51
|
Zhang M, Yang L, Zhu M, Yang B, Yang Y, Jia X, Feng L. Moutan Cortex polysaccharide ameliorates diabetic kidney disease via modulating gut microbiota dynamically in rats. Int J Biol Macromol 2022; 206:849-860. [PMID: 35307460 DOI: 10.1016/j.ijbiomac.2022.03.077] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/01/2022] [Accepted: 03/12/2022] [Indexed: 12/11/2022]
Abstract
Growing evidence suggests that polysaccharides from traditional Chinese medicine positively affect diabetic kidney disease (DKD) mainly through modulating gut microbiota. Previously, we demonstrated that supplementation with the polysaccharide from Moutan Cortex (MC-Pa) alleviated DKD in rats. The study intends to investigate the dynamic modulation of MC-Pa on DKD from the gut microbiota perspective. The DKD rat model was induced by a high-fat and high-sugar diet combined with streptozotocin (STZ). The rats were then supplemented with MC-Pa (80 and 160 mg/kg BW) for 12 weeks. The results showed that MC-Pa administration relieved hyperglycemia and renal injury in DKD rats. MC-Pa also reconstructed gut microbiota, improved intestinal barrier function, reduced serum proinflammatory mediators, and elevated the short-chain fatty acid (SCFAs) contents. In addition, the dynamics of Lactobacillus and Muribaculaceae_unclassified were in a dose- and time-dependent manner. Spearman correlation analysis found that a cluster of gut microbiota phyla and genera were significantly associated with DKD-related indicators. These results demonstrated that MC-Pa positively affected DKD rats by modulating gut microbiota dynamically and had potential as a prebiotic.
Collapse
Affiliation(s)
- Meng Zhang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China
| | - Licheng Yang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China
| | - Maomao Zhu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China
| | - Bing Yang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China
| | - Yanjun Yang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China
| | - Xiaobin Jia
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China.
| | - Liang Feng
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China.
| |
Collapse
|
52
|
Lin B, Huang G. Extraction, isolation, purification, derivatization, bioactivity, structure-activity relationship and application of polysaccharides from white jellyfungus. Biotechnol Bioeng 2022; 119:1359-1379. [PMID: 35170761 DOI: 10.1002/bit.28064] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 01/31/2022] [Accepted: 02/09/2022] [Indexed: 11/07/2022]
Abstract
White jellyfungus is one of the most popular nutritional supplements. The polysaccharide (WJP) is an important active component of white jellyfungus, it not only has a variety of biological activities but also is non-toxic to humans. So, many scholars have carried out different researches on WJP. However, the lack of a detailed summary of WJP limits the scale of industrial development of WJP. Herein, the research progress of WJP in extraction, isolation, structure, derivatization and structure-activity relationship was reviewed. Different extraction methods were compared, the activity and application of WJP were summarized, and the structure-activity relationship of WJP was emphasized in order to provide effective theoretical support for improving the utilization of WJP and promoting the application of related industries. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Bobo Lin
- Laboratory of Carbohydrate Science and Engineering, Chongqing Key Laboratory of Inorganic Functional Materials, Chongqing Normal University, Chongqing, 401331, China
| | - Gangliang Huang
- Laboratory of Carbohydrate Science and Engineering, Chongqing Key Laboratory of Inorganic Functional Materials, Chongqing Normal University, Chongqing, 401331, China
| |
Collapse
|
53
|
Khursheed R, Singh SK, Kumar B, Wadhwa S, Gulati M, A A, Awasthi A, Vishwas S, Kaur J, Corrie L, K R A, Kumar R, Jha NK, Gupta PK, Zacconi F, Dua K, Chitranshi N, Mustafa G, Kumar A. Self-nanoemulsifying composition containing curcumin, quercetin, Ganoderma lucidum extract powder and probiotics for effective treatment of type 2 diabetes mellitus in streptozotocin induced rats. Int J Pharm 2022; 612:121306. [PMID: 34813906 DOI: 10.1016/j.ijpharm.2021.121306] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/05/2021] [Accepted: 11/14/2021] [Indexed: 01/06/2023]
Abstract
Liquid self-nanoemulsifying drug delivery system (L-SNEDDS) of curcumin and quercetin were prepared by dissolving them in isotropic mixture of Labrafil M1944CS®, Capmul MCM®, Tween-80® and Transcutol P®. The prepared L-SNEDDS were solidified using Ganoderma lucidum extract, probiotics and Aerosil-200® using spray drying. These were further converted into pellets using extrusion-spheronization. The mean droplet size and zeta potential of L-SNEDDS were found to be 63.46 ± 2.12 nm and - 14.8 ± 3.11 mV while for solid SNEDDS pellets, these were 72.46 ± 2.16 nm and -38.7 ± 1.34 mV, respectively. The dissolution rate for curcumin and quercetin each was enhanced by 4.5 folds while permeability was enhanced by 5.28 folds (curcumin) and 3.35 folds (quercetin) when loaded into SNEDDS pellets. The Cmax for curcumin and quercetin containing SNEDDS pellets was found 532.34 ± 5.64 ng/mL and 4280 ± 65.67 ng/mL, respectively. This was 17.55 and 3.48 folds higher as compared to their naïve forms. About 50.23- and 5.57-folds increase in bioavailability was observed for curcumin and quercetin respectively, upon loading into SNEDDS pellets. SNEDDS pellets were found stable at accelerated storage conditions. The developed formulation was able to normalize the levels of blood glucose, lipids, antioxidant biomarkers, and tissue architecture of pancreas and liver in streptozotocin induced diabetic rats as compared to their naïve forms.
