51
|
Oxidative cross-linking of potato proteins by fungal laccases: Reaction kinetics and effects on the structural and functional properties. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2021.102723] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
52
|
Weber A, Wójtowicz A, Lednev IK. Post deposition aging of bloodstains probed by steady-state fluorescence spectroscopy. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2021; 221:112251. [PMID: 34229147 DOI: 10.1016/j.jphotobiol.2021.112251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 06/19/2021] [Accepted: 06/26/2021] [Indexed: 01/20/2023]
Abstract
Blood is one of the most common body fluids discovered at crime scenes involving violent actions. It is one of the most important types of forensic evidence since it allows for the identification of the individual providing that there is a match with a known DNA profile. Determining the time since deposition (TSD) can assist investigators in establishing when the crime occurred or if a bloodstain present is actually related to the investigated event. To develop a forensically sound method for determining the TSD of a bloodstain, it is necessary to understand the underlying biochemical mechanisms occurring during aging. As biochemical processes occurring in blood are necessary for the continued survival of living organisms, they are important subjects of human biology and biomedicine and are well understood. However, the biochemistry of bloodstain aging ex vivo is primarily of interest to forensic scientists and has not yet been thoroughly researched. This preliminary study utilizes steady-state fluorescence spectroscopy to probe the changes in fluorescence properties of peripheral and menstrual blood up to 24-h post deposition. Peripheral and menstrual blood exhibited similar kinetic changes over time, assigned to the presence of the fluorophores: tryptophan, nicotinamide adenine dinucleotide (NADH), and flavins in both biological fluids. The biochemical mechanism of blood aging ex vivo is discussed.
Collapse
Affiliation(s)
- Alexis Weber
- Department of Chemistry, University at Albany, SUNY, 1400 Washington Avenue, Albany, NY 12222, USA
| | - Anna Wójtowicz
- Department of Chemistry, University at Albany, SUNY, 1400 Washington Avenue, Albany, NY 12222, USA; Laboratory for Forensic Chemistry, Department of Analytical Chemistry, Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa St., 30-387 Kraków, Poland
| | - Igor K Lednev
- Department of Chemistry, University at Albany, SUNY, 1400 Washington Avenue, Albany, NY 12222, USA; Laboratory of Laser Molecular Imaging and Machine Learning (LM&ML), Tomsk State University, 36 Lenina Ave., Tomsk 634050, Russian Federation.
| |
Collapse
|
53
|
Palacios YB, Durantini JE, Heredia DA, Martínez SR, González de la Torre L, Durantini AM. Tuning the Polarity of Fullerene C 60 Derivatives for Enhanced Photodynamic Inactivation †. Photochem Photobiol 2021; 97:1431-1444. [PMID: 34115882 DOI: 10.1111/php.13465] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/08/2021] [Indexed: 12/21/2022]
Abstract
In this article, four novel fulleropyrrolidines derivatives were synthesized to study how the effect of polarity and positive charge distribution can influence the efficacy of photodynamic inactivation treatments to kill bacteria. The design of the photosensitizers was based on DFT calculations that allowed us to estimate the dipolar moment of the molecules. Neutral compounds bearing N-methyl bis-acetoxy-ethyl (1) and bis-hydroxyethyl (2) amine were the starting material to obtain the dicationic analogs N,N-dimethyl bis-methoxyethyl (3), and bis-acetoxy-ethyl) (4) methylammonio. As expected from fullerene C60 derivatives, compounds 1-4 absorb in the UV region, with a peak at 430 nm, a broader range of absorption up to 710 nm, and exhibit weak fluorescence emission in toluene and reverse micelles. In the biomimetic AOT micellar system, the highest singlet oxygen photosensitization was found for compounds 1, followed by 3, 2, and 4. Whereas 4 was the most effective reducing nitro blue tetrazolium in the presence of β-NADH. The influence of type I and type II mechanism on the photodynamic activity of compounds 3 and 4 was further examined in the presence of L-tryptophan and two reactive oxygen species scavengers. In vitro experiments indicated that the compounds with the highest dipolar moments, 3 (37.19 D) and 4 (38.46 D), inactivated methicillin-resistant Staphylococcus aureus and Escherichia coli bacteria using an energy dose <2.4 J cm-2 . No inactivation was observed for the neutral analogs with the lowest dipolar moments. These findings help to optimize sensitizer structures to improve photodynamic inactivation.
Collapse
Affiliation(s)
- Yohana B Palacios
- IDAS-CONICET, Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Córdoba, Argentina
| | - Javier E Durantini
- IITEMA-CONICET, Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Córdoba, Argentina
| | - Daniel A Heredia
- IDAS-CONICET, Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Córdoba, Argentina
| | - Sol R Martínez
- IITEMA-CONICET, Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Córdoba, Argentina
| | - Laura González de la Torre
- IDAS-CONICET, Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Córdoba, Argentina
| | - Andrés M Durantini
- IDAS-CONICET, Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Córdoba, Argentina
| |
Collapse
|
54
|
The Different Colors of mAbs in Solution. Antibodies (Basel) 2021; 10:antib10020021. [PMID: 34073775 PMCID: PMC8161444 DOI: 10.3390/antib10020021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/21/2020] [Accepted: 03/02/2021] [Indexed: 11/16/2022] Open
Abstract
The color of a therapeutic monoclonal antibody solution is a critical quality attribute. Consistency of color is typically assessed at time of release and during stability studies against preset criteria for late stage clinical and commercial products. A therapeutic protein solution's color may be determined by visual inspection or by more quantitative methods as per the different geographical area compendia. The nature and intensity of the color of a therapeutic protein solution is typically determined relative to calibrated standards. This review covers the analytical methodologies used for determining the color of a protein solution and presents an overview of protein variants and impurities known to contribute to colored recombinant therapeutic protein solutions.
Collapse
|
55
|
Zinc supplementation modulates intracellular metal uptake and oxidative stress defense mechanisms in CHO cell cultures. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.107928] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
56
|
The Effects of Prunus spinosa L. Flower Extracts, Model Polyphenols and Phenolic Metabolites on Oxidative/Nitrative Modifications of Human Plasma Components with Particular Emphasis on Fibrinogen In Vitro. Antioxidants (Basel) 2021; 10:antiox10040581. [PMID: 33918684 PMCID: PMC8069707 DOI: 10.3390/antiox10040581] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 12/28/2022] Open
Abstract
Oxidative post-translational modifications of fibrinogen (a multifunctional blood plasma protein essential for hemostasis) are associated with the pathogenesis of cardiovascular disorders (CVDs). Prunus spinosa flower is a herbal medicine used in an adjuvant treatment of CVDs and rich in polyphenolic antioxidants. In the present study, phytochemically standardized P. spinosa flower extracts, their primary native polyphenols and potential phenolic metabolites were evaluated in vitro for their protective effects on fibrinogen (isolated and in the human plasma matrix) using a panel of complementary methods (SDS-PAGE, western blot, C-ELISA, fluorometry, FRAP, TBARS). The results revealed that the tested analytes at in vivo relevant levels (1–5 µg/mL) considerably reduced the structural changes in the fibrinogen molecule under the oxidative stress conditions induced by peroxynitrite. In particular, they diminished the oxidation and/or nitration of amino acid residues, including tyrosine and tryptophan, as well as the formation of high molecular weight aggregates. The decrease in the levels of 3-nitrotyrosine was about 13.5–33.0% and 58.3–97.1% at 1 µg/mL and 50 µg/mL, respectively. The study indicated that low molecular weight polyphenols were crucial for the protective activity of the extracts toward fibrinogen and other human plasma components. The investigated model compounds effectively protected total plasma proteins and lipids against oxidative damage (by reducing the levels of 3-nitrotyrosine and thiobarbituric acid-reactive substances and normalizing/enhancing the non-enzymatic antioxidant capacity of plasma). The work provides insight into the role of native and metabolized polyphenols as contributory factors to the systemic activity of blackthorn flower extracts within the circulatory system.
Collapse
|
57
|
Reyes JS, Fuentes-Lemus E, Aspée A, Davies MJ, Monasterio O, López-Alarcón C. M. jannaschii FtsZ, a key protein in bacterial cell division, is inactivated by peroxyl radical-mediated methionine oxidation. Free Radic Biol Med 2021; 166:53-66. [PMID: 33588048 DOI: 10.1016/j.freeradbiomed.2021.02.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/27/2021] [Accepted: 02/01/2021] [Indexed: 11/17/2022]
Abstract
Oxidation and inactivation of FtsZ is of interest due to the key role of this protein in bacterial cell division. In the present work, we studied peroxyl radical (from AAPH, 2,2'-azobis(2-methylpropionamidine)dihydrochloride) mediated oxidation of the highly stable FtsZ protein (MjFtsZ) from M. jannaschii, a thermophilic microorganism. MjFtsZ contains eleven Met, and single Tyr and Trp residues which would be expected to be susceptible to oxidation. We hypothesized that exposure of MjFtsZ to AAPH-derived radicals would induce Met oxidation, and cross-linking (via di-Tyr and di-Trp formation), with concomitant loss of its functional polymerization and depolymerization (GTPase) activities. Solutions containing MjFtsZ and AAPH (10 or 100 mM) were incubated at 37 °C for 3 h. Polymerization/depolymerization were assessed by light scattering, while changes in mass were analyzed by SDS-PAGE. Amino acid consumption was quantified by HPLC with fluorescence detection, or direct fluorescence (Trp). Oxidation products and modifications at individual Met residues were quantified by UPLC with mass detection. Oxidation inhibited polymerization-depolymerization activity, and yielded low levels of irreversible protein dimers. With 10 mM AAPH only Trp and Met were consumed giving di-alcohols, kynurenine and di-Trp (from Trp) and the sulfoxide (from Met). With 100 mM AAPH low levels of Tyr oxidation (but not di-Tyr formation) were also observed. Correlation with the functional analyses indicates that Met oxidation, and particularly Met164 is the key driver of MjFtsZ inactivation, probably as a result of the position of this residue at the protein-protein interface of longitudinal interactions and in close proximity to the GTP binding site.
Collapse
Affiliation(s)
- Juan Sebastián Reyes
- Departamento de Química Física, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Chile; Laboratorio de Biología Estructural y Molecular, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Chile
| | - Eduardo Fuentes-Lemus
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Denmark
| | - Alexis Aspée
- Departamento de Ciencias Del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Chile
| | - Michael J Davies
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Denmark
| | - Octavio Monasterio
- Laboratorio de Biología Estructural y Molecular, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Chile.
| | - Camilo López-Alarcón
- Departamento de Química Física, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Chile.
| |
Collapse
|
58
|
Wójtowicz A, Weber A, Wietecha-Posłuszny R, Lednev IK. Probing menstrual bloodstain aging with fluorescence spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 248:119172. [PMID: 33279406 DOI: 10.1016/j.saa.2020.119172] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 10/21/2020] [Accepted: 10/30/2020] [Indexed: 06/12/2023]
Abstract
Menstrual blood (MB) is a common and important type of forensic evidence, especially in sexual assault cases. MB is composed of peripheral blood (PB), vaginal fluid, and endometrial cells of the uterine wall. In forensic investigations, the differentiation of MB and PB can determine whether the blood present is a result of tissue damage from an assault or a natural cause and thus help to reconstruct the event. Understanding how menstrual blood changes is necessary to develop a method for bloodstain aging. Fluorescence spectroscopy, a promising spectroscopic method for bloodstain analysis, was used to probe the biochemical changes that occur over time in menstrual bloodstains. It was found that steady-state fluorescence spectra underwent significant changes over first nine hours post deposition. The underlying mechanism of fluorescence changes was proposed to involve the kinetic transformation of three fluorophores: tryptophan, nicotinamide adenine dinucleotide and flavins.
