51
|
Bashir S, Phuoc NN, Herath T, Basit A, Zadoks RN, Murdan S. An oral pH-responsive Streptococcus agalactiae vaccine formulation provides protective immunity to pathogen challenge in tilapia: A proof-of-concept study. PLoS One 2023; 18:e0278277. [PMID: 36867625 PMCID: PMC9983853 DOI: 10.1371/journal.pone.0278277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/12/2022] [Indexed: 03/04/2023] Open
Abstract
Intensive tilapia farming has contributed significantly to food security as well as to the emergence of novel pathogens. This includes Streptococcus agalactiae or Group B Streptococcus (GBS) sequence type (ST) 283, which caused the first known outbreak of foodborne GBS illness in humans. An oral, easy-to-administer fish vaccine is needed to reduce losses in fish production and the risk of zoonotic transmission associated with GBS. We conducted a proof-of-concept study to develop an oral vaccine formulation that would only release its vaccine cargo at the site of action, i.e., in the fish gastrointestinal tract, and to evaluate whether it provided protection from experimental challenge with GBS. Formalin-inactivated S. agalactiae ST283, was entrapped within microparticles of Eudragit® E100 polymer using a double-emulsification solvent evaporation method. Exposure to an acidic medium simulating the environment in tilapia stomach showed that the size of the vaccine-loaded microparticles decreased rapidly, reflecting microparticle erosion and release of the vaccine cargo. In vivo studies in tilapia showed that oral administration of vaccine-loaded microparticles to fish provided significant protection from subsequent homologous pathogen challenge with GBS ST283 by immersion compared to the control groups which received blank microparticles or buffer, reducing mortality from 70% to 20%. The high efficacy shows the promise of the vaccine platform developed herein, which might be adapted for other bacterial pathogens and other fish species.
Collapse
Affiliation(s)
| | - Nguyen Ngoc Phuoc
- Faculty of Fishery, Hue University of Agriculture and Forestry, Hue University, Hue, Vietnam
| | - Tharangani Herath
- Department of Animal Health, Behavior and Welfare, Harper Adams University, Newport, Shropshire, United Kingdom
| | - Abdul Basit
- UCL School of Pharmacy, London, United Kingdom
| | - Ruth N. Zadoks
- Faculty of Science, Sydney School of Veterinary Science, The University of Sydney, Camden, NSW, Australia
| | | |
Collapse
|
52
|
Gao C, Cai X, Ma L, Xue T, Li C. Molecular characterization, expression analysis and function identification of TNFα in black rockfish (Sebastes schlegelii). Int J Biol Macromol 2023; 236:123912. [PMID: 36870626 DOI: 10.1016/j.ijbiomac.2023.123912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/04/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023]
Abstract
TNFα, as a pro-inflammatory cytokine, plays an important role in inflammation and immune homeostasis maintaining. However, the knowledge about the immune functions of teleost TNFα against bacterial infections is still limited. In this study, the TNFα was characterized from black rockfish (Sebastes schlegelii). The bioinformatics analyses showed the evolutionary conservations in sequence and structure. The expression levels of Ss_TNFα mRNA were significantly up-regulated in the spleen and intestine after Aeromonas salmonicides and Edwardsiella tarda infections, and dramatically down-regulated in PBLs after LPS and poly I:C stimulations. Meanwhile, the extremely up-regulated expressions of other inflammatory cytokines (especially for IL-1β and IL17C) were observed in the intestine and spleen after bacterial infection and down-regulations were obtained in PBLs. The significant regulation with expression patterns of Ss_TNFα and other inflammatory cytokine mRNAs illustrated the variations of immunity in different tissues and cells of black rockfish. The regulated functions of Ss_TNFα in the up/downstream signaling pathways were preliminarily verified on the transcription and translation levels. Subsequently, in vitro knockdown of Ss_TNFα in the intestine cells of black rockfish confirmed the important immune roles of Ss_TNFα. Finally, the apoptotic analyses were conducted in PBLs and intestine cells of black rockfish. The rapid increases of the apoptotic rates were obtained in both PBLs and intestine cells after treatment with rSs_TNFα, but distinct apoptotic rates at the early and late stages of apoptosis were observed between these two types of cells. The results of apoptotic analyses suggested that Ss_TNFα could trigger apoptosis of different cells in different strategies in black rockfish. Overall, the findings in this study indicated the important roles of Ss_TNFα in the immune system of black rockfish during pathogenic infection, as well as the potential function on biomarker for monitoring the health status.
Collapse
Affiliation(s)
- Chengbin Gao
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Xin Cai
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Le Ma
- Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, Murdoch, WA 6150, Australia
| | - Ting Xue
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Chao Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
53
|
Zhang L, Yan S, Hong X, Zhao G, Zha J. Integrative time series of cellular, humoral and molecular response revealed immunotoxicity of bifenthrin to Chinese rare minnow (Gobiocypris rarus) following Pseudomonas fluorescens challenge. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 256:106427. [PMID: 36805112 DOI: 10.1016/j.aquatox.2023.106427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Bifenthrin is a common pesticide that is widespread in aquatic environments. Although it has been shown to be toxic to aquatic organisms, its immunotoxicity and mechanism are unclear. Herein, we reported the immunotoxicity of bifenthrin on adult Chinese rare minnow (Gobiocypris rarus) after 28 days of exposure to different concentrations of bifenthrin (0.1, 0.3, and 1.0 μg/L) and 36-h Pseudomonas fluorescens challenge. Bifenthrin inhibited the fish humoral immune response to bacteria by altering the lymphocyte and neutrophil ratios and decreasing the production of lysozyme, complement component 3, immunoglobulin M, and C-reactive protein, particularly were 1.0 μg/L. Bifenthrin caused intestinal damage and significantly reduced the volume of intestinal mucus at 12 and 36 hours postinjection (hpi) (p < 0.05). Moreover, 1.0 μg/L bifenthrin significantly increased the fish mortality and bacterial loads at 12 and 36 hpi (p < 0.05). RNA-seq analysis revealed several enriched genes involved in pathogen attachment and recognition, inflammatory responses, and complement system at the early-to-mid stage of infection (4-12 hpi). Overall, our results corroborated that bifenthrin induced immunotoxicity in Gobiocypris rarus, resulting in immune dysfunction of fish and increasing their sensitivity to bacterial infection and accelerating mortality. Moreover, 4-12 hpi was better than 36 hpi for analyzing immune responses against pathogen infection in fish exposed to bifenthrin.
Collapse
Affiliation(s)
- Le Zhang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Saihong Yan
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xiangsheng Hong
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Gaofeng Zhao
- Institute of Environment and Sustainable Development in Agriculture, CAAS, Beijing, 100081, China
| | - Jinmiao Zha
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
54
|
Siangpro N, Chuakrut S, Sirimanapong W, Tanasupawat S, Phongsopitanun W, Meksiriporn B, Boonnorat J, Sarin S, Kucharoenphaibul S, Jutakanoke R. Lactiplantibacillus argentoratensis and Candida tropicalis Isolated from the Gastrointestinal Tract of Fish Exhibited Inhibitory Effects against Pathogenic Bacteria of Nile Tilapia. Vet Sci 2023; 10:vetsci10020129. [PMID: 36851433 PMCID: PMC9958883 DOI: 10.3390/vetsci10020129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/03/2023] [Accepted: 02/04/2023] [Indexed: 02/11/2023] Open
Abstract
Nile tilapia is one of the most consumed farmed fish in the world. The outbreak of pathogenic bacterial diseases causes high mortality rates and economic losses in Nile tilapia farming. Antibiotic administrations are commonly utilized to inhibit and prevent bacterial infections. However, antibiotics are expensive and cause serious concerns for antibiotic resistance in fish that can be potentially transferred to humans. As an alternative solution, probiotics can be used to prevent infection of pathogenic bacteria in fish. In this work, both bacteria and yeast were isolated from fish gastrointestinal tracts and their inhibitory activity against Nile tilapia pathogenic bacteria was evaluated, as well as other probiotic properties. In this study, 66 bacteria and 176 acid tolerant yeasts were isolated from fish gastrointestinal tracts. Of all isolated microorganisms, 39 bacterial and 15 yeast isolates with inhibitory effect against pathogens were then examined for their probiotic properties (acidic and bile salt resistance, adhesion potential, and biofilm formation), formation of antibacterial factor survival rate under simulated gastrointestinal fluid, and safety evaluation. AT8/5 bacterial isolate demonstrated probiotic properties and the highest inhibition against all 54 tested pathogens while YON3/2 yeast isolate outperformed the inhibitory effect among all yeast isolates. These two probiotic isolates were further identified by 16S rDNA and the D1/D2 domain of 26S rDNA sequence analysis for bacterial and yeast identification, respectively. AT8/5 and YON3/2 showed the highest similarity to Lactiplantibacillus argentoratensis and Candida tropicalis, respectively. This is the first report on isolated L. argentoratensis and C. tropicalis with antipathogenic bacteria of Nile tilapia properties. Collectively, AT8/5 and YON3/2 could be potentially used as promising alternatives to existing antibiotic methods to prevent pathogenic bacteria infection in Nile tilapia farming.
Collapse
Affiliation(s)
- Noppadon Siangpro
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Songkran Chuakrut
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Wanna Sirimanapong
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom 73110, Thailand
| | - Somboon Tanasupawat
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Wongsakorn Phongsopitanun
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Bunyarit Meksiriporn
- Department of Biology, Faculty of Science, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| | - Jarungwit Boonnorat
- Department of Environmental Engineering, Faculty of Engineering, Rajamangala University of Technology Thanyaburi (RMUTT), Klong 6, Pathum Thani 12110, Thailand
| | - Siripun Sarin
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Siriwat Kucharoenphaibul
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Rumpa Jutakanoke
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
- Center of Excellence in Fungal Research, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
- Correspondence: ; Tel.: +66-55-964614
| |
Collapse
|
55
|
Dietary powder and molecular imprinted polymer nanoencapsulated sodium propionate to enhance growth performance, digestive enzymes activity, antioxidant defense, and mucosal immune response in African cichlid ( Labidochromis lividus) fingerlings. ANNALS OF ANIMAL SCIENCE 2023. [DOI: 10.2478/aoas-2022-0074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Abstract
This study was conducted to examine the effects of powder sodium propionate (P-SP) and SP-loaded molecular imprinted polymer (MIP) nanoparticles (MIP-SP NPs) on the growth, skin mucosal immune parameters, and digestive and liver enzymes activities of African cichlid (Labidochromis lividus) fingerlings. Fish with an average weight of 500±2 mg were stocked into 12 experimental units and fed on experimental diets prepared by supplementing the basal diet (control) with MIP NPs, P-SP (5 g SP Kg-1 of dry diet), and MIP-SP NPs for 8 weeks. The findings demonstrated that growth indices improved in the MIP-SP NPs followed by the P-SP dietary group compared to the control groups (P<0.05). The activity of digestive enzymes of lipase, trypsin, protease, and alkaline phosphatase was higher in the fish fed SP-supplemented diets than in the controls (P<0.05). The protease and lipase activities in the MIP-SP NPs dietary group increased by 29.33% and 48.81% compared to the control, respectively (P<0.05). In addition, the alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels of liver tissue decreased in the SP dietary groups, while the catalase (CAT), superoxide dismutase (SOD), and alkaline phosphatase (ALP) levels increased compared to the control groups (P<0.05). The highest SOD and ALP levels were observed in the fish fed on the MIP-SP NPs-supplemented diet (P<0.05). Furthermore, the skin mucosal immune indices including, alternative haemolytic complement activity (ACH50), lysozyme, and total immunoglobulin (Ig) levels increased in the MIP-SP NPs and P-SP dietary groups compared to the controls (P<0.05). The findings indicated that sodium propionate encapsulated in molecularly imprinted polymer nanoparticles could enhance the efficiency of dietary SP in African cichlid fish.
Collapse
|
56
|
Liu Y, Ge X, Li C, Xue T. Derivation and characterization of new cell line from intestine of turbot (Scophthalmus maximus). In Vitro Cell Dev Biol Anim 2023; 59:153-162. [PMID: 36809593 PMCID: PMC10073165 DOI: 10.1007/s11626-022-00746-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 12/09/2022] [Indexed: 02/23/2023]
Abstract
A continuous intestine cell line from turbot (Scophthalmus maximus) designated as SMI was established utilizing the tissue explant technique. Primary SMI cell was cultured at 24 °C in a medium with 20% fetal bovine serum (FBS), then subcultured in 10% FBS after 10 passages. Impacts of medium or temperature on the growth of SMI were examined and the results indicated it grew well in DMEM supplemented with 10% FBS at 24 °C. The SMI cell line was subcultured more than 60 times. Karyotyping, chromosome number, and ribosomal RNA genotyping analysis revealed that SMI had a modal diploid chromosome number of 44 and originated from turbot. After being transfected with pEGFP-N1 and FAM-siRNA, a large number of green fluorescence signals were observed in SMI, indicating that SMI could be used as an ideal platform to explore gene function in vitro. In addition, the expression of epithelium-associated genes such as itga6, itgb4, gja1, claudin1, zo-1, and E-cadherin in SMI suggested the SMI had some characteristics of epidermal cells. The upregulation of immune-associated genes such as TNF-β, NF-κB, and IL-1β in SMI after stimulation with pathogen-associated molecular patterns suggested the SMI might exhibit immune functions similar to the intestinal epithelium in vivo.
Collapse
Affiliation(s)
- Yiping Liu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xuefeng Ge
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Chao Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China.
| | - Ting Xue
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
57
|
Cao M, Xue T, Huo H, Zhang X, Wang NN, Yan X, Li C. Spatial transcriptomes and microbiota reveal immune mechanism that respond to pathogen infection in the posterior intestine of Sebastes schlegelii. Open Biol 2023; 13:220302. [PMID: 36974664 PMCID: PMC9944294 DOI: 10.1098/rsob.220302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 01/25/2023] [Indexed: 02/25/2023] Open
Abstract
The intestine is a site of immune cell priming at birth. Therefore, spatial transcriptomes were performed to define how the transcriptomic landscape was spatially organized in the posterior intestine of Sebastes schlegelii following Edwardsiella piscicida infection. In the healthy condition, we identified a previously unappreciated molecular regionalization of the posterior intestine. Following bacterial infection, most immune-related genes were identified in mucosa layer. Moreover, investigation of immune-related genes and genes in immune-related KEGG pathways based on spatial transcriptomes shed light on which sections of these genes are in the posterior intestine. Meanwhile, the high expression of genes related to regeneration also indicated that the posterior intestine was responding to the invasion of pathogens by constantly proliferating new cells. In addition, the increasing microbiota communities indicated that these bacteria maintained posterior intestine integrity and shaped the mucosal immune system. Taken together, spatial transcriptomes and microbiota compositions have significant implications for understanding the immune mechanism that responds to E. piscicida infection in the posterior intestine of S. schlegelii, which also provides a theoretical basis for the spatial distribution of immune genes and changes in bacterial flora in other teleosts in the process of resisting pathogens.
