) and vimentin, concurrent with increased type I collagen (Col I). SB431542 suppressed PQ-induced EMT via inhibiting expressions of phospho-Smad2 and phospho-Smad3. These findings conclusively demonstrated that the cultured A549 cells underwent EMT in the presence of PQ, and suggested that TGF-β1 played a central role in PQ-induced EMT.
Collapse
Affiliation(s)
- Linshen Xie
- Department of Occupational Disease, No.4 West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Dingzi Zhou
- Department of Occupational Disease, No.4 West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Jingyuan Xiong
- Center for Occupational Respirology, West China School of Public Health, Sichuan University, Chengdu, Sichuan, China
| | - Jia You
- Center for Occupational Respirology, West China School of Public Health, Sichuan University, Chengdu, Sichuan, China
| | - Ye Zeng
- Institute of Biomedical Engineering, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Lijun Peng
- Department of Occupational Disease, No.4 West China Hospital of Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
69
|
Li M, Luan F, Zhao Y, Hao H, Zhou Y, Han W, Fu X. Epithelial-mesenchymal transition: An emerging target in tissue fibrosis. Exp Biol Med (Maywood) 2015; 241:1-13. [PMID: 26361988 DOI: 10.1177/1535370215597194] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 06/19/2015] [Indexed: 12/18/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) is involved in a variety of tissue fibroses. Fibroblasts/myofibroblasts derived from epithelial cells contribute to the excessive accumulation of fibrous connective tissue in damaged tissue, which can lead to permanent scarring or organ malfunction. Therefore, EMT-related fibrosis cannot be neglected. This review highlights the findings that demonstrate the EMT to be a direct contributor to the fibroblast/myofibroblast population in the development of tissue fibrosis and helps to elucidate EMT-related anti-fibrotic strategies, which may enable the development of therapeutic interventions to suppress EMT and potentially reverse organ fibrosis.
Collapse
Affiliation(s)
- Meirong Li
- Wound Healing and Cell Biology Laboratory, Institute of Basic Medical Science, Chinese PLA General Hospital, Beijing 100853, P. R. China Trauma Treatment Center, Central Laboratory, Chinese PLA General Hospital Hainan Branch, Sanya 572014, P. R. China
| | - Fuxin Luan
- Trauma Treatment Center, Central Laboratory, Chinese PLA General Hospital Hainan Branch, Sanya 572014, P. R. China
| | - Yali Zhao
- Wound Healing and Cell Biology Laboratory, Institute of Basic Medical Science, Chinese PLA General Hospital, Beijing 100853, P. R. China Trauma Treatment Center, Central Laboratory, Chinese PLA General Hospital Hainan Branch, Sanya 572014, P. R. China
| | - Haojie Hao
- Wound Healing and Cell Biology Laboratory, Institute of Basic Medical Science, Chinese PLA General Hospital, Beijing 100853, P. R. China
| | - Yong Zhou
- Wound Healing and Cell Biology Laboratory, Institute of Basic Medical Science, Chinese PLA General Hospital, Beijing 100853, P. R. China
| | - Weidong Han
- Wound Healing and Cell Biology Laboratory, Institute of Basic Medical Science, Chinese PLA General Hospital, Beijing 100853, P. R. China
| | - Xiaobing Fu
- Wound Healing and Cell Biology Laboratory, Institute of Basic Medical Science, Chinese PLA General Hospital, Beijing 100853, P. R. China
| |
Collapse
|
70
|
Resveratrol ameliorates lipopolysaccharide-induced epithelial mesenchymal transition and pulmonary fibrosis through suppression of oxidative stress and transforming growth factor-β1 signaling. Clin Nutr 2015; 34:752-60. [DOI: 10.1016/j.clnu.2014.08.014] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 07/27/2014] [Accepted: 08/31/2014] [Indexed: 02/01/2023]
|
71
|
Transforming Growth Factor-Beta and Oxidative Stress Interplay: Implications in Tumorigenesis and Cancer Progression. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:654594. [PMID: 26078812 PMCID: PMC4452864 DOI: 10.1155/2015/654594] [Citation(s) in RCA: 161] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Revised: 03/20/2015] [Accepted: 04/13/2015] [Indexed: 12/13/2022]
Abstract
Transforming growth factor-beta (TGF-β) and oxidative stress/Reactive Oxygen Species (ROS) both have pivotal roles in health and disease. In this review we are analyzing the interplay between TGF-β and ROS in tumorigenesis and cancer progression. They have contradictory roles in cancer progression since both can have antitumor effects, through the induction of cell death, senescence and cell cycle arrest, and protumor effects by contributing to cancer cell spreading, proliferation, survival, and metastasis. TGF-β can control ROS production directly or by downregulating antioxidative systems. Meanwhile, ROS can influence TGF-β signaling and increase its expression as well as its activation from the latent complex. This way, both are building a strong interplay which can be taken as an advantage by cancer cells in order to increment their malignancy. In addition, both TGF-β and ROS are able to induce cell senescence, which in one way protects damaged cells from neoplastic transformation but also may collaborate in cancer progression. The mutual collaboration of TGF-β and ROS in tumorigenesis is highly complex, and, due to their differential roles in tumor progression, careful consideration should be taken when thinking of combinatorial targeting in cancer therapies.