Collapse
Affiliation(s)
- Anna Wójtowicz
- Department of Chemistry, University at Albany, SUNY, 1400 Washington Avenue, Albany, NY 12222, USA; Laboratory for Forensic Chemistry, Department of Analytical Chemistry, Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa St., 30-387 Kraków, Poland
| | - Alexis Weber
- Department of Chemistry, University at Albany, SUNY, 1400 Washington Avenue, Albany, NY 12222, USA
| | - Renata Wietecha-Posłuszny
- Laboratory for Forensic Chemistry, Department of Analytical Chemistry, Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa St., 30-387 Kraków, Poland
| | - Igor K Lednev
- Department of Chemistry, University at Albany, SUNY, 1400 Washington Avenue, Albany, NY 12222, USA.
| |
Collapse
|
59
|
Agazzi ML, Durantini JE, Quiroga ED, Alvarez MG, Durantini EN. A novel tricationic fullerene C 60 as broad-spectrum antimicrobial photosensitizer: mechanisms of action and potentiation with potassium iodide. Photochem Photobiol Sci 2021; 20:327-341. [PMID: 33721278 DOI: 10.1007/s43630-021-00021-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/03/2021] [Indexed: 02/07/2023]
Abstract
A novel amphiphilic photosensitizing agent based on a tricationic fullerene C60 (DMC603+) was efficiently synthesized from its non-charged analogue MMC60. These fullerenes presented strong UV absorptions, with a broad range of less intense absorption up to 710 nm. Both compounds showed low fluorescence emission and were able to photosensitize the production of reactive oxygen species. Furthermore, photodecomposition of L-tryptophan sensitized by both fullerenes indicated an involvement of type II pathway. DMC603+ was an effective agent to produce the photodynamic inactivation (PDI) of Staphylococcus aureus, Escherichia coli and Candida albicans. Mechanistic insight indicated that the photodynamic action sensitized by DMC603+ was mainly mediated by both photoprocesses in bacteria, while a greater preponderance of the type II pathway was found in C. albicans. In presence of potassium iodide, a potentiation of PDI was observed due to the formation of reactive iodine species. Therefore, the amphiphilic DMC603+ can be used as an effective potential broad-spectrum antimicrobial photosensitizer.
Collapse
Affiliation(s)
- Maximiliano L Agazzi
- IDAS-CONICET, Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas Y Naturales, Universidad Nacional de Río Cuarto, Ruta Nacional 36 Km 601, X5804BYA, Río Cuarto, Córdoba, Argentina
| | - Javier E Durantini
- IITEMA-CONICET Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas Y Naturales, Universidad Nacional de Río Cuarto, Ruta Nacional 36 Km 601, X5804BYA, Río Cuarto, Córdoba, Argentina
| | - Ezequiel D Quiroga
- IDAS-CONICET, Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas Y Naturales, Universidad Nacional de Río Cuarto, Ruta Nacional 36 Km 601, X5804BYA, Río Cuarto, Córdoba, Argentina
| | - M Gabriela Alvarez
- IDAS-CONICET, Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas Y Naturales, Universidad Nacional de Río Cuarto, Ruta Nacional 36 Km 601, X5804BYA, Río Cuarto, Córdoba, Argentina
| | - Edgardo N Durantini
- IDAS-CONICET, Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas Y Naturales, Universidad Nacional de Río Cuarto, Ruta Nacional 36 Km 601, X5804BYA, Río Cuarto, Córdoba, Argentina.
| |
Collapse
|
60
|
Winkler DFH. Automated Solid-Phase Peptide Synthesis. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2021; 2103:59-94. [PMID: 31879919 DOI: 10.1007/978-1-0716-0227-0_5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The development of solid-phase peptide synthesis by Bruce Merrifield paved the way for a synthesis carried out by machines. Automated peptide synthesis is a fast and convenient way of synthesizing many peptides simultaneously. This chapter tries to give a general guidance for the development of synthesis protocols for the peptide synthesizer. It also provides some suggestions for the modification of the synthesized peptides. Additionally, many examples of possible challenges during and after the synthesis are given in order to support the reader in finding the best synthesis strategy. Numerous references are given to many of the described matters.
Collapse
|
61
|
Bellmaine S, Schnellbaecher A, Zimmer A. Reactivity and degradation products of tryptophan in solution and proteins. Free Radic Biol Med 2020; 160:696-718. [PMID: 32911085 DOI: 10.1016/j.freeradbiomed.2020.09.002] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/06/2020] [Accepted: 09/02/2020] [Indexed: 12/13/2022]
Abstract
Tryptophan is one of the essential mammalian amino acids and is thus a required component in human nutrition, animal feeds, and cell culture media. However, this aromatic amino acid is highly susceptible to oxidation and is known to degrade into multiple products during manufacturing, storage, and processing. Many physical and chemical processes contribute to the degradation of this compound, primarily via oxidation or cleavage of the highly reactive indole ring. The central contributing factors are reactive oxygen species, such as singlet oxygen, hydrogen peroxide, and hydroxyl radicals; light and photosensitizers; metals; and heat. In a multi-component mixture, tryptophan also commonly reacts with carbonyl-containing compounds, leading to a wide variety of products. The purpose of this review is to summarize the current state of knowledge regarding the degradation and interaction products of tryptophan in complex liquid solutions and in proteins. For the purposes of context, a brief summary of the key pathways in tryptophan metabolism will be included, along with common methods and issues in tryptophan manufacturing. The review will focus on the conditions that lead to tryptophan degradation, the products generated in these processes, their known biological effects, and methods which may be applied to stabilize the amino acid.
Collapse
Affiliation(s)
- Stephanie Bellmaine
- Merck Life Science, Upstream R&D, Frankfurter Strasse 250, 64293, Darmstadt, Germany
| | - Alisa Schnellbaecher
- Merck Life Science, Upstream R&D, Frankfurter Strasse 250, 64293, Darmstadt, Germany
| | - Aline Zimmer
- Merck Life Science, Upstream R&D, Frankfurter Strasse 250, 64293, Darmstadt, Germany.
| |
Collapse
|
62
|
Cortés-Ríos J, Zárate AM, Figueroa JD, Medina J, Fuentes-Lemus E, Rodríguez-Fernández M, Aliaga M, López-Alarcón C. Protein quantification by bicinchoninic acid (BCA) assay follows complex kinetics and can be performed at short incubation times. Anal Biochem 2020; 608:113904. [PMID: 32800701 DOI: 10.1016/j.ab.2020.113904] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 08/03/2020] [Accepted: 08/05/2020] [Indexed: 10/23/2022]
Abstract
Amongst the available methodologies for protein determination, the bicinchoninic acid (BCA) assay highlights for its simplicity, sensitivity, repeatability and reproducibility. Nevertheless, in spite that the general principle behind this methodology is known, there are still unanswered questions regarding the chemistry behind the assay and the experimental conditions commonly employed. The present work explored the kinetics, and the analytical response of the assay to free amino acids, peptides (containing tryptophan and tyrosine), and proteins. Results revealed kinetic profiles characterized by the absence of plateaus, with behaviors depending on the type of the sample. The latter, along with contribution to the BCA index elicited by oxidation products generated at the side chain of tryptophan and tyrosine, as well as pre-oxidized β-casein, evidenced the presence of complex reaction mechanisms. In spite of such complexity, our results showed that the BCA index is not modulated by the incubation time. This applies for responses producing absorbance intensities (at 562 nm) higher than 0.1. Therefore, we propose that the assay can be applied at shorter incubation times (15 min) than those indicated in manufactures specifications, and usually used by researches and industry (30 min at 37 °C).
Collapse
Affiliation(s)
- Javiera Cortés-Ríos
- Pontificia Universidad Católica de Chile, Instituto de Ingeniería Biológica y Médica, Santiago, Chile
| | - Ana María Zárate
- Pontificia Universidad Católica de Chile, Facultad de Química y de Farmacia, Departamento de Química Física, Santiago, Chile
| | - Juan David Figueroa
- Pontificia Universidad Católica de Chile, Facultad de Química y de Farmacia, Departamento de Química Física, Santiago, Chile
| | - Joaquín Medina
- Pontificia Universidad Católica de Chile, Facultad de Química y de Farmacia, Departamento de Química Física, Santiago, Chile
| | - Eduardo Fuentes-Lemus
- Pontificia Universidad Católica de Chile, Facultad de Química y de Farmacia, Departamento de Química Física, Santiago, Chile
| | - María Rodríguez-Fernández
- Pontificia Universidad Católica de Chile, Instituto de Ingeniería Biológica y Médica, Santiago, Chile
| | - Margarita Aliaga
- Pontificia Universidad Católica de Chile, Facultad de Química y de Farmacia, Departamento de Química Física, Santiago, Chile
| | - Camilo López-Alarcón
- Pontificia Universidad Católica de Chile, Facultad de Química y de Farmacia, Departamento de Química Física, Santiago, Chile.
| |
Collapse
|
63
|
Jacobitz AW, Liu Q, Suravajjala S, Agrawal NJ. Tryptophan Oxidation of a Monoclonal Antibody Under Diverse Oxidative Stress Conditions: Distinct Oxidative Pathways Favor Specific Tryptophan Residues. J Pharm Sci 2020; 110:719-726. [PMID: 33198947 DOI: 10.1016/j.xphs.2020.10.039] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 10/14/2020] [Accepted: 10/19/2020] [Indexed: 10/23/2022]
Abstract
Tryptophan oxidation can play an important role in selecting therapeutic monoclonal antibodies for commercialization. Monoclonal antibodies that harbor particularly sensitive tryptophan residues are typically discarded in favor of oxidation resistant antibodies. The susceptibility of any individual tryptophan residue to oxidation is typically evaluated through forced degradation studies during the molecule development process. We compared the results of several common forced degradation "stress tests" for each tryptophan residue in a monoclonal antibody and found that high-stress oxidation conditions consistently provide a different ranking of oxidative sensitivity across the individual tryptophan residues compared to long-term thermal stability or low-stress conditions. We subsequently determined that this difference in ranking is largely due to an overabundance of double oxidation (i.e. detected as +32 Da) of specific tryptophan residues under high stress conditions compared to single oxidation (i.e. +16 Da). We posit that this double oxidation is in fact mechanistically distinct from the observed single oxidation and that high stress conditions favor the double oxidation mechanism (and double oxidation sensitive tryptophan residues) while single oxidation appears to be the primary mode of oxidation under H2O2 stress and long-term thermal stability and favors different tryptophan residues which are more susceptible to the single oxidation mechanism.
