51
|
Brix M, Kaipel M, Kellner R, Schreiner M, Apprich S, Boszotta H, Windhager R, Domayer S, Trattnig S. Successful osteoconduction but limited cartilage tissue quality following osteochondral repair by a cell-free multilayered nano-composite scaffold at the knee. INTERNATIONAL ORTHOPAEDICS 2016; 40:625-32. [PMID: 26803322 DOI: 10.1007/s00264-016-3118-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Accepted: 01/11/2016] [Indexed: 02/02/2023]
Abstract
INTRODUCTION The treatment of larger osteochondral lesions in the knee is still a clinical challenge. One promising strategy to overcome this problem could be surgical repair by using a cell-free multilayered nano-composite scaffold. METHOD In this prospective cohort study eight consecutive patients which suffered from a single osteochondral lesion (≥1.5 cm(2)) on the femoral condyle were enrolled. The repair potential of the implant was assessed by using MRI based biochemical MR sequences (T2 mapping) as well as semi-quantitative morphological analyses (MOCART score) at 18 months after the surgery. The clinical outcome was determined at six, 12, 18, and 24 month follow ups by using IKDC, Tegner-Lysholm, and Cincinnati knee scores. RESULTS Seven out of eight patients showed a complete integration of the scaffold into the border zone and five out of eight patients excellent or good subchondral ossification of the implant at 18 months following implantation. The surface of the repair tissue was found to be intact in all eight patients. T2 mapping data and the zonal T2 index significantly differed in the repair tissue compared to the healthy control cartilage (P < 0.001) which indicates a limited quality of the repair cartilage. The clinical outcome scores consistently improved during the follow up period without reaching statistical significance. CONCLUSIONS Osteochondral repair by implanting the MaioRegen® scaffold provides a successful osteoconduction and filling of the cartilage defect. However there is evidence for a limited repair cartilage tissue quality at 18 months after the surgery.
Collapse
Affiliation(s)
- Martin Brix
- Centre of Excellence "High-field Magnetic Resonance (MR)", Medical University Vienna, Währinger Gürtel 18-20, A-1090, Vienna, Austria
| | - Martin Kaipel
- Department of Orthopaedic and Trauma Surgery, Barmherzige Brüder Hospital, Johannes von Gott-Platz 1, A-7000, Eisenstadt, Austria.
| | - Richard Kellner
- Department of Orthopaedic and Trauma Surgery, Barmherzige Brüder Hospital, Johannes von Gott-Platz 1, A-7000, Eisenstadt, Austria
| | - Markus Schreiner
- Centre of Excellence "High-field Magnetic Resonance (MR)", Medical University Vienna, Währinger Gürtel 18-20, A-1090, Vienna, Austria
| | - Sebastian Apprich
- Department of Orthopaedics, Medical University Vienna, Währinger Gürtel 18-20, A-1090, Vienna, Austria
| | - Harald Boszotta
- Department of Orthopaedic and Trauma Surgery, Barmherzige Brüder Hospital, Johannes von Gott-Platz 1, A-7000, Eisenstadt, Austria
| | - Reinhard Windhager
- Department of Orthopaedics, Medical University Vienna, Währinger Gürtel 18-20, A-1090, Vienna, Austria
| | - Stephan Domayer
- Centre of Excellence "High-field Magnetic Resonance (MR)", Medical University Vienna, Währinger Gürtel 18-20, A-1090, Vienna, Austria
| | - Siegfried Trattnig
- Centre of Excellence "High-field Magnetic Resonance (MR)", Medical University Vienna, Währinger Gürtel 18-20, A-1090, Vienna, Austria
| |
Collapse
|
52
|
Gibbs DMR, Vaezi M, Yang S, Oreffo ROC. Hope versus hype: what can additive manufacturing realistically offer trauma and orthopedic surgery? Regen Med 2015; 9:535-49. [PMID: 25159068 DOI: 10.2217/rme.14.20] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Additive manufacturing (AM) is a broad term encompassing 3D printing and several other varieties of material processing, which involve computer-directed layer-by-layer synthesis of materials. As the popularity of AM increases, so to do expectations of the medical therapies this process may offer. Clinical requirements and limitations of current treatment strategies in bone grafting, spinal arthrodesis, osteochondral injury and treatment of periprosthetic joint infection are discussed. The various approaches to AM are described, and the current state of clinical translation of AM across these orthopedic clinical scenarios is assessed. Finally, we attempt to distinguish between what AM may offer orthopedic surgery from the hype of what has been promised by AM.
Collapse
Affiliation(s)
- David M R Gibbs
- Bone & Joint Research Group, Centre for Human Development, Stem Cells & Regeneration, Institute of Developmental Sciences (MP887), Southampton General Hospital, University of Southampton, Southampton, Hampshire S016 6YD, UK
| | | | | | | |
Collapse
|
53
|
Lopez-Lopez MT, Scionti G, Oliveira AC, Duran JDG, Campos A, Alaminos M, Rodriguez IA. Generation and Characterization of Novel Magnetic Field-Responsive Biomaterials. PLoS One 2015; 10:e0133878. [PMID: 26207995 PMCID: PMC4514776 DOI: 10.1371/journal.pone.0133878] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 07/03/2015] [Indexed: 12/17/2022] Open
Abstract
We report the preparation of novel magnetic field-responsive tissue substitutes based on biocompatible multi-domain magnetic particles dispersed in a fibrin-agarose biopolymer scaffold. We characterized our biomaterials with several experimental techniques. First we analyzed their microstructure and found that it was strongly affected by the presence of magnetic particles, especially when a magnetic field was applied at the start of polymer gelation. In these samples we observed parallel stripes consisting of closely packed fibers, separated by more isotropic net-like spaces. We then studied the viability of oral mucosa fibroblasts in the magnetic scaffolds and found no significant differences compared to positive control samples. Finally, we analyzed the magnetic and mechanical properties of the tissue substitutes. Differences in microstructural patterns of the tissue substitutes correlated with their macroscopic mechanical properties. We also found that the mechanical properties of our magnetic tissue substitutes could be reversibly tuned by noncontact magnetic forces. This unique advantage with respect to other biomaterials could be used to match the mechanical properties of the tissue substitutes to those of potential target tissues in tissue engineering applications.
Collapse
Affiliation(s)
- Modesto T. Lopez-Lopez
- Department of Applied Physics, Faculty of Sciences, University of Granada, Granada, Spain, and Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Giuseppe Scionti
- Department of Histology, Faculty of Medicine, University of Granada, Granada, Spain, and Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Ana C. Oliveira
- Department of Histology, Faculty of Medicine, University of Granada, Granada, Spain, and Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Juan D. G. Duran
- Department of Applied Physics, Faculty of Sciences, University of Granada, Granada, Spain, and Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Antonio Campos
- Department of Histology, Faculty of Medicine, University of Granada, Granada, Spain, and Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Miguel Alaminos
- Department of Histology, Faculty of Medicine, University of Granada, Granada, Spain, and Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Ismael A. Rodriguez
- Department of Histology, Faculty of Medicine, University of Granada, Granada, Spain, and Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
- Department of Histology, School of Dentistry, National University of Cordoba, Cordoba, Argentina
| |
Collapse
|
54
|
Li JJ, Kim K, Roohani-Esfahani SI, Guo J, Kaplan DL, Zreiqat H. A biphasic scaffold based on silk and bioactive ceramic with stratified properties for osteochondral tissue regeneration. J Mater Chem B 2015; 3:5361-5376. [PMID: 26167284 PMCID: PMC4494762 DOI: 10.1039/c5tb00353a] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Significant clinical challenges encountered in the effective long-term treatment of osteochondral defects have inspired advancements in scaffold-based tissue engineering techniques to aid repair and regeneration. This study reports the development of a biphasic scaffold produced via a rational combination of silk fibroin and bioactive ceramic with stratified properties to satisfy the complex and diverse regenerative requirements of osteochondral tissue. Structural examination showed that the biphasic scaffold contained two phases with different pore morphologies to match the cartilage and bone segments of osteochondral tissue, which were joined at a continuous interface. Mechanical assessment showed that the two phases of the biphasic scaffold imitated the load-bearing behaviour of native osteochondral tissue and matched its compressive properties. In vitro testing showed that different compositions in the two phases of the biphasic scaffold could direct the preferential differentiation of human mesenchymal stem cells towards the chondrogenic or osteogenic lineage. By featuring simple and reproducible fabrication and a well-integrated interface, the biphasic scaffold strategy established in this study circumvented the common problems experienced with integrated scaffold designs and could provide an effective approach for the regeneration of osteochondral tissue.
Collapse
Affiliation(s)
- Jiao Jiao Li
- Biomaterials and Tissue Engineering Research Unit, School of AMME, University of Sydney, Sydney, NSW 2006, Australia
| | - Kyungsook Kim
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Seyed-Iman Roohani-Esfahani
- Biomaterials and Tissue Engineering Research Unit, School of AMME, University of Sydney, Sydney, NSW 2006, Australia
| | - Jin Guo
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - David L. Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Hala Zreiqat
- Biomaterials and Tissue Engineering Research Unit, School of AMME, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
55
|
Steinmetz NJ, Aisenbrey EA, Westbrook KK, Qi HJ, Bryant SJ. Mechanical loading regulates human MSC differentiation in a multi-layer hydrogel for osteochondral tissue engineering. Acta Biomater 2015; 21:142-53. [PMID: 25900444 DOI: 10.1016/j.actbio.2015.04.015] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Revised: 04/11/2015] [Accepted: 04/13/2015] [Indexed: 12/15/2022]
Abstract
A bioinspired multi-layer hydrogel was developed for the encapsulation of human mesenchymal stem cells (hMSCs) as a platform for osteochondral tissue engineering. The spatial presentation of biochemical cues, via incorporation of extracellular matrix analogs, and mechanical cues, via both hydrogel crosslink density and externally applied mechanical loads, were characterized in each layer. A simple sequential photopolymerization method was employed to form stable poly(ethylene glycol)-based hydrogels with a soft cartilage-like layer of chondroitin sulfate and low RGD concentrations, a stiff bone-like layer with high RGD concentrations, and an intermediate interfacial layer. Under a compressive load, the variation in hydrogel stiffness within each layer produced high strains in the soft cartilage-like layer, low strains in the stiff bone-like layer, and moderate strains in the interfacial layer. When hMSC-laden hydrogels were cultured statically in osteochondral differentiation media, the local biochemical and matrix stiffness cues were not sufficient to spatially guide hMSC differentiation after 21 days. However dynamic mechanical stimulation led to differentially high expression of collagens with collagen II in the cartilage-like layer, collagen X in the interfacial layer and collagen I in the bone-like layer and mineral deposits localized to the bone layer. Overall, these findings point to external mechanical stimulation as a potent regulator of hMSC differentiation toward osteochondral cellular phenotypes.
