51
|
Brglez M, Plazar N, Poklar Vatovec T, Meulenberg CJW. Health concerns regarding malnutrition among the older populations: considerations from a Slovenian perspective. Health Promot Int 2021; 37:6310297. [PMID: 34179974 DOI: 10.1093/heapro/daab097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Diet is an important factor in a healthy lifestyle for all age groups. However, with aging it is important to be aware that the diet, due to changed physiology, needs an accordingly adjusted and balanced daily regime. This article reviews the field of older population's nutrition and presents: the most common nutritional disorders, causes, demographics and malnutrition measurement tools. Relevant scientific literature as well as professional Slovenian papers were identified through specific searches with topic-related keywords in EBSCO, PubMed, Web of Science and COBISS databases. The results of the identified papers are subsequently discussed in a descriptive narrative. The reviewed literature shows noticeable trends of high proportions of malnutrition among older persons, both globally and in Slovenia: predominantly observed are overnutrition like overweight and obese, but as well, and often unnoticed, undernutrition. The latter is more worrying, as inadequate knowledge in health care institutions regarding nutritional screening tools and measures to prevent drastic forms of undernutrition, seem to facilitate these trends. Though there are many reasons for insufficient food intake in older people, the article formulates considerations that can feed appropriate education and awareness programs, and through correct screening point to timely identification of malnourished individuals and those with risk of malnutrition. The promotion and implementation of such considerations could prevent malnutrition among the older population, reduce the frequency of nutritional disorders and co-morbidities, and generally improve the nutritional status of the older population, thus, provide better quality of health later in life.
Collapse
Affiliation(s)
- Monika Brglez
- Alma Mater Europaea, European Centre, Maribor, Slovenia
| | - Nadja Plazar
- Alma Mater Europaea, European Centre, Maribor, Slovenia
| | | | - Cécil J W Meulenberg
- Institute for Kinesiology Research, Science and Research Centre, Koper, Slovenia
| |
Collapse
|
52
|
Summerhill VI, Sukhorukov VN, Eid AH, Nedosugova LV, Sobenin IA, Orekhov AN. Pathophysiological Aspects of the Development of Abdominal Aortic Aneurysm with a Special Focus on Mitochondrial Dysfunction and Genetic Associations. Biomol Concepts 2021; 12:55-67. [PMID: 34115932 DOI: 10.1515/bmc-2021-0007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 04/28/2021] [Indexed: 01/01/2023] Open
Abstract
Abdominal aortic aneurysm (AAA) is a complex degenerative vascular disease, with considerable morbidity and mortality rates among the elderly population. The mortality of AAA is related to aneurysm expansion (the enlargement of the aortic diameter up to 30 mm and above) and the subsequent rupture. The pathogenesis of AAA involves several biological processes, including aortic mural inflammation, oxidative stress, vascular smooth muscle cell apoptosis, elastin depletion, and degradation of the extracellular matrix. Mitochondrial dysfunction was also found to be associated with AAA formation. The evidence accumulated to date supports a close relationship between environmental and genetic factors in AAA initiation and progression. However, a comprehensive pathophysiological understanding of AAA formation remains incomplete. The open surgical repair of AAA is the only therapeutic option currently available, while a specific pharmacotherapy is still awaited. Therefore, there is a great need to clarify pathophysiological cellular and molecular mechanisms underlying AAA formation that would help to develop effective pharmacological therapies. In this review, pathophysiological aspects of AAA development with a special focus on mitochondrial dysfunction and genetic associations were discussed.
Collapse
Affiliation(s)
- Volha I Summerhill
- Department of Basic Research, Institute for Atherosclerosis Research, Moscow 121609, Russia
| | - Vasily N Sukhorukov
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Research Institute of Human Morphology, 3 Tsyurupa Street, Moscow 117418, Russia
| | - Ali H Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, PO Box 2713, Doha, Qatar.,Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, PO Box 2713, Doha, Qatar.,Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, PO Box 11-0236, Beirut-Lebanon
| | - Ludmila V Nedosugova
- I.M. Sechenov First Moscow State Medical University (Sechenov University), 8/2 Trubenskaya Street, Moscow 119991, Russia
| | - Igor A Sobenin
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Research Institute of Human Morphology, 3 Tsyurupa Street, Moscow 117418, Russia.,Laboratory of Medical Genetics, National Medical Research Center of Cardiology, 15A 3-rd Cherepkovskaya Street, Moscow 121552, Russia.,Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, Moscow 125315, Russia
| | - Alexander N Orekhov
- Department of Basic Research, Institute for Atherosclerosis Research, Moscow 121609, Russia.,Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Research Institute of Human Morphology, 3 Tsyurupa Street, Moscow 117418, Russia
| |
Collapse
|
53
|
Spaas J, van Veggel L, Schepers M, Tiane A, van Horssen J, Wilson DM, Moya PR, Piccart E, Hellings N, Eijnde BO, Derave W, Schreiber R, Vanmierlo T. Oxidative stress and impaired oligodendrocyte precursor cell differentiation in neurological disorders. Cell Mol Life Sci 2021; 78:4615-4637. [PMID: 33751149 PMCID: PMC8195802 DOI: 10.1007/s00018-021-03802-0] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 02/12/2021] [Accepted: 02/24/2021] [Indexed: 02/07/2023]
Abstract
Oligodendrocyte precursor cells (OPCs) account for 5% of the resident parenchymal central nervous system glial cells. OPCs are not only a back-up for the loss of oligodendrocytes that occurs due to brain injury or inflammation-induced demyelination (remyelination) but are also pivotal in plastic processes such as learning and memory (adaptive myelination). OPC differentiation into mature myelinating oligodendrocytes is controlled by a complex transcriptional network and depends on high metabolic and mitochondrial demand. Mounting evidence shows that OPC dysfunction, culminating in the lack of OPC differentiation, mediates the progression of neurodegenerative disorders such as multiple sclerosis, Alzheimer's disease and Parkinson's disease. Importantly, neurodegeneration is characterised by oxidative and carbonyl stress, which may primarily affect OPC plasticity due to the high metabolic demand and a limited antioxidant capacity associated with this cell type. The underlying mechanisms of how oxidative/carbonyl stress disrupt OPC differentiation remain enigmatic and a focus of current research efforts. This review proposes a role for oxidative/carbonyl stress in interfering with the transcriptional and metabolic changes required for OPC differentiation. In particular, oligodendrocyte (epi)genetics, cellular defence and repair responses, mitochondrial signalling and respiration, and lipid metabolism represent key mechanisms how oxidative/carbonyl stress may hamper OPC differentiation in neurodegenerative disorders. Understanding how oxidative/carbonyl stress impacts OPC function may pave the way for future OPC-targeted treatment strategies in neurodegenerative disorders.
Collapse
Affiliation(s)
- Jan Spaas
- University MS Center (UMSC), Hasselt-Pelt, Belgium
- BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium
- Department of Movement and Sports Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Lieve van Veggel
- University MS Center (UMSC), Hasselt-Pelt, Belgium
- BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium
- Department Psychiatry and Neuropsychology, Division of Translational Neuroscience, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Melissa Schepers
- University MS Center (UMSC), Hasselt-Pelt, Belgium
- BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium
- Department Psychiatry and Neuropsychology, Division of Translational Neuroscience, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Assia Tiane
- University MS Center (UMSC), Hasselt-Pelt, Belgium
- BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium
- Department Psychiatry and Neuropsychology, Division of Translational Neuroscience, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Jack van Horssen
- University MS Center (UMSC), Hasselt-Pelt, Belgium
- BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium
- Department of Molecular Cell Biology and Immunology, Amsterdam Neuroscience, MS Center Amsterdam, Amsterdam University Medical Center, Location VUmc, Amsterdam, The Netherlands
| | - David M Wilson
- BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium
| | - Pablo R Moya
- Facultad de Ciencias, Instituto de Fisiología, Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Universidad de Valparaíso, Valparaíso, Chile
| | - Elisabeth Piccart
- University MS Center (UMSC), Hasselt-Pelt, Belgium
- BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium
| | - Niels Hellings
- University MS Center (UMSC), Hasselt-Pelt, Belgium
- BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium
| | - Bert O Eijnde
- University MS Center (UMSC), Hasselt-Pelt, Belgium
- BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium
- Faculty of Medicine and Life Sciences, SMRC-Sportsmedical Research Center, BIOMED Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Wim Derave
- Department of Movement and Sports Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Rudy Schreiber
- Department Psychiatry and Neuropsychology, Division of Translational Neuroscience, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Tim Vanmierlo
- University MS Center (UMSC), Hasselt-Pelt, Belgium.
- BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium.
- Department Psychiatry and Neuropsychology, Division of Translational Neuroscience, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands.
| |
Collapse
|
54
|
Nakashima M, Watanabe M, Nakano K, Uchimaru K, Horie R. Differentiation of Hodgkin lymphoma cells by reactive oxygen species and regulation by heme oxygenase-1 through HIF-1α. Cancer Sci 2021; 112:2542-2555. [PMID: 33738869 PMCID: PMC8177765 DOI: 10.1111/cas.14890] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 03/07/2021] [Accepted: 03/15/2021] [Indexed: 12/31/2022] Open
Abstract
We previously indicated that Hodgkin lymphoma (HL) cells contain a small side population (SP) that differentiate into a large major population (MP) with giant Hodgkin and Reed‐Sternberg (H and RS)‐like cells. However, its molecular mechanisms are not fully understood. In this study, we found that intracellular reactive oxygen species (ROS) are low in the SP compared to the MP. Hydrogen peroxide induces large H‐ and RS‐like cells in HL cell lines, but induces cell death in unrelated lymphoid cell lines. Microarray analyses revealed the enrichment of upregulated genes under hypoxic conditions in the SP compared to the MP, and we verified that the SP cells are hypoxic. Hypoxia inducible factor (HIF)‐1α was preferentially expressed in the SP. CoCl2, a HIF‐1α stabilizer, blunted the effect of hydrogen peroxide. Heme oxygenase‐1 (HO‐1), a scavenger of ROS, was triggered by HIF‐1α. The effect of hydrogen peroxide was inhibited by HO‐1 induction, whereas it was promoted by HO‐1 knockdown. HO‐1 inhibition by zinc protoporphyrin promoted the differentiation and increased ROS. These results stress the unique roles of ROS in the differentiation of HL cells. Immature HL cells are inhibited from differentiation by a reduction of ROS through the induction of HO‐1 via HIF‐1α. The breakdown of this might cause the accumulation of intracellular ROS, resulting in the promotion of HL cell differentiation.
Collapse
Affiliation(s)
- Makoto Nakashima
- Laboratory of Tumor Cell Biology, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Mariko Watanabe
- Divison of Hematology, Department of Laboratory Sciences, School of Allied Health Sciences, Kitasato University, Sagamihara, Japan
| | - Kazumi Nakano
- Laboratory of Tumor Cell Biology, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Kaoru Uchimaru
- Laboratory of Tumor Cell Biology, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Ryouichi Horie
- Divison of Hematology, Department of Laboratory Sciences, School of Allied Health Sciences, Kitasato University, Sagamihara, Japan
| |
Collapse
|
55
|
Caicedo A, Zambrano K, Sanon S, Luis Vélez J, Montalvo M, Jara F, Moscoso SA, Vélez P, Maldonado A, Velarde G. The diversity and coexistence of extracellular mitochondria in circulation: A friend or foe of the immune system. Mitochondrion 2021; 58:270-284. [PMID: 33662580 DOI: 10.1016/j.mito.2021.02.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 02/10/2021] [Accepted: 02/18/2021] [Indexed: 01/22/2023]
Abstract
The diversity and coexistence of extracellular mitochondria may have a key role in the maintenance of health and progression of disease. Studies report that active mitochondria can be found physiologically outside of cells and circulating in the blood without inducing an inflammatory response. In addition, inactive or harmed mitochondria have been recognized as activators of immune cells, as they play an essential role in diseases characterized by the metabolic deregulation of these cells, such as sepsis. In this review we analyze key aspects regarding the existence of a diversity of extracellular mitochondria, their coexistence in body fluids and their effects on various immune cells. Additionally, we introduce models of how extracellular mitochondria could be interacting to maintain health and affect disease prognosis. Unwrapped mitochondria (freeMitos) can exist as viable, active, inactive or harmed organelles. Mitochondria can also be found wrapped in a membrane (wrappedMitos) that may differ depending on the cell of origin. Mitochondrial fragments can also be present in various body fluids as DAMPs, as mtDNA enclosed in vesicles or as circulating-cell-free mtDNA (ccf-mtDNA). Interestingly, the great quantity of evidence regarding the levels of ccf-mtDNA and their correlation with aging and disease allows for the identification of the diversity, but not type, of extracellular mitochondria. The existence of a diversity of mitochondria and their effects on immune cells opens a new concept in the biomedical field towards the understanding of health, the progression of disease and the development of mitochondria as therapeutic agents.