Collapse
|
64
|
Nazir S, Jankowski V, Bender G, Zewinger S, Rye KA, van der Vorst EP. Interaction between high-density lipoproteins and inflammation: Function matters more than concentration! Adv Drug Deliv Rev 2020; 159:94-119. [PMID: 33080259 DOI: 10.1016/j.addr.2020.10.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 09/20/2020] [Accepted: 10/13/2020] [Indexed: 02/07/2023]
Abstract
High-density lipoprotein (HDL) plays an important role in lipid metabolism and especially contributes to the reverse cholesterol transport pathway. Over recent years it has become clear that the effect of HDL on immune-modulation is not only dependent on HDL concentration but also and perhaps even more so on HDL function. This review will provide a concise general introduction to HDL followed by an overview of post-translational modifications of HDL and a detailed overview of the role of HDL in inflammatory diseases. The clinical potential of HDL and its main apolipoprotein constituent, apoA-I, is also addressed in this context. Finally, some conclusions and remarks that are important for future HDL-based research and further development of HDL-focused therapies are discussed.
Collapse
|
65
|
Dhankhar D, Li R, Nagpal A, Chen J, Krishnamoorthi A, Rentzepis PM. A novel approach for remote detection of bacteria using simple charge-coupled device cameras and telescope. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2020; 91:074106. [PMID: 32752878 DOI: 10.1063/5.0010701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 06/25/2020] [Indexed: 06/11/2023]
Abstract
We have designed, constructed, and utilized a charge-coupled device system, integrated with a small Newtonian telescope, capable of long distance recording of bacterial fluorescence and synchronous spectra for the detection of bacteria, their component molecules, and other species. This newly developed optical system utilizes commercial monochrome cameras that we have used to detect various bacterial strains, such as Escherichia coli, and determine their concentrations. In addition, using this system, we were able to differentiate between live and dead bacteria after treatment with ultraviolet light or antibiotics.
Collapse
Affiliation(s)
- Dinesh Dhankhar
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas 77843, USA
| | - Runze Li
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas 77843, USA
| | - Anushka Nagpal
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas 77843, USA
| | - Jie Chen
- Center for Ultrafast Science and Technology, Key Laboratory for Laser Plasmas (Ministry of Education), School of Physics and Astronomy, Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Arjun Krishnamoorthi
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas 77843, USA
| | - Peter M Rentzepis
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas 77843, USA
| |
Collapse
|
66
|
Baigorria E, Milanesio ME, Durantini EN. Synthesis, spectroscopic properties and photodynamic activity of Zn(II) phthalocyanine-polymer conjugates as antimicrobial agents. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109816] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
67
|
Hinterholzer A, Stanojlovic V, Regl C, Huber CG, Cabrele C, Schubert M. Identification and Quantification of Oxidation Products in Full-Length Biotherapeutic Antibodies by NMR Spectroscopy. Anal Chem 2020; 92:9666-9673. [PMID: 32530275 PMCID: PMC7467420 DOI: 10.1021/acs.analchem.0c00965] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
![]()
Therapeutic
proteins are an indispensable class of drugs and often
therapeutics of last resort. They are sensitive to oxidation, which
is of critical concern, because it can affect drug safety and efficacy.
Protein oxidation, with methionine and tryptophan as the most susceptible
moieties, is mainly monitored by HPLC–MS techniques. However,
since several oxidation products display the same mass difference,
their identification by MS is often ambiguous. Therefore, an alternative
analytical method able to unambiguously identify and, ideally, also
quantify oxidation species in proteins is highly desired. Here, we
present an NMR-based approach to monitor oxidation in full-length
proteins under denaturing conditions, as demonstrated on two biotherapeutic
monoclonal antibodies (mAbs). We show that methionine sulfoxide, methionine
sulfone, N-formylkynurenine, kynurenine, oxindolylalanine,
hydroxypyrroloindole, and 5-hydroxytryptophan result in characteristic
chemical shift correlations suited for their identification and quantification.
We identified the five most abundant oxidation products in forced
degradation studies of two full-length therapeutic mAbs and can also
unambiguously distinguish oxindolylalanine from 5-hydroxytryptophan,
which are undistinguishable by MS due to the same mass shift. Quantification
of the abundant methionine sulfoxide by NMR and MS gave highly comparable
values. These results underline the suitability of NMR spectroscopy
for the identification and quantification of critical quality attributes
of biotherapeutics.
Collapse
Affiliation(s)
- Arthur Hinterholzer
- Christian Doppler Laboratory for Innovative Tools for Biosimilar Characterization, University of Salzburg, Hellbrunner Strasse 34, 5020 Salzburg, Austria.,Department of Biosciences, University of Salzburg, Billrothstrasse 11, 5020 Salzburg, Austria
| | - Vesna Stanojlovic
- Department of Biosciences, University of Salzburg, Billrothstrasse 11, 5020 Salzburg, Austria
| | - Christof Regl
- Christian Doppler Laboratory for Innovative Tools for Biosimilar Characterization, University of Salzburg, Hellbrunner Strasse 34, 5020 Salzburg, Austria.,Department of Biosciences, University of Salzburg, Billrothstrasse 11, 5020 Salzburg, Austria
| | - Christian G Huber
- Christian Doppler Laboratory for Innovative Tools for Biosimilar Characterization, University of Salzburg, Hellbrunner Strasse 34, 5020 Salzburg, Austria.,Department of Biosciences, University of Salzburg, Billrothstrasse 11, 5020 Salzburg, Austria
| | - Chiara Cabrele
- Christian Doppler Laboratory for Innovative Tools for Biosimilar Characterization, University of Salzburg, Hellbrunner Strasse 34, 5020 Salzburg, Austria.,Department of Biosciences, University of Salzburg, Billrothstrasse 11, 5020 Salzburg, Austria
| | - Mario Schubert
- Christian Doppler Laboratory for Innovative Tools for Biosimilar Characterization, University of Salzburg, Hellbrunner Strasse 34, 5020 Salzburg, Austria.,Department of Biosciences, University of Salzburg, Billrothstrasse 11, 5020 Salzburg, Austria
| |
Collapse
|
68
|
Deciphering the Mechanisms of Improved Immunogenicity of Hypochlorous Acid-Treated Antigens in Anti-Cancer Dendritic Cell-Based Vaccines. Vaccines (Basel) 2020; 8:vaccines8020271. [PMID: 32498431 PMCID: PMC7349990 DOI: 10.3390/vaccines8020271] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 05/27/2020] [Accepted: 05/30/2020] [Indexed: 11/16/2022] Open
Abstract
Hypochlorous acid (HOCl)-treated whole tumor cell lysates (Ox-L) have been shown to be more immunogenic when used as an antigen source for therapeutic dendritic cell (DC)-based vaccines, improving downstream immune responses both in vitro and in vivo. However, the mechanisms behind the improved immunogenicity are still elusive. To address this question, we conducted a proteomic and immunopeptidomics analyses to map modifications and alterations introduced by HOCl treatment using a human melanoma cell line as a model system. First, we show that one-hour HOCl incubation readily induces extensive protein oxidation, mitochondrial biogenesis, and increased expression of chaperones and antioxidant proteins, all features indicative of an activation of oxidative stress-response pathways. Characterization of the DC proteome after loading with HOCl treated tumor lysate (Ox-L) showed no significant difference compared to loading with untreated whole tumor lysate (FT-L). On the other hand, detailed immunopeptidomic analyses on monocyte-derived DCs (mo-DCs) revealed a great increase in human leukocyte antigen class II (HLA-II) presentation in mo-DCs loaded with Ox-L compared to the FT-L control. Further, 2026 HLA-II ligands uniquely presented on Ox-L-loaded mo-DCs were identified. In comparison, identities and intensities of HLA class I (HLA-I) ligands were overall comparable. We found that HLA-II ligands uniquely presented by DCs loaded with Ox-L were more solvent exposed in the structures of their source proteins, contrary to what has been hypothesized so far. Analyses from a phase I clinical trial showed that vaccinating patients using autologous Ox-L as an antigen source efficiently induces polyfunctional vaccine-specific CD4+ T cell responses. Hence, these results suggest that the increased immunogenicity of Ox-L is, at least in part, due to qualitative and quantitative changes in the HLA-II ligandome, potentially leading to an increased HLA-II dependent stimulation of the T cell compartment (i.e., CD4+ T cell responses). These results further contribute to the development of more effective and immunogenic DC-based vaccines and to the molecular understanding of the mechanism behind HOCl adjuvant properties.
Collapse
|
69
|
The Antioxidant Peptide Salamandrin-I: First Bioactive Peptide Identified from Skin Secretion of Salamandra Genus (Salamandra salamandra). Biomolecules 2020; 10:biom10040512. [PMID: 32230960 PMCID: PMC7226163 DOI: 10.3390/biom10040512] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/23/2020] [Accepted: 03/24/2020] [Indexed: 12/25/2022] Open
Abstract
Amphibian skin is a multifunctional organ that plays key roles in defense, breathing, and water balance. In this study, skin secretion samples of the fire salamander (Salamandra salamandra) were separated using RP-HPLC and de novo sequenced using MALDI-TOF MS/MS. Next, we used an in silico platform to screen antioxidant molecules in the framework of density functional theory. One of the identified peptides, salamandrin-I, [M + H]+ = 1406.6 Da, was selected for solid-phase synthesis; it showed free radical scavenging activity against DPPH and ABTS radicals. Salamandrin-I did not show antimicrobial activity against Gram-positive and -negative bacteria. In vitro assays using human microglia and red blood cells showed that salamandrin-I has no cytotoxicity up to the concentration of 100 µM. In addition, in vivo toxicity tests on Galleria mellonella larvae resulted in no mortality at 20 and 40 mg/kg. Antioxidant peptides derived from natural sources are increasingly attracting interest. Among several applications, these peptides, such as salamandrin-I, can be used as templates in the design of novel antioxidant molecules that may contribute to devising strategies for more effective control of neurological disease.