Collapse
|
72
|
Paraquat induces epithelial-mesenchymal transition-like cellular response resulting in fibrogenesis and the prevention of apoptosis in human pulmonary epithelial cells. PLoS One 2015; 10:e0120192. [PMID: 25799450 PMCID: PMC4370722 DOI: 10.1371/journal.pone.0120192] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Accepted: 02/04/2015] [Indexed: 01/31/2023] Open
Abstract
The aim of this study is to investigate the molecular mechanisms underlying delayed progressive pulmonary fibrosis, a characteristic of subacute paraquat (PQ) poisoning. Epithelial-mesenchymal transition (EMT) has been proposed as a cause of organ fibrosis, and transforming growth factor-β (TGF-β) is suggested to be a powerful mediator of EMT. We thus examined the possibility that EMT is involved in pulmonary fibrosis during PQ poisoning using A549 human alveolar epithelial cells in vitro. The cells were treated with various concentrations of PQ (0–500 μM) for 2–12 days. Short-term (2 days) high-dose (>100 μM) treatments with PQ induced cell death accompanied by the activation of caspase9 as well as a decrease in E-cadherin (an epithelial cell marker), suggesting apoptotic cell death with the features of anoikis (cell death due to the loss of cell-cell adhesion). In contrast, long-term (6–12 days) low-dose (30 μM) treatments with PQ resulted in a transformation into spindle-shaped mesenchymal-like cells with a decrease of E-cadherin as well as an increase of α-smooth muscle actin (α-SMA). The mesenchymal-like cells also secreted the extracellular matrix (ECM) protein fibronectin into the culture medium. The administration of a TGF-β1 receptor antagonist, SB431542, almost completely attenuated the mesenchymal transformation as well as fibronectin secretion, suggesting a crucial role of TGF-β1 in EMT-like cellular response and subsequent fibrogenesis. It is noteworthy that despite the suppression of EMT-fibrogenesis, apoptotic death was observed in cells treated with PQ+SB431542. EMT-like cellular response and subsequent fibrogenesis were also observed in normal human bronchial epithelial (NHBE) cells exposed to PQ in a TGF-β1-dependent manner. Taken together, our experimental model reflects well the etiology of PQ poisoning in human and shows the involvement of EMT-like cellular response in both fibrogenesis and resistance to cell death during subacute PQ poisoning of pulmonary epithelial cells.
Collapse
|
73
|
Ulanet DB, Couto K, Jha A, Choe S, Wang A, Woo HK, Steadman M, DeLaBarre B, Gross S, Driggers E, Dorsch M, Hurov JB. Mesenchymal phenotype predisposes lung cancer cells to impaired proliferation and redox stress in response to glutaminase inhibition. PLoS One 2014; 9:e115144. [PMID: 25502225 PMCID: PMC4264947 DOI: 10.1371/journal.pone.0115144] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 11/19/2014] [Indexed: 12/30/2022] Open
Abstract
Recent work has highlighted glutaminase (GLS) as a key player in cancer cell metabolism, providing glutamine-derived carbon and nitrogen to pathways that support proliferation. There is significant interest in targeting GLS for cancer therapy, although the gene is not known to be mutated or amplified in tumors. As a result, identification of tractable markers that predict GLS dependence is needed for translation of GLS inhibitors to the clinic. Herein we validate a small molecule inhibitor of GLS and show that non-small cell lung cancer cells marked by low E-cadherin and high vimentin expression, hallmarks of a mesenchymal phenotype, are particularly sensitive to inhibition of the enzyme. Furthermore, lung cancer cells induced to undergo epithelial to mesenchymal transition (EMT) acquire sensitivity to the GLS inhibitor. Metabolic studies suggest that the mesenchymal cells have a reduced capacity for oxidative phosphorylation and increased susceptibility to oxidative stress, rendering them unable to cope with the perturbations induced by GLS inhibition. These findings elucidate selective metabolic dependencies of mesenchymal lung cancer cells and suggest novel pathways as potential targets in this aggressive cancer type.
Collapse
Affiliation(s)
- Danielle B. Ulanet
- Agios Pharmaceuticals, Cambridge, Massachusetts, United States of America
| | - Kiley Couto
- Agios Pharmaceuticals, Cambridge, Massachusetts, United States of America
| | - Abhishek Jha
- Agios Pharmaceuticals, Cambridge, Massachusetts, United States of America
| | - Sung Choe
- Agios Pharmaceuticals, Cambridge, Massachusetts, United States of America
| | - Amanda Wang
- Agios Pharmaceuticals, Cambridge, Massachusetts, United States of America
| | - Hin-Koon Woo
- Agios Pharmaceuticals, Cambridge, Massachusetts, United States of America
| | - Mya Steadman
- Agios Pharmaceuticals, Cambridge, Massachusetts, United States of America
| | - Byron DeLaBarre
- Agios Pharmaceuticals, Cambridge, Massachusetts, United States of America
| | - Stefan Gross
- Agios Pharmaceuticals, Cambridge, Massachusetts, United States of America
| | - Edward Driggers
- Agios Pharmaceuticals, Cambridge, Massachusetts, United States of America
| | - Marion Dorsch
- Agios Pharmaceuticals, Cambridge, Massachusetts, United States of America
| | - Jonathan B. Hurov
- Agios Pharmaceuticals, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
74
|
Andersson-Sjöland A, Hallgren O, Rolandsson S, Weitoft M, Tykesson E, Larsson-Callerfelt AK, Rydell-Törmänen K, Bjermer L, Malmström A, Karlsson JC, Westergren-Thorsson G. Versican in inflammation and tissue remodeling: the impact on lung disorders. Glycobiology 2014; 25:243-51. [PMID: 25371494 PMCID: PMC4310351 DOI: 10.1093/glycob/cwu120] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Versican is a proteoglycan that has many different roles in tissue homeostasis and inflammation. The biochemical structure comprises four different types of the core protein with attached glycosaminoglycans (GAGs) that can be sulfated to various extents and has the capacity to regulate differentiation of different cell types, migration, cell adhesion, proliferation, tissue stabilization and inflammation. Versican's regulatory properties are of importance during both homeostasis and changes that lead to disease progression. The GAGs that are attached to the core protein are of the chondroitin sulfate/dermatan sulfate type and are known to be important in inflammation through interactions with cytokines and growth factors. For a more complex understanding of versican, it is of importance to study the tissue niche, where the wound healing process in both healthy and diseased conditions take place. In previous studies, our group has identified changes in the amount of the multifaceted versican in chronic lung disorders such as asthma, chronic obstructive pulmonary disease, and bronchiolitis obliterans syndrome, which could be a result of pathologic, transforming growth factor β driven, on-going remodeling processes. Reversely, the context of versican in its niche is of great importance since versican has been reported to have a beneficial role in other contexts, e.g. emphysema. Here we explore the vast mechanisms of versican in healthy lung and in lung disorders.
