51
|
Al-Ayadhi L, Zayed N, Bhat RS, Moubayed NMS, Al-Muammar MN, El-Ansary A. The use of biomarkers associated with leaky gut as a diagnostic tool for early intervention in autism spectrum disorder: a systematic review. Gut Pathog 2021; 13:54. [PMID: 34517895 PMCID: PMC8439029 DOI: 10.1186/s13099-021-00448-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 08/04/2021] [Indexed: 02/08/2023] Open
Abstract
Background Innovative research highlighted the probable connection between autism spectrum disorder (ASD) and gut microbiota as many autistic individuals have gastrointestinal problems as co-morbidities. This review emphasizes the role of altered gut microbiota observed frequently in autistic patients, and the mechanisms through which such alterations may trigger leaky gut. Main body Different bacterial metabolite levels in the blood and urine of autistic children, such as short-chain fatty acids, lipopolysaccharides, beta-cresol, and bacterial toxins, were reviewed. Moreover, the importance of selected proteins, among which are calprotectin, zonulin, and lysozyme, were discussed as biomarkers for the early detection of leaky gut as an etiological mechanism of ASD through the less integrative gut–blood–brain barriers. Disrupted gut–blood–brain barriers can explain the leakage of bacterial metabolites in these patients. Conclusion Although the cause-to-effect relationship between ASD and altered gut microbiota is not yet well understood, this review shows that with the consumption of specific diets, definite probiotics may represent a noninvasive tool to reestablish healthy gut microbiota and stimulate gut health. The diagnostic and therapeutic value of intestinal proteins and bacterial-derived compounds as new possible biomarkers, as well as potential therapeutic targets, are discussed. Supplementary Information The online version contains supplementary material available at 10.1186/s13099-021-00448-y.
Collapse
Affiliation(s)
- Laila Al-Ayadhi
- Department of Physiology, Faculty of Medicine, King Saud University, Riyadh, Saudi Arabia.,Autism Research and Treatment Center, Riyadh, Saudi Arabia
| | - Naima Zayed
- Therapuetic Chemistry Department, National Research Centre, Dokki, Cairo, Egypt
| | - Ramesa Shafi Bhat
- Biochemistry Department, College of Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Nadine M S Moubayed
- Botany and Microbiology Department, College of Science, Female Campus, King Saud University, Riyadh, Saudi Arabia
| | - May N Al-Muammar
- Department of Community Health, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Afaf El-Ansary
- Central Laboratory, Female Centre for Scientific and Medical Studies, King Saud University, P.O box 22452, Zip code 11495, Riyadh, Saudi Arabia.
| |
Collapse
|
52
|
Sun Y, Hu J, Zhang S, He H, Nie Q, Zhang Y, Chen C, Geng F, Nie S. Prebiotic characteristics of arabinogalactans during in vitro fermentation through multi-omics analysis. Food Chem Toxicol 2021; 156:112522. [PMID: 34438010 DOI: 10.1016/j.fct.2021.112522] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/17/2021] [Accepted: 08/21/2021] [Indexed: 12/31/2022]
Abstract
BACKGROUND AND OBJECTIVES Dietary fibers have beneficial effects on human health through the interaction with gut microbiota. Larch wood arabinogalactan (LA-AG) is one kind of complex soluble dietary fibers that may be utilized by human gut microbiota. METHODS AND RESULTS In this study, the LA-AG degradation by gut microbiota were characterized by investigating the change of LA-AG, microbiota composition, and the production of short-chain fatty acids (SCFAs), lactic acid, succinic acid, as well as volatile organic metabolites. During the fermentation, pH decreased continuously, along with the organic acids (especially acetic acid and lactic acid) accumulating. LA-AG was degraded by gut microbiota then some beneficial metabolites were produced. In addition, LA-AG inhibited the proliferation of some gut microbiota (Unclassified_Enterobacteriaceae and Citrobacter) and the accumulation of some metabolites (Sulfide and indole) released by gut microbiota. CONCLUSION LA-AG was partly fermentable fibers with prebiotic potential for human gut health.
Collapse
Affiliation(s)
- Yonggan Sun
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, 330047, China.
| | - Jielun Hu
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, 330047, China.
| | - Shanshan Zhang
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, 330047, China.
| | - Huijun He
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, 330047, China.
| | - Qixing Nie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, 330047, China.
| | - Yanli Zhang
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, 330047, China.
| | - Chunhua Chen
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, 330047, China.
| | - Fang Geng
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China.
| | - Shaoping Nie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, 330047, China.
| |
Collapse
|
53
|
Obesity as the 21st Century's major disease: The role of probiotics and prebiotics in prevention and treatment. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101115] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
54
|
D'Aquila P, Giacconi R, Malavolta M, Piacenza F, Bürkle A, Villanueva MM, Dollé MET, Jansen E, Grune T, Gonos ES, Franceschi C, Capri M, Grubeck-Loebenstein B, Sikora E, Toussaint O, Debacq-Chainiaux F, Hervonen A, Hurme M, Slagboom PE, Schön C, Bernhardt J, Breusing N, Passarino G, Provinciali M, Bellizzi D. Microbiome in Blood Samples From the General Population Recruited in the MARK-AGE Project: A Pilot Study. Front Microbiol 2021; 12:707515. [PMID: 34381434 PMCID: PMC8350766 DOI: 10.3389/fmicb.2021.707515] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 06/29/2021] [Indexed: 01/12/2023] Open
Abstract
The presence of circulating microbiome in blood has been reported in both physiological and pathological conditions, although its origins, identities and function remain to be elucidated. This study aimed to investigate the presence of blood microbiome by quantitative real-time PCRs targeting the 16S rRNA gene. To our knowledge, this is the first study in which the circulating microbiome has been analyzed in such a large sample of individuals since the study was carried out on 1285 Randomly recruited Age-Stratified Individuals from the General population (RASIG). The samples came from several different European countries recruited within the EU Project MARK-AGE in which a series of clinical biochemical parameters were determined. The results obtained reveal an association between microbial DNA copy number and geographic origin. By contrast, no gender and age-related difference emerged, thus demonstrating the role of the environment in influencing the above levels independent of age and gender at least until the age of 75. In addition, a significant positive association was found with Free Fatty Acids (FFA) levels, leukocyte count, insulin, and glucose levels. Since these factors play an essential role in both health and disease conditions, their association with the extent of the blood microbiome leads us to consider the blood microbiome as a potential biomarker of human health.
Collapse
Affiliation(s)
- Patrizia D'Aquila
- Department of Biology, Ecology and Earth Sciences (DIBEST), University of Calabria, Rende, Italy
| | - Robertina Giacconi
- Advanced Technology Center for Aging Research, IRCCS (Scientific Institute for Research, Hospitalization and Healthcare) INRCA National Institute on Health and Science on Ageing, Ancona, Italy
| | - Marco Malavolta
- Advanced Technology Center for Aging Research, IRCCS (Scientific Institute for Research, Hospitalization and Healthcare) INRCA National Institute on Health and Science on Ageing, Ancona, Italy
| | - Francesco Piacenza
- Advanced Technology Center for Aging Research, IRCCS (Scientific Institute for Research, Hospitalization and Healthcare) INRCA National Institute on Health and Science on Ageing, Ancona, Italy
| | - Alexander Bürkle
- Molecular Toxicology Group, Department of Biology, University of Konstanz, Konstanz, Germany
| | - María Moreno Villanueva
- Molecular Toxicology Group, Department of Biology, University of Konstanz, Konstanz, Germany.,Department of Sport Science, Human Performance Research Centre, University of Konstanz, Konstanz, Germany
| | - Martijn E T Dollé
- Centre for Health Protection, National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | - Eugène Jansen
- Centre for Health Protection, National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | - Tilman Grune
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, Germany.,NutriAct-Competence Cluster Nutrition Research Berlin-Potsdam, Nuthetal, Germany
| | - Efstathios S Gonos
- National Hellenic Research Foundation, Institute of Biology, Medicinal Chemistry and Biotechnology, Athens, Greece
| | - Claudio Franceschi
- Department of Experimental, Diagnostic and Specialty Medicine, Alma Mater Studiorum, University of Bologna, Bologna, Italy.,Institute of Information Technologies, Mathematics and Mechanics, Lobachevsky University, Nizhny Novgorod, Russia
| | - Miriam Capri
- Department of Experimental, Diagnostic and Specialty Medicine, Alma Mater Studiorum, University of Bologna, Bologna, Italy.,Interdepartmental Center, Alma Mater Research Institute on Global Challenges and Climate Change, University of Bologna, Bologna, Italy
| | | | - Ewa Sikora
- Laboratory of the Molecular Bases of Ageing, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Olivier Toussaint
- Research Unit of Cellular Biology (URBC) Namur Research Institute for Life Sciences (Narilis), University of Namur, Namur, Belgium
| | - Florence Debacq-Chainiaux
- Research Unit of Cellular Biology (URBC) Namur Research Institute for Life Sciences (Narilis), University of Namur, Namur, Belgium
| | | | - Mikko Hurme
- Medical School, University of Tampere, Tampere, Finland
| | - P Eline Slagboom
- Department of Molecular Epidemiology, Leiden University Medical Centre, Leiden, Netherlands
| | | | | | - Nicolle Breusing
- Department of Applied Nutritional Science/Dietetics, Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany
| | - Giuseppe Passarino
- Department of Biology, Ecology and Earth Sciences (DIBEST), University of Calabria, Rende, Italy
| | - Mauro Provinciali
- Advanced Technology Center for Aging Research, IRCCS (Scientific Institute for Research, Hospitalization and Healthcare) INRCA National Institute on Health and Science on Ageing, Ancona, Italy
| | - Dina Bellizzi
- Department of Biology, Ecology and Earth Sciences (DIBEST), University of Calabria, Rende, Italy
| |
Collapse
|
55
|
Yu L, Zhao D, Nian Y, Li C. Casein-fed mice showed faster recovery from DSS-induced colitis than chicken-protein-fed mice. Food Funct 2021; 12:5806-5820. [PMID: 34047734 DOI: 10.1039/d1fo00659b] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This study aimed to examine whether casein- and chicken protein-fed mice had different capacities of recovering from dextran sulfate sodium (DSS)-induced colitis. Mice were fed a chicken protein or casein diet for 14 days, which was followed by 7-day DSS treatment and then a 6-day recovery period by gavage of Akkermansia muciniphila (A. muciniphila). Compared with the chicken protein diet, the casein diet increased the relative abundance of beneficial gut bacteria, whereas DSS treatment did not induce significant differences in physiological and pathological indicators between the diet groups. During the recovery period, gavage of A. muciniphila alleviated colitis symptoms by decreasing the score of the disease activity index (DAI), spleen weight, and TNF-α mRNA level but increasing the mucus thickness and MUC2 mRNA level. Several genera, including the Ruminococcaceae NK4A214 group, Bifidobacterium, Roseburia, Ruminiclostridium and Lachnospiraceae NK4A136 group, may play a critical role. In addition, the casein diet helped DSS-treated mice recover faster from colitis, in terms of their body weight, colon length and histological score, probably due to its higher digestibility.
Collapse
Affiliation(s)
- Lili Yu
- Key Laboratory of Meat Processing and Quality Control, MOE; Key Laboratory of Meat Processing, MARA, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control; Nanjing Agricultural University, Nanjing 210095, P.R. China.
| | - Di Zhao
- Key Laboratory of Meat Processing and Quality Control, MOE; Key Laboratory of Meat Processing, MARA, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control; Nanjing Agricultural University, Nanjing 210095, P.R. China.
| | - Yingqun Nian
- Key Laboratory of Meat Processing and Quality Control, MOE; Key Laboratory of Meat Processing, MARA, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control; Nanjing Agricultural University, Nanjing 210095, P.R. China.
| | - Chunbao Li
- Key Laboratory of Meat Processing and Quality Control, MOE; Key Laboratory of Meat Processing, MARA, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control; Nanjing Agricultural University, Nanjing 210095, P.R. China.
| |
Collapse
|
56
|
Influences of dietary oils and fats, and the accompanied minor content of components on the gut microbiota and gut inflammation: A review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.05.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
57
|
Bolte LA, Vich Vila A, Imhann F, Collij V, Gacesa R, Peters V, Wijmenga C, Kurilshikov A, Campmans-Kuijpers MJE, Fu J, Dijkstra G, Zhernakova A, Weersma RK. Long-term dietary patterns are associated with pro-inflammatory and anti-inflammatory features of the gut microbiome. Gut 2021; 70:1287-1298. [PMID: 33811041 PMCID: PMC8223641 DOI: 10.1136/gutjnl-2020-322670] [Citation(s) in RCA: 325] [Impact Index Per Article: 81.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 02/13/2021] [Accepted: 02/15/2021] [Indexed: 12/20/2022]
Abstract
OBJECTIVE The microbiome directly affects the balance of pro-inflammatory and anti-inflammatory responses in the gut. As microbes thrive on dietary substrates, the question arises whether we can nourish an anti-inflammatory gut ecosystem. We aim to unravel interactions between diet, gut microbiota and their functional ability to induce intestinal inflammation. DESIGN We investigated the relation between 173 dietary factors and the microbiome of 1425 individuals spanning four cohorts: Crohn's disease, ulcerative colitis, irritable bowel syndrome and the general population. Shotgun metagenomic sequencing was performed to profile gut microbial composition and function. Dietary intake was assessed through food frequency questionnaires. We performed unsupervised clustering to identify dietary patterns and microbial clusters. Associations between diet and microbial features were explored per cohort, followed by a meta-analysis and heterogeneity estimation. RESULTS We identified 38 associations between dietary patterns and microbial clusters. Moreover, 61 individual foods and nutrients were associated with 61 species and 249 metabolic pathways in the meta-analysis across healthy individuals and patients with IBS, Crohn's disease and UC (false discovery rate<0.05). Processed foods and animal-derived foods were consistently associated with higher abundances of Firmicutes, Ruminococcus species of the Blautia genus and endotoxin synthesis pathways. The opposite was found for plant foods and fish, which were positively associated with short-chain fatty acid-producing commensals and pathways of nutrient metabolism. CONCLUSION We identified dietary patterns that consistently correlate with groups of bacteria with shared functional roles in both, health and disease. Moreover, specific foods and nutrients were associated with species known to infer mucosal protection and anti-inflammatory effects. We propose microbial mechanisms through which the diet affects inflammatory responses in the gut as a rationale for future intervention studies.