Collapse
Affiliation(s)
- Andrés Caicedo
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador; Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina, Quito, Ecuador; Mito-Act Research Consortium, Quito, Ecuador; Sistemas Médicos SIME, Universidad San Francisco de Quito, Quito, Ecuador.
| | - Kevin Zambrano
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador; Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina, Quito, Ecuador; Mito-Act Research Consortium, Quito, Ecuador; School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands; Instituto de Neurociencias, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Serena Sanon
- Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina, Quito, Ecuador; Mito-Act Research Consortium, Quito, Ecuador; Cornell University - Ithaca, United States
| | - Jorge Luis Vélez
- Universidad Central del Ecuador, Facultad de Ciencias Médicas, Quito, Ecuador; Hospital Pablo Arturo Suárez, Unidad de Terapia Intensiva y Centro de Investigación Clínica, Quito, Ecuador
| | - Mario Montalvo
- Hospital Pablo Arturo Suárez, Unidad de Terapia Intensiva y Centro de Investigación Clínica, Quito, Ecuador
| | - Fernando Jara
- Hospital Pablo Arturo Suárez, Unidad de Terapia Intensiva y Centro de Investigación Clínica, Quito, Ecuador
| | - Santiago Aguayo Moscoso
- Hospital Pablo Arturo Suárez, Unidad de Terapia Intensiva y Centro de Investigación Clínica, Quito, Ecuador
| | - Pablo Vélez
- Hospital Pablo Arturo Suárez, Unidad de Terapia Intensiva y Centro de Investigación Clínica, Quito, Ecuador
| | - Augusto Maldonado
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador; Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, United States; Hospital General Docente de Calderón, Quito, Ecuador
| | - Gustavo Velarde
- Universidad Central del Ecuador, Facultad de Ciencias Médicas, Quito, Ecuador; Hospital Pablo Arturo Suárez, Unidad de Terapia Intensiva y Centro de Investigación Clínica, Quito, Ecuador
| |
Collapse
|
56
|
Mitochondrial dysfunction and traffic jams in amyotrophic lateral sclerosis. Mitochondrion 2021; 58:102-110. [PMID: 33639271 DOI: 10.1016/j.mito.2021.02.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/07/2021] [Accepted: 02/12/2021] [Indexed: 12/11/2022]
Abstract
Neurodegenerative diseases are characterized by progressive neuronal loss anatomically or physiologically and accumulation of protein in the cells. Mitochondria provide energy to these neuronal cells consuming 20% of the body's oxygen. Mitochondria are the dynamic membrane-bound cell organelles that function to generate ATP, regulate calcium homeostasis, and produce reactive oxygen species. Because of alterations in the electron transport chain, mutation, and environmental toxins, there is reduced ATP production, calcium dyshomeostasis, and increased oxidative stress, resulting in mitochondrial dysfunction, leading to the pathogenesis of neurodegenerative diseases such as ALS. ALS is described as the loss of upper and lower motor neurons resulting in progressive muscle denervation and loss of voluntary movements. There are multiple shreds of evidence in the literature regarding the mechanism involved in mitochondrial dysfunction and possible therapeutic targets to treat the condition. Moreover, different studies reported the role of different gene mutations and malfunctions in transport system responsible for the accumulation and aggregation of the proteins inside the brain cells. This accumulation and/or aggregation of proteins in the neuronal cells is known as neuronal traffic jam, which also plays the leading role in the progressive neurodegenerative diseases. In this review, we have elucidated the critical insights into mitochondrial dysfunction and neuronal traffic jam; and its role in the initiation and progression of ALS. Moreover, the pharmacological targets and possible conducts to this scenario are also brought together.
Collapse
|
57
|
Abdullaev SA, Evdokimovskii EV, Gaziev AI. A Study of Mitochondrial DNA Copy Number and Heteroplasmy in Different Rat Brain Regions after Cranial Proton Impact. BIOL BULL+ 2021. [DOI: 10.1134/s1062359020110023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
58
|
Xiang H, Song R, Ouyang J, Zhu R, Shu Z, Liu Y, Wang X, Zhang D, Zhao J, Lu H. Organelle dynamics of endothelial mitochondria in diabetic angiopathy. Eur J Pharmacol 2021; 895:173865. [PMID: 33460616 DOI: 10.1016/j.ejphar.2021.173865] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 12/22/2020] [Accepted: 01/11/2021] [Indexed: 12/19/2022]
Abstract
Diabetes, a chronic non-communicable disease, has become one of the most serious and critical public health problems with increasing incidence trends. Chronic vascular complications are the major causes of disability and death in diabetic patients with endothelial dysfunction. Diabetes is intimately associated with endothelial mitochondrial dysfunction, indicated by increased oxidative stress, decreased biogenesis, increased DNA damage, and weakened autophagy in mitochondria. All these morphological and functional changes of mitochondria play important roles in diabetic endothelial dysfunction. Herein, we reviewed the roles and mechanisms of endothelial mitochondrial dysfunction, particularly mitochondrial dynamics in the vascular complications of diabetes and summarized the potential mitochondria-targeted therapies in diabetic vascular complications.
Collapse
Affiliation(s)
- Hong Xiang
- Center for Experimental Medical Research, the Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, China
| | - Ruipeng Song
- Department of Endocrinology, The Third People's Provincial Hospital of Henan Province, Zhengzhou, 450000, Henan, China
| | - Jie Ouyang
- Department of Cardiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, China
| | - Ruifang Zhu
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhihao Shu
- Department of Cardiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, China
| | - Yulan Liu
- Department of Cardiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, China
| | - Xuewen Wang
- Department of Cardiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, China
| | - Dongtao Zhang
- Department of Geriatrics, Tongxu Hospital of Traditional Chinese Medicine, Kaifeng, Henan, 475400, China
| | - Jiangwei Zhao
- Department of Internal Medicine 3, People's Hospital of Weihui, Xinxiang, Henan, 453100, China
| | - Hongwei Lu
- Center for Experimental Medical Research, the Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, China.
| |
Collapse
|
59
|
Schank M, Zhao J, Moorman JP, Yao ZQ. The Impact of HIV- and ART-Induced Mitochondrial Dysfunction in Cellular Senescence and Aging. Cells 2021; 10:cells10010174. [PMID: 33467074 PMCID: PMC7830696 DOI: 10.3390/cells10010174] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/12/2021] [Accepted: 01/14/2021] [Indexed: 02/07/2023] Open
Abstract
According to the WHO, 38 million individuals were living with human immunodeficiency virus (HIV), 25.4 million of which were using antiretroviral therapy (ART) at the end of 2019. Despite ART-mediated suppression of viral replication, ART is not a cure and is associated with viral persistence, residual inflammation, and metabolic disturbances. Indeed, due to the presence of viral reservoirs, lifelong ART therapy is required to control viremia and prevent disease progression into acquired immune deficiency syndrome (AIDS). Successful ART treatment allows people living with HIV (PLHIV) to achieve a similar life expectancy to uninfected individuals. However, recent studies have illustrated the presence of increased comorbidities, such as accelerated, premature immune aging, in ART-controlled PLHIV compared to uninfected individuals. Studies suggest that both HIV-infection and ART-treatment lead to mitochondrial dysfunction, ultimately resulting in cellular exhaustion, senescence, and apoptosis. Since mitochondria are essential cellular organelles for energy homeostasis and cellular metabolism, their compromise leads to decreased oxidative phosphorylation (OXPHOS), ATP synthesis, gluconeogenesis, and beta-oxidation, abnormal cell homeostasis, increased oxidative stress, depolarization of the mitochondrial membrane potential, and upregulation of mitochondrial DNA mutations and cellular apoptosis. The progressive mitochondrial damage induced by HIV-infection and ART-treatment likely contributes to accelerated aging, senescence, and cellular dysfunction in PLHIV. This review discusses the connections between mitochondrial compromise and cellular dysfunction associated with HIV- and ART-induced toxicities, providing new insights into how HIV and current ART directly impact mitochondrial functions and contribute to cellular senescence and aging in PLHIV. Identifying this nexus and potential mechanisms may be beneficial in developing improved therapeutics for treating PLHIV.
Collapse
Affiliation(s)
- Madison Schank
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA; (M.S.); (J.Z.); (J.P.M.)
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Juan Zhao
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA; (M.S.); (J.Z.); (J.P.M.)
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Jonathan P. Moorman
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA; (M.S.); (J.Z.); (J.P.M.)
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
- Hepatitis (HCV/HBV/HIV) Program, James H. Quillen VA Medical Center, Department of Veterans Affairs, Johnson City, TN 37614, USA
| | - Zhi Q. Yao
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA; (M.S.); (J.Z.); (J.P.M.)
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
- Hepatitis (HCV/HBV/HIV) Program, James H. Quillen VA Medical Center, Department of Veterans Affairs, Johnson City, TN 37614, USA
- Correspondence: ; Tel.: +423-439-8063; Fax: +423-439-7010
| |
Collapse
|
60
|
Yang L, Chen Y, Liu Y, Xing Y, Miao C, Zhao Y, Chang X, Zhang Q. The Role of Oxidative Stress and Natural Antioxidants in Ovarian Aging. Front Pharmacol 2021; 11:617843. [PMID: 33569007 PMCID: PMC7869110 DOI: 10.3389/fphar.2020.617843] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/15/2020] [Indexed: 12/17/2022] Open
Abstract
The ovarian system comprises vital organs in females and is of great significance for the maintenance of reproductive potential and endocrine stability. Although complex pathogenesis undoubtedly contributes to ovarian aging, increasing attention is being paid to the extensive influence of oxidative stress. However, the role of oxidative stress in ovarian aging is yet to be fully elucidated. Exploring oxidative stress-related processes might be a promising strategy against ovarian aging. In this review, compelling evidence is shown that oxidative stress plays a role in the etiology of ovarian aging and promotes the development of other ovarian aging-related etiologies, including telomere shortening, mitochondrial dysfunction, apoptosis, and inflammation. In addition, some natural antioxidants such as quercetin, resveratrol, and curcumin have a protective role in the ovaries through multiple mechanisms. These findings raise the prospect of oxidative stress modulator-natural antioxidants as therapeutic interventions for delaying ovarian aging.
Collapse
Affiliation(s)
- Liuqing Yang
- Guangxing Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Yun Chen
- Guangxing Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Yan Liu
- The 2nd Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yu Xing
- Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Chenyun Miao
- Guangxing Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Ying Zhao
- Guangxing Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiangwei Chang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Qin Zhang
- Guangxing Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
61
|
Wang B, Lv X, Wang Y, Wang Z, Liu Q, Lu B, Liu Y, Gu F. CRISPR/Cas9-mediated mutagenesis at microhomologous regions of human mitochondrial genome. SCIENCE CHINA-LIFE SCIENCES 2021; 64:1463-1472. [PMID: 33420919 DOI: 10.1007/s11427-020-1819-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 09/04/2020] [Indexed: 12/21/2022]
Abstract
Genetic manipulation of mitochondrial DNA (mtDNA) could be harnessed for deciphering the gene function of mitochondria; it also acts as a promising approach for the therapeutic correction of pathogenic mutation in mtDNA. However, there is still a lack of direct evidence showing the edited mutagenesis within human mtDNA by clustered regularly interspaced short palindromic repeats-associated protein 9 (CRISPR/Cas9). Here, using engineered CRISPR/Cas9, we observed numerous insertion/deletion (InDel) events at several mtDNA microhomologous regions, which were triggered specifically by double-strand break (DSB) lesions within mtDNA. InDel mutagenesis was significantly improved by sgRNA multiplexing and a DSB repair inhibitor, iniparib, demonstrating the evidence of rewiring DSB repair status to manipulate mtDNA using CRISPR/Cas9. These findings would provide novel insights into mtDNA mutagenesis and mitochondrial gene therapy for diseases involving pathogenic mtDNA.