Collapse
Affiliation(s)
| | - Oskar Hallgren
- Lung Biology Lung Medicine and Allergology, Skåne University Hospital, Lund University, Lund 221 84, Sweden
| | | | | | - Emil Tykesson
- Lung Biology Matrix Biology, Department of Experimental Medical Sciences, BMC D12, Lund University, Lund 221 84, Sweden
| | | | | | - Leif Bjermer
- Lung Medicine and Allergology, Skåne University Hospital, Lund University, Lund 221 84, Sweden
| | - Anders Malmström
- Lung Medicine and Allergology, Skåne University Hospital, Lund University, Lund 221 84, Sweden
| | | | | |
Collapse
|
75
|
Prasanphanich AF, Arencibia CA, Kemp ML. Redox processes inform multivariate transdifferentiation trajectories associated with TGFβ-induced epithelial-mesenchymal transition. Free Radic Biol Med 2014; 76:1-13. [PMID: 25088330 PMCID: PMC4254148 DOI: 10.1016/j.freeradbiomed.2014.07.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 07/16/2014] [Accepted: 07/24/2014] [Indexed: 12/12/2022]
Abstract
Phenotype reprogramming during transforming growth factor β (TGFβ)-induced epithelial-mesenchymal transition (EMT) is an extensive and dynamic process, orchestrated by the integration of biological signaling across multiple time scales. As part of the numerous transcriptional changes necessary for EMT, TGFβ-initiated Smad3 signaling results in remodeling of the redox environment and decreased nucleophilic tone. Because Smad3 itself is susceptible to attenuated activity through antioxidants, the possibility of a positive feedback loop exists, albeit the time scales on which these mechanisms operate are quite different. We hypothesized that the decreased nucleophilic tone acquired during EMT promotes Smad3 signaling, enhancing acquisition and stabilization of the mesenchymal phenotype. Previous findings supporting such a mechanism were characterized independent of each other; we sought to investigate these relationships within a singular experimental context. In this study, we characterized multivariate representations of phenotype as they evolved over time, specifically measuring expression of epithelial/mesenchymal differentiation, redox regulators, and Smad transcription factors. In-cell Western (ICW) assays were developed to evaluate multivariate phenotype states as they developed during EMT. Principal component analysis (PCA) extracted anticorrelations between phospho-Smad3 (pSmad3) and Smad2/Smad4, which reflected a compensatory up-regulation of Smad2 and Smad4 following cessation of TGFβ signaling. Measuring transcript expression following EMT, we identified down-regulation of numerous antioxidant genes concomitant with up-regulation of NADPH oxidase 4 (NOX4) and multiple mesenchymal phenotype markers. TGFβ treatment increased CM-H2DCF-DA oxidation, decreased H2O2 degradation rates, and increased glutathione redox potential. Our findings suggest that the decreased nucleophilic tone during EMT coincides with the acquisition of a mesenchymal phenotype over too long a time scale to enable enhanced Smad3 phosphorylation during initiation of EMT. We further challenged the mesenchymal phenotype following EMT through antioxidant and TGFβ inhibitor treatments, which failed to induce a mesenchymal-epithelial transition (MET). Our characterization of multivariate phenotype dynamics during EMT indicates that the decrease in nucleophilic tone occurs alongside EMT; however, maintenance of the mesenchymal phenotype following EMT is independent of both the nascent redox state and the continuous TGFβ signaling.
Collapse
Affiliation(s)
- Adam F Prasanphanich
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332-0363, USA
| | - C Andrew Arencibia
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332-0363, USA
| | - Melissa L Kemp
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332-0363, USA.
| |
Collapse
|
76
|
A system biology study of BALF from patients affected by idiopathic pulmonary fibrosis (IPF) and healthy controls. Proteomics Clin Appl 2014; 8:932-50. [DOI: 10.1002/prca.201400001] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 06/03/2014] [Accepted: 08/26/2014] [Indexed: 12/23/2022]
|
77
|
Gao H, Wu X, Simon L, Fossett N. Antioxidants maintain E-cadherin levels to limit Drosophila prohemocyte differentiation. PLoS One 2014; 9:e107768. [PMID: 25226030 PMCID: PMC4167200 DOI: 10.1371/journal.pone.0107768] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 08/12/2014] [Indexed: 01/01/2023] Open
Abstract
Mitochondrial reactive oxygen species (ROS) regulate a variety of biological processes by networking with signal transduction pathways to maintain homeostasis and support adaptation to stress. In this capacity, ROS have been shown to promote the differentiation of progenitor cells, including mammalian embryonic and hematopoietic stem cells and Drosophila hematopoietic progenitors (prohemocytes). However, many questions remain about how ROS alter the regulatory machinery to promote progenitor differentiation. Here, we provide evidence for the hypothesis that ROS reduce E-cadherin levels to promote Drosophila prohemocyte differentiation. Specifically, we show that knockdown of the antioxidants, Superoxide dismutatase 2 and Catalase reduce E-cadherin protein levels prior to the loss of Odd-skipped-expressing prohemocytes. Additionally, over-expression of E-cadherin limits prohemocyte differentiation resulting from paraquat-induced oxidative stress. Furthermore, two established targets of ROS, Enhancer of Polycomb and FOS, control the level of E-cadherin protein expression. Finally, we show that knockdown of either Superoxide dismutatase 2 or Catalase leads to an increase in the E-cadherin repressor, Serpent. As a result, antioxidants and targets of ROS can control E-cadherin protein levels, and over-expression of E-cadherin can ameliorate the prohemocyte response to oxidative stress. Collectively, these data strongly suggest that ROS promote differentiation by reducing E-cadherin levels. In mammalian systems, ROS promote embryonic stem cell differentiation, whereas E-cadherin blocks differentiation. However, it is not known if elevated ROS reduce E-cadherin to promote embryonic stem cell differentiation. Thus, our findings may have identified an important mechanism by which ROS promote stem/progenitor cell differentiation.