Collapse
|
56
|
Li X, Li Y, Zuo Y, Qu D, Liu Y, Chen T, Jiang N, Li H, Li J. Osteogenesis and chondrogenesis of biomimetic integrated porous PVA/gel/V-n-HA/pa6 scaffolds and BMSCs construct in repair of articular osteochondral defect. J Biomed Mater Res A 2015; 103:3226-36. [PMID: 25772000 DOI: 10.1002/jbm.a.35452] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 02/23/2015] [Accepted: 02/27/2015] [Indexed: 01/02/2023]
Abstract
A novel bi-layered osteochondral scaffold, including of PVA/Gel/V layer for the cartilage and n-HA/PA6 layer for the subchondral bone, has been proposed to evaluate the potential of the engineered of osteochondral grafts in repairing articular osteochondral defects in rabbits. The two different layers of the scaffolds were seeded with allogenic bone marrow-derived stem cells (BMSCs), which were chondrogenically and osteogenically induced respectively. The critical-size osteochondral defects were created in the knees of adult rabbits. The defects were treated with cell-bi-layered constructs (Group A), bi-layered constructs (Group B) and untreated group C as control group. The adhesion, proliferation and differentiation of BMSCs were demonstrated by immunohistochemical staining and scanning electron microscopy (SEM) in vitro. Cell survival was tracked via fluorescent labeling in vivo. Overall, the porous PVA/Gel/V-n-HA/PA6 scaffold was compatible and had no negative effects on the BMSCs in vitro culture. The cell-bi-layered scaffolds showed superior repair results as compared to the control group using gross examination and histological assessment. With BMSCs implantation, the two different layers of the composite biomimetic scaffolds provided a suitable environment for cells to form respective tissue. Simultaneously, the RT-PCR results confirmed the expression of specific extracellular matrix (ECM) markers for cartilaginous or osteoid tissue. This investigation showed that the porous PVA/Gel/V-n-HA/PA6 scaffold is a potential matrix for treatment of osteochondral defects, and the method of using chondrogenically and osteogenically differentiated BMSCs as seed cells on each layer might be a promising strategy in repair of articular osteochondral defect due to enhanced chondrogenesis and osteogenesis.
Collapse
Affiliation(s)
- Xiang Li
- State Key Laboratory of Oral Diseases and Department of Oral and Maxillofacial Surgery, West China College of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yubao Li
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu, 610064, China
| | - Yi Zuo
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu, 610064, China
| | - Dan Qu
- State Key Laboratory of Oral Diseases and Department of Oral and Maxillofacial Surgery, West China College of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yiming Liu
- State Key Laboratory of Oral Diseases and Department of Oral and Maxillofacial Surgery, West China College of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Tao Chen
- State Key Laboratory of Oral Diseases and Department of Oral and Maxillofacial Surgery, West China College of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Nan Jiang
- State Key Laboratory of Oral Diseases and Department of Oral and Maxillofacial Surgery, West China College of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Hui Li
- State Key Laboratory of Oral Diseases and Department of Oral and Maxillofacial Surgery, West China College of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Jihua Li
- State Key Laboratory of Oral Diseases and Department of Oral and Maxillofacial Surgery, West China College of Stomatology, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
57
|
Di Luca A, Van Blitterswijk C, Moroni L. The osteochondral interface as a gradient tissue: From development to the fabrication of gradient scaffolds for regenerative medicine. ACTA ACUST UNITED AC 2015; 105:34-52. [DOI: 10.1002/bdrc.21092] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Andrea Di Luca
- Tissue Regeneration Department; University of Twente; 7522 NB Enschede The Netherlands
| | - Clemens Van Blitterswijk
- Tissue Regeneration Department; University of Twente; 7522 NB Enschede The Netherlands
- Maastricht University, MERLN Institute for Technology Inspired Regenerative Medicine; Complex Tissue Regeneration Department; Maastricht ER 6229 The Netherlands
| | - Lorenzo Moroni
- Tissue Regeneration Department; University of Twente; 7522 NB Enschede The Netherlands
- Maastricht University, MERLN Institute for Technology Inspired Regenerative Medicine; Complex Tissue Regeneration Department; Maastricht ER 6229 The Netherlands
| |
Collapse
|
58
|
Yan LP, Oliveira JM, Oliveira AL, Reis RL. Current Concepts and Challenges in Osteochondral Tissue Engineering and Regenerative Medicine. ACS Biomater Sci Eng 2015; 1:183-200. [DOI: 10.1021/ab500038y] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Le-Ping Yan
- 3B’s
Research Group−Biomaterials, Biodegradables and Biomimetics,
Headquarters of the European Institute of Excellence on Tissue Engineering
and Regenerative Medicine, University of Minho, AvePark, S. Cláudio
de Barco, 4806-909 Taipas, Guimarães, Portugal
- ICVS/3B’s−PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Joaquim M. Oliveira
- 3B’s
Research Group−Biomaterials, Biodegradables and Biomimetics,
Headquarters of the European Institute of Excellence on Tissue Engineering
and Regenerative Medicine, University of Minho, AvePark, S. Cláudio
de Barco, 4806-909 Taipas, Guimarães, Portugal
- ICVS/3B’s−PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Ana L. Oliveira
- 3B’s
Research Group−Biomaterials, Biodegradables and Biomimetics,
Headquarters of the European Institute of Excellence on Tissue Engineering
and Regenerative Medicine, University of Minho, AvePark, S. Cláudio
de Barco, 4806-909 Taipas, Guimarães, Portugal
- ICVS/3B’s−PT Government Associate Laboratory, Braga/Guimarães, Portugal
- CBQF−Center
for Biotechnology and Fine Chemistry, School of Biotechnology, Portuguese Catholic University, Porto 4200−072, Portugal
| | - Rui L. Reis
- 3B’s
Research Group−Biomaterials, Biodegradables and Biomimetics,
Headquarters of the European Institute of Excellence on Tissue Engineering
and Regenerative Medicine, University of Minho, AvePark, S. Cláudio
de Barco, 4806-909 Taipas, Guimarães, Portugal
- ICVS/3B’s−PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
59
|
Pan Z, Duan P, Liu X, Wang H, Cao L, He Y, Dong J, Ding J. Effect of porosities of bilayered porous scaffolds on spontaneous osteochondral repair in cartilage tissue engineering. Regen Biomater 2015; 2:9-19. [PMID: 26813511 PMCID: PMC4669027 DOI: 10.1093/rb/rbv001] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 08/06/2014] [Indexed: 12/21/2022] Open
Abstract
Poly(lactide-co-glycolide)-bilayered scaffolds with the same porosity or different ones on the two layers were fabricated, and the porosity effect on in vivo repairing of the osteochondral defect was examined in a comparative way for the first time. The constructs of scaffolds and bone marrow-derived mesenchymal stem cells were implanted into pre-created osteochondral defects in the femoral condyle of New Zealand white rabbits. After 12 weeks, all experimental groups exhibited good cartilage repairing according to macroscopic appearance, cross-section view, haematoxylin and eosin staining, toluidine blue staining, immunohistochemical staining and real-time polymerase chain reaction of characteristic genes. The group of 92% porosity in the cartilage layer and 77% porosity in the bone layer resulted in the best efficacy, which was understood by more biomechanical mimicking of the natural cartilage and subchondral bone. This study illustrates unambiguously that cartilage tissue engineering allows for a wide range of scaffold porosity, yet some porosity group is optimal. It is also revealed that the biomechanical matching with the natural composite tissue should be taken into consideration in the design of practical biomaterials, which is especially important for porosities of a multi-compartment scaffold concerning connected tissues.
Collapse
Affiliation(s)
- Zhen Pan
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Advanced Materials Laboratory, Fudan University, Shanghai 200433, China; Department of Orthopaedic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China; Department of Orthopaedic Surgery, Zhongshan Hospital, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200032, China
| | - Pingguo Duan
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Advanced Materials Laboratory, Fudan University, Shanghai 200433, China; Department of Orthopaedic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China; Department of Orthopaedic Surgery, Zhongshan Hospital, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200032, China
| | - Xiangnan Liu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Advanced Materials Laboratory, Fudan University, Shanghai 200433, China; Department of Orthopaedic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China; Department of Orthopaedic Surgery, Zhongshan Hospital, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200032, China
| | - Huiren Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Advanced Materials Laboratory, Fudan University, Shanghai 200433, China; Department of Orthopaedic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China; Department of Orthopaedic Surgery, Zhongshan Hospital, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200032, China
| | - Lu Cao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Advanced Materials Laboratory, Fudan University, Shanghai 200433, China; Department of Orthopaedic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China; Department of Orthopaedic Surgery, Zhongshan Hospital, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200032, China
| | - Yao He
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Advanced Materials Laboratory, Fudan University, Shanghai 200433, China; Department of Orthopaedic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China; Department of Orthopaedic Surgery, Zhongshan Hospital, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200032, China
| | - Jian Dong
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Advanced Materials Laboratory, Fudan University, Shanghai 200433, China; Department of Orthopaedic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China; Department of Orthopaedic Surgery, Zhongshan Hospital, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200032, China
| | - Jiandong Ding
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Advanced Materials Laboratory, Fudan University, Shanghai 200433, China; Department of Orthopaedic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China; Department of Orthopaedic Surgery, Zhongshan Hospital, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200032, China
| |
Collapse
|
60
|
Pina S, Oliveira JM, Reis RL. Natural-based nanocomposites for bone tissue engineering and regenerative medicine: a review. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2015; 27:1143-1169. [PMID: 25580589 DOI: 10.1002/adma.201403354] [Citation(s) in RCA: 536] [Impact Index Per Article: 53.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 10/14/2014] [Indexed: 06/04/2023]
Abstract
Tissue engineering and regenerative medicine has been providing exciting technologies for the development of functional substitutes aimed to repair and regenerate damaged tissues and organs. Inspired by the hierarchical nature of bone, nanostructured biomaterials are gaining a singular attention for tissue engineering, owing their ability to promote cell adhesion and proliferation, and hence new bone growth, compared with conventional microsized materials. Of particular interest are nanocomposites involving biopolymeric matrices and bioactive nanosized fillers. Biodegradability, high mechanical strength, and osteointegration and formation of ligamentous tissue are properties required for such materials. Biopolymers are advantageous due to their similarities with extracellular matrices, specific degradation rates, and good biological performance. By its turn, calcium phosphates possess favorable osteoconductivity, resorbability, and biocompatibility. Herein, an overview on the available natural polymer/calcium phosphate nanocomposite materials, their design, and properties is presented. Scaffolds, hydrogels, and fibers as biomimetic strategies for tissue engineering, and processing methodologies are described. The specific biological properties of the nanocomposites, as well as their interaction with cells, including the use of bioactive molecules, are highlighted. Nanocomposites in vivo studies using animal models are also reviewed and discussed.