Collapse
Affiliation(s)
- Bang Wang
- School of Ophthalmology and Optometry, Eye Hospital, State Key Laboratory of Ophthalmology, Optometry and Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, 325027, China
| | - Xiujuan Lv
- School of Ophthalmology and Optometry, Eye Hospital, State Key Laboratory of Ophthalmology, Optometry and Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, 325027, China
| | - Yufei Wang
- School of Ophthalmology and Optometry, Eye Hospital, State Key Laboratory of Ophthalmology, Optometry and Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, 325027, China
| | - Zhibo Wang
- School of Ophthalmology and Optometry, Eye Hospital, State Key Laboratory of Ophthalmology, Optometry and Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, 325027, China
| | - Qi Liu
- Department of Endocrinology & Metabolism, Shanghai Tenth People's Hospital, Tongji University, Shanghai, 200092, China
| | - Bin Lu
- Attardi Institute of Mitochondrial Biomedicine, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yong Liu
- School of Ophthalmology and Optometry, Eye Hospital, State Key Laboratory of Ophthalmology, Optometry and Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, 325027, China
| | - Feng Gu
- School of Ophthalmology and Optometry, Eye Hospital, State Key Laboratory of Ophthalmology, Optometry and Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, 325027, China.
| |
Collapse
|
62
|
Ahmadi A, Kassaee MZ, Ayoubi‐Chianeh M, Fattahi A. Gold at crossroads of radical generation and scavenging at density functional theory level: Nitrogen and oxygen free radicals versus their precursors in the face of nanogold. J PHYS ORG CHEM 2021. [DOI: 10.1002/poc.4126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Aliakbar Ahmadi
- Department of Chemistry Tarbiat Modares University Tehran Iran
| | | | | | - Alireza Fattahi
- Department of Chemistry Sharif University of Technology Tehran Iran
| |
Collapse
|
63
|
Fontana GA, Gahlon HL. Mechanisms of replication and repair in mitochondrial DNA deletion formation. Nucleic Acids Res 2020; 48:11244-11258. [PMID: 33021629 PMCID: PMC7672454 DOI: 10.1093/nar/gkaa804] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/07/2020] [Accepted: 09/25/2020] [Indexed: 02/06/2023] Open
Abstract
Deletions in mitochondrial DNA (mtDNA) are associated with diverse human pathologies including cancer, aging and mitochondrial disorders. Large-scale deletions span kilobases in length and the loss of these associated genes contributes to crippled oxidative phosphorylation and overall decline in mitochondrial fitness. There is not a united view for how mtDNA deletions are generated and the molecular mechanisms underlying this process are poorly understood. This review discusses the role of replication and repair in mtDNA deletion formation as well as nucleic acid motifs such as repeats, secondary structures, and DNA damage associated with deletion formation in the mitochondrial genome. We propose that while erroneous replication and repair can separately contribute to deletion formation, crosstalk between these pathways is also involved in generating deletions.
Collapse
Affiliation(s)
- Gabriele A Fontana
- Department of Health Sciences and Technology, ETH Zürich, Schmelzbergstrasse 9, 8092 Zürich, Switzerland
| | - Hailey L Gahlon
- To whom correspondence should be addressed. Tel: +41 44 632 3731;
| |
Collapse
|
64
|
Blasiak J, Pawlowska E, Sobczuk A, Szczepanska J, Kaarniranta K. The Aging Stress Response and Its Implication for AMD Pathogenesis. Int J Mol Sci 2020; 21:ijms21228840. [PMID: 33266495 PMCID: PMC7700335 DOI: 10.3390/ijms21228840] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/12/2020] [Accepted: 11/20/2020] [Indexed: 02/07/2023] Open
Abstract
Aging induces several stress response pathways to counterbalance detrimental changes associated with this process. These pathways include nutrient signaling, proteostasis, mitochondrial quality control and DNA damage response. At the cellular level, these pathways are controlled by evolutionarily conserved signaling molecules, such as 5’AMP-activated protein kinase (AMPK), mechanistic target of rapamycin (mTOR), insulin/insulin-like growth factor 1 (IGF-1) and sirtuins, including SIRT1. Peroxisome proliferation-activated receptor coactivator 1 alpha (PGC-1α), encoded by the PPARGC1A gene, playing an important role in antioxidant defense and mitochondrial biogenesis, may interact with these molecules influencing lifespan and general fitness. Perturbation in the aging stress response may lead to aging-related disorders, including age-related macular degeneration (AMD), the main reason for vision loss in the elderly. This is supported by studies showing an important role of disturbances in mitochondrial metabolism, DDR and autophagy in AMD pathogenesis. In addition, disturbed expression of PGC-1α was shown to associate with AMD. Therefore, the aging stress response may be critical for AMD pathogenesis, and further studies are needed to precisely determine mechanisms underlying its role in AMD. These studies can include research on retinal cells produced from pluripotent stem cells obtained from AMD donors with the mutations, either native or engineered, in the critical genes for the aging stress response, including AMPK, IGF1, MTOR, SIRT1 and PPARGC1A.
Collapse
Affiliation(s)
- Janusz Blasiak
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland
- Correspondence: ; Tel.: +48-426354334
| | - Elzbieta Pawlowska
- Department of Orthodontics, Medical University of Lodz, 92-216 Lodz, Poland;
| | - Anna Sobczuk
- Department of Gynaecology and Obstetrics, Medical University of Lodz, 93-338 Lodz, Poland;
| | - Joanna Szczepanska
- Department of Pediatric Dentistry, Medical University of Lodz, 92-216 Lodz, Poland;
| | - Kai Kaarniranta
- Department of Ophthalmology, University of Eastern Finland, 70211 Kuopio, Finland;
- Department of Ophthalmology, Kuopio University Hospital, 70211 Kuopio, Finland
| |
Collapse
|
65
|
Yan X, Hu Y, Wang B, Wang S, Zhang X. Metabolic Dysregulation Contributes to the Progression of Alzheimer's Disease. Front Neurosci 2020; 14:530219. [PMID: 33250703 PMCID: PMC7674854 DOI: 10.3389/fnins.2020.530219] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 09/25/2020] [Indexed: 12/15/2022] Open
Abstract
Alzheimer's disease (AD) is an incurable neurodegenerative disease. Numerous studies have demonstrated a critical role for dysregulated glucose metabolism in its pathogenesis. In this review, we summarize metabolic alterations in aging brain and AD-related metabolic deficits associated with glucose metabolism dysregulation, glycolysis dysfunction, tricarboxylic acid (TCA) cycle, oxidative phosphorylation (OXPHOS) deficits, and pentose phosphate pathway impairment. Additionally, we discuss recent treatment strategies targeting metabolic defects in AD, including their limitations, in an effort to encourage the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Xu Yan
- The VIP Department, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Yue Hu
- The VIP Department, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Biyao Wang
- The VIP Department, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Sijian Wang
- Center of Implant Dentistry, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Xinwen Zhang
- Center of Implant Dentistry, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| |
Collapse
|
66
|
Mitochondria: Aging, Metabolic Syndrome and Cardiovascular Diseases. Formation of a New Paradigm. ACTA BIOMEDICA SCIENTIFICA 2020. [DOI: 10.29413/abs.2020-5.4.5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cardiovascular diseases are among the major causes of mortality among aged people in most developed countries. Oxidative stress, which causes mutations of mitochondrial DNA and mitochondrial dysfunctions, was considered as the main mechanism of heart failure and other pathologies of old age. However, in recent years the prior paradigm of mechanisms of aging, oxidative stress and antioxidative defense was questioned and in some aspects even turned out to be wrong. In this review, we discuss the new data that led to the need to reconsider paradigms. We show that although the mitochondrial free radical theory of aging remains valid, the radical responsible for the aging is the protonated form of the superoxide radical, namely perhydroxyl radical, which was largely ignored all previous years. Perhydroxyl radical initiates the isoprostane pathway of lipid peroxidation (IPLP) of polyunsaturated fatty acids, which are part of the phospholipid core of the mitochondrial inner membrane. IPLP was discovered 30 years ago by Roberts and Morrow at the Vanderbilt University, but the mechanism of its initiation remained unknown. The IPLP causes formation of the racemic mixture of hundreds of biologically active products, named isoprostanes, and highly toxic molecules, first of all isolevuglandins. We distinguish two types of damages caused by IPLP during aging. The first one is associated with oxidative damages to cardiolipin and phosphatidylethanolamine (PEA), which result in disruption of polyenzymatic complexes of the oxidative phosphorylation system. The second type of dysfunctions is caused by the direct actions of toxic products on the lysine-containing proteins and PEA. To this type of mitochondrial damages evidently belongs the oxidative damage of the mitochondrial DNA polymerase, which results in a 20-fold increase in mutations of mitochondrial mtDNA.
Collapse
|
67
|
Cardiolipin, Perhydroxyl Radicals, and Lipid Peroxidation in Mitochondrial Dysfunctions and Aging. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:1323028. [PMID: 32963690 PMCID: PMC7499269 DOI: 10.1155/2020/1323028] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 02/19/2020] [Indexed: 01/09/2023]
Abstract
Mitochondrial dysfunctions caused by oxidative stress are currently regarded as the main cause of aging. Accumulation of mutations and deletions of mtDNA is a hallmark of aging. So far, however, there is no evidence that most studied oxygen radicals are directly responsible for mutations of mtDNA. Oxidative damages to cardiolipin (CL) and phosphatidylethanolamine (PEA) are also hallmarks of oxidative stress, but the mechanisms of their damage remain obscure. CL is the only phospholipid present almost exclusively in the inner mitochondrial membrane (IMM) where it is responsible, together with PEA, for the maintenance of the superstructures of oxidative phosphorylation enzymes. CL has negative charges at the headgroups and due to specific localization at the negative curves of the IMM, it creates areas with the strong negative charge where local pH may be several units lower than in the surrounding bulk phases. At these sites with the higher acidity, the chance of protonation of the superoxide radical (O2•), generated by the respiratory chain, is much higher with the formation of the highly reactive hydrophobic perhydroxyl radical (HO2•). HO2• specifically reacts with the double bonds of polyunsaturated fatty acids (PUFA) initiating the isoprostane pathway of lipid peroxidation. Because HO2• is formed close to CL aggregates and PEA, it causes peroxidation of the linoleic acid in CL and also damages PEA. This causes disruption of the structural and functional integrity of the respirosomes and ATP synthase. We provide evidence that in elderly individuals with metabolic syndrome (MetS), fatty acids become the major substrates for production of ATP and this may increase several-fold generation of O2• and thus HO2•. We conclude that MetS accelerates aging and the mitochondrial dysfunctions are caused by the HO2•-induced direct oxidation of CL and the isoprostane pathway of lipid peroxidation (IPLP). The toxic products of IPLP damage not only PEA, but also mtDNA and OXPHOS proteins. This results in gradual disruption of the structural and functional integrity of mitochondria and cells.
Collapse
|
68
|
Nandakumar S, Grushko O, Buttitta LA. Polyploidy in the adult Drosophila brain. eLife 2020; 9:e54385. [PMID: 32840209 PMCID: PMC7447450 DOI: 10.7554/elife.54385] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 08/07/2020] [Indexed: 12/12/2022] Open
Abstract
Long-lived cells such as terminally differentiated postmitotic neurons and glia must cope with the accumulation of damage over the course of an animal's lifespan. How long-lived cells deal with ageing-related damage is poorly understood. Here we show that polyploid cells accumulate in the adult fly brain and that polyploidy protects against DNA damage-induced cell death. Multiple types of neurons and glia that are diploid at eclosion, become polyploid in the adult Drosophila brain. The optic lobes exhibit the highest levels of polyploidy, associated with an elevated DNA damage response in this brain region. Inducing oxidative stress or exogenous DNA damage leads to an earlier onset of polyploidy, and polyploid cells in the adult brain are more resistant to DNA damage-induced cell death than diploid cells. Our results suggest polyploidy may serve a protective role for neurons and glia in adult Drosophila melanogaster brains.
Collapse
Affiliation(s)
- Shyama Nandakumar
- Molecular, Cellular, and Developmental Biology, University of MichiganAnn ArborUnited States
| | - Olga Grushko
- Molecular, Cellular, and Developmental Biology, University of MichiganAnn ArborUnited States
| | - Laura A Buttitta
- Molecular, Cellular, and Developmental Biology, University of MichiganAnn ArborUnited States
| |
Collapse
|
69
|
Gangloff EJ, Schwartz TS, Klabacka R, Huebschman N, Liu AY, Bronikowski AM. Mitochondria as central characters in a complex narrative: Linking genomics, energetics, pace-of-life, and aging in natural populations of garter snakes. Exp Gerontol 2020; 137:110967. [DOI: 10.1016/j.exger.2020.110967] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 04/11/2020] [Accepted: 05/01/2020] [Indexed: 12/18/2022]
|
70
|
Rodríguez-Cano AM, Calzada-Mendoza CC, Estrada-Gutierrez G, Mendoza-Ortega JA, Perichart-Perera O. Nutrients, Mitochondrial Function, and Perinatal Health. Nutrients 2020; 12:E2166. [PMID: 32708345 PMCID: PMC7401276 DOI: 10.3390/nu12072166] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/13/2020] [Accepted: 07/20/2020] [Indexed: 12/16/2022] Open
Abstract
Mitochondria are active independent organelles that not only meet the cellular energy requirement but also regulate central cellular activities. Mitochondria can play a critical role in physiological adaptations during pregnancy. Differences in mitochondrial function have been found between healthy and complicated pregnancies. Pregnancy signifies increased nutritional requirements to support fetal growth and the metabolism of maternal and fetal tissues. Nutrient availability regulates mitochondrial metabolism, where excessive macronutrient supply could lead to oxidative stress and contribute to mitochondrial dysfunction, while micronutrients are essential elements for optimal mitochondrial processes, as cofactors in energy metabolism and/or as antioxidants. Inadequate macronutrient and micronutrient consumption can result in adverse pregnancy outcomes, possibly through mitochondrial dysfunction, by impairing energy supply, one-carbon metabolism, biosynthetic pathways, and the availability of metabolic co-factors which modulate the epigenetic processes capable of establishing significant short- and long-term effects on infant health. Here, we review the importance of macronutrients and micronutrients on mitochondrial function and its influence on maternal and infant health.