Collapse
Affiliation(s)
- Rubiya Khursheed
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India.
| | - Bimlesh Kumar
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Sheetu Wadhwa
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Anupriya A
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Ankit Awasthi
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Sukriti Vishwas
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Jaskiran Kaur
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Leander Corrie
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Arya K R
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Rajan Kumar
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Plot No.32-34 Knowledge Park III, Greater Noida, Uttar Pradesh 201310, India
| | - Piyush Kumar Gupta
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Plot no. 32 - 34, Knowledge Park III, Greater Noida 201310, Uttar Pradesh, India
| | - Flavia Zacconi
- Departamento de Química Orgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago, Chile; Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Macul, Santiago 7820436, Chile
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Nitin Chitranshi
- Faculty of Medicine, Health and Human Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW 2109, Australia
| | - Gulam Mustafa
- Department of Pharmaceutical Sciences, College of Pharmacy, Aldawadmi, Shaqra University, King Saud University
| | - Ankit Kumar
- Amity Institute of Pharmacy, Amity University Madhya Pradesh, Maharajpura, Gwalior, Madhya Pradesh 474005, India
| |
Collapse
|
54
|
Mohanta B, Sen DJ, Mahanti B, Nayak AK. Antioxidant potential of herbal polysaccharides: An overview on recent researches. SENSORS INTERNATIONAL 2022. [DOI: 10.1016/j.sintl.2022.100158] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
55
|
Santos JAM, Santos CLAA, Freitas Filho JR, Menezes PH, Freitas JCR. Polyacetylene Glycosides: Isolation, Biological Activities and Synthesis. CHEM REC 2021; 22:e202100176. [PMID: 34665514 DOI: 10.1002/tcr.202100176] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 01/17/2023]
Abstract
Polyacetylene glycosides (PAGs) constitute a relatively small class of secondary metabolites characterized by the presence of a sugar unit anomerically connected to a polyacetylene. These compounds are found in fungi, seaweed, and more often in plants. PAGs exhibit a wide range of biological and pharmacological activities and, as a result, the literature of these compounds has grown exponentially in recent years.
Collapse
Affiliation(s)
- Jonh A M Santos
- Departamento de Química, Universidade Federal Rural de Pernambuco, Recife, PE, Brazil.,Instituto Federal de Pernambuco, Barreiros, PE, Brazil
| | - Cláudia L A A Santos
- Departamento de Química Fundamental, Universidade Federal de Pernambuco, Recife,PE, Brazil
| | - João R Freitas Filho
- Departamento de Química, Universidade Federal Rural de Pernambuco, Recife, PE, Brazil
| | - Paulo H Menezes
- Departamento de Química Fundamental, Universidade Federal de Pernambuco, Recife,PE, Brazil
| | - Juliano C R Freitas
- Centro de Educação e Saúde, Universidade Federal de Campina Grande, Cuité, PB, Brazil
| |
Collapse
|
56
|
Seweryn E, Ziała A, Gamian A. Health-Promoting of Polysaccharides Extracted from Ganoderma lucidum. Nutrients 2021; 13:2725. [PMID: 34444885 PMCID: PMC8400705 DOI: 10.3390/nu13082725] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 11/16/2022] Open
Abstract
Medicinal mushrooms are rich sources of pharmacologically active compounds. One of the mushrooms commonly used in traditional Chinese medicine is Ganoderma lucidum (Leyss. Ex Fr.) Karst. In Asian countries it is treated as a nutraceutical, whose regular consumption provides vitality and improves health. Ganoderma lucidum is an important source of biologically active compounds. The pharmacologically active fraction of polysaccharides has antioxidant, immunomodulatory, antineurodegenerative and antidiabetic activities. In this review, we summarize the activity of Ganoderma lucidum polysaccharides (GLP).
Collapse
Affiliation(s)
- Ewa Seweryn
- Department of Medical Biochemistry, Wroclaw Medical University, 50-368 Wrocław, Poland;
| | - Anna Ziała
- Department of Medical Biochemistry, Wroclaw Medical University, 50-368 Wrocław, Poland;
| | - Andrzej Gamian
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland;
| |
Collapse
|
57
|
Insights into health-promoting effects of Jew's ear (Auricularia auricula-judae). Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.06.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
58
|
Fu CY, Ren L, Liu WJ, Sui Y, Nong QN, Xiao QH, Li XQ, Cao W. Structural characteristics of a hypoglycemic polysaccharide from Fructus Corni. Carbohydr Res 2021; 506:108358. [PMID: 34111687 DOI: 10.1016/j.carres.2021.108358] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 05/06/2021] [Accepted: 05/24/2021] [Indexed: 02/08/2023]
Abstract
PFC-3 is a homogeneous polysaccharide extracted from the dried pulps of Fructus Corni with a molecular weight of 40.3 kDa. The crude polysaccharide was obtained and further purified by DEAE-Sephadex A-25 and Sephadex G-100 columns to investigate its structure and glycemic effect. The monosaccharides in the PFC-3, determined by high-performance liquid chromatography, consisted of glucose (Glc), xylose (Xyl), and galactose (Gal) with a mass molar ratio of 2.35:12.49:1.00. The methylation analysis combined with 1D (1H and 13C), and 2D NMR (1H-1H COSY, HSQC, and HMBC) further demonstrated that PFC-3 was mainly composed of 1,3-α-D-Xylp, 1,6-α-D-Galp, 1,2-α-D-Glcp, and T-α-D-Galp, and contained a backbone fragment of →6)-α-D-Galp-(1 → 2)-α-D-Glcp-(1 → 3)-α-D-Xylp-(1 → . The hypoglycemic effect of PFC-3 in vitro was evaluated by glucose uptake and consumption assays, and the results showed that PFC-3 concentration-dependently enhanced glucose uptake and significantly improved glucose consumption in insulin-resistant HepG2 cells. Furthermore, PFC-3 significantly reduced fasting blood glucose level, glycosylated hemoglobin level, amylase activity, ameliorate lipid metabolism, and hepatic lesions in streptozotocin-induced diabetic rats. Our research provided insights into the hypoglycemic activities of PFC-3.