Collapse
Affiliation(s)
- Min Cao
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| | - Ting Xue
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| | - Huijun Huo
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| | - Xiaoyan Zhang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| | - Ning Ning Wang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| | - Xu Yan
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| | - Chao Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| |
Collapse
|
58
|
Li S, Li X, Yuan R, Chen X, Chen S, Qiu Y, Yang Q, Wang M, Shi J, Zhang S. Development of a recombinant adenovirus-vectored vaccine against both infectious hematopoietic necrosis virus and infectious pancreatic necrosis virus in rainbow trout (Oncorhynchus mykiss). FISH & SHELLFISH IMMUNOLOGY 2023; 132:108457. [PMID: 36455780 DOI: 10.1016/j.fsi.2022.108457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/22/2022] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
Infectious hematopoietic necrosis virus (IHNV) and infectious pancreatic necrosis virus (IPNV) are typical pathogens of rainbow trout Oncorhynchus mykiss, and the concurrent infection of the two viruses is very common among modern trout hatcheries, which has caused huge economic losses to the rainbow trout farming industry. To prevent and control the spread of IHNV and IPNV in juvenile trout simultaneously, in this study a bivalent recombinant adenovirus vaccine with IHNV Glycoprotein (G) and IPNV VP2 genes was developed. After immunizing juvenile trout with this bivalent vaccine via the immersion route, the expression levels of IHNV G and IPNV VP2 and the representative immune genes in vaccinated and control rainbow trout were tested to evaluate the correlation of immune responses with the expression of viral genes. The neutralizing antibody level induced by this bivalent vaccine as well as the protection efficacy of the vaccine against IHNV and IPNV was also evaluated. The results showed that IHNV G and IPNV VP2 were successfully expressed in juvenile trout, and all the innate and adaptive immune genes were up-regulated. This indicated that the level of the innate and adaptive immune responses were significantly increased, which might be induced by the high expression of the two viral proteins. Compared with the controls, high levels of neutralizing antibodies against IHNV and IPNV were induced in the vaccinated trout. Besides, the bivalent recombinant adenovirus vaccine showed high protection rate against IHNV, with the relative percent survival (RPS) of 81.25%, as well as against IPNV, with the RPS of 78.95%. Taken together, our findings clearly demonstrated that replication-defective adenovirus can be developed as a qualified vector for fish vaccines and IHNV G and IPNV VP2 were two suitable antigenic genes that could induce effective immune protection against these two pathogens. This study provided new insights into developing bivalent vectored vaccines and controlling the spread of IHNV and IPNV simultaneously in juvenile trout.
Collapse
Affiliation(s)
- Shouhu Li
- Key Laboratory of Oceanic and Polar Fisheries, Ministry of Agriculture and Rural Affairs; East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 300 Jungong Road, Shanghai, 200090, China; College of Marine Science, Shanghai Ocean University, 999 Huan Road, Shanghai, 200090, China.
| | - Xincang Li
- Key Laboratory of Oceanic and Polar Fisheries, Ministry of Agriculture and Rural Affairs; East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 300 Jungong Road, Shanghai, 200090, China.
| | - Rui Yuan
- Key Laboratory of Oceanic and Polar Fisheries, Ministry of Agriculture and Rural Affairs; East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 300 Jungong Road, Shanghai, 200090, China.
| | - Xiaoxue Chen
- Key Laboratory of Oceanic and Polar Fisheries, Ministry of Agriculture and Rural Affairs; East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 300 Jungong Road, Shanghai, 200090, China.
| | - Shouxu Chen
- Key Laboratory of Oceanic and Polar Fisheries, Ministry of Agriculture and Rural Affairs; East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 300 Jungong Road, Shanghai, 200090, China.
| | - Yu Qiu
- Key Laboratory of Oceanic and Polar Fisheries, Ministry of Agriculture and Rural Affairs; East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 300 Jungong Road, Shanghai, 200090, China; College of Marine Science, Shanghai Ocean University, 999 Huan Road, Shanghai, 200090, China.
| | - Qingfeng Yang
- Key Laboratory of Oceanic and Polar Fisheries, Ministry of Agriculture and Rural Affairs; East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 300 Jungong Road, Shanghai, 200090, China.
| | - Meng Wang
- Key Laboratory of Oceanic and Polar Fisheries, Ministry of Agriculture and Rural Affairs; East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 300 Jungong Road, Shanghai, 200090, China.
| | - Jiangao Shi
- Key Laboratory of Oceanic and Polar Fisheries, Ministry of Agriculture and Rural Affairs; East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 300 Jungong Road, Shanghai, 200090, China.
| | - Shuo Zhang
- College of Marine Science, Shanghai Ocean University, 999 Huan Road, Shanghai, 200090, China.
| |
Collapse
|
59
|
Gui W, Guo H, Chen X, Wang J, Guo Y, Zhang H, Zhou X, Zhao Y, Dai J. Emerging polyfluorinated compound Nafion by-product 2 disturbs intestinal homeostasis in zebrafish (Danio rerio). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114368. [PMID: 36508837 DOI: 10.1016/j.ecoenv.2022.114368] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 08/23/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Nafion by-product 2 (Nafion BP2), an emerging fluorinated sulfonic acid commonly used in polymer electrolyte membrane technologies, has been detected in various environmental and human matrices. To date, however, few studies have explored its toxicity. In this study, zebrafish embryos were exposed to Nafion BP2 at concentrations of 20, 40, 60, 80, 100, 120, 140, and 160 mg/L from fertilization to 120 post-fertilization (hpf), and multiple developmental parameters (survival rate, hatching rate, and malformation rate) were then determined. Results showed that Nafion BP2 exposure led to a significant decrease in survival and hatching rates and an increase in malformations. The half maximal effective concentration (EC50) of Nafion BP2 for malformation at 120 hpf was 55 mg/L, which is higher than the globally important contaminant perfluorooctane sulfonate (PFOS, 6 mg/L). Furthermore, exposure to Nafion BP2 resulted in additional types of malformations compared to PFOS exposure. Pathologically, Nafion BP2 caused abnormal early foregut development, with exfoliation of intestinal mucosa, damage to lamina propria, and aberrant proliferation of lamina propria cells. Nitric oxide content also decreased markedly. In addition, embryos showed an inflammatory response following Nafion BP2 exposure, with significantly increased levels of pro-inflammatory factors C4 and IL-6. Acidic mucin in the hindgut increased more than two-fold. 16 S rRNA sequencing revealed a marked increase in the pathogen Pseudomonas otitidis. Furthermore, pathways involved in intestinal protein digestion and absorption, inflammatory response, and immune response were significantly altered. Our findings suggest that the intestine is a crucial toxicity target of Nafion BP2 in zebrafish, thus highlighting the need to evaluate its health risks.
Collapse
Affiliation(s)
- Wanying Gui
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hua Guo
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xin Chen
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jinghua Wang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yong Guo
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Hongxia Zhang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xuming Zhou
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanbin Zhao
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Sciences and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Jiayin Dai
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Sciences and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| |
Collapse
|
60
|
Mushtaq Z, Pani Prasad K, Jeena K, Rajendran K, Martina P, Gireesh Babu P. Class a scavenger receptor-A5 gene in Cirrhinus mrigala: Cloning, characterisation and expression patterns in response to bacterial infection. Gene X 2023; 848:146897. [DOI: 10.1016/j.gene.2022.146897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/29/2022] [Accepted: 09/12/2022] [Indexed: 10/14/2022] Open
|
61
|
Du Y, Hu X, Miao L, Chen J. Current status and development prospects of aquatic vaccines. Front Immunol 2022; 13:1040336. [PMID: 36439092 PMCID: PMC9684733 DOI: 10.3389/fimmu.2022.1040336] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/26/2022] [Indexed: 11/11/2022] Open
Abstract
Diseases are a significant impediment to aquaculture's sustainable and healthy growth. The aquaculture industry is suffering significant financial losses as a result of the worsening water quality and increasing frequency of aquatic disease outbreaks caused by the expansion of aquaculture. Drug control, immunoprophylaxis, ecologically integrated control, etc. are the principal control strategies for fish infections. For a long time, the prevention and control of aquatic diseases have mainly relied on the use of various antibiotics and chemical drugs. However, long-term use of chemical inputs not only increases pathogenic bacteria resistance but also damages the fish and aquaculture environments, resulting in drug residues in aquatic products, severely impeding the development of the aquaculture industry. The development and use of aquatic vaccines are the safest and most effective ways to prevent aquatic animal diseases and preserve the health and sustainability of aquaculture. To give references for the development and implementation of aquatic vaccines, this study reviews the development history, types, inoculation techniques, mechanisms of action, development prospects, and challenges encountered with aquatic vaccines.
Collapse
Affiliation(s)
- Yang Du
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, China
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaoman Hu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, China
| | - Liang Miao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, China
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, China
| |
Collapse
|
62
|
Fu Q, Li Y, Zhao S, Wang H, Zhao C, Zhang P, Cao M, Yang N, Li C. Comprehensive identification and expression profiling of immune-related lncRNAs and their target genes in the intestine of turbot (Scophthalmus maximus L.) in response to Vibrio anguillarum infection. FISH & SHELLFISH IMMUNOLOGY 2022; 130:233-243. [PMID: 36084890 DOI: 10.1016/j.fsi.2022.09.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 08/22/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
Long non-coding RNA (lncRNA) play vital regulatory roles in various biological processes. Intestine is one of the most sensitive organs to environmental and homeostatic disruptions for fish. However, systematic profiles of lncRNAs in the intestine of teleost in responses to pathogen infections is still limited. Turbot (Scophthalmus maximus L.), an important commercial fish species in China, has been suffering with Vibrio anguillarum infection, resulted in dramatic economic loss. Hereinto, the intestinal tissues of turbot were sampled at 0 h, 2 h, 12 h, and 48 h following V. anguillarum infection. The histopathological analysis revealed that the pathological trauma was mainly present in intestinal tunica mucosal epithelium. After high-throughput sequencing and bioinformatic analysis, a total of 9722 lncRNAs and 21,194 mRNAs were obtained, and the average length and exon number of lncRNAs were both less than those of mRNAs. Among which, a set of 158 lncRNAs and 226 mRNAs were differentially expressed (DE-lncRNAs and DEGs) in turbot intestine at three time points, related to many immune-related genes such as complement, interleukin, chemokine, lysosome, and macrophage, indicating their potential critical roles in immune responses. In addition, 2803 and 1803 GO terms were enriched for DEGs and co-expressed target genes of DE-lncRNAs, respectively. Moreover, 127 and 50 KEGG pathways including cell adhesion molecules (CAMs), phagosome, JAK-STAT signaling pathway, cytokine-cytokine receptor interaction, and intestinal immune network for IgA production, were enriched for DEGs and co-expressed target genes of DE-lncRNAs, respectively. Finally, qRT-PCR was conducted to confirm the reliability of sequencing data. The present study will set the foundation for the future exploration of lncRNA functions in teleost in response to bacterial infection.
Collapse
Affiliation(s)
- Qiang Fu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yuqing Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Shoucong Zhao
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Haojie Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Chunyan Zhao
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Pei Zhang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Min Cao
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Ning Yang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Chao Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
63
|
Geng L, Zhang J, Mu W, Wu X, Zhou Z, Wang X, Ye B, Ma L. Replacing fishmeal protein with blended alternatives alters growth, feed utilization, protein deposition and gut micromorphology of humpback grouper, Cromileptes altivelis. Anim Feed Sci Technol 2022. [DOI: 10.1016/j.anifeedsci.2022.115434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
64
|
Ding LG, Han GK, Wang XY, Sun RH, Yu YY, Xu Z. Gallbladder microbiota in early vertebrates provides evolutionary insights into mucosal homeostasis. Front Immunol 2022; 13:1020413. [PMID: 36211423 PMCID: PMC9532620 DOI: 10.3389/fimmu.2022.1020413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/07/2022] [Indexed: 11/29/2022] Open
Abstract
The gallbladder (GB) microbiota plays critical roles in mammalian metabolism and immune homeostasis, and its relationship with human disease has been extensively studied over the past decade. However, very little is known about the interplay between GB microbiota and the immune functions of teleost fish, the earliest bony vertebrate with a GB. Therefore, this study sought to investigate the composition of the teleost GB microbiota and the potential mechanisms through which it affects mucosal immunity. In our results, we found that the GB mucosa (GM) and bile bacterial community shared a similar microbiological composition with that of the gut mucosa in naïve individuals. IHNV infection induced a profound GB inflammation and disrupted their microbial homeostasis followed by a strong anti-bacterial response. Interestingly, beneficial bacteria from the Lactobacillales order showed a significant increase in the abundance of the bile microbial community, whereas the structure of the Mycoplasmatales order in the gut microbial community was markedly changed. All in all, our study characterized the structure of the GB microbial ecosystem in teleost fish, and the fish GB microbiome shared a high similarity with the gut microbiota. More importantly, our findings offer solid evidence that the teleost GB evolved immune functions to preserve its mucosal microbial homeostasis, suggesting that both the microbiota and mucosal immunity of the GB might have co-evolved in early vertebrates.
Collapse
Affiliation(s)
- Li-guo Ding
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Guang-kun Han
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Xin-you Wang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Ru-han Sun
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Yong-yao Yu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Zhen Xu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- *Correspondence: Zhen Xu,
| |
Collapse
|
65
|
Lu ZY, Feng L, Jiang WD, Wu P, Liu Y, Jiang J, Kuang SY, Tang L, Li SW, Zhong CB, Zhou XQ. Dietary mannan oligosaccharides strengthens intestinal immune barrier function via multipath cooperation during Aeromonas Hydrophila infection in grass carp (Ctenopharyngodon Idella). Front Immunol 2022; 13:1010221. [PMID: 36177013 PMCID: PMC9513311 DOI: 10.3389/fimmu.2022.1010221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 08/23/2022] [Indexed: 11/17/2022] Open
Abstract
In recent years, mannose oligosaccharide (MOS) as a functional additive is widely used in aquaculture, to enhance fish immunity. An evaluation of the effect of dietary MOS supplementation on the immune barrier function and related signaling molecules mechanism of grass carp (Ctenopharyngodon idella) was undertaken in the present study. Six diets with graded amounts of MOS supplementation (0, 200, 400, 600, 800, and 1000 mg/kg) were fed to 540 grass carp over 60 days. To examine the immune response and potential mechanisms of MOS supplementation on the intestine, a challenge test was conducted using injections of Aeromonas hydrophila for 14 days. Results of the study on the optimal supplementation with MOS were found as follows (1) MOS enhances immunity partly related to increasing antibacterial substances content and antimicrobial peptides expression; (2) MOS attenuates inflammatory response partly related to regulating the dynamic balance of intestinal inflammatory cytokines; (3) MOS regulates immune barrier function may partly be related to modulating TLRs/MyD88/NFκB and TOR/S6K1/4EBP signalling pathways. Finally, the current study concluded that MOS supplementation could improve fish intestinal immune barrier function under Aeromonas hydrophila infected conditions.