Collapse
Affiliation(s)
- Ameyalli M Rodríguez-Cano
- Section for Postgraduate Studies and Research, Higher School of Medicine, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (A.M.R.-C.); (C.C.C.-M.)
- Nutrition and Bioprogramming Department, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Montes Urales 800, Lomas de Virreyes, Mexico City 11000, Mexico
| | - Claudia C Calzada-Mendoza
- Section for Postgraduate Studies and Research, Higher School of Medicine, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (A.M.R.-C.); (C.C.C.-M.)
| | - Guadalupe Estrada-Gutierrez
- Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Research Division; Montes Urales 800, Lomas de Virreyes, Mexico City 11000, Mexico;
| | - Jonatan A Mendoza-Ortega
- Immunobiochemistry Department, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Montes Urales 800, Lomas de Virreyes, Mexico City 11000, Mexico;
- Immunology Department, National School of Biological Sciences, Instituto Politécnico Nacional, Mexico City 11350, Mexico
| | - Otilia Perichart-Perera
- Nutrition and Bioprogramming Department, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Montes Urales 800, Lomas de Virreyes, Mexico City 11000, Mexico
| |
Collapse
|
71
|
Wanrooij PH, Tran P, Thompson LJ, Carvalho G, Sharma S, Kreisel K, Navarrete C, Feldberg AL, Watt DL, Nilsson AK, Engqvist MKM, Clausen AR, Chabes A. Elimination of rNMPs from mitochondrial DNA has no effect on its stability. Proc Natl Acad Sci U S A 2020; 117:14306-14313. [PMID: 32513727 PMCID: PMC7322039 DOI: 10.1073/pnas.1916851117] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Ribonucleotides (rNMPs) incorporated in the nuclear genome are a well-established threat to genome stability and can result in DNA strand breaks when not removed in a timely manner. However, the presence of a certain level of rNMPs is tolerated in mitochondrial DNA (mtDNA) although aberrant mtDNA rNMP content has been identified in disease models. We investigated the effect of incorporated rNMPs on mtDNA stability over the mouse life span and found that the mtDNA rNMP content increased during early life. The rNMP content of mtDNA varied greatly across different tissues and was defined by the rNTP/dNTP ratio of the tissue. Accordingly, mtDNA rNMPs were nearly absent in SAMHD1-/- mice that have increased dNTP pools. The near absence of rNMPs did not, however, appreciably affect mtDNA copy number or the levels of mtDNA molecules with deletions or strand breaks in aged animals near the end of their life span. The physiological rNMP load therefore does not contribute to the progressive loss of mtDNA quality that occurs as mice age.
Collapse
Affiliation(s)
- Paulina H Wanrooij
- Department of Medical Biochemistry and Biophysics, Umeå University, 901 87 Umeå, Sweden;
| | - Phong Tran
- Department of Medical Biochemistry and Biophysics, Umeå University, 901 87 Umeå, Sweden
| | - Liam J Thompson
- Institute of Biomedicine, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Gustavo Carvalho
- Department of Medical Biochemistry and Biophysics, Umeå University, 901 87 Umeå, Sweden
| | - Sushma Sharma
- Department of Medical Biochemistry and Biophysics, Umeå University, 901 87 Umeå, Sweden
| | - Katrin Kreisel
- Institute of Biomedicine, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Clara Navarrete
- Institute of Biomedicine, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Anna-Lena Feldberg
- Department of Medical Biochemistry and Biophysics, Umeå University, 901 87 Umeå, Sweden
| | - Danielle L Watt
- Department of Medical Biochemistry and Biophysics, Umeå University, 901 87 Umeå, Sweden
| | - Anna Karin Nilsson
- Department of Medical Biochemistry and Biophysics, Umeå University, 901 87 Umeå, Sweden
| | - Martin K M Engqvist
- Institute of Biomedicine, University of Gothenburg, 405 30 Gothenburg, Sweden
- Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - Anders R Clausen
- Institute of Biomedicine, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Andrei Chabes
- Department of Medical Biochemistry and Biophysics, Umeå University, 901 87 Umeå, Sweden;
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, 901 87 Umeå, Sweden
| |
Collapse
|
72
|
Effects of Early Resveratrol Intervention on Skeletal Muscle Mitochondrial Function and Redox Status in Neonatal Piglets with or without Intrauterine Growth Retardation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:4858975. [PMID: 32566083 PMCID: PMC7261333 DOI: 10.1155/2020/4858975] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 04/29/2020] [Indexed: 12/19/2022]
Abstract
Skeletal muscle mitochondrial malfunction of offspring induced by intrauterine growth retardation (IUGR) may be a contributor to growth restriction and metabolic disorder at various periods of life. This study explored the effects of IUGR and resveratrol (RSV) on mitochondrial function and redox status in the longissimus dorsi muscle (LM) of piglets during the sucking period. A total of 36 pairs of IUGR and normal birth weight male piglets were orally fed with either 80 mg RSV/kg body weight/d or 0.5% carboxymethylcellulose sodium during days 7-21 after birth. The results showed that RSV treatment improved anomalous mitochondrial morphology, increased adenosine triphosphate and glycogen contents, and enhanced nicotinamide adenine dinucleotide/reduced form of nicotinamide-adenine dinucleotide ratio in the LM of IUGR piglets. Moreover, the IUGR-induced increased malondialdehyde and protein carbonyl concentrations, abnormal mtDNA number, and suppressed genes expression of mitochondrial biogenesis such as nuclear respiratory factor 1, estrogen-related receptor alpha, and polymerase gamma in the LM were restored to some extent by RSV treatment. Additionally, RSV increased mitochondrial complex V activity in the LM of piglets. Collectively, RSV administration alleviated the LM mitochondrial dysfunction and oxidative damage of IUGR piglets.
Collapse
|
73
|
Vessoni AT, Guerra CCC, Kajitani GS, Nascimento LLS, Garcia CCM. Cockayne Syndrome: The many challenges and approaches to understand a multifaceted disease. Genet Mol Biol 2020; 43:e20190085. [PMID: 32453336 PMCID: PMC7250278 DOI: 10.1590/1678-4685-gmb-2019-0085] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 01/15/2020] [Indexed: 01/04/2023] Open
Abstract
The striking and complex phenotype of Cockayne syndrome (CS) patients combines progeria-like features with developmental deficits. Since the establishment of the in vitro culture of skin fibroblasts derived from patients with CS in the 1970s, significant progress has been made in the understanding of the genetic alterations associated with the disease and their impact on molecular, cellular, and organismal functions. In this review, we provide a historic perspective on the research into CS by revisiting seminal papers in this field. We highlighted the great contributions of several researchers in the last decades, ranging from the cloning and characterization of CS genes to the molecular dissection of their roles in DNA repair, transcription, redox processes and metabolism control. We also provide a detailed description of all pathological mutations in genes ERCC6 and ERCC8 reported to date and their impact on CS-related proteins. Finally, we review the contributions (and limitations) of many genetic animal models to the study of CS and how cutting-edge technologies, such as cell reprogramming and state-of-the-art genome editing, are helping us to address unanswered questions.
Collapse
Affiliation(s)
| | - Camila Chaves Coelho Guerra
- Universidade Federal de Ouro Preto, Instituto de Ciências Exatas e
Biológicas, Núcleo de Pesquisa em Ciências Biológicas & Departamento de Ciências
Biológicas, Ouro Preto, MG, Brazil
| | - Gustavo Satoru Kajitani
- Universidade Federal de Ouro Preto, Instituto de Ciências Exatas e
Biológicas, Núcleo de Pesquisa em Ciências Biológicas & Departamento de Ciências
Biológicas, Ouro Preto, MG, Brazil
- Universidade de São Paulo, Instituto de Ciências Biomédicas,
Departamento de Microbiologia, São Paulo,SP, Brazil
| | - Livia Luz Souza Nascimento
- Universidade de São Paulo, Instituto de Ciências Biomédicas,
Departamento de Microbiologia, São Paulo,SP, Brazil
| | - Camila Carrião Machado Garcia
- Universidade Federal de Ouro Preto, Instituto de Ciências Exatas e
Biológicas, Núcleo de Pesquisa em Ciências Biológicas & Departamento de Ciências
Biológicas, Ouro Preto, MG, Brazil
| |
Collapse
|
74
|
Chen YF, Hebert VY, Stadler K, Xue SY, Slaybaugh K, Luttrell-Williams E, Glover MC, Krzywanski DM, Dugas TR. Coenzyme Q10 Alleviates Chronic Nucleoside Reverse Transcriptase Inhibitor-Induced Premature Endothelial Senescence. Cardiovasc Toxicol 2020; 19:500-509. [PMID: 31020509 DOI: 10.1007/s12012-019-09520-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Human immunodeficiency virus (HIV)-infected patients undergoing antiretroviral therapy are afforded an increased lifespan but also exhibit an elevated incidence of cardiovascular disease. HIV therapy uses a combination drug approach, and nucleoside reverse transcriptase inhibitors (NRTI) are a backbone of this therapy. Endothelial dysfunction is an initiating event in cardiovascular disease etiology, and in our prior studies, NRTIs induced an endothelial dysfunction that was dependent upon mitochondrial oxidative stress. Moreover, short-term NRTI administration induced a mitophagy-associated endothelial toxicity and increased reactive oxygen species (ROS) production that was rescued by coenzyme Q10 (Q10) or overexpression of a mitochondrial antioxidant enzyme. Thus, our objective was to examine mitochondrial toxicity in endothelial cells after chronic NRTI treatment and evaluate Q10 as a potential adjunct therapy for preventing NRTI-induced mitochondrial toxicity. Human aortic endothelial cells (HAEC) were exposed to chronic NRTI treatment, with or without Q10. ROS production, cell proliferation rate, levels of senescence, and mitochondrial bioenergetic function were determined. Chronic NRTI increased ROS production but decreased population doubling. In addition, NRTI increased the accumulation of β-galactosidase, indicative of an accelerated rate of senescence. Moreover, ATP-linked respiration was diminished. Co-treatment with Q10 delayed the onset of NRTI-induced senescence, decreased ROS production and rescued the cells' mitochondrial respiration rate. Thus, our findings may suggest antioxidant enrichment approaches for reducing the cardiovascular side effects of NRTI therapy.
Collapse
Affiliation(s)
- Yi-Fan Chen
- Comparative Biomedical Sciences, LSU School of Veterinary Medicine, Skip Bertman Drive, Baton Rouge, LA, 70808, USA
| | - Valeria Y Hebert
- Pharmacology, Toxicology and Neuroscience, LSU Health Sciences Center, 1501 Kings Highway, Shreveport, LA, 71103, USA
| | - Krisztian Stadler
- Oxidative Stress and Disease Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA
| | - Stephen Y Xue
- Pharmacology, Toxicology and Neuroscience, LSU Health Sciences Center, 1501 Kings Highway, Shreveport, LA, 71103, USA
| | - Kate Slaybaugh
- Pharmacology, Toxicology and Neuroscience, LSU Health Sciences Center, 1501 Kings Highway, Shreveport, LA, 71103, USA
| | - Elliot Luttrell-Williams
- Pharmacology, Toxicology and Neuroscience, LSU Health Sciences Center, 1501 Kings Highway, Shreveport, LA, 71103, USA
| | - Mitzi C Glover
- Clinical Laboratory Sciences, School of Allied Health Professions, LSU Health Sciences Center, 1900 Gravier Street, New Orleans, LA, 70112, USA
| | - David M Krzywanski
- Cellular Biology and Anatomy, LSU Health Sciences Center, 1501 Kings Highway, Shreveport, LA, 71103, USA
| | - Tammy R Dugas
- Comparative Biomedical Sciences, LSU School of Veterinary Medicine, Skip Bertman Drive, Baton Rouge, LA, 70808, USA.
| |
Collapse
|
75
|
Suárez-Méndez S, García-de la Cruz DD, Tovilla-Zárate CA, Genis-Mendoza AD, Ramón-Torres RA, González-Castro TB, Juárez-Rojop IE. Diverse roles of mtDNA in schizophrenia: Implications in its pathophysiology and as biomarker for cognitive impairment. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2020; 155:36-41. [PMID: 32437701 DOI: 10.1016/j.pbiomolbio.2020.04.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 02/08/2020] [Accepted: 04/25/2020] [Indexed: 01/11/2023]
Abstract
Schizophrenia (SZ) is a mental disorder characterized by neurocognitive dysfunctions and a reduction in occupational and social functioning. Several studies have provided evidence for mitochondrial dysfunction in the pathophysiology of SZ. In this sense, it is known that the addition of genetic variations in mitochondrial DNA (mtDNA) impairs oxidative phosphorylation of enzymatic complexes in mitochondria, resulting in ATP depletion and subsequent enhancement of reactive oxygen species; this is associated with cellular degeneration and apoptosis observed in some neuropsychiatric disorders. As a consequence of mitochondrial dysfunction, an increase in circulating cell-free mtDNA fragments can occur, which has been observed in individuals with SZ. Moreover, due to the bacterial origin of mitochondria, these cell-free mtDNA fragments in blood plasma may induce inflammatory and immunogenic responses, especially when their release is enhanced in specific disease conditions. However, the exact mechanism by which mtDNA could be released into blood plasma is not yet clear. Therefore, the aims of this review article were to discuss the participation of mtDNA genetic variations in physiopathologic mechanisms of SZ, and to determine the status of the disease and the possible ensuing changes over time by using circulating cell-free mtDNA fragments as a biomarker.