Collapse
Affiliation(s)
- Laura A Bolte
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Centre Groningen, Groningen, The Netherlands
- Department of Genetics, University of Groningen and University Medical Centre Groningen, Groningen, The Netherlands
| | - Arnau Vich Vila
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Centre Groningen, Groningen, The Netherlands
- Department of Genetics, University of Groningen and University Medical Centre Groningen, Groningen, The Netherlands
| | - Floris Imhann
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Centre Groningen, Groningen, The Netherlands
- Department of Genetics, University of Groningen and University Medical Centre Groningen, Groningen, The Netherlands
| | - Valerie Collij
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Centre Groningen, Groningen, The Netherlands
- Department of Genetics, University of Groningen and University Medical Centre Groningen, Groningen, The Netherlands
| | - Ranko Gacesa
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Centre Groningen, Groningen, The Netherlands
- Department of Genetics, University of Groningen and University Medical Centre Groningen, Groningen, The Netherlands
| | - Vera Peters
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Centre Groningen, Groningen, The Netherlands
| | - Cisca Wijmenga
- Department of Genetics, University of Groningen and University Medical Centre Groningen, Groningen, The Netherlands
| | - Alexander Kurilshikov
- Department of Genetics, University of Groningen and University Medical Centre Groningen, Groningen, The Netherlands
| | - Marjo J E Campmans-Kuijpers
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Centre Groningen, Groningen, The Netherlands
| | - Jingyuan Fu
- Department of Genetics, University of Groningen and University Medical Centre Groningen, Groningen, The Netherlands
- Department of Pediatrics, University of Groningen and University Medical Centre Groningen, Groningen, The Netherlands
| | - Gerard Dijkstra
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Centre Groningen, Groningen, The Netherlands
| | - Alexandra Zhernakova
- Department of Genetics, University of Groningen and University Medical Centre Groningen, Groningen, The Netherlands
| | - Rinse K Weersma
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Centre Groningen, Groningen, The Netherlands
| |
Collapse
|
58
|
In Vitro Fecal Fermentation Patterns of Arabinoxylan from Rice Bran on Fecal Microbiota from Normal-Weight and Overweight/Obese Subjects. Nutrients 2021; 13:nu13062052. [PMID: 34203983 PMCID: PMC8232586 DOI: 10.3390/nu13062052] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/01/2021] [Accepted: 06/10/2021] [Indexed: 01/01/2023] Open
Abstract
Arabinoxylan (AX) is a structural polysaccharide found in wheat, rice and other cereal grains. Diets high in AX-containing fiber may promote gut health in obesity through prebiotic function. Thus, the impact of soluble AX isolated from rice bran fiber on human gut microbiota phylogenetic composition and short-chain fatty acid (SCFA) production patterns from normal-weight and overweight/obese subjects was investigated through in vitro fecal fermentation. Results showed that rice bran arabinoxylan modified the microbiota in fecal samples from both weight classes compared to control, significantly increasing Collinsella, Blautia and Bifidobacterium, and decreasing Sutterella, Bilophila and Parabacteroides. Rice bran AX also significantly increased total and individual SCFA contents (p < 0.05). This study suggests that rice bran AX may beneficially impact gut health in obesity through prebiotic activities.
Collapse
|
59
|
Buffet-Bataillon S, Bellanger A, Boudry G, Gangneux JP, Yverneau M, Beuchée A, Blat S, Le Huërou-Luron I. New Insights Into Microbiota Modulation-Based Nutritional Interventions for Neurodevelopmental Outcomes in Preterm Infants. Front Microbiol 2021; 12:676622. [PMID: 34177860 PMCID: PMC8232935 DOI: 10.3389/fmicb.2021.676622] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/12/2021] [Indexed: 12/19/2022] Open
Abstract
Gut microbiota and the central nervous system have parallel developmental windows during pre and post-natal life. Increasing evidences suggest that intestinal dysbiosis in preterm infants predisposes the neonate to adverse neurological outcomes later in life. Understanding the link between gut microbiota colonization and brain development to tailor therapies aimed at optimizing initial colonization and microbiota development are promising strategies to warrant adequate brain development and enhance neurological outcomes in preterm infants. Breast-feeding has been associated with both adequate cognitive development and healthy microbiota in preterms. Infant formula are industrially produced substitutes for infant nutrition that do not completely recapitulate breast-feeding benefices and could be largely improved by the understanding of the role of breast milk components upon gut microbiota. In this review, we will first discuss the nutritional and bioactive component information on breast milk composition and its contribution to the assembly of the neonatal gut microbiota in preterms. We will then discuss the emerging pathways connecting the gut microbiota and brain development. Finally, we will discuss the promising microbiota modulation-based nutritional interventions (including probiotic and prebiotic supplementation of infant formula and maternal nutrition) for improving neurodevelopmental outcomes.
Collapse
Affiliation(s)
- Sylvie Buffet-Bataillon
- Institut NuMeCan, INRAE, INSERM, Univ Rennes, Saint-Gilles, France
- Department of Clinical Microbiology, CHU Rennes, Rennes, France
| | - Amandine Bellanger
- Institut NuMeCan, INRAE, INSERM, Univ Rennes, Saint-Gilles, France
- Department of Pediatrics-Neonatology, CHU Rennes, Rennes, France
| | - Gaelle Boudry
- Institut NuMeCan, INRAE, INSERM, Univ Rennes, Saint-Gilles, France
| | | | | | - Alain Beuchée
- Department of Pediatrics-Neonatology, Univ Rennes, CHU Rennes, LTSI-UMR 1099, Rennes, France
| | - Sophie Blat
- Institut NuMeCan, INRAE, INSERM, Univ Rennes, Saint-Gilles, France
| | | |
Collapse
|
60
|
The Beta-Lactam Resistome Expressed by Aerobic and Anaerobic Bacteria Isolated from Human Feces of Healthy Donors. Pharmaceuticals (Basel) 2021; 14:ph14060533. [PMID: 34204872 PMCID: PMC8228550 DOI: 10.3390/ph14060533] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/18/2021] [Accepted: 05/22/2021] [Indexed: 01/14/2023] Open
Abstract
Antibiotic resistance is a major health problem worldwide, causing more deaths than diabetes and cancer. The dissemination of vertical and horizontal antibiotic resistance genes has been conducted for a selection of pan-resistant bacteria. Here, we test if the aerobic and anaerobic bacteria from human feces samples in health conditions are carriers of beta-lactamases genes. The samples were cultured in a brain–heart infusion medium and subcultured in blood agar in aerobic and anaerobic conditions for 24 h at 37 °C. The grown colonies were identified by their biochemical profiles. The DNA was extracted and purified by bacterial lysis using thermal shock and were used in the endpoint PCR and next generation sequencing to identify beta-lactamase genes expression (OXA, VIM, SHV, TEM, IMP, ROB, KPC, CMY, DHA, P, CFX, LAP, and BIL). The aerobic bacterias Aeromonas hydrophila, Citrobacter freundii, Proteus mirabilis, Providencia rettgeri, Serratia fonticola, Serratia liquefaciens, Enterobacter aerogenes, Escherichia coli, Klebsiella pneumoniae, Pantoea agglomerans, Enterococcus faecalis, and Enterobacter cloacae, the anaerobic bacteria: Capnocytophaga species, Bacteroides distasonis, Bifidobacterium adolescentis, Bacteroides ovatus, Bacteroides fragilis, Eubacterium species, Eubacterium aerofaciens, Peptostreptococcus anaerobius, Fusobacterium species, Bacteroides species, and Bacteroides vulgatus were isolated and identified. The results showed 49 strains resistant to beta-lactam with the expression of blaSHV (10.2%), blaTEM (100%), blaKPC (10.2%), blaCYM (14.3%), blaP (2%), blaCFX (8.2%), and blaBIL (6.1%). These data support the idea that the human enteric microbiota constitutes an important reservoir of genes for resistance to beta-lactamases and that such genes could be transferred to pathogenic bacteria.
Collapse
|
61
|
Potential benefits of high-added-value compounds from aquaculture and fish side streams on human gut microbiota. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.04.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
62
|
Nodari R, Drancourt M, Barbieri R. Paleomicrobiology of the human digestive tract: A review. Microb Pathog 2021; 157:104972. [PMID: 34029658 DOI: 10.1016/j.micpath.2021.104972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 04/23/2021] [Accepted: 05/14/2021] [Indexed: 10/21/2022]
Abstract
The microbiota is a hot topic of research in medical microbiology, boosted by culturomics and metagenomics, with unanticipated knowledge outputs in physiology and pathology. Knowledge of the microbiota in ancient populations may therefore be of prime interest in understanding factors shaping the coevolution of the microbiota and populations. Studies on ancient human microbiomes can help us understand how the community of microorganisms presents in the oral cavity and the gut was shaped during the evolution of our species and what environmental, social or cultural changes may have changed it. This review cumulates and summarizes the discoveries in the field of the ancient human microbiota, focusing on the remains used as samples and techniques used to handle and analyze them.
Collapse
Affiliation(s)
- Riccardo Nodari
- Department of Biosciences and Pediatric Clinical Research Center "Romeo and Enrica Invernizzi", University of Milan, Milan, 20133, Italy
| | - Michel Drancourt
- Aix-Marseille Univ., IRD, MEPHI, IHU Méditerranée Infection, Marseille, France
| | - Rémi Barbieri
- Aix-Marseille Univ., IRD, MEPHI, IHU Méditerranée Infection, Marseille, France; UMR 7268, Anthropologie Bioculturelle, Droit, Ethique et Santé, Aix Marseille Univ., 11 CNRS, EFS, ADES, Marseille, France.
| |
Collapse
|
63
|
Zhang Z, Chen X, Cui B. Modulation of the fecal microbiome and metabolome by resistant dextrin ameliorates hepatic steatosis and mitochondrial abnormalities in mice. Food Funct 2021; 12:4504-4518. [PMID: 33885128 DOI: 10.1039/d1fo00249j] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Targeting the gut-liver axis by manipulating the intestinal microbiome is a promising therapy for nonalcoholic fatty liver disease (NAFLD). This study modulated the intestinal microbiota to explore whether resistant dextrin, as a potential prebiotic, could ameliorate high-fat diet (HFD)-induced hepatic steatosis in C57BL/6J mice. After two months of feeding, significant hepatic steatosis with mitochondrial dysfunction was observed in the HFD-fed mice. However, the concentrations of triglycerides and malondialdehyde in liver tissue and the levels of alanine aminotransferase and aspartate aminotransferase in the serum of mice fed an HFD plus resistant dextrin diet (HFID) were significantly decreased compared to the HFD-fed mice. Additionally, hepatic mitochondrial integrity and reactive oxygen species accumulation were improved in HFID-fed mice, ameliorating hepatic steatosis. The fecal microbiome of HFD-fed mice was enriched in Bifidobacterium, Lactobacillus, and Globicatella, while resistant dextrin increased the abundance of Parabacteroides, Blautia, and Dubosiella. Major changes in fecal metabolites were confirmed for HFID-fed mice, including those related to entero-hepatic circulation (i.e., bile acids), tryptophan metabolism (e.g., indole derivatives), and lipid metabolism (e.g., lipoic acid), as well as increased antioxidants including isorhapontigenin. Furthermore, resistant dextrin decreased inflammatory cytokine levels and intestinal permeability and ameliorated intestinal damage. Together, these findings augmented current knowledge on prebiotic treatment for NAFLD.