Collapse
Affiliation(s)
- Zhi-Yuan Lu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan, China
| | - Jun Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan, China
| | - Sheng-Yao Kuang
- Sichuan Animal Science Academy, Sichuan Animtech Feed Co. Ltd, Chengdu, China
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, China
| | - Ling Tang
- Sichuan Animal Science Academy, Sichuan Animtech Feed Co. Ltd, Chengdu, China
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, China
| | - Shu-Wei Li
- Sichuan Animal Science Academy, Sichuan Animtech Feed Co. Ltd, Chengdu, China
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, China
| | - Cheng-Bo Zhong
- Sichuan Animal Science Academy, Sichuan Animtech Feed Co. Ltd, Chengdu, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan, China
- *Correspondence: Xiao-Qiu Zhou,
| |
Collapse
|
66
|
Candebat CL, Stephens F, Booth MA, Fernando F, Lopata A, Pirozzi I. Adequate levels of dietary sulphur amino acids impart improved liver and gut health in juvenile yellowtail kingfish ( Seriola lalandi). Br J Nutr 2022; 129:1-24. [PMID: 35924344 PMCID: PMC10024990 DOI: 10.1017/s0007114522002458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 05/31/2022] [Accepted: 07/05/2022] [Indexed: 11/06/2022]
Abstract
The sulphur amino acids methionine (Met) and cysteine (Cys) and their derivative taurine (Tau) are metabolically active molecules with interlinked roles in nutritional requirements. Deficiencies in these nutrients are linked to poor growth and health; however, the impacts of these deficiencies on organ structure and function are largely unknown. This study examined the effects of dietary Met, Cys and Tau fed at different levels on yellowtail kingfish (YTK) liver histology and surface colour, plasma biochemistry and posterior intestine histology. Samples were collected from two dose-response feeding trials that quantified (1) the Tau requirement and sparing effect of Met by feeding YTK diets containing one of seven levels of Tau at one of two levels of Met and (2) the Met requirement and sparing effect of Cys by feeding YTK diets containing one of five levels of Met at one of two levels of Cys. YTK fed inadequate levels of dietary Met, Cys and Tau exhibited thicker bile ducts, less red livers, more intestinal acidic goblet cell mucus and supranuclear vacuoles and less posterior intestinal absorptive surface area. Further, thicker bile ducts correlated with less red livers (a*, R), whereas increased hepatic fat correlated with a liver yellowing (b*). Our results indicate a shift towards histological properties and functions indicative of improved intrahepatic biliary condition, posterior intestinal nutrient absorption and homoeostasis of YTK fed adequate amounts of Met, Cys and Tau. These findings may assist in formulating aquafeed for optimised gastrointestinal and liver functions and maintaining good health in YTK.
Collapse
Affiliation(s)
- Caroline Lourdes Candebat
- Centre for Sustainable Tropical Fisheries and Aquaculture & College of Science and Engineering, James Cook University, Townsville, QLD, Australia
| | - Frances Stephens
- Consultant Fish Pathologist, Department of Fisheries, Perth, WA, Australia
| | - Mark A. Booth
- NSW Department of Primary Industries, Port Stephens Fisheries Institute, Taylors Beach, NSW2316, Australia
| | - Fernando Fernando
- Centre for Sustainable Tropical Fisheries and Aquaculture & College of Science and Engineering, James Cook University, Townsville, QLD, Australia
| | - Andreas Lopata
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD, Australia
- Tropical Futures Institute, James Cook University, Singapore, Singapore
| | - Igor Pirozzi
- Centre for Sustainable Tropical Fisheries and Aquaculture & College of Science and Engineering, James Cook University, Townsville, QLD, Australia
- NSW Department of Primary Industries, Port Stephens Fisheries Institute, Taylors Beach, NSW2316, Australia
| |
Collapse
|
67
|
Quintanilla-Mena MA, Olvera-Novoa MA, Sánchez-Tapia IA, Lara-Pérez LA, Rivas-Reyes I, Gullian-Klanian M, Patiño-Suárez MV, Puch-Hau CA. The digestive tract sections of the sea cucumber Isostichopus badionotus reveal differences in composition, diversity, and functionality of the gut microbiota. Arch Microbiol 2022; 204:463. [PMID: 35792945 DOI: 10.1007/s00203-022-03080-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 06/11/2022] [Accepted: 06/15/2022] [Indexed: 11/30/2022]
Abstract
For the first time, this study analyses the composition and diversity of the gut microbiota of Isostichopus badionotus in captivity, using high-throughput 16S rRNA sequencing, and predicts the metagenomic functions of the microbiota. The results revealed a different composition of the gut microbiota for the foregut (FG) and midgut (MG) compared to the hindgut (HG), with a predominance of Proteobacteria, followed by Actinobacteria, Bacteroidetes, and Firmicutes. The FG and MG demonstrated a greater bacterial diversity compared to the HG. In addition, a complex network of interactions was observed at the genus level and identified some strains with probiotic and bioremediation potentials, such as Acinetobacter, Ruegeria, Streptococcus, Lactobacillus, Pseudomonas, Enterobacter, Aeromonas, Rhodopseudomonas, Agarivorans, Bacillus, Enterococcus, Micrococcus, Bifidobacterium, and Shewanella. Predicting metabolic pathways revealed that the bacterial composition in each section of the intestine participates in different physiological processes such as metabolism, genetic and environmental information processing, organismal systems, and cellular processes. Understanding and manipulating microbe--host-environment interactions and their associated functional capacity could substantially contribute to achieving more sustainable aquaculture systems for I. badionotus.
Collapse
Affiliation(s)
- Mercedes A Quintanilla-Mena
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Departamento de Recursos de Mar, Unidad Mérida, Km. 6 Antigua Carretera a Progreso, Apdo. Postal 73-CORDEMEX, 97310, Mérida, Yucatán, Mexico
| | - Miguel A Olvera-Novoa
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Departamento de Recursos de Mar, Unidad Mérida, Km. 6 Antigua Carretera a Progreso, Apdo. Postal 73-CORDEMEX, 97310, Mérida, Yucatán, Mexico
| | - Itzel A Sánchez-Tapia
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Departamento de Recursos de Mar, Unidad Mérida, Km. 6 Antigua Carretera a Progreso, Apdo. Postal 73-CORDEMEX, 97310, Mérida, Yucatán, Mexico
| | - Luis A Lara-Pérez
- Tecnológico Nacional de México Campus Instituto Tecnológico de la Zona Maya, Carretera Chetumal-Escárcega km 21.5, C.P. 77965, Ejido Juan Sarabia, Quintana Roo, Mexico
| | - Isajav Rivas-Reyes
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Departamento de Recursos de Mar, Unidad Mérida, Km. 6 Antigua Carretera a Progreso, Apdo. Postal 73-CORDEMEX, 97310, Mérida, Yucatán, Mexico
| | - Mariel Gullian-Klanian
- Universidad Marista de Mérida, Periférico Norte Tablaje Catastral 13941, Carretera Mérida-Progreso, P.O. Box 97300, Mérida, Yucatán, Mexico
| | - María V Patiño-Suárez
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Departamento de Recursos de Mar, Unidad Mérida, Km. 6 Antigua Carretera a Progreso, Apdo. Postal 73-CORDEMEX, 97310, Mérida, Yucatán, Mexico
| | - Carlos A Puch-Hau
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Departamento de Recursos de Mar, Unidad Mérida, Km. 6 Antigua Carretera a Progreso, Apdo. Postal 73-CORDEMEX, 97310, Mérida, Yucatán, Mexico.
| |
Collapse
|
68
|
Martinez R, Fernández-Trujillo MA, Hernández L, Page A, Béjar J, Estrada MP. Growth hormone secretagogue peptide A233 upregulates Mx expression in teleost fish in vitro and in vivo. Arch Virol 2022; 167:2041-2047. [DOI: 10.1007/s00705-022-05504-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 05/05/2022] [Indexed: 11/27/2022]
|
69
|
Wu D, Fan Z, Li J, Zhang Y, Xu Q, Wang L, Wang L. Low Protein Diets Supplemented With Alpha-Ketoglutarate Enhance the Growth Performance, Immune Response, and Intestinal Health in Common Carp ( Cyprinus carpio). Front Immunol 2022; 13:915657. [PMID: 35720284 PMCID: PMC9200961 DOI: 10.3389/fimmu.2022.915657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/04/2022] [Indexed: 11/13/2022] Open
Abstract
To investigate the effects of alpha-ketoglutarate (AKG) supplementation in a low protein (LP) diet on the growth performance, immune response, and intestinal health of common carp (Cyprinus carpio), 600 carp were randomly divided into five dietary groups: a normal protein (NP) diet containing 32% crude protein, an LP diet formulated with 28% crude protein, and LP with AKG at 0.4%, 0.8%, and 1.2% (dry matter). After an 8-week trial period, the results demonstrated that an LP diet led to a decrease in performance, immune response, and intestinal barrier function. Compared with the LP group, the final body weight and weight gain rate in the LP+0.4% AKG group were significantly higher, the feed conversion ratio was significantly decreased with the addition of 0.4% and 0.8% AKG. The supplementation with 0.4% and 0.8% AKG markedly increased the activities of T-SOD and GSH-Px, as well as the expression levels of GPX1a and GPX1b relative to the LP group, whereas the MDA content was significantly decreased in the LP+0.4% AKG group. In addition, the expression levels of tight junctions including claudin-3, claudin-7, ZO-1, and MLCK were significantly up-regulated in the LP+0.4% AKG group, and the relative expression levels of the pro-inflammatory factors IL-1β and IL-6α were significantly lower with the addition of 0.4%, 0.8%, and 1.2% AKG. Moreover, the abundance of Proteobacteria in the LP+0.4% AKG group was lower than that in the LP group, and the abundance of Firmicutes and Fusobacteria was higher at the phylum level. The abundance of Citrobacter in the LP+0.4% AKG group was decreased compared to the LP group, while the abundance of Aeromonas was increased at the genus level. In short, the effects of AKG on the intestinal health of the common carp were systematically and comprehensively evaluated from the perspectives of intestinal physical barrier, chemical barrier, biological barrier, and immune barrier. We found that an LP diet supplemented with 0.4% AKG was beneficial to the growth performance and intestinal health of common carp.
Collapse
Affiliation(s)
- Di Wu
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| | - Ze Fan
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| | - Jinnan Li
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| | - Yuanyuan Zhang
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| | - Qiyou Xu
- School of Life Science, Huzhou University, Huzhou, China
| | - Liang Wang
- AHP Application Research Institute, Weifang Addeasy Bio-Technology Co., Ltd, Weifang, China
| | - Liansheng Wang
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| |
Collapse
|
70
|
Díaz-Ibarrola D, Martínez D, Vargas-Lagos C, Saravia J, Vargas-Chacoff L. Transcriptional modulation of immune genes in gut of Sub-Antarctic notothenioid fish Eleginops maclovinus challenged with Francisella noatunensis subsp. noatunensis. FISH & SHELLFISH IMMUNOLOGY 2022; 124:56-65. [PMID: 35367625 DOI: 10.1016/j.fsi.2022.03.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/22/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
The search for functional foods that improve the immune response has traditionally been focused on lymphoid tissue and the intestinal mucosa. However, it is unknown whether there is a different immune response in different portions of the gut following exposure to a bacterial pathogen. We challenged Eleginops maclovinus intraperitoneally (i.p) with Francisella noatunensis subsp. noatunensis and measured mRNA transcripts related to innate and adaptive immune responses in different parts of the gut (foregut, midgut and hindgut). We used control (i.p only with bacterial culture medium), low dose (i.p of F. noatunensis at 1 × 101 bact/μL), medium dose (i.p of F. noatunensis at 1 × 105 bact/μL) and high dose (i.p of F. noatunensis at 1 × 1010 bact/μL) groups in our experiments. We sampled fish at days 1, 3, 7, 14, 21, and 28 post-injection. We observed tissue-specific expression of TLR1, TLR5, TLR8, MHCI, MHCII and IgM, and transcription of these immune markers was lower in foregut and higher in midgut and hindgut. We detected Francisella genetic material (DNA) in fish stimulated with a high dose from day 1-28 in foregut, midgut, and hindgut. However, we could only detect Francisella DNA in fish stimulated the medium and low dose at later timepoints in the foregut (21-28 days post injection "dpi") and hindgut (low dose from day 7-28 dpi). Our results suggest that the immune responses to bacterial pathogens occur throughout the gut, but certain segments may be more susceptible to infection because of their cellular morphology (anterior, middle and posterior).