Collapse
|
70
|
Figueroa JD, Zárate AM, Fuentes-Lemus E, Davies MJ, López-Alarcón C. Formation and characterization of crosslinks, including Tyr–Trp species, on one electron oxidation of free Tyr and Trp residues by carbonate radical anion. RSC Adv 2020; 10:25786-25800. [PMID: 35518626 PMCID: PMC9055361 DOI: 10.1039/d0ra04051g] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 06/28/2020] [Indexed: 01/04/2023] Open
Abstract
Dityrosine and ditryptophan bonds have been implied in protein crosslinking. This is associated with oxidative stress conditions including those involved in neurodegenerative pathologies and age-related processes. Formation of dityrosine and ditryptophan derives from radical–radical reactions involving Tyr˙ and Trp˙ radicals. However, cross reactions of Tyr˙ and Trp˙ leading to Tyr–Trp crosslinks and their biological consequences have been less explored. In the present work we hypothesized that exposure of free Tyr and Trp to a high concentration of carbonate anion radicals (CO3˙−), under anaerobic conditions, would result in the formation of Tyr–Trp species, as well as dityrosine and ditryptophan crosslinks. Here we report a simple experimental procedure, employing CO3˙− generated photochemically by illumination of a Co(iii) complex at 254 nm, that produces micromolar concentrations of Tyr–Trp crosslinks. Analysis by mass spectrometry of solutions containing only the individual amino acids, and the Co(iii) complex, provided evidence for the formation of o,o′-dityrosine and isodityrosine from Tyr, and three ditryptophan dimers from Trp. When mixtures of Tyr and Trp were illuminated in an identical manner, Tyr–Trp crosslinks were detected together with dityrosine and ditryptophan dimers. These results indicate that there is a balance between the formation of these three classes of crosslinks, which is dependent on the Tyr and Trp concentrations. The methods reported here allow the generation of significant yields of isolated Tyr–Trp adducts and their characterization. This technology should facilitate the detection, and examination of the biological consequences of Tyr–Trp crosslink formation in complex systems in future investigations. Exposure of free Tyr and Trp to a high concentration of carbonate anion radicals (CO3˙−), under anaerobic conditions, result in the formation of Tyr–Trp species, as well as dityrosine and ditryptophan crosslinks.![]()
Collapse
Affiliation(s)
- Juan David Figueroa
- Pontificia Universidad Católica de Chile, Facultad de Química y de Farmacia
- Departamento de Química Física
- Santiago
- Chile
| | - Ana María Zárate
- Pontificia Universidad Católica de Chile, Facultad de Química y de Farmacia
- Departamento de Química Física
- Santiago
- Chile
| | - Eduardo Fuentes-Lemus
- Pontificia Universidad Católica de Chile, Facultad de Química y de Farmacia
- Departamento de Química Física
- Santiago
- Chile
| | - Michael J. Davies
- University of Copenhagen
- Department of Biomedical Sciences
- Copenhagen
- Denmark
| | - Camilo López-Alarcón
- Pontificia Universidad Católica de Chile, Facultad de Química y de Farmacia
- Departamento de Química Física
- Santiago
- Chile
| |
Collapse
|
71
|
Hawkins CL, Davies MJ. Detection, identification, and quantification of oxidative protein modifications. J Biol Chem 2019; 294:19683-19708. [PMID: 31672919 PMCID: PMC6926449 DOI: 10.1074/jbc.rev119.006217] [Citation(s) in RCA: 248] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Exposure of biological molecules to oxidants is inevitable and therefore commonplace. Oxidative stress in cells arises from both external agents and endogenous processes that generate reactive species, either purposely (e.g. during pathogen killing or enzymatic reactions) or accidentally (e.g. exposure to radiation, pollutants, drugs, or chemicals). As proteins are highly abundant and react rapidly with many oxidants, they are highly susceptible to, and major targets of, oxidative damage. This can result in changes to protein structure, function, and turnover and to loss or (occasional) gain of activity. Accumulation of oxidatively-modified proteins, due to either increased generation or decreased removal, has been associated with both aging and multiple diseases. Different oxidants generate a broad, and sometimes characteristic, spectrum of post-translational modifications. The kinetics (rates) of damage formation also vary dramatically. There is a pressing need for reliable and robust methods that can detect, identify, and quantify the products formed on amino acids, peptides, and proteins, especially in complex systems. This review summarizes several advances in our understanding of this complex chemistry and highlights methods that are available to detect oxidative modifications-at the amino acid, peptide, or protein level-and their nature, quantity, and position within a peptide sequence. Although considerable progress has been made in the development and application of new techniques, it is clear that further development is required to fully assess the relative importance of protein oxidation and to determine whether an oxidation is a cause, or merely a consequence, of injurious processes.
Collapse
Affiliation(s)
- Clare L Hawkins
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen 2200, Denmark
| | - Michael J Davies
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen 2200, Denmark
| |
Collapse
|
72
|
Oxidation of myofibrillar proteins induced by peroxyl radicals: Role of oxidizable amino acids. Food Res Int 2019; 126:108580. [DOI: 10.1016/j.foodres.2019.108580] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 07/02/2019] [Accepted: 07/24/2019] [Indexed: 02/02/2023]
|
73
|
Abstract
Tryptophan (TRP), an essential amino acid in mammals, is involved in several physiological processes including neuronal function, immunity, and gut homeostasis. In humans, TRP is metabolized via the kynurenine and serotonin pathways, leading to the generation of biologically active compounds, such as serotonin, melatonin and niacin. In addition to endogenous TRP metabolism, resident gut microbiota also contributes to the production of specific TRP metabolites and indirectly influences host physiology. The variety of physiologic functions regulated by TRP reflects the complex pattern of diseases associated with altered homeostasis. Indeed, an imbalance in the synthesis of TRP metabolites has been associated with pathophysiologic mechanisms occurring in neurologic and psychiatric disorders, in chronic immune activation and in the immune escape of cancer. In this chapter, the role of TRP metabolism in health and disease is presented. Disorders involving the central nervous system, malignancy, inflammatory bowel and cardiovascular disease are discussed.
Collapse
Affiliation(s)
- Stefano Comai
- Division of Neuroscience, San Raffaele Scientific Institute and Vita-Salute University, Milan, Italy; Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Antonella Bertazzo
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Martina Brughera
- Division of Neuroscience, San Raffaele Scientific Institute and Vita-Salute University, Milan, Italy
| | - Sara Crotti
- Institute of Paediatric Research-Città della Speranza, Padua, Italy.
| |
Collapse
|
74
|
Susceptibility of protein therapeutics to spontaneous chemical modifications by oxidation, cyclization, and elimination reactions. Amino Acids 2019; 51:1409-1431. [DOI: 10.1007/s00726-019-02787-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 09/07/2019] [Indexed: 12/12/2022]
Abstract
AbstractPeptides and proteins are preponderantly emerging in the drug market, as shown by the increasing number of biopharmaceutics already approved or under development. Biomolecules like recombinant monoclonal antibodies have high therapeutic efficacy and offer a valuable alternative to small-molecule drugs. However, due to their complex three-dimensional structure and the presence of many functional groups, the occurrence of spontaneous conformational and chemical changes is much higher for peptides and proteins than for small molecules. The characterization of biotherapeutics with modern and sophisticated analytical methods has revealed the presence of contaminants that mainly arise from oxidation- and elimination-prone amino-acid side chains. This review focuses on protein chemical modifications that may take place during storage due to (1) oxidation (methionine, cysteine, histidine, tyrosine, tryptophan, and phenylalanine), (2) intra- and inter-residue cyclization (aspartic and glutamic acid, asparagine, glutamine, N-terminal dipeptidyl motifs), and (3) β-elimination (serine, threonine, cysteine, cystine) reactions. It also includes some examples of the impact of such modifications on protein structure and function.
Collapse
|
75
|
Trp-His covalent adduct in bilirubin oxidase is crucial for effective bilirubin binding but has a minor role in electron transfer. Sci Rep 2019; 9:13700. [PMID: 31548583 PMCID: PMC6757100 DOI: 10.1038/s41598-019-50105-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 09/06/2019] [Indexed: 01/09/2023] Open
Abstract
Unlike any protein studied so far, the active site of bilirubin oxidase from Myrothecium verrucaria contains a unique type of covalent link between tryptophan and histidine side chains. The role of this post-translational modification in substrate binding and oxidation is not sufficiently understood. Our structural and mutational studies provide evidence that this Trp396–His398 adduct modifies T1 copper coordination and is an important part of the substrate binding and oxidation site. The presence of the adduct is crucial for oxidation of substituted phenols and it substantially influences the rate of oxidation of bilirubin. Additionally, we bring the first structure of bilirubin oxidase in complex with one of its products, ferricyanide ion, interacting with the modified tryptophan side chain, Arg356 and the active site-forming loop 393-398. The results imply that structurally and chemically distinct types of substrates, including bilirubin, utilize the Trp–His adduct mainly for binding and to a smaller extent for electron transfer.
Collapse
|
76
|
Tomin T, Schittmayer M, Honeder S, Heininger C, Birner-Gruenberger R. Irreversible oxidative post-translational modifications in heart disease. Expert Rev Proteomics 2019; 16:681-693. [PMID: 31361162 PMCID: PMC6816499 DOI: 10.1080/14789450.2019.1645602] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 07/16/2019] [Indexed: 12/11/2022]
Abstract
Introduction: Development of specific biomarkers aiding early diagnosis of heart failure is an ongoing challenge. Biomarkers commonly used in clinical routine usually act as readouts of an already existing acute condition rather than disease initiation. Functional decline of cardiac muscle is greatly aggravated by increased oxidative stress and damage of proteins. Oxidative post-translational modifications occur already at early stages of tissue damage and are thus regarded as potential up-coming disease markers. Areas covered: Clinical practice regarding commonly used biomarkers for heart disease is briefly summarized. The types of oxidative post-translational modification in cardiac pathologies are discussed with a special focus on available quantitative techniques and characteristics of individual modifications with regard to their stability and analytical accessibility. As irreversible oxidative modifications trigger protein degradation pathways or cause protein aggregation, both influencing biomarker abundance, a chapter is dedicated to their regulation in the heart.
Collapse
Affiliation(s)
- Tamara Tomin
- Institute of Pathology, Diagnostic and Research Center for Molecular Biomedicine, Medical University of Graz, Graz, Austria
- Omics Center Graz, BioTechMed-Graz, Graz, Austria
- Institute of Chemical Technologies and Analytics, Vienna University of Technology, Vienna, Austria
| | - Matthias Schittmayer
- Institute of Pathology, Diagnostic and Research Center for Molecular Biomedicine, Medical University of Graz, Graz, Austria
- Omics Center Graz, BioTechMed-Graz, Graz, Austria
- Institute of Chemical Technologies and Analytics, Vienna University of Technology, Vienna, Austria
| | - Sophie Honeder
- Institute of Pathology, Diagnostic and Research Center for Molecular Biomedicine, Medical University of Graz, Graz, Austria
- Omics Center Graz, BioTechMed-Graz, Graz, Austria
| | - Christoph Heininger
- Institute of Pathology, Diagnostic and Research Center for Molecular Biomedicine, Medical University of Graz, Graz, Austria
- Omics Center Graz, BioTechMed-Graz, Graz, Austria
| | - Ruth Birner-Gruenberger
- Institute of Pathology, Diagnostic and Research Center for Molecular Biomedicine, Medical University of Graz, Graz, Austria
- Omics Center Graz, BioTechMed-Graz, Graz, Austria
- Institute of Chemical Technologies and Analytics, Vienna University of Technology, Vienna, Austria
| |
Collapse
|
77
|
Bikaki M, Kuhnert N. Identification of Products from Thermal Degradation of Tryptophan Containing Pentapeptides: Oxidation and Decarboxylation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:7448-7454. [PMID: 31244194 DOI: 10.1021/acs.jafc.9b01056] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In this contribution, we investigate the thermal decomposition of four pentapeptides containing a tryptophan moiety. Pentapeptides were heated at 220 °C, and the resulting reaction mixtures were investigated by HPLC coupled to high-resolution mass spectrometry and tandem mass spectrometry. A total of 95 thermal decomposition products could be observed and resolved by chromatography. In detail, we report on the structure assignment of two types of reaction products common to investigated peptides and introduce two decomposition mechanisms. Pentapeptides react with oxygen to produce hydroxyl-tryptophan derivatives. In addition, we observe the C-terminal decarboxylation of two peptides to form N-acyl tryptamine derivatives.