Collapse
Affiliation(s)
- Zheng Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China.
| | | | | |
Collapse
|
64
|
Sturov NV, Popov SV, Zhukov VA. Modern approaches to the correction of the gut microbiota. MEDITSINSKIY SOVET = MEDICAL COUNCIL 2021:136-143. [DOI: 10.21518/2079-701x-2021-4-136-143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
The article presents modern data on the formation, structure, functions and possibilities of correction of the gut microbiota. The gut microbiota is a collection of living organisms that inhabit the human intestine and form a complex microecological system that performs many functions. It is known that the composition and state of the gut microbiota is influenced by both environmental factors, such as diet and lifestyle, and the human body, including genetic predisposition. A violation in this system (dysbiosis) can provoke the development of a number of diseases and pathological conditions, in which the correction of the gut microbiota may be a promising therapeutic strategy. The most common methods of correcting dysbiosis are dieting, the use of pro-and prebiotics, and fecal microbiota transplantation. The diet affects the qualitative and quantitative composition and functions of the gut microbiota, the activity of its individual representatives. Probiotics are used to modulate, preserve the gut microbiota in dysbiosis, as well as to prevent its development. Fecal microbiota transplantation is performed by transferring the microbiota from a healthy donor. This method is one of the most effective ways to treat Clostridium difficile infection. This review article also presents the results of fecal microbiota transplantation in patients with inflammatory bowel disease and hepatic encephalopathy. It is shown that after transplantation, there is a rapid change in the composition of the gut microbiota, which becomes similar to the microbiota of a healthy donor. Each of these methods of correction demonstrates a different degree of influence on the gut microbiota, and their therapeutic effectiveness depends on the direct characteristics of the methods used, as well as the specific disease and requires further study.
Collapse
|
65
|
Tagliamonte S, Laiola M, Ferracane R, Vitale M, Gallo MA, Meslier V, Pons N, Ercolini D, Vitaglione P. Mediterranean diet consumption affects the endocannabinoid system in overweight and obese subjects: possible links with gut microbiome, insulin resistance and inflammation. Eur J Nutr 2021; 60:3703-3716. [PMID: 33763720 PMCID: PMC8437855 DOI: 10.1007/s00394-021-02538-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 03/08/2021] [Indexed: 02/07/2023]
Abstract
Purpose To investigate whether a Mediterranean diet (MD) affected the plasma concentrations of endocannabinoids (ECs), N-acylethanolamines (NAEs) and their specific ratios in subjects with lifestyle risk factors for metabolic diseases. To identify the relationship between circulating levels of these compounds and gut microbiome, insulin resistance and systemic inflammation. Methods A parallel 8-week randomised controlled trial was performed involving 82 overweight and obese subjects aged (mean ± SEM) 43 ± 1.4 years with a BMI of 31.1 ± 0.5 kg/m2, habitual Western diet (CT) and sedentary lifestyle. Subjects were randomised to consume an MD tailored to their habitual energy and macronutrient intake (n = 43) or to maintain their habitual diet (n = 39). Endocannabinoids and endocannabinoid-like molecules, metabolic and inflammatory markers and gut microbiome were monitored over the study period. Results The MD intervention lowered plasma arachidonoylethanolamide (AEA, p = 0.02), increased plasma oleoylethanolamide/palmitoylethanolamide (OEA/PEA, p = 0.009) and OEA/AEA (p = 0.006) and increased faecal Akkermansia muciniphila (p = 0.026) independent of body weight changes. OEA/PEA positively correlated with abundance of key microbial players in diet–gut–health interplay and MD adherence. Following an MD, individuals with low-plasma OEA/PEA at baseline decreased homeostatic model assessment of insulin resistance index (p = 0.01), while individuals with high-plasma OEA/PEA decreased serum high-sensitive C-reactive protein (p = 0.02). Conclusions We demonstrated that a switch from a CT to an isocaloric MD affects the endocannabinoid system and increases A. muciniphila abundance in the gut independently of body weight changes. Endocannabinoid tone and microbiome functionality at baseline drives an individualised response to an MD in ameliorating insulin sensitivity and inflammation. Clinical Trial Registry number and website NCT03071718; www.clinicaltrials.gov Supplementary Information The online version contains supplementary material available at 10.1007/s00394-021-02538-8.
Collapse
Affiliation(s)
- Silvia Tagliamonte
- Department of Agricultural Sciences, University of Naples Federico II, Parco Gussone Ed. 84, 80055, Portici, NA), Italy
| | - Manolo Laiola
- Department of Agricultural Sciences, University of Naples Federico II, Parco Gussone Ed. 84, 80055, Portici, NA), Italy
| | - Rosalia Ferracane
- Department of Agricultural Sciences, University of Naples Federico II, Parco Gussone Ed. 84, 80055, Portici, NA), Italy
| | - Marilena Vitale
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131, Naples, Italy
| | | | - Victoria Meslier
- Université Paris-Saclay, INRAE (Institut National de Recherche Pour L'agriculture, l'alimentation Et L'environnement), MGP (Metagenopolis), 78350, Jouy en Josas, France
| | - Nicolas Pons
- Université Paris-Saclay, INRAE (Institut National de Recherche Pour L'agriculture, l'alimentation Et L'environnement), MGP (Metagenopolis), 78350, Jouy en Josas, France
| | - Danilo Ercolini
- Department of Agricultural Sciences, University of Naples Federico II, Parco Gussone Ed. 84, 80055, Portici, NA), Italy.,Task Force On Microbiome Studies, University of Naples Federico II, 80134, Naples, Italy
| | - Paola Vitaglione
- Department of Agricultural Sciences, University of Naples Federico II, Parco Gussone Ed. 84, 80055, Portici, NA), Italy. .,Task Force On Microbiome Studies, University of Naples Federico II, 80134, Naples, Italy.
| |
Collapse
|
66
|
Alemao CA, Budden KF, Gomez HM, Rehman SF, Marshall JE, Shukla SD, Donovan C, Forster SC, Yang IA, Keely S, Mann ER, El Omar EM, Belz GT, Hansbro PM. Impact of diet and the bacterial microbiome on the mucous barrier and immune disorders. Allergy 2021; 76:714-734. [PMID: 32762040 DOI: 10.1111/all.14548] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 07/10/2020] [Accepted: 07/30/2020] [Indexed: 12/11/2022]
Abstract
The prevalence of chronic immune and metabolic disorders is increasing rapidly. In particular, inflammatory bowel diseases, obesity, diabetes, asthma and chronic obstructive pulmonary disease have become major healthcare and economic burdens worldwide. Recent advances in microbiome research have led to significant discoveries of associative links between alterations in the microbiome and health, as well as these chronic supposedly noncommunicable, immune/metabolic disorders. Importantly, the interplay between diet, microbiome and the mucous barrier in these diseases has gained significant attention. Diet modulates the mucous barrier via alterations in gut microbiota, resulting in either disease onset/exacerbation due to a "poor" diet or protection against disease with a "healthy" diet. In addition, many mucosa-associated disorders possess a specific gut microbiome fingerprint associated with the composition of the mucous barrier, which is further influenced by host-microbiome and inter-microbial interactions, dietary choices, microbe immigration and antimicrobials. Our review focuses on the interactions of diet (macronutrients and micronutrients), gut microbiota and mucous barriers (gastrointestinal and respiratory tract) and their importance in the onset and/or progression of major immune/metabolic disorders. We also highlight the key mechanisms that could be targeted therapeutically to prevent and/or treat these disorders.
Collapse
Affiliation(s)
- Charlotte A. Alemao
- Priority Research Centre for Healthy Lungs Hunter Medical Research Institute New Lambton, Newcastle NSW Australia
- The University of Newcastle Newcastle NSW Australia
| | - Kurtis F. Budden
- Priority Research Centre for Healthy Lungs Hunter Medical Research Institute New Lambton, Newcastle NSW Australia
- The University of Newcastle Newcastle NSW Australia
| | - Henry M. Gomez
- Priority Research Centre for Healthy Lungs Hunter Medical Research Institute New Lambton, Newcastle NSW Australia
- The University of Newcastle Newcastle NSW Australia
| | - Saima F. Rehman
- Priority Research Centre for Healthy Lungs Hunter Medical Research Institute New Lambton, Newcastle NSW Australia
- The University of Newcastle Newcastle NSW Australia
| | - Jacqueline E. Marshall
- Faculty of Science Centre for Inflammation Centenary Institute University of Technology Sydney Sydney NSW Australia
| | - Shakti D. Shukla
- Priority Research Centre for Healthy Lungs Hunter Medical Research Institute New Lambton, Newcastle NSW Australia
- The University of Newcastle Newcastle NSW Australia
| | - Chantal Donovan
- Faculty of Science Centre for Inflammation Centenary Institute University of Technology Sydney Sydney NSW Australia
| | - Samuel C. Forster
- Department of Molecular and Translational Sciences Hudson Institute of Medical Research Centre for Innate Immunity and Infectious Diseases Monash University Clayton VIC Australia
| | - Ian A. Yang
- Thoracic Program The Prince Charles Hospital Metro North Hospital and Health Service Brisbane QLD Australia
- Faculty of Medicine UQ Thoracic Research Centre The University of Queensland Brisbane QLD Australia
| | - Simon Keely
- Hunter Medical Research Institute Priority Research Centre for Digestive Health and Neurogastroenterology University of Newcastle New Lambton Heights NSW Australia
| | - Elizabeth R. Mann
- Lydia Becker Institute of Immunology and Inflammation University of Manchester Manchester UK
- Faculty of Biology Medicine and Health Manchester Collaborative Centre for Inflammation Research Manchester Academic Health Science Centre University of Manchester Manchester UK
| | - Emad M. El Omar
- St George & Sutherland Clinical School Microbiome Research Centre University of New South Wales Sydney NSW Australia
| | - Gabrielle T. Belz
- Diamantina Institute University of Queensland Woolloongabba QLD Australia
- Department of Medical Biology Walter and Eliza Hall Institute of Medical Research University of Melbourne Parkville VIC Australia
| | - Philip M. Hansbro
- Priority Research Centre for Healthy Lungs Hunter Medical Research Institute New Lambton, Newcastle NSW Australia
- The University of Newcastle Newcastle NSW Australia
- Faculty of Science Centre for Inflammation Centenary Institute University of Technology Sydney Sydney NSW Australia
| |
Collapse
|
67
|
Li Z, McCafferty KJ, Judd RL. Role of HCA 2 in Regulating Intestinal Homeostasis and Suppressing Colon Carcinogenesis. Front Immunol 2021; 12:606384. [PMID: 33708203 PMCID: PMC7940178 DOI: 10.3389/fimmu.2021.606384] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 02/05/2021] [Indexed: 12/23/2022] Open
Abstract
Hydroxycarboxylic acid receptor 2 (HCA2) is vital for sensing intermediates of metabolism, including β-hydroxybutyrate and butyrate. It also regulates profound anti-inflammatory effects in various tissues, indicating that HCA2 may serve as an essential therapeutic target for mediating inflammation-associated diseases. Butyrate and niacin, endogenous and exogenous ligands of HCA2, have been reported to play an essential role in maintaining intestinal homeostasis. HCA2, predominantly expressed in diverse immune cells, is also present in intestinal epithelial cells (IECs), where it regulates the intricate communication network between diet, microbiota, and immune cells. This review summarizes the physiological role of HCA2 in intestinal homeostasis and its pathological role in intestinal inflammation and cancer.
Collapse
Affiliation(s)
- Zhuoyue Li
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - Kayleen J McCafferty
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - Robert L Judd
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| |
Collapse
|
68
|
Pei Y, Chen C, Mu Y, Yang Y, Feng Z, Li B, Li H, Li K. Integrated Microbiome and Metabolome Analysis Reveals a Positive Change in the Intestinal Environment of Myostatin Edited Large White Pigs. Front Microbiol 2021; 12:628685. [PMID: 33679652 PMCID: PMC7925633 DOI: 10.3389/fmicb.2021.628685] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 02/01/2021] [Indexed: 01/12/2023] Open
Abstract
Myostatin (MSTN) functional inactivation can change the proportion of lean meat and fat content in pigs. While both genotype and microbial composition are known to affect the host phenotype, so far there has been no systematic study to detect the changes in the intestinal microbial composition and metabolome of MSTN single copy mutant pigs. Here, we used 16S rDNA sequencing and metabolome analysis to investigate how MSTN gene editing affects changes in the microbial and metabolome composition in the jejunum and the cecum of Large White pigs. Our results showed that Clostridium_sensu_stricto_1, Bifidobacterium, Lachnospiraceae_UCG-007, Clostridium_sensu_stricto_6, Ruminococcaceae_UCG-002, and Ruminococcaceae_UCG-004 were significantly upregulated; while Treponema_2 and T34_unclassified were significantly downregulated in the jejunum of MSTN pigs. Similarly, Phascolarctobacterium, Ruminiclostridium_9, Succinivibrio, Longibaculum, and Candidatus_Stoquefichus were significantly upregulated, while Barnesiella was significantly downregulated in the cecum of MSTN pigs. Moreover, metabolomics analysis showed significant changes in metabolites involved in purine, sphingolipid and tryptophan metabolism in the jejunum, while those associated with glycerophospholipid and pyrimidine metabolism were changed in the cecum. Spearman correlation analysis further demonstrated that there was a significant correlation between microflora composition and metabolites. Our analyses indicated the MSTN editing affects the composition of metabolites and microbial strains in the jejunum and the cecum, which might provide more useable nutrients for the host of MSTN± Large White pigs.