Collapse
Affiliation(s)
- Daniela Díaz-Ibarrola
- Laboratorio de Fisiología de Peces, Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile; Centro Fondap de Investigación de Altas Latitudes (IDEAL), Universidad Austral de Chile, Valdivia, Chile; Escuela de Graduados, Programa de Doctorado en Ciencias de la Acuicultura, Universidad Austral de Chile, Puerto Montt, Chile.
| | - Danixa Martínez
- Laboratorio de Fisiología de Peces, Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile; Laboratorio de Inmunología y Estrés de Organismos Acuáticos, Instituto de Patología Animal, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Carolina Vargas-Lagos
- Laboratorio de Fisiología de Peces, Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile; Centro Fondap de Investigación de Altas Latitudes (IDEAL), Universidad Austral de Chile, Valdivia, Chile
| | - Julia Saravia
- Laboratorio de Fisiología de Peces, Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile; Centro Fondap de Investigación de Altas Latitudes (IDEAL), Universidad Austral de Chile, Valdivia, Chile; Escuela de Graduados, Programa de Doctorado en Ciencias de la Acuicultura, Universidad Austral de Chile, Puerto Montt, Chile
| | - Luis Vargas-Chacoff
- Laboratorio de Fisiología de Peces, Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile; Centro Fondap de Investigación de Altas Latitudes (IDEAL), Universidad Austral de Chile, Valdivia, Chile; Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems, BASE, University Austral of Chile, Valdivia, Chile.
| |
Collapse
|
71
|
Docando F, Nuñez-Ortiz N, Serra CR, Arense P, Enes P, Oliva-Teles A, Díaz-Rosales P, Tafalla C. Mucosal and systemic immune effects of Bacillus subtilis in rainbow trout (Oncorhynchus mykiss). FISH & SHELLFISH IMMUNOLOGY 2022; 124:142-155. [PMID: 35367376 DOI: 10.1016/j.fsi.2022.03.040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/22/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
Bacillus spp. are well known for their probiotic properties. Hence, the long-term feeding of Bacillus spp. strains to different fish species has been proved to confer beneficial effects regarding growth or pathogen resistance, among others. However, whether these strains could function as mucosal adjuvants, up-regulating immune responses after a single administration, has not yet been investigated in fish. Thus, in the current work, we have performed a series of experiments in rainbow trout (Oncorhynchus mykiss) aimed at establishing the potential of two Bacillus subtilis spore-forming strains, designated as ABP1 and ABP2, as oral adjuvants/immunostimulants. As an initial step, we evaluated their transcriptional effects on the rainbow trout intestinal epithelial cell line RTgutGC, and in gut tissue explants incubated ex vivo with the two strains. Their capacity to adhere to RTgutGC cells was also evaluated by flow cytometry. Although both strains had the capacity to modulate the transcription of several genes related to innate and adaptive immune responses, it was the ABP1 strain that led to stronger transcriptional effects, also exerting a higher binding capacity to intestinal epithelial cells. Consequently, we selected this strain to establish its effects on splenic B cells upon in vitro exposure as well as to determine the transcriptional effects exerted in the spleen, kidney, and gut after a single oral administration of the bacteria. Our results showed that B. subtilis ABP1 had the capacity to modulate the proliferation, IgM secreting capacity and MHC II surface expression of splenic B cells. Finally, we confirmed that this strain also induced the transcription of genes involved in inflammation, antimicrobial genes, and genes involved in T cell responses upon a single oral administration. Our results provide valuable information regarding how B. subtilis modulates the immune response of rainbow trout, pointing to the usefulness of the ABP1 strain to design novel oral vaccination strategies for aquaculture.
Collapse
Affiliation(s)
- F Docando
- Fish Immunology and Pathology Group, Animal Health Research Centre (CISA-INIA-CSIC), 28130, Valdeolmos-Alalpardo, Madrid, Spain; Autonomous University of Madrid, Madrid, Spain
| | - N Nuñez-Ortiz
- Fish Immunology and Pathology Group, Animal Health Research Centre (CISA-INIA-CSIC), 28130, Valdeolmos-Alalpardo, Madrid, Spain
| | - C R Serra
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal
| | - P Arense
- Fish Immunology and Pathology Group, Animal Health Research Centre (CISA-INIA-CSIC), 28130, Valdeolmos-Alalpardo, Madrid, Spain
| | - P Enes
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal; Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, Edifício FC4, 4169-007, Porto, Portugal
| | - A Oliva-Teles
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal; Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, Edifício FC4, 4169-007, Porto, Portugal
| | - P Díaz-Rosales
- Fish Immunology and Pathology Group, Animal Health Research Centre (CISA-INIA-CSIC), 28130, Valdeolmos-Alalpardo, Madrid, Spain.
| | - C Tafalla
- Fish Immunology and Pathology Group, Animal Health Research Centre (CISA-INIA-CSIC), 28130, Valdeolmos-Alalpardo, Madrid, Spain.
| |
Collapse
|
72
|
Alesci A, Pergolizzi S, Fumia A, Calabrò C, Lo Cascio P, Lauriano ER. Mast cells in goldfish (
Carassius auratus
) gut: Immunohistochemical characterization. ACTA ZOOL-STOCKHOLM 2022. [DOI: 10.1111/azo.12417] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Alessio Alesci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences University of Messina Messina Italy
| | - Simona Pergolizzi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences University of Messina Messina Italy
| | - Angelo Fumia
- Department of Clinical and Experimental Medicine University of Messina Messina Italy
| | - Concetta Calabrò
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences University of Messina Messina Italy
| | - Patrizia Lo Cascio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences University of Messina Messina Italy
| | - Eugenia Rita Lauriano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences University of Messina Messina Italy
| |
Collapse
|
73
|
Li W, Chen X, Li M, Cai Z, Gong H, Yan M. Microplastics as an aquatic pollutant affect gut microbiota within aquatic animals. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127094. [PMID: 34530278 DOI: 10.1016/j.jhazmat.2021.127094] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/18/2021] [Accepted: 08/29/2021] [Indexed: 05/27/2023]
Abstract
The adverse impact of microplastics (MPs) on gut microbiota within aquatic animals depends on the overall effect of chemicals and biofilm of MPs. Thus, it is ideal to fully understand the influences that arise from each or even all of these characteristics, which should give us a whole picture of consequences that are brought by MPs. Harmful effects of MPs on gut microbiota within aquatic organisms start from the ingestion of MPs by aquatic organisms. According to this, the present review will discuss the ingestion of MPs and its following results on gut microbial communities within aquatic animals, in which chemical components, such as plastic polymers, heavy metals and POPs, and the biofilm of MPs would be involved. This review firstly analyzed the impacts of MPs on aquatic organisms in detail about its chemical components and biofilm based on previous relevant studies. At last, the significance of field studies, functional studies and complex dynamics of gut microbial ecology in the future research of MPs affecting gut microbiota is discussed.
Collapse
Affiliation(s)
- Weixin Li
- College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China
| | - Xiaofeng Chen
- College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China
| | - Minqian Li
- College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China
| | - Zeming Cai
- College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China
| | - Han Gong
- College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China.
| | - Muting Yan
- College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China; Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong.
| |
Collapse
|
74
|
Cai X, Gao C, Cao M, Su B, Liu X, Wang B, Li C. Genome-wide characterization of gap junction (connexins and pannexins) genes in turbot (Scophthalmus maximus L.): evolution and immune response following Vibrio anguillarum infection. Gene 2022; 809:146032. [PMID: 34673208 DOI: 10.1016/j.gene.2021.146032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/10/2021] [Accepted: 10/14/2021] [Indexed: 01/26/2023]
Abstract
Gap junction (GJ), a special intercellular junction between different cell types, directly connects the cytoplasm of adjacent cells, allows various molecules, ions and electrical impulses to pass through the intercellular regulatory gate, and plays vital roles in response to bacterial infection. Up to date, the information about the GJ in turbot (Scophthalmus maximus L.) is still limited. In current study, 43 gap junction genes were identified in turbot, phylogeny analysis suggested that gap junctions from turbot and other species were clustered into six groups, GJA, GJB, GJC, GJD, GJE and PANX, and turbot GJs together with respective GJs from Japanese flounder, half-smooth tongue sole and large yellow croaker, sharing same ancestors. In addition, these 43 GJ genes distributed in different chromosomes unevenly. According to gene structure and domain analysis, these genes (in GJA-GJE group) were highly conserved in that most of them contain the transmembrane area, connexin domain (CNX) and cysteine-rich domain (connexin CCC), while PANXs contain Pfam Innexin. Although only one tandem duplication was identified in turbot gap junction gene, 235 pairs of segmental duplications were identified in the turbot genome. To further investigate their evolutionary relationships, Ka/Ks was calculated, and results showed that most ratios were lower than 1, indicating they had undergone negative selection. Finally, expression analysis showed that gap junction genes were widely distributed in turbot tissues and significantly regulated after Vibrio anguillarum infection. Taken together, our research could provide valuable information for further exploration of the function of gap junction genes in teleost.
Collapse
Affiliation(s)
- Xin Cai
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Chengbin Gao
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Min Cao
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Baofeng Su
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, United States
| | - Xiaoli Liu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Beibei Wang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Chao Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
75
|
Lee PT, Yamamoto FY, Low CF, Loh JY, Chong CM. Gut Immune System and the Implications of Oral-Administered Immunoprophylaxis in Finfish Aquaculture. Front Immunol 2022; 12:773193. [PMID: 34975860 PMCID: PMC8716388 DOI: 10.3389/fimmu.2021.773193] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/23/2021] [Indexed: 12/13/2022] Open
Abstract
The gastrointestinal immune system plays an important role in immune homeostasis regulation. It regulates the symbiotic host-microbiome interactions by training and developing the host's innate and adaptive immunity. This interaction plays a vital role in host defence mechanisms and at the same time, balancing the endogenous perturbations of the host immune homeostasis. The fish gastrointestinal immune system is armed with intricate diffused gut-associated lymphoid tissues (GALTs) that establish tolerance toward the enormous commensal gut microbiome while preserving immune responses against the intrusion of enteric pathogens. A comprehensive understanding of the intestinal immune system is a prerequisite for developing an oral vaccine and immunostimulants in aquaculture, particularly in cultured fish species. In this review, we outline the remarkable features of gut immunity and the essential components of gut-associated lymphoid tissue. The mechanistic principles underlying the antigen absorption and uptake through the intestinal epithelial, and the subsequent immune activation through a series of molecular events are reviewed. The emphasis is on the significance of gut immunity in oral administration of immunoprophylactics, and the different potential adjuvants that circumvent intestinal immune tolerance. Comprehension of the intestinal immune system is pivotal for developing effective fish vaccines that can be delivered orally, which is less labour-intensive and could improve fish health and facilitate disease management in the aquaculture industry.
Collapse
Affiliation(s)
- Po-Tsang Lee
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan
| | - Fernando Y Yamamoto
- Thad Cochran National Warmwater Aquaculture Center, Mississippi Agriculture and Forestry Experiment Station, Mississippi State University, Stoneville, MS, United States
| | - Chen-Fei Low
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi, Malaysia
| | - Jiun-Yan Loh
- Centre of Research for Advanced Aquaculture (CORAA), UCSI University, Cheras, Malaysia
| | - Chou-Min Chong
- Aquatic Animal Health and Therapeutics Laboratory (AquaHealth), Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
76
|
Johny TK, Puthusseri RM, Bhat SG. Metagenomic landscape of taxonomy, metabolic potential and resistome of Sardinella longiceps gut microbiome. Arch Microbiol 2021; 204:87. [PMID: 34961896 DOI: 10.1007/s00203-021-02675-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 11/27/2021] [Accepted: 12/07/2021] [Indexed: 01/08/2023]
Abstract
Fish gut microbiota, encompassing a colossal reserve of microbes represents a dynamic ecosystem, influenced by a myriad of environmental and host factors. The current study presents a comprehensive insight into Sardinella longiceps gut microbiome using whole metagenome shotgun sequencing. Taxonomic profiling identified the predominance of phylum Proteobacteria, comprising of Photobacterium, Vibrio and Shewanella sp. Functional annotation revealed the dominance of Clustering based subsystems, Carbohydrate, and Amino acids and derivatives. Analysis of Virulence, disease and defense subsystem identified genes conferring resistance to antibiotics and toxic compounds, like multidrug resistance efflux pumps and resistance genes for fluoroquinolones and heavy metals like cobalt, zinc, cadmium and copper. The presence of overlapping genetic mechanisms of resistance to antibiotics and heavy metals, like the efflux pumps is a serious cause of concern as it is likely to aggravate co-selection pressure, leading to an increased dissemination of these resistance genes to fish and humans.
Collapse
Affiliation(s)
- Tina Kollannoor Johny
- Department of Biotechnology, Cochin University of Science and Technology, Kalamassery, Cochin, Kerala, 682022, India
| | - Rinu Madhu Puthusseri
- Department of Biotechnology, Cochin University of Science and Technology, Kalamassery, Cochin, Kerala, 682022, India
| | - Sarita Ganapathy Bhat
- Department of Biotechnology, Cochin University of Science and Technology, Kalamassery, Cochin, Kerala, 682022, India.
| |
Collapse
|
77
|
Successful Inclusion of High Vegetable Protein Sources in Feed for Rainbow Trout without Decrement in Intestinal Health. Animals (Basel) 2021; 11:ani11123577. [PMID: 34944352 PMCID: PMC8698200 DOI: 10.3390/ani11123577] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/11/2021] [Accepted: 12/13/2021] [Indexed: 12/29/2022] Open
Abstract
The aquaculture of carnivorous fish is in continuous expansion, which leads to the need to reduce the dependence on fishmeal (FM). Plant proteins (PP) represent a suitable protein alternative to FM and are increasingly used in fish feed. However, PP may lead to stunted growth and enteritis. In the current study, the effect of high FM substitution by PP sources on the growth, mortality and intestinal health of rainbow trout (Oncorhynchus mykiss) was evaluated in terms of the histological intestine parameters and expression of genes related to inflammation (IL-1β, IL-8 and TGF-β) and immune responses (Transferrin, IgT and IFN-γ). The results show that a total substitution registered lower growth and survival rates, probably due to a disruption to the animal's health. Confirming this hypothesis, fish fed FM0 showed histological changes in the intestine and gene changes related to inflammatory responses, which in the long-term could have triggered an immunosuppression. The FM10 diet presented not only a similar expression to FM20 (control diet), but also similar growth and survival. Therefore, 90% of FM substitution was demonstrated as being feasible in this species using a PP blend of wheat gluten (WG) and soybean meal (SBM) as a protein source.
Collapse
|
78
|
Hang S, Zhao J, Ji B, Li H, Zhang Y, Peng Z, Zhou F, Ding X, Ye Z. Impact of underwater noise on the growth, physiology and behavior of Micropterus salmoides in industrial recirculating aquaculture systems. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 291:118152. [PMID: 34740287 DOI: 10.1016/j.envpol.2021.118152] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 09/05/2021] [Accepted: 09/08/2021] [Indexed: 06/13/2023]
Abstract
The operation of the equipment in industrial recirculating aquaculture systems (RAS) affects the underwater soundscape of aquaculture tanks where fishes live. This study evaluated the influence of commercial industrial RAS noise on the growth, physiology, and behavior of juvenile largemouth bass (Micropterus salmoides). In this study, two experimental groups, the RAS noise group (115 dB re 1 μPa RMS) and the ambient group (69 dB re 1 μPa RMS), were studied. The water quality and feeding regime for each group were kept the same during the 60-day experiment. Results showed that there was no significant difference in the average daily feed intake of the fish between the two treatments, while the rate of weight gain of the ambient group (755.27 ± 65.62%) was significantly higher than that of the noise group (337.66 ± 88.01%). In addition, the RAS environmental noise also had an adverse effect on the anti-oxidation and immune systems of the fish based on results of analysis of blood, liver, and intestinal samples. Moreover, environmental noise affected the swimming behavior of the fish school. The mean angle and distance between the focal fish and its nearest neighbor fish in RAS noise group were 33.3° and 92.1 mm, respectively, which were larger than those of the ambient group with 24.4° and 89.5 mm, respectively. From the above results, RAS noise did influence the welfare of largemouth bass, and the soundscape in RAS hence should be managed in real production.
