51
|
Impact of Exercise on Immunometabolism in Multiple Sclerosis. J Clin Med 2020; 9:jcm9093038. [PMID: 32967206 PMCID: PMC7564219 DOI: 10.3390/jcm9093038] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/15/2020] [Accepted: 09/18/2020] [Indexed: 02/06/2023] Open
Abstract
Multiple Sclerosis (MS) is a chronic, autoimmune condition characterized by demyelinating lesions and axonal degradation. Even though the cause of MS is heterogeneous, it is known that peripheral immune invasion in the central nervous system (CNS) drives pathology at least in the most common form of MS, relapse-remitting MS (RRMS). The more progressive forms’ mechanisms of action remain more elusive yet an innate immune dysfunction combined with neurodegeneration are likely drivers. Recently, increasing studies have focused on the influence of metabolism in regulating immune cell function. In this regard, exercise has long been known to regulate metabolism, and has emerged as a promising therapy for management of autoimmune disorders. Hence, in this review, we inspect the role of key immunometabolic pathways specifically dysregulated in MS and highlight potential therapeutic benefits of exercise in modulating those pathways to harness an anti-inflammatory state. Finally, we touch upon current challenges and future directions for the field of exercise and immunometabolism in MS.
Collapse
|
52
|
Koroleva ES, Tolmachev IV, Alifirova VM, Boiko AS, Levchuk LA, Loonen AJM, Ivanova SA. Serum BDNF's Role as a Biomarker for Motor Training in the Context of AR-Based Rehabilitation after Ischemic Stroke. Brain Sci 2020; 10:E623. [PMID: 32916851 PMCID: PMC7564457 DOI: 10.3390/brainsci10090623] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/01/2020] [Accepted: 09/07/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND brain-derived neurotrophic factor (BDNF) may play a role during neurorehabilitation following ischemic stroke. This study aimed to elucidate the possible role of BDNF during early recovery from ischemic stroke assisted by motor training. METHODS fifty patients were included after acute recovery from ischemic stroke: 21 first received classical rehabilitation followed by 'motor rehabilitation using motion sensors and augmented reality' (AR-rehabilitation), 14 only received AR-rehabilitation, and 15 were only observed. Serum BDNF levels were measured on the first day of stroke, on the 14th day, before AR-based rehabilitation (median, 45th day), and after the AR-based rehabilitation (median, 82nd day). Motor impairment was quantified clinically using the Fugl-Meyer scale (FMA); functional disability and activities of daily living (ADL) were measured using the Modified Rankin Scale (mRS). For comparison, serum BDNF was measured in 50 healthy individuals. RESULTS BDNF levels were found to significantly increase during the phase with AR-based rehabilitation. The pattern of the sequentially measured BDNF levels was similar in the treated patients. Untreated patients had significantly lower BDNF levels at the endpoint. CONCLUSIONS the fluctuations of BDNF levels are not consistently related to motor improvement but seem to react to active treatment. Without active rehabilitation treatment, BDNF tends to decrease.
Collapse
Affiliation(s)
- Ekaterina S. Koroleva
- Department of Neurology and Neurosurgery, Siberian State Medical University, Moskovsky trakt, 2, 634050 Tomsk, Russia; (E.S.K.); (V.M.A.)
| | - Ivan V. Tolmachev
- Department of Medical and Biological Cybernetics, Siberian State Medical University, Moskovsky trakt, 2, 634050 Tomsk, Russia;
| | - Valentina M. Alifirova
- Department of Neurology and Neurosurgery, Siberian State Medical University, Moskovsky trakt, 2, 634050 Tomsk, Russia; (E.S.K.); (V.M.A.)
| | - Anastasiia S. Boiko
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Aleutskaya str., 4, 634014 Tomsk, Russia; (A.S.B.); (L.A.L.); (S.A.I.)
| | - Lyudmila A. Levchuk
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Aleutskaya str., 4, 634014 Tomsk, Russia; (A.S.B.); (L.A.L.); (S.A.I.)
| | - Anton J. M. Loonen
- PharmacoTherapy, -Epidemiology and -Economics, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713AV Groningen, The Netherlands
| | - Svetlana A. Ivanova
- Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Aleutskaya str., 4, 634014 Tomsk, Russia; (A.S.B.); (L.A.L.); (S.A.I.)
- Department of Psychiatry, Addictology and Psychotherapy, Siberian State Medical University, Moskovsky trakt, 2, 634050 Tomsk, Russia
| |
Collapse
|
53
|
Margaritelis NV, Paschalis V, Theodorou AA, Kyparos A, Nikolaidis MG. Redox basis of exercise physiology. Redox Biol 2020; 35:101499. [PMID: 32192916 PMCID: PMC7284946 DOI: 10.1016/j.redox.2020.101499] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/20/2020] [Accepted: 03/05/2020] [Indexed: 12/15/2022] Open
Abstract
Redox reactions control fundamental processes of human biology. Therefore, it is safe to assume that the responses and adaptations to exercise are, at least in part, mediated by redox reactions. In this review, we are trying to show that redox reactions are the basis of exercise physiology by outlining the redox signaling pathways that regulate four characteristic acute exercise-induced responses (muscle contractile function, glucose uptake, blood flow and bioenergetics) and four chronic exercise-induced adaptations (mitochondrial biogenesis, muscle hypertrophy, angiogenesis and redox homeostasis). Based on our analysis, we argue that redox regulation should be acknowledged as central to exercise physiology.
Collapse
Affiliation(s)
- N V Margaritelis
- Department of Physical Education and Sport Science at Serres, Aristotle University of Thessaloniki, Thessaloniki, Greece; Dialysis Unit, 424 General Military Hospital of Thessaloniki, Thessaloniki, Greece.
| | - V Paschalis
- School of Physical Education and Sport Science, National and Kapodistrian University of Athens, Athens, Greece
| | - A A Theodorou
- Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia, Cyprus
| | - A Kyparos
- Department of Physical Education and Sport Science at Serres, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - M G Nikolaidis
- Department of Physical Education and Sport Science at Serres, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| |
Collapse
|
54
|
Tiekou Lorinczova H, Fitzsimons O, Mursaleen L, Renshaw D, Begum G, Zariwala MG. Co-Administration of Iron and a Bioavailable Curcumin Supplement Increases Serum BDNF Levels in Healthy Adults. Antioxidants (Basel) 2020; 9:E645. [PMID: 32707771 PMCID: PMC7463477 DOI: 10.3390/antiox9080645] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/09/2020] [Accepted: 07/16/2020] [Indexed: 12/19/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is key for the maintenance of normal neuronal function and energy homeostasis and has been suggested to improve cognitive function, including learning and memory. Iron and the antioxidant curcumin have been shown to influence BDNF homeostasis. This 6-week, double blind, randomized, placebo-controlled study examined the effects of oral iron supplementation at low (18 mg) and high (65 mg) ferrous (FS) iron dosages, compared to a combination of these iron doses with a bioavailable formulated form of curcumin (HydroCurcTM; 500 mg) on BDNF levels in a healthy adult cohort of 155 male (26.42 years ± 0.55) and female (25.82 years ± 0.54) participants. Participants were randomly allocated to five different treatment groups: both iron and curcumin placebo (FS0+Plac), low dose iron and curcumin placebo (FS18+Plac), low dose iron and curcumin (FS18+Curc), high dose iron and curcumin placebo (FS65+Plac) and high dose iron and curcumin (FS65+Curc). Results showed a significant increase in BDNF over time (26%) in the FS18+Curc group (p = 0.024), and at end-point between FS18+Curc and FS18+Plac groups (35%, p = 0.042), demonstrating for the first time that the combination with curcumin, rather than iron supplementation alone, results in increased serum BDNF. The addition of curcumin to iron supplementation may therefore provide a novel approach to further enhance the benefits associated with increased BDNF levels.
Collapse
Affiliation(s)
- Helena Tiekou Lorinczova
- School of Life Sciences, University of Westminster, 115 New Cavendish Street, London W1W 6UW, UK; (H.T.L.); (O.F.); (L.M.); (G.B.)
| | - Owen Fitzsimons
- School of Life Sciences, University of Westminster, 115 New Cavendish Street, London W1W 6UW, UK; (H.T.L.); (O.F.); (L.M.); (G.B.)
| | - Leah Mursaleen
- School of Life Sciences, University of Westminster, 115 New Cavendish Street, London W1W 6UW, UK; (H.T.L.); (O.F.); (L.M.); (G.B.)
- The Cure Parkinson’s Trust, 120 New Cavendish St, Fitzrovia, London W1W 6XX, UK
| | - Derek Renshaw
- Centre for Sport, Exercise and Life Sciences, Faculty of Health and Life Sciences, Coventry University, Priory St, Coventry CV1 5FB, UK;
| | - Gulshanara Begum
- School of Life Sciences, University of Westminster, 115 New Cavendish Street, London W1W 6UW, UK; (H.T.L.); (O.F.); (L.M.); (G.B.)
| | - Mohammed Gulrez Zariwala
- School of Life Sciences, University of Westminster, 115 New Cavendish Street, London W1W 6UW, UK; (H.T.L.); (O.F.); (L.M.); (G.B.)
| |
Collapse
|
55
|
Emerging mechanistic underpinnings and therapeutic targets for chemotherapy-related cognitive impairment. Curr Opin Oncol 2020; 31:531-539. [PMID: 31449084 DOI: 10.1097/cco.0000000000000578] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
PURPOSE OF REVIEW Modern innovations in cancer therapy have dramatically increased the number of cancer survivors. An unfortunately frequent side-effect of cancer treatment is enduring neurological impairment. Persistent deficits in attention, concentration, memory, and speed of information processing afflict a substantial fraction of cancer survivors following completion of these life-saving therapies. Here, we highlight chemotherapy-related cognitive impairment (CRCI) and discuss the current understanding of mechanisms underlying CRCI. RECENT FINDINGS New studies emphasize the deleterious impact of chemotherapeutic agents on glial-glial and neuron-glial interactions that shape the form, function and plasticity of the central nervous system. An emerging theme in cancer therapy-related cognitive impairment is therapy-induced microglial activation and consequent dysfunction of both neural precursor cells and mature neural cell types. Recent work has highlighted the complexity of dysregulated intercellular interactions involving oligodendrocyte lineage cells, microglia, astrocytes, and neurons following exposure to traditional cancer therapies such as methotrexate. This new understanding of the mechanistic underpinnings of CRCI has elucidated potential therapeutic interventions, including colony-stimulating factor 1 receptor inhibition, TrkB agonism, and aerobic exercise. SUMMARY Traditional cancer therapies induce lasting alterations to multiple neural cell types. Therapy-induced microglial activation is a critical component of the cause of CRCI, contributing to dysregulation of numerous processes of neural plasticity. Therapeutic targeting of microglial activation or the consequent dysregulation of neural plasticity mechanisms are emerging.
Collapse
|
56
|
Fotuhi SN, Khalaj-Kondori M, Feizi MAH, Talebi M. Memory-related process in physiological status and alzheimer's disease. Mol Biol Rep 2020; 47:4651-4657. [PMID: 32279208 DOI: 10.1007/s11033-020-05438-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 08/03/2019] [Indexed: 12/27/2022]
Abstract
Rejecting central dogma around static status of adult mammalian brain, CNS has the nascent neurons generated in subgranular zone of dentate gyrus in hippocampus which develop to novel glutamatergic granule cells, with the innate feature of transmuting to memory disks. Structural plasticity proceeds with synaptic plasticity to process all the developing stages required to successful maturation and functional integration, whereby the memory context is ready to leave the hippocampus toward cortex network through consolidation process, for being installed and run the memory disk forever. However, in Alzheimer's disease, brain deal with subtle deadly progressive loss of synapsis, neuronal dysfunction and ultimately network failure, resulting in memory decay and cognitive decline-concluding that AD destroys memory formation related-pathways.
Collapse
Affiliation(s)
- Seyedeh Nahid Fotuhi
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Mohammad Khalaj-Kondori
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran.
| | | | - Mahnaz Talebi
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
57
|
Quan H, Koltai E, Suzuki K, Aguiar AS, Pinho R, Boldogh I, Berkes I, Radak Z. Exercise, redox system and neurodegenerative diseases. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165778. [PMID: 32222542 DOI: 10.1016/j.bbadis.2020.165778] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 03/20/2020] [Accepted: 03/22/2020] [Indexed: 12/12/2022]
Abstract
Regular exercise induces a wide range of redox system-associated molecular adaptive responses to the nervous system. The intermittent induction of reactive oxygen species (ROS) during acute exercise sessions and the related upregulation of antioxidant/repair and housekeeping systems are associated with improved physiological function. Exercise-induced proliferation and differentiation of neuronal stem cells are ROS dependent processes. The increased production of brain derived neurotrophic factor (BDNF) and the regulation by regular exercise are dependent upon redox sensitive pathways. ROS are causative and associative factors of neurodegenerative diseases and regular exercise provides significant neuroprotective effects against Alzheimer's disease, Parkinson's disease, and hypoxia/reperfusion related disorders. Regular exercise regulates redox homeostasis in the brain with complex multi-level molecular pathways.