Collapse
Affiliation(s)
- Maria Bikaki
- Department of Life Sciences & Chemistry , Jacobs University Bremen , Campus Ring 1 , 28759 Bremen , Germany
| | - Nikolai Kuhnert
- Department of Life Sciences & Chemistry , Jacobs University Bremen , Campus Ring 1 , 28759 Bremen , Germany
| |
Collapse
|
78
|
Barnett GV, Balakrishnan G, Chennamsetty N, Hoffman L, Bongers J, Tao L, Huang Y, Slaney T, Das TK, Leone A, Kar SR. Probing the Tryptophan Environment in Therapeutic Proteins: Implications for Higher Order Structure on Tryptophan Oxidation. J Pharm Sci 2019; 108:1944-1952. [DOI: 10.1016/j.xphs.2018.12.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 11/14/2018] [Accepted: 12/13/2018] [Indexed: 01/01/2023]
|
79
|
Agazzi ML, Durantini JE, Gsponer NS, Durantini AM, Bertolotti SG, Durantini EN. Light-Harvesting Antenna and Proton-Activated Photodynamic Effect of a Novel BODIPY-Fullerene C 60 Dyad as Potential Antimicrobial Agent. Chemphyschem 2019; 20:1110-1125. [PMID: 30969481 DOI: 10.1002/cphc.201900181] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 03/22/2019] [Indexed: 12/22/2022]
Abstract
A covalently linked BODIPY-fullerene C60 dyad (BDP-C60 ) was synthesized as a two-segment structure, which consists of a visible light-harvesting antenna attached to an energy or electron acceptor moiety. This structure was designed to improve the photodynamic action of fullerene C60 to inactivate bacteria. The absorption spectrum of BDP-C60 was found to be a superposition of the spectra of its constitutional moieties, whereas the fluorescence emission of the BODIPY unit was strongly quenched by the fullerene C60 . Spectroscopic, calculations, and redox studies indicate a competence between photoinduced energy and electron transfer. Protonating the dimethylaminophenyl substituent through addition of an acidic medium led to a substantial increase in the fluorescence emission, triplet excited state formation, and singlet molecular oxygen production. At physiological pH, photosensitized inactivation of Staphylococcus aureus mediated by 1 μM BDP-C60 exhibited a 4.5 log decrease of cell survival (>99.997 %) after 15 min irradiation. A similar result was obtained with Escherichia coli using 30 min irradiation. Moreover, proton-activated photodynamic action of BDP-C60 turned this dyad into a highly effective photosensitizer to eradicate E. coli. Therefore, BDP-C60 is an interesting photosensitizing structure in which the light-harvesting antenna effect of the BODIPY unit combined with the protonation of dimethylaminophenyl group can be used to improve the photoinactivation of bacteria.
Collapse
Affiliation(s)
- Maximiliano L Agazzi
- IDAS-CONICET, Departamento de Química Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta Nacional 36 Km 601, X5804BYA, Río Cuarto, Córdoba, Argentina
| | - Javier E Durantini
- IITEMA-CONICET, Departamento de Química Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta Nacional 36 Km 601, X5804BYA, Río Cuarto, Córdoba, Argentina
| | - Natalia S Gsponer
- IDAS-CONICET, Departamento de Química Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta Nacional 36 Km 601, X5804BYA, Río Cuarto, Córdoba, Argentina
| | - Andrés M Durantini
- IDAS-CONICET, Departamento de Química Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta Nacional 36 Km 601, X5804BYA, Río Cuarto, Córdoba, Argentina
| | - Sonia G Bertolotti
- IITEMA-CONICET, Departamento de Química Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta Nacional 36 Km 601, X5804BYA, Río Cuarto, Córdoba, Argentina
| | - Edgardo N Durantini
- IDAS-CONICET, Departamento de Química Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta Nacional 36 Km 601, X5804BYA, Río Cuarto, Córdoba, Argentina
| |
Collapse
|
80
|
McCaslin TG, Pagba CV, Chi SH, Hwang HJ, Gumbart JC, Perry JW, Olivieri C, Porcelli F, Veglia G, Guo Z, McDaniel M, Barry BA. Structure and Function of Tryptophan-Tyrosine Dyads in Biomimetic β Hairpins. J Phys Chem B 2019; 123:2780-2791. [PMID: 30888824 PMCID: PMC6463897 DOI: 10.1021/acs.jpcb.8b12452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
![]()
Tyrosine–tryptophan (YW) dyads
are ubiquitous
structural motifs in enzymes and play roles in proton-coupled electron
transfer (PCET) and, possibly, protection from oxidative stress. Here,
we describe the function of YW dyads in de novo designed 18-mer, β
hairpins. In Peptide M, a YW dyad is formed between W14 and Y5. A
UV hypochromic effect and an excitonic Cotton signal are observed,
in addition to singlet, excited state (W*) and fluorescence emission
spectral shifts. In a second Peptide, Peptide MW, a Y5–W13
dyad is formed diagonally across the strand and distorts the backbone.
On a picosecond timescale, the W* excited-state decay kinetics are
similar in all peptides but are accelerated relative to amino acids
in solution. In Peptide MW, the W* spectrum is consistent with increased
conformational flexibility. In Peptide M and MW, the electron paramagnetic
resonance spectra obtained after UV photolysis are characteristic
of tyrosine and tryptophan radicals at 160 K. Notably, at pH 9, the
radical photolysis yield is decreased in Peptide M and MW, compared
to that in a tyrosine and tryptophan mixture. This protective effect
is not observed at pH 11 and is not observed in peptides containing
a tryptophan–histidine dyad or tryptophan alone. The YW dyad
protective effect is attributed to an increase in the radical recombination
rate. This increase in rate can be facilitated by hydrogen-bonding
interactions, which lower the barrier for the PCET reaction at pH
9. These results suggest that the YW dyad structural motif promotes
radical quenching under conditions of reactive oxygen stress.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Fernando Porcelli
- Department for Innovation in Biological, Agro-Food and Forest Systems , University of Tuscia , 01100 Viterbo , Italy
| | | | | | | | | |
Collapse
|
81
|
Rojas-Rengifo DF, Ulloa-Guerrero CP, Joppich M, Haas R, Del Pilar Delgado M, Jaramillo C, Jiménez-Soto LF. Tryptophan usage by Helicobacter pylori differs among strains. Sci Rep 2019; 9:873. [PMID: 30696868 PMCID: PMC6351589 DOI: 10.1038/s41598-018-37263-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 11/19/2018] [Indexed: 11/14/2022] Open
Abstract
Because of its association with severe gastric pathologies, including gastric cancer, Helicobacter pylori has been subject of research for more than 30 years. Its capacity to adapt and survive in the human stomach can be attributed to its genetic flexibility. Its natural competence and its capacity to turn genes on and off allows H. pylori to adapt rapidly to the changing conditions of its host. Because of its genetic variability, it is difficult to establish the uniqueness of each strain obtained from a human host. The methods considered to-date to deliver the best result for differentiation of strains are Rapid Amplification of Polymorphic DNA (RAPD), Multilocus Sequence Typing (MLST) and Whole Genome Sequencing (WGS) analysis. While RAPD analysis is cost-effective, it requires a stable genome for its reliability. MLST and WGS are optimal for strain identification, however, they require analysis of data at the bioinformatics level. Using the StainFree method, which modifies tryptophan residues on proteins using 2, 2, 2, - trichloroethanol (TCE), we observed a strain specific pattern of tryptophan in 1D acrylamide gels. In order to establish the effectiveness of tryptophan fingerprinting for strain identification, we compared the graphic analysis of tryptophan-labelled bands in the gel images with MLST results. Based on this, we find that tryptophan banding patterns can be used as an alternative method for the differentiation of H. pylori strains. Furthermore, investigating the origin for these differences, we found that H. pylori strains alters the number and/or position of tryptophan present in several proteins at the genetic code level, with most exchanges taking place in membrane- and cation-binding proteins, which could be part of a novel response of H. pylori to host adaptation.
Collapse
Affiliation(s)
- Diana F Rojas-Rengifo
- Molecular Diagnostic and Bioinformatics Laboratory, Biological Sciences Department, Los Andes University, Carrera 1 Nr.18A-10, Bogotá, Colombia.,Max von Pettenkofer Institute of Hygiene and Medical Microbiology, Faculty of Medicine, LMU Munich, Pettenkoferstr. 9a, D-80336, Munich, Germany
| | - Cindy P Ulloa-Guerrero
- Molecular Diagnostic and Bioinformatics Laboratory, Biological Sciences Department, Los Andes University, Carrera 1 Nr.18A-10, Bogotá, Colombia.,Max von Pettenkofer Institute of Hygiene and Medical Microbiology, Faculty of Medicine, LMU Munich, Pettenkoferstr. 9a, D-80336, Munich, Germany
| | - Markus Joppich
- Lehr- und Forschungseinheit Bioinformatik. Institut für Informatik, Ludwig-Maximilians-Universität München, Amalienstr. 17, D-80333, Munich, Germany
| | - Rainer Haas
- Max von Pettenkofer Institute of Hygiene and Medical Microbiology, Faculty of Medicine, LMU Munich, Pettenkoferstr. 9a, D-80336, Munich, Germany
| | - Maria Del Pilar Delgado
- Molecular Diagnostic and Bioinformatics Laboratory, Biological Sciences Department, Los Andes University, Carrera 1 Nr.18A-10, Bogotá, Colombia
| | - Carlos Jaramillo
- Molecular Diagnostic and Bioinformatics Laboratory, Biological Sciences Department, Los Andes University, Carrera 1 Nr.18A-10, Bogotá, Colombia
| | - Luisa F Jiménez-Soto
- Max von Pettenkofer Institute of Hygiene and Medical Microbiology, Faculty of Medicine, LMU Munich, Pettenkoferstr. 9a, D-80336, Munich, Germany. .,Ludwig-Maximillians University, Munich, Germany.