Collapse
Affiliation(s)
- Shengyu Hang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310000, China
| | - Jian Zhao
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310000, China
| | - Baimin Ji
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310000, China
| | - Haijun Li
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310000, China
| | - Yadong Zhang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310000, China
| | - Zequn Peng
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310000, China
| | - Fan Zhou
- Zhejiang Fisheries Technical Extension Center, Hangzhou, 310023, China
| | - Xueyan Ding
- Zhejiang Fisheries Technical Extension Center, Hangzhou, 310023, China
| | - Zhangying Ye
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310000, China; Ocean Academy, Zhejiang University, Zhoushan, 316000, China.
| |
Collapse
|
79
|
Xie J, Li M, Ye W, Shan J, Zhao X, Duan Y, Liu Y, Unger BH, Cheng Y, Zhang W, Wu N, Xia XQ. Sinomenine Hydrochloride Ameliorates Fish Foodborne Enteritis via α7nAchR-Mediated Anti-Inflammatory Effect Whilst Altering Microbiota Composition. Front Immunol 2021; 12:766845. [PMID: 34887862 PMCID: PMC8650311 DOI: 10.3389/fimmu.2021.766845] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/02/2021] [Indexed: 02/06/2023] Open
Abstract
Foodborne intestinal inflammation is a major health and welfare issue in aquaculture. To prevent enteritis, various additives have been incorporated into the fish diet. Considering anti-inflammatory immune regulation, an effective natural compound could potentially treat or prevent intestinal inflammation. Our previous study has revealed galantamine’s effect on soybean induced enteritis (SBMIE) and has highlighted the possible role of the cholinergic anti-inflammatory pathway in the fish gut. To further activate the intestinal cholinergic related anti-inflammatory function, α7nAchR signaling was considered. In this study, sinomenine, a typical agonist of α7nAChR in mammals, was tested to treat fish foodborne enteritis via its potential anti-inflammation effect using the zebrafish foodborne enteritis model. After sinomenine’s dietary inclusion, results suggested that there was an alleviation of intestinal inflammation at a pathological level. This outcome was demonstrated through the improved morphology of intestinal villi. At a molecular level, SN suppressed inflammatory cytokines’ expression (especially for tnf-α) and upregulated anti-inflammation-related functions (indicated by expression of il-10, il-22, and foxp3a). To systematically understand sinomenine’s intestinal effect on SBMIE, transcriptomic analysis was done on the SBMIE adult fish model. DEGs (sinomenine vs soybean meal groups) were enriched in GO terms related to the negative regulation of lymphocyte/leukocyte activation and alpha-beta T cell proliferation, as well as the regulation of lymphocyte migration. The KEGG pathways for glycolysis and insulin signaling indicated metabolic adjustments of α7nAchR mediated anti-inflammatory effect. To demonstrate the immune cells’ response, in the SBMIE larva model, inflammatory gatherings of neutrophils, macrophages, and lymphocytes caused by soybean meal could be relieved significantly with the inclusion of sinomenine. This was consistent within the sinomenine group as CD4+ or Foxp3+ lymphocytes were found with a higher proportion at the base of mucosal folds, which may suggest the Treg population. Echoing, the sinomenine group’s 16s sequencing result, there were fewer enteritis-related TM7, Sphingomonas and Shigella, but more Cetobacterium, which were related to glucose metabolism. Our findings indicate that sinomenine hydrochloride could be important in the prevention of fish foodborne enteritis at both immune and microbiota levels.
Collapse
Affiliation(s)
- Jiayuan Xie
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Ming Li
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| | - Weidong Ye
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Junwei Shan
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| | - Xuyang Zhao
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| | - You Duan
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yuhang Liu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| | | | - Yingyin Cheng
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Wanting Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Nan Wu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xiao-Qin Xia
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| |
Collapse
|
80
|
Relationships between the Gut Microbiota of Juvenile Black Sea Bream ( Acanthopagrus schlegelii) and Associated Environment Compartments in Different Habitats. Microorganisms 2021; 9:microorganisms9122557. [PMID: 34946158 PMCID: PMC8705249 DOI: 10.3390/microorganisms9122557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 11/17/2022] Open
Abstract
The fish-gut microbiota play a key role in the physiology, development, and fitness of its host. An understanding of fish-gut microbial communities and the factors influencing community composition is crucial for improving fish performance. In this study, we compared the gut microbiota of juvenile black sea bream Acanthopagrus schlegelii among habitats: (1) wild, (2) offshore cage-culture, and (3) pond-culture. We also explored the relationships between the gut microbiota and host-associated environmental factors. Gut samples and associated environmental compartments were investigated using 16S rRNA gene sequencing. Our results revealed significant habitat-specific differences among the gut microbiota of juvenile A. schlegelii. Wild populations of juvenile A. schlegelii had more diverse gut microbiota than populations cultured in pond habitats due to their omnivorous feeding habits and the corresponding abundance of natural food resources. Significant variations in the composition, core taxa, and diversity of the microbiota were also found between the gut and the environmental compartments. However, no significant differences were observed among the microbiota of the environmental compartments in the relatively isolated pond habitat. Source tracking analysis recovered connections between the fish-gut microbiota and the diet, water and sediment environmental compartments. This connection was especially strong between the microbiota of the fish gut and that of the diet in the pond habitat: the diet microbiota accounted for 33.48 ± 0.21% of the gut microbiota. Results suggested that all A. schlegelii shared a core gut microbiota, regardless of differences in diet and habitat. However, environmental factors associated with both diet and habitat contributed to the significant differences between the gut microbiota of fish living in different habitats. To the authors' knowledge, this study presents the first comparison of gut microbiota among juvenile A. schlegelii with different diets and habitats. These findings enrich our understanding of the gut microbiota of A. schlegelii and help to clarify the interaction between gut microbiota and environmental factors. Our results may also help to guide and improve fish ecological fitness via the regulation of gut microbiota, thereby increasing the efficacy of stock enhancement programs for this species.
Collapse
|
81
|
Holen E, Austgulen MH, Espe M. RNA form baker's yeast cultured with and without lipopolysaccharide (LPS) modulates gene transcription in an intestinal epithelial cell model, RTgutGC from rainbow trout (Oncorhynchus mykiss). FISH & SHELLFISH IMMUNOLOGY 2021; 119:397-408. [PMID: 34687880 DOI: 10.1016/j.fsi.2021.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 06/13/2023]
Abstract
The objective of this study was to evaluate if the intestinal RTgutGC cell line could be suitable for research on dietary ingredients and their function as modulators of inflammation during lipopolysaccharide (LPS) induced stress. The RTgutGC cells cultured together with RNA from baker's yeast, reached confluency after 72 h. The cells were grown in either compete L-15 (CM) or nutrient deprived L-15 (DM). Then, the RTgutGC cells were exposed to LPS or RNA from baker's yeast, either alone, or in combination, in CM or DM. All cultures were harvested following LPS challenge for 48 h and 72 h. LPS induced transcription of Interleukin 1β (IL-1β), Interleukin -8 (IL-8), Toll like receptor 3 (TLR3), interferon regulating factor 3 (irf3), Nuclear factor ĸβ (NFĸβ), one of the multidrug transporters, ABCC2, and glutamine synthase 1 (GLS01) in RTgutGC cells at one or both sampling points (48 h and/or 72 h post LPS challenge). RNA from baker's yeast in culture alone, (cultured 120 h and 144 h with RTgutGC cells and harvested at the respective LPS sampling points) induced transcription of INF1, TNFα and ticam/trif, not induced by LPS. In addition, RNA from baker's yeast affected IL-1β, TLR3, irf3 and NFĸβ, comparable to the responses triggered by LPS. RNA from baker's yeast alone did not affect ABCC2 or GLS01 transcriptions in this set up. So, LPS and RNA from baker's yeast affects distinct but also common gene transcripts in this intestinal cell line. Culturing RTgutGC cells in DM, adding a combination of LPS and RNA from baker's yeast, reduced IL-1β transcription compared to cells grown in CM, 48 h and 72 h post LPS challenge. Also, in RTgutGC cells, grown in DM, the LPS induced transcription of ABCC2 declined, measured 48 h post LPS challenge. Possibly indicating that optimal transcription of IL-1β and ABBC2 in RTgutGC cells, cultured over time, requires access of adequate nutrients under stressful condition. RNA from baker's yeast induced INF1 transcription in the RTgutGC cells, regardless if the medium was complete or deprived of nutrients. However, culturing RTgutGC cells in DM enriched with RNA from baker's yeast for a longer period of time (120 h, 144 h), seemed beneficial for INF1 transcription.
Collapse
Affiliation(s)
- Elisabeth Holen
- Institute of Marine Research, Postbox 1870 Nordnes, 5817, Bergen, Norway.
| | | | - Marit Espe
- Institute of Marine Research, Postbox 1870 Nordnes, 5817, Bergen, Norway
| |
Collapse
|
82
|
Wang C, Su B, Lu S, Han S, Jiang H, Li Z, Liu Y, Liu H, Yang Y. Effects of Glutathione on Growth, Intestinal Antioxidant Capacity, Histology, Gene Expression, and Microbiota of Juvenile Triploid Oncorhynchus mykiss. Front Physiol 2021; 12:784852. [PMID: 34925074 PMCID: PMC8680104 DOI: 10.3389/fphys.2021.784852] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 10/25/2021] [Indexed: 01/27/2023] Open
Abstract
This study aimed to demonstrate the effects of dietary glutathione (GSH) on growth, intestinal antioxidant capacity, histology, gene expression, and microbiota in juvenile triploid rainbow trout (Oncorhynchus mykiss). Different diets (G0-control, G100, G200, G400, and G800) containing graded levels of GSH (0, 100, 200, 400, and 800mgkg-1) were fed to triplicate groups of 30 fish (initial mean weight 4.12±0.04g) for 56days. G400 had significantly improved weight gain and feed conversion rate. Based on the broken-line regression analysis, the optimum dietary GSH level was 447.06mgkg-1. Catalase and superoxide dismutase activities were significantly higher in G200-G800. G200 had significantly lower malondialdehyde content. The height of the intestinal muscular layer in G400 was significantly higher than that of the control group. Intestinal PepT1 and SLC1A5 gene expression was significantly increased, and the highest was observed in G400. TNF-α, IL-1β, IL-2, and IL-8 expression were significantly decreased than that of G0. Next-generation sequencing of the 16S rDNA showed a significant difference in alpha diversity whereas no differences in beta diversity. On the genus level, LefSe analysis of indicator OTUs showed Ilumatobacter, Peptoniphilus, Limnobacter, Mizugakiibacter, Chelatococcus, Stella, Filimonas, and Streptosporangium were associated with the treatment diet, whereas Arcobacter, Ferrovibrio, Buchnera, Chitinophaga, Stenotrophobacter, Solimonadaceae, Polycyclovorans, Rhodococcus, Ramlibacter, and Azohydromonas were associated with the control diet. In summary, feeding juvenile triploid O. mykiss 200-800mgkg-1 GSH improved growth and intestinal health.
Collapse
Affiliation(s)
- Chang’an Wang
- Key Open Laboratory of Cold Water Fish Germplasm Resources and Breeding of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
- College of Animal Science, Northeast Agricultural University, Harbin, China
| | - Baohui Su
- College of Animal Science, Northeast Agricultural University, Harbin, China
| | - Shaoxia Lu
- Key Open Laboratory of Cold Water Fish Germplasm Resources and Breeding of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| | - Shicheng Han
- Key Open Laboratory of Cold Water Fish Germplasm Resources and Breeding of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| | - Haibo Jiang
- College of Animal Science, Guizhou University, Guiyang, China
| | - Zhuang Li
- Fishery Technical Extension Station of Jilin Province, Changchun, China
| | - Yang Liu
- Key Open Laboratory of Cold Water Fish Germplasm Resources and Breeding of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| | - Hongbai Liu
- Key Open Laboratory of Cold Water Fish Germplasm Resources and Breeding of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| | - Yuhong Yang
- College of Animal Science, Northeast Agricultural University, Harbin, China
| |
Collapse
|
83
|
Gao C, Cai X, Cao M, Fu Q, Yang N, Liu X, Wang B, Li C. Comparative analysis of the miRNA-mRNA regulation networks in turbot (Scophthalmus maximus L.) following Vibrio anguillarum infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 124:104164. [PMID: 34129850 DOI: 10.1016/j.dci.2021.104164] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 06/06/2021] [Accepted: 06/06/2021] [Indexed: 06/12/2023]
Abstract
MicroRNAs could not only regulate posttranscriptional silencing of target genes in eukaryotic organisms, but also have positive effect on their target genes as well. These microRNAs have been reported to be involved in mucosal immune responses to pathogen infection in teleost. Therefore, we constructed the immune-related miRNA-mRNA networks in turbot intestine following Vibrio anguillarum infection. In our results, 1550 differentially expressed (DE) genes and 167 DE miRNAs were identified. 113 DE miRNAs targeting 89 DE mRNAs related to immune response were used to construct miRNA-mRNA interaction networks. Functional analysis showed that target genes were associated with synthesis and degradation of ketone bodies, mucin type O-Glycan biosynthesis, homologous recombination, biotin metabolism, and intestinal immune network for IgA production that were equivalent to the function of IgT and IgM in fish intestine. Finally, 10 DE miRNAs and 7 DE mRNAs were selected for validating the accuracy of high-throughput sequencing results by qRT-PCR. The results of this study will provide valuable information for the elucidation of the regulation mechanisms of miRNA-mRNA interactions involved in disease resistance in teleost mucosal immune system.