Collapse
Affiliation(s)
- Cheng-Yang Fu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, School of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, China
| | - Li Ren
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, School of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, China
| | - Wen-Juan Liu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, School of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, China
| | - Yi Sui
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, School of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, China
| | - Qiu-Na Nong
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, School of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, China
| | - Qian-Han Xiao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, School of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, China
| | - Xiao-Qiang Li
- Department of Pharmacology and Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Wei Cao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, School of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, China; Department of Pharmacology and Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, School of Pharmacy, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
59
|
Gu M, Yuan YP, Qin ZN, Xu Y, Shi NN, Wang YP, Zhai HQ, Qian ZZ. A combined quality evaluation method that integrates chemical constituents, appearance traits and origins of raw Rehmanniae Radix pieces. Chin J Nat Med 2021; 19:551-560. [PMID: 34247780 DOI: 10.1016/s1875-5364(21)60056-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Indexed: 12/27/2022]
Abstract
The quality control of Chinese herbal medicine is a current challenge for the internationalization of traditional Chinese medicine. Traditional quality evaluation methods lack quantitative analysis, while modern quality evaluation methods ignore the origins and appearance traits. Therefore, an integrated quality evaluation method is urgent in need. Raw Rehmanniae Radix (RRR) is commonly used in Chinese herbal medicine. At present, much attention has been drwan towards its quality control, which however is limited by the existing quality evaluation methods. The present study was designed to establish a comprehensive and practical method for the quality evaluation and control of RRR pieces based on its chemical constituents, appearance traits and origins. Thirty-three batches of RRR pieces were collected from six provinces, while high-performance liquid chromatography (HPLC) was applied to determine the following five constituents, including catalpol, rehmannioside A, rehmannioside D, leonuride and verbascoside in RRR pieces. Their appearance traits were quantitatively observed. Furthermore, correlation analysis, principal components analysis (PCA), cluster analysis and t-test were performed to evaluate the qualities of RRR pieces. These batches of RRR pieces were divided into three categories: samples from Henan province, samples from Shandong and Shanxi provinces, and those from other provinces. Furthermore, the chemical constituents and appearance traits of RRR pieces were significantly different from diverse origins. The combined method of chemical contituents, appearance traits and origins can distinguish RRR pieces with different qualities, which provides basic reference for the quality control of Chinese herbal medicine.
Collapse
Affiliation(s)
- Min Gu
- Standardization Research Center of Traditional Chinese Medicine Dispensing, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Yi-Ping Yuan
- Standardization Research Center of Traditional Chinese Medicine Dispensing, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Zi-Nan Qin
- Standardization Research Center of Traditional Chinese Medicine Dispensing, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yan Xu
- Standardization Research Center of Traditional Chinese Medicine Dispensing, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Nan-Nan Shi
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yan-Ping Wang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Hua-Qiang Zhai
- Standardization Research Center of Traditional Chinese Medicine Dispensing, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Zhong-Zhi Qian
- National Pharmacopoeia Commission, Beijing 100061, China.
| |
Collapse
|
60
|
Yin H, Yan HH, Qin CQ, Li HR, Li X, Ren DF. Protective effect of fermented Diospyros lotus L. extracts against the high glucose-induced apoptosis of MIN6 cells. J Food Biochem 2021; 45:e13685. [PMID: 33682148 DOI: 10.1111/jfbc.13685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/23/2021] [Accepted: 02/18/2021] [Indexed: 11/27/2022]
Abstract
Date plum persimmon (Diospyros lotus L.) is a fruit crop from the Ebenaceae family. Its microorganism-fermented extract (DPEML) was shown to exhibit a hypoglycemic effect in our previous work. Here, we investigated the effects of DPEML fermented by Microbacterium flavum YM18-098 and Lactobacillus plantarum B7 on the high glucose-induced apoptosis of MIN6 cells and explored its potential cell protective mechanisms. DPEML ameliorated the apoptosis of MIN6 cells cultured under high glucose conditions, thereby improving cell viability. DPEML upregulated the Bcl-2/Bax mRNA ratio to obstruct an intrinsic apoptotic pathway and concomitantly downregulated the expression of the apoptosis-linked proteins, AIF, and Cyt-C, in high glucose-induced MIN6 cells. Furthermore, DPEML promoted the insulin secretion of MIN6 cells grown under chronically high-glucose conditions by upregulating Ins mRNA expression. In summary, our study suggested that DPEML is a promising functional food for the development of therapeutics for the treatment of Type 2 diabetes mellitus. PRACTICAL APPLICATIONS: We investigated the effects of DPEML fermented by Microbacterium flavum YM18-098 and Lactobacillus plantarum B7 on the high glucose-induced apoptosis of MIN6 cells and explored its potential cell protective mechanisms. DPEML ameliorated the apoptosis of MIN6 cells cultured under high glucose conditions, thereby improving cell viability. DPEML upregulated the Bcl-2/Bax mRNA ratio to obstruct an intrinsic apoptotic pathway and concomitantly downregulated the expression of the apoptosis-linked proteins, AIF and Cyt-C, in high glucose-induced MIN6 cells. Furthermore, DPEML promoted the insulin secretion of MIN6 cells grown under chronically high-glucose conditions by upregulating Ins mRNA expression. We suggested that DPEML is a promising functional food for the development of therapeutics for the treatment of Type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Hao Yin
- Beijing Key Laboratory of Forest Food Process and Safety, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, People's Republic of China
| | - Huan-Huan Yan
- Beijing Key Laboratory of Forest Food Process and Safety, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, People's Republic of China
| | - Chen-Qiang Qin
- Beijing Key Laboratory of Forest Food Process and Safety, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, People's Republic of China
| | - Hai-Rong Li
- Shexian Junqian Winery Co., LTD., Hebei, People's Republic of China
| | - Xue Li
- Beijing Key Laboratory of Forest Food Process and Safety, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, People's Republic of China
| | - Di-Feng Ren
- Beijing Key Laboratory of Forest Food Process and Safety, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, People's Republic of China
| |
Collapse
|
61
|
Characterization of a novel polysaccharide from Moutan Cortex and its ameliorative effect on AGEs-induced diabetic nephropathy. Int J Biol Macromol 2021; 176:589-600. [PMID: 33581205 DOI: 10.1016/j.ijbiomac.2021.02.062] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/26/2021] [Accepted: 02/08/2021] [Indexed: 02/02/2023]
Abstract
This study aimed to investigate the structure of a new heteropolysaccharide (MC-Pa) from Moutan Cortex (MC), and its protection on diabetic nephropathy (DN). The MC-Pa composed of D-glucose and L-arabinose (3.31:2.25) was characterized with homogeneous molecular weight of 1.64 × 105 Da, and the backbone was 4)-α-D-Glcp-(1 → 5-α-L-Araf-(1 → 3,5-α-L-Araf-(1→, branched partially at O-3 with α-L-Araf-(1 → residue with methylated-GC-MS and NMR. Furthermore, MC-Pa possessed strong antioxidant activity in vitro and inhibited the production of ROS caused by AGEs. In vivo, MC-Pa could alleviate mesangial expansion and tubulointerstitial fibrosis of DN rats in histopathology and MC-Pa could decrease significantly the serum levels of AGEs and RAGE. Western blot and immunohistochemical analysis showed that MC-Pa can reduce the expression of main protein (FN and Col IV) of extracellular-matrix, down-regulate the production of inflammatory factors (ICAM-1 and VCAM-1), and therefore regulate the pathway of TGF-β1. The above indicated that MC-Pa has an improving effect on DN.