Collapse
Affiliation(s)
- Hongjuan Gao
- Center for Vascular and Inflammatory Diseases and the Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Xiaorong Wu
- Center for Vascular and Inflammatory Diseases and the Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - LaTonya Simon
- Department of Chemical and Biochemical Engineering, University of Maryland Baltimore County, Baltimore, MD, United States of America
| | - Nancy Fossett
- Center for Vascular and Inflammatory Diseases and the Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, United States of America
- * E-mail:
| |
Collapse
|
78
|
Milara J, Peiró T, Serrano A, Artigues E, Aparicio J, Tenor H, Sanz C, Cortijo J. Simvastatin Increases the Ability of Roflumilast N-oxide to Inhibit Cigarette Smoke-Induced Epithelial to Mesenchymal Transition in Well-differentiated Human Bronchial Epithelial Cells in vitro. COPD 2014; 12:320-31. [PMID: 25207459 DOI: 10.3109/15412555.2014.948995] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Cigarette smoking contributes to epithelial-mesenchymal transition (EMT) in COPD small bronchi as part of the lung remodeling process. We recently observed that roflumilast N-oxide (RNO), the active metabolite of the PDE4 inhibitor roflumilast, prevents cigarette smoke-induced EMT in differentiated human bronchial epithelial cells. Further, statins were shown to protect renal and alveolar epithelial cells from EMT. OBJECTIVES To analyze how RNO and simvastatin (SIM) interact on CSE-induced EMT in well-differentiated human bronchial epithelial cells (WD-HBEC) from small bronchi in vitro. METHODS WD-HBEC were stimulated with CSE (2.5%). The mesenchymal markers vimentin, collagen type I and α-SMA, the epithelial markers E-cadherin and ZO-1, as well as β-catenin were quantified by real time quantitative PCR or Western blotting. Intracellular reactive oxygen species (ROS) were measured using the H2DCF-DA probe. GTP-Rac1 and pAkt were evaluated by Western blotting. RESULTS The combination of RNO at 2 nM and SIM at 100 nM was (over) additive to reverse CSE-induced EMT. CSE-induced EMT was partially mediated by the generation of ROS and the activation of the PI3K/Akt/β-catenin pathway. Both RNO at 2 nM and SIM at 100 nM partially abrogated this pathway, and its combination almost abolished ROS/ PI3K/Akt/β-catenin signaling and therefore EMT. CONCLUSIONS The PDE4 inhibitor roflumilast N-oxide acts (over)additively with simvastatin to prevent CSE-induced EMT in WD-HBEC in vitro.
Collapse
Affiliation(s)
- Javier Milara
- 1Clinical Research Unit (UIC), University General Hospital Consortium, Valencia , Spain
| | | | | | | | | | | | | | | |
Collapse
|
79
|
Geismann C, Arlt A, Sebens S, Schäfer H. Cytoprotection "gone astray": Nrf2 and its role in cancer. Onco Targets Ther 2014; 7:1497-518. [PMID: 25210464 PMCID: PMC4155833 DOI: 10.2147/ott.s36624] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Nrf2 has gained great attention with respect to its pivotal role in cell and tissue protection. Primarily defending cells against metabolic, xenobiotic and oxidative stress, Nrf2 is essential for maintaining tissue integrity. Owing to these functions, Nrf2 is regarded as a promising drug target in the chemoprevention of diseases, including cancer. However, much evidence has accumulated that the beneficial role of Nrf2 in cancer prevention essentially depends on the tight control of its activity. In fact, the deregulation of Nrf2 is a critical determinant in oncogenesis and found in many types of cancer. Therefore, amplified Nrf2 activity has profound effects on the phenotype of tumor cells, including radio/chemoresistance, apoptosis protection, invasiveness, antisenescence, autophagy deficiency, and angiogenicity. The deregulation of Nrf2 can result from various epigenetic and genetic alterations directly affecting Nrf2 control or from the complex interplay of Nrf2 with numerous oncogenic signaling pathways. Additionally, alterations of the cellular environment, eg, during inflammation, contribute to Nrf2 deregulation and its persistent activation. Therefore, the status of Nrf2 as anti- or protumorigenic is defined by many different modalities. A better understanding of these modalities is essential for the safe use of Nrf2 as an activation target for chemoprevention on the one hand and as an inhibition target in cancer therapy on the other. The present review mainly addresses the conditions that promote the oncogenic function of Nrf2 and the resulting consequences providing the rationale for using Nrf2 as a target structure in cancer therapy.
Collapse
Affiliation(s)
- Claudia Geismann
- Laboratory of Molecular Gastroenterology, Department of Internal Medicine I, Universitätsklinikum Schleswig-Holstein Campus Kiel, Kiel, Germany
| | - Alexander Arlt
- Laboratory of Molecular Gastroenterology, Department of Internal Medicine I, Universitätsklinikum Schleswig-Holstein Campus Kiel, Kiel, Germany
| | - Susanne Sebens
- Inflammatory Carcinogenesis Research Group, Institute of Experimental Medicine, Universitätsklinikum Schleswig-Holstein Campus Kiel, Kiel, Germany
| | - Heiner Schäfer
- Laboratory of Molecular Gastroenterology, Department of Internal Medicine I, Universitätsklinikum Schleswig-Holstein Campus Kiel, Kiel, Germany
| |
Collapse
|
80
|
Gazdhar A, Lebrecht D, Roth M, Tamm M, Venhoff N, Foocharoen C, Geiser T, Walker UA. Time-dependent and somatically acquired mitochondrial DNA mutagenesis and respiratory chain dysfunction in a scleroderma model of lung fibrosis. Sci Rep 2014; 4:5336. [PMID: 24939573 PMCID: PMC4061543 DOI: 10.1038/srep05336] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 05/22/2014] [Indexed: 12/13/2022] Open
Abstract
Reactive oxygen species (ROS) have been implemented in the etiology of pulmonary fibrosis (PF) in systemic sclerosis. In the bleomycin model, we evaluated the role of acquired mutations in mitochondrial DNA (mtDNA) and respiratory chain defects as a trigger of ROS formation and fibrogenesis. Adult male Wistar rats received a single intratracheal instillation of bleomycin and their lungs were examined at different time points. Ashcroft scores, collagen and TGFβ1 levels documented a delayed onset of PF by day 14. In contrast, increased malon dialdehyde as a marker of ROS formation was detectable as early as 24 hours after bleomycin instillation and continued to increase. At day 7, lung tissue acquired significant amounts of mtDNA deletions, translating into a significant dysfunction of mtDNA-encoded, but not nucleus-encoded respiratory chain subunits. mtDNA deletions and markers of mtDNA-encoded respiratory chain dysfunction significantly correlated with pulmonary TGFβ1 concentrations and predicted PF in a multivariate model.