Collapse
Affiliation(s)
- Helong Quan
- Exercise and Metabolism Research Center, Zhejiang Normal University, Jinhua City, Zhejiang, China
| | - Erika Koltai
- Research Institute of Sport Science, University of Physical Education, Budapest, Hungary
| | - Katsuhiko Suzuki
- Faculty of Sport Sciences, Waseda University, Saitama 359-1192, Japan
| | - Aderbal S Aguiar
- Research Group on Biology of Exercise, Department of Health Sciences, Federal University of Santa Catarina, Santa Catarina, Brazil
| | - Ricardo Pinho
- Laboratory of Exercise Biochemistry in Health, Graduate Program in Health Sciences, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil
| | - Istvan Boldogh
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Istvan Berkes
- Research Institute of Sport Science, University of Physical Education, Budapest, Hungary
| | - Zsolt Radak
- Research Institute of Sport Science, University of Physical Education, Budapest, Hungary; Faculty of Sport Sciences, Waseda University, Saitama 359-1192, Japan.
| |
Collapse
|
58
|
Dimauro I, Paronetto MP, Caporossi D. Exercise, redox homeostasis and the epigenetic landscape. Redox Biol 2020; 35:101477. [PMID: 32127290 PMCID: PMC7284912 DOI: 10.1016/j.redox.2020.101477] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/12/2020] [Accepted: 02/23/2020] [Indexed: 02/07/2023] Open
Abstract
Physical exercise represents one of the strongest physiological stimuli capable to induce functional and structural modifications in all biological systems. Indeed, beside the traditional genetic mechanisms, physical exercise can modulate gene expression through epigenetic modifications, namely DNA methylation, post-translational histone modification and non-coding RNA transcripts. Initially considered as merely damaging molecules, it is now well recognized that both reactive oxygen (ROS) and nitrogen species (RNS) produced under voluntary exercise play an important role as regulatory mediators in signaling processes. While robust scientific evidences highlight the role of exercise-associated redox modifications in modulating gene expression through the genetic machinery, the understanding of their specific impact on epigenomic profile is still at an early stage. This review will provide an overview of the role of ROS and RNS in modulating the epigenetic landscape in the context of exercise-related adaptations. Physical exercise can modulate gene expression through epigenetic modifications. Epigenetic regulation of ROS/RNS generating, sensing and neutralizing enzymes can impact the cellular levels of ROS and RNS. ROS might act as modulators of epigenetic machinery, interfering with DNA methylation, hPTMs and ncRNAs expression. Redox homeostasis might hold a relevant role in the epigenetic landscape modulating exercise-related adaptations.
Collapse
Affiliation(s)
- Ivan Dimauro
- Unit of Biology and Genetics of Movement, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Piazza Lauro de Bosis 15, 00135, Rome, Italy
| | - Maria Paola Paronetto
- Unit of Biology and Genetics of Movement, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Piazza Lauro de Bosis 15, 00135, Rome, Italy; Laboratory of Cellular and Molecular Neurobiology, IRCCS Fondazione Santa Lucia, Via Del Fosso di Fiorano, Rome, Italy
| | - Daniela Caporossi
- Unit of Biology and Genetics of Movement, Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Piazza Lauro de Bosis 15, 00135, Rome, Italy.
| |
Collapse
|
59
|
Ruhee RT, Ma S, Suzuki K. Protective Effects of Sulforaphane on Exercise-Induced Organ Damage via Inducing Antioxidant Defense Responses. Antioxidants (Basel) 2020; 9:antiox9020136. [PMID: 32033211 PMCID: PMC7070986 DOI: 10.3390/antiox9020136] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/02/2020] [Accepted: 02/02/2020] [Indexed: 12/31/2022] Open
Abstract
Regular exercise is beneficial to maintain a healthy lifestyle, but the beneficial effects are lost in the case of acute exhaustive exercise; this causes significant inflammation, oxidative stress along with organ damage. Recently, sulforaphane (SFN), an indirect antioxidant, has drawn special attention for its potential protective effect against inflammation and oxidative stress. However, no studies have been performed regarding acute exhaustive exercise-induced organ damage in association with SFN administration. Therefore, the aim of this study was to investigate the effects of SFN on acute exhaustive exercise-induced organ damage and the mechanisms involved. To perform the study, we divided mice into four groups: Control, SFN, exercise, and SFN plus exercise. The SFN group was administered orally (50 mg/kg body wt) 2 h before the running test. We measured plasma levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), and lactate dehydrogenase (LDH), and acute exhaustive exercise significantly increased these biomarkers. In addition, the mRNA expression of pro-inflammatory cytokines, IL-6, IL-1β, and TNF-α, were significantly increased in the liver of exercise group. However, the SFN plus exercise group showed a significant reduction in the expression of cytokines and blood biomarkers of tissue damage or cell death. Furthermore, we measured mRNA expression of Nrf2, heme oxygenase (HO)-1, and antioxidant defense enzymes expression, i.e., superoxide dismutase (SOD1), catalase (CAT), and glutathione peroxidase (GPx1) in the liver. The expression of all these biomarkers was significantly upregulated in the SFN plus exercise group. Collectively, SFN may protect the liver from exhaustive exercise-induced inflammation via inducing antioxidant defense response through the activation of Nrf2/HO-1 signal transduction pathway.
Collapse
Affiliation(s)
- Ruheea Taskin Ruhee
- Graduate School of Sport Sciences, Waseda University, Tokorozawa 359-1192, Japan;
| | - Sihui Ma
- Faculty of Sport Sciences, Waseda University, Tokorozawa 359-1192, Japan
- Correspondence: (S.M.); (K.S.); Tel.: +81-4-2947-6753 (S.M.); +81-4-2947-6898 (K.S.)
| | - Katsuhiko Suzuki
- Faculty of Sport Sciences, Waseda University, Tokorozawa 359-1192, Japan
- Correspondence: (S.M.); (K.S.); Tel.: +81-4-2947-6753 (S.M.); +81-4-2947-6898 (K.S.)
| |
Collapse
|
60
|
Rezuş E, Burlui A, Cardoneanu A, Rezuş C, Codreanu C, Pârvu M, Rusu Zota G, Tamba BI. Inactivity and Skeletal Muscle Metabolism: A Vicious Cycle in Old Age. Int J Mol Sci 2020; 21:592. [PMID: 31963330 PMCID: PMC7014434 DOI: 10.3390/ijms21020592] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/19/2019] [Accepted: 01/07/2020] [Indexed: 12/12/2022] Open
Abstract
Aging is an inevitable and gradually progressive process affecting all organs and systems. The musculoskeletal system makes no exception, elderly exhibit an increased risk of sarcopenia (low muscle mass),dynapenia (declining muscle strength), and subsequent disability. Whereas in recent years the subject of skeletal muscle metabolic decline in the elderly has been gathering interest amongst researchers, as well as medical professionals, there are many challenges yet to be solved in order to counteract the effects of aging on muscle function efficiently. Noteworthy, it has been shown that aging individuals exhibit a decline in skeletal muscle metabolism, a phenomenon which may be linked to a number of predisposing (risk) factors such as telomere attrition, epigenetic changes, mitochondrial dysfunction, sedentary behavior (leading to body composition alterations), age-related low-grade systemic inflammation (inflammaging), hormonal imbalance, as well as a hypoproteic diet (unable to counterbalance the repercussions of the age-related increase in skeletal muscle catabolism). The present review aims to discuss the relationship between old age and muscle wasting in an effort to highlight the modifications in skeletal muscle metabolism associated with aging and physical activity.
Collapse
Affiliation(s)
- Elena Rezuş
- Department of Rheumatology and Physiotherapy, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iaşi, Romania; (E.R.); (A.C.)
| | - Alexandra Burlui
- Department of Rheumatology and Physiotherapy, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iaşi, Romania; (E.R.); (A.C.)
| | - Anca Cardoneanu
- Department of Rheumatology and Physiotherapy, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iaşi, Romania; (E.R.); (A.C.)
| | - Ciprian Rezuş
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iaşi, Romania;
| | - Cătălin Codreanu
- Center for Rheumatic Diseases, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Mirela Pârvu
- Department of Rheumatology and Physiotherapy,“George Emil Palade” University of Medicine, Pharmacy, Science and Technology, 540139 Târgu Mureş, Romania;
| | - Gabriela Rusu Zota
- Department of Pharmacology, Clinical Pharmacology and Algesiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iaşi, Romania;
| | - Bogdan Ionel Tamba
- Advanced Center for Research and Development in Experimental Medicine (CEMEX), “Grigore T. Popa” University of Medicine and Pharmacy, 700454 Iaşi, Romania;
| |
Collapse
|
61
|
Chis BA, Chis AF, Muresan A, Fodor D. Q10 Coenzyme Supplementation can Improve Oxidative Stress Response to Exercise in Metabolic Syndrome in Rats. INT J VITAM NUTR RES 2020; 90:33-41. [DOI: 10.1024/0300-9831/a000301] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Abstract. Background: The metabolic syndrome leads to high morbidity and mortality. Almost all pathological states are associated with oxidative stress (OS) disorders. This study evaluates the effects of Coenzyme Q10 (CoQ10) supplementation on different lifestyles, in relation to serum and tissue OS parameters. Materials and methods: Twelve Wistar rat groups (10 rats/group) were equally divided in three types of diets: standard (St), high fat (HF), high sugar (HS); within each diet group there was one sedentary group with CoQ10 supplementation (100 mg/kg body weight), one sedentary without CoQ10, one trained group with CoQ10 and one trained group without CoQ10 supplementation. After 28 days blood samples were collected as follows: after 12 hours of fasting (T0), 1 hour postprandial (T1) and after 1 hour of exercise (T2) or sedentary postprandial time (T3). Thiol groups (SH) and malondialdehyde (MDA) were determined from serum and liver homogenate. Results: Significant changes were observed in fasting MDA for HF (p = 0.024 for training, 0.028 for CoQ10). Postprandial, OS status altered, with highest MDA in HF sedentary non-CoQ10 group (3.92 ± 0.37 vs 2.67 ± 0.41 nmol/ml in St trained CoQ10). At T2 the untrained and non-CoQ10 groups had the highest MDA levels (up to 22.3% vs T1, p < 0.001 in HF) as SH dropped (34.4% decrease vs T1, p < 0.001 in HF). At T3 high MDA levels were observed, correlated with low SH (Pearson r = −0.423 overall), irrespective of the CoQ10 supplementation. CoQ10 improved the liver OS status (MDA and SH decreased), but not the exercise, in all diets. Conclusions: CoQ10 supplementation accompanied by chronic exercise improved the OS serum profile, irrespective of the daily diet. CoQ10 lowered liver MDA and SH concentrations.
Collapse
Affiliation(s)
- Bogdan Augustin Chis
- 2nd Department of Internal Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
| | - Ana Florica Chis
- Department of Pulmonology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
| | - Adriana Muresan
- Physiology Dept., Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
| | - Daniela Fodor
- 2nd Department of Internal Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
| |
Collapse
|
62
|
Abstract
Cells are constantly subjected to cytotoxic and genotoxic insults resulting in the accumulation of unrepaired damaged DNA, which leads to neuronal death. In this way, DNA damage has been implicated in the pathogenesis of neurological disorders, cancer, and aging. Lifestyle factors, such as physical exercise, are neuroprotective and increase brain function by improving cognition, learning, and memory, in addition to regulating the cellular redox milieu. Several mechanisms are associated with the effects of exercise in the brain, such as reduced production of oxidants, up-regulation of antioxidant capacity, and a consequent decrease in nuclear DNA damage. Furthermore, physical exercise is a potential strategy for further DNA damage repair. However, the neuroplasticity molecules that respond to different aspects of physical exercise remain unknown. In this review, we discuss the influence of exercise on DNA damage and adjacent mechanisms in the brain. We discuss the results of several studies that focus on the effects of physical exercise on brain DNA damage.