Collapse
Affiliation(s)
- Yangli Pei
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Sciences and Engineering, Foshan University, Foshan, China
| | - Chujie Chen
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Sciences and Engineering, Foshan University, Foshan, China
| | - Yulian Mu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yalan Yang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Sciences and Engineering, Foshan University, Foshan, China
| | - Zheng Feng
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Sciences and Engineering, Foshan University, Foshan, China
| | - Bugao Li
- College of Animal Science, Shanxi Agricultural University, Shanxi, China
| | - Hua Li
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Sciences and Engineering, Foshan University, Foshan, China
| | - Kui Li
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
69
|
Gut Microbiota and Short-Chain Fatty Acid Profile between Normal and Moderate Malnutrition Children in Yogyakarta, Indonesia. Microorganisms 2021; 9:microorganisms9010127. [PMID: 33430510 PMCID: PMC7826765 DOI: 10.3390/microorganisms9010127] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/21/2020] [Accepted: 12/29/2020] [Indexed: 12/15/2022] Open
Abstract
Malnutrition has been associated with the gut microbiota composition and the gastrointestinal environment. This study aimed to evaluate whether there is a difference in the gut microbiota profile between the normal and undernutrition (considered moderate malnutrition) children and evaluate the gastrointestinal environment observed from the short-chain fatty acid (SCFA) profile. Ten days' observations were done between normal (n:13) and undernutrition (n:15) children. The subject's diet was recorded using a food record. Analysis of the gut microbiota was performed using 16S rRNA gene sequencing targeting the V3-V4 variables region, while the SCFA profile was analyzed using gas chromatography. The result shows that the undernutrition group's energy intake was lower than in the normal group. Although there was no difference in diversity index and overall gut composition, overexpression of the genera Methanobrevibacter, Anaerococcus, Eubacterium, and Succinivibrio was observed in the undernutrition group. Meanwhile, in the normal group, Ruminococcus and Fusobacterium were found. In both groups, there was also the dominant of Prevotella enterotype. Gastrointestinal conditions in the normal group tended to be more acidic compared to the undernutrition group. It occurs due to the high concentration of propionate and butyric acids.
Collapse
|
70
|
Nallappan D, Chua KH, Ong KC, Chong CW, Teh CSJ, Palanisamy UD, Kuppusamy UR. Amelioration of high-fat diet-induced obesity and its associated complications by a myricetin derivative-rich fraction from Syzygium malaccense in C57BL/6J mice. Food Funct 2021; 12:5876-5891. [PMID: 34019055 DOI: 10.1039/d1fo00539a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Obesity is a driving factor in the onset of metabolic disorders. This study aims to investigate the effects of the myricetin derivative-rich fraction (MD) from Syzygium malaccense leaf extract on high-fat diet (HFD)-induced obesity and its associated complications and its influence on uncoupling protein-1 (UCP-1) and gut microbiota in C57BL/6J mice. Mice were randomly assigned into four groups (n = 6) and given a normal diet (ND) or high-fat diet (HFD) for 10 weeks to induce obesity. The HFD groups (continued with HFD) were administered 50 mg kg-1 MD (treatment), 50 mg kg-1 metformin (positive control) and normal saline (HFD and ND controls) daily for four weeks via oral gavage. The ten-week HFD-feeding resulted in hyperglycemia and elevated urinary oxidative indices. The subsequent MD administration caused significant weight reduction without appetite suppression and amelioration of insulin resistance, steatosis and dyslipidemia. Besides, MD significantly reduced lipid hydroperoxides and protein carbonyls in tissue homogenates and urine and elevated Trolox equivalent antioxidant capacity (TEAC), ferric reducing antioxidant power (FRAP) and reduced glutathione (GSH) and thus, alleviated oxidative stress. The weight reduction was correlated with downregulation of inflammatory markers and the increased UCP-1 level, suggesting weight loss plausibly through thermogenesis. The Akkermansia genus (reflects improved metabolic status) in the HFD50 group was more abundant than that in the HFD group while the non-enzymatic antioxidant markers were strongly associated with UCP-1. In conclusion, MD ameliorates obesity and its related complications possibly via the upregulation of UCP-1 and increased abundance of Akkermansia genus and is promising as a therapeutic agent in the treatment of obesity and its associated metabolic disorders.
Collapse
Affiliation(s)
- Devi Nallappan
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Kek Heng Chua
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Kien Chai Ong
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia. and Laboratory Animal Centre, Centre of Research Services, Institute of Research Management & Monitoring, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Chun Wie Chong
- School of Pharmacy, Monash University Malaysia, 47500 Bandar Sunway, Selangor, Malaysia
| | - Cindy Shuan Ju Teh
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Uma Devi Palanisamy
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Bandar Sunway, Selangor, Malaysia
| | - Umah Rani Kuppusamy
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| |
Collapse
|
71
|
Netto Cândido TL, da Silva LE, Cândido FG, Valente FX, da Silva JS, Gomes Lopes DR, do Carmo Gouveia Peluzio M, Mantovani HC, de Cássia Gonçalves Alfenas R. Effect of the ingestion of vegetable oils associated with energy-restricted normofat diet on intestinal microbiota and permeability in overweight women. Food Res Int 2020; 139:109951. [PMID: 33509504 DOI: 10.1016/j.foodres.2020.109951] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 09/21/2020] [Accepted: 11/28/2020] [Indexed: 10/22/2022]
Abstract
Previous studies suggest that the type of dietary fatty acid may modulate the intestinal bacterial ecosystem. However, this effect is still inconclusive. Thus, the aim of this study was to investigate the effect of the intake of vegetable oils rich in different types of fatty acids, associated with energy-restricted normofat diets, on the composition of intestinal microbiota and permeability, on LPS concentrations, and fecal short chain fatty acids and pH. This was a 9 consecutive weeks (±5 days), randomized, parallel, double-blind clinical trial. Overweight women received daily breakfast containing 25 mL of one of the test oils: soybean oil (n = 17), extra virgin olive oil (n = 19) or coconut oil (n = 16). Blood, fecal and urine samples were collected on the first and last day of the experiment for the analysis of the variables of interest. The consumption of the three oils did not affect the diversity and relative abundance of intestinal bacteria. We observed an increase in bacterial richness estimated by the Chao 1 index, and a reduction in the concentration of isovaleric fatty acid in the group that ingested soybean oil. Paracellular and transcellular permeability increased after the ingestion of extra virgin olive oil and coconut oil. However, LPS concentrations remained unchanged. The intake of different types of fatty acids associated with the energy-restricted normofat diet modestly affected the intestinal microbiota and permeability, without resulting in metabolic endotoxemia in overweight women.
Collapse
Affiliation(s)
- Thalita Lin Netto Cândido
- Laboratory of Studies in Food Ingestion, Department of Nutrition and Health, Federal University of Vicosa, Avenida PH Rolfs, s/n, CEP 36570-900 Vicosa, Minas Gerais, Brazil.
| | - Laís Emilia da Silva
- Laboratory of Studies in Food Ingestion, Department of Nutrition and Health, Federal University of Vicosa, Avenida PH Rolfs, s/n, CEP 36570-900 Vicosa, Minas Gerais, Brazil
| | - Flávia Galvão Cândido
- Laboratory of Studies in Food Ingestion, Department of Nutrition and Health, Federal University of Vicosa, Avenida PH Rolfs, s/n, CEP 36570-900 Vicosa, Minas Gerais, Brazil
| | - Flávia Xavier Valente
- Laboratory of Studies in Food Ingestion, Department of Nutrition and Health, Federal University of Vicosa, Avenida PH Rolfs, s/n, CEP 36570-900 Vicosa, Minas Gerais, Brazil
| | - Juliana Soares da Silva
- Laboratory Anaerobic Microbiology, Department of Microbiology, Federal University of Vicosa, Avenida PH Rolfs, s/n, CEP 36570-900 Vicosa, Minas Gerais, Brazil
| | - Déborah Romaskevis Gomes Lopes
- Laboratory Anaerobic Microbiology, Department of Microbiology, Federal University of Vicosa, Avenida PH Rolfs, s/n, CEP 36570-900 Vicosa, Minas Gerais, Brazil
| | - Maria do Carmo Gouveia Peluzio
- Laboratory of Studies in Food Ingestion, Department of Nutrition and Health, Federal University of Vicosa, Avenida PH Rolfs, s/n, CEP 36570-900 Vicosa, Minas Gerais, Brazil
| | - Hilário Cuquetto Mantovani
- Laboratory Anaerobic Microbiology, Department of Microbiology, Federal University of Vicosa, Avenida PH Rolfs, s/n, CEP 36570-900 Vicosa, Minas Gerais, Brazil
| | - Rita de Cássia Gonçalves Alfenas
- Laboratory of Studies in Food Ingestion, Department of Nutrition and Health, Federal University of Vicosa, Avenida PH Rolfs, s/n, CEP 36570-900 Vicosa, Minas Gerais, Brazil.
| |
Collapse
|
72
|
Jones RB, Berger PK, Plows JF, Alderete TL, Millstein J, Fogel J, Iablokov SN, Rodionov DA, Osterman AL, Bode L, Goran MI. Lactose-reduced infant formula with added corn syrup solids is associated with a distinct gut microbiota in Hispanic infants. Gut Microbes 2020; 12:1813534. [PMID: 32887539 PMCID: PMC7524300 DOI: 10.1080/19490976.2020.1813534] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/23/2020] [Accepted: 08/11/2020] [Indexed: 02/03/2023] Open
Abstract
Infant formula feeding, compared with human milk, has been associated with development of a distinct infant gut microbiome, but no previous study has examined effects of formula with added sugars. This work examined differences in gut microbiota among 91 Hispanic infants who consumed human milk [at breast (BB) vs. pumped in bottle (BP)] and 2 kinds of infant formula [(traditional lactose-based (TF) vs. lactose-reduced with added sugar (ASF)]. At 1 and 6 months, infant stool was collected to characterize gut microbiota. At 6 months, mothers completed 24-hour dietary recalls and questionnaires to determine infant consumption of human milk (BB vs. BP) or formula (TF vs. ASF). Linear regression models were used to determine associations of milk consumption type and microbial features at 6 months. Infants in the formula groups exhibited a significantly more 'mature' microbiome than infants in the human milk groups with the most pronounced differences observed between the ASF vs. BB groups. In the ASF group, we observed reduced log-normalized abundance of Bifidobacteriaceae (TF-BB Mean Difference = -0.71, ASF-BB Mean Difference = -1.10), and increased abundance of Lachnospiraceae (TF-BB Mean Difference = +0.89, ASF-BB Mean Difference = +1.20). We also observed a higher Community Phenotype Index of propionate, most likely produced by Lachnospiraceae, in the ASF group (TF-BB Mean Difference = +0.27, ASF-BB Mean Difference = +0.36). This study provides the first evidence that consumption of infant formula with added sugar may have a stronger association than birth delivery mode, infant caloric intake, and maternal BMI on the infant's microbiome at 6 months of age.
Collapse
Affiliation(s)
- Roshonda B. Jones
- Department of Pediatrics, The Saban Research Institute, Children’s Hospital Los Angeles, University of Southern California, Los Angeles, CA, USA
| | - Paige K. Berger
- Department of Pediatrics, The Saban Research Institute, Children’s Hospital Los Angeles, University of Southern California, Los Angeles, CA, USA
| | - Jasmine F. Plows
- Department of Pediatrics, The Saban Research Institute, Children’s Hospital Los Angeles, University of Southern California, Los Angeles, CA, USA
| | - Tanya L. Alderete
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Joshua Millstein
- Department of Preventive Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jennifer Fogel
- Department of Pediatrics, The Saban Research Institute, Children’s Hospital Los Angeles, University of Southern California, Los Angeles, CA, USA
| | - Stanislav N. Iablokov
- A. A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
- P.G. Demidov Yaroslavl State University, Yaroslavl, Russia
| | - Dmitry A. Rodionov
- A. A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | | | - Lars Bode
- Department of Pediatrics and Larsson-Rosenquist Foundation Mother-Milk-Infant Center of Research Excellence, University of California, San Diego, CA, USA
| | - Michael I. Goran
- Department of Pediatrics, The Saban Research Institute, Children’s Hospital Los Angeles, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
73
|
Ratajczak AE, Rychter AM, Zawada A, Dobrowolska A, Krela-Kaźmierczak I. Lactose intolerance in patients with inflammatory bowel diseases and dietary management in prevention of osteoporosis. Nutrition 2020; 82:111043. [PMID: 33316755 DOI: 10.1016/j.nut.2020.111043] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 08/13/2020] [Accepted: 10/15/2020] [Indexed: 02/06/2023]
Abstract
Lactose intolerance affects 33% to 75% of the world population and may be associated with various genetic factors. Lactose in the diet can be found in milk and dairy products, which simultaneously constitute the primary sources of calcium. Gut microbiota also influences lactose tolerance. Patients with lactose intolerance often stop consuming milk and dairy products, which may lead to calcium and vitamin deficiency and osteoporosis. Insufficient production of lactase also occurs in patients with diseases of the gastrointestinal tract, such as inflammatory bowel diseases. Moreover, Crohn's disease and ulcerative colitis are risk factors for osteoporosis, and the intake of the proper amount of calcium is an essential element in preventing the decrease of bone mineral density. Diet may prevent the development of osteoporosis, thus, educating patients regarding proper diet should constitute a part of the treatment and prevention process. Patients should consume low-lactose, or lactose-free milk and bacterially fermented dairy products. Additionally, plant milk supplemented by calcium and vitamin D, mineral water with calcium, and certain vegetables also may be good sources of calcium.