Collapse
Affiliation(s)
- Amiq Gazdhar
- 1] Dept. of Pulmonary Medicine University Hospital Bern, Bern Switzerland [2] Dept. of Clinical Research, University of Bern, Bern Switzerland [3]
| | - Dirk Lebrecht
- 1] Dept. of Rheumatology & Clinical Immunology, University Hospital Freiburg, Freiburg, Germany [2]
| | - Michael Roth
- Pulmonary Cell Research, Biomedicine, University Basel; Pneumology, Internal Medicine, University Hospital Basel, Switzerland
| | - Michael Tamm
- Pulmonary Cell Research, Biomedicine, University Basel; Pneumology, Internal Medicine, University Hospital Basel, Switzerland
| | - Nils Venhoff
- Dept. of Rheumatology & Clinical Immunology, University Hospital Freiburg, Freiburg, Germany
| | - Chingching Foocharoen
- Division of Rheumatology, Dept. of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Thomas Geiser
- 1] Dept. of Pulmonary Medicine University Hospital Bern, Bern Switzerland [2] Dept. of Clinical Research, University of Bern, Bern Switzerland
| | - Ulrich A Walker
- 1] Dept. of Rheumatology & Clinical Immunology, University Hospital Freiburg, Freiburg, Germany [2] Dept. of Rheumatology at Basel University, Basel, Switzerland
| |
Collapse
|
81
|
Yang L, Yang X, Ji W, Deng J, Qiu F, Yang R, Fang W, Zhang L, Huang D, Xie C, Zhang H, Zhong N, Ran P, Zhou Y, Lu J. Effects of a functional variant c.353T>C in snai1 on risk of two contextual diseases. Chronic obstructive pulmonary disease and lung cancer. Am J Respir Crit Care Med 2014; 189:139-48. [PMID: 24354880 DOI: 10.1164/rccm.201307-1355oc] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Epithelial-mesenchymal transition (EMT) plays a key role in the development of chronic obstructive pulmonary disease (COPD) and lung cancer. OBJECTIVES There are five major EMT regulatory genes (Snai1, Slug, Zeb1, Zeb2, and Twist1) involved in EMT. We hypothesized that germline variants in these genes may influence the development of both diseases. METHODS Seven genetic variants were genotyped in two two-stage case-control studies with 2,072 lung cancer cases and 2,077 control subjects, and 1,791 patients with COPD and 1,940 control subjects to show their associations with development of both diseases. MEASUREMENTS AND MAIN RESULTS An exon variant c.353T>C(p.Val118Ala) of Snai1 harbored decreased risks of lung cancer (CT/CC vs. TT: odds ratio [OR], 0.76; 95% confidence interval [CI], 0.65-0.90) and COPD (CC vs. CT vs. TT: OR, 0.75; 95% CI, 0.63-0.89), and c.353T>C affected lung cancer risk indirectly through COPD (COPD accounted for 6.78% of effect that the variant had on lung cancer). Moreover, c.353T>C was correlated with lung cancer stages in smoking patients (P = 0.013), and those with the c.353C genotypes were less likely to have metastasis at diagnosis than those with the c.353TT genotype (OR, 0.60; 95% CI, 0.41-0.88). The c.353C allele encoding p.118Ala attenuated Snai1's ability to up-regulate mesenchymal biomarkers (i.e., fibronectin and vimentin) expression, and to promote EMT-like changes, including morphologic changes, cell migration, and invasion. However, these effects were not observed for the other variants. CONCLUSIONS The functional germline variant c.353T>C (p.Val118Ala) of Snai1 confers consistently decreased risks of lung cancer and COPD, and this variant affects lung cancer risk through a mediation effect of COPD.
Collapse
Affiliation(s)
- Lei Yang
- 1 The State Key Lab of Respiratory Disease, The Institute for Chemical Carcinogenesis, Guangzhou Institute of Respiratory Diseases, and
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Milara J, Peiró T, Serrano A, Guijarro R, Zaragozá C, Tenor H, Cortijo J. Roflumilast N-oxide inhibits bronchial epithelial to mesenchymal transition induced by cigarette smoke in smokers with COPD. Pulm Pharmacol Ther 2014; 28:138-48. [PMID: 24525294 DOI: 10.1016/j.pupt.2014.02.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 01/02/2014] [Accepted: 02/02/2014] [Indexed: 12/20/2022]
Abstract
BACKGROUND Epithelial to mesenchymal transition (EMT) is under discussion as a potential mechanism of small airway remodelling in COPD. In bronchial epithelium of COPD and smokers markers of EMT were described. In vitro, EMT may be reproduced by exposing well-differentiated human bronchial epithelial cells (WD-HBEC) to cigarette smoke extract (CSE). EMT may be mitigated by an increase in cellular cAMP. OBJECTIVE This study explored the effects of roflumilast N-oxide, a PDE4 inhibitor on CSE-induced EMT in WD-HBEC and in primary bronchial epithelial cells from smokers and COPD in vitro. METHODS WD-HBEC from normal donors were stimulated with CSE (2.5%) for 72 h in presence of roflumilast N-oxide (2 nM or 1 μM) or vehicle. mRNA and protein of EMT markers αSMA, vimentin, collagen-1, E-cadherin, ZO-1, KRT5 as well as NOX4 were quantified by real-time quantitative PCR or protein array, respectively. Phosphorylated and total ERK1/2 and Smad3 were assessed by protein array. cAMP and TGFβ1 were measured by ELISA. Reactive oxygen species (ROS) were determined by DCF fluorescence, after 30 min CSE (2.5%). Apoptosis was measured with Annexin V/PI labelling. In some experiments, EMT markers were determined in monolayers of bronchial epithelial cells from smokers, COPD versus controls. RESULTS Roflumilast N-oxide protected from CSE-induced EMT in WD-HBEC. The PDE4 inhibitor reversed both the increase in mesenchymal and the loss in epithelial EMT markers. Roflumilast N-oxide restored the loss in cellular cAMP following CSE, reduced ROS, NOX4 expression, the increase in TGFβ1 release, phospho ERK1/2 and Smad3. The PDE4 inhibitor partly protected from the increment in apoptosis with CSE. Finally the PDE4 inhibitor decreased mesenchymal yet increased epithelial phenotype markers in HBEC of COPD and smokers. CONCLUSIONS Roflumilast N-oxide may mitigate epithelial-mesenchymal transition in bronchial epithelial cells in vitro.