Collapse
Affiliation(s)
- Samuel Suárez-Méndez
- División Académica de Ciencias de la Salud, Universidad Juárez Autónoma de Tabasco, Villahermosa, Tabasco, Mexico
| | - Dulce Dajheanne García-de la Cruz
- División Académica de Ciencias de la Salud, Universidad Juárez Autónoma de Tabasco, Villahermosa, Tabasco, Mexico; Hospital Regional de Alta Especialidad de Salud Mental, Villahermosa, Tabasco, Mexico
| | - Carlos Alfonso Tovilla-Zárate
- División Académica de Multidisciplinaria de Comalcalco, Universidad Juárez Autónoma de Tabasco, Villahermosa, Tabasco, Mexico
| | - Alma Delia Genis-Mendoza
- Instituto Nacional de Medicina Genómica, Laboratorio de Enfermedades Psiquiátricas y Neurodegenerativas, Ciudad de México, Mexico; Hospital Psiquiátrico Infantil "Dr. Juan N. Navarro", Ciudad de México, Mexico
| | - Rosa Angélica Ramón-Torres
- División Académica de Ciencias de la Salud, Universidad Juárez Autónoma de Tabasco, Villahermosa, Tabasco, Mexico
| | - Thelma Beatriz González-Castro
- División Académica de Ciencias de la Salud, Universidad Juárez Autónoma de Tabasco, Villahermosa, Tabasco, Mexico; División Académica de Multidisciplinaria de Jalpa de Méndez, Universidad Juárez Autónoma de Tabasco, Jalpa de Méndez, Tabasco, Mexico
| | - Isela Esther Juárez-Rojop
- División Académica de Ciencias de la Salud, Universidad Juárez Autónoma de Tabasco, Villahermosa, Tabasco, Mexico.
| |
Collapse
|
76
|
Vecoli C, Borghini A, Andreassi MG. The molecular biomarkers of vascular aging and atherosclerosis: telomere length and mitochondrial DNA 4977 common deletion. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2020; 784:108309. [PMID: 32430098 DOI: 10.1016/j.mrrev.2020.108309] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 04/16/2020] [Accepted: 04/17/2020] [Indexed: 12/15/2022]
Abstract
Age is the dominant risk factor for the most prevalent atherosclerotic vascular diseases, including coronary artery disease, myocardial infarction, cerebrovascular disease and stroke. In human, telomere erosion and mitochondrial DNA (mtDNA) damage play a central role in the mechanisms leading to cellular aging decline. This review summarizes the most relevant findings on the role of telomere shortening and the common mtDNA4977 deletion in the progression and evolution of atherosclerosis by combining insight from experimental models and human clinical studies. The current evidence shows a link between telomere erosion and compromised mitochondrial function and provides a new perspective regarding their potential role as clinical biomarkers and therapeutic targets.
Collapse
|
77
|
Pei H, Ma L, Cao Y, Wang F, Li Z, Liu N, Liu M, Wei Y, Li H. Traditional Chinese Medicine for Alzheimer's Disease and Other Cognitive Impairment: A Review. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2020; 48:487-511. [PMID: 32329645 DOI: 10.1142/s0192415x20500251] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Cognitive impairment (CI) refers to the dysfunction of memory, language, visual space, execution, calculation, understanding, and judgment in one or more aspects. With global aging, CI will become prevalent worldwide. At present, there is no effective cure for CI. However, Nobel laureate Tu Youyou's research on artemisinin has inspired Chinese researchers to focus on traditional Chinese herbs (TCHs) for the treatment of CI. Traditional Chinese Medicine (TCM) has led to a theory for an independent CI system. The pathogenesis of such impairment involves deficiency, phlegm, and stagnation and involves a range of organs, including the brain, kidneys, heart, liver, and spleen. Our current understanding of the etiology and pathogenesis of this condition has led to the realization that TCHs can improve cognitive dysfunction. Clinical research has shown that TCHs can improve the neuropsychological scale score of patients, the TCM symptom score, and the patient's quality of life. Research has also suggested that TCHs can retard Aβ deposits and tauopathy, regulate the metabolism of cholinergic neurotransmitters, and so on. However, due to their complexity, little is known of the safety and efficacy of TCHs in patients with CI. It is likely that we will be able to identify the precise mechanisms associated with the action of TCHs in such patients due to the integration of multiple technologies. This paper summarizes the pharmacokinetics, curative effect, and mechanisms of action of traditional Chinese herbs in order to provide a scientific basis for the improvement of cognitive dysfunction by TCHs.
Collapse
Affiliation(s)
- Hui Pei
- Institude of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, P. R. China
| | - Lina Ma
- Institude of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, P. R. China
| | - Yu Cao
- Institude of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, P. R. China
| | - Feixue Wang
- Traditional Chinese Medicine Department, Xuanwu Hospital Capital Medical University, Beijing 100053, P. R. China
| | - Zehui Li
- Institude of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, P. R. China
| | - Nanyang Liu
- Institude of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, P. R. China
| | - Meixia Liu
- Institude of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, P. R. China
| | - Yun Wei
- Institude of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, P. R. China
| | - Hao Li
- Institude of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, P. R. China
| |
Collapse
|
78
|
Kowalska M, Piekut T, Prendecki M, Sodel A, Kozubski W, Dorszewska J. Mitochondrial and Nuclear DNA Oxidative Damage in Physiological and Pathological Aging. DNA Cell Biol 2020; 39:1410-1420. [PMID: 32315547 DOI: 10.1089/dna.2019.5347] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mitochondria play an important role in numerous processes, including energy generation, regulating ion homeostasis, and cell signaling. Mitochondria are also the main source of reactive oxygen species (ROS). Due to the oxidative environment within mitochondria, the macromolecules therein, for example, mtDNA, proteins, and lipids are more susceptible to sustaining damage. During aging, mitochondrial functions decline, partly as a result of an accumulation of mtDNA mutations, decreased mtDNA copy number and protein expression, and a reduction in oxidative capacity. The aim of this study was to summarize the knowledge on DNA oxidative damage in aging and age-related neurodegenerative diseases. It has been hypothesized that various ROS may play an important role not only in physiological senescence but also in the development of neurodegenerative diseases, for example, Alzheimer's disease and Parkinson's disease. Thus, mitochondria seem to be a potential target of novel treatments for neurodegenerative diseases.
Collapse
Affiliation(s)
- Marta Kowalska
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, Poznan, Poland
| | - Thomas Piekut
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, Poznan, Poland
| | - Michal Prendecki
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, Poznan, Poland
| | - Agnieszka Sodel
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, Poznan, Poland
| | - Wojciech Kozubski
- Chair and Department of Neurology, Poznan University of Medical Sciences, Poznan, Poland
| | - Jolanta Dorszewska
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
79
|
Otoupalova E, Smith S, Cheng G, Thannickal VJ. Oxidative Stress in Pulmonary Fibrosis. Compr Physiol 2020; 10:509-547. [PMID: 32163196 DOI: 10.1002/cphy.c190017] [Citation(s) in RCA: 162] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Oxidative stress has been linked to various disease states as well as physiological aging. The lungs are uniquely exposed to a highly oxidizing environment and have evolved several mechanisms to attenuate oxidative stress. Idiopathic pulmonary fibrosis (IPF) is a progressive age-related disorder that leads to architectural remodeling, impaired gas exchange, respiratory failure, and death. In this article, we discuss cellular sources of oxidant production, and antioxidant defenses, both enzymatic and nonenzymatic. We outline the current understanding of the pathogenesis of IPF and how oxidative stress contributes to fibrosis. Further, we link oxidative stress to the biology of aging that involves DNA damage responses, loss of proteostasis, and mitochondrial dysfunction. We discuss the recent findings on the role of reactive oxygen species (ROS) in specific fibrotic processes such as macrophage polarization and immunosenescence, alveolar epithelial cell apoptosis and senescence, myofibroblast differentiation and senescence, and alterations in the acellular extracellular matrix. Finally, we provide an overview of the current preclinical studies and clinical trials targeting oxidative stress in fibrosis and potential new strategies for future therapeutic interventions. © 2020 American Physiological Society. Compr Physiol 10:509-547, 2020.
Collapse
Affiliation(s)
- Eva Otoupalova
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Sam Smith
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Guangjie Cheng
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Victor J Thannickal
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
80
|
Blasiak J. Senescence in the pathogenesis of age-related macular degeneration. Cell Mol Life Sci 2020; 77:789-805. [PMID: 31897543 PMCID: PMC11105088 DOI: 10.1007/s00018-019-03420-x] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 12/06/2019] [Accepted: 12/10/2019] [Indexed: 01/07/2023]
Abstract
Age-related macular degeneration (AMD) is a complex eye disease underlined by the death of photoreceptors and degeneration of retinal pigment epithelium (RPE) and choriocapillaris (CC). The mechanism(s) responsible for massive and progressive retinal degeneration is not completely known. Senescence, a state of permanent inhibition of cell growth, may be induced by many factors important for AMD pathogenesis and results in senescence-associated secretory phenotype (SASP) that releases growth factors, cytokines, chemokines, proteases and other molecules inducing inflammation and other AMD-related effects. These effects can be induced in the affected cell and neighboring cells, leading to progression of AMD phenotype. Senescent cells also release reactive oxygen species that increase SASP propagation. Many other pathways of senescence-related AMD pathogenesis, including autophagy, the cGAS-STING signaling, degeneration of CC by membrane attack complex, can be considered. A2E, a fluorophore present in lipofuscin, amyloid-beta peptide and humanin, a mitochondria-derived peptide, may link AMD with senescence. Further studies on senescence in AMD pathogenesis to check the possibility of opening a perspective of the use of drugs killing senescent cells (senolytics) and terminating SASP bystander effects (senostatics) might be beneficial for AMD that at present is an incurable disease.
Collapse
Affiliation(s)
- Janusz Blasiak
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, Lodz, Poland.
| |
Collapse
|
81
|
Bonato M, Turrini F, Galli L, Banfi G, Cinque P. The Role of Physical Activity for the Management of Sarcopenia in People Living with HIV. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E1283. [PMID: 32079244 PMCID: PMC7068546 DOI: 10.3390/ijerph17041283] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/10/2020] [Accepted: 02/13/2020] [Indexed: 12/15/2022]
Abstract
Sarcopenia is a physiopathological process associated with aging, caused by reduction of muscle strength, muscle quality and physical performance, and associated with an increased risk of falls, physical disability and premature death. There is no effective treatment for sarcopenia, but physical exercise seems to be highly effective at counteracting the decline in muscle mass and strength associated with aging. Recently, sarcopenia has been recognized as an emerging issue in people living with HIV (PLWH). Despite adequate treatment with combination antiretroviral therapy (cART), PLWH may exhibit an early occurrence of some aging-related conditions, including sarcopenia, frailty and falls, and this is likely resulting from high rates of comorbidities, high-risk behaviours, chronic immune activation and cART-specific factors. In this review, we discuss the potential mechanisms and the clinical relevance of sarcopenia in PLWH, and present data from longitudinal studies of physical activity in this population. Despite none of these studies having specifically addressed the benefits of physical exercise on sarcopenia, there is evidence that exercise is effective to increase aerobic capacity and muscle strength, and to improve body composition and inflammatory outcomes in PLWH. Therefore, the expected benefits of physical exercise are likely to translate into a successful and specific intervention for prevention and treatment of sarcopenia in this population.