Collapse
Affiliation(s)
- Alicja Ewa Ratajczak
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, Poland.
| | - Anna Maria Rychter
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, Poland
| | - Agnieszka Zawada
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, Poland
| | - Agnieszka Dobrowolska
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, Poland
| | - Iwona Krela-Kaźmierczak
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, Poland
| |
Collapse
|
74
|
Gut Microbiome in Children from Indigenous and Urban Communities in México: Different Subsistence Models, Different Microbiomes. Microorganisms 2020; 8:microorganisms8101592. [PMID: 33081076 PMCID: PMC7602701 DOI: 10.3390/microorganisms8101592] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/31/2020] [Accepted: 09/03/2020] [Indexed: 12/12/2022] Open
Abstract
The human gut microbiome is an important component that defines host health. Childhood is a particularly important period for the establishment and development of gut microbiota (GM). We sequenced the 16S rRNA gene from fecal samples of children between 5 and 10 years old, in two Mexican communities with contrasting lifestyles, i.e., “Westernized” (México City, n = 13) and “non-Westernized” (Me’phaa indigenous group, n = 29), in order to characterize and compare their GM. The main differences between these two communities were in bacteria associated with different types of diets (high animal protein and refined sugars vs. high fiber food, respectively). In addition, the GM of Me’phaa children showed higher total diversity and the presence of exclusive phyla, such as Deinococcus-Thermus, Chloroflexi, Elusimicrobia, Acidobacteria, and Fibrobacteres. In contrast, the children from México City showed less diversity and the presence of Saccharibacteria phylum, which was associated with the degradation of sugar compounds and was not present in the samples from Me’phaa children. This comparison provided further knowledge of the selective pressures affecting microbial ecosystemic composition over the course of human evolution and the potential consequences of pathophysiological states correlated with Westernization lifestyles.
Collapse
|
75
|
Lycium barbarum polysaccharide attenuates myocardial injury in high-fat diet-fed mice through manipulating the gut microbiome and fecal metabolome. Food Res Int 2020; 138:109778. [PMID: 33288164 DOI: 10.1016/j.foodres.2020.109778] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/24/2020] [Accepted: 10/01/2020] [Indexed: 01/15/2023]
Abstract
High-fat diets (HFDs) can induce health problems including gut microbiota dysbiosis and cardiac dysfunction. In this study, we modulated the gut microbiota in mice to investigate whether Lycium barbarum polysaccharide (LBP), a potential prebiotic fiber, could alleviate HFD-induced myocardial injury. Mice fed a HFD were given LBP (HFPD group) by gavage once/day for 2 months. Left ventricular function and serum trimethylamine N-oxide were significantly improved in HFPD mice compared with HFD mice. HFD increased the abundances of Bifidobacterium, Lactobacillus, and Romboutsia, while LBP increased the abundances of Gordonibacter, Parabacteroides, and Anaerostipes. Fecal metabolic profiling revealed significant increases in metabolites involved in nicotinate, nicotinamide and purine metabolism pathways, as well as indole derivatives of tryptophan metabolites in the HFPD group. LBP reduced intestinal permeability and inflammatory cytokine levels, maintained a healthy intestinal microenvironment, and alleviated myocardial injury. Modulating the gut microbiota is a potential treatment for cardiovascular diseases.
Collapse
|
76
|
Shastry RP, Rekha PD. Bacterial cross talk with gut microbiome and its implications: a short review. Folia Microbiol (Praha) 2020; 66:15-24. [PMID: 32949007 DOI: 10.1007/s12223-020-00821-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 09/09/2020] [Indexed: 12/14/2022]
Abstract
Human gut microbiota exists in a complicated symbiotic relationship which postulates to impact health and disease conditions on the host. Interestingly, the gut microbiome shows different mechanisms to regulate host physiology and metabolism including cell-to-cell communications. But microbiota imbalance is characterized to change in the host normal functioning and lead to the development and progression of major human diseases. Therefore, the direct cross talk through the microbial metabolites or peptides suggests the evidence of host health and disease. Recent reports highlight the adaptation signals/small molecules promoting microbial colonization which allows modulating immunity of host and leads to pathogen colonization. Moreover, quorum sensing peptides are also evident in the involvement of host disease conditions. Here, we review the current understanding of the gut microbiota cross talk with mammalian cells through metabolites and peptides. These studies are providing insight into the prediction of signature molecules which significantly provide information for the understanding of the interaction for precision medicine applications.
Collapse
Affiliation(s)
- Rajesh P Shastry
- Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore, 575018, India.
| | - P D Rekha
- Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore, 575018, India
| |
Collapse
|
77
|
Elias-Oliveira J, Leite JA, Pereira ÍS, Guimarães JB, Manso GMDC, Silva JS, Tostes RC, Carlos D. NLR and Intestinal Dysbiosis-Associated Inflammatory Illness: Drivers or Dampers? Front Immunol 2020; 11:1810. [PMID: 32903730 PMCID: PMC7438795 DOI: 10.3389/fimmu.2020.01810] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 07/07/2020] [Indexed: 12/12/2022] Open
Abstract
The intestinal microbiome maintains a close relationship with the host immunity. This connection fosters a health state by direct and indirect mechanisms. Direct influences occur mainly through the production of short-chain fatty acids (SCFAs), gastrointestinal hormones and precursors of bioactive molecules. Indirect mechanisms comprise the crosstalk between bacterial products and the host's innate immune system. Conversely, intestinal dysbiosis is a condition found in a large number of chronic intestinal inflammatory diseases, such as ulcerative colitis and Crohn's disease, as well as in diseases associated with low-grade inflammation, such as obesity, type 1 and 2 diabetes mellitus and cardiovascular diseases. NOD-Like receptors (NLRs) are cytoplasmic receptors expressed by adaptive and innate immune cells that form a multiprotein complex, termed the inflammasome, responsible for the release of mature interleukin (IL)-1β and IL-18. NLRs are also involved in the recognition of bacterial components and production of antimicrobial molecules that shape the gut microbiota and maintain the intestinal homeostasis. Recent novel findings show that NLRs may act as positive or negative regulators of inflammation by modulating NF-κB activation. This mini-review presents current and updated evidence on the interplay between NLRs and gut microbiota and their dual role, contributing to progression or conferring protection, in diabetes and other inflammatory diseases.
Collapse
Affiliation(s)
- Jefferson Elias-Oliveira
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Jefferson Antônio Leite
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Ítalo Sousa Pereira
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Jhefferson Barbosa Guimarães
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Gabriel Martins da Costa Manso
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - João Santana Silva
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Rita Cássia Tostes
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Daniela Carlos
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
78
|
Gao R, Shen Y, Shu W, Jin W, Bai F, Wang J, Zhang Y, El-Seedi H, Sun Q, Yuan L. Sturgeon hydrolysates alleviate DSS-induced colon colitis in mice by modulating NF-κB, MAPK, and microbiota composition. Food Funct 2020; 11:6987-6999. [PMID: 32701080 DOI: 10.1039/c9fo02772f] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Sturgeon muscle byproduct collected after caviar production is usually not fully utilized, and sometimes may be discarded, thus causing a lot of waste. Yet dietary protein hydrolysates, which may be derived from sturgeon muscle, have been reported to have versatile beneficial biological activities. Studying the biological activities of sturgeon muscle-derived hydrolysates holds much promise for adding value to sturgeon. The current study aimed to study the therapeutic anti-inflammatory effects of sturgeon muscle-derived hydrolysates and the underlying mechanisms. The administration of sturgeon hydrolysates (SH) significantly decreased the severity of DSS-induced damage, evidenced by increased body weight, colon length, and decreased disease activity index (DAI) and histological scores. SH also inhibited myeloperoxidase (MPO) activity and reduced the serum levels of IL-6, IL-1β, and TNF-α. Western blotting results revealed that SH suppressed DSS-induced activation of the NF-κB and MAPK pathways in the colon. Furthermore, SH partially restored the alteration of the gut microbiota in colitic mice. SH increased the Bacteroidetes/Firmicutes ratio and the relative abundance of Ruminococcaceae, Porphyromonadaceae, and Bacteroidetes S24-7, while decreased the abundance of potentially harmful bacteria Erysipelotrichaceae and Enterococcaceae. These results suggest that SH inhibited DSS-induced colitis by regulating the NF-κB and MAPK pathways and modulating microbiota composition.
Collapse
Affiliation(s)
- Ruichang Gao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, P. R. China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Mitsou EK, Saxami G, Stamoulou E, Kerezoudi E, Terzi E, Koutrotsios G, Bekiaris G, Zervakis GI, Mountzouris KC, Pletsa V, Kyriacou A. Effects of Rich in Β-Glucans Edible Mushrooms on Aging Gut Microbiota Characteristics: An In Vitro Study. Molecules 2020; 25:E2806. [PMID: 32570735 PMCID: PMC7355846 DOI: 10.3390/molecules25122806] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/15/2020] [Accepted: 06/16/2020] [Indexed: 12/21/2022] Open
Abstract
Alterations of gut microbiota are evident during the aging process. Prebiotics may restore the gut microbial balance, with β-glucans emerging as prebiotic candidates. This study aimed to investigate the impact of edible mushrooms rich in β-glucans on the gut microbiota composition and metabolites by using in vitro static batch culture fermentations and fecal inocula from elderly donors (n = 8). Pleurotus ostreatus, P. eryngii, Hericium erinaceus and Cyclocybe cylindracea mushrooms derived from various substrates were examined. Gut microbiota composition (quantitative PCR (qPCR)) and short-chain fatty acids (SCFAs; gas chromatography (GC)) were determined during the 24-h fermentation. P. eryngii induced a strong lactogenic effect, while P. ostreatus and C. cylindracea induced a significant bifidogenic effect (p for all <0.05). Furthermore, P. eryngii produced on wheat straw and the prebiotic inulin had comparable Prebiotic Indexes, while P. eryngii produced on wheat straw/grape marc significantly increased the levels of tested butyrate producers. P. ostreatus, P. eryngii and C. cylindracea had similar trends in SCFA profile; H. erinaceus mushrooms were more diverse, especially in the production of propionate, butyrate and branched SCFAs. In conclusion, mushrooms rich in β-glucans may exert beneficial in vitro effects in gut microbiota and/or SCFAs production in elderly subjects.
Collapse
Affiliation(s)
- Evdokia K. Mitsou
- Department of Nutrition and Dietetics, Harokopio University, 17671 Athens, Greece; (E.K.M.); (G.S.); (E.S.); (E.K.); (E.T.)
| | - Georgia Saxami
- Department of Nutrition and Dietetics, Harokopio University, 17671 Athens, Greece; (E.K.M.); (G.S.); (E.S.); (E.K.); (E.T.)
| | - Emmanuela Stamoulou
- Department of Nutrition and Dietetics, Harokopio University, 17671 Athens, Greece; (E.K.M.); (G.S.); (E.S.); (E.K.); (E.T.)
| | - Evangelia Kerezoudi
- Department of Nutrition and Dietetics, Harokopio University, 17671 Athens, Greece; (E.K.M.); (G.S.); (E.S.); (E.K.); (E.T.)
| | - Eirini Terzi
- Department of Nutrition and Dietetics, Harokopio University, 17671 Athens, Greece; (E.K.M.); (G.S.); (E.S.); (E.K.); (E.T.)
| | - Georgios Koutrotsios
- Laboratory of General and Agricultural Microbiology, Department of Crop Science, Agricultural University of Athens, 11855 Athens, Greece; (G.K.); (G.B.); (G.I.Z.)
| | - Georgios Bekiaris
- Laboratory of General and Agricultural Microbiology, Department of Crop Science, Agricultural University of Athens, 11855 Athens, Greece; (G.K.); (G.B.); (G.I.Z.)
| | - Georgios I. Zervakis
- Laboratory of General and Agricultural Microbiology, Department of Crop Science, Agricultural University of Athens, 11855 Athens, Greece; (G.K.); (G.B.); (G.I.Z.)
| | | | - Vasiliki Pletsa
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece;
| | - Adamantini Kyriacou
- Department of Nutrition and Dietetics, Harokopio University, 17671 Athens, Greece; (E.K.M.); (G.S.); (E.S.); (E.K.); (E.T.)
| |
Collapse
|
80
|
Machate DJ, Figueiredo PS, Marcelino G, Guimarães RDCA, Hiane PA, Bogo D, Pinheiro VAZ, de Oliveira LCS, Pott A. Fatty Acid Diets: Regulation of Gut Microbiota Composition and Obesity and Its Related Metabolic Dysbiosis. Int J Mol Sci 2020; 21:E4093. [PMID: 32521778 PMCID: PMC7312778 DOI: 10.3390/ijms21114093] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 03/27/2020] [Accepted: 03/27/2020] [Indexed: 02/06/2023] Open
Abstract
Long-term high-fat dietary intake plays a crucial role in the composition of gut microbiota in animal models and human subjects, which affect directly short-chain fatty acid (SCFA) production and host health. This review aims to highlight the interplay of fatty acid (FA) intake and gut microbiota composition and its interaction with hosts in health promotion and obesity prevention and its related metabolic dysbiosis. The abundance of the Bacteroidetes/Firmicutes ratio, as Actinobacteria and Proteobacteria species are associated with increased SCFA production, reported high-fat diet rich in medium-chain fatty acids (MCFAs), monounsaturated fatty acids (MUFAs), and n-3 polyunsaturated fatty acids (PUFAs) as well as low-fat diets rich in long-chain fatty acids (LCFAs). SCFAs play a key role in health promotion and prevention and, reduction and reversion of metabolic syndromes in the host. Furthermore, in this review, we discussed the type of fatty acids and their amount, including the administration time and their interplay with gut microbiota and its results about health or several metabolic dysbioses undergone by hosts.