Collapse
Affiliation(s)
- Javier Milara
- Clinical Research Unit (UIC), University General Hospital Consortium, Valencia, Spain; Department of Biotechnology, Universidad Politécnica de Valencia, Spain; Research Foundation of General Hospital of Valencia, Spain.
| | - Teresa Peiró
- Research Foundation of General Hospital of Valencia, Spain; Department of Pharmacology, Faculty of Medicine, University of Valencia, Spain
| | - Adela Serrano
- Research Foundation of General Hospital of Valencia, Spain; CIBERES, Health Institute Carlos III, Valencia, Spain
| | - Ricardo Guijarro
- Department of Medicine, Faculty of Medicine, University of Valencia, Spain; Thoracic Surgery Unit, University General Hospital Consortium, Valencia, Spain
| | | | - Herman Tenor
- Takeda Pharmaceuticals International, Zürich, Switzerland
| | - Julio Cortijo
- Clinical Research Unit (UIC), University General Hospital Consortium, Valencia, Spain; Research Foundation of General Hospital of Valencia, Spain; Department of Pharmacology, Faculty of Medicine, University of Valencia, Spain; CIBERES, Health Institute Carlos III, Valencia, Spain
| |
Collapse
|
83
|
Qi W, Niu J, Qin Q, Qiao Z, Gu Y. Astragaloside IV attenuates glycated albumin-induced epithelial-to-mesenchymal transition by inhibiting oxidative stress in renal proximal tubular cells. Cell Stress Chaperones 2014; 19:105-14. [PMID: 23719694 PMCID: PMC3857426 DOI: 10.1007/s12192-013-0438-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 05/13/2013] [Accepted: 05/14/2013] [Indexed: 12/14/2022] Open
Abstract
In diabetic kidney disease (DKD), epithelial-to-mesenchymal transition (EMT) is a classic pathological process in tubular damage. Oxidative stress is considered to play an important role in DKD. Astragaloside IV (A-IV), one of the main active ingredients of Astragalus membranaceus, exhibits a wide range of biological activities. However, the effect of A-IV on regulating EMT in tubular cells is unclear. This study aims to determine whether A-IV could attenuate glycated albumin (GA)-induced EMT in the NRK-52E cell line by inhibiting oxidative stress. GA and A-IV-induced cytotoxicity were assayed by CCK-8. The intercellular reactive oxygen species (ROS) level was detected by H2DCFDA. The activity of NADPH oxidase was assayed by adding exogenous NADPH oxidase, and the superoxide dismutase (SOD) units were observed by NBT. We used a microscope to examine the morphology of the NRK-52E cell line. We conducted a wound healing assay to measure cell mobility. To determine mRNA and protein expressions of α-SMA and E-cadherin, we used real-time polymerase chain reaction (real-time PCR), immunofluorescence, and western blot analysis. A-IV significantly attenuated GA-induced amplification of ROS, lowered the increased level of NADPH oxidase activity, and elevated the decreased level of SOD units. The GA-induced NRK-52E cell line showed increased expression of α-SMA and decreased expression of E-cadherin in mRNA and protein levels, whereas A-IV alleviated the expression of α-SMA and increased the expression of E-cadherin. Our data demonstrate that GA could induce NRK-52E cell line EMT through oxidative stress. This effect could be attenuated by A-IV via regulation of the impaired redox balance.
Collapse
Affiliation(s)
- Weiwei Qi
- />Nephrology Department, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, 200240 China
| | - Jianying Niu
- />Nephrology Department, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, 200240 China
| | - Qiaojing Qin
- />Nephrology Department, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, 200240 China
| | - Zhongdong Qiao
- />School of Life Science and Biotechnology, Shanghai Jiaotong University, Shanghai, 200240 China
| | - Yong Gu
- />Nephrology Department, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, 200240 China
- />Nephrology Department, Huashan Hospital, Fudan University, Shanghai, 200240 China
| |
Collapse
|
84
|
Vyas-Read S, Wang W, Kato S, Colvocoresses-Dodds J, Fifadara NH, Gauthier TW, Helms MN, Carlton DP, Brown LAS. Hyperoxia induces alveolar epithelial-to-mesenchymal cell transition. Am J Physiol Lung Cell Mol Physiol 2013; 306:L326-40. [PMID: 24375795 DOI: 10.1152/ajplung.00074.2013] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Myofibroblast accumulation is a pathological feature of lung diseases requiring oxygen therapy. One possible source for myofibroblasts is through the epithelial-to-mesenchymal transition (EMT) of alveolar epithelial cells (AEC). To study the effects of oxygen on alveolar EMT, we used RLE-6TN and ex vivo lung slices and found that hyperoxia (85% O2, H85) decreased epithelial proteins, presurfactant protein B (pre-SpB), pro-SpC, and lamellar protein by 50% and increased myofibroblast proteins, α-smooth muscle actin (α-SMA), and vimentin by over 200% (P < 0.05). In AEC freshly isolated from H85-treated rats, mRNA for pre-SpB and pro-SpC was diminished by ∼50% and α-SMA was increased by 100% (P < 0.05). Additionally, H85 increased H2O2 content, and H2O2 (25-50 μM) activated endogenous transforming growth factor-β1 (TGF-β1), as evident by H2DCFDA immunofluorescence and ELISA (P < 0.05). Both hyperoxia and H2O2 increased SMAD3 phosphorylation (260% of control, P < 0.05). Treating cultured cells with TGF-β1 inhibitors did not prevent H85-induced H2O2 production but did prevent H85-mediated α-SMA increases and E-cadherin downregulation. Finally, to determine the role of TGF-β1 in hyperoxia-induced EMT in vivo, we evaluated AEC from H85-treated rats and found that vimentin increased ∼10-fold (P < 0.05) and that this effect was prevented by intraperitoneal TGF-β1 inhibitor SB-431542. Additionally, SB-431542 treatment attenuated changes in alveolar histology caused by hyperoxia. Our studies indicate that hyperoxia promotes alveolar EMT through a mechanism that is dependent on activation of TGF-β1 signaling.