Collapse
Affiliation(s)
- Thais Ceresér Vilela
- Laboratory of Translational Biomedicine, Graduate Program of Health Sciences, University of Southern Santa Catarina - UNESC, Criciúma, SC, Brazil
| | - Vanessa Moraes de Andrade
- Laboratory of Translational Biomedicine, Graduate Program of Health Sciences, University of Southern Santa Catarina - UNESC, Criciúma, SC, Brazil
| | - Zsolt Radak
- Research Institute of Sport Science, University of Physical Education, Budapest, Hungary
| | - Ricardo Aurino de Pinho
- Laboratory of Exercise Biochemistry in Health, Graduate Program in Health Sciences, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba, PR, Brazil
| |
Collapse
|
63
|
Memme JM, Erlich AT, Phukan G, Hood DA. Exercise and mitochondrial health. J Physiol 2019; 599:803-817. [PMID: 31674658 DOI: 10.1113/jp278853] [Citation(s) in RCA: 156] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 10/28/2019] [Indexed: 12/12/2022] Open
Abstract
Mitochondrial health is an important mediator of cellular function across a range of tissues, and as a result contributes to whole-body vitality in health and disease. Our understanding of the regulation and function of these organelles is of great interest to scientists and clinicians across many disciplines within our healthcare system. Skeletal muscle is a useful model tissue for the study of mitochondrial adaptations because of its mass and contribution to whole body metabolism. The remarkable plasticity of mitochondria allows them to adjust their volume, structure and capacity under conditions such as exercise, which is useful or improving metabolic health in individuals with various diseases and/or advancing age. Mitochondria exist within muscle as a functional reticulum which is maintained by dynamic processes of biogenesis and fusion, and is balanced by opposing processes of fission and mitophagy. The sophisticated coordination of these events is incompletely understood, but is imperative for organelle function and essential for the maintenance of an interconnected organelle network that is finely tuned to the metabolic needs of the cell. Further elucidation of the mechanisms of mitochondrial turnover in muscle could offer potential therapeutic targets for the advancement of health and longevity among our ageing populations. As well, investigating exercise modalities that are both convenient and capable of inducing robust mitochondrial adaptations are useful in fostering more widespread global adherence. To this point, exercise remains the most potent behavioural therapeutic approach for the improvement of mitochondrial health, not only in muscle, but potentially also in other tissues.
Collapse
Affiliation(s)
- Jonathan M Memme
- Muscle Health Research Centre, York University, Toronto, Ontario, Canada, M3J 1P3.,School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada, M3J 1P3
| | - Avigail T Erlich
- Muscle Health Research Centre, York University, Toronto, Ontario, Canada, M3J 1P3.,School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada, M3J 1P3
| | - Geetika Phukan
- Muscle Health Research Centre, York University, Toronto, Ontario, Canada, M3J 1P3.,School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada, M3J 1P3
| | - David A Hood
- Muscle Health Research Centre, York University, Toronto, Ontario, Canada, M3J 1P3.,School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada, M3J 1P3
| |
Collapse
|
64
|
Piccarducci R, Daniele S, Fusi J, Chico L, Baldacci F, Siciliano G, Bonuccelli U, Franzoni F, Martini C. Impact of ApoE Polymorphism and Physical Activity on Plasma Antioxidant Capability and Erythrocyte Membranes. Antioxidants (Basel) 2019; 8:E538. [PMID: 31717561 PMCID: PMC6912376 DOI: 10.3390/antiox8110538] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 11/06/2019] [Accepted: 11/07/2019] [Indexed: 02/07/2023] Open
Abstract
The allele epsilon 4 (ε4) of apolipoprotein E (ApoE) is the strongest genetic risk factor for Alzheimer's disease (AD). ApoE protein plays a pivotal role in the synthesis and metabolism of amyloid beta (Aβ), the major component of the extracellular plaques that constitute AD pathological hallmarks. Regular exercise is an important preventive/therapeutic tool in aging and AD. Nevertheless, the impact of physical exercise on the well-being of erythrocytes, a good model of oxidative stress and neurodegenerative processes, remains to be investigated, particularly depending on ApoE polymorphism. Herein, we evaluate the oxidative status, Aβ levels, and the membrane's composition of erythrocytes in a cohort of human subjects. In our hands, the plasma antioxidant capability (AOC), erythrocytes membrane fluidity, and the amount of phosphatidylcholine (PC) were demonstrated to be significantly decreased in the ApoE ε4 genotype and non-active subjects. In contrast, erythrocyte Aβ content and lipid peroxidation increased in ε4 carriers. Regular physical exercise was associated with an increased plasma AOC and membrane fluidity, as well as to a reduced amount of erythrocytes Aβ. Altogether, these data highlight the influence of the ApoE genotype on erythrocytes' well-being and confirm the positive impact of regular physical exercise.
Collapse
Affiliation(s)
- Rebecca Piccarducci
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (R.P.); (S.D.)
| | - Simona Daniele
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (R.P.); (S.D.)
| | - Jonathan Fusi
- Department of Clinical and Experimental Medicine, University of Pisa, 56100 Pisa, Italy; (J.F.); (L.C.); (F.B.); (G.S.); (U.B.)
| | - Lucia Chico
- Department of Clinical and Experimental Medicine, University of Pisa, 56100 Pisa, Italy; (J.F.); (L.C.); (F.B.); (G.S.); (U.B.)
| | - Filippo Baldacci
- Department of Clinical and Experimental Medicine, University of Pisa, 56100 Pisa, Italy; (J.F.); (L.C.); (F.B.); (G.S.); (U.B.)
| | - Gabriele Siciliano
- Department of Clinical and Experimental Medicine, University of Pisa, 56100 Pisa, Italy; (J.F.); (L.C.); (F.B.); (G.S.); (U.B.)
| | - Ubaldo Bonuccelli
- Department of Clinical and Experimental Medicine, University of Pisa, 56100 Pisa, Italy; (J.F.); (L.C.); (F.B.); (G.S.); (U.B.)
| | - Ferdinando Franzoni
- Department of Clinical and Experimental Medicine, University of Pisa, 56100 Pisa, Italy; (J.F.); (L.C.); (F.B.); (G.S.); (U.B.)
| | - Claudia Martini
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (R.P.); (S.D.)
| |
Collapse
|
65
|
Effects of Resistance Exercise on Cerebral Redox Regulation and Cognition: An Interplay Between Muscle and Brain. Antioxidants (Basel) 2019; 8:antiox8110529. [PMID: 31698763 PMCID: PMC6912783 DOI: 10.3390/antiox8110529] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 10/31/2019] [Accepted: 11/05/2019] [Indexed: 01/08/2023] Open
Abstract
This review highlighted resistance training as an important training type for the brain. Most studies that use physical exercise for the prevention or treatment of neurodegenerative diseases have focused on aerobic physical exercise, revealing different behavioral, biochemical, and molecular effects. However, recent studies have shown that resistance training can also significantly contribute to the prevention of neurodegenerative diseases as well as to the maintenance, development, and recovery of brain activities through specific neurochemical adaptations induced by the training. In this scenario we observed the results of several studies published in different journals in the last 20 years, focusing on the effects of resistance training on three main neurological aspects: Neuroprotective mechanisms, oxidative stress, and cognition. Systematic database searches of PubMed, Web of Science, Scopus, and Medline were performed to identify peer-reviewed studies from the 2000s. Combinations of keywords related to brain disease, aerobic/resistance, or strength physical exercise were used. Other variables were not addressed in this review but should be considered for a complete understanding of the effects of training in the brain.
Collapse
|
66
|
Michels S, Dolga AM, Braun MD, Kisko TM, Sungur AÖ, Witt SH, Rietschel M, Dempfle A, Wöhr M, Schwarting RKW, Culmsee C. Interaction of the Psychiatric Risk Gene Cacna1c With Post-weaning Social Isolation or Environmental Enrichment Does Not Affect Brain Mitochondrial Bioenergetics in Rats. Front Cell Neurosci 2019; 13:483. [PMID: 31708752 PMCID: PMC6823196 DOI: 10.3389/fncel.2019.00483] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 10/11/2019] [Indexed: 12/21/2022] Open
Abstract
The pathophysiology of neuropsychiatric disorders involves complex interactions between genetic and environmental risk factors. Confirmed by several genome-wide association studies, Cacna1c represents one of the most robustly replicated psychiatric risk genes. Besides genetic predispositions, environmental stress such as childhood maltreatment also contributes to enhanced disease vulnerability. Both, Cacna1c gene variants and stressful life events are associated with morphological alterations in the prefrontal cortex and the hippocampus. Emerging evidence suggests impaired mitochondrial bioenergetics as a possible underlying mechanism of these regional brain abnormalities. In the present study, we simulated the interaction of psychiatric disease-relevant genetic and environmental factors in rodents to investigate their potential effect on brain mitochondrial function using a constitutive heterozygous Cacna1c rat model in combination with a four-week exposure to either post-weaning social isolation, standard housing, or social and physical environmental enrichment. Mitochondria were isolated from the prefrontal cortex and the hippocampus to evaluate their bioenergetics, membrane potential, reactive oxygen species production, and respiratory chain complex protein levels. None of these parameters were considerably affected in this particular gene-environment setting. These negative results were very robust in all tested conditions demonstrating that Cacna1c depletion did not significantly translate into altered bioenergetic characteristics. Thus, further investigations are required to determine the disease-related effects on brain mitochondria.
Collapse
Affiliation(s)
- Susanne Michels
- Institute of Pharmacology and Clinical Pharmacy, University of Marburg, Marburg, Germany.,Center for Mind, Brain and Behavior, University of Marburg, Marburg, Germany
| | - Amalia M Dolga
- Department of Molecular Pharmacology, Faculty of Science and Engineering, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Groningen, Netherlands
| | - Moria D Braun
- Center for Mind, Brain and Behavior, University of Marburg, Marburg, Germany.,Department of Experimental and Biological Psychology, University of Marburg, Marburg, Germany
| | - Theresa M Kisko
- Center for Mind, Brain and Behavior, University of Marburg, Marburg, Germany.,Department of Experimental and Biological Psychology, University of Marburg, Marburg, Germany
| | - A Özge Sungur
- Center for Mind, Brain and Behavior, University of Marburg, Marburg, Germany.,Department of Experimental and Biological Psychology, University of Marburg, Marburg, Germany
| | - Stephanie H Witt
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Mannheim, Germany
| | - Marcella Rietschel
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Mannheim, Germany
| | - Astrid Dempfle
- Institute of Medical Informatics and Statistics, Kiel University, Kiel, Germany
| | - Markus Wöhr
- Center for Mind, Brain and Behavior, University of Marburg, Marburg, Germany.,Department of Experimental and Biological Psychology, University of Marburg, Marburg, Germany
| | - Rainer K W Schwarting
- Center for Mind, Brain and Behavior, University of Marburg, Marburg, Germany.,Department of Experimental and Biological Psychology, University of Marburg, Marburg, Germany
| | - Carsten Culmsee
- Institute of Pharmacology and Clinical Pharmacy, University of Marburg, Marburg, Germany.,Center for Mind, Brain and Behavior, University of Marburg, Marburg, Germany
| |
Collapse
|
67
|
Sakakima H. Endogenous neuroprotective potential due to preconditioning exercise in stroke. Phys Ther Res 2019; 22:45-52. [PMID: 32015940 DOI: 10.1298/ptr.r0006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 06/12/2019] [Indexed: 01/14/2023]
Abstract
Stroke is a leading cause of serious long-term physical disability due to insufficient neurorepair mechanisms. In general, physical activity is an important modifiable risk factor, particularly for stroke and cardiovascular diseases. Physical exercise has shown to be neuroprotective in both animal experiments and clinical settings. Exercise can be considered a mild stressor and follows the prototypical preconditioning stimulus. It has beneficial effects on brain health and cognitive function. Preconditioning exercise, which is prophylactic exercise prior to ischemia, can protect the brain from subsequent serious injury through promotion of angiogenesis, mediation of inflammatory responses, inhibition of glutamate over-activation, protection of the blood-brain barrier, and inhibition of apoptosis. Preconditioning exercise appears to induce brain ischemic tolerance and it has been shown to exert beneficial effects. It is clinically safe and feasible and represents an exciting new paradigm in endogenous neuroprotection for patients with acute stroke. In this review, we describe the neuroprotective potential of preconditioning exercise and clinical applications in patients with acute ischemic stroke.