Collapse
Affiliation(s)
- Sandra Pina
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4806-909, Caldas das Taipas, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | | | | |
Collapse
|
61
|
Kon E, Filardo G, Venieri G, Perdisa F, Marcacci M. Tibial plateau lesions. Surface reconstruction with a biomimetic osteochondral scaffold: Results at 2 years of follow-up. Injury 2014; 45 Suppl 6:S121-5. [PMID: 25457331 DOI: 10.1016/j.injury.2014.10.035] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
INTRODUCTION Tibial plateau articular pathology caused by post-traumatic or degenerative lesions is a challenge for the orthopaedic surgeon and can lead to early osteoarthritis. The aim of the present study was to evaluate the results of treatment of these complex defects with implantation of an osteochondral scaffold, which is designed to target the cartilage surface and to reconstruct joint anatomy by addressing the entire osteochondral unit. MATERIALS AND METHODS Eleven patients (5 female and 6 male) with a mean age of 37.3 ± 11.0 years and osteochondral lesions of the tibial plateau (mean 5.1 ± 2.7 cm(2); range 3.0-12.5 cm(2)) were treated with the implantation of an osteochondral biomimetic collagen-hydroxyapatite scaffold (Maioregen(®), Fin-Ceramica, Faenza, Italy). Comorbidities were addressed taking care to restore the correct limb alignment. Patients were evaluated pre-operatively and prospectively followed-up for 2 years using the International Knee Documentation Committee (IKDC) subjective and objective scores; activity level was documented using the Tegner score. RESULTS Three patients experienced minor adverse events. No patients required further surgery for treatment failure during the study follow-up period, and 8 patients (72.7%) reported a marked improvement. The IKDC subjective score improved from 42.5 ± 10.2 before treatment to 69.8 ± 19.0 at 12 months (p<0.05), with stable results at 24 months. The IKDC objective score increased from 27.3% normal and nearly normal knees before treatment to 85.7% normal and nearly normal knees at 24 months of follow-up. The Tegner score increased from 2.3 ± 2.1 before treatment to 4.8 ± 2.4 at 12 months (p<0.05), and was stable at the final follow-up. CONCLUSION The present study on the implantation of an osteochondral scaffold for the treatment of tibial plateau lesions showed a promising clinical outcome at short-term follow-up, which indicates that this procedure can be considered as a possible treatment option, even in these complex defects, when comorbidities are concomitantly addressed.
Collapse
Affiliation(s)
- Elizaveta Kon
- Nano-Biotechnology Laboratory, II Orthopaedic Clinic, Rizzoli Orthopaedic Institute, Via di Barbiano 1/10, 40136 Bologna, Italy.
| | - Giuseppe Filardo
- Nano-Biotechnology Laboratory, II Orthopaedic Clinic, Rizzoli Orthopaedic Institute, Via di Barbiano 1/10, 40136 Bologna, Italy
| | - Giulia Venieri
- Biomechanics Laboratory, II Orthopaedic Clinic, Rizzoli Orthopaedic Institute, Via di Barbiano 1/10, 40136 Bologna, Italy
| | - Francesco Perdisa
- Biomechanics Laboratory, II Orthopaedic Clinic, Rizzoli Orthopaedic Institute, Via di Barbiano 1/10, 40136 Bologna, Italy
| | - Maurilio Marcacci
- Biomechanics Laboratory, II Orthopaedic Clinic, Rizzoli Orthopaedic Institute, Via di Barbiano 1/10, 40136 Bologna, Italy
| |
Collapse
|
62
|
Yousefi AM, Hoque ME, Prasad RGSV, Uth N. Current strategies in multiphasic scaffold design for osteochondral tissue engineering: A review. J Biomed Mater Res A 2014; 103:2460-81. [PMID: 25345589 DOI: 10.1002/jbm.a.35356] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 10/04/2014] [Accepted: 10/12/2014] [Indexed: 12/23/2022]
Abstract
The repair of osteochondral defects requires a tissue engineering approach that aims at mimicking the physiological properties and structure of two different tissues (cartilage and bone) using specifically designed scaffold-cell constructs. Biphasic and triphasic approaches utilize two or three different architectures, materials, or composites to produce a multilayered construct. This article gives an overview of some of the current strategies in multiphasic/gradient-based scaffold architectures and compositions for tissue engineering of osteochondral defects. In addition, the application of finite element analysis (FEA) in scaffold design and simulation of in vitro and in vivo cell growth outcomes has been briefly covered. FEA-based approaches can potentially be coupled with computer-assisted fabrication systems for controlled deposition and additive manufacturing of the simulated patterns. Finally, a summary of the existing challenges associated with the repair of osteochondral defects as well as some recommendations for future directions have been brought up in the concluding section of this article.
Collapse
Affiliation(s)
- Azizeh-Mitra Yousefi
- Department of Chemical, Paper and Biomedical Engineering, Miami University, Oxford, Ohio, 45056
| | - Md Enamul Hoque
- Department of Mechanical, Materials and Manufacturing Engineering, University of Nottingham Malaysia Campus, Malaysia
| | - Rangabhatala G S V Prasad
- Biomedical and Pharmaceutical Technology Research Group, Nano Research for Advanced Materials, Bangalore, Karnataka, India
| | - Nicholas Uth
- Department of Chemical, Paper and Biomedical Engineering, Miami University, Oxford, Ohio, 45056
| |
Collapse
|
63
|
Kon E, Filardo G, Perdisa F, Di Martino A, Busacca M, Balboni F, Sessa A, Marcacci M. A one-step treatment for chondral and osteochondral knee defects: clinical results of a biomimetic scaffold implantation at 2 years of follow-up. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2014; 25:2437-2444. [PMID: 24599553 DOI: 10.1007/s10856-014-5188-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Accepted: 02/25/2014] [Indexed: 06/03/2023]
Abstract
The increasing interest in the role of subchondral bone with regard to articular surface disease led to the development of new bioengineered strategies. Aim of this study is to evaluate the clinical and MRI outcome after the implantation of a nanostructured biomimetic three-phasic collagen-hydroxyapatite construct for the treatment of chondral and osteochondral defects of the knee in a large cohort of patients. Seventy-nine patients (63 M, 16 W), affected by grade III-IV femoral condyle or trochlea chondral lesions or osteochondritis dissecans (OCD) were consecutively treated. Mean age was 31.0 ± 11.3 years, mean lesion size was 3.2 ± 2.0 cm(2). Fifty patients underwent previous surgeries, concurrent procedures were necessary in 39 cases. The clinical outcome was evaluated using the IKDC and Tegner scores at 12 and 24 months of follow-up. At follow-up times an MRI was performed and evaluated with the MOCART score. All the scores improved significantly from the baseline. IKDC subjective score showed a further increase between 12 and 24 months of follow-up, and 82.2% of the patients improved their symptoms at the final evaluation. Patients affected by OCDs had better results than those with degenerative lesions. Some abnormal MRI findings were present, even though no correlation was found with the clinical outcome. This one-step biomimetic approach developed to favor osteochondral tissue regeneration is effective in treating knees affected by damages of the articular surface, leading to a significant clinical improvement. However, abnormal MRI findings were present, even if not correlated with the clinical outcome.
Collapse
Affiliation(s)
- Elizaveta Kon
- II Clinic - Biomechanics Laboratory, Rizzoli Orthopaedic Institute, Via Di Barbiano 1/10, 40136, Bologna, Italy,
| | | | | | | | | | | | | | | |
Collapse
|
64
|
Li JJ, Kaplan DL, Zreiqat H. Scaffold-based regeneration of skeletal tissues to meet clinical challenges. J Mater Chem B 2014; 2:7272-7306. [PMID: 32261954 DOI: 10.1039/c4tb01073f] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The management and reconstruction of damaged or diseased skeletal tissues have remained a significant global healthcare challenge. The limited efficacy of conventional treatment strategies for large bone, cartilage and osteochondral defects has inspired the development of scaffold-based tissue engineering solutions, with the aim of achieving complete biological and functional restoration of the affected tissue in the presence of a supporting matrix. Nevertheless, significant regulatory hurdles have rendered the clinical translation of novel scaffold designs to be an inefficient process, mainly due to the difficulties of arriving at a simple, reproducible and effective solution that does not rely on the incorporation of cells and/or bioactive molecules. In the context of the current clinical situation and recent research advances, this review will discuss scaffold-based strategies for the regeneration of skeletal tissues, with focus on the contribution of bioactive ceramic scaffolds and silk fibroin, and combinations thereof, towards the development of clinically viable solutions.
Collapse
Affiliation(s)
- Jiao Jiao Li
- Biomaterials and Tissue Engineering Research Unit, School of AMME, University of Sydney, Sydney, NSW 2006, Australia.
| | | | | |
Collapse
|
65
|
Delcogliano M, Menghi A, Placella G, Speziali A, Cerulli G, Carimati G, Pasqualotto S, Berruto M. Treatment of osteochondritis dissecans of the knee with a biomimetic scaffold. A prospective multicenter study. JOINTS 2014; 2:102-8. [PMID: 25606552 DOI: 10.11138/jts/2014.2.3.102] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
PURPOSE the aim of the present study was to evaluate the clinical outcome of the treatment of osteochondritis dissecans (OCD) of the knee with a type-I collagen-hydroxyapatite nanostructural biomimetic osteochondral scaffold. METHODS twenty-three patients affected by symptomatic knee OCD of the femoral condyles, grade 3 or 4 of the International Cartilage Repair Society (ICRS) scale, underwent biomimetic scaffold implantation. The site of the defect was the medial femoral condyle in 14 patients, whereas in 9 patients the lateral femoral condyle was involved. The average size of the defects was 3.5±1.43 cm(2). All patients were clinically evaluated using the ICRS subjective score, the IKDC objective score, the EQ-VAS and the Tegner Activity Score. Minimum follow-up was two years. MRI was performed at 12 and 24 months after surgery and then every 12 months thereafter. RESULTS the ICRS subjective score improved from the baseline value of 50.93±20.6 to 76.44±18.03 at the 12 months (p<0.0005) and 82.23± 17.36 at the two-year follow-up (p<0.0005). The IKDC objective score confirmed the results. The EQ-VAS showed a significant improvement from 3.15±1.09 to 8.15±1.04 (p<0.0005) at two years of follow-up. The Tegner Activity Score improvement was statistically significant (p<0.0005). CONCLUSIONS biomimetic scaffold implantation was a good procedure for treating grade 3 and 4 OCD, in which other classic techniques are burdened by different limitations. This open one-step surgery gave promising stable results at short-term follow-up. LEVEL OF EVIDENCE Level IV, therapeutic case series.