| |
Collapse
|
82
|
Chen Z, Leinisch F, Greco I, Zhang W, Shu N, Chuang CY, Lund MN, Davies MJ. Characterisation and quantification of protein oxidative modifications and amino acid racemisation in powdered infant milk formula. Free Radic Res 2019; 53:68-81. [DOI: 10.1080/10715762.2018.1554250] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Zhifei Chen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Fabian Leinisch
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ines Greco
- Department of Food Science, Faculty of Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Wei Zhang
- Department of Food Science, Faculty of Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nan Shu
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christine Y. Chuang
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Marianne N. Lund
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Food Science, Faculty of Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Michael J. Davies
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
83
|
Pavon JA, Xiao L, Li X, Zhao J, Aldredge D, Dank E, Fridman A, Liu YH. Selective Tryptophan Oxidation of Monoclonal Antibodies: Oxidative Stress and Modeling Prediction. Anal Chem 2019; 91:2192-2200. [DOI: 10.1021/acs.analchem.8b04768] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Jorge Alexander Pavon
- Process Research & Development, Merck & Co., Inc., 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Li Xiao
- Modeling and Informatics, Merck & Co., Inc., 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Xiaojuan Li
- Process Research & Development, Merck & Co., Inc., 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Jia Zhao
- Process Research & Development, Merck & Co., Inc., 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Danielle Aldredge
- Process Research & Development, Merck & Co., Inc., 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Eugene Dank
- Process Research & Development, Merck & Co., Inc., 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Alex Fridman
- Process Research & Development, Merck & Co., Inc., 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Yan-Hui Liu
- Process Research & Development, Merck & Co., Inc., 2015 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| |
Collapse
|
84
|
Gáll T, Pethő D, Nagy A, Hendrik Z, Méhes G, Potor L, Gram M, Åkerström B, Smith A, Nagy P, Balla G, Balla J. Heme Induces Endoplasmic Reticulum Stress (HIER Stress) in Human Aortic Smooth Muscle Cells. Front Physiol 2018; 9:1595. [PMID: 30515102 PMCID: PMC6255930 DOI: 10.3389/fphys.2018.01595] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 10/24/2018] [Indexed: 12/17/2022] Open
Abstract
Accumulation of damaged or misfolded proteins resulted from oxidative protein modification induces endoplasmic reticulum (ER) stress by activating the pathways of unfolded protein response. In pathologic hemolytic conditions, extracellular free hemoglobin is submitted to rapid oxidation causing heme release. Resident cells of atherosclerotic lesions, after intraplaque hemorrhage, are exposed to heme leading to oxidative injury. Therefore, we raised the question whether heme can also provoke ER stress. Smooth muscle cells are one of the key players of atherogenesis; thus, human aortic smooth muscle cells (HAoSMCs) were selected as a model cell to reveal the possible link between heme and ER stress. Using immunoblotting, quantitative polymerase chain reaction and immunocytochemistry, we quantitated the markers of ER stress. These were: phosphorylated eIF2α, Activating transcription factor-4 (ATF4), DNA-damage-inducible transcript 3 (also known as C/EBP homology protein, termed CHOP), X-box binding protein-1 (XBP1), Activating transcription factor-6 (ATF6), GRP78 (glucose-regulated protein, 78kDa) and heme responsive genes heme oxygenase-1 and ferritin. In addition, immunohistochemistry was performed on human carotid artery specimens from patients who had undergone carotid endarterectomy. We demonstrate that heme increases the phosphorylation of eiF2α in HAoSMCs and the expression of ATF4. Heme also enhances the splicing of XBP1 and the proteolytic cleavage of ATF6. Consequently, there is up-regulation of target genes increasing both mRNA and protein levels of CHOP and GRP78. However, TGFβ and collagen type I decreased. When the heme binding proteins, alpha-1-microglobulin (A1M) and hemopexin (Hpx) are present in cell media, the ER stress provoked by heme is inhibited. ER stress pathways are also retarded by the antioxidant N-acetyl cysteine (NAC) indicating that reactive oxygen species are involved in heme-induced ER stress. Consistent with these findings, elevated expression of the ER stress marker GRP78 and CHOP were observed in smooth muscle cells of complicated lesions with hemorrhage compared to either atheromas or healthy arteries. In conclusion, heme triggers ER stress in a time- and dose-dependent manner in HAoSMCs. A1M and Hpx as well as NAC effectively hamper heme-induced ER stress, supporting their use as a potential therapeutic approach to reverse such a deleterious effects of heme toxicity.
Collapse
Affiliation(s)
- Tamás Gáll
- HAS-UD Vascular Biology and Myocardial Pathophysiology Research Group, Hungarian Academy of Sciences, Debrecen, Hungary
- Department of Pediatrics, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Dávid Pethő
- Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Annamária Nagy
- Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zoltán Hendrik
- Department of Pathology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Gábor Méhes
- Department of Pathology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - László Potor
- HAS-UD Vascular Biology and Myocardial Pathophysiology Research Group, Hungarian Academy of Sciences, Debrecen, Hungary
- Department of Pediatrics, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Magnus Gram
- Department of Clinical Sciences Lund, Infection Medicine, Lund University, Lund, Sweden
| | - Bo Åkerström
- Department of Clinical Sciences Lund, Infection Medicine, Lund University, Lund, Sweden
| | - Ann Smith
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, MO, United States
| | - Péter Nagy
- Department of Vascular Surgery, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - György Balla
- HAS-UD Vascular Biology and Myocardial Pathophysiology Research Group, Hungarian Academy of Sciences, Debrecen, Hungary
- Department of Pediatrics, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - József Balla
- HAS-UD Vascular Biology and Myocardial Pathophysiology Research Group, Hungarian Academy of Sciences, Debrecen, Hungary
- Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
85
|
Blanc A, Perrin DM. Synthesis of 3a-hydroxyhexahydropyrrolo[2,3-B]Indole-2-carboxamide, an oxidation product of tryptophan present in natural products. Pept Sci (Hoboken) 2018. [DOI: 10.1002/pep2.24082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Antoine Blanc
- Department of Chemistry; University of British Columbia; Vancouver V6T 1Z1 Canada
| | - David M. Perrin
- Department of Chemistry; University of British Columbia; Vancouver V6T 1Z1 Canada
| |
Collapse
|
86
|
Leinisch F, Mariotti M, Hägglund P, Davies MJ. Structural and functional changes in RNAse A originating from tyrosine and histidine cross-linking and oxidation induced by singlet oxygen and peroxyl radicals. Free Radic Biol Med 2018; 126:73-86. [PMID: 30031072 DOI: 10.1016/j.freeradbiomed.2018.07.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 07/12/2018] [Accepted: 07/16/2018] [Indexed: 12/21/2022]
Abstract
Oxidation can be induced by multiple processes in biological samples, with proteins being important targets due to their high abundance and reactivity. Oxidant reactions with proteins are not comprehensively understood, but it is known that structural and functional changes may be a cause, or a consequence, of disease. The mechanisms of oxidation of the model protein RNAse A by singlet oxygen (1O2) were examined and compared to peroxyl radical (ROO•) oxidation, both common biological oxidants. This protein is a prototypic member of the RNAse family that exhibits antiviral activity by cleaving single-stranded RNA. RNAse A lacks tryptophan and cysteine residues which are major oxidant targets, but contains multiple histidine, tyrosine and methionine residues; these were therefore hypothesized to be the major sites of damage. 1O2 and ROO• induce different patterns and extents of damage; both induce cross-links and side-chain oxidation, and 1O2 exposure modulates enzymatic activity. Multiple products have been characterized including methionine sulfoxide and sulfone, alcohols, DOPA, 2-oxohistidine, histidine-derived ring-opened species and inter- and intra-molecular cross-links (di-tyrosine, histidine-lysine, histidine-arginine, tyrosine-lysine). In addition to methionine modification, which appears not to be causative to activity loss, singlet oxygen also induces alteration to specific histidine, tyrosine and proline residues, including modification and cross-linking of the active site histidine, His12. The high homology among the RNAse family suggests that similar modifications may occur in humans, and be associated with the increased risk of viral infections in people with diabetes, as markers for 1O2 have been found in early stages of this pathology.
Collapse
Affiliation(s)
- Fabian Leinisch
- Dept. of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Michele Mariotti
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Per Hägglund
- Dept. of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark; Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Michael J Davies
- Dept. of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
87
|
Stanfill BA, Nakayasu ES, Bramer LM, Thompson AM, Ansong CK, Clauss TR, Gritsenko MA, Monroe ME, Moore RJ, Orton DJ, Piehowski PD, Schepmoes AA, Smith RD, Webb-Robertson BJM, Metz TO. Quality Control Analysis in Real-time (QC-ART): A Tool for Real-time Quality Control Assessment of Mass Spectrometry-based Proteomics Data. Mol Cell Proteomics 2018; 17:1824-1836. [PMID: 29666158 PMCID: PMC6126382 DOI: 10.1074/mcp.ra118.000648] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/13/2018] [Indexed: 12/29/2022] Open
Abstract
Liquid chromatography-mass spectrometry (LC-MS)-based proteomics studies of large sample cohorts can easily require from months to years to complete. Acquiring consistent, high-quality data in such large-scale studies is challenging because of normal variations in instrumentation performance over time, as well as artifacts introduced by the samples themselves, such as those because of collection, storage and processing. Existing quality control methods for proteomics data primarily focus on post-hoc analysis to remove low-quality data that would degrade downstream statistics; they are not designed to evaluate the data in near real-time, which would allow for interventions as soon as deviations in data quality are detected. In addition to flagging analyses that demonstrate outlier behavior, evaluating how the data structure changes over time can aide in understanding typical instrument performance or identify issues such as a degradation in data quality because of the need for instrument cleaning and/or re-calibration. To address this gap for proteomics, we developed Quality Control Analysis in Real-Time (QC-ART), a tool for evaluating data as they are acquired to dynamically flag potential issues with instrument performance or sample quality. QC-ART has similar accuracy as standard post-hoc analysis methods with the additional benefit of real-time analysis. We demonstrate the utility and performance of QC-ART in identifying deviations in data quality because of both instrument and sample issues in near real-time for LC-MS-based plasma proteomics analyses of a sample subset of The Environmental Determinants of Diabetes in the Young cohort. We also present a case where QC-ART facilitated the identification of oxidative modifications, which are often underappreciated in proteomic experiments.