Collapse
Affiliation(s)
- Harutoshi Sakakima
- Department of Physical Therapy, School of Health Sciences, Faculty of Medicine, Kagoshima University
| |
Collapse
|
68
|
Pan M, Deng Y, Zheng C, Nie H, Tang K, Zhang Y, Yang Q. The effects of Qigong exercises on blood lipid profiles of middle-aged and elderly individuals: A systematic review and network meta-analysis. Eur J Integr Med 2019. [DOI: 10.1016/j.eujim.2019.100950] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
69
|
Wahl D, Solon-Biet SM, Cogger VC, Fontana L, Simpson SJ, Le Couteur DG, Ribeiro RV. Aging, lifestyle and dementia. Neurobiol Dis 2019; 130:104481. [PMID: 31136814 DOI: 10.1016/j.nbd.2019.104481] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 05/13/2019] [Accepted: 05/22/2019] [Indexed: 12/21/2022] Open
Abstract
Aging is the greatest risk factor for most diseases including cancer, cardiovascular disorders, and neurodegenerative disease. There is emerging evidence that interventions that improve metabolic health with aging may also be effective for brain health. The most robust interventions are non-pharmacological and include limiting calorie or protein intake, increasing aerobic exercise, or environmental enrichment. In humans, dietary patterns including the Mediterranean, Finnish Geriatric Intervention Study to Prevent Cognitive Impairment and Disability (FINGER) and Okinawan diets are associated with improved age-related health and may reduce neurodegenerative disease including dementia. Rapamycin, metformin and resveratrol act on nutrient sensing pathways that improve cardiometabolic health and decrease the risk for age-associated disease. There is some evidence that they may reduce the risk for dementia in rodents. There is a growing recognition that improving metabolic function may be an effective way to optimize brain health during aging.
Collapse
Affiliation(s)
- Devin Wahl
- Charles Perkins Centre, University of Sydney, Sydney 2006, Australia; Aging and Alzheimers Institute, ANZAC Research Institute, Concord Clinical School/Sydney Medical School, Concord 2139, Australia.
| | - Samantha M Solon-Biet
- Charles Perkins Centre, University of Sydney, Sydney 2006, Australia; Aging and Alzheimers Institute, ANZAC Research Institute, Concord Clinical School/Sydney Medical School, Concord 2139, Australia
| | - Victoria C Cogger
- Charles Perkins Centre, University of Sydney, Sydney 2006, Australia; Aging and Alzheimers Institute, ANZAC Research Institute, Concord Clinical School/Sydney Medical School, Concord 2139, Australia
| | - Luigi Fontana
- Charles Perkins Centre, University of Sydney, Sydney 2006, Australia
| | - Stephen J Simpson
- Charles Perkins Centre, University of Sydney, Sydney 2006, Australia; School of Life and Environmental Sciences, University of Sydney, Sydney 2006, Australia
| | - David G Le Couteur
- Charles Perkins Centre, University of Sydney, Sydney 2006, Australia; Aging and Alzheimers Institute, ANZAC Research Institute, Concord Clinical School/Sydney Medical School, Concord 2139, Australia
| | - Rosilene V Ribeiro
- Charles Perkins Centre, University of Sydney, Sydney 2006, Australia; School of Life and Environmental Sciences, University of Sydney, Sydney 2006, Australia
| |
Collapse
|
70
|
Jensen CS, Bahl JM, Østergaard LB, Høgh P, Wermuth L, Heslegrave A, Zetterberg H, Heegaard NHH, Hasselbalch SG, Simonsen AH. Exercise as a potential modulator of inflammation in patients with Alzheimer's disease measured in cerebrospinal fluid and plasma. Exp Gerontol 2019; 121:91-98. [PMID: 30980923 DOI: 10.1016/j.exger.2019.04.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 02/04/2019] [Accepted: 04/08/2019] [Indexed: 11/15/2022]
Abstract
BACKGROUND Neuroinflammation is recognized as part of the pathological progression of Alzheimer's disease (AD), but the molecular mechanisms are still not entirely clear. Systemically, physical exercise has shown to have a positive modulating effect on markers of inflammation. It is not known if this general effect also takes place in the central nervous system in AD. The aim of this study was to investigate the effect of 16 weeks of moderate to high-intensity physical exercise on selected biomarkers of inflammation both systemically and in the CNS, in patients with AD. METHODS Plasma and cerebrospinal fluid (CSF) from 198 patients with Alzheimer's disease participating in the Preserving Cognition, Quality of Life, Physical Health and Functional Ability in Alzheimer's Disease: The Effect of Physical Exercise (ADEX) study were analyzed for concentrations of 8‑isoprostane, soluble trigger receptor expressed on myeloid cells 2 (sTREM2), and the MSD v-plex proinflammation panel 1 human containing interferon gamma (IFNγ), Interleukin-10 (IL10), IL12p70, IL13, IL1β, IL2, IL4, IL6, IL8, and tumor necrosis factor alpha (TNFα), before and after a 16-week intervention with physical exercise, and we studied whether changes were modulated by the patients' APOE genotype. RESULTS Most inflammatory markers remained unchanged after exercise. We found an increasing effect of 16 weeks of physical exercise on sTREM2 measured in CSF. Further, IL6 in plasma increased in the exercise group after physical exercise (mean relative change 41.03, SD 76.7), compared to controls (-0.97, SD 49.4). In a sub-analysis according to APOE genotype, we found that in ε4 carriers, exercise had a stabilizing effect on IFNγ concentration with a mean relative change of 7.84 (SD 42.6), as compared to controls (114.7 (SD 188.3), p = 0.038. CONCLUSION Our findings indicate an effect of physical exercise on markers of neuroinflammation in CSF measured by an increase in sTREM2 in patients with AD. Further, there may be a small inflammatory systemic effect related to physical exercise in patients with AD.
Collapse
Affiliation(s)
- Camilla Steen Jensen
- Danish Dementia Research Centre, Department of Neurology, Rigshospitalet University of Copenhagen, DK-2100 Copenhagen, Denmark; Department of Clinical Medicine, University of Copenhagen, Denmark.
| | | | - Lærke Borg Østergaard
- Danish Dementia Research Centre, Department of Neurology, Rigshospitalet University of Copenhagen, DK-2100 Copenhagen, Denmark.
| | - Peter Høgh
- Department of Clinical Medicine, University of Copenhagen, Denmark; Regional Dementia Research Centre, Department of Neurology, Zealand University Hospital, DK-4000 Roskilde, Denmark.
| | - Lene Wermuth
- Dementia Clinic, Department of Neurology, Odense University Hospital, DK-5000 Odense, Denmark.
| | - Amanda Heslegrave
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, WC1N London, UK; UK Dementia Research Institute at UCL, London WC1E 6BT, UK.
| | - Henrik Zetterberg
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, WC1N London, UK; UK Dementia Research Institute at UCL, London WC1E 6BT, UK; Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, S-431 80 Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, S-431 80 Mölndal, Sweden.
| | - Niels H H Heegaard
- Department of Clinical Biochemistry, Immunology and Genetics, Statens Serum Institut, Copenhagen, Denmark; Department of Clinical Biochemistry, University of Southern Denmark, Odense, Denmark
| | - Steen Gregers Hasselbalch
- Danish Dementia Research Centre, Department of Neurology, Rigshospitalet University of Copenhagen, DK-2100 Copenhagen, Denmark; Department of Clinical Medicine, University of Copenhagen, Denmark.
| | - Anja Hviid Simonsen
- Danish Dementia Research Centre, Department of Neurology, Rigshospitalet University of Copenhagen, DK-2100 Copenhagen, Denmark.
| |
Collapse
|
71
|
Cholesterol and the Safety Factor for Neuromuscular Transmission. Int J Mol Sci 2019; 20:ijms20051046. [PMID: 30823359 PMCID: PMC6429197 DOI: 10.3390/ijms20051046] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/23/2019] [Accepted: 02/24/2019] [Indexed: 12/12/2022] Open
Abstract
A present review is devoted to the analysis of literature data and results of own research. Skeletal muscle neuromuscular junction is specialized to trigger the striated muscle fiber contraction in response to motor neuron activity. The safety factor at the neuromuscular junction strongly depends on a variety of pre- and postsynaptic factors. The review focuses on the crucial role of membrane cholesterol to maintain a high efficiency of neuromuscular transmission. Cholesterol metabolism in the neuromuscular junction, its role in the synaptic vesicle cycle and neurotransmitter release, endplate electrogenesis, as well as contribution of cholesterol to the synaptogenesis, synaptic integrity, and motor disorders are discussed.
Collapse
|
72
|
Radak Z, Torma F, Berkes I, Goto S, Mimura T, Posa A, Balogh L, Boldogh I, Suzuki K, Higuchi M, Koltai E. Exercise effects on physiological function during aging. Free Radic Biol Med 2019; 132:33-41. [PMID: 30389495 DOI: 10.1016/j.freeradbiomed.2018.10.444] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 10/21/2018] [Accepted: 10/26/2018] [Indexed: 02/07/2023]
Abstract
The decrease in cognitive/motor functions and physical abilities severely affects the aging population in carrying out daily activities. These disabilities become a burden on individuals, families and society in general. It is known that aging conditions are ameliorated with regular exercise, which attenuates the age-associated decline in maximal oxygen uptake (VO2max), production of reactive oxygen species (ROS), decreases in oxidative damage to molecules, and functional impairment in various organs. While benefits of physical exercise are well-documented, the molecular mechanisms responsible for functional improvement and increases in health span are not well understood. Recent findings imply that exercise training attenuates the age-related deterioration in the cellular housekeeping system, which includes the proteasome, Lon protease, autophagy, mitophagy, and DNA repair systems, which beneficially impacts multiple organ functions. Accumulating evidence suggests that exercise lessens the deleterious effects of aging. However, it seems unlikely that systemic effects are mediated through a specific biomarker. Rather, complex multifactorial mechanisms are involved to maintain homeostatic functions that tend to decline with age.
Collapse
Affiliation(s)
- Zsolt Radak
- Research Institute of Sport Science, University of Physical Education, Budapest, Hungary; Faculty of Sport Sciences, Waseda University, Tokorozawa, Saitama, Japan.
| | - Ferenc Torma
- Research Institute of Sport Science, University of Physical Education, Budapest, Hungary
| | - Istvan Berkes
- Research Institute of Sport Science, University of Physical Education, Budapest, Hungary
| | - Sataro Goto
- Graduate School of Health and Sports Science, Juntendo University, Chiba, Japan, Hungary
| | - Tatsuya Mimura
- Faculty of Sport and Health Sciences, Osaka Sangyo University, Osaka, Japan
| | - Aniko Posa
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, Szeged, Hungary
| | - Laszlo Balogh
- Institute of Sport Science, University of Debrecen, Debrecen, Hungary
| | - Istvan Boldogh
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Katsuhiko Suzuki
- Faculty of Sport Sciences, Waseda University, Tokorozawa, Saitama, Japan
| | - Mitsuru Higuchi
- Faculty of Sport Sciences, Waseda University, Tokorozawa, Saitama, Japan
| | - Erika Koltai
- Research Institute of Sport Science, University of Physical Education, Budapest, Hungary
| |
Collapse
|
73
|
Enhancement of Exercise Performance by 48 Hours, and 15-Day Supplementation with Mangiferin and Luteolin in Men. Nutrients 2019; 11:nu11020344. [PMID: 30736383 PMCID: PMC6412949 DOI: 10.3390/nu11020344] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 01/26/2019] [Accepted: 01/29/2019] [Indexed: 12/27/2022] Open
Abstract
The natural polyphenols mangiferin and luteolin have free radical-scavenging properties, induce the antioxidant gene program and down-regulate the expression of superoxide-producing enzymes. However, the effects of these two polyphenols on exercise capacity remains mostly unknown. To determine whether a combination of luteolin (peanut husk extract containing 95% luteolin, PHE) and mangiferin (mango leave extract (MLE), Zynamite®) at low (PHE: 50 mg/day; and 140 mg/day of MLE containing 100 mg of mangiferin; L) and high doses (PHE: 100 mg/day; MLE: 420 mg/day; H) may enhance exercise performance, twelve physically active men performed incremental exercise to exhaustion, followed by sprint and endurance exercise after 48 h (acute effects) and 15 days of supplementation (prolonged effects) with polyphenols or placebo, following a double-blind crossover design. During sprint exercise, mangiferin + luteolin supplementation enhanced exercise performance, facilitated muscle oxygen extraction, and improved brain oxygenation, without increasing the VO₂. Compared to placebo, mangiferin + luteolin increased muscle O₂ extraction during post-exercise ischemia, and improved sprint performance after ischemia-reperfusion likely by increasing glycolytic energy production, as reflected by higher blood lactate concentrations after the sprints. Similar responses were elicited by the two doses tested. In conclusion, acute and prolonged supplementation with mangiferin combined with luteolin enhances performance, muscle O₂ extraction, and brain oxygenation during sprint exercise, at high and low doses.