Collapse
|
85
|
Poon AH, Mahboub B, Hamid Q. Vitamin D deficiency and severe asthma. Pharmacol Ther 2013; 140:148-55. [PMID: 23792089 DOI: 10.1016/j.pharmthera.2013.06.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 06/06/2013] [Indexed: 01/08/2023]
Abstract
Vitamin D has received tremendous amount of attention recently due to the ever-increasing reports of association between vitamin D deficiency and a wide range of conditions, from cancer to fertility to longevity. The fascination of disease association with vitamin D deficiency comes from the relatively easy solution to overcome such a risk factor, that is, either by increase in sun exposure and/or diet supplementation. Many reviews have been written on a protective role of vitamin D in asthma and related morbidities; here, we will summarize the epidemiological evidence supporting a role of vitamin D against hallmark features of severe asthma, such as airway remodeling and asthma exacerbations. Furthermore, we discuss data from in vitro and in vivo studies which provide insights on the potential mechanisms of how vitamin D may protect against severe asthma pathogenesis and how vitamin D deficiency may lead to the development of severe asthma. Approximately 5-15% of asthmatic individuals suffer from the more severe forms of disease in spite of aggressive therapies and they are more likely to have irreversible airflow obstruction associated with airway remodeling. At present drugs commonly used to control asthma symptoms, such as corticosteroids, do not significantly reverse or reduce remodeling in the airways. Hence, if vitamin D plays a protective role against the development of severe asthma, then the most effective therapy may simply be a healthy dose of sunshine.
Collapse
Affiliation(s)
- Audrey H Poon
- Meakins-Christie Laboratories, McGill University, Canada
| | | | | |
Collapse
|
86
|
Jungraithmayr W, Jang JH, Schrepfer S, Inci I, Weder W. Small Animal Models of Experimental Obliterative Bronchiolitis. Am J Respir Cell Mol Biol 2013; 48:675-84. [DOI: 10.1165/rcmb.2012-0379tr] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
87
|
Ganesan S, Sajjan US. Repair and Remodeling of airway epithelium after injury in Chronic Obstructive Pulmonary Disease. ACTA ACUST UNITED AC 2013; 2. [PMID: 24187653 DOI: 10.1007/s13665-013-0052-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
COPD is thought to develop as a result of chronic exposure to cigarette smoke, occupational or other environmental hazards and it comprises both airways and parenchyma. Acute infections or chronic colonization of airways with bacteria may also contribute to development and/or progression of COPD lung disease. Airway epithelium is the primary target for the inhaled environmental factors and pathogens. The repetitive injury as a result of chronic exposure to environmental factors may result in persistent activation of pathways involved in airway epithelial repair, such as epithelial to mesenchymal transition, altered migration and proliferation of progenitor cells, and abnormal redifferentiation leading to airway remodeling. Development of model systems which mimics chronic airways disease as observed in COPD is required to understand the molecular mechanisms underlying the abnormal airway epithelial repair that are specific to COPD and to also develop novel therapies focused on airway epithelial repair.
Collapse
Affiliation(s)
- Shyamala Ganesan
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor
| | | |
Collapse
|
88
|
Vermaelen K, Brusselle G. Exposing a deadly alliance: novel insights into the biological links between COPD and lung cancer. Pulm Pharmacol Ther 2013; 26:544-54. [PMID: 23701918 DOI: 10.1016/j.pupt.2013.05.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 05/08/2013] [Accepted: 05/10/2013] [Indexed: 12/22/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) affects more than 200 million people worldwide and is expected to become the third leading cause of death in 2020. COPD is characterized by progressive airflow limitation, due to a combination of chronic inflammation and remodeling of the small airways (bronchiolitis) and loss of elastic recoil caused by destruction of the alveolar walls (emphysema). Lung cancer is the most important cause of cancer-related death in the world. (Cigarette) smoking is the principal culprit causing both COPD and lung cancer; in addition, exposure to environmental tobacco smoke, biomass fuel smoke, coal smoke and outdoor air pollution have also been associated with an increased incidence of both diseases. Importantly, smokers with COPD--defined as either not fully reversible airflow limitation or emphysema--have a two- to four-fold increased risk to develop lung cancer. In this review, we highlight several of the genetic, epigenetic and inflammatory mechanisms, which link COPD and carcinogenesis in the lungs. Elucidating the biological pathways and networks, which underlie the increased susceptibility of lung cancer in patients with COPD, has important implications for screening, prevention, diagnosis and treatment of these two devastating pulmonary diseases.