Collapse
Affiliation(s)
- Chengbin Gao
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China; Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, 90 South St, Murdoch, Perth, 6150, Australia
| | - Xin Cai
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China; Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, 90 South St, Murdoch, Perth, 6150, Australia
| | - Min Cao
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Qiang Fu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Ning Yang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xiaoli Liu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Beibei Wang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Chao Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
84
|
Yamamoto FY, Chen K, Castillo S, de Cruz CR, Tomasso JR, Gatlin DM. Growth and physiological effects of replacing fishmeal with dry-extruded seafood processing waste blended with plant protein feedstuffs in diets for red drum (Sciaenops ocellatus L.). Anim Feed Sci Technol 2021. [DOI: 10.1016/j.anifeedsci.2021.115046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
85
|
Ponce M, Zuasti E, Reales E, Anguís V, Fernández-Díaz C. Evaluation of an oral DNA nanovaccine against photobacteriosis in Solea senegalensis. FISH & SHELLFISH IMMUNOLOGY 2021; 117:157-168. [PMID: 34358703 DOI: 10.1016/j.fsi.2021.07.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/19/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
Infectious diseases are one of the main causes of social and economical losses in world aquaculture. Senegalese sole (Solea senegalensis) is an important species for aquaculture in southern Europe, whose production is affected by the appearance of bacterial diseases such as photobacteriosis, a septicemia caused by Photobacterium damselae subsp. piscicida (Phdp). The aim of this study was to obtain an oral DNA nanovaccine and to evaluate its efficacy against Phdp in S. senegalensis juveniles. For this purpose, the amplified product corresponding to the protein inosine-5'-monophophate dehydrogenase (IMPDH) from Phdp, was cloned into the expression vector pcDNA™6.2/C-EmGFP-GW obtaining the DNA vaccine named as pPDPimpdh. The correct transcription and protein expression was verified at 48 h post tansfection in HEK293 cells. Chitosan nanoparticles (CS-TPP NPs) were prepared by ionotropic gelation and their features were appropriate for use as oral delivery system. Therefore, pPDPimpdh was protected with chitosan CS-TPP NPs throughout complex coacervation method giving as a result a DNA nanovaccine referred as CS-TPP+pPDPimpdh NPs. Sole juveniles were vaccinated orally with CS-TPP NPs, pPDPimpdh and CS-TPP+pPDPimpdh NPs followed by a challenge with Phdp at 30 days post vaccination (dpv). The relative percentage survival (RPS) for pPDPimpdh vaccinated groups was 6.25%, probably due to its degradation in the digestive tract. RPS value obtained for CS-TPP NPs and CS-TPP+pPDPimpdh NPs was 40% and antibodies were observed in both cases. However, a delay in mortality was observed in sole juveniles vaccinated orally with CS-TPP+pPDPimpdh NPs. In fact, an upregulation of tf, mhcII, cd8a and igm in the posterior gut and c3, hamp1, tf and cd4 in spleen was observed in juveniles vaccinated with CS-TPP+pPDPimpdh NPs. After challenge, a modulation of cd8a and cd4 expression levels in the posterior gut and c3, tf, lyg, cd4, igm and igt expression levels in spleen was observed. Moreover, the concentration of lysozyme in skin mucus significantly increased in fish vaccinated orally with CS-TPP+pPDPimpdh NPs at 11 dpc. These data indicate that oral vaccination with CS-TPP+pPDPimpdh NPs could be acting through the non-specific immune responses as well as the specific humoral and cell mediated immunity and provide the first step toward a development of an oral DNA nanovaccine against Phdp in sole.
Collapse
Affiliation(s)
- Marian Ponce
- IFAPA Centro El Toruño. Camino Tiro Pichón s/n, 11500 El Puerto de Santa María, Cádiz, Spain.
| | - Eugenia Zuasti
- IFAPA Centro El Toruño. Camino Tiro Pichón s/n, 11500 El Puerto de Santa María, Cádiz, Spain
| | - Elena Reales
- Department of Organic Chemistry, School of Sciences, University of Cadiz, and Biomedical Research and Innovation Institute of Cadiz (INiBICA), Cádiz, Spain
| | - Victoria Anguís
- IFAPA Centro El Toruño. Camino Tiro Pichón s/n, 11500 El Puerto de Santa María, Cádiz, Spain
| | - Catalina Fernández-Díaz
- IFAPA Centro El Toruño. Camino Tiro Pichón s/n, 11500 El Puerto de Santa María, Cádiz, Spain.
| |
Collapse
|
86
|
Li W, Liu B, Liu Z, Yin Y, Xu G, Han M, Xie L. Effect of dietary histamine on intestinal morphology, inflammatory status, and gut microbiota in yellow catfish (Pelteobagrus fulvidraco). FISH & SHELLFISH IMMUNOLOGY 2021; 117:95-103. [PMID: 34284110 DOI: 10.1016/j.fsi.2021.07.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 06/27/2021] [Accepted: 07/15/2021] [Indexed: 06/13/2023]
Abstract
The toxic effect of dietary histamine on the intestine of aquatic animals has been demonstrated, but reports on the morphological observation of the intestine are limited. Thus, a feeding trial was conducted to determine the effect of dietary histamine on intestinal histology, inflammatory status and gut microbiota of yellow catfish (Pelteobagrus fulvidraco). Here, we showed that histamine-rich diets caused severe abnormality and damage to the intestine, including a decreased villi length and reduced villi number. In addition, the quantitative real-time PCR (qRT-PCR) demonstrates that histamine-rich diets increased the expression of pro-inflammatory genes (Tnfα, Il1β, and Il8) and decreased the expression of an anti-inflammatory gene (Il10). Furthermore, the alpha-diversity (observed OTUs, Chao1, Shannon and Simpson) and beta-diversity (non-metric multidimensional scaling, with the stress value of 0.17) demonstrated that histamine-rich diets caused alterations in gut microbiota composition and diversity. Co-occurrence networks analysis of the gut microbiota community showed that the histamine influenced the number and the relationship between bacteria species in the phyla of Acidobacteria, Proteobacteria, and Bacteroidetes, which caused the instability of the intestinal microbiota community. Additionally, random forest selected six bacterial species as the biomarkers to separate the three groups, which are Lachnospiraceae Blautia (V520), Bacteroidales S24.7 (V235), Chloroplast Streptophyta (V368), Actinomycetales Streptomycetaceae (V152), Clostridia Clostridiales (V491) and Paraprevotellaceae Prevotella (V245). Finally, Pearson correlation analysis demonstrated that V520, V235, and V491 were negatively correlated with pro-inflammatory factors (Tnfα, Il1β, and Il8) and positively correlated with an anti-inflammatory factor (Il10), which indicated that V520, V235, and V491 might be anti-inflammatory. These findings improved our understanding of the toxic effect of dietary histamine to intestinal histological damage, the induction of mucosa inflammatory status, and the alteration of gut microbiota.
Collapse
Affiliation(s)
- Wei Li
- Innovative Institute of Animal Healthy Breeding, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - Bingdong Liu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510070, China
| | - Zhihong Liu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510070, China
| | - Yulong Yin
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510070, China; China Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| | - Guohuan Xu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510070, China
| | - Mulan Han
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510070, China
| | - Liwei Xie
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510070, China; Zhujiang Hospital, Southern Medical University, Guangdong, 510282, China; College of Public Health, Xinxiang Medical University, Xinxiang, China.
| |
Collapse
|
87
|
Diwan AD, Harke SN, Gopalkrishna, Panche AN. Aquaculture industry prospective from gut microbiome of fish and shellfish: An overview. J Anim Physiol Anim Nutr (Berl) 2021; 106:441-469. [PMID: 34355428 DOI: 10.1111/jpn.13619] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 07/17/2021] [Accepted: 07/20/2021] [Indexed: 12/17/2022]
Abstract
The microbiome actually deals with micro-organisms that are associated with indigenous body parts and the entire gut system in all animals, including human beings. These microbes are linked with roles involving hereditary traits, defence against diseases and strengthening overall immunity, which determines the health status of an organism. Considerable efforts have been made to find out the microbiome diversity and their taxonomic identification in finfish and shellfish and its importance has been correlated with various physiological functions and activities. In recent past due to the availability of advanced molecular tools, some efforts have also been made on DNA sequencing of these microbes to understand the environmental impact and other stress factors on their genomic structural profile. There are reports on the use of next-generation sequencing (NGS) technology, including amplicon and shot-gun approaches, and associated bioinformatics tools to count and classify commensal microbiome at the species level. The microbiome present in the whole body, particularly in the gut systems of finfish and shellfish, not only contributes to digestion but also has an impact on nutrition, growth, reproduction, immune system and vulnerability of the host fish to diseases. Therefore, the study of such microbial communities is highly relevant for the development of new and innovative bio-products which will be a vital source to build bio and pharmaceutical industries, including aquaculture. In recent years, attempts have been made to discover the chemical ingredients present in these microbes in the form of biomolecules/bioactive compounds with their functions and usefulness for various health benefits, particularly for the treatment of different types of disorders in animals. Therefore, it has been speculated that microbiomes hold great promise not only as a cure for ailments but also as a preventive measure for the number of infectious diseases. This kind of exploration of new breeds of microbes with their miraculous ingredients will definitely help to accelerate the development of the drugs, pharmaceutical and other biological related industries. Probiotic research and bioinformatics skills will further escalate these opportunities in the sector. In the present review, efforts have been made to collect comprehensive information on the finfish and shellfish microbiome, their diversity and functional properties, relationship with diseases, health status, data on species-specific metagenomics, probiotic research and bioinformatics skills. Further, emphasis has also been made to carry out microbiome research on priority basis not only to keep healthy environment of the fish farming sector but also for the sustainable growth of biological related industries, including aquaculture.
Collapse
Affiliation(s)
- Arvind D Diwan
- Mahatma Gandhi Mission's (MGM) Institute of Biosciences and Technology, MGM University, Aurangabad, Maharashtra, India
| | - Sanjay N Harke
- Mahatma Gandhi Mission's (MGM) Institute of Biosciences and Technology, MGM University, Aurangabad, Maharashtra, India
| | - Gopalkrishna
- Central Institute of Fisheries Education (CIFE, Deemed University), ICAR, Mumbai, India
| | - Archana N Panche
- Mahatma Gandhi Mission's (MGM) Institute of Biosciences and Technology, MGM University, Aurangabad, Maharashtra, India
| |
Collapse
|
88
|
Stosik M, Tokarz-Deptuła B, Deptuła W. Immunological memory in teleost fish. FISH & SHELLFISH IMMUNOLOGY 2021; 115:95-103. [PMID: 34058353 DOI: 10.1016/j.fsi.2021.05.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 05/23/2021] [Accepted: 05/26/2021] [Indexed: 06/12/2023]
Abstract
Immunological memory can be regarded as the key aspect of adaptive immunity, i.e. a specific response to first contact with an antigen, which in mammals is determined by the properties of T, B and NK cells. Re-exposure to the same antigen results in a more rapid response of the activated specific cells, which have a unique property that is the immunological memory acquired upon first contact with the antigen. Such a state of immune activity is also to be understood as related to "altered behavior of the immune system" due to genetic alterations, presumably maintained independently of the antigen. It also indicates a possible alternative mechanism of maintaining the immune state at a low level of the immune response, "directed" by an antigen or dependent on an antigen, associated with repeated exposure to the same antigen from time to time, as well as the concept of innate immune memory, associated with epigenetic reprogramming of myeloid cells, i.e. macrophages and NK cells. Studies on Teleostei have provided evidence for the presence of immunological memory determined by T and B cells and a secondary response stronger than the primary response. Research has also demonstrated that in these animals macrophages and NK-like cells (similar to mammalian NK cells) are able to respond when re-exposed to the same antigen. Regardless of previous reports on immunological memory in teleost fish, many reactions and mechanisms related to this ability require further investigation. The very nature of immunological memory and the activity of cells involved in this process, in particular macrophages and NK-like cells, need to be explained. This paper presents problems associated with adaptive and innate immune memory in teleost fish and characteristics of cells associated with this ability.
Collapse
Affiliation(s)
- Michał Stosik
- Faculty of Biological Sciences, Institute of Biological Sciences, University of Zielona Gora, Poland
| | | | - Wiesław Deptuła
- Faculty of Biological and Veterinary Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Poland
| |
Collapse
|
89
|
Zhu P, Wong MKS, Lin X, Chan TF, Wong CKC, Lai KP, Tse WKF. Changes of the intestinal microbiota along the gut of Japanese Eel (Anguilla japonica). Lett Appl Microbiol 2021; 73:529-541. [PMID: 34265084 DOI: 10.1111/lam.13539] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/21/2021] [Accepted: 07/13/2021] [Indexed: 10/20/2022]
Abstract
Fish intestine contains different types of microbiomes, and bacteria are the dominant microbiota in fishes. Studies have identified various core gut bacteria in fishes. However, little is known about the composition and their relative functions of gut microbial community along the intestine. To explore this, the current study investigated the microbial community distribution along the gut in Anguilla japonica. By 16S rRNA gene sequencing, we profiled the gut microbiota in eel along the three regions (anterior intestine (AI), the middle intestine (MI) and the posterior intestine (PI)). Results suggested that the three regions did not have significant differences on the observed species and diversities. The cluster tree analysis showed that the bacteria community in MI was closer to PI than the AI. The dominant bacteria in AI were the Proteobacteria, in which the majority was graduated replaced by Bacteroidetes along the gut to PI region. Through PICRUSt analysis, shifts in the bacterial community along the gut were found to affect the genetic information processing pathways. Higher levels of translation and transcriptional pathway activities were found in MI and PI than in AI. The dominant bacterial species were different among the regions and contributed to various biological functions along the gut.
Collapse
Affiliation(s)
- P Zhu
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Beibu Gulf University, Qinzhou, Guangxi, PR China
| | - M K-S Wong
- Laboratory of Physiology, Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba, Japan
| | - X Lin
- School of Life Sciences, Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - T F Chan
- School of Life Sciences, Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - C K C Wong
- Department of Biology, Croucher Institute for Environmental Sciences, Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guanzhou), The Hong Kong Baptist University, Kowloon, Hong Kong
| | - K P Lai
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Beibu Gulf University, Qinzhou, Guangxi, PR China.,Department of Biology, Croucher Institute for Environmental Sciences, Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guanzhou), The Hong Kong Baptist University, Kowloon, Hong Kong.,Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, PR China
| | - W K F Tse
- Center for Promotion of International Education and Research, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| |
Collapse
|
90
|
Lee SH, Beck BR, Hwang SH, Song SK. Feeding olive flounder (Paralichthys olivaceus) with Lactococcus lactis BFE920 expressing the fusion antigen of Vibrio OmpK and FlaB provides protection against multiple Vibrio pathogens: A universal vaccine effect. FISH & SHELLFISH IMMUNOLOGY 2021; 114:253-262. [PMID: 33979691 DOI: 10.1016/j.fsi.2021.05.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 05/03/2021] [Accepted: 05/05/2021] [Indexed: 06/12/2023]
Abstract
Vibriosis, an illness caused by the Vibrio bacteria species, results in significant economic loss in olive flounder farms. Here we present a novel anti-Vibrio feed vaccine protecting multiple strains of Vibrio pathogens, a universal vaccine effect. The vaccine was generated by engineering Lactococcus lactis BFE920 to express the fusion antigens of Vibrio outer membrane protein K (OmpK) and flagellin B subunit (FlaB). These antigen genes are highly conserved among Vibrio species. Olive flounder (7.1 ± 0.8 g and 140 ± 10 g) were fed the vaccine adsorbed to a regular feed (1 × 107 CFU/g) for one week with a 1-week interval, repeating three times (a triple boost). The vaccinated fish increased the significant levels of antigen-specific antibodies, T cell numbers (CD4-1, CD4-2, and CD8α), cytokine production (T-bet and IFN-γ), and innate immune responses (TLR5M, IL-1β, and IL-12p40). Also, the survival rates of adult and juvenile fish fed the vaccine were significantly elevated when challenged with V. anguillarum, V. alginolyticus, and V. harveyi. In addition, weight gain rate and feed conversion ratio were improved in vaccinated fish. The feed vaccine protected multiple Vibrio pathogens, a universal vaccine effect, by activating innate and adaptive immune responses. This oral vaccine may be developed as an anti-Vibrio vaccine to protect against a broad spectrum of Vibrio pathogens.