Collapse
|
74
|
Li C, Li Y, Zhao Z, Lv Y, Gu B, Zhao L. Aerobic exercise regulates synaptic transmission and reactive oxygen species production in the paraventricular nucleus of spontaneously hypertensive rats. Brain Res 2019; 1712:82-92. [PMID: 30735639 DOI: 10.1016/j.brainres.2019.02.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 01/29/2019] [Accepted: 02/04/2019] [Indexed: 02/07/2023]
Abstract
Aerobic exercise lowers blood pressure in patients with hypertension, but the underlying mechanisms remain incompletely understood. The hypothalamic paraventricular nucleus (PVN) plays a key role in the control of sympathetic outflow and cardiovascular tone. We examined whether chronic aerobic exercise altered synaptic transmission and reactive oxygen species (ROS) production in the PVN. In the present study, spontaneously hypertensive rats (SHRs) were subjected to exercise training for 8 weeks, five times per week, with Wistar Kyoto (WKY) rats as the cohort control. Miniature excitatory and inhibitory postsynaptic currents (mEPSCs and mIPSCs) were recorded from the PVN in ex vivo hypothalamic slice preparations obtained after the last training, and biomarkers of oxidative stress and physical indexes were observed. The mean frequency and amplitude, as well as the rise time and the decay time constant of mIPSCs, significantly decreased in 20-wk-old SHRs compared to WKY 20-wk-old controls. In contrast to mIPSCs, only the mean mEPSC frequency was higher, and there were no other changes in mEPSCs in comparison to the control group. SHRs exhibited higher ROS, 8-OHdG, and MDA; and lower SOD1, SOD2, CAT, Ogg1, and SOD and CAT activity in the PVN. These SHRs also had a significant increase in heart rate, blood pressure and sympathetic nerve activity, and higher levels of norepinephrine (NE). Exercise training ameliorated all these abnormalities, resulting in an increase in the mean frequency, amplitude and kinetics of mIPSCs, accompanied by a decrease in the mean frequency of mEPSCs in the PVN. This study demonstrates that moderate intensity, high frequency exercise training induces a selective enhancement of inhibitory synaptic transmission in the PVN, which may dampen sympathetic activity and reduce blood pressure in hypertension. These changes may be due to antioxidant-related adaptations in the PVNs of SHRs.
Collapse
Affiliation(s)
- Cui Li
- Department of Exercise Physiology, Beijing Sport University, Beijing, China
| | - Yan Li
- Department of Exercise Physiology, Beijing Sport University, Beijing, China
| | - Ziqi Zhao
- College of Life Science, University of Chinese Academy of Science, Beijing, China
| | - Yuanyuan Lv
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing, China
| | - Boya Gu
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing, China
| | - Li Zhao
- Department of Exercise Physiology, Beijing Sport University, Beijing, China; Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing, China.
| |
Collapse
|
75
|
Díaz-Uribe C, Rodriguez-Serrano A, López M, Schott E, Muñoz A, Zarate X. Singlet oxygen photogeneration by ethanolic extract of Syzygium cumini fruits: Theoretical elucidation through excited states computations. Chem Phys Lett 2019. [DOI: 10.1016/j.cplett.2018.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
76
|
Brain ageing and neurodegenerative disease: The role of cellular waste management. Biochem Pharmacol 2018; 158:207-216. [DOI: 10.1016/j.bcp.2018.10.030] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 10/26/2018] [Indexed: 12/22/2022]
|
77
|
Jiménez-Maldonado A, Rentería I, García-Suárez PC, Moncada-Jiménez J, Freire-Royes LF. The Impact of High-Intensity Interval Training on Brain Derived Neurotrophic Factor in Brain: A Mini-Review. Front Neurosci 2018; 12:839. [PMID: 30487731 PMCID: PMC6246624 DOI: 10.3389/fnins.2018.00839] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 10/29/2018] [Indexed: 12/16/2022] Open
Abstract
The brain-derived neurotrophic factor (BDNF) is a protein mainly synthetized in the neurons. Early evidence showed that BDNF participates in cognitive processes as measured at the hippocampus. This neurotrophin is as a reliable marker of brain function; moreover, recent studies have demonstrated that BDNF participates in physiological processes such as glucose homeostasis and lipid metabolism. The BDNF has been also studied using the exercise paradigm to determine its response to different exercise modalities; therefore, BDNF is considered a new member of the exercise-related molecules. The high-intensity interval training (HIIT) is an exercise protocol characterized by low work volume performed at a high intensity [i.e., ≥80% of maximal heart rate (HRmax)]. Recent evidence supports the contention that HIIT elicits higher fat oxidation in skeletal muscle than other forms of exercise. Similarly, HIIT is a good stimulus to increase maximal oxygen uptake (VO2max). Few studies have investigated the impact of HIIT on the BDNF response. The present work summarizes the effects of acute and long-term HIIT on BDNF.
Collapse
Affiliation(s)
| | - Iván Rentería
- Facultad de Deportes, Universidad Autónoma de Baja California, Ensenada, Mexico
| | | | - José Moncada-Jiménez
- Human Movement Sciences Research Center, University of Costa Rica, San José, Costa Rica
| | | |
Collapse
|
78
|
Margaritelis NV, Paschalis V, Theodorou AA, Kyparos A, Nikolaidis MG. Antioxidants in Personalized Nutrition and Exercise. Adv Nutr 2018; 9:813-823. [PMID: 30256898 PMCID: PMC6247356 DOI: 10.1093/advances/nmy052] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The present review highlights the idea that antioxidant supplementation can be optimized when tailored to the precise antioxidant status of each individual. A novel methodologic approach involving personalized nutrition, the mechanisms by which antioxidant status regulates human metabolism and performance, and similarities between antioxidants and other nutritional supplements are described. The usefulness of higher-level phenotypes for data-driven personalized treatments is also explained. We conclude that personally tailored antioxidant interventions based on specific antioxidant inadequacies or deficiencies could result in improved exercise performance accompanied by consistent alterations in redox profile.
Collapse
Affiliation(s)
- Nikos V Margaritelis
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece,Intensive Care Unit, 424 General Military Hospital of Thessaloniki, Thessaloniki, Greece,Address correspondence to NVM (e-mail: )
| | - Vassilis Paschalis
- School of Physical Education and Sport Science, National and Kapodistrian University of Athens, Athens, Greece
| | - Anastasios A Theodorou
- Department of Health Sciences, School of Sciences, European University Cyprus, Nicosia, Cyprus
| | - Antonios Kyparos
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| | - Michalis G Nikolaidis
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| |
Collapse
|
79
|
Gonçalves DF, Courtes AA, Hartmann DD, da Rosa PC, Oliveira DM, Soares FAA, Dalla Corte CL. 6-Hydroxydopamine induces different mitochondrial bioenergetics response in brain regions of rat. Neurotoxicology 2018; 70:1-11. [PMID: 30359634 DOI: 10.1016/j.neuro.2018.10.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 10/07/2018] [Accepted: 10/10/2018] [Indexed: 11/30/2022]
Abstract
Mitochondrial dysfunction has been demonstrated to have a central role in Parkinson Disease (PD) pathophysiology. Some studies have indicated that PD causes an impairment in mitochondrial bioenergetics; however, the effects of PD on brain-region specific bioenergetics was never investigated before. This study aimed to evaluate mitochondrial bioenergetics in different rat brain structures in an in vitro model of PD using 6-OHDA. Rat brain slices of hippocampus, striatum, and cortex were exposed to 6-OHDA (100 μM) for 1 h and mitochondrial bioenergetic parameters, peroxide production, lactate dehydrogenase (LDH) and citrate synthase (CS) activities were analyzed. Hippocampus slices exposed to 6-OHDA presented increased peroxide production but, no mitochondrial adaptive response against 6-OHDA damage. Cortex slices exposed to 6-OHDA presented increased oxygen flux related to oxidative phosphorylation and energetic pathways exchange demonstrated by the increase in LDH activity, suggesting a mitochondrial compensatory response. Striatum slices exposed to 6-OHDA presented a decrease of oxidative phosphorylation and decrease of oxygen flux related to ATP-synthase indicating an impairment in the respiratory chain. The co-incubation of 6-OHDA with n-acetylcysteine (NAC) abolished the effects of 6-OHDA on mitochondrial function in all brain regions tested, indicating that the increased reactive oxygen species (ROS) production is responsible for the alterations observed in mitochondrial bioenergetics. The present results indicate a brain-region specific response against 6-OHDA, providing new insights into brain mitochondrial bioenergetic function in PD. These findings may contribute to the development of future therapies with a target on energy metabolism.
Collapse
Affiliation(s)
- Débora F Gonçalves
- Universidade Federal de Santa Maria, Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Camobi, 97105-900, Santa Maria, RS, Brazil
| | - Aline A Courtes
- Universidade Federal de Santa Maria, Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Camobi, 97105-900, Santa Maria, RS, Brazil
| | - Diane D Hartmann
- Universidade Federal de Santa Maria, Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Camobi, 97105-900, Santa Maria, RS, Brazil
| | - Pamela C da Rosa
- Universidade Federal de Santa Maria, Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Camobi, 97105-900, Santa Maria, RS, Brazil
| | - Débora M Oliveira
- Universidade Federal de Santa Maria, Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Camobi, 97105-900, Santa Maria, RS, Brazil
| | - Félix A A Soares
- Universidade Federal de Santa Maria, Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Camobi, 97105-900, Santa Maria, RS, Brazil
| | - Cristiane L Dalla Corte
- Universidade Federal de Santa Maria, Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Camobi, 97105-900, Santa Maria, RS, Brazil; Universidade Federal do Pampa - Campus Caçapava do Sul, 96570-000, Caçapava do Sul, RS, Brazil.
| |
Collapse
|
80
|
Marinho R, Munõz VR, Pauli LSS, Ropelle ECC, Moura LP, Moraes JC, Moura‐Assis A, Cintra DE, da Silva ASR, Ropelle ER, Pauli JR. Endurance training prevents inflammation and apoptosis in hypothalamic neurons of obese mice. J Cell Physiol 2018; 234:880-890. [PMID: 30078194 DOI: 10.1002/jcp.26909] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 06/12/2018] [Indexed: 12/24/2022]
Affiliation(s)
- Rodolfo Marinho
- Department of Physical Education Institute of Biosciences, São Paulo State University (UNESP) Rio Claro Brazil
| | - Vitor R. Munõz
- School of Applied Sciences, University of Campinas (UNICAMP) Limeira Brazil
| | | | | | - Leandro P. Moura
- Department of Physical Education Institute of Biosciences, São Paulo State University (UNESP) Rio Claro Brazil
- School of Applied Sciences, University of Campinas (UNICAMP) Limeira Brazil
- OCRC—Obesity and Comorbidities Research Center, University of Campinas (UNICAMP), Campinas Brazil
- CEPECE—Center of Research in Sport Sciences. School of Applied Sciences, University of Campinas (UNICAMP) Limeira Brazil
| | - Juliana C. Moraes
- Faculty of Medical Sciences, State University of Campinas (UNICAMP) Limeira Brazil
| | | | - Dennys E. Cintra
- School of Applied Sciences, University of Campinas (UNICAMP) Limeira Brazil
- OCRC—Obesity and Comorbidities Research Center, University of Campinas (UNICAMP), Campinas Brazil
| | - Adelino S. R. da Silva
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto São Paulo Brazil
| | - Eduardo R. Ropelle
- School of Applied Sciences, University of Campinas (UNICAMP) Limeira Brazil
- OCRC—Obesity and Comorbidities Research Center, University of Campinas (UNICAMP), Campinas Brazil
- CEPECE—Center of Research in Sport Sciences. School of Applied Sciences, University of Campinas (UNICAMP) Limeira Brazil
| | - José R. Pauli
- School of Applied Sciences, University of Campinas (UNICAMP) Limeira Brazil
- OCRC—Obesity and Comorbidities Research Center, University of Campinas (UNICAMP), Campinas Brazil
- CEPECE—Center of Research in Sport Sciences. School of Applied Sciences, University of Campinas (UNICAMP) Limeira Brazil
| |
Collapse
|
81
|
Sidorova-Darmos E, Sommer R, Eubanks JH. The Role of SIRT3 in the Brain Under Physiological and Pathological Conditions. Front Cell Neurosci 2018; 12:196. [PMID: 30090057 PMCID: PMC6068278 DOI: 10.3389/fncel.2018.00196] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 06/17/2018] [Indexed: 12/22/2022] Open
Abstract
Sirtuin enzymes are a family of highly seven conserved protein deacetylases, namely SIRT1 through SIRT7, whose enzymatic activities require the cofactor nicotinamide adenine dinucleotide (NAD+). Sirtuins reside in different compartments within cells, and their activities have been shown to regulate a number of cellular pathways involved in but not limited to stress management, apoptosis and inflammatory responses. Given the importance of mitochondrial functional state in neurodegenerative conditions, the mitochondrial SIRT3 sirtuin, which is the primary deacetylase within mitochondria, has garnered considerable recent attention. It is now clear that SIRT3 plays a major role in regulating a host of mitochondrial molecular cascades that can contribute to both normal and pathophysiological processes. However, most of the currently available knowledge on SIRT3 stems from studies in non-neuronal cells, and the consequences of the interactions between SIRT3 and its targets in the CNS are only beginning to be elucidated. In this review, we will summarize current advances relating to SIRT3, and explore how its known functions could influence brain physiology.