Collapse
Affiliation(s)
- Matteo Bonato
- IRCSS Istituto Ortopedico Galeazzi, Via Riccardo Galeazzi 4, 20161 Milan, Italy;
| | - Filippo Turrini
- IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy; (F.T.); (L.G.); (P.C.)
- Vita-Salute San Raffaele University, Via Olgettina 58, 20132 Milan, Italy
| | - Laura Galli
- IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy; (F.T.); (L.G.); (P.C.)
| | - Giuseppe Banfi
- IRCSS Istituto Ortopedico Galeazzi, Via Riccardo Galeazzi 4, 20161 Milan, Italy;
- Vita-Salute San Raffaele University, Via Olgettina 58, 20132 Milan, Italy
| | - Paola Cinque
- IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy; (F.T.); (L.G.); (P.C.)
| |
Collapse
|
82
|
Implications of Oxidative Stress and Cellular Senescence in Age-Related Thymus Involution. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:7986071. [PMID: 32089780 PMCID: PMC7025075 DOI: 10.1155/2020/7986071] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/20/2020] [Accepted: 01/23/2020] [Indexed: 02/07/2023]
Abstract
The human thymus is a primary lymphoepithelial organ which supports the production of self-tolerant T cells with competent and regulatory functions. Paradoxically, despite the crucial role that it exerts in T cell-mediated immunity and prevention of systemic autoimmunity, the thymus is the first organ of the body that exhibits age-associated degeneration/regression, termed “thymic involution.” A hallmark of this early phenomenon is a progressive decline of thymic mass as well as a decreased output of naïve T cells, thus resulting in impaired immune response. Importantly, thymic involution has been recently linked with cellular senescence which is a stress response induced by various stimuli. Accumulation of senescent cells in tissues has been implicated in aging and a plethora of age-related diseases. In addition, several lines of evidence indicate that oxidative stress, a well-established trigger of senescence, is also involved in thymic involution, thus highlighting a possible interplay between oxidative stress, senescence, and thymic involution.
Collapse
|
83
|
Majeed M, Majeed S, Jain R, Mundkur L, Rajalakshmi HR, Lad PS, Neupane P. An Open-Label Single-Arm, Monocentric Study Assessing the Efficacy and Safety of Natural Pterostilbene (Pterocarpus marsupium) for Skin Brightening and Antiaging Effects. Clin Cosmet Investig Dermatol 2020; 13:105-116. [PMID: 32099438 PMCID: PMC6999773 DOI: 10.2147/ccid.s238358] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 01/15/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND Both intrinsic and environmental factors play a role in premature ageing of the skin. Natural extracts have been extensively used to reduce the signs of ageing in recent years. Pterostilbene is a natural analog of resveratrol with therapeutic properties against numerous diseases mainly due to its ability to reduce reactive oxygen species. METHODS We studied the anti-aging and skin brightening effect of a 0.4% formulation of natural pterostilbene in healthy volunteers (N=38) in an open-label, single-arm, monocentric study for 8 weeks. The melanogenesis inhibitory, anti-tyrosinase and anti-collagenase and anti-elastase properties of pterostilbene were evaluated in vitro. RESULTS Natural pterostilbene showed significant inhibition of melanogenesis in vitro. Pterostilbene cream (0.4%) was highly effective in reducing markers of aging and induces even skin tone. The product was effective in reducing wrinkles and fine lines, improved skin hydration elasticity and showed no adverse effects. CONCLUSION Our results suggest that natural pterostilbene is a safe and effective ingredient for use in cosmetic preparation to reduce the markers of skin ageing and brighten the skin tone. TRIAL REGISTRATION Clinical Trial Registration India Identifier CTRI/2019/01/017160 [Registered on 18/01/2019].
Collapse
Affiliation(s)
- Muhammed Majeed
- Sami Labs Limited, Bangalore, Karnataka, India
- Sabinsa Corporation, East Windsor, NJ, USA
- Sabinsa Corporation, Payson, UT, USA
- ClinWorld Private Limited, Bangalore, Karnataka, India
| | - Shaheen Majeed
- Sami Labs Limited, Bangalore, Karnataka, India
- Sabinsa Corporation, East Windsor, NJ, USA
- Sabinsa Corporation, Payson, UT, USA
- ClinWorld Private Limited, Bangalore, Karnataka, India
| | - Renuka Jain
- Sami Labs Limited, Bangalore, Karnataka, India
- ClinWorld Private Limited, Bangalore, Karnataka, India
| | | | | | | | | |
Collapse
|
84
|
Rudzińska M, Parodi A, Balakireva AV, Chepikova OE, Venanzi FM, Zamyatnin AA. Cellular Aging Characteristics and Their Association with Age-Related Disorders. Antioxidants (Basel) 2020; 9:antiox9020094. [PMID: 31979201 PMCID: PMC7071036 DOI: 10.3390/antiox9020094] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/12/2020] [Accepted: 01/21/2020] [Indexed: 02/06/2023] Open
Abstract
Different molecular signaling pathways, biological processes, and intercellular communication mechanisms control longevity and are affected during cellular senescence. Recent data have suggested that organelle communication, as well as genomic and metabolic dysfunctions, contribute to this phenomenon. Oxidative stress plays a critical role by inducing structural modifications to biological molecules while affecting their function and catabolism and eventually contributing to the onset of age-related dysfunctions. In this scenario, proteins are not adequately degraded and accumulate in the cell cytoplasm as toxic aggregates, increasing cell senescence progression. In particular, carbonylation, defined as a chemical reaction that covalently and irreversibly modifies proteins with carbonyl groups, is considered to be a significant indicator of protein oxidative stress and aging. Here, we emphasize the role and dysregulation of the molecular pathways controlling cell metabolism and proteostasis, the complexity of the mechanisms that occur during aging, and their association with various age-related disorders. The last segment of the review details current knowledge on protein carbonylation as a biomarker of cellular senescence in the development of diagnostics and therapeutics for age-related dysfunctions.
Collapse
Affiliation(s)
- Magdalena Rudzińska
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (M.R.); (A.P.); (A.V.B.); (O.E.C.); (F.M.V.)
| | - Alessandro Parodi
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (M.R.); (A.P.); (A.V.B.); (O.E.C.); (F.M.V.)
| | - Anastasia V. Balakireva
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (M.R.); (A.P.); (A.V.B.); (O.E.C.); (F.M.V.)
| | - Olga E. Chepikova
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (M.R.); (A.P.); (A.V.B.); (O.E.C.); (F.M.V.)
| | - Franco M. Venanzi
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (M.R.); (A.P.); (A.V.B.); (O.E.C.); (F.M.V.)
| | - Andrey A. Zamyatnin
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (M.R.); (A.P.); (A.V.B.); (O.E.C.); (F.M.V.)
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
- Correspondence: ; Tel.: +74956229843
| |
Collapse
|
85
|
Kolesar JE, Kaufman BA. Using Two-Dimensional Intact Mitochondrial DNA (mtDNA) Agarose Gel Electrophoresis (2D-IMAGE) to Detect Changes in Topology Associated with Mitochondrial Replication, Transcription, and Damage. Methods Mol Biol 2020; 2119:25-42. [PMID: 31989512 DOI: 10.1007/978-1-0716-0323-9_3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The study of mitochondrial DNA (mtDNA) integrity and how replication, transcription, repair, and degradation maintain mitochondrial function has been hampered due to the inability to identify mtDNA structural forms. Here we describe the use of 2D intact mtDNA agarose gel electrophoresis, or 2D-IMAGE, to identify up to 25 major mtDNA topoisomers such as double-stranded circular mtDNA (including supercoiled molecules, nicked circles, and multiple catenated species) and various forms containing single-stranded DNA (ssDNA) structures. Using this modification of a classical 1D gel electrophoresis procedure, many of the identified mtDNA species have been associated with mitochondrial replication, damage, deletions, and possibly transcription. The increased resolution of 2D-IMAGE allows for the identification and monitoring of novel mtDNA intermediates to reveal alterations in genome replication, transcription, repair, or degradation associated with perturbations during mitochondrial stress.
Collapse
Affiliation(s)
- Jill E Kolesar
- Department of Animal Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Brett A Kaufman
- Division of Cardiology, Department of Medicine, Center for Metabolism and Mitochondrial Medicine and the Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
86
|
Oxidative Stress, Frailty and Cardiovascular Diseases: Current Evidence. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1216:65-77. [PMID: 31894548 DOI: 10.1007/978-3-030-33330-0_8] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The aim of this chapter is to review the results of recent studies analyzing the role of oxidative stress and systemic inflammation as potential contributors to frailty and CVD, and to explain a possible pathogenic relationship between the latter two conditions. Available evidence suggests that frail patients have elevated levels of oxidative stress biomarkers and proinflammatory cytokines, as well as with reduced concentrations of endogenous antioxidants. This implies that oxidative stress and systemic inflammation might play a role in the pathogenesis of frailty, but an underlying mechanism of this relationship is still mostly hypothetical. Oxidative stress and systemic inflammation are also involved in the pathogenesis of CVD. Cardiovascular conditions are established risk factor for frailty and in turn, presence of frailty constitutes an unfavorable prognostic factor in cardiac patients. Finally, some cardiovascular risk factors, such as lack of physical activity, smoking, obesity and inappropriate diet, are also involved in the etiology of oxidative stress, chronic inflammation and frailty. This complex interplay between intrinsic and extrinsic elements should be considered during holistic management of older persons with frailty and/or cardiovascular conditions.
Collapse
|
87
|
Dubie JJ, Caraway AR, Stout MM, Katju V, Bergthorsson U. The conflict within: origin, proliferation and persistence of a spontaneously arising selfish mitochondrial genome. Philos Trans R Soc Lond B Biol Sci 2019; 375:20190174. [PMID: 31787044 DOI: 10.1098/rstb.2019.0174] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Mitochondrial genomes can sustain mutations that are simultaneously detrimental to individual fitness and yet, can proliferate within individuals owing to a replicative advantage. We analysed the fitness effects and population dynamics of a mitochondrial genome containing a novel 499 bp deletion in the cytochrome b(1) (ctb-1) gene (Δctb-1) encoding the cytochrome b of complex III in Caenorhabditis elegans. Δctb-1 reached a high heteroplasmic frequency of 96% in one experimental line during a mutation accumulation experiment and was linked to additional spontaneous mutations in nd5 and tRNA-Asn. The Δctb-1 mutant mitotype imposed a significant fitness cost including a 65% and 52% reduction in productivity and competitive fitness, respectively, relative to individuals bearing wild-type (WT) mitochondria. Deletion-bearing worms were rapidly purged within a few generations when competed against WT mitochondrial DNA (mtDNA) bearing worms in experimental populations. By contrast, the Δctb-1 mitotype was able to persist in large populations comprising heteroplasmic individuals only, although the average intracellular frequency of Δctb-1 exhibited a slow decline owing to competition among individuals bearing different frequencies of the heteroplasmy. Within experimental lines subjected to severe population bottlenecks (n = 1), the relative intracellular frequency of Δctb-1 increased, which is a hallmark of selfish drive. A positive correlation between Δctb-1 and WT mtDNA copy-number suggests a mechanism that increases total mtDNA per se, and does not discern the Δctb-1 mitotype from the WT mtDNA. This study demonstrates the selfish nature of the Δctb-1 mitotype, given its transmission advantage and substantial fitness load for the host, and highlights the importance of population size for the population dynamics of selfish mtDNA. This article is part of the theme issue 'Linking the mitochondrial genotype to phenotype: a complex endeavour'.
Collapse
Affiliation(s)
- Joseph James Dubie
- Department of Veterinary Integrative Biosciences, Texas A&M University, 402 Raymond Stotzer Parkway, College Station, TX 77845, USA
| | - Avery Robert Caraway
- Department of Veterinary Integrative Biosciences, Texas A&M University, 402 Raymond Stotzer Parkway, College Station, TX 77845, USA
| | - McKenna Margaret Stout
- Department of Veterinary Integrative Biosciences, Texas A&M University, 402 Raymond Stotzer Parkway, College Station, TX 77845, USA
| | - Vaishali Katju
- Department of Veterinary Integrative Biosciences, Texas A&M University, 402 Raymond Stotzer Parkway, College Station, TX 77845, USA
| | - Ulfar Bergthorsson
- Department of Veterinary Integrative Biosciences, Texas A&M University, 402 Raymond Stotzer Parkway, College Station, TX 77845, USA
| |
Collapse
|
88
|
da Silva Sergio LP, Mencalha AL, de Souza da Fonseca A, de Paoli F. DNA repair and genomic stability in lungs affected by acute injury. Biomed Pharmacother 2019; 119:109412. [PMID: 31514069 PMCID: PMC9170240 DOI: 10.1016/j.biopha.2019.109412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 08/26/2019] [Accepted: 08/28/2019] [Indexed: 12/28/2022] Open
Abstract
Acute pulmonary injury, or acute respiratory distress syndrome, has a high incidence in elderly individuals and high mortality in its most severe degree, becoming a challenge to public health due to pathophysiological complications and increased economic burden. Acute pulmonary injury can develop from sepsis, septic shock, and pancreatitis causing reduction of alveolar airspace due to hyperinflammatory response. Oxidative stress acts directly on the maintenance of inflammation, resulting in tissue injury, as well as inducing DNA damages. Once the DNA is damaged, enzymatic DNA repair mechanisms act on lesions in order to maintain genomic stability and, consequently, contribute to cell viability and homeostasis. Although palliative treatment based on mechanical ventilation and antibiotic using have a kind of efficacy, therapies based on modulation of DNA repair and genomic stability could be effective for improving repair and recovery of lung tissue in patients with acute pulmonary injury.