Collapse
Affiliation(s)
- Soon Ho Lee
- School of Life Science, Handong University, 558 Handong-ro, Pohang-city, Gyeongbuk, 37554, South Korea
| | - Bo Ram Beck
- School of Life Science, Handong University, 558 Handong-ro, Pohang-city, Gyeongbuk, 37554, South Korea
| | - Seok-Hong Hwang
- School of Life Science, Handong University, 558 Handong-ro, Pohang-city, Gyeongbuk, 37554, South Korea
| | - Seong Kyu Song
- School of Life Science, Handong University, 558 Handong-ro, Pohang-city, Gyeongbuk, 37554, South Korea.
| |
Collapse
|
91
|
Wu D, Fan Z, Li J, Zhang Y, Wang C, Xu Q, Wang L. Evaluation of Alpha-Ketoglutarate Supplementation on the Improvement of Intestinal Antioxidant Capacity and Immune Response in Songpu Mirror Carp ( Cyprinus carpio) After Infection With Aeromonas hydrophila. Front Immunol 2021; 12:690234. [PMID: 34220849 PMCID: PMC8250152 DOI: 10.3389/fimmu.2021.690234] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 06/04/2021] [Indexed: 11/24/2022] Open
Abstract
As an intermediate substance of the tricarboxylic acid cycle and a precursor substance of glutamic acid synthesis, the effect of alpha-ketoglutarate on growth and protein synthesis has been extensively studied. However, its prevention and treatment of pathogenic bacteria and its mechanism have not yet been noticed. To evaluate the effects of alpha-ketoglutarate on intestinal antioxidant capacity and immune response of Songpu mirror carp, a total of 360 fish with an average initial weight of 6.54 ± 0.08 g were fed diets containing alpha-ketoglutarate with 1% for 8 weeks. At the end of the feeding trial, the fish were challenged with Aeromonas hydrophila for 2 weeks. The results indicated that alpha-ketoglutarate supplementation significantly increased the survival rate of carp after infection with Aeromonas hydrophila (P < 0.05), and the contents of immune digestion enzymes including lysozyme, alkaline phosphatase and the concentration of complement C4 were markedly enhanced after alpha-ketoglutarate supplementation (P < 0.05). Also, appropriate alpha-ketoglutarate increased the activities of total antioxidant capacity and catalase and prevented the up-regulation in the mRNA expression levels of pro-inflammatory cytokines including tumor necrosis factor-α, interleukin-1β, interleukin-6, and interleukin-8 (P < 0.05). Furthermore, the mRNA expression levels of toll-like receptor 4 (TLR4), and nuclear factor kappa-B (NF-κB) were strikingly increased after infection with Aeromonas hydrophila (P < 0.05), while the TLR4 was strikingly decreased with alpha-ketoglutarate supplementation (P < 0.05). Moreover, the mRNA expression levels of tight junctions including claudin-1, claudin-3, claudin-7, claudin-11 and myosin light chain kinases (MLCK) were upregulated after alpha-ketoglutarate supplementation (P < 0.05). In summary, the appropriate alpha-ketoglutarate supplementation could increase survival rate, strengthen the intestinal enzyme immunosuppressive activities, antioxidant capacities and alleviate the intestinal inflammation, thereby promoting the intestinal immune responses and barrier functions of Songpu mirror carp via activating TLR4/MyD88/NF-κB and MLCK signaling pathways after infection with Aeromonas hydrophila.
Collapse
Affiliation(s)
- Di Wu
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| | - Ze Fan
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| | - Jinnan Li
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| | - Yuanyuan Zhang
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| | - Chang'an Wang
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| | - Qiyou Xu
- School of Life Science, Huzhou University, Huzhou, China
| | - Liansheng Wang
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| |
Collapse
|
92
|
Attaya A, Veenstra K, Welsh MD, Ahmed M, Torabi-Pour N, Saffie-Siebert S, Yoon S, Secombes CJ. In vitro evaluation of novel (nanoparticle) oral delivery systems allow selection of gut immunomodulatory formulations. FISH & SHELLFISH IMMUNOLOGY 2021; 113:125-138. [PMID: 33746060 DOI: 10.1016/j.fsi.2021.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 03/10/2021] [Accepted: 03/12/2021] [Indexed: 06/12/2023]
Abstract
Oral delivery is the most convenient way to vaccinate cultured fish, however it is still problematic, primarily due to a lack of a commercially valid vaccine vehicle to protect the antigen against gastric degradation and ensure its uptake from the intestine. With the goal of advancing the potential to vaccinate orally, this study evaluates a novel silicon nanoparticle-based vehicle (VacSaf carrier). Aeromonas salmonicida antigens were formulated with the VacSaf carrier using different preparation methods to generate dry powder and liquid formulations. Twelve formulations were first subjected to an in vitro evaluation where the A. salmonicida bacterin conjugated to VacSaf carriers were found superior at inducing pro-inflammatory cytokine expression in primary leucocyte cultures and the macrophage/monocyte cell line RTS-11 compared with A. salmonicida bacterin alone. This was especially apparent after exposure to acid conditions to mimic stomach processing. One formulation (FD1) was taken forward to oral delivery using two doses and two administration schedules (5 days vs 10 days, the latter 5 days on, 5 days off, 5 days on), and the transcript changes of immune genes in the intestine (pyloric caeca, midgut and hindgut) and spleen were evaluated by qPCR and serum IgM was measured by ELISA. The VacSaf carrier alone was shown to be safe for use in vivo, in that no side-effects were seen, but it did induce expression of some cytokines, and may have value as an oral adjuvant candidate. The FD1 bacterin formulation was effective at inducing a range of cytokines associated with innate and adaptive immunity, mainly in the pyloric caeca, compared to A. salmonicida bacterin alone (which had almost no effect), and confirms the immune competence of this gut region following appropriate oral vaccination. These results reveal that in vitro screening of formulations for oral delivery has value and can be used to assess the most promising formulations to test further.
Collapse
Affiliation(s)
- Ahmed Attaya
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, Scotland, UK.
| | - Kimberly Veenstra
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, Scotland, UK
| | - Michael D Welsh
- Sisaf Ltd, Unit 15A the Innovation Centre, Catalyst Inc., Queen's Island, Belfast BT3 9DT, Northern Ireland, UK
| | - Mukhtar Ahmed
- Sisaf Ltd, Unit 15A the Innovation Centre, Catalyst Inc., Queen's Island, Belfast BT3 9DT, Northern Ireland, UK
| | - Nessim Torabi-Pour
- Sisaf Ltd, Unit 15A the Innovation Centre, Catalyst Inc., Queen's Island, Belfast BT3 9DT, Northern Ireland, UK
| | - Suzanne Saffie-Siebert
- Sisaf Ltd, Unit 15A the Innovation Centre, Catalyst Inc., Queen's Island, Belfast BT3 9DT, Northern Ireland, UK
| | - Sohye Yoon
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, Scotland, UK.
| | - Christopher J Secombes
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, Scotland, UK.
| |
Collapse
|
93
|
Effects of underwater and semi-aquatic environments on gut tissue and microbiota of the mudskipper Boleophthalmus pectinirostris. J Comp Physiol B 2021; 191:741-753. [PMID: 34057562 DOI: 10.1007/s00360-021-01380-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 05/04/2021] [Accepted: 05/16/2021] [Indexed: 01/16/2023]
Abstract
In both underwater and semi-aquatic environments, the gut microbiota is of particular physiological importance for amphibious animals, given that the gut tract is among those organs in direct communication with the external environment. In this study, we examined the effects of these contrasting environments on the dominant bacteria in the guts of the amphibious mudskipper Boleophthalmus pectinirostris. Compared with the guts of normal mudskippers, in which the dominant bacteria were identified as Vibrio and Faecalibacterium, we found that Acinetobacter, Shigella, and Bacillus predominated in their guts after exposure to the semi-aquatic environment, whereas Escherichia, Bacteroides, and Bacillus were more prevalent in the guts in the underwater environment. The total number of cultured gut bacteria decreased significantly in the semi-aquatic environment. In semi-aquatic mudskippers, we also detected reductions and increases in the length and width of gut villi, respectively, whereas the width of gut villi declined and the number of goblet cells increased significantly in mudskippers maintained underwater. The mRNA expression of multiple gut transporters for glucose, long-chain fatty acids, and amino acids was found to increase markedly in both underwater and semi-aquatic environments, with the expression of most transporters being significantly higher in those mudskippers exposed to an underwater environment. Furthermore, we detected significant increases in the mRNA expression of pro-inflammatory cytokine transcripts in the guts of both underwater and semi-aquatic mudskippers on days 2, 4, and 6 of exposure, whereas the expression of IL-10 and TGFβ mRNA was more pronounced on days 4 and 8, respectively. Comparatively, we found that expression levels of cytokines in the guts of underwater mudskipper were substantially higher than those in the guts of semi-aquatic mudskippers. Collectively, our findings revealed notable differences in the gut microbiota and energy metabolism requirements of mudskippers exposed to underwater and semi-aquatic conditions, thereby providing a theoretical basis explaining the maintenance of a homeostatic state in mudskippers that constantly transition between these contrasting amphibious habitats.
Collapse
|
94
|
Oral Probiotic Vaccine Expressing Koi Herpesvirus (KHV) ORF81 Protein Delivered by Chitosan-Alginate Capsules Is a Promising Strategy for Mass Oral Vaccination of Carps against KHV Infection. J Virol 2021; 95:JVI.00415-21. [PMID: 33827944 DOI: 10.1128/jvi.00415-21] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 03/26/2021] [Indexed: 01/21/2023] Open
Abstract
Koi herpesvirus (KHV) is highly contagious and lethal to cyprinid fish, causing significant economic losses to the carp aquaculture industry, particularly to koi carp breeders. Vaccines delivered through intramuscular needle injection or gene gun are not suitable for mass vaccination of carp. So, the development of cost-effective oral vaccines that are easily applicable at a farm level is highly desirable. In this study, we utilized chitosan-alginate capsules as an oral delivery system for a live probiotic (Lactobacillus rhamnosus) vaccine, pYG-KHV-ORF81/LR CIQ249, expressing KHV ORF81 protein. The tolerance of the encapsulated recombinant Lactobacillus to various digestive environments and the ability of the probiotic strain to colonize the intestine of carp was tested. The immunogenicity and the protective efficacy of the encapsulated probiotic vaccine was evaluated by determining IgM levels, lymphocyte proliferation, expression of immune-related genes, and viral challenge to vaccinated fish. It was clear that the chitosan-alginate capsules protected the probiotic vaccine effectively against extreme digestive environments, and a significant level (P < 0.01) of antigen-specific IgM with KHV-neutralizing activity was detected, which provided a protection rate of ca. 85% for koi carp against KHV challenge. The strategy of using chitosan-alginate capsules to deliver probiotic vaccines is easily applicable for mass oral vaccination of fish.IMPORTANCE An oral probiotic vaccine, pYG-KHV-ORF81/LR CIQ249, encapsulated by chitosan-alginate capsules as an oral delivery system was developed for koi carp against koi herpesvirus (KHV) infection. This encapsulated probiotic vaccine can be protected from various digestive environments and maintain effectively high viability, showing a good tolerance to digestive environments. This encapsulated probiotic vaccine has a good immunogenicity in koi carp via oral vaccination, and a significant level of antigen-specific IgM was effectively induced after oral vaccination, displaying effective KHV-neutralizing activity. This encapsulated probiotic vaccine can provide effective protection for koi carp against KHV challenge, which is handling-stress free for the fish, cost effective, and suitable for the mass oral vaccination of koi carp at a farm level, suggesting a promising vaccine strategy for fish.
Collapse
|
95
|
Salomón R, Reyes-López FE, Tort L, Firmino JP, Sarasquete C, Ortiz-Delgado JB, Quintela JC, Pinilla-Rosas JM, Vallejos-Vidal E, Gisbert E. Medicinal Plant Leaf Extract From Sage and Lemon Verbena Promotes Intestinal Immunity and Barrier Function in Gilthead Seabream ( Sparus aurata). Front Immunol 2021; 12:670279. [PMID: 34054843 PMCID: PMC8160519 DOI: 10.3389/fimmu.2021.670279] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 04/26/2021] [Indexed: 12/12/2022] Open
Abstract
The inclusion of a medicinal plant leaf extract (MPLE) from sage (Salvia officinalis) and lemon verbena (Lippia citriodora), rich in verbascoside and triterpenic compounds like ursolic acid, was evaluated in gilthead seabream (Sparus aurata) fed a low fishmeal-based diet (48% crude protein, 17% crude fat, 21.7 MJ kg-1, 7% fishmeal, 15% fish oil) for 92 days. In particular, the study focused on the effect of these phytogenic compounds on the gut condition by analyzing the transcriptomic profiling (microarray analysis) and histological structure of the intestinal mucosa, as well as the histochemical properties of mucins stored in goblet cells. A total number of 506 differentially expressed genes (285 up- and 221 down-regulated) were found when comparing the transcriptomic profiling of the intestine from fish fed the control and MPLE diets. The gut transcripteractome revealed an expression profile that favored biological mechanisms associated to the 1) immune system, particularly involving T cell activation and differentiation, 2) gut integrity (i.e., adherens and tight junctions) and cellular proliferation, and 3) cellular proteolytic pathways. The histological analysis showed that the MPLE dietary supplementation promoted an increase in the number of intestinal goblet cells and modified the composition of mucins' glycoproteins stored in goblet cells, with an increase in the staining intensity of neutral mucins, as well as in mucins rich in carboxylated and weakly sulfated glycoconjugates, particularly those rich in sialic acid residues. The integration of transcriptomic and histological results showed that the evaluated MPLE from sage and lemon verbena is responsible for the maintenance of intestinal health, supporting gut homeostasis and increasing the integrity of the intestinal epithelium, which suggests that this phytogenic may be considered as a promising sustainable functional additive for aquafeeds.