Collapse
Affiliation(s)
- Elena Sidorova-Darmos
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Department of Physiology, University of Toronto, Toronto, ON, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - Rosa Sommer
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - James H Eubanks
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Department of Physiology, University of Toronto, Toronto, ON, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada.,Department of Surgery (Neurosurgery), University of Toronto, Toronto, ON, Canada
| |
Collapse
|
82
|
Belmonte LAO, Martins TC, Salm DC, Emer AA, de Oliveira BH, Mathias K, Goldim MP, Horewicz VV, Piovezan AP, Bobinski F, Petronilho F, Martins DF. Effects of Different Parameters of Continuous Training and High-Intensity Interval Training in the Chronic Phase of a Mouse Model of Complex Regional Pain Syndrome Type I. THE JOURNAL OF PAIN 2018; 19:1445-1460. [PMID: 30006271 DOI: 10.1016/j.jpain.2018.06.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 06/15/2018] [Accepted: 06/26/2018] [Indexed: 01/03/2023]
Abstract
This study evaluated the effects of continuous and interval running on a treadmill on mechanical hyperalgesia in an animal model of chronic postischemia pain and analyzed the mechanism of action of this effect. Different groups of male Swiss mice with chronic postischemia pain, induced by 3 hours of paw ischemia followed by reperfusion, ran on the treadmill in different protocols-the speed (10, 13, 16, or 19 m/min), duration (15, 30, or 60 minutes), weekly frequency (3 or 5 times), weekly increase in continuous and interval running speed-were tested. Mechanical hyperalgesia was evaluated by von Frey filament 7, 14, and 21 days after paw ischemia followed by reperfusion. On day 11 after paw ischemia followed by reperfusion and after 5 days of continuous and interval running, concentrations of cytokines, oxidative stress parameters, and extracellular signal-regulated kinase 1/2 and AKT 1/2/3 expression in the spinal cord were measured. The results showed that continuous running has an antihyperalgesic effect that depends on intensity and volume. Interval running has a longer-lasting antihyperalgesic effect than continuous running. The antihyperalgesic effect depends on intensity and volume in continuous running, and increasing speed maintains the antihyperalgesic effect in both protocols. In the spinal cord, both runs decreased tumor necrosis factor-α and interleukin-6 levels and increased interleukin-10. Both running protocols reduced oxidative damage in the spinal cord. Only interval running had lower concentrations of phosphorylated extracellular signal-regulated kinase 1/2 in the spinal cord. Interval running presented a great antihyperalgesic potential with more promising results than continuous running, which may be owing to the fact that the interval running can activate different mechanisms from those activated by continuous running. PERSPECTIVE: A minimum of .5-hour sessions of moderate to high intensity ≥3 times a week are essential parameters for continuous and interval running-induced analgesia. However, interval running was shown to be more effective than continuous running and can be an important adjuvant treatment to chronic pain.
Collapse
Affiliation(s)
- Luiz Augusto Oliveira Belmonte
- Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Palhoça, Santa Catarina, Brazil; Experimental Neuroscience Laboratory (LaNEx), University of Southern Santa Catarina, Palhoça, Santa Catarina, Brazil
| | - Thiago César Martins
- Experimental Neuroscience Laboratory (LaNEx), University of Southern Santa Catarina, Palhoça, Santa Catarina, Brazil
| | - Daiana Cristina Salm
- Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Palhoça, Santa Catarina, Brazil; Experimental Neuroscience Laboratory (LaNEx), University of Southern Santa Catarina, Palhoça, Santa Catarina, Brazil
| | - Aline Armiliato Emer
- Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Palhoça, Santa Catarina, Brazil; Experimental Neuroscience Laboratory (LaNEx), University of Southern Santa Catarina, Palhoça, Santa Catarina, Brazil
| | - Bruna Hoffman de Oliveira
- Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Palhoça, Santa Catarina, Brazil; Experimental Neuroscience Laboratory (LaNEx), University of Southern Santa Catarina, Palhoça, Santa Catarina, Brazil
| | - Khiany Mathias
- Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Palhoça, Santa Catarina, Brazil; Laboratory of Neurobiology of Inflammatory and Metabolic Processes, University of Southern Santa Catarina at Tubarão, SC, Brazil
| | - Mariana Pereira Goldim
- Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Palhoça, Santa Catarina, Brazil; Laboratory of Neurobiology of Inflammatory and Metabolic Processes, University of Southern Santa Catarina at Tubarão, SC, Brazil
| | - Verônica Vargas Horewicz
- Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Palhoça, Santa Catarina, Brazil; Experimental Neuroscience Laboratory (LaNEx), University of Southern Santa Catarina, Palhoça, Santa Catarina, Brazil
| | - Anna Paula Piovezan
- Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Palhoça, Santa Catarina, Brazil; Experimental Neuroscience Laboratory (LaNEx), University of Southern Santa Catarina, Palhoça, Santa Catarina, Brazil
| | - Franciane Bobinski
- Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Palhoça, Santa Catarina, Brazil; Experimental Neuroscience Laboratory (LaNEx), University of Southern Santa Catarina, Palhoça, Santa Catarina, Brazil
| | - Fabrícia Petronilho
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, University of Southern Santa Catarina at Tubarão, SC, Brazil
| | - Daniel Fernandes Martins
- Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Palhoça, Santa Catarina, Brazil; Experimental Neuroscience Laboratory (LaNEx), University of Southern Santa Catarina, Palhoça, Santa Catarina, Brazil.
| |
Collapse
|
83
|
More than Just an Immunosuppressant: The Emerging Role of FTY720 as a Novel Inducer of ROS and Apoptosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:4397159. [PMID: 29785244 PMCID: PMC5896217 DOI: 10.1155/2018/4397159] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 02/28/2018] [Indexed: 02/03/2023]
Abstract
Fingolimod hydrochloride (FTY720) is a first-in-class of sphingosine-1-phosphate (S1P) receptor modulator approved to treat multiple sclerosis by its phosphorylated form (FTY720-P). Recently, a novel role of FTY720 as a potential anticancer drug has emerged. One of the anticancer mechanisms of FTY720 involves the induction of reactive oxygen species (ROS) and subsequent apoptosis, which is largely independent of its property as an S1P modulator. ROS have been considered as a double-edged sword in tumor initiation/progression. Intriguingly, prooxidant therapies have attracted much attention due to its efficacy in cancer treatment. These strategies include diverse chemotherapeutic agents and molecular targeted drugs such as sulfasalazine which inhibits the CD44v-xCT (cystine transporter) axis. In this review, we introduce our recent discoveries using a chemical genomics approach to uncover a signaling network relevant to FTY720-mediated ROS signaling and apoptosis, thereby proposing new potential targets for combination therapy as a means to enhance the antitumor efficacy of FTY720 as a ROS generator. We extend our knowledge by summarizing various measures targeting the vulnerability of cancer cells' defense mechanisms against oxidative stress. Future directions that may lead to the best use of FTY720 and ROS-targeted strategies as a promising cancer treatment are also discussed.
Collapse
|
84
|
Suridjan I, Herrmann N, Adibfar A, Saleem M, Andreazza A, Oh PI, Lanctôt KL. Lipid Peroxidation Markers in Coronary Artery Disease Patients with Possible Vascular Mild Cognitive Impairment. J Alzheimers Dis 2018; 58:885-896. [PMID: 28505971 PMCID: PMC5467720 DOI: 10.3233/jad-161248] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This study examined associations between lipid peroxidation markers and cognition, and associations between these markers and cognitive response to an exercise intervention program, in adults with coronary artery disease at risk of dementia. Lipid peroxidation products were measured in serum in 118 patients (29 possible vascular mild cognitive impairment and 89 controls). Ratios of early- (lipid hydroperoxides, LPH) to late-stage (8-isoprostane, 8-ISO; 4-hydroxy-2-nonenal, 4-HNE) lipid peroxidation products were calculated. Cognitive performance was assessed before and at completion of a 24-week exercise intervention program. A global effect of group on lipid peroxidation markers was observed, adjusting for sex, years of education, and cardiopulmonary fitness (main effect of group F (3,102) = 2.957, p = 0.036). Lower lipid peroxidation at baseline, as determined by lower 8-ISO concentration, was associated with greater improvement in verbal memory (F (1, 64) = 4.738, p = 0.03) and executive function (F (1, 64) = 5.219, p = 0.026) performance. Similarly, higher ratios of 8-ISO/LPH (F (1, 65) = 6.592, p = 0.013) and (8-ISO+4-HNE) to LPH (F (1, 65) = 3.857, p = 0.054), were associated with less improvement in executive function performance over a 24-week exercise intervention. Lipid peroxidation may be a biomarker of early vascular cognitive impairment, and elevated lipid peroxidation might limit the cognitive benefits of exercise in this high-risk population.
Collapse
Affiliation(s)
- Ivonne Suridjan
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute and Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Nathan Herrmann
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute and Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Alex Adibfar
- Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Mahwesh Saleem
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute and Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Ana Andreazza
- Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Paul I Oh
- University Health Network at Toronto Rehabilitation Institute, Toronto, ON, Canada
| | - Krista L Lanctôt
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute and Departments of Psychiatry and Pharmacology/Toxicology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
85
|
Liu PZ, Nusslock R. Exercise-Mediated Neurogenesis in the Hippocampus via BDNF. Front Neurosci 2018; 12:52. [PMID: 29467613 PMCID: PMC5808288 DOI: 10.3389/fnins.2018.00052] [Citation(s) in RCA: 299] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Accepted: 01/23/2018] [Indexed: 12/16/2022] Open
Abstract
Exercise is known to have numerous neuroprotective and cognitive benefits, especially pertaining to memory and learning related processes. One potential link connecting them is exercise-mediated hippocampal neurogenesis, in which new neurons are generated and incorporated into hippocampal circuits. The present review synthesizes the extant literature detailing the relationship between exercise and hippocampal neurogenesis, and identifies a key molecule mediating this process, brain-derived neurotrophic factor (BDNF). As a member of the neurotrophin family, BDNF regulates many of the processes within neurogenesis, such as differentiation and survival. Although much more is known about the direct role that exercise and BDNF have on hippocampal neurogenesis in rodents, their corresponding cognitive benefits in humans will also be discussed. Specifically, what is known about exercise-mediated hippocampal neurogenesis will be presented as it relates to BDNF to highlight the critical role that it plays. Due to the inaccessibility of the human brain, much less is known about the role BDNF plays in human hippocampal neurogenesis. Limitations and future areas of research with regards to human neurogenesis will thus be discussed, including indirect measures of neurogenesis and single nucleotide polymorphisms within the BDNF gene.
Collapse
Affiliation(s)
- Patrick Z. Liu
- Department of Psychology, Northwestern University, Evanston, IL, United States
| | | |
Collapse
|
86
|
Margaritelis NV, Theodorou AA, Paschalis V, Veskoukis AS, Dipla K, Zafeiridis A, Panayiotou G, Vrabas IS, Kyparos A, Nikolaidis MG. Adaptations to endurance training depend on exercise-induced oxidative stress: exploiting redox interindividual variability. Acta Physiol (Oxf) 2018; 222. [PMID: 28544643 DOI: 10.1111/apha.12898] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 03/29/2017] [Accepted: 05/17/2017] [Indexed: 12/17/2022]
Abstract
AIM The aim of this study was to reveal the role of reactive oxygen and nitrogen species (RONS) in exercise adaptations under physiological in vivo conditions and without the interference from other exogenous redox agents (e.g. a pro-oxidant or antioxidant). METHODS We invented a novel methodological set-up that exploited the large redox interindividual variability in exercise responses. More specifically, we used exercise-induced oxidative stress as the 'classifier' measure (i.e. low, moderate and high) and investigated the physiological and redox adaptations after a 6-week endurance training protocol. RESULTS We demonstrated that the group with the low exercise-induced oxidative stress exhibited the lowest improvements in a battery of classic adaptations to endurance training (VO2 max, time trial and Wingate test) as well as in a set of redox biomarkers (oxidative stress biomarkers and antioxidants), compared to the high and moderate oxidative stress groups. CONCLUSION The findings of this study substantiate, for the first time in a human in vivo physiological context, and in the absence of any exogenous redox manipulation, the vital role of RONS produced during exercise in adaptations. The stratification approach, based on a redox phenotype, implemented in this study could be a useful experimental strategy to reveal the role of RONS and antioxidants in other biological manifestations as well.