Collapse
Affiliation(s)
- Luiz Philippe da Silva Sergio
- Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Boulevard Vinte e Oito de Setembro, 87, Vila Isabel, Rio de Janeiro, 20551030, Brazil.
| | - Andre Luiz Mencalha
- Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Boulevard Vinte e Oito de Setembro, 87, Vila Isabel, Rio de Janeiro, 20551030, Brazil
| | - Adenilson de Souza da Fonseca
- Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Boulevard Vinte e Oito de Setembro, 87, Vila Isabel, Rio de Janeiro, 20551030, Brazil; Departamento de Ciências Fisiológicas, Instituto Biomédico, Universidade Federal do Estado do Rio de Janeiro, Rua Frei Caneca, 94, Rio de Janeiro, 20211040, Brazil; Centro de Ciências da Saúde, Centro Universitário Serra dos Órgãos, Avenida Alberto Torres, 111, Teresópolis, Rio de Janeiro, 25964004, Brazil
| | - Flavia de Paoli
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Rua José Lourenço Kelmer - s/n, Campus Universitário, São Pedro, Juiz de Fora, Minas Gerais, 36036900, Brazil
| |
Collapse
|
89
|
Balan E, Schwalm C, Naslain D, Nielens H, Francaux M, Deldicque L. Regular Endurance Exercise Promotes Fission, Mitophagy, and Oxidative Phosphorylation in Human Skeletal Muscle Independently of Age. Front Physiol 2019; 10:1088. [PMID: 31507451 PMCID: PMC6713923 DOI: 10.3389/fphys.2019.01088] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 08/07/2019] [Indexed: 12/12/2022] Open
Abstract
This study investigated whether regular endurance exercise maintains basal mitophagy and mitochondrial function during aging. Mitochondrial proteins and total mRNA were isolated from vastus lateralis biopsies (n = 33) of young sedentary (YS), old sedentary (OS), young active (YA), and old active (OA) men. Markers for mitophagy, fission, fusion, mitogenesis, and mitochondrial metabolism were assessed using qRT-PCR, Western blot, and immunofluorescence staining. Independently of age, fission protein Fis1 was higher in active vs. sedentary subjects (+80%; P < 0.05). Mitophagy protein PARKIN was more elevated in OA than in OS (+145%; P = 0.0026). mRNA expression of Beclin1 and Gabarap, involved in autophagosomes synthesis, were lower in OS compared to YS and OA (P < 0.05). Fusion and oxidative phosphorylation proteins were globally more elevated in the active groups (P < 0.05), while COx activity was only higher in OA than in OS (P = 0.032). Transcriptional regulation of mitogenesis did not vary with age or exercise. In conclusion, physically active lifestyle seems to participate in the maintenance of lifelong mitochondrial quality control by increasing fission and mitophagy.
Collapse
Affiliation(s)
- Estelle Balan
- Institute of Neuroscience, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Céline Schwalm
- Institute of Neuroscience, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Damien Naslain
- Institute of Neuroscience, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Henri Nielens
- Saint-Luc University Hospital, Université catholique de Louvain, Brussels, Belgium
| | - Marc Francaux
- Institute of Neuroscience, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Louise Deldicque
- Institute of Neuroscience, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
90
|
Mitochondrial transcription factor A promotes DNA strand cleavage at abasic sites. Proc Natl Acad Sci U S A 2019; 116:17792-17799. [PMID: 31413200 DOI: 10.1073/pnas.1911252116] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In higher eukaryotic cells, mitochondria are essential subcellular organelles for energy production, cell signaling, and the biosynthesis of biomolecules. The mitochondrial DNA (mtDNA) genome is indispensable for mitochondrial function because it encodes protein subunits of the electron transport chain and a full set of transfer and ribosomal RNAs. MtDNA degradation has emerged as an essential quality control measure to maintain mtDNA and to cope with mtDNA damage resulting from endogenous and environmental factors. Among all types of DNA damage known, abasic (AP) sites, sourced from base excision repair and spontaneous base loss, are the most abundant endogenous DNA lesions in cells. In mitochondria, AP sites trigger rapid DNA loss; however, the mechanism and molecular factors involved in the process remain elusive. Herein, we demonstrate that the stability of AP sites is reduced dramatically upon binding to a major mtDNA packaging protein, mitochondrial transcription factor A (TFAM). The half-life of AP lesions within TFAM-DNA complexes is 2 to 3 orders of magnitude shorter than that in free DNA, depending on their position. The TFAM-catalyzed AP-DNA destabilization occurs with nonspecific DNA or mitochondrial light-strand promoter sequence, yielding DNA single-strand breaks and DNA-TFAM cross-links. TFAM-DNA cross-link intermediates prior to the strand scission were also observed upon treating AP-DNA with mitochondrial extracts of human cells. In situ trapping of the reaction intermediates (DNA-TFAM cross-links) revealed that the reaction proceeds via Schiff base chemistry facilitated by lysine residues. Collectively, our data suggest a novel role of TFAM in facilitating the turnover of abasic DNA.
Collapse
|
91
|
Rodríguez E, Dégletagne C, Hagen TM, Abele D, Blier PU. Mitochondrial Traits Previously Associated With Species Maximum Lifespan Do Not Correlate With Longevity Across Populations of the Bivalve Arctica islandica. Front Physiol 2019; 10:946. [PMID: 31404340 PMCID: PMC6676799 DOI: 10.3389/fphys.2019.00946] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 07/09/2019] [Indexed: 01/09/2023] Open
Abstract
The mitochondrial oxidative stress theory of aging posits that membrane susceptibility to peroxidation and the organization of the electron transport system (ETS) linked with reactive oxygen species (ROS) generation are two main drivers of lifespan. While a clear correlation has been established from species comparative studies, the significance of these characteristics as potential modulators of lifespan divergences among populations of individual species is still to be tested. The bivalve Arctica islandica, the longest-lived non-colonial animal with a record lifespan of 507 years, possesses a lower mitochondrial peroxidation index (PI) and reduced H2O2 efflux linked to complexes I and III activities than related species. Taking advantage of the wide variation in maximum reported longevities (MRL) among 6 European populations (36–507 years), we examined whether these two mitochondrial properties could explain differences in longevity. We report no relationship between membrane PI and MRL in populations of A. islandica, as well as a lack of intraspecific relationship between ETS complex activities and MRL. Individuals from brackish sites characterized by wide temperature and salinity windows had, however, markedly lower ETS enzyme activities relative to citrate synthase activity. Our results highlight environment-dependent remodeling of mitochondrial phenotypes.
Collapse
Affiliation(s)
| | - Cyril Dégletagne
- Department of Functional Ecology, Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany.,CNRS, ENTPE, UMR5023 Laboratoire d'Ecologie des Hydrosystèmes Naturels et Anthropisés, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Tory M Hagen
- Linus Pauling Institute, Oregon State University, Corvallis, OR, United States
| | - Doris Abele
- Department of Functional Ecology, Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | - Pierre U Blier
- Département de Biologie, Université du Québec, Rimouski, QC, Canada
| |
Collapse
|
92
|
Role of Mitochondrial DNA Damage in ROS-Mediated Pathogenesis of Age-Related Macular Degeneration (AMD). Int J Mol Sci 2019; 20:ijms20102374. [PMID: 31091656 PMCID: PMC6566654 DOI: 10.3390/ijms20102374] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 04/17/2019] [Accepted: 04/28/2019] [Indexed: 12/19/2022] Open
Abstract
Age-related macular degeneration (AMD) is a complex eye disease that affects millions of people worldwide and is the main reason for legal blindness and vision loss in the elderly in developed countries. Although the cause of AMD pathogenesis is not known, oxidative stress-related damage to retinal pigment epithelium (RPE) is considered an early event in AMD induction. However, the precise cause of such damage and of the induction of oxidative stress, including related oxidative effects occurring in RPE and the onset and progression of AMD, are not well understood. Many results point to mitochondria as a source of elevated levels of reactive oxygen species (ROS) in AMD. This ROS increase can be associated with aging and effects induced by other AMD risk factors and is correlated with damage to mitochondrial DNA. Therefore, mitochondrial DNA (mtDNA) damage can be an essential element of AMD pathogenesis. This is supported by many studies that show a greater susceptibility of mtDNA than nuclear DNA to DNA-damaging agents in AMD. Therefore, the mitochondrial DNA damage reaction (mtDDR) is important in AMD prevention and in slowing down its progression as is ROS-targeting AMD therapy. However, we know far less about mtDNA than its nuclear counterparts. Further research should measure DNA damage in order to compare it in mitochondria and the nucleus, as current methods have serious disadvantages.
Collapse
|
93
|
Hydrogen Sulfide Inhibits Formaldehyde-Induced Senescence in HT-22 Cells via Upregulation of Leptin Signaling. Neuromolecular Med 2019; 21:192-203. [DOI: 10.1007/s12017-019-08536-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 04/08/2019] [Indexed: 10/27/2022]
|
94
|
Wang Y, Xu E, Musich PR, Lin F. Mitochondrial dysfunction in neurodegenerative diseases and the potential countermeasure. CNS Neurosci Ther 2019; 25:816-824. [PMID: 30889315 PMCID: PMC6566063 DOI: 10.1111/cns.13116] [Citation(s) in RCA: 195] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 02/13/2019] [Accepted: 02/13/2019] [Indexed: 12/15/2022] Open
Abstract
Mitochondria not only supply the energy for cell function, but also take part in cell signaling. This review describes the dysfunctions of mitochondria in aging and neurodegenerative diseases, and the signaling pathways leading to mitochondrial biogenesis (including PGC‐1 family proteins, SIRT1, AMPK) and mitophagy (parkin‐Pink1 pathway). Understanding the regulation of these mitochondrial pathways may be beneficial in finding pharmacological approaches or lifestyle changes (caloric restrict or exercise) to modulate mitochondrial biogenesis and/or to activate mitophagy for the removal of damaged mitochondria, thus reducing the onset and/or severity of neurodegenerative diseases.
Collapse
Affiliation(s)
- Yan Wang
- Department of Pharmacology, Laboratory of Aging and Nervous Diseases, School of Pharmaceutical Science, Soochow University, Suzhou, China.,Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Erin Xu
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Phillip R Musich
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee
| | - Fang Lin
- Department of Pharmacology, Laboratory of Aging and Nervous Diseases, School of Pharmaceutical Science, Soochow University, Suzhou, China
| |
Collapse
|
95
|
Chocron ES, Munkácsy E, Pickering AM. Cause or casualty: The role of mitochondrial DNA in aging and age-associated disease. Biochim Biophys Acta Mol Basis Dis 2019; 1865:285-297. [PMID: 30419337 PMCID: PMC6310633 DOI: 10.1016/j.bbadis.2018.09.035] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/20/2018] [Accepted: 09/04/2018] [Indexed: 12/19/2022]
Abstract
The mitochondrial genome (mtDNA) represents a tiny fraction of the whole genome, comprising just 16.6 kilobases encoding 37 genes involved in oxidative phosphorylation and the mitochondrial translation machinery. Despite its small size, much interest has developed in recent years regarding the role of mtDNA as a determinant of both aging and age-associated diseases. A number of studies have presented compelling evidence for key roles of mtDNA in age-related pathology, although many are correlative rather than demonstrating cause. In this review we will evaluate the evidence supporting and opposing a role for mtDNA in age-associated functional declines and diseases. We provide an overview of mtDNA biology, damage and repair as well as the influence of mitochondrial haplogroups, epigenetics and maternal inheritance in aging and longevity.