Collapse
|
62
|
Lin C, Kuo TC, Lin JC, Ho YC, Mi FL. Delivery of polysaccharides from Ophiopogon japonicus (OJPs) using OJPs/chitosan/whey protein co-assembled nanoparticles to treat defective intestinal epithelial tight junction barrier. Int J Biol Macromol 2020; 160:558-570. [DOI: 10.1016/j.ijbiomac.2020.05.151] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 05/07/2020] [Accepted: 05/18/2020] [Indexed: 12/20/2022]
|
63
|
Gynura divaricata exerts hypoglycemic effects by regulating the PI3K/AKT signaling pathway and fatty acid metabolism signaling pathway. Nutr Diabetes 2020; 10:31. [PMID: 32796820 PMCID: PMC7427804 DOI: 10.1038/s41387-020-00134-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 07/26/2020] [Accepted: 08/05/2020] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVES The study aimed to examine the anti-diabetic effects of Gynura divaricata (GD) and the underlying mechanism. METHODS Information about the chemical compositions of GD was obtained from extensive literature reports. Potential target genes were predicted using PharmMapper and analyzed using Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO). To validate the results from bioinformatics analyses, an aqueous extract of GD was administered to type 2 diabetic rats established by feeding a high-fat and high-sugar diet followed by STZ injection. Key proteins of the PI3K/AKT signaling pathway and fatty acid metabolism signaling pathway were investigated by immunoblotting. RESULTS The blood glucose of the rats in the GD treatment group was significantly reduced compared with the model group without treatment. GD also showed activities in reducing the levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), blood urea nitrogen (BUN), and creatinine (CREA). The levels of urine sugar (U-GLU) and urine creatinine (U-CREA) were also lowered after treatment with GD. Bioinformatics analysis showed that some pathways including metabolic pathways, insulin resistance, insulin signaling pathway, PPAR signaling pathway, bile secretion, purine metabolism, etc. may be regulated by GD. Furthermore, GD significantly increased the protein expression levels of PKM1/2, p-AKT, PI3K p85, and GLUT4 in the rat liver. In addition, the expression levels of key proteins in the fatty acid metabolism signaling pathway including AMPK, p-AMPK, PPARα, and CPT1α were significantly upregulated. The anti-apoptotic protein BCL-2/BAX expression ratio in rats was significantly upregulated after GD intervention. These results were consistent with the bioinformatics analysis results. CONCLUSIONS Our study suggests that GD can exert hypoglycemic effects in vivo by regulating the genes at the key nodes of the PI3K/AKT signaling pathway and fatty acid metabolism signaling pathway.
Collapse
|
64
|
Al-Jaidi BA, Odetallah HM, Chandrasekaran B, Amro R. Herbal Medications for the Management of Diabetes Mellitus: A Review. CURRENT TRADITIONAL MEDICINE 2020. [DOI: 10.2174/2215083805666190820115332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Diabetes mellitus is a chronic metabolic disorder of the endocrine system affecting
people worldwide. It is a serious disorder that needs lifetime control which is mainly
treated by numerous chemical agents. Most of these chemical agents are associated with various
unpleasant adverse effects, as a result of which there is a growing interest towards the
alternative medicines which are found to be comparatively safer causing less adverse effects.
As there are many plant’s extracts which are evident to provide hypoglycemic effect, intensive
investigations are under progress to explore their advantageous effects on diabetic patients.
This article discusses some of these important plants that are either being used for diabetes
treatment or under investigation for future drug development.
Collapse
Affiliation(s)
- Bilal A. Al-Jaidi
- Faculty of Pharmacy, Philadelphia University, P.O BOX (1), Philadelphia University (19392), Jordan
| | - Haifa'a Marouf Odetallah
- Faculty of Pharmacy, Philadelphia University, P.O BOX (1), Philadelphia University (19392), Jordan
| | - Balakumar Chandrasekaran
- Faculty of Pharmacy, Philadelphia University, P.O BOX (1), Philadelphia University (19392), Jordan
| | - Razan Amro
- Department of Chemistry, The University of Jordan, Amman 11942, Jordan
| |
Collapse
|
65
|
Cao P, Wu S, Wu T, Deng Y, Zhang Q, Wang K, Zhang Y. The important role of polysaccharides from a traditional Chinese medicine-Lung Cleansing and Detoxifying Decoction against the COVID-19 pandemic. Carbohydr Polym 2020; 240:116346. [PMID: 32475597 PMCID: PMC7175912 DOI: 10.1016/j.carbpol.2020.116346] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/11/2020] [Accepted: 04/17/2020] [Indexed: 01/04/2023]
Abstract
The new coronavirus pneumonia, named COVID-19 by the World Health Organization, has become a pandemic. It is highly pathogenic and reproduces quickly. There are currently no specific drugs to prevent the reproduction and spread of COVID-19. Some traditional Chinese medicines, especially the Lung Cleansing and Detoxifying Decoction (Qing Fei Pai Du Tang), have shown therapeutic effects on mild and ordinary COVID-19 patients. Polysaccharides are important ingredients in this decoction. This review summarizes the potential pharmacological activities of polysaccharides isolated by hot water extraction from Lung Cleansing and Detoxifying Decoction, which is consistent with its production method, to provide the theoretical basis for ongoing research on its application.