Collapse
Affiliation(s)
- N. V. Margaritelis
- Department of Physical Education and Sports Science at Serres; Aristotle University of Thessaloniki; Serres Greece
- Intensive Care Unit; 424 General Military Hospital of Thessaloniki; Thessaloniki Greece
| | - A. A. Theodorou
- Department of Health Sciences; School of Sciences; European University Cyprus; Nicosia Cyprus
| | - V. Paschalis
- School of Physical Education and Sport Science; National and Kapodistrian University of Athens; Athens Greece
| | - A. S. Veskoukis
- Department of Physical Education and Sports Science at Serres; Aristotle University of Thessaloniki; Serres Greece
| | - K. Dipla
- Department of Physical Education and Sports Science at Serres; Aristotle University of Thessaloniki; Serres Greece
| | - A. Zafeiridis
- Department of Physical Education and Sports Science at Serres; Aristotle University of Thessaloniki; Serres Greece
| | - G. Panayiotou
- Department of Health Sciences; School of Sciences; European University Cyprus; Nicosia Cyprus
| | - I. S. Vrabas
- Department of Physical Education and Sports Science at Serres; Aristotle University of Thessaloniki; Serres Greece
| | - A. Kyparos
- Department of Physical Education and Sports Science at Serres; Aristotle University of Thessaloniki; Serres Greece
| | - M. G. Nikolaidis
- Department of Physical Education and Sports Science at Serres; Aristotle University of Thessaloniki; Serres Greece
| |
Collapse
|
87
|
Daniele S, Pietrobono D, Fusi J, Lo Gerfo A, Cerri E, Chico L, Iofrida C, Petrozzi L, Baldacci F, Giacomelli C, Galetta F, Siciliano G, Bonuccelli U, Trincavelli ML, Franzoni F, Martini C. α-Synuclein Aggregated with Tau and β-Amyloid in Human Platelets from Healthy Subjects: Correlation with Physical Exercise. Front Aging Neurosci 2018; 10:17. [PMID: 29441013 PMCID: PMC5797553 DOI: 10.3389/fnagi.2018.00017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 01/15/2018] [Indexed: 12/19/2022] Open
Abstract
The loss of protein homeostasis that has been associated with aging leads to altered levels and conformational instability of proteins, which tend to form toxic aggregates. In particular, brain aging presents characteristic patterns of misfolded oligomers, primarily constituted of β-amyloid (Aβ), tau, and α-synuclein (α-syn), which can accumulate in neuronal membranes or extracellular compartments. Such aging-related proteins can also reach peripheral compartments, thus suggesting the possibility to monitor their accumulation in more accessible fluids. In this respect, we have demonstrated that α-syn forms detectable hetero-aggregates with Aβ or tau in red blood cells (RBCs) of healthy subjects. In particular, α-syn levels and its heteromeric interactions are modulated by plasma antioxidant capability (AOC), which increases in turn with physical activity. In order to understand if a specific distribution of misfolded proteins can occur in other blood cells, a cohort of human subjects was enrolled to establish a correlation among AOC, the level of physical exercise and the concentrations of aging-related proteins in platelets. The healthy subjects were divided depending on their level of physical exercise (i.e., athletes and sedentary subjects) and their age (young and older subjects). Herein, aging-related proteins (i.e., α-syn, tau and Aβ) were confirmed to be present in human platelets. Among such proteins, platelet tau concentration was demonstrated to decrease in athletes, while α-syn and Aβ did not correlate with physical exercise. For the first time, α-syn was shown to directly interact with Aβ and tau in platelets, forming detectable hetero-complexes. Interestingly, α-syn interaction with tau was inversely related to plasma AOC and to the level of physical activity. These results suggested that α-syn heterocomplexes, particularly with tau, could represent novel indicators to monitor aging-related proteins in platelets.
Collapse
Affiliation(s)
| | | | - Jonathan Fusi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Annalisa Lo Gerfo
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Eugenio Cerri
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Lucia Chico
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | - Lucia Petrozzi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Filippo Baldacci
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | - Fabio Galetta
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Gabriele Siciliano
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Ubaldo Bonuccelli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | - Ferdinando Franzoni
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | |
Collapse
|
88
|
The Anti-Stress Effect of Mentha arvensis in Immobilized Rats. Int J Mol Sci 2018; 19:ijms19020355. [PMID: 29370076 PMCID: PMC5855577 DOI: 10.3390/ijms19020355] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 01/16/2018] [Accepted: 01/22/2018] [Indexed: 02/07/2023] Open
Abstract
Stress can lead to inflammation, accelerated aging, and some chronic diseases condition. Mentha arvensis (MA) is a traditional medicine having antioxidant and anti-inflammatory activities. The present study investigated the anti-stress role of MA and fermented MA (FMA) extract in immobilized rats. We studied the lipopolysaccharide (LPS)-induced inflammation in RAW 264.7 cells and rats were immobilized for 2 h per day for 14 days using a restraining cage. MA (100 mg/kg) and FMA (100 mg/kg) were orally administered to rats 1 h prior to immobilization. Using high-performance liquid chromatography (HPLC) analysis, we determined the rosmarinic acid content of MA and FMA. The generation of malondialdehyde (MDA) and nitric oxide (NO) in RAW 246.7 cells were suppressed by both MA and FMA. In rats, MA and FMA notably improved the body weight, daily food intake, and duodenum histology. MDA and NO level were gradually decreased by MA and FMA treatment. MA and FMA significantly controlled the stress-related hormones by decreasing corticosterone and β-endorphin and increasing serotonin level. Moreover, protein expression levels of mitogen activated protein kinases (MAPK) and cyclooxygenase-2 (COX-2) were markedly downregulated by MA and FMA. Taken together, MA and FMA could ameliorate immobilized-stress by reducing oxidative stress, regulating stress-related hormones, and MAPK/COX-2 signaling pathways in rats. Particularly, FMA has shown greater anti-stress activities than MA.
Collapse
|
89
|
Onyango IG. Modulation of mitochondrial bioenergetics as a therapeutic strategy in Alzheimer's disease. Neural Regen Res 2018; 13:19-25. [PMID: 29451200 PMCID: PMC5840984 DOI: 10.4103/1673-5374.224362] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2018] [Indexed: 01/14/2023] Open
Abstract
Alzheimer's disease (AD) is an increasingly pressing worldwide public-health, social, political and economic concern. Despite significant investment in multiple traditional therapeutic strategies that have achieved success in preclinical models addressing the pathological hallmarks of the disease, these efforts have not translated into any effective disease-modifying therapies. This could be because interventions are being tested too late in the disease process. While existing therapies provide symptomatic and clinical benefit, they do not fully address the molecular abnormalities that occur in AD neurons. The pathophysiology of AD is complex; mitochondrial bioenergetic deficits and brain hypometabolism coupled with increased mitochondrial oxidative stress are antecedent and potentially play a causal role in the disease pathogenesis. Dysfunctional mitochondria accumulate from the combination of impaired mitophagy, which can also induce injurious inflammatory responses, and inadequate neuronal mitochondrial biogenesis. Altering the metabolic capacity of the brain by modulating/potentiating its mitochondrial bioenergetics may be a strategy for disease prevention and treatment. We present insights into the mechanisms of mitochondrial dysfunction in AD brain as well as an overview of emerging treatments with the potential to prevent, delay or reverse the neurodegenerative process by targeting mitochondria.
Collapse
|
90
|
Barbosa MQ, Queiroga RDCRE, Bertozzo CCDMS, Araújo DFDS, Oliveira LIG, Silva JYP, Bomfim MAD, Guerra GCB, Costa S, Bessa R, Alves S, Barbosa Soares JK. Effect of diets with goat milk fat supplemented with exercise on anxiety and oxidative stress in the brains of adult rats. Food Funct 2018; 9:2891-2901. [DOI: 10.1039/c7fo01764b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Goat milk fat induced anxiolytic effect in sedentary animals; exercise promoted lipid peroxidation in the brain; exercise induced anxiety.
Collapse
|
91
|
Galvani NC, Vilela TC, Domingos AC, Fagundes MÍ, Bosa LM, Della Vechia IC, Scussel R, Pereira M, Steiner BT, Damiani AP, Chávez-Olórtegui C, De Andrade VM, de Ávila RAM. Genotoxicity evaluation induced by Tityus serrulatus scorpion venom in mice. Toxicon 2017; 140:132-138. [PMID: 29107080 DOI: 10.1016/j.toxicon.2017.10.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 09/09/2017] [Accepted: 10/23/2017] [Indexed: 01/06/2023]
Abstract
Tityus serrulatus is the scorpion associated with the most severe cases of scorpion envenoming in Brazil. However, there are no studies reporting the genotoxic effects of this venom in natural or experimental envenomations. It is well known that DNA-damage responses are providing opportunities for improving disease detection and management. In this study was evaluating the genotoxicity of the T. serrulatus venom in different organs (hippocampus, cortex, striatum, blood, heart, lung, liver and kidney) and periods in mice experimentally envenomed. ELISA and the Comet assays were used to quantification of venoms antigens and DNA damage, respectively. Forty-eight Swiss mice were divided into five groups and 0.5 DL50 of T. serrulatus venom (0.90 mg/kg) was administered intraperitoneally in each animal. Euthanasia was performed by cervical dislocation in the period of 0h (control group) 1h, 2h, 6h and 12h, where it the tissues were removed. The results showed high DNA damage in all structures analyzed, suggesting that T. serrulatus venom presented genotoxic activity or some secondary effect generated by venom injection. In the ELISA test, toxic circulant antigens were verified in practically all organs at the time intervals analyzed. Therefore, the distribution of the venom changes from organ to organ. We conclude that scorpion envenoming affects DNA in all organs analyzed even when the venom concentration is lower or no detectable, DNA damage persists.
Collapse
Affiliation(s)
- Nathalia Coral Galvani
- Laboratório de Biologia Celular e Molecular, Universidade do Extremo Sul Catarinense, Criciúma, Brazil
| | - Thais Ceresér Vilela
- Laboratório de Biologia Celular e Molecular, Universidade do Extremo Sul Catarinense, Criciúma, Brazil.
| | - Angelino Chitoma Domingos
- Laboratório de Biologia Celular e Molecular, Universidade do Extremo Sul Catarinense, Criciúma, Brazil
| | - Mírian Ívens Fagundes
- Laboratório de Biologia Celular e Molecular, Universidade do Extremo Sul Catarinense, Criciúma, Brazil
| | - Luiza Macarini Bosa
- Laboratório de Biologia Celular e Molecular, Universidade do Extremo Sul Catarinense, Criciúma, Brazil
| | | | - Rahisa Scussel
- Laboratório de Biologia Celular e Molecular, Universidade do Extremo Sul Catarinense, Criciúma, Brazil
| | - Márcia Pereira
- Laboratório de Biologia Celular e Molecular, Universidade do Extremo Sul Catarinense, Criciúma, Brazil
| | - Bethina Trevisol Steiner
- Laboratório de Biologia Celular e Molecular, Universidade do Extremo Sul Catarinense, Criciúma, Brazil
| | - Adriani Paganini Damiani
- Laboratório de Biologia Celular e Molecular, Universidade do Extremo Sul Catarinense, Criciúma, Brazil
| | - Carlos Chávez-Olórtegui
- Laboratório de Imunoquímica de Proteínas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Vanessa Moraes De Andrade
- Laboratório de Biologia Celular e Molecular, Universidade do Extremo Sul Catarinense, Criciúma, Brazil
| | | |
Collapse
|
92
|
Cobley JN, Close GL, Bailey DM, Davison GW. Exercise redox biochemistry: Conceptual, methodological and technical recommendations. Redox Biol 2017; 12:540-548. [PMID: 28371751 PMCID: PMC5377294 DOI: 10.1016/j.redox.2017.03.022] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 03/23/2017] [Accepted: 03/24/2017] [Indexed: 12/16/2022] Open
Abstract
Exercise redox biochemistry is of considerable interest owing to its translational value in health and disease. However, unaddressed conceptual, methodological and technical issues complicate attempts to unravel how exercise alters redox homeostasis in health and disease. Conceptual issues relate to misunderstandings that arise when the chemical heterogeneity of redox biology is disregarded: which often complicates attempts to use redox-active compounds and assess redox signalling. Further, that oxidised macromolecule adduct levels reflect formation and repair is seldom considered. Methodological and technical issues relate to the use of out-dated assays and/or inappropriate sample preparation techniques that confound biochemical redox analysis. After considering each of the aforementioned issues, we outline how each issue can be resolved and provide a unifying set of recommendations. We specifically recommend that investigators: consider chemical heterogeneity, use redox-active compounds judiciously, abandon flawed assays, carefully prepare samples and assay buffers, consider repair/metabolism, use multiple biomarkers to assess oxidative damage and redox signalling.