Collapse
Affiliation(s)
- David Johane Machate
- Graduate Program in Biotechnology and Biodiversity in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul, Campo Grande 79079-900, Brazil; (D.J.M.); (A.P.)
| | - Priscila Silva Figueiredo
- Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul, Campo Grande 79079-900, Brazil; (P.S.F.); (G.M.); (P.A.H.); (D.B.); (V.A.Z.P.)
| | - Gabriela Marcelino
- Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul, Campo Grande 79079-900, Brazil; (P.S.F.); (G.M.); (P.A.H.); (D.B.); (V.A.Z.P.)
| | - Rita de Cássia Avellaneda Guimarães
- Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul, Campo Grande 79079-900, Brazil; (P.S.F.); (G.M.); (P.A.H.); (D.B.); (V.A.Z.P.)
| | - Priscila Aiko Hiane
- Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul, Campo Grande 79079-900, Brazil; (P.S.F.); (G.M.); (P.A.H.); (D.B.); (V.A.Z.P.)
| | - Danielle Bogo
- Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul, Campo Grande 79079-900, Brazil; (P.S.F.); (G.M.); (P.A.H.); (D.B.); (V.A.Z.P.)
| | - Verônica Assalin Zorgetto Pinheiro
- Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul, Campo Grande 79079-900, Brazil; (P.S.F.); (G.M.); (P.A.H.); (D.B.); (V.A.Z.P.)
| | | | - Arnildo Pott
- Graduate Program in Biotechnology and Biodiversity in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul, Campo Grande 79079-900, Brazil; (D.J.M.); (A.P.)
| |
Collapse
|
81
|
Tong Q, Hu ZF, Du XP, Bie J, Wang HB. Effects of Seasonal Hibernation on the Similarities Between the Skin Microbiota and Gut Microbiota of an Amphibian (Rana dybowskii). MICROBIAL ECOLOGY 2020; 79:898-909. [PMID: 31820074 DOI: 10.1007/s00248-019-01466-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 11/14/2019] [Indexed: 06/10/2023]
Abstract
Both the gut and skin microbiotas have important functions for amphibians. The gut microbiota plays an important role in both the health and evolution of the host species, whereas the role of skin microbiota in disease resistance is particularly important for amphibians. Many studies have examined the effects of environmental factors on the skin and gut microbiotas, but no study has yet explored the similarities between the skin and gut microbiotas. In this study, the gut and skin microbiotas of Rana dybowskii in summer and winter were investigated via high-throughput Illumina sequencing. The results showed that the alpha diversity of gut and skin microbiotas decreased significantly from summer to winter. In both seasons, the microbial composition and structure differed significantly between the gut and skin, and the similarities between these microbiotas differed between seasons. The pairwise distances between the gut and skin microbiotas were greater in winter than in summer. The ratio of core OTUs and shared OTUs to the sum of the OTUs in the gut and skin microbiotas in summer was significantly higher than that in winter. The similarities between the gut and skin microbiotas are important for understanding amphibian ecology and life history.
Collapse
Affiliation(s)
- Qing Tong
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Harbin, 150030, China
| | - Zong-Fu Hu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Xiao-Peng Du
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Jia Bie
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Hong-Bin Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Harbin, 150030, China.
| |
Collapse
|
82
|
The Effects of Low-Nickel Diet Combined with Oral Administration of Selected Probiotics on Patients with Systemic Nickel Allergy Syndrome (SNAS) and Gut Dysbiosis. Nutrients 2020; 12:nu12041040. [PMID: 32283870 PMCID: PMC7230804 DOI: 10.3390/nu12041040] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/06/2020] [Accepted: 04/08/2020] [Indexed: 12/15/2022] Open
Abstract
Background: Nickel (Ni) oral consumption may elicit systemic reactions in patients affected by systemic nickel allergy syndrome (SNAS), including gastrointestinal symptoms, which in turn are associated with gut dysbiosis. We evaluated the effects of a low-Ni diet alone or in combination with the oral consumption of appropriate probiotics on Ni-sensitivity and urinary dysbiosis markers in SNAS patients. Methods: n = 51 patients with SNAS and concomitant intestinal dysbiosis were enrolled in the study. According to the urinary indican/skatole levels, quantified through a colorimetric and a high-performance liquid chromatographic method, respectively, patients were assigned to a dysbiosis type/grade and followed a low-Ni diet for three months. Along with the diet, 22 patients also consumed probiotics based on the dysbiosis type. In particular, a Lactobacilli- or Bifidobacteria-containing formulation was administered to patients with fermentative or putrefactive dysbiosis, respectively, while a broad-spectrum probiotic formulation containing both Lactobacilli and Bifidobacteria was administered to patients with mixed dysbiosis. After three months, patients were invited to repeat the Ni-stimulation and the dysbiosis tests. Results: The fermentative dysbiosis group represented the largest group followed by the mixed dysbiosis group, while only two patients had putrefactive dysbiosis. Overall, at three months of treatment in general (diet alone with or without probiotics), the Ni-sensitivity and dysbiosis levels were strongly ameliorated. The association of a low-Ni diet with a specific probiotic oral supplementation was significantly more effective in decreasing dysbiosis levels or reaching eubiosis than with diet alone. Conclusion: Our results, while confirming the benefits of a low-Ni diet in SNAS patients, strongly support that appropriate adjuvant treatment with probiotics significantly helps to improve intestinal dysbiosis or restore a healthy microbiota.
Collapse
|
83
|
Abstract
We are in the midst of “the microbiome revolution”—not a day goes by without some new revelation on the potential role of the gut microbiome in some disease or disorder. From an ever-increasing recognition of the many roles of the gut microbiome in health and disease comes the expectation that its modulation could treat or prevent these very same diseases. A variety of interventions could, at least in theory, be employed to alter the composition or functional capacity of the microbiome, ranging from diet to fecal microbiota transplantation (FMT). For some, such as antibiotics, prebiotics, and probiotics, an extensive, albeit far from consistent, literature already exists; for others, such as other dietary supplements and FMT, high-quality clinical studies are still relatively few in number. Not surprisingly, researchers have turned to the microbiome itself as a source for new entities that could be used therapeutically to manipulate the microbiome; for example, some probiotic strains currently in use were sourced from the gastrointestinal tract of healthy humans. From all of the extant studies of interventions targeted at the gut microbiome, a number of important themes have emerged. First, with relatively few exceptions, we are still a long way from a precise definition of the role of the gut microbiome in many of the diseases where a disturbed microbiome has been described—association does not prove causation. Second, while animal models can provide fascinating insights into microbiota–host interactions, they rarely recapitulate the complete human phenotype. Third, studies of several interventions have been difficult to interpret because of variations in study population, test product, and outcome measures, not to mention limitations in study design. The goal of microbiome modulation is a laudable one, but we need to define our targets, refine our interventions, and agree on outcomes.
Collapse
Affiliation(s)
- Eamonn M M Quigley
- Lynda K and David M Underwood Center for Digestive Disorders, Division of Gastroenterology and Hepatology, Houston Methodist Hospital, Houston, Texas, 77030, USA
| | - Prianka Gajula
- Department of Medicine, Houston Methodist Hospital, Houston, Texas, 77030, USA
| |
Collapse
|
84
|
Xavier-Santos D, Bedani R, Lima ED, Saad SMI. Impact of probiotics and prebiotics targeting metabolic syndrome. J Funct Foods 2020. [DOI: 10.1016/j.jff.2019.103666] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
85
|
Sinibaldi EM, Zelaya AM. Is the Diet Industry Disrupting Your Microbiota? CURRENT TROPICAL MEDICINE REPORTS 2019. [DOI: 10.1007/s40475-019-00189-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
86
|
Effects of sialylated lactulose on the mouse intestinal microbiome using Illumina high-throughput sequencing. Appl Microbiol Biotechnol 2019; 103:9067-9076. [DOI: 10.1007/s00253-019-10169-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/12/2019] [Accepted: 10/08/2019] [Indexed: 01/19/2023]
|
87
|
Simeoni M, Citraro ML, Cerantonio A, Deodato F, Provenzano M, Cianfrone P, Capria M, Corrado S, Libri E, Comi A, Pujia A, Abenavoli L, Andreucci M, Cocchi M, Montalcini T, Fuiano G. An open-label, randomized, placebo-controlled study on the effectiveness of a novel probiotics administration protocol (ProbiotiCKD) in patients with mild renal insufficiency (stage 3a of CKD). Eur J Nutr 2019; 58:2145-2156. [PMID: 30076458 PMCID: PMC6647244 DOI: 10.1007/s00394-018-1785-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 07/17/2018] [Indexed: 12/16/2022]
Abstract
PURPOSE Gut dysbiosis has been described in advanced, but not in initial stages of CKD. Considering the relevant impact of gut dysbiosis on renal and cardiovascular risk, its diagnosis and treatment are clinically relevant. METHODS We designed, open-label, placebo-controlled intervention study (ProbiotiCKD) to evaluate gut microbiota metabolism in a cohort of KDIGO CKD patients (n = 28) at baseline and after a randomly assigned treatment with probiotics or placebo. Gut microbiota status was evaluated on:. RESULTS Basal mean fecal Lactobacillales and Bifidobacteria concentrations were abnormally low in both groups, while urinary indican and 3-MI levels were, indicating a mixed (fermentative and putrefactive) dysbiosis. After treatment, mean fecal Lactobacillales and Bifidobacteria concentrations were increased, only in the probiotics group (p < 0.001). Conversely, mean urinary indican and 3-MI levels only in the group treated with probiotics (p < 0.001). Compared to placebo group, significant improvements of C-reactive protein (p < 0.001), iron (p < 0.001), ferritin (p < 0.001), transferrin saturation (p < 0.001), β2-microglobulin (p < 0.001), serum iPTH and serum calcium were observed only in the probiotics group. CONCLUSIONS ProbiotiCKD is the first intervention study demonstrating that an intestinal mixed dysbiosis is present even in early CKD stage and can be effectively corrected by the novel mode of administration of high-quality probiotics with improvement of inflammatory indices, iron status and iPTH stabilization.