Collapse
Affiliation(s)
- Peng Cao
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, 430022 China.
| | - Sanlan Wu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, 430022 China
| | - Tingting Wu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, 430022 China
| | - Yahui Deng
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, 430022 China
| | - Qilin Zhang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, 430022 China
| | - Kaiping Wang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yu Zhang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, 430022 China.
| |
Collapse
|
66
|
Han X, Bai B, Zhou Q, Niu J, Yuan J, Zhang H, Jia J, Zhao W, Chen H. Dietary supplementation with polysaccharides from Ziziphus Jujuba cv. Pozao intervenes in immune response via regulating peripheral immunity and intestinal barrier function in cyclophosphamide-induced mice. Food Funct 2020; 11:5992-6006. [PMID: 32697211 DOI: 10.1039/d0fo00008f] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Ziziphus Jujuba cv. Pozao has been consumed as a traditional fruit with regional characteristics in China for a long time; however, fewer studies on polysaccharides from Ziziphus Jujuba cv. Pozao (JP) have been documented. This study aimed to evaluate the effect of oral administration of JP on cyclophosphamide-induced ICR mice for 28 days. The results showed that oral administration of JP could significantly improve the lymphocyte proliferation in the spleen and decrease the proportion of CD3+ and CD4+ and the ratio of CD4+/CD8+ in cyclophosphamide-induced mice in a dose-dependent manner. JP treatment also increased the levels of IL-2, IL-4, IL-10, IFN-γ, and TNF-α in serum and the intestine, and the improvement effects were proportional to the dose of JP. Similarly, JP significantly increased the levels of IgA and SIgA, as well as the expressions of Claudin-1 and Occludin in the intestine. Particularly, the expressions of Claudin-1 and Occludin were the best in the M-JP group. Furthermore, JP positively regulated the gut microbiota as indicated by the enriched microbiota diversity. At the phylum level, the relative abundance of Firmicutes was significantly decreased by JP, while that of Bacteroidetes was increased by JP treatment. More importantly, the ratio of Firmicutes/Bacteroidetes was significantly increased. And a high dose of JP is the most effective. At the genus level, the abundances of the Bacteroidales-S24-7-group, Lachnospiraceae, Alloprevotella, Alistipes and Bacteroides were increased by JP treatment. These results provided evidence for the regulating effect of JP on the peripheral immunity and intestinal barrier function in cyclophosphamide-induced hypoimmune mice.
Collapse
Affiliation(s)
- Xue Han
- Department of Nutritional and Food Safety, College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Hu H, Luo F, Wang M, Fu Z, Shu X. New Method for Extracting and Purifying Dihydromyricetin from Ampelopsis grossedentata. ACS OMEGA 2020; 5:13955-13962. [PMID: 32566862 PMCID: PMC7301542 DOI: 10.1021/acsomega.0c01222] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/19/2020] [Indexed: 05/15/2023]
Abstract
Dihydromyricetin (DMY) is a kind of flavone. It has a variety of physiological effects, and its content in Ampelopsis grossedentata is as high as 35%. There are two shortcomings in the traditional batch extraction process commonly used in a laboratory: long extraction time and low extraction rate. In this study, a new chelating extraction method was proposed, that is, Zn2+ was introduced into the extraction and purification process to chelate with DMY, and the yield and purity were taken as evaluation indices for a comparative study with the traditional batch extraction method. In addition, 1H NMR, single-crystal X-ray diffraction, IR, and UV were used to analyze the product structure; thermogravimetry and differential thermal analysis was utilized to examine the thermal stability of DMY. The results were shown as follows. Compared with the batch extraction method, the chelation extraction method could effectively avoid the oxidation of DMY by air during the extraction and purification process, and the yield of the DMY also increased. Furthermore, this method was time-saving. Through investigating the extraction process and characterizing the structure and thermal stability of DMY, the chelating extraction method could be considered to provide a reference for commercial applications of DMY.
Collapse
Affiliation(s)
- Hongchao Hu
- School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, PRC
| | - Fan Luo
- School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, PRC
| | - Mingjie Wang
- School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, PRC
| | - Zhihuan Fu
- School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, PRC
| | - Xugang Shu
- School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, PRC
| |
Collapse
|
68
|
Dong J, Liang Q, Niu Y, Jiang S, Zhou L, Wang J, Ma C, Kang W. Effects of Nigella sativa seed polysaccharides on type 2 diabetic mice and gut microbiota. Int J Biol Macromol 2020; 159:725-738. [PMID: 32437806 DOI: 10.1016/j.ijbiomac.2020.05.042] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/14/2020] [Accepted: 05/03/2020] [Indexed: 12/16/2022]
Abstract
Effect of Nigella sativa seed polysaccharides (NSSP) on type 2 diabetic mice and its gut microbiota was investigated on the type 2 diabetic mice model feed by high-fat diet. Fasting blood glucose (FBG), biochemical parameters, expression levels of cytokines such as tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), interleukin-1β (IL-1β), and phosphor-AKT (p-AKT) protein, membrane glucose transporter 4 (GLUT4) in skeletal muscles, as well as the change of gut microbiota profile in mice model were measured. Results showed that the high-dose NSSP could significantly lower the levels of FBG, glycosylated serum protein (GSP), triglycerides (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), malondialdehyde (MDA), TNF-α, IL-6 and IL-1β, and significantly increased insulin (INS), high-density lipoprotein cholesterol (HDLC), total antioxidant capacity (T-AOC), superoxide dismutase (SOD), catalase (CAT) and the expression levels of p-AKT and GLUT4 in mice. Besides, the high-dose NSSP has significantly increased the abundance of f_Muribaculaceae_Unclassified and Bacteroides, which were significantly suppressed in the mice gut after the treatment of streptozotocin (STZ). These results indicated that NSSP could improve the abnormal state of diabetic mice by regulating the PI3K/AKT signaling pathway with simultaneous changes of the gut microbiota profile.
Collapse
Affiliation(s)
- Jing Dong
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China
| | - Qiongxin Liang
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China; Kaifeng Key Laboratory of Functional Components in Health Food, Henan University, Kaifeng 475004, China
| | - Yun Niu
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China; Joint International Research Laboratory of Food & Medicine Resource Function, Henan Province, Henan University, Kaifeng 475004, China
| | - Shengjun Jiang
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China; Joint International Research Laboratory of Food & Medicine Resource Function, Henan Province, Henan University, Kaifeng 475004, China
| | - Li Zhou
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China; Joint International Research Laboratory of Food & Medicine Resource Function, Henan Province, Henan University, Kaifeng 475004, China
| | - Jinmei Wang
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China; Joint International Research Laboratory of Food & Medicine Resource Function, Henan Province, Henan University, Kaifeng 475004, China.
| | - Changyang Ma
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China; Kaifeng Key Laboratory of Functional Components in Health Food, Henan University, Kaifeng 475004, China.
| | - Wenyi Kang
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China; Joint International Research Laboratory of Food & Medicine Resource Function, Henan Province, Henan University, Kaifeng 475004, China.