Collapse
Affiliation(s)
- James N Cobley
- Department for Sport and Exercise Sciences, Abertay University, 40 Bell Street, Dundee, Scotland DD1 1HG, UK.
| | - Graeme L Close
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Tom Reilly Building, Liverpool, England L3 3AF, UK
| | - Damian M Bailey
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Wales, CF37 4AT, UK; Faculty of Medicine, Reichwald Health Sciences Centre, University of British Columbia-Okanagan, Kelowna, British Columbia, Canada
| | - Gareth W Davison
- Sport and Exercise Science Research Institute, Ulster University, Belfast, BT37 OQB, UK
| |
Collapse
|
93
|
Exercise-induced mitochondrial dysfunction: a myth or reality? Clin Sci (Lond) 2017; 130:1407-16. [PMID: 27389587 DOI: 10.1042/cs20160200] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Accepted: 05/10/2016] [Indexed: 12/12/2022]
Abstract
Beneficial effects of physical activity on mitochondrial health are well substantiated in the scientific literature, with regular exercise improving mitochondrial quality and quantity in normal healthy population, and in cardiometabolic and neurodegenerative disorders and aging. However, several recent studies questioned this paradigm, suggesting that extremely heavy or exhaustive exercise fosters mitochondrial disturbances that could permanently damage its function in health and disease. Exercise-induced mitochondrial dysfunction (EIMD) might be a key proxy for negative outcomes of exhaustive exercise, being a pathophysiological substrate of heart abnormalities, chronic fatigue syndrome (CFS) or muscle degeneration. Here, we overview possible factors that mediate negative effects of exhaustive exercise on mitochondrial function and structure, and put forward alternative solutions for the management of EIMD.
Collapse
|
94
|
Vance DE, Gakumo CA, Childs GD, Enah C, Fazeli PL. Feedback on a Multimodal Cognitive Intervention for Adults Aging With HIV: A Focus Group Study. J Assoc Nurses AIDS Care 2017; 28:685-697. [PMID: 28669770 DOI: 10.1016/j.jana.2017.06.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 06/01/2017] [Indexed: 12/30/2022]
Abstract
Nearly 50% of adult persons living with HIV (PLWH) experience HIV-associated neurocognitive disorder (HAND), which is associated with deteriorating brain health and cognitive functioning. Multimodal interventions that simultaneously improve physical activity, nutrition, and sleep hygiene may be of value for adult PLWH, especially as they age and become vulnerable to HAND. We used four focus groups of PLWH (N = 30; ages ≥ 50 years) to solicit feedback about Cognitive Prescriptions, a multimodal cognitive intervention. Lifestyle and health behaviors pertaining to Cognitive Prescriptions were assessed, including: (a) physical activity, (b) mental activity, (c) nutrition, (d) social engagement, (e) emotional health, (f) sleep hygiene, and (g) substance use. When presented a template of the intervention, participants expressed favorable opinions and remarked they would want to work with a clinician, paraprofessional, or peer to implement such a program into their own daily routines. From this, implications for practice and research are provided.
Collapse
|
95
|
Gharebaghi A, Amiri I, Salehi I, Shahidi S, Komaki A, Mehdizadeh M, Moravej FG, Asl SS. Treadmill exercise attenuates 3,4-methylenedioxymethamphetamine-induced memory impairment through a decrease apoptosis in male rat hippocampus. J Neurosci Res 2017; 95:2448-2455. [DOI: 10.1002/jnr.24078] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 04/12/2017] [Accepted: 04/12/2017] [Indexed: 12/28/2022]
Affiliation(s)
- Alireza Gharebaghi
- Research Center for Behavioral Disorders and Substance Abuse; Hamadan University of Medical Sciences; Hamadan Iran
| | - Iraj Amiri
- Endometrium and Endometriosis Research Center; Hamadan University of Medical Sciences; Hamadan Iran
| | - Iraj Salehi
- Neurophysiology Research Center; Hamadan University of Medical Sciences; Hamadan Iran
| | - Siamak Shahidi
- Neurophysiology Research Center; Hamadan University of Medical Sciences; Hamadan Iran
| | - Alireza Komaki
- Neurophysiology Research Center; Hamadan University of Medical Sciences; Hamadan Iran
| | - Mehdi Mehdizadeh
- Cellular and Molecular Research Center; Faculty of Advanced Technologies in Medicine, Department of Anatomy, Iran University of Medical Sciences; Tehran Iran
| | - Fahimeh Ghasemi Moravej
- Anatomy Department; School of Medicine, Hamadan University of Medical Sciences; Hamadan Iran
| | - Sara Soleimani Asl
- Research Center for Behavioral Disorders and Substance Abuse; Hamadan University of Medical Sciences; Hamadan Iran
- Anatomy Department; School of Medicine, Hamadan University of Medical Sciences; Hamadan Iran
| |
Collapse
|
96
|
α-Synuclein Aggregates with β-Amyloid or Tau in Human Red Blood Cells: Correlation with Antioxidant Capability and Physical Exercise in Human Healthy Subjects. Mol Neurobiol 2017; 55:2653-2675. [PMID: 28421539 DOI: 10.1007/s12035-017-0523-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 04/06/2017] [Indexed: 10/19/2022]
Abstract
Neurodegenerative disorders (NDs) are characterized by abnormal accumulation/misfolding of specific proteins, primarily α-synuclein (α-syn), β-amyloid1-42 (Aβ), and tau, in both brain and peripheral tissue. In addition to homo-oligomers, the role of α-syn interactions with Aβ or tau has gradually emerged. The altered protein accumulation has been related to both oxidative stress and physical activity; nevertheless, no correlation among the presence of peripheral α-syn hetero-aggregates, antioxidant capacity, and physical exercise has been discovered as of yet. Herein, the content of α-syn, Aβ, tau, and of their heterocomplexes was determined in red blood cells (RBCs) of healthy subjects (sedentary and athletes). Such parameters were related to the extent of the antioxidant capability (AOC), a key marker of oxidative stress in aging-related pathologies, and to physical exercise, which is known to play an important preventive role in NDs and to modulate oxidative stress. Tau content and plasma AOC toward hydroxyl radicals were both reduced in older or sedentary subjects; in contrast, α-syn and Aβ accumulated in elderly subjects and showed an inverse correlation with both hydroxyl AOC and the level of physical activity. For the first time, α-syn heterocomplexes with Aβ or tau were quantified and demonstrated to be inversely related to hydroxyl AOC. Furthermore, α-syn/Aβ aggregates were significantly reduced in athletes and inversely correlated with physical activity level, independent of age. The positive correlation between antioxidant capability/physical activity and reduced protein accumulation was confirmed by these data and suggested that peripheral α-syn heterocomplexes may represent new indicators of ND-related protein misfolding.
Collapse
|
97
|
Zhou H, Yan Y, Ee X, Hunter DA, Akers WJ, Wood MD, Berezin MY. Imaging of radicals following injury or acute stress in peripheral nerves with activatable fluorescent probes. Free Radic Biol Med 2016; 101:85-92. [PMID: 27693326 PMCID: PMC5154790 DOI: 10.1016/j.freeradbiomed.2016.09.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 09/27/2016] [Accepted: 09/27/2016] [Indexed: 12/20/2022]
Abstract
Peripheral nerve injury evokes a complex cascade of chemical reactions including generation of molecular radicals. Conversely, the reactions within nerve induced by stress are difficult to directly detect or measure to establish causality. Monitoring these reactions in vivo would enable deeper understanding of the nature of the injury and healing processes. Here, we utilized near-infrared fluorescence molecular probes delivered via intra-neural injection technique to enable live, in vivo imaging of tissue response associated with nerve injury and stress. These initially quenched fluorescent probes featured specific sensitivity to hydroxyl radicals and become fluorescent upon encountering reactive oxygen species (ROS). Intraneurally delivered probes demonstrated rapid activation in injured rat sciatic nerve but minimal activation in normal, uninjured nerve. In addition, these probes reported activation within sciatic nerves of living rats after a stress caused by a pinprick stimulus to the abdomen. This imaging approach was more sensitive to detecting changes within nerves due to the induced stress than other techniques to evaluate cellular and molecular changes. Specifically, neither histological analysis of the sciatic nerves, nor the expression of pain and stress associated genes in dorsal root ganglia could provide statistically significant differences between the control and stressed groups. Overall, the results demonstrate a novel imaging approach to measure ROS in addition to the impact of ROS within nerve in live animals.
Collapse
Affiliation(s)
- Haiying Zhou
- Division of Radiation Sciences, Department of Radiology, Washington University School of Medicine, 4515 McKinley Avenue, St. Louis, MO 63110, USA
| | - Ying Yan
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Xueping Ee
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Daniel A Hunter
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Walter J Akers
- Division of Radiation Sciences, Department of Radiology, Washington University School of Medicine, 4515 McKinley Avenue, St. Louis, MO 63110, USA.
| | - Matthew D Wood
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA.
| | - Mikhail Y Berezin
- Division of Radiation Sciences, Department of Radiology, Washington University School of Medicine, 4515 McKinley Avenue, St. Louis, MO 63110, USA.
| |
Collapse
|
98
|
|
99
|
Marton O, Koltai E, Takeda M, Mimura T, Pajk M, Abraham D, Koch LG, Britton SL, Higuchi M, Boldogh I, Radak Z. The rate of training response to aerobic exercise affects brain function of rats. Neurochem Int 2016; 99:16-23. [PMID: 27262284 DOI: 10.1016/j.neuint.2016.05.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 05/20/2016] [Accepted: 05/27/2016] [Indexed: 11/19/2022]
Abstract
There is an increasing volume of data connecting capacity to respond to exercise training with quality of life and aging. In this study, we used a rat model in which animals were selectively bred for low and high gain in running distance to test t whether genetic segregation for trainability is associated with brain function and signaling processes in the hippocampus. Rats selected for low response (LRT) and high response training (HRT) were randomly divided into control or exercise group that trained five times a week for 30 min per day for three months at 70% VO2max. All four groups had similar running distance before training. With training, HRT rats showed significantly greater increases in VO2max and running distance than LRT rats (p < 0.05). On the reverse Morris Maze test HRT-trained rats outperformed HRT control ones. Significant difference was noted between LRT and HRT groups in redox milieu as assessed by levels of reactive oxygen species (ROS), carbonylation of proteins, nNOS and S-nitroso-cysteine. Moreover the silent information regulator 1 (SIRT1), brain-derived neurotrophic factor (BDNF), ratio of phospho and total cAMP-response element binding protein (CREB), and apoptotic index, also showed significant differences between LRT and HRT groups. These findings suggest that aerobic training responses are not localized to skeletal muscle, but differently involve signaling processes in the brain of LRT and HRT rats.
Collapse
Affiliation(s)
- Orsolya Marton
- Research Institute of Sport Science, University of Physical Education, Budapest, Hungary
| | - Erika Koltai
- Research Institute of Sport Science, University of Physical Education, Budapest, Hungary
| | - Masaki Takeda
- Research Institute of Sport Science, University of Physical Education, Budapest, Hungary
| | - Tatsuya Mimura
- Research Institute of Sport Science, University of Physical Education, Budapest, Hungary
| | - Melitta Pajk
- Research Institute of Sport Science, University of Physical Education, Budapest, Hungary
| | - Dora Abraham
- Research Institute of Sport Science, University of Physical Education, Budapest, Hungary
| | - Lauren Gerard Koch
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Steven L Britton
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Mitsuru Higuchi
- Graduate School of Sport Sciences, Waseda University, Saitama, Japan
| | - Istvan Boldogh
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Zsolt Radak
- Research Institute of Sport Science, University of Physical Education, Budapest, Hungary; Institute of Sport Sciences and Physical Education, University of Pecs, Pecs, Hungary.
| |
Collapse
|