Collapse
Affiliation(s)
- Marco Delcogliano
- Catholic University, Department of Orthopaedics, "A. Gemelli" University Hospital, Rome, Italy
| | - Amerigo Menghi
- Catholic University, Department of Orthopaedics, "A. Gemelli" University Hospital, Rome, Italy
| | - Giacomo Placella
- Catholic University, Department of Orthopaedics, "A. Gemelli" University Hospital, Rome, Italy
| | - Andrea Speziali
- Catholic University, Department of Orthopaedics, "A. Gemelli" University Hospital, Rome, Italy
| | - Giuliano Cerulli
- Catholic University, Department of Orthopaedics, "A. Gemelli" University Hospital, Rome, Italy
| | | | | | | |
Collapse
|
66
|
Berruto M, Delcogliano M, de Caro F, Carimati G, Uboldi F, Ferrua P, Ziveri G, De Biase CF. Treatment of Large Knee Osteochondral Lesions With a Biomimetic Scaffold: Results of a Multicenter Study of 49 Patients at 2-Year Follow-up. Am J Sports Med 2014; 42:1607-17. [PMID: 24778267 DOI: 10.1177/0363546514530292] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Osteochondral knee lesions represent a challenging condition encountered by orthopaedic surgeons. A variety of methods have been developed to repair articular cartilage defects. However, these techniques are limited by donor site morbidity or by the requirement for a staged procedure. PURPOSE To assess the effectiveness of a biomimetic osteochondral scaffold for the treatment of large osteochondral knee lesions. STUDY DESIGN Case series; Level of evidence, 4. METHODS From 2009 to 2011, a total of 49 patients affected by isolated large osteochondral knee lesions (mean [± SD] size, 4.35 ± 1.26 cm2) were treated with the biomimetic scaffold. Patients were evaluated using the International Knee Documentation Committee (IKDC), Tegner, and visual analog scale (VAS) pain scores, as well as magnetic resonance imaging (MRI) up to 3-year follow-up. The MOCART (magnetic resonance observation of cartilage repair tissue) score was performed to analyze different variables. Biopsies were carried out in 5 patients. Four of the 5 second-look arthroscopies and biopsies were performed on patients with failed results because of ethical issues. RESULTS The mean IKDC subjective score increased significantly from 45.45 ± 19.29 preoperatively to 70.86 ± 18.08 at 1-year follow-up and to 75.42 ± 19.31 at 2-year follow-up (P < .001). The IKDC objective score changed from 50% normal and nearly normal knees before treatment to 89.79% at the 2-year follow-up. There was a statistically significant improvement (P < .005) in VAS score from the preoperative level (6.69 ± 1.88) to the 2-year follow-up (1.96 ± 2.47). Tegner scores increased (P < .001) from the preoperative value (2.20 ± 0.67) to the 2-year follow-up (4.9 ± 1.73) without achieving preinjury level. A correlation was found between the IKDC subjective score and age (P < .001, r = -0.497, ρ = -0.502). Patients affected by osteochondritis dissecans (OCD) achieved a statistically significantly better outcome (P < .05). A subgroup of 19 competitive athletes showed a statistically significantly improvement (P < .001) in the subjective IKDC (86.5 ± 13.2) compared with the nonathletic subpopulation (69.03 ± 19.41) at the 2-year follow-up. The MRI findings of 30 patients were available at 2-year follow-up: 70% showed complete filling of the lesion, 63.3% had an intact articular surface, and 86% had mild or no effusion. In all cases, in dual T2-weighted fast spin echo sequence, the repair tissue showed a hyperintensive signal with respect to the surrounding subchondral bone; however, no edema was observed. CONCLUSION The study findings indicate that the biomimetic scaffold that was investigated is an off-the-shelf, cell-free, and cost-effective implant that can regenerate either cartilage or subchondral bone. The scaffold allows a 1-step surgical procedure that can be used for osteochondral lesions, OCD, and in some cases osteonecrosis.
Collapse
|
67
|
Skeletal tissue regeneration: where can hydrogels play a role? INTERNATIONAL ORTHOPAEDICS 2014; 38:1861-76. [PMID: 24968789 DOI: 10.1007/s00264-014-2402-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 05/29/2014] [Indexed: 02/07/2023]
Abstract
The emerging field of tissue engineering reveals promising approaches for the repair and regeneration of skeletal tissues including the articular cartilage, bone, and the entire joint. Amongst the myriad of biomaterials available to support this strategy, hydrogels are highly tissue mimicking substitutes and thus of great potential for the regeneration of functional tissues. This review comprises an overview of the novel and most promising hydrogels for articular cartilage, osteochondral and bone defect repair. Chondro- and osteo-conductive and -instructive hydrogels are presented, highlighting successful combinations with inductive signals and cell sources. Moreover, advantages, drawbacks, and future perspectives of the role of hydrogels in skeletal regeneration are addressed, pointing out the current state of this rising approach.
Collapse
|
68
|
Sullivan MP, McHale KJ, Parvizi J, Mehta S. Nanotechnology: current concepts in orthopaedic surgery and future directions. Bone Joint J 2014; 96-B:569-73. [PMID: 24788488 DOI: 10.1302/0301-620x.96b5.33606] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Nanotechnology is the study, production and controlled manipulation of materials with a grain size < 100 nm. At this level, the laws of classical mechanics fall away and those of quantum mechanics take over, resulting in unique behaviour of matter in terms of melting point, conductivity and reactivity. Additionally, and likely more significant, as grain size decreases, the ratio of surface area to volume drastically increases, allowing for greater interaction between implants and the surrounding cellular environment. This favourable increase in surface area plays an important role in mesenchymal cell differentiation and ultimately bone-implant interactions. Basic science and translational research have revealed important potential applications for nanotechnology in orthopaedic surgery, particularly with regard to improving the interaction between implants and host bone. Nanophase materials more closely match the architecture of native trabecular bone, thereby greatly improving the osseo-integration of orthopaedic implants. Nanophase-coated prostheses can also reduce bacterial adhesion more than conventionally surfaced prostheses. Nanophase selenium has shown great promise when used for tumour reconstructions, as has nanophase silver in the management of traumatic wounds. Nanophase silver may significantly improve healing of peripheral nerve injuries, and nanophase gold has powerful anti-inflammatory effects on tendon inflammation. Considerable advances must be made in our understanding of the potential health risks of production, implantation and wear patterns of nanophase devices before they are approved for clinical use. Their potential, however, is considerable, and is likely to benefit us all in the future.
Collapse
Affiliation(s)
- M P Sullivan
- Hospital of the University of Pennsylvania, Department of Orthopaedic Surgery, 2 Silverstein, 3400 Spruce St, Philadelphia, USA
| | | | | | | |
Collapse
|
69
|
Delcogliano M, de Caro F, Scaravella E, Ziveri G, De Biase CF, Marotta D, Marenghi P, Delcogliano A. Use of innovative biomimetic scaffold in the treatment for large osteochondral lesions of the knee. Knee Surg Sports Traumatol Arthrosc 2014; 22:1260-9. [PMID: 24146051 DOI: 10.1007/s00167-013-2717-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 10/08/2013] [Indexed: 11/25/2022]
Abstract
PURPOSE Large osteochondral defects involve two different tissues characterized by different intrinsic healing capacity. Different techniques have been proposed to treat these lesions with results still under discussion. The aim of the study is to evaluate the clinical outcome of 19 patients treated with a type I collagen-hydroxyapatite nanostructural biomimetic osteochondral scaffold at minimum follow-up of 2 years. METHODS Twenty lesions, 19 patients were treated with this scaffold implantation. The lesions size went from 4 to 8 cm(2) (mean size 5.2 ± 1.6 cm(2)). All patients were clinically evaluated using the International Repair Cartilage Society score, the Tegner Score and EQ-VAS. MRI was performed at 12 and 24 months after surgery and then every 12 months and evaluated with magnetic resonance observation of cartilage repair tissue scoring scale. RESULTS The IKDC subjective score improved from a mean score of 35.7 ± 6.3 at the baseline evaluation to 67.7 ± 13.4 at 12-month follow-up (p < 0.0005). A further improvement was documented from 12 to 24 months (mean score of 72.9 ± 12.4 at 24 months) (p < 0.0005). The IKDC objective score confirmed the results. The Tegner activity score improvement was statistically significant (p < 0.0005). The EQ-VAS showed a significant improvement from 3.15 ± 1.09 to 7.35 ± 1.14 (p < 0.0005) at 2-year follow-up. The lesion' site seems to influence the results showing a better outcome in the patients affected in the medial femoral condyle. CONCLUSIONS The use of the MaioRegen scaffold is a good procedure for the treatment for large osteochondral defects where other classic techniques are difficult to apply. It is an open one-step surgery with promising stable results at medium follow-up. LEVEL OF EVIDENCE IV.
Collapse
|
70
|
Filardo G, Drobnic M, Perdisa F, Kon E, Hribernik M, Marcacci M. Fibrin glue improves osteochondral scaffold fixation: study on the human cadaveric knee exposed to continuous passive motion. Osteoarthritis Cartilage 2014; 22:557-65. [PMID: 24487043 DOI: 10.1016/j.joca.2014.01.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 01/09/2014] [Accepted: 01/17/2014] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To evaluate stability and integrity of bi-layer and three-layer collagen-hydroxyapatite (C-HA) osteochondral scaffolds in a human cadaveric knee exposed to continuous passive motion (CPM) with and without loading and the role of added fibrin glue to improve the press-fit fixation of C-HA scaffolds. DESIGN Osteochondral lesions (2.0 × 1.5 cm) were chiseled out on both condyles and trochlea in eight human cadaveric knees. A total of 24 bi-layer (5 mm, four in each condyle) or three-layer C-HA scaffolds (8 mm, eight in the trochlea, four in each condyle) were first press-fit implanted and underwent testing with CPM, 90 cycles, 0°-90°. The second set of 24 scaffolds was implanted in cleaned lesions with the addition of fibrin glue. Two knees with fibrin glue fixation were additionally exposed to 15 kg loading, with 30 cycles of CPM, 0°-30°. Then, the knees were reopened and the scaffolds were evaluated using semi-quantitative Drobnic and modified Bekkers scores. RESULTS All but two scaffolds remained in the lesions site throughout CPM. Two implants failed: both were bi-layer osteochondral scaffolds, press-fit implanted at the lateral femoral condyle (LFC). A statistically significant difference was obtained between press-fit and fibrin glue implants with both Drobnic (2.9 ± 0.7 vs 4.3 ± 0.1, P < 0.0005) and Bekkers (3.3 ± 1.0 vs 5.0 ± 0.1, P < 0.0005) scores. Additional knee loading did not affect fibrin glue scaffold fixation or integrity. CONCLUSION This cadaveric study showed fibrin glue notably improved bi-layer or three-layer C-HA scaffold press-fit fixation regardless of lesion location. It is therefore recommended that fibrin glue be used during surgery to improve early post-operative C-HA scaffold stability and integrity.