Collapse
Affiliation(s)
| | | | - Lisa M Bramer
- From the ‡Computational and Statistical Analytics Division
| | - Allison M Thompson
- ¶Environmental and Molecular Sciences Laboratory, 902 Battelle Blvd, Pacific Northwest National Laboratory, Richland, Washington
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Fuentes-Lemus E, Silva E, Barrias P, Aspee A, Escobar E, Lorentzen LG, Carroll L, Leinisch F, Davies MJ, López-Alarcón C. Aggregation of α- and β- caseins induced by peroxyl radicals involves secondary reactions of carbonyl compounds as well as di-tyrosine and di-tryptophan formation. Free Radic Biol Med 2018; 124:176-188. [PMID: 29885785 DOI: 10.1016/j.freeradbiomed.2018.06.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 05/27/2018] [Accepted: 06/05/2018] [Indexed: 01/21/2023]
Abstract
The present work examined the role of Tyr and Trp in oxidative modifications of caseins, the most abundant milk proteins, induced by peroxyl radicals (ROO•). We hypothesized that the selectivity of ROO• and the high flexibility of caseins (implying a high exposure of Tyr and Trp residues) would favor radical-radical reactions, and di-tyrosine (di-Tyr) and di-tryptophan (di-Trp) formation. Solutions of α- and β-caseins were exposed to ROO• from thermolysis and photolysis of AAPH (2,2'-azobis(2-methylpropionamidine)dihydrochloride). Oxidative modifications were examined using electrophoresis, western blotting, fluorescence, and chromatographic methodologies with diode array, fluorescence and mass detection. Exposure of caseins to AAPH at 37 °C gave fragmentation, cross-linking and protein aggregation. Amino acid analysis showed consumption of Trp, Tyr, Met, His and Lys residues. Quantification of Trp and Tyr products, showed low levels of di-Tyr and di-Trp, together with an accumulation of carbonyls indicating that casein aggregation is, at least partly, associated with secondary reactions between carbonyls and Lys and His residues. AAPH photolysis, which generates a high flux of free radicals increased the extent of formation of di-Tyr in both model peptides and α- and β- caseins; di-Trp was only detected in peptides and α-casein. Thus, in spite of the high flexibility of caseins, which would be expected to favor radical-radical reactions, the low flux of ROO• generated during AAPH thermolysis disfavours the formation of dimeric radical-radical cross-links such as di-Tyr and di-Trp, instead favoring other O2-dependent crosslinking pathways such as those involving secondary reactions of initial carbonyl products.
Collapse
Affiliation(s)
- Eduardo Fuentes-Lemus
- Departamento de Química Física, Facultad de Química, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Eduardo Silva
- Departamento de Química Física, Facultad de Química, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo Barrias
- Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Santiago, Chile
| | - Alexis Aspee
- Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Santiago, Chile
| | - Elizabeth Escobar
- Departamento de Química Física, Facultad de Química, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Lasse G Lorentzen
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Denmark
| | - Luke Carroll
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Denmark
| | - Fabian Leinisch
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Denmark
| | - Michael J Davies
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Denmark
| | - Camilo López-Alarcón
- Departamento de Química Física, Facultad de Química, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
89
|
Kong Q, Yin X, Yu J, Ren X. Mechanistic processes of resveratrol in inhibiting the oxidative damage of guanine, as evidenced by UHPLC-MS 2. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1093-1094:174-182. [PMID: 30032017 DOI: 10.1016/j.jchromb.2018.07.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 06/28/2018] [Accepted: 07/07/2018] [Indexed: 02/06/2023]
Abstract
Resveratrol, as one of the stilbenoids, is present in abundance in wine grapes and has been shown to selectively quench 1O2. DNA is oxidized by 1O2 causing irreparable functional damage, and of the nucleic acids, guanine is the most susceptible. An agarose gel electrophoresis assay demonstrated that DNA was damaged by 1O2 with less than 5 min of UVA irradiation, and also that 5 mM resveratrol dissolved in MeOH could relieve the observed oxidation stress. Ultra-high performance liquid chromatography coupled with mass spectrometry was performed to reveal the mechanism. Four guanine oxidation products at m/z 140.0334 [M-H]-(1), DGh, 8-oxoG, Sp and two conjugates at m/z 377.1104 [M-H]- and 391.0907 [M-H]- were identified and quantified. Thus, we propose the mechanism that the phenol ring of resveratrol links with the free amino groups (NH) of guanine at the beginning of 1O2 attack to form m/z 377.1104 [M-H]-, however, as 1O2 is able to attack the amino groups continuously, resveratrol can efficiently react with 1O2 prior to damage, and form m/z 391.0907 [M-H]- thereby protecting guanine.
Collapse
Affiliation(s)
- Qingjun Kong
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Shaanxi Normal University, Xi'an 710062, China
| | - Xuefeng Yin
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Shaanxi Normal University, Xi'an 710062, China
| | - Jia Yu
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Shaanxi Normal University, Xi'an 710062, China
| | - Xueyan Ren
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Shaanxi Normal University, Xi'an 710062, China.
| |
Collapse
|
90
|
Zou Y, Xu P, Wu H, Zhang M, Sun Z, Sun C, Wang D, Cao J, Xu W. Effects of different ultrasound power on physicochemical property and functional performance of chicken actomyosin. Int J Biol Macromol 2018; 113:640-647. [DOI: 10.1016/j.ijbiomac.2018.02.039] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 02/07/2018] [Accepted: 02/07/2018] [Indexed: 12/14/2022]
|
91
|
Lauwick H, Sun Y, Akdas-Kilig H, Dérien S, Achard M. Access to 3-Oxindoles from Allylic Alcohols and Indoles. Chemistry 2018. [DOI: 10.1002/chem.201800348] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Hortense Lauwick
- Univ Rennes, ISCR (Institut des Sciences Chimiques de Rennes)-UMR 6226; F-35000 Rennes France
| | - Yang Sun
- Univ Rennes, ISCR (Institut des Sciences Chimiques de Rennes)-UMR 6226; F-35000 Rennes France
| | - Huriye Akdas-Kilig
- Univ Rennes, ISCR (Institut des Sciences Chimiques de Rennes)-UMR 6226; F-35000 Rennes France
| | - Sylvie Dérien
- Univ Rennes, ISCR (Institut des Sciences Chimiques de Rennes)-UMR 6226; F-35000 Rennes France
| | - Mathieu Achard
- Univ Rennes, ISCR (Institut des Sciences Chimiques de Rennes)-UMR 6226; F-35000 Rennes France
| |
Collapse
|
92
|
Carroll L, Pattison DI, Davies JB, Anderson RF, Lopez-Alarcon C, Davies MJ. Superoxide radicals react with peptide-derived tryptophan radicals with very high rate constants to give hydroperoxides as major products. Free Radic Biol Med 2018; 118:126-136. [PMID: 29496618 DOI: 10.1016/j.freeradbiomed.2018.02.033] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 02/22/2018] [Accepted: 02/23/2018] [Indexed: 11/23/2022]
Abstract
Oxidative damage is a common process in many biological systems and proteins are major targets for damage due to their high abundance and very high rate constants for reaction with many oxidants (both radicals and two-electron species). Tryptophan (Trp) residues on peptides and proteins are a major sink for a large range of biological oxidants as these side-chains have low radical reduction potentials. The resulting Trp-derived indolyl radicals (Trp•) have long lifetimes in some circumstances due to their delocalized structures, and undergo only slow reaction with molecular oxygen, unlike most other biological radicals. In contrast, we have shown previously that Trp• undergo rapid dimerization. In the current study, we show that Trp• also undergo very fast reaction with superoxide radicals, O2•-, with k 1-2 × 109 M-1 s-1. These values do not alter dramatically with peptide structure, but the values of k correlate with overall peptide positive charge, consistent with positive electrostatic interactions. These reactions compete favourably with Trp• dimerization and O2 addition, indicating that this may be a major fate in some circumstances. The Trp• + O2•- reactions occur primarily by addition, rather than electron transfer, with this resulting in high yields of Trp-derived hydroperoxides. Subsequent degradation of these species, both stimulated and native decay, gives rise to N-formylkynurenine, kynurenine, alcohols and diols. These data indicate that reaction of O2•- with Trp• should be considered as a major pathway to Trp degradation on peptides and proteins subjected to oxidative damage.
Collapse
Affiliation(s)
- Luke Carroll
- The Heart Research Institute, Sydney, Australia; Sydney Medical School, University of Sydney, Australia; Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Denmark
| | - David I Pattison
- The Heart Research Institute, Sydney, Australia; Sydney Medical School, University of Sydney, Australia
| | - Justin B Davies
- Australian Nuclear Science and Technology Organisation, Lucas Heights, Australia
| | - Robert F Anderson
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Camilo Lopez-Alarcon
- Departmento de Quimica Fisica, Facultad de Quimica, Pontificia Universidad Catolica de Chile, Chile
| | - Michael J Davies
- The Heart Research Institute, Sydney, Australia; Sydney Medical School, University of Sydney, Australia; Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Denmark.
| |
Collapse
|
93
|
Wecksler AT, Yin J, Lee Tao P, Kabakoff B, Sreedhara A, Deperalta G. Photodisruption of the Structurally Conserved Cys-Cys-Trp Triads Leads to Reduction-Resistant Scrambled Intrachain Disulfides in an IgG1 Monoclonal Antibody. Mol Pharm 2018; 15:1598-1606. [PMID: 29502420 DOI: 10.1021/acs.molpharmaceut.7b01128] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Photostability conditions as prescribed by ICH guidelines induced highly reduction-resistant scrambled disulfides that contribute to the population of apparent nonreducible aggregates in an IgG1 mAb. Photoinduced cross-linked species were isolated under reducing conditions using an organic phase size exclusion chromatography (OP-SEC) method, followed by O18-labeling tryptic mapping to identify cross-linked peptides. Disulfide scrambling was observed within the IgG1 structurally conserved-intrachain cysteine-cysteine-tryptophan triads (Cys-Cys-Trp), and correlated with Trp-to-kynurenine (Kyn) photodegradation within these triads. We hypothesize that intrachain disulfides protect the proximal Trp within the Cys-Cys-Trp triads from photodegradation by enabling dissipation of Trp-absorbed UV energy via electron transfer to the disulfide bond. Finally, we propose three distinct mechanisms of photochemical degradation of monoclonal antibodies mediated by Trp residues.
Collapse
Affiliation(s)
- Aaron T Wecksler
- Protein Analytical Chemistry Department , Genentech Inc. , 1 DNA Way , South San Francisco , California 94080 , United States
| | - Jian Yin
- Early Stage Pharmaceutical Development , Genentech Inc. , 1 DNA Way , South San Francisco , California 94080 , United States
| | - Paula Lee Tao
- Protein Analytical Chemistry Department , Genentech Inc. , 1 DNA Way , South San Francisco , California 94080 , United States
| | - Bruce Kabakoff
- Early Stage Pharmaceutical Development , Genentech Inc. , 1 DNA Way , South San Francisco , California 94080 , United States
| | - Alavattam Sreedhara
- Late Stage Pharmaceutical Development , Genentech Inc. , 1 DNA Way , South San Francisco , California 94080 , United States
| | - Galahad Deperalta
- Protein Analytical Chemistry Department , Genentech Inc. , 1 DNA Way , South San Francisco , California 94080 , United States
| |
Collapse
|
94
|
Lebedeva NS, Yurina ES, Gubarev YA, Lyubimtsev AV, Syrbu SA. Effect of irradiation spectral range on porphyrin—Protein complexes. J Photochem Photobiol A Chem 2018. [DOI: 10.1016/j.jphotochem.2017.11.037] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
95
|
Ballatore MB, Spesia MB, Milanesio ME, Durantini EN. Mechanistic insight into the photodynamic effect mediated by porphyrin-fullerene C60 dyads in solution and in Staphylococcus aureus cells. RSC Adv 2018; 8:22876-22886. [PMID: 35540123 PMCID: PMC9081455 DOI: 10.1039/c8ra04562c] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 06/13/2018] [Indexed: 01/28/2023] Open
Abstract
The photodynamic action mechanism sensitized by a non-charged porphyrin-fullerene C60 dyad and its tetracationic analogue was investigated in solution and in Staphylococcus aureus cells.