Collapse
Affiliation(s)
- Mariadelina Simeoni
- Nephrology Unit, Department of Surgical and Medical Science, 'Magna Graecia' University Hospital, Viale Europa, Germaneto Area, 88100, Catanzaro, CZ, Italy.
| | - Maria Lucia Citraro
- Nephrology Unit, Department of Surgical and Medical Science, 'Magna Graecia' University Hospital, Viale Europa, Germaneto Area, 88100, Catanzaro, CZ, Italy
| | - Annamaria Cerantonio
- Nephrology Unit, Department of Surgical and Medical Science, 'Magna Graecia' University Hospital, Viale Europa, Germaneto Area, 88100, Catanzaro, CZ, Italy
| | - Francesca Deodato
- Nephrology Unit, Department of Surgical and Medical Science, 'Magna Graecia' University Hospital, Viale Europa, Germaneto Area, 88100, Catanzaro, CZ, Italy
| | - Michele Provenzano
- Nephrology Unit, Department of Surgical and Medical Science, 'Magna Graecia' University Hospital, Viale Europa, Germaneto Area, 88100, Catanzaro, CZ, Italy
| | - Paola Cianfrone
- Nephrology Unit, Department of Surgical and Medical Science, 'Magna Graecia' University Hospital, Viale Europa, Germaneto Area, 88100, Catanzaro, CZ, Italy
| | - Maria Capria
- Nephrology Unit, Department of Surgical and Medical Science, 'Magna Graecia' University Hospital, Viale Europa, Germaneto Area, 88100, Catanzaro, CZ, Italy
| | - Silvia Corrado
- Nephrology Unit, Department of Surgical and Medical Science, 'Magna Graecia' University Hospital, Viale Europa, Germaneto Area, 88100, Catanzaro, CZ, Italy
| | - Emanuela Libri
- Nephrology Unit, Department of Surgical and Medical Science, 'Magna Graecia' University Hospital, Viale Europa, Germaneto Area, 88100, Catanzaro, CZ, Italy
| | - Alessandro Comi
- Nephrology Unit, Department of Surgical and Medical Science, 'Magna Graecia' University Hospital, Viale Europa, Germaneto Area, 88100, Catanzaro, CZ, Italy
| | - Arturo Pujia
- Clinical Nutrition Unit, 'Magna Graecia' University Hospital, 88100, Catanzaro, CZ, Italy
| | - Ludovico Abenavoli
- Digestive Physiopathology Unit, 'Magna Graecia' University Hospital, 88100, Catanzaro, CZ, Italy
| | - Michele Andreucci
- Nephrology Unit, Department of Surgical and Medical Science, 'Magna Graecia' University Hospital, Viale Europa, Germaneto Area, 88100, Catanzaro, CZ, Italy
| | - Massimo Cocchi
- "Paolo Sotgiu" Institute for Research in Quantitative and Quantum Psychiatry and Cardiology, LUdeS, Lugano, Switzerland
| | - Tiziana Montalcini
- Clinical Nutrition Unit, 'Magna Graecia' University Hospital, 88100, Catanzaro, CZ, Italy
| | - Giorgio Fuiano
- Nephrology Unit, Department of Surgical and Medical Science, 'Magna Graecia' University Hospital, Viale Europa, Germaneto Area, 88100, Catanzaro, CZ, Italy
| |
Collapse
|
88
|
Gommers LMM, Ederveen THA, van der Wijst J, Overmars-Bos C, Kortman GAM, Boekhorst J, Bindels RJM, de Baaij JHF, Hoenderop JGJ. Low gut microbiota diversity and dietary magnesium intake are associated with the development of PPI-induced hypomagnesemia. FASEB J 2019; 33:11235-11246. [PMID: 31299175 DOI: 10.1096/fj.201900839r] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Proton pump inhibitors (PPIs) are used by millions of patients for the treatment of stomach acid-reflux diseases. Although PPIs are generally considered safe, about 13% of the users develop hypomagnesemia. Despite rising attention for this issue, the underlying mechanism is still unknown. Here, we examine whether the gut microbiome is involved in the development of PPI-induced hypomagnesemia in wild-type C57BL/6J mice. After 4 wk of treatment under normal or low dietary Mg2+ availability, omeprazole significantly reduced serum Mg2+ levels only in mice on a low-Mg2+ diet without affecting the mRNA expression of colonic or renal Mg2+ transporters. Overall, 16S rRNA gene sequencing revealed a lower gut microbial diversity in omeprazole-treated mice. Omeprazole induced a shift in microbial composition, which was associated with a 3- and 2-fold increase in the abundance of Lactobacillus and Bifidobacterium, respectively. To examine the metabolic consequences of these microbial alterations, the colonic composition of organic acids was evaluated. Low dietary Mg2+ intake, independent of omeprazole treatment, resulted in a 10-fold increase in formate levels. Together, these results imply that both omeprazole treatment and low dietary Mg2+ intake disturb the gut internal milieu and may pose a risk for the malabsorption of Mg2+ in the colon.-Gommers, L. M. M., Ederveen, T. H. A., van der Wijst, J., Overmars-Bos, C., Kortman, G. A. M., Boekhorst, J., Bindels, R. J. M., de Baaij, J. H. F., Hoenderop, J. G. J. Low gut microbiota diversity and dietary magnesium intake are associated with the development of PPI-induced hypomagnesemia.
Collapse
Affiliation(s)
- Lisanne M M Gommers
- Department of Physiology, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center (RADBOUDUMC), Nijmegen, The Netherlands
| | - Thomas H A Ederveen
- Center for Molecular and Biomolecular Informatics (CMBI), Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center (Radboudumc), Nijmegen, The Netherlands.,NIZO Food Research, Ede, The Netherlands
| | - Jenny van der Wijst
- Department of Physiology, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center (RADBOUDUMC), Nijmegen, The Netherlands
| | - Caro Overmars-Bos
- Department of Physiology, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center (RADBOUDUMC), Nijmegen, The Netherlands
| | | | - Jos Boekhorst
- Center for Molecular and Biomolecular Informatics (CMBI), Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center (Radboudumc), Nijmegen, The Netherlands.,NIZO Food Research, Ede, The Netherlands
| | - René J M Bindels
- Department of Physiology, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center (RADBOUDUMC), Nijmegen, The Netherlands
| | - Jeroen H F de Baaij
- Department of Physiology, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center (RADBOUDUMC), Nijmegen, The Netherlands
| | - Joost G J Hoenderop
- Department of Physiology, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center (RADBOUDUMC), Nijmegen, The Netherlands
| |
Collapse
|
89
|
Zhang Z, Chen X, Zhao J, Tian C, Wei X, Li H, Lin W, Jiang A, Feng R, Yuan J, Zhao X. Effects of a Lactulose-Rich Diet on Fecal Microbiome and Metabolome in Pregnant Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:7674-7683. [PMID: 31132256 DOI: 10.1021/acs.jafc.9b01479] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Lactulose, a safe and beneficial molecule, can be used in food as a prebiotic and as an osmotic laxative during pregnancy. This work evaluated the effects of dietary lactulose on the gut microenvironment of pregnant mice using the fecal microbiota and metabolomic profiling. After 2 weeks of feeding, the Bifidobacterium and Bacteroides abundances in the mouse feces were significantly increased in the LAC-high (the diet supplemented with 15% lactulose) group. A total of 15 metabolites, including 1-monoolein, glucose-6-phosphate, and short-chain fatty acids, were increased significantly in the LAC-high group. The serum glucose and total cholesterol concentrations were significantly decreased, while the progesterone level was significantly increased in the lactulose-fed mice. In the LAC-high group, the colonic pH and intestinal permeability were decreased, while the immunoglobulins in the colonic epithelial cells and the small intestinal absorption capacity were significantly increased. These findings indicated that lactulose supplementation benefitted pregnancy performance in mice.
Collapse
Affiliation(s)
- Zheng Zhang
- College of Food Science , South China Agricultural University , Guangzhou , Guangdong 510642 , People's Republic of China
| | - Xiao Chen
- College of Food Science , South China Agricultural University , Guangzhou , Guangdong 510642 , People's Republic of China
| | - Jiangtao Zhao
- Department of Histology and Embryology, School of Basic Medical Sciences , Zhengzhou University , Zhengzhou , Henan 450001 , People's Republic of China
| | - Changyu Tian
- Institute of Disease Control and Prevention , Chinese People's Liberation Army (PLA) , Beijing 100071 , People's Republic of China
| | - Xiao Wei
- Institute of Disease Control and Prevention , Chinese People's Liberation Army (PLA) , Beijing 100071 , People's Republic of China
| | - Huan Li
- Institute of Disease Control and Prevention , Chinese People's Liberation Army (PLA) , Beijing 100071 , People's Republic of China
| | - Weishi Lin
- Institute of Disease Control and Prevention , Chinese People's Liberation Army (PLA) , Beijing 100071 , People's Republic of China
| | - Aimin Jiang
- College of Food Science , South China Agricultural University , Guangzhou , Guangdong 510642 , People's Republic of China
| | - Ruo Feng
- Department of Histology and Embryology, School of Basic Medical Sciences , Zhengzhou University , Zhengzhou , Henan 450001 , People's Republic of China
| | - Jing Yuan
- Institute of Disease Control and Prevention , Chinese People's Liberation Army (PLA) , Beijing 100071 , People's Republic of China
| | - Xiangna Zhao
- Institute of Disease Control and Prevention , Chinese People's Liberation Army (PLA) , Beijing 100071 , People's Republic of China
| |
Collapse
|
90
|
Jayachandran M, Chung SSM, Xu B. A critical review of the relationship between dietary components, the gut microbe Akkermansia muciniphila, and human health. Crit Rev Food Sci Nutr 2019; 60:2265-2276. [DOI: 10.1080/10408398.2019.1632789] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Muthukumaran Jayachandran
- Food Science and Technology Programme, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai, China
| | - Stephen Sum Man Chung
- Food Science and Technology Programme, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai, China
| | - Baojun Xu
- Food Science and Technology Programme, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai, China
| |
Collapse
|
91
|
Pero R, Brancaccio M, Laneri S, Biasi MGD, Lombardo B, Scudiero O. A Novel View of Human Helicobacter pylori Infections: Interplay between Microbiota and Beta-Defensins. Biomolecules 2019; 9:biom9060237. [PMID: 31216758 PMCID: PMC6627275 DOI: 10.3390/biom9060237] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 06/11/2019] [Accepted: 06/13/2019] [Indexed: 02/07/2023] Open
Abstract
The gut microbiota is significantly involved in the preservation of the immune system of the host, protecting it against the pathogenic bacteria of the stomach. The correlation between gut microbiota and the host response supports human gastric homeostasis. Gut microbes may be shifted in Helicobacter pylori (Hp)-infected individuals to advance gastric inflammation and distinguished diseases. Particularly interesting is the establishment of cooperation between gut microbiota and antimicrobial peptides (AMPs) of the host in the gastrointestinal tract. AMPs have great importance in the innate immune reactions to Hp and participate in conservative co-evolution with an intricate microbiome. β-Defensins, a class of short, cationic, arginine-rich proteins belonging to the AMP group, are produced by epithelial and immunological cells. Their expression is enhanced during Hp infection. In this review, we discuss the impact of the gut microbiome on the host response, with particular regard to β-defensins in Hp-associated infections. In microbial infections, mostly in precancerous lesions induced by Hp infection, these modifications could lead to different outcomes.
Collapse
Affiliation(s)
- Raffaela Pero
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", 80131 Napoli, Italy.
- Task Force sugli Studi del Microbioma, Università degli Studi di Napoli "Federico II", 80131 Napoli, Italy.
| | - Mariarita Brancaccio
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, 80121 Napoli, Italy.
| | - Sonia Laneri
- Dipartimento di Farmacia, Università degli Studi di Napoli "Federico II", Via Montesano 49, 80131 Napoli, Italy.
| | | | - Barbara Lombardo
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", 80131 Napoli, Italy.
- CEINGE-Biotecnologie Avanzate Scarl, Via G. Salvatore 486, 80145 Napoli, Italy.
| | - Olga Scudiero
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", 80131 Napoli, Italy.
- Task Force sugli Studi del Microbioma, Università degli Studi di Napoli "Federico II", 80131 Napoli, Italy.
- CEINGE-Biotecnologie Avanzate Scarl, Via G. Salvatore 486, 80145 Napoli, Italy.
| |
Collapse
|
92
|
Lv XC, Guo WL, Li L, Yu XD, Liu B. Polysaccharide peptides from Ganoderma lucidum ameliorate lipid metabolic disorders and gut microbiota dysbiosis in high-fat diet-fed rats. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.03.043] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
93
|
Metabolic Modeling of Clostridium difficile Associated Dysbiosis of the Gut Microbiota. Processes (Basel) 2019. [DOI: 10.3390/pr7020097] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Recent in vitro experiments have demonstrated the ability of the pathogen Clostridium difficile and commensal gut bacteria to form biofilms on surfaces, and biofilm development in vivo is likely. Various studies have reported that 3%–15% of healthy adults are asymptomatically colonized with C. difficile, with commensal species providing resistance against C. difficile pathogenic colonization. C. difficile infection (CDI) is observed at a higher rate in immunocompromised patients previously treated with broad spectrum antibiotics that disrupt the commensal microbiota and reduce competition for available nutrients, resulting in imbalance among commensal species and dysbiosis conducive to C. difficile propagation. To investigate the metabolic interactions of C. difficile with commensal species from the three dominant phyla in the human gut, we developed a multispecies biofilm model by combining genome-scale metabolic reconstructions of C. difficile, Bacteroides thetaiotaomicron from the phylum Bacteroidetes, Faecalibacterium prausnitzii from the phylum Firmicutes, and Escherichia coli from the phylum Proteobacteria. The biofilm model was used to identify gut nutrient conditions that resulted in C. difficile-associated dysbiosis characterized by large increases in C. difficile and E. coli abundances and large decreases in F. prausnitzii abundance. We tuned the model to produce species abundances and short-chain fatty acid levels consistent with available data for healthy individuals. The model predicted that experimentally-observed host-microbiota perturbations resulting in decreased carbohydrate/increased amino acid levels and/or increased primary bile acid levels would induce large increases in C. difficile abundance and decreases in F. prausnitzii abundance. By adding the experimentally-observed perturbation of increased host nitrate secretion, the model also was able to predict increased E. coli abundance associated with C. difficile dysbiosis. In addition to rationalizing known connections between nutrient levels and disease progression, the model generated hypotheses for future testing and has the capability to support the development of new treatment strategies for C. difficile gut infections.