Collapse
Affiliation(s)
- K Vermaelen
- Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium.
| | | |
Collapse
|
89
|
Towards a functional proteomics approach to the comprehension of idiopathic pulmonary fibrosis, sarcoidosis, systemic sclerosis and pulmonary Langerhans cell histiocytosis. J Proteomics 2013; 83:60-75. [DOI: 10.1016/j.jprot.2013.03.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 02/22/2013] [Accepted: 03/09/2013] [Indexed: 01/02/2023]
|
90
|
Vasakova M, Sterclova M, Stranska E, Mandakova P, Skibova J, Matej R. Biomarkers of fibroproliferative healing in fibrosing idiopathic interstitial pneumonias. Open Respir Med J 2012; 6:160-4. [PMID: 23346263 PMCID: PMC3551240 DOI: 10.2174/1874306401206010160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 11/11/2012] [Accepted: 11/21/2012] [Indexed: 11/22/2022] Open
Abstract
Aims: The main feature of fibrosing idiopathic interstitial pneumonias (fIIPs) is the fibroproliferative potential of underlying pathogenetic process. We hypothesize that the concentration of potential markers of fibroproliferative healing, PAR-2, TGF-β1, TNF-α and IL-4Rα in bronchoalveolar lavage fluid (BALF) differ in patients with fIIPs compared to controls (C). Patients and Methods: 10 patients with fIIPs and 9 controls (C) were included to the study. Concentrations of CD124 (IL4Rα), PAR-2, TGF-β1 and TNF-α in BALF were determined using the ELISA method. Results: We observed higher concentrations of IL4Rα (fIIPS 1499.4 pg/ml vs C 255.5 pg/ml; p < 0.05), PAR-2 (fIIPS 1807.9 pg/ml vs C 421.0 pg/ml; p < 0.05) and TGF-β1(fIIPS 283.0 pg/ml vs C 197.1 pg/ml; p < 0.01) in BALF in fIIPs versus C. The values of TNF-a in BALF did not differ significantly in fIIPs compared to controls. The ratios also showed differences in fIIPS and C: IL4Rα/TGF-β1 (fIIPS 6.19 vs C 0.68; p = 0.0143); TNF-α/IL4Rα (fIIPS 0.84 vs C 7.93; p = 0.043); TGF-β1/TNF-α (fIIPS 0.21 vs C 0.16; p = 0.0179) and protein/PAR-2 (fIIPS 0.06 vs C 0.28; p = 0.0033). Conclusions: We found that PAR-2, TGF-β1 and IL-4Rα are significantly up-regulated in the BALF of fIIPs compared to controls, therefore we suppose they could become biomarkers of fibroproliferative healing.
Collapse
Affiliation(s)
- Martina Vasakova
- Department of Respiratory Medicine, Thomayer Hospital, Videnska 800, 14059 Prague 4, Czech Republic
| | | | | | | | | | | |
Collapse
|
91
|
Abstract
PURPOSE OF REVIEW Pathogenesis of interstitial lung diseases (ILD) has largely been investigated in the context of the most frequent ILD, idiopathic pulmonary fibrosis (IPF). We review studies of epithelial-to-mesenchymal transition (EMT) and discuss its potential contribution to collagen-producing (myo)fibroblasts in IPF. RECENT FINDINGS Endoplasmic reticulum (ER) stress leading to epithelial apoptosis has been reported as a potential etiologic factor in fibrosis. Recent studies further suggest EMT as a link between ER stress and fibrosis. Combinatorial interactions among Smad3, β-catenin and other transcriptional co-activators at the α-smooth muscle actin (α-SMA) promoter provide direct evidence for crosstalk between transforming growth factor-β (TGFβ) and β-catenin pathways during EMT. Lineage tracing yielded conflicting results, with two recent studies supporting and one opposing a role for EMT in lung fibrosis. SUMMARY Advances have been made in elucidating causes and mechanisms of EMT, potentially leading to new treatment options, although contributions of EMT to lung fibrosis in vivo remain controversial. In addition to EMT providing a direct source of (myo)fibroblasts, expression of mesenchymal markers may reflect epithelial injury, in which case inhibition of EMT might be deleterious. EMT-derived cells may also contribute to aberrant epithelial-mesenchymal crosstalk that promotes fibrogenesis.
Collapse
|
92
|
Cheresh P, Kim SJ, Tulasiram S, Kamp DW. Oxidative stress and pulmonary fibrosis. Biochim Biophys Acta Mol Basis Dis 2012; 1832:1028-40. [PMID: 23219955 DOI: 10.1016/j.bbadis.2012.11.021] [Citation(s) in RCA: 358] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 11/26/2012] [Accepted: 11/28/2012] [Indexed: 02/08/2023]
Abstract
Oxidative stress is implicated as an important molecular mechanism underlying fibrosis in a variety of organs, including the lungs. However, the causal role of reactive oxygen species (ROS) released from environmental exposures and inflammatory/interstitial cells in mediating fibrosis as well as how best to target an imbalance in ROS production in patients with fibrosis is not firmly established. We focus on the role of ROS in pulmonary fibrosis and, where possible, highlight overlapping molecular pathways in other organs. The key origins of oxidative stress in pulmonary fibrosis (e.g. environmental toxins, mitochondria/NADPH oxidase of inflammatory and lung target cells, and depletion of antioxidant defenses) are reviewed. The role of alveolar epithelial cell (AEC) apoptosis by mitochondria- and p53-regulated death pathways is examined. We emphasize an emerging role for the endoplasmic reticulum (ER) in pulmonary fibrosis. After briefly summarizing how ROS trigger a DNA damage response, we concentrate on recent studies implicating a role for mitochondrial DNA (mtDNA) damage and repair mechanisms focusing on 8-oxoguanine DNA glycosylase (Ogg1) as well as crosstalk between ROS production, mtDNA damage, p53, Ogg1, and mitochondrial aconitase (ACO2). Finally, the association between ROS and TGF-β1-induced fibrosis is discussed. Novel insights into the molecular basis of ROS-induced pulmonary diseases and, in particular, lung epithelial cell death may promote the development of unique therapeutic targets for managing pulmonary fibrosis as well as fibrosis in other organs and tumors, and in aging; diseases for which effective management is lacking. This article is part of a Special Issue entitled: Fibrosis: Translation of basic research to human disease.
Collapse
Affiliation(s)
- Paul Cheresh
- Department of Medicine, Northwestern University Feinberg School of Medicine and Jesse Brown VA Medical Center, USA
| | | | | | | |
Collapse
|