Collapse
Affiliation(s)
- M. Belén Ballatore
- Departamento de Química
- Facultad de Ciencias Exactas
- Físico-Químicas y Naturales
- Universidad Nacional de Río Cuarto
- Córdoba
| | - Mariana B. Spesia
- Departamento de Química
- Facultad de Ciencias Exactas
- Físico-Químicas y Naturales
- Universidad Nacional de Río Cuarto
- Córdoba
| | - M. Elisa Milanesio
- Departamento de Química
- Facultad de Ciencias Exactas
- Físico-Químicas y Naturales
- Universidad Nacional de Río Cuarto
- Córdoba
| | - Edgardo N. Durantini
- Departamento de Química
- Facultad de Ciencias Exactas
- Físico-Químicas y Naturales
- Universidad Nacional de Río Cuarto
- Córdoba
| |
Collapse
|
96
|
Carroll L, Pattison DI, Davies JB, Anderson RF, Lopez-Alarcon C, Davies MJ. Formation and detection of oxidant-generated tryptophan dimers in peptides and proteins. Free Radic Biol Med 2017; 113:132-142. [PMID: 28962874 DOI: 10.1016/j.freeradbiomed.2017.09.020] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 09/21/2017] [Accepted: 09/24/2017] [Indexed: 01/08/2023]
Abstract
Free radicals are produced during physiological processes including metabolism and the immune response, as well as on exposure to multiple external stimuli. Many radicals react rapidly with proteins resulting in side-chain modification, backbone fragmentation, aggregation, and changes in structure and function. Due to its low oxidation potential, the indole ring of tryptophan (Trp) is a major target, with this resulting in the formation of indolyl radicals (Trp•). These undergo multiple reactions including ring opening and dimerization which can result in protein aggregation. The factors that govern Trp• dimerization, the rate constants for these reactions and the exact nature of the products are not fully elucidated. In this study, second-order rate constants were determined for Trp• dimerization in Trp-containing peptides to be 2-6 × 108M-1s-1 by pulse radiolysis. Peptide charge and molecular mass correlated negatively with these rate constants. Exposure of Trp-containing peptides to steady-state radiolysis in the presence of NaN3 resulted in consumption of the parent peptide, and detection by LC-MS of up to 4 different isomeric Trp-Trp cross-links. Similar species were detected with other oxidants, including CO3•- (from the HCO3- -dependent peroxidase activity of bovine superoxide dismutase) and peroxynitrous acid (ONOOH) in the presence or absence of HCO3-. Trp-Trp species were also isolated and detected after alkaline hydrolysis of the oxidized peptides and proteins. These studies demonstrate that Trp• formed on peptides and proteins undergo rapid recombination reactions to form Trp-Trp cross-linked species. These products may serve as markers of radical-mediated protein damage, and represent an additional pathway to protein aggregation in cellular dysfunction and disease.
Collapse
Affiliation(s)
- Luke Carroll
- The Heart Research Institute, Newtown, Australia; Sydney Medical School, University of Sydney, Australia; Panum Institute, University of Copenhagen, Denmark
| | - David I Pattison
- The Heart Research Institute, Newtown, Australia; Sydney Medical School, University of Sydney, Australia
| | - Justin B Davies
- Australian Nuclear Science and Technology Organisation, Lucas Heights, Australia
| | | | | | - Michael J Davies
- The Heart Research Institute, Newtown, Australia; Sydney Medical School, University of Sydney, Australia; Panum Institute, University of Copenhagen, Denmark.
| |
Collapse
|
97
|
Zhang P, Chiu CKC, Huang H, Lam YPY, Habtemariam A, Malcomson T, Paterson MJ, Clarkson GJ, O'Connor PB, Chao H, Sadler PJ. Organoiridium Photosensitizers Induce Specific Oxidative Attack on Proteins within Cancer Cells. Angew Chem Int Ed Engl 2017; 56:14898-14902. [PMID: 29047228 PMCID: PMC5698709 DOI: 10.1002/anie.201709082] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Indexed: 01/12/2023]
Abstract
Strongly luminescent iridium(III) complexes, [Ir(C,N)2 (S,S)]+ (1) and [Ir(C,N)2 (O,O)] (2), containing C,N (phenylquinoline), O,O (diketonate), or S,S (dithione) chelating ligands, have been characterized by X-ray crystallography and DFT calculations. Their long phosphorescence lifetimes in living cancer cells give rise to high quantum yields for the generation of 1 O2 , with large 2-photon absorption cross-sections. 2 is nontoxic to cells, but potently cytotoxic to cancer cells upon brief irradiation with low doses of visible light, and potent at sub-micromolar doses towards 3D multicellular tumor spheroids with 2-photon red light. Photoactivation causes oxidative damage to specific histidine residues in the key proteins in aldose reductase and heat-shock protein-70 within living cancer cells. The oxidative stress induced by iridium photosensitizers during photoactivation can increase the levels of enzymes involved in the glycolytic pathway.
Collapse
Affiliation(s)
- Pingyu Zhang
- Department of ChemistryUniversity of WarwickCoventryCV4 7ALUK
- College of Chemistry and Environmental EngineeringShenzhen UniversityShenzhen518060P. R. China
| | | | - Huaiyi Huang
- Department of ChemistryUniversity of WarwickCoventryCV4 7ALUK
- School of ChemistrySun Yat-Sen UniversityGuangzhou510275P. R. China
| | - Yuko P. Y. Lam
- Department of ChemistryUniversity of WarwickCoventryCV4 7ALUK
| | | | - Thomas Malcomson
- Institute of Chemical SciencesHeriot-Watt UniversityEdinburghEH4 4ASUK
| | | | - Guy J. Clarkson
- Department of ChemistryUniversity of WarwickCoventryCV4 7ALUK
| | | | - Hui Chao
- School of ChemistrySun Yat-Sen UniversityGuangzhou510275P. R. China
| | - Peter J. Sadler
- Department of ChemistryUniversity of WarwickCoventryCV4 7ALUK
| |
Collapse
|
98
|
Escobar-Álvarez E, Leinisch F, Araya G, Monasterio O, Lorentzen LG, Silva E, Davies MJ, López-Alarcón C. The peroxyl radical-induced oxidation of Escherichia coli FtsZ and its single tryptophan mutant (Y222W) modifies specific side-chains, generates protein cross-links and affects biological function. Free Radic Biol Med 2017; 112:60-68. [PMID: 28733212 DOI: 10.1016/j.freeradbiomed.2017.07.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Revised: 06/23/2017] [Accepted: 07/17/2017] [Indexed: 10/19/2022]
Abstract
FtsZ (filamenting temperature-sensitive mutant Z) is a key protein in bacteria cell division. The wild-type Escherichia coli FtsZ sequence (FtsZwt) contains three tyrosine (Tyr, Y) and sixteen methionine (Met, M) residues. The Tyr at position 222 is a key residue for FtsZ polymerization. Mutation of this residue to tryptophan (Trp, W; mutant Y222W) inhibits GTPase activity resulting in an extended time in the polymerized state compared to FtsZwt. Protein oxidation has been highlighted as a determinant process for bacteria resistance and consequently oxidation of FtsZwt and the Y222W mutant, by peroxyl radicals (ROO•) generated from AAPH (2,2'-azobis(2-methylpropionamidine) dihydrochloride) was studied. The non-oxidized proteins showed differences in their polymerization behavior, with this favored by the presence of Trp at position 222. AAPH-treatment of the proteins inhibited polymerization. Protein integrity studies using SDS-PAGE revealed the presence of both monomers and oligomers (dimers, trimers and high mass material) on oxidation. Western blotting indicated the presence of significant levels of protein carbonyls. Amino acid analysis showed that Tyr, Trp (in the Y222W mutant), and Met were consumed by ROO•. Quantification of the number of moles of amino acid consumed per mole of ROO• shows that most of the initial oxidant can be accounted for at low radical fluxes, with Met being a major target. Western blotting provided evidence for di-tyrosine cross-links in the dimeric and trimeric proteins, confirming that oxidation of Tyr residues, at positions 339 and/or 371, are critical to ROO•-mediated crosslinking of both the FtsZwt and Y222W mutant protein. These findings are in agreement with di-tyrosine, N-formyl kynurenine, and kynurenine quantification assessed by UPLC, and with LC-MS data obtained for AAPH-treated protein samples.
Collapse
Affiliation(s)
- Elizabeth Escobar-Álvarez
- Departamento de Química Física, Facultad de Química, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Fabian Leinisch
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Denmark
| | - Gissela Araya
- Laboratorio de Biología Estructural y Molecular, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Octavio Monasterio
- Laboratorio de Biología Estructural y Molecular, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Lasse G Lorentzen
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Denmark
| | - Eduardo Silva
- Departamento de Química Física, Facultad de Química, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Michael J Davies
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Denmark
| | - Camilo López-Alarcón
- Departamento de Química Física, Facultad de Química, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
99
|
Zhang P, Chiu CKC, Huang H, Lam YPY, Habtemariam A, Malcomson T, Paterson MJ, Clarkson GJ, O'Connor PB, Chao H, Sadler PJ. Organoiridium Photosensitizers Induce Specific Oxidative Attack on Proteins within Cancer Cells. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201709082] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Pingyu Zhang
- Department of Chemistry; University of Warwick; Coventry CV4 7AL UK
- College of Chemistry and Environmental Engineering; Shenzhen University; Shenzhen 518060 P. R. China
| | | | - Huaiyi Huang
- Department of Chemistry; University of Warwick; Coventry CV4 7AL UK
- School of Chemistry; Sun Yat-Sen University; Guangzhou 510275 P. R. China
| | - Yuko P. Y. Lam
- Department of Chemistry; University of Warwick; Coventry CV4 7AL UK
| | | | - Thomas Malcomson
- Institute of Chemical Sciences; Heriot-Watt University; Edinburgh EH4 4AS UK
| | - Martin J. Paterson
- Institute of Chemical Sciences; Heriot-Watt University; Edinburgh EH4 4AS UK
| | - Guy J. Clarkson
- Department of Chemistry; University of Warwick; Coventry CV4 7AL UK
| | | | - Hui Chao
- School of Chemistry; Sun Yat-Sen University; Guangzhou 510275 P. R. China
| | - Peter J. Sadler
- Department of Chemistry; University of Warwick; Coventry CV4 7AL UK
| |
Collapse
|
100
|
Estévez M, Luna C. Dietary protein oxidation: A silent threat to human health? Crit Rev Food Sci Nutr 2017; 57:3781-3793. [DOI: 10.1080/10408398.2016.1165182] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- M. Estévez
- IPROCAR Research Institute, University of Extremadura, Caceres, Spain
| | - C. Luna
- Medical Hospital, SES, Gobierno de Extremadura, Badajoz, Spain
| |
Collapse
|