Collapse
|
94
|
What is the Healthy Gut Microbiota Composition? A Changing Ecosystem across Age, Environment, Diet, and Diseases. Microorganisms 2019; 7:microorganisms7010014. [PMID: 30634578 PMCID: PMC6351938 DOI: 10.3390/microorganisms7010014] [Citation(s) in RCA: 1966] [Impact Index Per Article: 327.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 12/15/2018] [Accepted: 01/09/2019] [Indexed: 02/06/2023] Open
Abstract
Each individual is provided with a unique gut microbiota profile that plays many specific functions in host nutrient metabolism, maintenance of structural integrity of the gut mucosal barrier, immunomodulation, and protection against pathogens. Gut microbiota are composed of different bacteria species taxonomically classified by genus, family, order, and phyla. Each human's gut microbiota are shaped in early life as their composition depends on infant transitions (birth gestational date, type of delivery, methods of milk feeding, weaning period) and external factors such as antibiotic use. These personal and healthy core native microbiota remain relatively stable in adulthood but differ between individuals due to enterotypes, body mass index (BMI) level, exercise frequency, lifestyle, and cultural and dietary habits. Accordingly, there is not a unique optimal gut microbiota composition since it is different for each individual. However, a healthy host⁻microorganism balance must be respected in order to optimally perform metabolic and immune functions and prevent disease development. This review will provide an overview of the studies that focus on gut microbiota balances in the same individual and between individuals and highlight the close mutualistic relationship between gut microbiota variations and diseases. Indeed, dysbiosis of gut microbiota is associated not only with intestinal disorders but also with numerous extra-intestinal diseases such as metabolic and neurological disorders. Understanding the cause or consequence of these gut microbiota balances in health and disease and how to maintain or restore a healthy gut microbiota composition should be useful in developing promising therapeutic interventions.
Collapse
|
95
|
Diet-Independent Correlations between Bacteria and Dysfunction of Gut, Adipose Tissue, and Liver: A Comprehensive Microbiota Analysis in Feces and Mucosa of the Ileum and Colon in Obese Mice with NAFLD. Int J Mol Sci 2018; 20:ijms20010001. [PMID: 30577415 PMCID: PMC6337295 DOI: 10.3390/ijms20010001] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 12/04/2018] [Accepted: 12/15/2018] [Indexed: 12/21/2022] Open
Abstract
Development of non-alcoholic fatty liver disease (NAFLD) is linked to obesity, adipose tissue inflammation, and gut dysfunction, all of which depend on diet. So far, studies have mainly focused on diet-related fecal microbiota changes, but other compartments may be more informative on host health. We present a first systematic analysis of microbiota changes in the ileum and colon using multiple diets and investigating both fecal and mucosal samples. Ldlr−/−.Leiden mice received one of three different energy-dense (ED)-diets (n = 15/group) for 15 weeks. All of the ED diets induced obesity and metabolic risk factors, altered short-chain fatty acids (SCFA), and increased gut permeability and NAFLD to various extents. ED diets reduced the diversity of high-abundant bacteria and increased the diversity of low-abundant bacteria in all of the gut compartments. The ED groups showed highly variable, partially overlapping microbiota compositions that differed significantly from chow. Correlation analyses demonstrated that (1) specific groups of bacteria correlate with metabolic risk factors, organ dysfunction, and NAFLD endpoints, (2) colon mucosa had greater predictive value than other compartments, (3) correlating bacteria differed per compartment, and (4) some bacteria correlated with plasma SCFA levels. In conclusion, this comprehensive microbiota analysis demonstrates correlations between the microbiota and dysfunctions of gut, adipose tissue, and liver, independent of a specific disease-inducing diet.
Collapse
|
96
|
Zhai S, Zhu L, Qin S, Li L. Effect of lactulose intervention on gut microbiota and short chain fatty acid composition of C57BL/6J mice. Microbiologyopen 2018; 7:e00612. [PMID: 29575825 PMCID: PMC6291785 DOI: 10.1002/mbo3.612] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 01/30/2018] [Accepted: 01/31/2018] [Indexed: 01/15/2023] Open
Abstract
Gut microbiota have strong connections with health. Lactulose has been shown to regulate gut microbiota and benefit host health. In this study, the effect of short-term (3 week) intervention of lactulose on gut microbiota was investigated. Gut microbiota were detected from mouse feces by 16S rRNA high-throughput sequencing, and short chain fatty acids (SCFAs) were detected by gas chromatography-mass spectrometry (GC-MS). Lactulose intervention enhanced the α-diversity of the gut microbiota; increased the abundance of hydrogen-producing bacteria Prevotellaceae and Rikenellaceae, probiotics Bifidobacteriaceae and Lactobacillaceae, and mucin-degrading bacteria Akkermansia and Helicobacter; decreased the abundance of harmful bacteria Desulfovibrionaceae and branched-chain SCFAs (BCFAs). These results suggest that lactulose intervention effectively increased the diversity and improved the structure of the intestinal microbiota, which may be beneficial for host health.
Collapse
Affiliation(s)
- Shixiang Zhai
- Yantai Institute of Coastal Zone ResearchChinese Academy of SciencesYantaiShandongChina
- University of Chinese Academy of SciencesBeijingChina
| | - Limeng Zhu
- Yantai Institute of Coastal Zone ResearchChinese Academy of SciencesYantaiShandongChina
- University of Chinese Academy of SciencesBeijingChina
- Institute of Process EngineeringChinese Academy of ScienceBeijingChina
| | - Song Qin
- Yantai Institute of Coastal Zone ResearchChinese Academy of SciencesYantaiShandongChina
| | - Lili Li
- Yantai Institute of Coastal Zone ResearchChinese Academy of SciencesYantaiShandongChina
| |
Collapse
|
97
|
Adalsteinsdottir SA, Magnusdottir OK, Halldorsson TI, Birgisdottir BE. Towards an Individualized Nutrition Treatment: Role of the Gastrointestinal Microbiome in the Interplay Between Diet and Obesity. Curr Obes Rep 2018; 7:289-293. [PMID: 30361871 DOI: 10.1007/s13679-018-0321-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
PURPOSE OF REVIEW Dietary treatments for obesity have relatively low long-term success. Recent studies have identified the gastrointestinal microbiome as a factor of high relevance. The current knowledge on the interplay between diet, obesity, and the gastrointestinal microbiome and the potential for individualized dietary treatment will be discussed. RECENT FINDINGS Studies indicate that each individual digests and metabolizes identical food substances differently depending on their gastrointestinal microbiome composition. Factors related to this crosstalk may improve our understanding of weight homeostasis and treatment of obesity. Long-time dietary intake is the key in the composition of the gastrointestinal microbiome which seems to be an important factor for energy balance, resulting in emerging opportunities for increasingly varied obesity treatment. Compliance to dietary treatment is critical for long-term success as enduring changes in gastrointestinal microbiome seem to slow over time. More research is urgently needed to investigate this missing link in our understanding of obesity.
Collapse
Affiliation(s)
- Solveig A Adalsteinsdottir
- Unit for Nutrition Research, Faculty of Food Science and Nutrition, Landspitali University Hospital, University of Iceland, Eiriksgata 29, 101, Reykjavik, Iceland
| | - Ola K Magnusdottir
- Unit for Nutrition Research, Faculty of Food Science and Nutrition, Landspitali University Hospital, University of Iceland, Eiriksgata 29, 101, Reykjavik, Iceland
| | - Thorhallur I Halldorsson
- Unit for Nutrition Research, Faculty of Food Science and Nutrition, Landspitali University Hospital, University of Iceland, Eiriksgata 29, 101, Reykjavik, Iceland
- Centre for Fetal Programming, Department of Epidemiology Research, Statens Serum Institut, DK-2300, Copenhagen, Denmark
| | - Bryndis E Birgisdottir
- Unit for Nutrition Research, Faculty of Food Science and Nutrition, Landspitali University Hospital, University of Iceland, Eiriksgata 29, 101, Reykjavik, Iceland.
| |
Collapse
|
98
|
Jenkins TP, Formenti F, Castro C, Piubelli C, Perandin F, Buonfrate D, Otranto D, Griffin JL, Krause L, Bisoffi Z, Cantacessi C. A comprehensive analysis of the faecal microbiome and metabolome of Strongyloides stercoralis infected volunteers from a non-endemic area. Sci Rep 2018; 8:15651. [PMID: 30353019 PMCID: PMC6199319 DOI: 10.1038/s41598-018-33937-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 10/05/2018] [Indexed: 02/08/2023] Open
Abstract
Data from recent studies support the hypothesis that infections by human gastrointestinal (GI) helminths impact, directly and/or indirectly, on the composition of the host gut microbial flora. However, to the best of our knowledge, these studies have been conducted in helminth-endemic areas with multi-helminth infections and/or in volunteers with underlying gut disorders. Therefore, in this study, we explore the impact of natural mono-infections by the human parasite Strongyloides stercoralis on the faecal microbiota and metabolic profiles of a cohort of human volunteers from a non-endemic area of northern Italy (S+), pre- and post-anthelmintic treatment, and compare the findings with data obtained from a cohort of uninfected controls from the same geographical area (S-). Analyses of bacterial 16S rRNA high-throughput sequencing data revealed increased microbial alpha diversity and decreased beta diversity in the faecal microbial profiles of S+ subjects compared to S-. Furthermore, significant differences in the abundance of several bacterial taxa were observed between samples from S+ and S- subjects, and between S+ samples collected pre- and post-anthelmintic treatment. Faecal metabolite analysis detected marked increases in the abundance of selected amino acids in S+ subjects, and of short chain fatty acids in S- subjects. Overall, our work adds valuable knowledge to current understanding of parasite-microbiota associations and will assist future mechanistic studies aimed to unravel the causality of these relationships.
Collapse
Affiliation(s)
- Timothy P Jenkins
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Fabio Formenti
- Centre for Tropical Diseases, IRCCS Sacro Cuore-Don Calabria Hospital, Negrar, Verona, Italy
| | - Cecilia Castro
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Chiara Piubelli
- Centre for Tropical Diseases, IRCCS Sacro Cuore-Don Calabria Hospital, Negrar, Verona, Italy
| | - Francesca Perandin
- Centre for Tropical Diseases, IRCCS Sacro Cuore-Don Calabria Hospital, Negrar, Verona, Italy
| | - Dora Buonfrate
- Centre for Tropical Diseases, IRCCS Sacro Cuore-Don Calabria Hospital, Negrar, Verona, Italy
| | - Domenico Otranto
- Department of Veterinary Medicine, University of Bari, Valenzano, Italy
| | - Julian L Griffin
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Lutz Krause
- The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, QLD, Australia
| | - Zeno Bisoffi
- Centre for Tropical Diseases, IRCCS Sacro Cuore-Don Calabria Hospital, Negrar, Verona, Italy
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Cinzia Cantacessi
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
99
|
Gut microbiome: Microflora association with obesity and obesity-related comorbidities. Microb Pathog 2018; 124:266-271. [PMID: 30138755 DOI: 10.1016/j.micpath.2018.08.036] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 06/26/2018] [Accepted: 08/18/2018] [Indexed: 12/23/2022]
Abstract
Obesity and obesity-related comorbidities have transformed into a global epidemic. The number of people suffering from obesity has increased dramatically within the past few decades. This rise in obesity cannot alone be explained by genetic factors; however, diet, environment, lifestyle, and presence of other diseases undoubtedly contribute towards obesity etiology. Nevertheless, evidence suggests that alterations in the gut microbial diversity and composition have a role to play in energy assimilation, storage, and expenditure. In this review, the impact of gut microbiota composition on metabolic functionalities, and potential therapeutics such as gut microbial modulation to manage obesity and its associated comorbidities are highlighted. Optimistically, an understanding of the gut microbiome could facilitate the innovative clinical strategies to restore the normal gut flora and improve lifestyle-related diseases in the future.
Collapse
|
100
|
Rebuilding the Gut Microbiota Ecosystem. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15081679. [PMID: 30087270 PMCID: PMC6121872 DOI: 10.3390/ijerph15081679] [Citation(s) in RCA: 183] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 08/04/2018] [Indexed: 11/17/2022]
Abstract
A microbial ecosystem in which bacteria no longer live in a mutualistic association is called dysbiotic. Gut microbiota dysbiosis is a condition related with the pathogenesis of intestinal illnesses (irritable bowel syndrome, celiac disease, and inflammatory bowel disease) and extra-intestinal illnesses (obesity, metabolic disorder, cardiovascular syndrome, allergy, and asthma). Dysbiosis status has been related to various important pathologies, and many therapeutic strategies aimed at restoring the balance of the intestinal ecosystem have been implemented. These strategies include the administration of probiotics, prebiotics, and synbiotics; phage therapy; fecal transplantation; bacterial consortium transplantation; and a still poorly investigated approach based on predatory bacteria. This review discusses the various aspects of these strategies to counteract intestinal dysbiosis.
Collapse
|