| |
Collapse
|
69
|
Miao J, Regenstein JM, Qiu J, Zhang J, Zhang X, Li H, Zhang H, Wang Z. Isolation, structural characterization and bioactivities of polysaccharides and its derivatives from Auricularia-A review. Int J Biol Macromol 2020; 150:102-113. [DOI: 10.1016/j.ijbiomac.2020.02.054] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 01/28/2020] [Accepted: 02/06/2020] [Indexed: 12/16/2022]
|
70
|
Wu G, Bai Z, Wan Y, Shi H, Huang X, Nie S. Antidiabetic effects of polysaccharide from azuki bean (Vigna angularis) in type 2 diabetic rats via insulin/PI3K/AKT signaling pathway. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2019.105456] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
71
|
Moisture barrier films for herbal medicines fabricated by electrostatic dry coating with ultrafine powders. POWDER TECHNOL 2020. [DOI: 10.1016/j.powtec.2020.03.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
72
|
Effects of a combined fucoidan and traditional Chinese medicine formula on hyperglycaemia and diabetic nephropathy in a type II diabetes mellitus rat model. Int J Biol Macromol 2020; 147:408-419. [DOI: 10.1016/j.ijbiomac.2019.12.201] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 12/14/2019] [Accepted: 12/22/2019] [Indexed: 12/13/2022]
|
73
|
Meng Y, Lyu F, Xu X, Zhang L. Recent Advances in Chain Conformation and Bioactivities of Triple-Helix Polysaccharides. Biomacromolecules 2020; 21:1653-1677. [PMID: 31986015 DOI: 10.1021/acs.biomac.9b01644] [Citation(s) in RCA: 174] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Natural polysaccharides derived from renewable biomass sources are regarded as environmentally friendly and sustainable polymers. As the third most abundant biomacromolecule in nature, after proteins and nucleic acids, polysaccharides are also closely related with many different life activities. In particular, β-glucans are one of the most widely reported bioactive polysaccharides and are usually considered as biological response modifiers. Among them, β-glucans with triple-helix conformation have been the hottest and most well-researched polysaccharides at present, especially lentinan and schizophyllan, which are clinically used as cancer therapies in some Asian countries. Thus, creation of these active triple-helix polysaccharides is beneficial to the research and development of sustainable "green" biopolymers in the fields of food and life sciences. Therefore, full fundamental research of triple-helix polysaccharides is essential to discover more applications for polysaccharides. In this Review, the recent research progress of chain conformations, bioactivities, and structure-function relationships of triple-helix β-glucans is summarized. The main contents include the characterization methods of the macromolecular conformation, proof of triple helices, bioactivities, and structure-function relationships. We believe that the governments, enterprises, universities, and institutes dealing with the survival and health of human beings can expect the development of natural bioproducts in the future. Hence, a deep understanding of β-glucans with triple-helix chain conformation is necessary for application of natural medicines and biologics for a sustainable world.
Collapse
Affiliation(s)
- Yan Meng
- College of Chemistry & Molecule Sciences, Wuhan University, Wuhan 430072, China.,College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Fengzhi Lyu
- College of Chemistry & Molecule Sciences, Wuhan University, Wuhan 430072, China
| | - Xiaojuan Xu
- College of Chemistry & Molecule Sciences, Wuhan University, Wuhan 430072, China
| | - Lina Zhang
- College of Chemistry & Molecule Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
74
|
Molecular mechanisms of bioactive polysaccharides from Ganoderma lucidum (Lingzhi), a review. Int J Biol Macromol 2020; 150:765-774. [PMID: 32035956 DOI: 10.1016/j.ijbiomac.2020.02.035] [Citation(s) in RCA: 166] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 01/31/2020] [Accepted: 02/05/2020] [Indexed: 02/08/2023]
Abstract
Ganoderma lucidum, commonly known as "Lingzhi" in Chinese, are well-known medicinal mushrooms. Lingzhi has been used in traditional Chinese herbal medicines for more than two thousand years. G. lucidum polysaccharides (GLPs) are present at high levels in G. lucidum cells and GLPs have molecular weights ranging from thousands to millions. GLPs have been widely studied for their various biological activities, such as antioxidant, antitumor, anti-inflammatory, antiviral, anti-diabetes, and immunomodulatory activities. The methods for GLPs extraction and characterization are mature, but the comprehensive research on the relationship between GLPs structure (i.e., molecular weight, tertiary structure, branching, substituents, and monosaccharide composition) and function is still quite limited. The aim of this review is to update and summarize the mechanisms of the various bioactive polysaccharides extracted from G. lucidum. The information presented on these bio-mechanisms should be valuable in the research and development of GLPs-derived therapeutics.
Collapse
|
75
|
Antioxidant and anti-inflammatory activities of an anti-diabetic polysaccharide extracted from Gynostemma pentaphyllum herb. Int J Biol Macromol 2020; 145:484-491. [DOI: 10.1016/j.ijbiomac.2019.12.213] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/16/2019] [Accepted: 12/24/2019] [Indexed: 12/21/2022]
|
76
|
Cai WD, Ding ZC, Wang YY, Yang Y, Zhang HN, Yan JK. Hypoglycemic benefit and potential mechanism of a polysaccharide from Hericium erinaceus in streptozotoxin-induced diabetic rats. Process Biochem 2020. [DOI: 10.1016/j.procbio.2019.09.035] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
77
|
Polysaccharide from tuberous roots of Ophiopogon japonicus regulates gut microbiota and its metabolites during alleviation of high-fat diet-induced type-2 diabetes in mice. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.103593] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
78
|
Wińska K, Mączka W, Gabryelska K, Grabarczyk M. Mushrooms of the Genus Ganoderma Used to Treat Diabetes and Insulin Resistance. Molecules 2019; 24:E4075. [PMID: 31717970 PMCID: PMC6891282 DOI: 10.3390/molecules24224075] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/30/2019] [Accepted: 11/08/2019] [Indexed: 02/06/2023] Open
Abstract
Pharmacotherapy using natural substances can be currently regarded as a very promising future alternative to conventional therapy of diabetes mellitus, especially in the case of chronic disease when the body is no longer able to produce adequate insulin or when it cannot use the produced insulin effectively. This minireview summarizes the perspectives, recent advances, and major challenges of medicinal mushrooms from Ganoderma genus with reference to their antidiabetic activity. The most active ingredients of those mushrooms are polysaccharides and triterpenoids. We hope this review can offer some theoretical basis and inspiration for the mechanism study of the bioactivity of those compounds.