Collapse
Affiliation(s)
- Ricardo Salomón
- Aquaculture Program, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Centre de Sant Carles de la Ràpita (IRTA-SCR), Sant Carles de la Ràpita, Spain
- PhD Program in Aquaculture, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Felipe E. Reyes-López
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Facultad de Medicina Veterinaria y Agronomía, Universidad de Las Américas, Santiago, Chile
- Consorcio Tecnológico de Sanidad Acuícola, Ictio Biotechnologies S.A., Santiago, Chile
| | - Lluis Tort
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Joana P. Firmino
- Aquaculture Program, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Centre de Sant Carles de la Ràpita (IRTA-SCR), Sant Carles de la Ràpita, Spain
- PhD Program in Aquaculture, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Carmen Sarasquete
- Instituto de Ciencias Marinas de Andalucía (ICMAN-CSIC), Universidad de Cádiz, Cádiz, Spain
| | - Juan B. Ortiz-Delgado
- Instituto de Ciencias Marinas de Andalucía (ICMAN-CSIC), Universidad de Cádiz, Cádiz, Spain
| | | | | | - Eva Vallejos-Vidal
- Centro de Biotecnología Acuícola, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Enric Gisbert
- Aquaculture Program, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Centre de Sant Carles de la Ràpita (IRTA-SCR), Sant Carles de la Ràpita, Spain
| |
Collapse
|
96
|
Xu J, Yang N, Xie T, Yang G, Chang L, Yan D, Li T. Summary and comparison of the perforin in teleosts and mammals: A review. Scand J Immunol 2021; 94:e13047. [PMID: 33914954 DOI: 10.1111/sji.13047] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 04/14/2021] [Accepted: 04/23/2021] [Indexed: 12/18/2022]
Abstract
Perforin, a pore-forming glycoprotein, has been demonstrated to play key roles in clearing virus-infected cells and tumour cells due to its ability of forming 'pores' on the cell membranes. Additionally, perforin is also found to be associated with human diseases such as tumours, virus infections, immune rejection and some autoimmune diseases. Until now, plenty of perforin genes have been identified in vertebrates, especially the mammals and teleost fish. Conversely, vertebrate homologue of perforin gene was not identified in the invertebrates. Although recently there have been several reviews focusing on perforin and granzymes in mammals, no one highlighted the current advances of perforin in the other vertebrates. Here, in addition to mammalian perforin, the structure, evolution, tissue distribution and function of perforin in bony fish are summarized, respectively, which will allow us to gain more insights into the perforin in lower animals and the evolution of this important pore-forming protein across vertebrates.
Collapse
Affiliation(s)
- Jiahui Xu
- School of Agriculture, Ludong University, Yantai, China
| | - Ning Yang
- School of Agriculture, Ludong University, Yantai, China
| | - Ting Xie
- School of Agriculture, Ludong University, Yantai, China
| | - Guiwen Yang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Linrui Chang
- School of Agriculture, Ludong University, Yantai, China
| | - Dongchun Yan
- School of Agriculture, Ludong University, Yantai, China
| | - Ting Li
- School of Agriculture, Ludong University, Yantai, China
| |
Collapse
|
97
|
Mateus AP, Mourad M, Power DM. Skin damage caused by scale loss modifies the intestine of chronically stressed gilthead sea bream (Sparus aurata, L.). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 118:103989. [PMID: 33385418 DOI: 10.1016/j.dci.2020.103989] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 12/22/2020] [Accepted: 12/25/2020] [Indexed: 06/12/2023]
Abstract
The present study was designed to test if the damage caused by scale loss provokes a change in other innate immune barriers such as the intestine and how chronic stress affects this response. Sea bream (Sparus aurata) were kept in tanks at low density (16 kg m-3, LD) or exposed to a chronic high density (45 kg m-3, HD) stress for 4 weeks. Scales were then removed (approximately 50%) from the left flank in the LD and HD fish. Intestine samples (n = 8/group) were examined before and at 12 h, 3 days and 7 days after scale removal. Changes in the morphology of the intestine revealed that chronic stress and scale loss was associated with intestinal inflammation. Specifically, enterocyte height and the width of the lamina propria, submucosa and muscle layer were significantly increased (p < 0.05) 3 days after skin damage in fish under chronic stress (HD) compared to other treatments (LDWgut3d or HDgut0h). This was associated with a significant up-regulation (p < 0.05) in the intestine of gene transcripts for cell proliferation (pcna) and anti-inflammatory cytokine tgfβ1 and down-regulation of gene transcripts for the pro-inflammatory cytokines tnf-α and il1β (p < 0.05) in HD and LD fish 3 days after scale removal compared to the undamaged control (LDgut0h). Furthermore, a significant up-regulation of kit, a marker of mast cells, in the intestine of HDWgut3d and LDWgut3d fish suggests they may mediate the crosstalk between immune barriers. Skin damage induced an increase in cortisol levels in the anterior intestine in HDWgut12 h fish and significant (p < 0.05) down-regulation of mr expression, irrespective of stress. These results suggest glucocorticoid levels and signalling in the intestine of fish are modified by superficial cutaneous wounds and it likely modulates intestine inflammation.
Collapse
Affiliation(s)
- Ana Patrícia Mateus
- Centro de Ciências Do Mar (CCMAR), Comparative Endocrinology and Integrative Biology, Universidade Do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal; Escola Superior de Saúde, Universidade Do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal.
| | - Mona Mourad
- Laboratory of Fish Reproduction and Spawning, Aquaculture Division, National Institute of Oceanography & Fisheries, Kayet-bey, Al-Anfoushy, 21556, Alexandria, Egypt.
| | - Deborah M Power
- Centro de Ciências Do Mar (CCMAR), Comparative Endocrinology and Integrative Biology, Universidade Do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal.
| |
Collapse
|
98
|
Simón R, Docando F, Nuñez-Ortiz N, Tafalla C, Díaz-Rosales P. Mechanisms Used by Probiotics to Confer Pathogen Resistance to Teleost Fish. Front Immunol 2021; 12:653025. [PMID: 33986745 PMCID: PMC8110931 DOI: 10.3389/fimmu.2021.653025] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/29/2021] [Indexed: 11/13/2022] Open
Abstract
Probiotics have been defined as live microorganisms that when administered in adequate amounts confer health benefits to the host. The use of probiotics in aquaculture is an attractive bio-friendly method to decrease the impact of infectious diseases, but is still not an extended practice. Although many studies have investigated the systemic and mucosal immunological effects of probiotics, not all of them have established whether they were actually capable of increasing resistance to different types of pathogens, being this the outmost desired goal. In this sense, in the current paper, we have summarized those experiments in which probiotics were shown to provide increased resistance against bacterial, viral or parasitic pathogens. Additionally, we have reviewed what is known for fish probiotics regarding the mechanisms through which they exert positive effects on pathogen resistance, including direct actions on the pathogen, as well as positive effects on the host.
Collapse
Affiliation(s)
| | | | | | | | - Patricia Díaz-Rosales
- Fish Immunology and Pathology Laboratory, Animal Health Research Centre (CISA-INIA), Madrid, Spain
| |
Collapse
|
99
|
Rahman MM, Rahman MA, Monir MS, Haque ME, Siddique MP, Khasruzzaman AKM, Rahman MT, Islam MA. Isolation and molecular detection of Streptococcus agalactiae from popped eye disease of cultured Tilapia and Vietnamese koi fishes in Bangladesh. J Adv Vet Anim Res 2021; 8:14-23. [PMID: 33860008 PMCID: PMC8043335 DOI: 10.5455/javar.2021.h480] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 12/26/2020] [Accepted: 12/27/2020] [Indexed: 11/28/2022] Open
Abstract
Objective Present research aims to isolate, identify, and determine the virulence of the Streptococcus agalactiae (group B Streptococcus; GBS), isolated from popped eye disease affected Tilapia and Vietnamese Koi (V. Koi) fishes. Materials and Methods A total of 330 fish samples were collected, of which Tilapia (n = 180) and V. Koi (n = 150), were collected from 35 affected ponds of four selected districts of Bangladesh. Isolation of the bacterium was done using different culture media (Nutrient broth, Plate count agar, Tryptic Soy Agar, and Blood agar), and identification by using various biochemical tests (conventional and using API 20 Strep kit) and polymerase chain reaction (PCR) using primers against 16S rRNA gene of S. agalactiae. Antibiotic susceptibility of the bacteria was performed using seven different antibiotics disc (Tetracycline, Oxytetracycline, Chlortetracycline, Streptomycin, Ciprofloxacin, Gentamicin, and Neomycin). Virulence of the isolated S. agalactiae was determined by infecting healthy Tilapia and V. Koi fishes through experimental infection. Results Isolated bacteria were found Gram-positive paired and chained cocci, β-hemolytic and non-motile. Findings of biochemical and serological tests indicate that the isolated bacterium belongs to Group B Streptococcus of Lancefield classification. PCR result also confirmed that the bacteria were S. agalactiae. The bacterial isolates possessed resistance property against all the seven antibiotics used in this study. The isolated GBS was found highly virulent and showed 80%–90% mortality for Tilapia and V. Koi fishes in experimental infection within 1–6 days of post-infection. Conclusion From the findings of this study, it may be concluded that isolated GBS from the Tilapia and V. Koi fishes were highly virulent and possessed multidrug-resistance properties.
Collapse
Affiliation(s)
- Mohummad Muklesur Rahman
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Md Ashikur Rahman
- Freshwater Station, Bangladesh Fisheries Research Institute, Mymensingh, Bangladesh
| | - Md Shirajum Monir
- Freshwater Station, Bangladesh Fisheries Research Institute, Mymensingh, Bangladesh
| | - Md Enamul Haque
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Mahbubul Pratik Siddique
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - A K M Khasruzzaman
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Md Tanvir Rahman
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Md Alimul Islam
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh, Bangladesh
| |
Collapse
|
100
|
Domínguez-Maqueda M, Cerezo IM, Tapia-Paniagua ST, De La Banda IG, Moreno-Ventas X, Moriñigo MÁ, Balebona MC. A Tentative Study of the Effects of Heat-Inactivation of the Probiotic Strain Shewanella putrefaciens Ppd11 on Senegalese Sole ( Solea senegalensis) Intestinal Microbiota and Immune Response. Microorganisms 2021; 9:microorganisms9040808. [PMID: 33921253 PMCID: PMC8070671 DOI: 10.3390/microorganisms9040808] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/02/2021] [Accepted: 04/09/2021] [Indexed: 12/02/2022] Open
Abstract
Concerns about safety, applicability and functionality associated with live probiotic cells have led to consideration of the use of non-viable microorganisms, known as paraprobiotics. The present study evaluated the effects of dietary administration of heat-inactivated cells of the probiotic strain Shewanella putrefaciens Ppd11 on the intestinal microbiota and immune gene transcription in Solea senegalensis. Results obtained were evaluated and compared to those described after feeding with viable Pdp11 cells. S. senegalensis specimens were fed with basal (control) diet or supplemented with live or heat inactivated (60 °C, 1 h) probiotics diets for 45 days. Growth improvement was observed in the group receiving live probiotics compared to the control group, but not after feeding with a probiotic heat-inactivated diet. Regarding immune gene transcription, no changes were observed for tnfα, il-6, lys-c1, c7, hsp70, and hsp90aa in the intestinal samples based on the diet. On the contrary, hsp90ab, gp96, cd4, cd8, il-1β, and c3 transcription were modulated after probiotic supplementation, though no differences between viable and heat-inactivated probiotic supplemented diets were observed. Modulation of intestinal microbiota showed remarkable differences based on the viability of the probiotics. Thus, higher diversity in fish fed with live probiotic cells, jointly with increased Mycoplasmataceae and Spirochaetaceae to the detriment of Brevinemataceae, was detected. However, microbiota of fish receiving heat-inactivated probiotic cells showed decreased Mycoplasmataceae and increased Brevinemataceae and Vibrio genus abundance. In short, the results obtained indicate that the viable state of Pdp11 probiotic cells affects growth performance and modulation of S. senegalensis intestinal microbiota. On the contrary, minor changes were detected in the intestinal immune response, being similar for fish receiving both, viable and inactivated probiotic cell supplemented diets, when compared to the control diet.
Collapse
Affiliation(s)
- Marta Domínguez-Maqueda
- Departamento de Química Inorgánica, Cristalografía y Mineralogía, Facultad de Ciencias, Campus de Teatinos s/n, Universidad de Málaga, 29071 Málaga, Spain; (I.M.C.); (S.T.T.-P.); (M.Á.M.); (M.C.B.)
- Correspondence:
| | - Isabel M. Cerezo
- Departamento de Química Inorgánica, Cristalografía y Mineralogía, Facultad de Ciencias, Campus de Teatinos s/n, Universidad de Málaga, 29071 Málaga, Spain; (I.M.C.); (S.T.T.-P.); (M.Á.M.); (M.C.B.)
| | - Silvana Teresa Tapia-Paniagua
- Departamento de Química Inorgánica, Cristalografía y Mineralogía, Facultad de Ciencias, Campus de Teatinos s/n, Universidad de Málaga, 29071 Málaga, Spain; (I.M.C.); (S.T.T.-P.); (M.Á.M.); (M.C.B.)
| | - Inés García De La Banda
- Spanish Institute of Oceanography, Oceanographic Center of Santander, 39080 Santander, Spain;
| | - Xabier Moreno-Ventas
- Ecological Area of Water and Environmental Sciences and Technics, University of Cantabria, 39005 Santander, Spain;
| | - Miguel Ángel Moriñigo
- Departamento de Química Inorgánica, Cristalografía y Mineralogía, Facultad de Ciencias, Campus de Teatinos s/n, Universidad de Málaga, 29071 Málaga, Spain; (I.M.C.); (S.T.T.-P.); (M.Á.M.); (M.C.B.)
| | - Maria Carmen Balebona
- Departamento de Química Inorgánica, Cristalografía y Mineralogía, Facultad de Ciencias, Campus de Teatinos s/n, Universidad de Málaga, 29071 Málaga, Spain; (I.M.C.); (S.T.T.-P.); (M.Á.M.); (M.C.B.)
| |
Collapse
|