Collapse
Affiliation(s)
- G Filardo
- Nano-Biotechnology Laboratory, II Orthopaedic Clinic, Rizzoli Orthopaedic Institute, Bologna, Italy
| | - M Drobnic
- Orthopaedic Clinic, Medical Faculty, University of Ljubljana, Slovenia
| | - F Perdisa
- Biomechanics Laboratory, II Orthopaedic Clinic, Rizzoli Orthopaedic Institute, Bologna, Italy
| | - E Kon
- Nano-Biotechnology Laboratory, II Orthopaedic Clinic, Rizzoli Orthopaedic Institute, Bologna, Italy.
| | - M Hribernik
- Institute of Anatomy, Medical Faculty, University of Ljubljana, Slovenia
| | - M Marcacci
- Biomechanics Laboratory, II Orthopaedic Clinic, Rizzoli Orthopaedic Institute, Bologna, Italy
| |
Collapse
|
71
|
Li J, Baker BA, Mou X, Ren N, Qiu J, Boughton RI, Liu H. Biopolymer/Calcium phosphate scaffolds for bone tissue engineering. Adv Healthc Mater 2014; 3:469-84. [PMID: 24339420 DOI: 10.1002/adhm.201300562] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2013] [Revised: 11/15/2013] [Indexed: 11/08/2022]
Abstract
With nearly 30 years of progress, tissue engineering has shown promise in developing solutions for tissue repair and regeneration. Scaffolds, together with cells and growth factors, are key components of this development. Recently, an increasing number of studies have reported on the design and fabrication of scaffolding materials. In particular, inspired by the nature of bone, polymer/ceramic composite scaffolds have been studied extensively. The purpose of this paper is to review the recent progress of the naturally derived biopolymers and the methods applied to generate biomimetic biopolymer/calcium phosphate composites as well as their biomedical applications in bone tissue engineering.
Collapse
Affiliation(s)
- Jianhua Li
- State Key Lab of Crystal Materials, Shandong University; 27 Shandanan Road Jinan 250100 China
| | - Bryan. A. Baker
- Biosystems and Biomaterials Division, The National Institute of Standards and Technology; MD 20899-8300 USA
| | - Xiaoning Mou
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences; Beijing China
| | - Na Ren
- State Key Lab of Crystal Materials, Shandong University; 27 Shandanan Road Jinan 250100 China
| | - Jichuan Qiu
- State Key Lab of Crystal Materials, Shandong University; 27 Shandanan Road Jinan 250100 China
| | - Robert I. Boughton
- Department of Physics and Astronomy; Bowling Green State University; Bowling Green OH 43403 USA
| | - Hong Liu
- State Key Lab of Crystal Materials, Shandong University; 27 Shandanan Road Jinan 250100 China
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences; Beijing China
| |
Collapse
|
72
|
Kon E, Filardo G, Perdisa F, Venieri G, Marcacci M. Acellular Matrix–Based Cartilage Regeneration Techniques for Osteochondral Repair. ACTA ACUST UNITED AC 2014. [DOI: 10.1053/j.oto.2014.02.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
73
|
Kon E, Filardo G, Di Martino A, Busacca M, Moio A, Perdisa F, Marcacci M. Clinical results and MRI evolution of a nano-composite multilayered biomaterial for osteochondral regeneration at 5 years. Am J Sports Med 2014; 42:158-65. [PMID: 24114751 DOI: 10.1177/0363546513505434] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Several cartilage lesions involve the subchondral bone, and there is a need for biphasic scaffolds to treat the entire osteochondral unit to reproduce the different biological and functional requirements and guide the growth of the 2 tissues. PURPOSE To evaluate the results of a cell-free collagen-hydroxyapatite osteochondral scaffold at midterm, and to use magnetic resonance imaging (MRI) analysis to document the imaging evolution of the tissue regeneration process through 5 years of follow-up. STUDY DESIGN Case series; Level of evidence, 4. METHODS Twenty-seven patients (9 women, 18 men; mean age, 34.9 ± 10.2 years) treated for knee chondral or osteochondral lesions (size, 1.5-6 cm(2)) were followed for 2 and 5 years and were clinically evaluated using the International Knee Documentation Committee (IKDC) and Tegner scores. An MRI evaluation was performed at both follow-ups in 23 lesions, and the magnetic resonance observation of cartilage repair tissue (MOCART) score and specific subchondral bone parameters (bone regeneration, bone signal quality, osteophytes or upcoming bone front, sclerotic areas, and edema) were analyzed. RESULTS A statistically significant improvement in all clinical scores was observed from the initial evaluation to the 2- and 5-year follow-ups, and the results were stable over time. The mean IKDC subjective score improved from 40.0 ± 15.0 to 76.5 ± 14.5 (2-year follow-up) and 77.1 ± 18.0 (5-year follow-up) and the mean Tegner score from 1.6 ± 1.1 to 4.0 ± 1.8 (2-year follow-up) and 4.1 ± 1.9 (5-year follow-up). The MRI evaluation showed a significant improvement in both the MOCART score and subchondral bone status from 2 to 5 years. At 5 years, complete filling of the cartilage was shown in 78.3% of the lesions, complete integration of the graft was detected in 69.6% of cases, the repair tissue surface was intact in 60.9%, and the structure of the repair tissue was homogeneous in 60.9% of the cases. No correlation was found between MRI findings and clinical outcome. CONCLUSION This osteochondral scaffold was used for the treatment of chondral and osteochondral knee defects with a single-step procedure. The study results highlighted the safety and potential of this procedure, which offered a good clinical outcome with stable results at midterm follow-up. Although the MRI findings improved over time, some abnormalities persisted, but no correlation was found between the imaging and clinical results.
Collapse
Affiliation(s)
- Elizaveta Kon
- Elizaveta Kon, Biomechanics Laboratory, Rizzoli Orthopaedic Institute, Via Di Barbiano, 1/10 - 40136 Bologna, Italy.
| | | | | | | | | | | | | |
Collapse
|
74
|
Correia SI, Pereira H, Silva-Correia J, Van Dijk CN, Espregueira-Mendes J, Oliveira JM, Reis RL. Current concepts: tissue engineering and regenerative medicine applications in the ankle joint. J R Soc Interface 2013; 11:20130784. [PMID: 24352667 PMCID: PMC3899856 DOI: 10.1098/rsif.2013.0784] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Tissue engineering and regenerative medicine (TERM) has caused a revolution in present and future trends of medicine and surgery. In different tissues, advanced TERM approaches bring new therapeutic possibilities in general population as well as in young patients and high-level athletes, improving restoration of biological functions and rehabilitation. The mainstream components required to obtain a functional regeneration of tissues may include biodegradable scaffolds, drugs or growth factors and different cell types (either autologous or heterologous) that can be cultured in bioreactor systems (in vitro) prior to implantation into the patient. Particularly in the ankle, which is subject to many different injuries (e.g. acute, chronic, traumatic and degenerative), there is still no definitive and feasible answer to ‘conventional’ methods. This review aims to provide current concepts of TERM applications to ankle injuries under preclinical and/or clinical research applied to skin, tendon, bone and cartilage problems. A particular attention has been given to biomaterial design and scaffold processing with potential use in osteochondral ankle lesions.
Collapse
Affiliation(s)
- S I Correia
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics, University of Minho, , Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, S. Cláudio de Barco, Taipas, Guimarães 4806-909, Portugal
| | | | | | | | | | | | | |
Collapse
|
75
|
Filardo G, Kon E, Perdisa F, Di Matteo B, Di Martino A, Iacono F, Zaffagnini S, Balboni F, Vaccari V, Marcacci M. Osteochondral scaffold reconstruction for complex knee lesions: a comparative evaluation. Knee 2013; 20:570-6. [PMID: 23810647 DOI: 10.1016/j.knee.2013.05.007] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 04/04/2013] [Accepted: 05/24/2013] [Indexed: 02/02/2023]
Abstract
BACKGROUND The primary aim of the present study is to evaluate the results obtained in challenging knee lesions with the implant of an osteochondral scaffold and concomitant treatment of all comorbidities. The secondary aim is to compare the results obtained with those found when a chondral scaffold was applied. MATERIALS AND METHODS Patients affected by complex lesions of the knee articular surface were included. "Complex cases" were defined according to the following criteria: previous clinical history of intra-articular fracture, lesion located at the tibial plateau, concurrent knee axial realignment procedure, concurrent meniscal scaffold or allograft implantation, and multiple articular surface lesions treated. Thirty-three patients were treated with the implantation of an osteochondral scaffold. The results of a homogeneous group of 23 patients previously treated and prospectively evaluated after implantation of a chondral scaffold were analyzed and compared. RESULTS IKDC subjective score improved significantly from pre-operative (40.4±14.1) to 12months' follow-up (69.6±17.0; p<0.0005) with a further improvement at the final evaluation at 24months (75.5±15.0; p=0.038). The same positive trend was confirmed by the VAS and Tegner scores. At final follow-up the group treated with the osteochondral scaffold presented a better subjective IKDC score with respect to the group treated with the chondral scaffold (p=0.034). CONCLUSIONS A regenerative procedure to address the entire osteochondral unit, together with the treatment of all comorbidities, might offer good results also in complex cases otherwise doomed to non-biological resurfacing. LEVEL OF EVIDENCE III Comparative study.