Collapse
Affiliation(s)
- E Sandra Chocron
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78245-3207, USA
| | - Erin Munkácsy
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78245-3207, USA
| | - Andrew M Pickering
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78245-3207, USA; Department of Molecular Medicine, School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78245-3207, USA.
| |
Collapse
|
96
|
Li Y, Zhao X, Hu Y, Sun H, He Z, Yuan J, Cai H, Sun Y, Huang X, Kong W, Kong W. Age-associated decline in Nrf2 signaling and associated mtDNA damage may be involved in the degeneration of the auditory cortex: Implications for central presbycusis. Int J Mol Med 2018; 42:3371-3385. [PMID: 30272261 PMCID: PMC6202109 DOI: 10.3892/ijmm.2018.3907] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 09/19/2018] [Indexed: 11/15/2022] Open
Abstract
Central presbycusis is the most common sensory disorder in the elderly population, however, the underlying molecular mechanism remains unclear. NF‑E2‑related factor 2 (Nrf2) is a key transcription factor in the cellular response to oxidative stress, however, the role of Nrf2 in central presbycusis remains to be elucidated. The aim of the present study was to investigate the pathogenesis of central presbycusis using a mimetic aging model induced by D‑galactose (D‑gal) in vivo and in vitro. The degeneration of the cell was determined with transmission electron microscopy, terminal deoxynucleotidyl transferase‑mediated deoxyuridine 5'‑triphosphate nick‑end labeling staining, and senescence‑associated β‑galactosidase staining. The expression of protein was detected by western blotting and immunofluorescence. The quantification of the mitochondrial DNA (mtDNA) 4,834‑base pair (bp) deletion and mRNA was detected by TaqMan quantitative polymerase chain reaction (qPCR) and reverse transcription‑qPCR respectively. Cell apoptosis and intracellular ROS in vitro were determined with flow cytometry. The levels of nuclear Nrf2, and the mRNA levels of Nrf2‑regulated antioxidant genes, were downregulated in the auditory cortex of aging rats, which was accompanied by an increase in 8‑hydroxy‑2'‑deoxyguanosine formation, an accumulation of mtDNA 4,834‑bp deletion, and neuron degeneration. In addition, oltipraz, a typical Nrf2 activator, was found to protect cells against D‑gal‑induced mtDNA damage and mitochondrial dysfunction by activating Nrf2 target genes in vitro. It was also observed that activating Nrf2 with oltipraz inhibited cell apoptosis and delayed senescence. Taken together, the data of the present study suggested that the age‑associated decline in Nrf2 signaling activity and the associated mtDNA damage in the auditory cortex may be implicated in the degeneration of the auditory cortex. Therefore, the restoration of Nrf2 signaling activity may represent a potential therapeutic strategy for central presbycusis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hua Cai
- Department of Otolaryngology
| | - Yu Sun
- Department of Otolaryngology
| | | | - Wen Kong
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | | |
Collapse
|
97
|
Pustylnikov S, Costabile F, Beghi S, Facciabene A. Targeting mitochondria in cancer: current concepts and immunotherapy approaches. Transl Res 2018; 202:35-51. [PMID: 30144423 PMCID: PMC6456045 DOI: 10.1016/j.trsl.2018.07.013] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 07/24/2018] [Accepted: 07/25/2018] [Indexed: 12/12/2022]
Abstract
An essential advantage during eukaryotic cell evolution was the acquisition of a network of mitochondria as a source of energy for cell metabolism and contrary to conventional wisdom, functional mitochondria are essential for the cancer cell. Multiple aspects of mitochondrial biology beyond bioenergetics support transformation including mitochondrial biogenesis, fission and fusion dynamics, cell death susceptibility, oxidative stress regulation, metabolism, and signaling. In cancer, the metabolism of cells is reprogrammed for energy generation from oxidative phosphorylation to aerobic glycolysis and impacts cancer mitochondrial function. Furthermore cancer cells can also modulate energy metabolism within the cancer microenvironment including immune cells and induce "metabolic anergy" of antitumor immune response. Classical approaches targeting the mitochondria of cancer cells usually aim at inducing changing energy metabolism or directly affecting functions of mitochondrial antiapoptotic proteins but most of such approaches miss the required specificity of action and carry important side effects. Several types of cancers harbor somatic mitochondrial DNA mutations and specific immune response to mutated mitochondrial proteins has been observed. An attractive alternative way to target the mitochondria in cancer cells is the induction of an adaptive immune response against mutated mitochondrial proteins. Here, we review the cancer cell-intrinsic and cell-extrinsic mechanisms through which mitochondria influence all steps of oncogenesis, with a focus on the therapeutic potential of targeting mitochondrial DNA mutations or Tumor Associated Mitochondria Antigens using the immune system.
Collapse
Affiliation(s)
- Sergey Pustylnikov
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Francesca Costabile
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Silvia Beghi
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Andrea Facciabene
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Ovarian Cancer Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
98
|
Samstag CL, Hoekstra JG, Huang CH, Chaisson MJ, Youle RJ, Kennedy SR, Pallanck LJ. Deleterious mitochondrial DNA point mutations are overrepresented in Drosophila expressing a proofreading-defective DNA polymerase γ. PLoS Genet 2018; 14:e1007805. [PMID: 30452458 PMCID: PMC6289449 DOI: 10.1371/journal.pgen.1007805] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 12/11/2018] [Accepted: 11/01/2018] [Indexed: 01/08/2023] Open
Abstract
Mitochondrial DNA (mtDNA) mutations cause severe maternally inherited syndromes and the accumulation of somatic mtDNA mutations is implicated in aging and common diseases. However, the mechanisms that influence the frequency and pathogenicity of mtDNA mutations are poorly understood. To address this matter, we created a Drosophila mtDNA mutator strain expressing a proofreading-deficient form of the mitochondrial DNA polymerase. Mutator flies have a dramatically increased somatic mtDNA mutation frequency that correlates with the dosage of the proofreading-deficient polymerase. Mutator flies also exhibit mitochondrial dysfunction, shortened lifespan, a progressive locomotor deficit, and loss of dopaminergic neurons. Surprisingly, the frequency of nonsynonymous, pathogenic, and conserved-site mutations in mutator flies exceeded predictions of a neutral mutational model, indicating the existence of a positive selection mechanism that favors deleterious mtDNA variants. We propose from these findings that deleterious mtDNA mutations are overrepresented because they selectively evade quality control surveillance or because they are amplified through compensatory mitochondrial biogenesis. The energy needs of an animal cell are supplied by tiny organelles known as mitochondria. Each of the many mitochondria in a cell has a set of blueprints for making more mitochondria, known as mitochondrial DNA (mtDNA). As animals age, their mtDNA acquires irreversible defects called mutations, which accumulate and may cause aging. Cells can selectively destroy malfunctioning mitochondria, so we hypothesized that mitochondria with harmful mutations would be selectively destroyed. To test our theory, we created a fruit fly strain with a high mtDNA mutation rate. Our hypothesis predicts that, because mitochondria bearing harmful mtDNA mutations would be destroyed, we should detect primarily less harmful mutations in our strain. However, the mtDNA mutations we detected were more harmful than expected by chance. We suggest two possible explanations: First, mitochondria with harmful mtDNA mutations may be degraded less often because they generate little energy and are not damaged by toxic byproducts of energy production. Second, cells may compensate for harmful mtDNA mutations by stimulating mitochondria to multiply, creating more healthy mitochondria but also more mitochondria with harmful mtDNA mutations. Future studies will distinguish between these models and further advance our understanding of aging and aging related disease.
Collapse
Affiliation(s)
- Colby L. Samstag
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA, United States of America
- Department of Genome Sciences, University of Washington, Seattle, WA, United States of America
| | - Jake G. Hoekstra
- Department of Pathology, University of Washington, Seattle, WA, United States of America
| | - Chiu-Hui Huang
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States of America
| | - Mark J. Chaisson
- Computational Biology and Bioinformatics, University of Southern California, Los Angeles, CA, United States of America
| | - Richard J. Youle
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States of America
| | - Scott R. Kennedy
- Department of Pathology, University of Washington, Seattle, WA, United States of America
- * E-mail: (SRK); (LJP)
| | - Leo J. Pallanck
- Department of Genome Sciences, University of Washington, Seattle, WA, United States of America
- * E-mail: (SRK); (LJP)
| |
Collapse
|
99
|
Van Giau V, An SSA, Hulme JP. Mitochondrial therapeutic interventions in Alzheimer's disease. J Neurol Sci 2018; 395:62-70. [PMID: 30292965 DOI: 10.1016/j.jns.2018.09.033] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 09/09/2018] [Accepted: 09/26/2018] [Indexed: 01/26/2023]
Abstract
Alzheimer's Disease (AD) is one of the most common age-related neurodegenerative diseases in the developed world. Treatment of AD is particularly challenging as the drug must overcome the blood brain barrier (BBB) before it can reach its target. Mitochondria are recognized as one of the most important targets for neurological drugs as the organelle is known to play a critical role in diverse cellular processes such as energy production and apoptosis regulation. Mitochondrial targeting was originally developed to study mitochondrial dysfunction and the organelles interaction with other sub-cellular organelles. The purpose of this review is to provide an overview of mitochondrial dysfunction and its role in late onset AD pathology. We then highlight recent antioxidant and enzymatic treatments used to alleviate mitochondrial dysfunction. Finally, we describe current applications of targeted mitochondrial delivery in the treatment of AD.
Collapse
Affiliation(s)
- Vo Van Giau
- Department of Bionano Technology, Gachon Bionano Research Institute, Gachon University, 1342 Sungnam-daero, Seongnam-si, Gyeonggi-do 461-701, South Korea
| | - Seong Soo A An
- Department of Bionano Technology, Gachon Bionano Research Institute, Gachon University, 1342 Sungnam-daero, Seongnam-si, Gyeonggi-do 461-701, South Korea.
| | - John P Hulme
- Department of Bionano Technology, Gachon Bionano Research Institute, Gachon University, 1342 Sungnam-daero, Seongnam-si, Gyeonggi-do 461-701, South Korea.
| |
Collapse
|
100
|
Cao ST, Wang CC, Wu H, Zhang QH, Jiao LF, Hu CH. Weaning disrupts intestinal antioxidant status, impairs intestinal barrier and mitochondrial function, and triggers mitophagy in piglets. J Anim Sci 2018; 96:1073-1083. [PMID: 29617867 DOI: 10.1093/jas/skx062] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In the present study, we investigated the influence of weaning on antioxidant status, intestinal integrity, mitochondrial function, and the mitophagy level in piglets (weaned at 21 d) during the 1 wk after weaning. The redox status was measured by antioxidant enzymes activities, related genes expression, and malondialdehyde (MDA) content in jejunum. The intestinal barrier function was assessed by the Ussing chamber and expression of tight junction proteins in the jejunum. The function of intestine mitochondria was measured by mitochondrial DNA (mtDNA) content and activities of mitochondria oxidative phosphorylation complexes. The levels of light chain 3-1 (LC3-I), light chain 3-II (LC3-II), PTEN-induced putative kinase 1 (PINK1), and Parkin were determined to investigate whether mitophagy is involved in the weaning process. The results showed that, as compared with the preweaning phase (d 0), weaning suppressed (P < 0.05) the activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) on d 3 and d 7 postweaning, decreased (P < 0.05) the expression of copper and zinc superoxide dismutase (Cu/Zn-SOD), manganese-containing superoxide dismutase (Mn-SOD) on d 3 postweaning, declined (P < 0.05) the level of glutathione peroxidase 1 (GPX-1) and glutathione peroxidase 4 (GPX-4) on d 3 and d 7 postweaning, and increased (P < 0.05) MDA content in jejunum on d 3 and d 7 postweaning. The jejunal transepithelial electrical resistance and levels of occludin, claudin-1, and zonula occludens-1 on d 3 and d 7 postweaning were reduced (P < 0.05), and paracellular flux of fluorescein isothiocyanatedextran (4 kDa) on d 3 and d 7 postweaning was increased (P < 0.05). Weaning induced mitochondrial dysfunction, as demonstrated by decreased (P < 0.05) content of mtDNA on d 3 and d 7 postweaning and declined (P < 0.05) activities of mitochondria complexes (I, II, III, IV) in jejunum on d 1, d 3, and d 7 postweaning. Weaning led to an increased (P < 0.05) expression level of mitophagy-related proteins, PINK1 and Parkin, in the intestinal mitochondria, as well as an enhancement (P < 0.05) of the ratio of LC3-II to LC3-I content in the jejunal mucosa on d 1, d 3, and d 7 postweaning. These results suggest that weaning disrupted intestinal oxidative balance, and this imbalance may impair intestinal barrier and mitochondrial function and trigger mitophagy in piglets.
Collapse
Affiliation(s)
- S T Cao
- Animal Science College, Zhejiang University, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China
| | - C C Wang
- Animal Science College, Zhejiang University, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China
| | - H Wu
- Animal Science College, Zhejiang University, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China
| | - Q H Zhang
- Animal Science College, Zhejiang University, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China
| | - L F Jiao
- Animal Science College, Zhejiang University, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China
| | - C H Hu
- Animal Science College, Zhejiang University, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China
| |
Collapse
|