Collapse
Affiliation(s)
- Katarzyna Wińska
- Department of Chemistry, Wroclaw University of Environmental and Life Sciences, Norwida 25, 50-375 Wroclaw, Poland;
| | - Wanda Mączka
- Department of Chemistry, Wroclaw University of Environmental and Life Sciences, Norwida 25, 50-375 Wroclaw, Poland;
| | | | - Małgorzata Grabarczyk
- Department of Chemistry, Wroclaw University of Environmental and Life Sciences, Norwida 25, 50-375 Wroclaw, Poland;
| |
Collapse
|
79
|
Pereira AS, Banegas-Luna AJ, Peña-García J, Pérez-Sánchez H, Apostolides Z. Evaluation of the Anti-Diabetic Activity of Some Common Herbs and Spices: Providing New Insights with Inverse Virtual Screening. Molecules 2019; 24:E4030. [PMID: 31703341 PMCID: PMC6891552 DOI: 10.3390/molecules24224030] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/01/2019] [Accepted: 11/04/2019] [Indexed: 12/20/2022] Open
Abstract
Culinary herbs and spices are widely used as a traditional medicine in the treatment of diabetes and its complications, and there are several scientific studies in the literature supporting the use of these medicinal plants. However, there is often a lack of knowledge on the bioactive compounds of these herbs and spices and their mechanisms of action. The aim of this study was to use inverse virtual screening to provide insights into the bioactive compounds of common herbs and spices, and their potential molecular mechanisms of action in the treatment of diabetes. In this study, a library of over 2300 compounds derived from 30 common herbs and spices were screened in silico with the DIA-DB web server against 18 known diabetes drug targets. Over 900 compounds from the herbs and spices library were observed to have potential anti-diabetic activity and liquorice, hops, fennel, rosemary, and fenugreek were observed to be particularly enriched with potential anti-diabetic compounds. A large percentage of the compounds were observed to be potential polypharmacological agents regulating three or more anti-diabetic drug targets and included compounds such as achillin B from yarrow, asparasaponin I from fenugreek, bisdemethoxycurcumin from turmeric, carlinoside from lemongrass, cinnamtannin B1 from cinnamon, crocin from saffron and glabridin from liquorice. The major targets identified for the herbs and spices compounds were dipeptidyl peptidase-4 (DPP4), intestinal maltase-glucoamylase (MGAM), liver receptor homolog-1 (NR5A2), pancreatic alpha-amylase (AM2A), peroxisome proliferator-activated receptor alpha (PPARA), protein tyrosine phosphatase non-receptor type 9 (PTPN9), and retinol binding protein-4 (RBP4) with over 250 compounds observed to be potential inhibitors of these particular protein targets. Only bay leaves, liquorice and thyme were found to contain compounds that could potentially regulate all 18 protein targets followed by black pepper, cumin, dill, hops and marjoram with 17 protein targets. In most cases more than one compound within a given plant could potentially regulate a particular protein target. It was observed that through this multi-compound-multi target regulation of these specific protein targets that the major anti-diabetic effects of reduced hyperglycemia and hyperlipidemia of the herbs and spices could be explained. The results of this study, taken together with the known scientific literature, indicated that the anti-diabetic potential of common culinary herbs and spices was the result of the collective action of more than one bioactive compound regulating and restoring several dysregulated and interconnected diabetic biological processes.
Collapse
Affiliation(s)
- Andreia S.P. Pereira
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria Hillcrest 0083, South Africa;
| | - Antonio J. Banegas-Luna
- Structural Bioinformatics and High-Performance Computing Research Group (BIO-HPC), Universidad Católica de Murcia, 30107 Murcia, Spain; (A.J.B.-L.)
| | - Jorge Peña-García
- Structural Bioinformatics and High-Performance Computing Research Group (BIO-HPC), Universidad Católica de Murcia, 30107 Murcia, Spain; (A.J.B.-L.)
| | - Horacio Pérez-Sánchez
- Structural Bioinformatics and High-Performance Computing Research Group (BIO-HPC), Universidad Católica de Murcia, 30107 Murcia, Spain; (A.J.B.-L.)
| | - Zeno Apostolides
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria Hillcrest 0083, South Africa;
| |
Collapse
|
80
|
Khursheed R, Singh SK, Wadhwa S, Kapoor B, Gulati M, Kumar R, Ramanunny AK, Awasthi A, Dua K. Treatment strategies against diabetes: Success so far and challenges ahead. Eur J Pharmacol 2019; 862:172625. [DOI: 10.1016/j.ejphar.2019.172625] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 08/11/2019] [Accepted: 08/20/2019] [Indexed: 12/18/2022]
|
81
|
Yuan Y, Che L, Qi C, Meng Z. Protective effects of polysaccharides on hepatic injury: A review. Int J Biol Macromol 2019; 141:822-830. [PMID: 31487518 DOI: 10.1016/j.ijbiomac.2019.09.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 08/26/2019] [Accepted: 09/01/2019] [Indexed: 12/12/2022]
Abstract
Chronic hepatic injury caused by hepatitis B and C virus (HBV and HCV) infection, high fat diet and alcohol intake has increased to be the critical promoter of hepatocellular carcinoma (HCC). These high risk factors set into motion a vicious cycle of hepatocyte death, inflammation and fibrosis that finally results in cirrhosis and HCC after several decades. However, the treatment options for HCC are very limited. Therefore, early treatment of liver injury may reduce the incidence and probability of HCC or delay the progression of HCC. Substantial ongoing research has focused on nontoxic biological macromolecules, mainly polysaccharides, which possess prominent efficacies on hepatoprotective activity. Based on these encouraging observations, a great deal of effort has been devoted to discovering novel polysaccharides for the development of effective therapeutics for hepatic injury. This review focuses on the protective effects of polysaccharides on liver injury, including hepatitis virus infection, nonalcoholic steatohepatitis, alcoholic liver disease and other hepatic injuries, and describes the underlying mechanisms.