Collapse
Affiliation(s)
- G Filardo
- Nano-Biotechnology Laboratory, II Orthopaedic Clinic, Rizzoli Orthopaedic Institute, Via di Barbiano 1/10, 40136 Bologna, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Marcacci M, Zaffagnini S, Kon E, Marcheggiani Muccioli GM, Di Martino A, Di Matteo B, Bonanzinga T, Iacono F, Filardo G. Unicompartmental osteoarthritis: an integrated biomechanical and biological approach as alternative to metal resurfacing. Knee Surg Sports Traumatol Arthrosc 2013; 21:2509-17. [PMID: 23370980 DOI: 10.1007/s00167-013-2388-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 01/07/2013] [Indexed: 12/16/2022]
Abstract
PURPOSE Although traditionally not indicated for the treatment of osteoarthritis (OA), regenerative procedures are becoming a focus of increased interest due to their potential to provide pain relief and alter the progression of degenerative diseases. The purpose of this study was to assess whether a combined biomechanical and biological approach could offer good results in unicompartmental OA, thus delaying the need for unicompartmental arthroplasty in patients too young or refusing metal resurfacing. METHODS Forty-three patients (mean age = 40.1 ± 11 years, 33 men and 10 women, mean BMI = 25 ± 3) affected by unicompartmental OA (Kellegren-Lawrence score = 3) in stable joints were enrolled and treated consecutively. Fifteen patients were treated with osteotomy and osteochondral biomimetic scaffold implant (3 of them also with meniscal substitution), 11 with osteotomy and meniscal scaffold implant, 9 with osteotomy and meniscal allograft implant, and 8 with both cartilage and meniscal reconstruction, depending on the specific joint compartment main requirements. Clinical evaluation was performed at 3-year (2-4) median follow-up using the following scoring systems: IKDC subjective and objective, VAS for pain, and Tegner scores. Failures, adverse events, and complications were also reported. RESULTS The IKDC subjective score improved from 47.3 to 79.6 at the final evaluation (p < 0.0005), VAS improved from 6.1 to 2.3 (p < 0.0005), and also sport activity level evaluated with the Tegner score showed a significant improvement, from 2 (1-5) to 4 (3-10; p < 0.0005), even if without achieving the pre-injury level (6, p = 0.001). A further subanalysis confirmed the positive outcome obtained in all the treatment subgroups and showed a higher clinical improvement in patients under the age of 40 years (IKDC subjective 84.4 ± 13.2 vs 76.5 ± 17.3; p = 0.03). CONCLUSION This integrated biological and biomechanical approach produced a marked improvement at short-medium follow-up in patients affected by unicompartmental OA. Even though a good outcome was achieved at all ages, patients under the age of 40 years presented a greater clinical and subjective improvement. Longer follow-up studies are needed to show results over time and confirm this approach as an effective alternative to unicompartmental implants.
Collapse
Affiliation(s)
- M Marcacci
- II Orthopaedic Clinic and Biomechanics Laboratory, Rizzoli Orthopaedic Institute, Via di Barbiano n. 1/10, 40136, Bologna, Italy,
| | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Liu M, Yu X, Huang F, Cen S, Zhong G, Xiang Z. Tissue engineering stratified scaffolds for articular cartilage and subchondral bone defects repair. Orthopedics 2013; 36:868-73. [PMID: 24200433 DOI: 10.3928/01477447-20131021-10] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Due to their good biocompatibility and mechanical integrity, tissue engineering scaffolds have become a principal method of repair and regeneration of osteochondral defects. To improve their intrinsic properties, control their degenerative times, and enhance their cell adhesion and differentiation, numerous scaffold architectures and formation methods have been developed and tested, but the ideal scaffold design is still controversial. Moreover, scaffold fixation has a significant influence on repair and regeneration after implantation. The authors analyzed relative studies to address the latest scaffold designs, including biphasic scaffold, multilayered scaffold, and continuous nonstratified scaffold, and this article compares their advantages and disadvantages. In addition, the authors introduce a novel modified method for scaffold fixation known as magnetic fixation. Both stratified and nonstratified scaffolds can repair osteochondral defects, but continuous nonstratified scaffolds are more biomimetic compared with the native osteochondral structures, and they lead to a better regeneration of hyaline-like cartilage and structured bone tissue. Therefore, the authors suggest continuous nonstratified scaffolds are an effective option for treating osteochondral defects.
Collapse
|
78
|
Li X, Su G, Wang J, Zhou Z, Li L, Liu L, Guan M, Zhang Q, Wang H. Exogenous bFGF promotes articular cartilage repair via up-regulation of multiple growth factors. Osteoarthritis Cartilage 2013; 21:1567-75. [PMID: 23792272 DOI: 10.1016/j.joca.2013.06.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 05/21/2013] [Accepted: 06/05/2013] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To investigate the roles of exogenous basic fibroblast growth factor (bFGF) on the repair of full-thickness articular cartilage defects in rabbits. DESIGN In the present study, a double-layered collagen membrane sandwiched with bFGF-loaded-nanoparticles between a dense layer and a loose layer was implanted into full-thickness articular cartilage defects in rabbits. By grafting the membrane in a different direction, the dense layer or the loose layer facing the surface of the subchondral bone, the effects of the released bFGF on the defects and the profiles of nine growth factors (GFs) in synovial fluid (SF) were investigated using histological methods and antibody arrays, respectively. RESULTS In the group with the loose layer facing the surface of the subchondral bone, fast release of bFGF was observed, and early high levels of endogenous transforming growth factor-β2 (TGF-β2), vascular endothelial growth factor (VEGF), bFGF, bone morphogenetic protein 2 (BMP-2), BMP-3, and BMP-4 in SF were detected by antibody arrays, especially on day 3. Chondrocyte-like cells were also observed in this group at an early stage. As a result, this group showed better levels of repair, as compared to the other groups in which low GF levels were detected at an early stage, and chondrocyte-like cells appeared much later. CONCLUSIONS Our study suggests that exogenous bFGF promotes articular cartilage repair by up-regulating the levels of multiple GFs, but administration at an early stage is required.
Collapse
Affiliation(s)
- X Li
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences, Peking Union Medical College, The Key Laboratory of Biomedical Material of Tianjin, Tianjin 300192, PR China.
| | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Dormer NH, Gupta V, Scurto AM, Berkland CJ, Detamore MS. Effect of different sintering methods on bioactivity and release of proteins from PLGA microspheres. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2013; 33:4343-51. [PMID: 23910352 PMCID: PMC3752427 DOI: 10.1016/j.msec.2013.06.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 05/17/2013] [Accepted: 06/19/2013] [Indexed: 11/23/2022]
Abstract
Macromolecule release from poly(d,l-lactide-co-glycolide) (PLGA) microspheres has been well-characterized, and is a popular approach for delivering bioactive signals from tissue-engineered scaffolds. However, the effect of some processing solvents, sterilization, and mineral incorporation (when used in concert) on long-term release and bioactivity has seldom been addressed. Understanding these effects is of significant importance for microsphere-based scaffolds, given that these scaffolds are becoming increasingly more popular, yet growth factor activity following sintering and/or sterilization is heretofore unknown. The current study evaluated the 6-week release of transforming growth factor (TGF)-β3 and bone morphogenetic protein (BMP)-2 from PLGA and PLGA/hydroxyapatite (HAp) microspheres following exposure to ethanol (EtOH), dense phase carbon dioxide (CO2), or ethylene oxide (EtO). EtO was chosen based on its common use in scaffold sterilization, whereas EtOH and CO2 were chosen given their importance in sintering microspheres together to create scaffolds. Release supernatants were then used in an accelerated cell stimulation study with human bone marrow stromal cells (hBMSCs) with monitoring of gene expression for major chondrogenic and osteogenic markers. Results indicated that in microspheres without HAp, EtOH exposure led to the greatest amount of delivery, while those treated with CO2 delivered the least growth factor. In contrast, formulations with HAp released almost half as much protein, regardless of EtOH or CO2 exposure. Notably, EtO exposure was not found to significantly affect the amount of protein released. Cell stimulation studies demonstrated that eluted protein samples performed similarly to positive controls in PLGA-only formulations, and ambiguously in PLGA/HAp composites. In conclusion, the use of EtOH, subcritical CO2, and EtO in microsphere-based scaffolds may have only slight adverse effects, and possibly even desirable effects in some cases, on protein availability and bioactivity.
Collapse
Affiliation(s)
| | - Vineet Gupta
- Bioengineering Program, University of Kansas, 1530 W. 15 St., Lawrence, KS, USA 66045
| | - Aaron M. Scurto
- Bioengineering Program, University of Kansas, 1530 W. 15 St., Lawrence, KS, USA 66045
- Chemical & Petroleum Engineering, University of Kansas, 1530 W. 15 St., Lawrence, KS, USA 66045
| | - Cory J. Berkland
- Orbis Biosciences, 2002 W. 39 Ave., Kansas City, KS, USA 66103
- Bioengineering Program, University of Kansas, 1530 W. 15 St., Lawrence, KS, USA 66045
- Chemical & Petroleum Engineering, University of Kansas, 1530 W. 15 St., Lawrence, KS, USA 66045
- Pharmaceutical Chemistry, University of Kansas, 2030 Becker Dr., Lawrence, KS, USA 66047
| | - Michael S. Detamore
- Bioengineering Program, University of Kansas, 1530 W. 15 St., Lawrence, KS, USA 66045
- Chemical & Petroleum Engineering, University of Kansas, 1530 W. 15 St., Lawrence, KS, USA 66045
| |
Collapse
|
80
|
Filardo G, Kon E, Di Martino A, Busacca M, Altadonna G, Marcacci M. Treatment of knee osteochondritis dissecans with a cell-free biomimetic osteochondral scaffold: clinical and imaging evaluation at 2-year follow-up. Am J Sports Med 2013; 41:1786-93. [PMID: 23761684 DOI: 10.1177/0363546513490658] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Osteochondritis dissecans (OCD) is an acquired lesion of the subchondral bone that may result in separation and instability of the overlying articular cartilage. Unstable lesions must be treated surgically to reestablish the joint surface as anatomically as possible. Hypothesis/ PURPOSE The aim of this study was to evaluate the potential of a biomimetic osteochondral scaffold to treat OCD by analyzing the results obtained at 2-year follow-up. The hypothesis was that this scaffold, which was developed to treat the entire osteochondral unit, might restore the articular surface and improve symptoms and function in patients affected by knee OCD. STUDY DESIGN Case series; Level of evidence, 4. METHODS Twenty-seven consecutive patients (19 men, 8 women; age [mean ± SD], 25.5 ± 7.7 years) who were affected by symptomatic knee OCD of the femoral condyles (average defect size 3.4 ± 2.2 cm(2)), grade 3 or 4 on the International Cartilage Repair Society (ICRS) scale, were enrolled and treated with the implantation of a 3-layer collagen-hydroxyapatite scaffold. Patients were prospectively evaluated by subjective and objective International Knee Documentation Committee (IKDC) and Tegner scores preoperatively and at 1- and 2-year follow-up. An MRI was also performed at the 2 follow-up times. RESULTS A statistically significant improvement in all clinical scores was obtained at 1 year, and a further improvement was found the following year. At the 2-year follow-up, the IKDC subjective score had increased from 48.4 ± 17.8 preoperatively to 82.3 ± 12.2, the IKDC objective evaluation from 40% to 85% of normal knees, and the Tegner score from 2.4 ± 1.7 to 4.5 ± 1.6. The MRI evaluations showed good defect filling and implant integration but also inhomogeneous regenerated tissue and subchondral bone changes in most patients at both follow-up times. No correlation between the MOCART (magnetic resonance observation of cartilage repair tissue) score and clinical outcome was found. CONCLUSION This biomimetic osteochondral scaffold seems to be a valid treatment option for knee OCD, showing a good clinical outcome at 2-year follow-up. Moreover, the improvement was not correlated with lesion size, so large lesions can benefit from this implant. Less favorable findings were obtained with MRI evaluation.
Collapse
Affiliation(s)
- Giuseppe Filardo
- II Clinic–Biomechanics Laboratory, Rizzoli Orthopaedic Institute, Via Di Barbiano, 1/10, 40136 Bologna, Italy.
| | | | | | | | | | | |
Collapse
|
81
|
Santo VE, Gomes ME, Mano JF, Reis RL. Controlled release strategies for bone, cartilage, and osteochondral engineering--Part I: recapitulation of native tissue healing and variables for the design of delivery systems. TISSUE ENGINEERING. PART B, REVIEWS 2013; 19:308-26. [PMID: 23268651 PMCID: PMC3690094 DOI: 10.1089/ten.teb.2012.0138] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 12/11/2012] [Indexed: 12/12/2022]
Abstract
The potential of growth factors to stimulate tissue healing through the enhancement of cell proliferation, migration, and differentiation is undeniable. However, critical parameters on the design of adequate carriers, such as uncontrolled spatiotemporal presence of bioactive factors, inadequate release profiles, and supraphysiological dosages of growth factors, have impaired the translation of these systems onto clinical practice. This review describes the healing cascades for bone, cartilage, and osteochondral interface, highlighting the role of specific growth factors for triggering the reactions leading to tissue regeneration. Critical criteria on the design of carriers for controlled release of bioactive factors are also reported, focusing on the need to provide a spatiotemporal control over the delivery and presentation of these molecules.
Collapse
Affiliation(s)
- Vítor E. Santo
- 3Bs Research Group—Biomaterials, Biodegradables, and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, Guimarães, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Manuela E. Gomes
- 3Bs Research Group—Biomaterials, Biodegradables, and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, Guimarães, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - João F. Mano
- 3Bs Research Group—Biomaterials, Biodegradables, and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, Guimarães, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rui L. Reis
- 3Bs Research Group—Biomaterials, Biodegradables, and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, Guimarães, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
82
|
Kon E, Filardo G, Di Matteo B, Perdisa F, Marcacci M. PRP-Augmented Scaffolds for Cartilage Regeneration: A Systematic Review. OPER TECHN SPORT MED 2013. [DOI: 10.1053/j.otsm.2013.03.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
83
|
Rodriguez-Merchan EC. Regeneration of articular cartilage of the knee. Rheumatol Int 2013; 33:837-845. [PMID: 23263546 DOI: 10.1007/s00296-012-2601-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2012] [Accepted: 12/08/2012] [Indexed: 01/09/2023]
Abstract
Cartilage therapy for focal articular lesions of the knee has been implemented for more than a decade, and it is becoming increasingly available. What do we know on the healing response of cartilage lesions? What do we know on the treatment of focal cartilage lesions of the knee and the prognostic factors involved? PubMed articles related to articular cartilage regeneration of the knee in clinical studies were searched from January 2006 to November 2012, using the following key words: articular cartilage, regeneration, clinical studies, and knee. A total of 44 reports were found. They showed the following possibilities for the treatment of focal lesions of the articular cartilage of the knee: cartilage regeneration and repair including cartilage reparation with gene-activated matrices, autologous chondrocyte implantation (ACI) and matrix-induced ACI (MACI), microfracture, osteochondral autograft transfer (mosaicplasty), biological approaches (scaffolds, mesenchymal stem cells-MSCs, platelet-rich plasma, growing factors-GF, bone morphogenetic proteins-BMPs, magnetically labeled synovium-derived cells-M-SDCs, and elastic-like polypeptide gels), osteotomies, stem-cell-coated titanium implants, and chondroprotection with pulsed electromagnetic fields. Untreated cartilage lesions on the femoral condyles had a superior healing response compared to those on the tibial plateaus, and in the patellofemoral joint. Clinical outcome regarding the treatment of medial defects is better than that of the lateral defects. Improvement from baseline was better for patients < or = 30 years compared with patients > or = 30 years. ACI, MACI, and mosaicplasty have shown similar results. The results of comparative clinical studies using ACI have shown some superiority over conventional microfracturing in medium or large defects and in long-term durability. Some biological methods such as scaffolds, MSCs, GF, M-SDCs, BMPs, and elastic-like polypeptide gels still need more research.
Collapse
Affiliation(s)
- E Carlos Rodriguez-Merchan
- Department of Orthopaedic Surgery, La Paz University Hospital, Paseo de la Castellana 261, 28046 Madrid, Spain.
| |
Collapse
|
84
|
Manferdini C, Cavallo C, Grigolo B, Fiorini M, Nicoletti A, Gabusi E, Zini N, Pressato D, Facchini A, Lisignoli G. Specific inductive potential of a novel nanocomposite biomimetic biomaterial for osteochondral tissue regeneration. J Tissue Eng Regen Med 2013; 10:374-91. [PMID: 23495253 DOI: 10.1002/term.1723] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Revised: 10/15/2012] [Accepted: 01/08/2013] [Indexed: 11/07/2022]
Abstract
Osteochondral lesions require treatment to restore the biology and functionality of the joint. A novel nanostructured biomimetic gradient scaffold was developed to mimic the biochemical and biophysical properties of the different layers of native osteochondral structure. The present results show that the scaffold presents important physicochemical characteristics and can support the growth and differentiation of mesenchymal stromal cells (h-MSCs), which adhere and penetrate into the cartilaginous and bony layers. H-MSCs grown in chondrogenic or osteogenic medium decreased their proliferation during days 14-52 on both scaffold layers and in medium without inducing factors used as controls. Both chondrogenic and osteogenic differentiation of h-MSCs occurred from day 28 and were increased on day 52, but not in the control medium. Safranin O staining and collagen type II and proteoglycans immunostaining confirmed that chondrogenic differentiation was specifically induced only in the cartilaginous layer. Conversely, von Kossa staining, osteocalcin and osteopontin immunostaining confirmed that osteogenic differentiation occurred on both layers. This study shows the specific potential of each layer of the biomimetic scaffold to induce chondrogenic or osteogenic differentiation of h-MSCs. These processes depended mainly on the media used but not the biomaterial itself, suggesting that the local milieu is fundamental for guiding cell differentiation. Copyright © 2013 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- C Manferdini
- SC Laboratorio di Immunoreumatologia e Rigenerazione Tissutale, Istituto Ortopedico Rizzoli, Bologna, Italy.,Laboratorio RAMSES, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - C Cavallo
- Laboratorio RAMSES, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - B Grigolo
- SC Laboratorio di Immunoreumatologia e Rigenerazione Tissutale, Istituto Ortopedico Rizzoli, Bologna, Italy.,Laboratorio RAMSES, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - M Fiorini
- Fin-Ceramica Faenza SpA, Faenza, (RA), Italy
| | - A Nicoletti
- Fin-Ceramica Faenza SpA, Faenza, (RA), Italy
| | - E Gabusi
- Laboratorio RAMSES, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - N Zini
- CNR-IGM (c/o IOR), Bologna, Italy
| | - D Pressato
- Fin-Ceramica Faenza SpA, Faenza, (RA), Italy
| | - A Facchini
- SC Laboratorio di Immunoreumatologia e Rigenerazione Tissutale, Istituto Ortopedico Rizzoli, Bologna, Italy.,Laboratorio RAMSES, Istituto Ortopedico Rizzoli, Bologna, Italy.,Dipartimento di Medicina Interna e Gastroenterologia, Università degli Studi di Bologna, Italy
| | - G Lisignoli
- SC Laboratorio di Immunoreumatologia e Rigenerazione Tissutale, Istituto Ortopedico Rizzoli, Bologna, Italy.,Laboratorio RAMSES, Istituto Ortopedico Rizzoli, Bologna, Italy
| |
Collapse
|
85
|
Giebaly DE, Twaij H, Ibrahim M, Haddad F. Treatment of articular cartilage defects of the knee. Br J Hosp Med (Lond) 2013; 74:132-7. [DOI: 10.12968/hmed.2013.74.3.132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Dia Eldean Giebaly
- Department of Trauma and Orthopaedics, University College London Hospital, London NW1 2BU
| | - Haider Twaij
- Department of Trauma and Orthopaedics, University College London Hospital, London NW1 2BU
| | - Mazin Ibrahim
- Department of Trauma and Orthopaedics, University College London Hospital, London NW1 2BU
| | - Fares Haddad
- Department of Trauma and Orthopaedics, University College London Hospital, London NW1 2BU
| |
Collapse
|
86
|
Chen K, Shi P, Teh TKH, Toh SL, Goh JC. In vitro generation of a multilayered osteochondral construct with an osteochondral interface using rabbit bone marrow stromal cells and a silk peptide-based scaffold. J Tissue Eng Regen Med 2013; 10:284-93. [PMID: 23413023 DOI: 10.1002/term.1708] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2012] [Revised: 11/27/2012] [Accepted: 12/20/2012] [Indexed: 01/25/2023]
Abstract
Tissue engineering of a biological osteochondral multilayered construct with a cartilage-interface subchondral bone layer is a key challenge. This study presented a rabbit bone marrow stromal cell (BMSC)/silk fibroin scaffold-based co-culture approach to generate tissue-engineered osteochondral grafts with an interface. BMSC-seeded scaffolds were first cultured separately in osteogenic and chondrogenic stimulation media. The two differentiated pieces were then combined using an RADA self-assembling peptide and subsequently co-cultured. Gene expression, histological and biochemical analyses were used to evaluate the multilayered structure of the osteochondral graft. A complete osteochondral construct with a cartilage-subchondral bone interface was regenerated and BMSCs were used as the only cell source for the osteochondral construct and interface regeneration. Furthermore, in the intermediate region of co-cultured samples, hypertrophic chondrogenic gene markers type X collagen and MMP-13 were found on both chondrogenic and osteogenic section edges after co-culture. However, significant differences gene expression profile were found in distinct zones of the construct during co-culture and the section in the intermediate region had significantly higher hypertrophic chondrocyte gene expression. Biochemical analyses and histology results further supported this observation. This study showed that specific stimulation from osteogenic and chondrogenic BMSCs affected each other in this co-culture system and induced the formation of an osteochondral interface. Moreover, this system provided a possible approach for generating multilayered osteochondral constructs.