Collapse
Affiliation(s)
- Ye Yuan
- Department of Medicine Laboratory, First Hospital, Jilin University, Changchun 130021, China
| | - Lihe Che
- Department of Infectious Disease, First Hospital, Jilin University, Changchun 130021, China
| | - Chong Qi
- Department of Translational Medicine Research Institute, First Hospital, Jilin University, Changchun, Jilin 130021, China
| | - Zhaoli Meng
- Department of Translational Medicine Research Institute, First Hospital, Jilin University, Changchun, Jilin 130021, China.
| |
Collapse
|
82
|
Physicochemical characteristics and biological activities of polysaccharides from the leaves of different loquat (Eriobotrya japonica) cultivars. Int J Biol Macromol 2019; 135:274-281. [DOI: 10.1016/j.ijbiomac.2019.05.157] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 04/30/2019] [Accepted: 05/21/2019] [Indexed: 01/24/2023]
|
83
|
Production of Antioxidant and ACEI Peptides from Cheese Whey Discarded from Mexican White Cheese Production. Antioxidants (Basel) 2019; 8:antiox8060158. [PMID: 31163620 PMCID: PMC6617266 DOI: 10.3390/antiox8060158] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/16/2019] [Accepted: 05/27/2019] [Indexed: 01/16/2023] Open
Abstract
Cheese whey, a byproduct of the cheese-making industry, is discarded in many countries in the environment, causing pollution. This byproduct contains high-quality proteins containing encrypted biologically active peptides. The objective of this work was to evaluate the suitability of using this waste to produce bioactive peptides by enzymatic hydrolysis with a digestive enzyme. Cheese whey from white cheese (Panela cheese) was concentrated to increase total protein and hydrolyzed with trypsin. A central composite design was used to find the best conditions of pH and temperature, giving the higher antioxidant capacity and Δ Angiotensin-converting enzyme inhibition (Δ ACEI) activity. Higher biological activities were found when hydrolysis was performed at 52 °C and a pH of 8.2. The maximum value for the 2,2- diphenyl-1-picrylhydrazyl (DPPH)-scavenging activity was 26%, while the higher Δ ACE inhibition was 0.89. Significant correlations were found between these biological activities and the peptides separated by HPLC. The hydrophilic fraction (HI) showed highly significant correlations with the antioxidant capacity (r = 0.770) and with Δ ACE inhibition (r = 0.706). Antioxidant capacity showed a significant positive correlation with 34 peaks and Δ ACE inhibition with 33 peaks. The cheese whey was successfully used as raw material to produce peptides showing antioxidant capacity and ACEI activity.
Collapse
|
84
|
Zhang WN, Su RN, Gong LL, Yang WW, Chen J, Yang R, Wang Y, Pan WJ, Lu YM, Chen Y. Structural characterization and in vitro hypoglycemic activity of a glucan from Euryale ferox Salisb. seeds. Carbohydr Polym 2019; 209:363-371. [DOI: 10.1016/j.carbpol.2019.01.044] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 01/10/2019] [Accepted: 01/12/2019] [Indexed: 12/11/2022]
|
85
|
Wang YY, Zhu J, Ma H, Ding ZC, Li L, Yan JK. Antidiabetic activity of a polysaccharide-protein complex from Asian Clam (Corbicula fluminea) in streptozotoxin-induced diabetic rats and its underlying mechanism. Food Funct 2019; 10:5574-5586. [DOI: 10.1039/c9fo01341e] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Antidiabetic activity of a polysaccharide-protein complex from Asian Clam (Corbicula fluminea) in streptozotoxin-induced diabetic rats and its underlying mechanism.
Collapse
Affiliation(s)
- Yao-Yao Wang
- School of Food & Biological Engineering
- Institute of Food Physical Processing
- Jiangsu University
- Zhenjiang
- China
| | - Jie Zhu
- Engineering Research Center of Health Food Design & Nutrition Regulation
- School of Chemical Engineering and Energy Technology
- Dongguan University of Technology
- Dongguan 523808
- China
| | - Haile Ma
- School of Food & Biological Engineering
- Institute of Food Physical Processing
- Jiangsu University
- Zhenjiang
- China
| | - Zhi-Chao Ding
- School of Food & Biological Engineering
- Institute of Food Physical Processing
- Jiangsu University
- Zhenjiang
- China
| | - Lin Li
- Engineering Research Center of Health Food Design & Nutrition Regulation
- School of Chemical Engineering and Energy Technology
- Dongguan University of Technology
- Dongguan 523808
- China
| | - Jing-Kun Yan
- School of Food & Biological Engineering
- Institute of Food Physical Processing
- Jiangsu University
- Zhenjiang
- China
| |
Collapse
|
86
|
He B, Li J, Zhang Y, Jiao L, Olatunji O. Preventive effect of crude polysaccharide extract from chinese wolfberry against hyperglycemia-induced oxidative stress and inflammation in streptozotocin-induced diabetic rats. Pharmacogn Mag 2019. [DOI: 10.4103/pm.pm_164_19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
87
|
Wang Z, Zhao X, Liu X, Lu W, Jia S, Hong T, Li R, Zhang H, Peng L, Zhan X. Anti-diabetic activity evaluation of a polysaccharide extracted from Gynostemma pentaphyllum. Int J Biol Macromol 2018; 126:209-214. [PMID: 30590141 DOI: 10.1016/j.ijbiomac.2018.12.231] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 12/09/2018] [Accepted: 12/23/2018] [Indexed: 12/25/2022]
Abstract
In current study, a polysaccharide (GPP) was successfully extracted from Gynostemma pentaphyllum herb. Monosaccharide composition of GPP was rhamnose, arabinose, galactose, glucose, xylose, mannose, galacturonic acid and glucuronic acid in a molar ratio of 4.11: 7.34: 13.31: 20.99: 1.07: 0.91: 4.75: 0.36. Molecular weight and polydispersity (Mw/Mn) of GPP were 4.070 × 104 Da and 1.037, respectively. Primary structure features of GPP were determined to be a polysaccharide by FT-IR and NMR. Fasting blood sugar of diabetic mice decreased from 17.56 mmol/L to 7.42 mmol/L by orally administration of 0.5 mL GPP (1 mg/mL) for 30 days. GPP exhibited a dose-dependent inhibition effect on α-glucosidase activity. Moreover, GPP could inhibit the glucose absorption and affect the protein expression of GLUT2, but not the protein expression of SGLT1. These results indicated GPP could be used as an effective ingredient to prevent and cure diabetes.
Collapse
Affiliation(s)
- Zichao Wang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Xiaoxiao Zhao
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Xiaoying Liu
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Wenbo Lu
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Shutong Jia
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Tingting Hong
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Ruifang Li
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Huiru Zhang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Lin Peng
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China
| | - Xiaobei Zhan
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|