Collapse
Affiliation(s)
- Kelei Chen
- National University of Singapore, Department of Bioengineering, Singapore, Singapore
| | - Pujiang Shi
- National University of Singapore, Department of Orthopaedic Surgery, Singapore, Singapore
| | - Thomas Kok Hiong Teh
- National University of Singapore, Department of Bioengineering, Singapore, Singapore
| | - Siew Lok Toh
- National University of Singapore, Department of Bioengineering, Singapore, Singapore.,National University of Singapore, Department of Mechanical Engineering, Singapore, Singapore
| | - James Ch Goh
- National University of Singapore, Department of Bioengineering, Singapore, Singapore.,National University of Singapore, Department of Orthopaedic Surgery, Singapore, Singapore
| |
Collapse
|
87
|
Kon E, Filardo G, Di Matteo B, Perdisa F, Marcacci M. Matrix assisted autologous chondrocyte transplantation for cartilage treatment: A systematic review. Bone Joint Res 2013; 2:18-25. [PMID: 23610698 PMCID: PMC3626217 DOI: 10.1302/2046-3758.22.2000092] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Accepted: 11/21/2012] [Indexed: 01/09/2023] Open
Abstract
OBJECTIVES Matrix-assisted autologous chondrocyte transplantation (MACT) has been developed and applied in the clinical practice in the last decade to overcome most of the disadvantages of the first generation procedures. The purpose of this systematic review is to document and analyse the available literature on the results of MACT in the treatment of chondral and osteochondral lesions of the knee. METHODS ALL STUDIES PUBLISHED IN ENGLISH ADDRESSING MACT PROCEDURES WERE IDENTIFIED, INCLUDING THOSE THAT FULFILLED THE FOLLOWING CRITERIA: 1) level I-IV evidence, 2) measures of functional or clinical outcome, 3) outcome related to cartilage lesions of the knee cartilage. RESULTS The literature analysis showed a progressively increasing number of articles per year. A total of 51 articles were selected: three randomised studies, ten comparative studies, 33 case series and five case reports. Several scaffolds have been developed and studied, with good results reported at short to medium follow-up. CONCLUSIONS MACT procedures are a therapeutic option for the treatment of chondral lesions that can offer a positive outcome over time for specific patient categories, but high-level studies are lacking. Systematic long-term evaluation of these techniques and randomised controlled trials are necessary to confirm the potential of this treatment approach, especially when comparing against less ambitious traditional treatments.
Collapse
Affiliation(s)
- E. Kon
- Rizzoli Orthopaedic Institute, Biomechanics
Laboratory and II Orthopaedic Clinic, Via di Barbiano
n. 1/10, Bologna 40136, Italy
| | - G. Filardo
- Rizzoli Orthopaedic Institute, Biomechanics
Laboratory and II Orthopaedic Clinic, Via di Barbiano
n. 1/10, Bologna 40136, Italy
| | - B. Di Matteo
- Rizzoli Orthopaedic Institute, Biomechanics
Laboratory and II Orthopaedic Clinic, Via di Barbiano
n. 1/10, Bologna 40136, Italy
| | - F. Perdisa
- Rizzoli Orthopaedic Institute, Biomechanics
Laboratory and II Orthopaedic Clinic, Via di Barbiano
n. 1/10, Bologna 40136, Italy
| | - M. Marcacci
- Rizzoli Orthopaedic Institute, Biomechanics
Laboratory and II Orthopaedic Clinic, Via di Barbiano
n. 1/10, Bologna 40136, Italy
| |
Collapse
|
88
|
Filardo G, Kon E, Roffi A, Di Martino A, Marcacci M. Scaffold-based repair for cartilage healing: a systematic review and technical note. Arthroscopy 2013; 29:174-86. [PMID: 23159494 DOI: 10.1016/j.arthro.2012.05.891] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Revised: 05/07/2012] [Accepted: 05/08/2012] [Indexed: 02/02/2023]
Abstract
PURPOSE The aim of this systematic review was to address the treatment of chondral and osteochondral knee lesions through the use of scaffolds, by showing surgical options and results of this scaffold-based repair approach for the healing of the articular surface. METHODS All studies published in English addressing cartilage scaffold-based treatment were identified, including those that fulfilled the following criteria: (1) Levels I to IV evidence addressing the outlined areas of interest, (2) measures of functional or clinical outcome, (3) knee cartilage lesions, and (4) minimum of 2 years of follow-up. RESULTS The analysis showed a progressively increasing number of articles per year from 1995 to February 2012. The number of selected articles was 51, with 40 focusing on 2-step procedures and 11 focusing on 1-step procedures. The evaluation of evidence level showed 3 randomized studies, 10 comparative studies, 33 case series, and 5 case reports. CONCLUSIONS Regenerative scaffold-based procedures are emerging as a therapeutic option for the treatment of chondral lesions, but well-designed studies are lacking. Systematic long-term evaluation of these techniques and randomized studies are necessary to confirm the potential of this treatment approach, especially compared with the available traditional treatments. Different 1-step scaffold-based strategies are emerging to simplify the procedure and reduce costs. LEVEL OF EVIDENCE Level IV, systematic review of Level I to IV studies.
Collapse
|
89
|
Abstract
Cartilage injuries have a high incidence and a high impact on society. In an attempt to fulfill patients' expectations and successfully treat this pathology, various techniques have been developed over the years. Treatments proposed for cartilage lesions are described with their rationale and indications, ranging from conservative measures to surgical approaches, reparative or regenerative. Among the numerous and heterogeneous procedures proposed over time to treat cartilage defects none has clearly proven to lead to a hyaline articular surface nor to offer better clinical results. Regenerative procedures have been introduced as ambitious techniques that aim to overcome the limitations of the more traditional reparative approaches and restore the articular surface with a hyaline-like tissue; improvement in tissue engineering with new scaffolds as well as new regenerative options involving growth factors or MSCs are currently being investigated as promising solutions to further improve the treatment of cartilage lesions. However, the current literature findings are not conclusive. Randomized controlled trials are necessary to evaluate new regenerative approaches, to show clearly advantages and disadvantages with respect to the more traditional procedures, besides their potential, limits, and indications to improve the treatment of patients affected by chondral and osteochondral lesions. Since clear and commonly accepted treatment algorithms are not available in the literature, the massively increasing number of controversial results may be confusing for the orthopaedic surgeon who has to choose the proper management of patients with cartilage lesions. Thus, the results obtained through the study of the authors' 20 years' experience in cartilage treatment were analyzed to give some indications on the potential and limits of different treatment approaches available in clinical practice.
Collapse
Affiliation(s)
- Maurilio Marcacci
- III Clinic, Biomechanics Laboratory, Rizzoli Orthopaedic Institute, Bologna, Italy
| | | | | |
Collapse
|
90
|
Nicoletti A, Fiorini M, Paolillo J, Dolcini L, Sandri M, Pressato D. Effects of different crosslinking conditions on the chemical-physical properties of a novel bio-inspired composite scaffold stabilised with 1,4-butanediol diglycidyl ether (BDDGE). JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2013; 24:17-35. [PMID: 23053811 DOI: 10.1007/s10856-012-4782-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 09/26/2012] [Indexed: 06/01/2023]
Abstract
Serious cartilage lesions (Outerbridge III, IV) may be successfully treated with a three-layered gradient scaffold made by magnesium-doped hydroxyapatite and type I collagen, manufactured through a bio-inspired process and stabilised by a reactive bis-epoxy (1,4-butanediol diglycidyl ether, BDDGE). Each layer was analysed to elucidate the effects of crosslinking variables (concentration, temperature and pH). The chemical stabilisation led to an homogeneous and aligned collagenous matrix: the fibrous structures switched to a laminar foils-based arrangement and organic phases acquired an highly coordinated 3D-organization. These morphological features were strongly evident when crosslinking occurred in alkaline solution, with BDDGE concentration of at least 1 wt%. The optimised crosslinking conditions did not affect the apatite nano-crystals nucleated into self-assembling collagen fibres. The present work allowed to demonstrate that acting on BDDGE reaction parameters might be an useful tool to control the chemical-physical properties of bio-inspired scaffold suitable to heal wide osteochondral defects, even through arthroscopic procedure.
Collapse
|
91
|
Zhou C, Hong Y, Zhang X. Applications of nanostructured calcium phosphate in tissue engineering. Biomater Sci 2013; 1:1012-1028. [DOI: 10.1039/c3bm60058k] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
92
|
Giorgini A, Donati D, Cevolani L, Frisoni T, Zambianchi F, Catani F. Fresh osteochondral allograft is a suitable alternative for wide cartilage defect in the knee. Injury 2013; 44 Suppl 1:S16-20. [PMID: 23351864 DOI: 10.1016/s0020-1383(13)70005-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
INTRODUCTION There are several surgical options to restore a wide osteochondral defect in the knee. Fresh osteochondral allografts are usually considered a poor alternative due to their difficulties in surgical application. The aim of this work is first to present our experience including the surgical technique and the functional results of patients receiving fresh osteochondral allograft to restore major knee lesions, then, to compare our results with other results presented in literature. METHODS Between 2006 and 2011, we treated 11 patients with osteochondral lesion of the knee (Outerbridge IV°). The average lesion size was 10.3 cm(2) (range 3-20 cm(2)). The average age was 34 years (range 18-66). Patients were followed from 12 to 55 months (average of 26.5) through clinical examination, X-ray film and MRI every 3 months for the first year, then every 6 months. RESULTS The treatment was successful in 10 patients showing pain regression and mean IKDC subjective score improvements from 27.3 to 58.7. The IKDC objective score also improved of at least one class for each patient except the who failed. The radiographs show good osteointegration in all cases but one. CONCLUSIONS Fresh allograft is an effective therapy for osteochondral defects repair because it allows functional recovery in a considerable number of patients. This technique obtains better results in lesion smaller than 8 cm(2). However larger lesion show good results. LEVEL OF EVIDENCE Therapeutic study, Level IV.
Collapse
Affiliation(s)
- A Giorgini
- Modena Policlinic, Department of Orthopaedic Surgery, Modena, Italy.
| | | | | | | | | | | |
Collapse
|
93
|
Failed cartilage repair for early osteoarthritis defects: a biochemical, histological and immunohistochemical analysis of the repair tissue after treatment with marrow-stimulation techniques. Knee Surg Sports Traumatol Arthrosc 2012; 20:2315-24. [PMID: 22222614 DOI: 10.1007/s00167-011-1853-x] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Accepted: 12/18/2011] [Indexed: 10/14/2022]
Abstract
PURPOSE To examine the entire repair tissue resulting from marrow-stimulation techniques in patients with early osteoarthritis. METHODS The repair tissue and adjacent articular cartilage after failed marrow-stimulation techniques (microfracture and Pridie drilling) of 5 patients (47-65 years old) with cartilage defects and radiographic early osteoarthritis (Kellgren-Lawrence grading 1 and 2) was removed during total joint arthroplasty (mean time until analysis: 8.8 months), analysed by histology, polarized light microscopy, immunohistochemistry, biochemistry and by histological score systems. RESULTS Macroscopic cartilage repair assessment revealed ICRS grades of II (nearly normal) and III (abnormal). Cartilage defects were mostly completely filled with a fibrocartilaginous tissue that had small and large fissures. Cartilage-specific stains of the repair tissue were more intense than the surrounding native cartilage but reduced compared with normal articular cartilage. The subchondral bone was incompletely restored. A new tidemark was absent. The repair tissue always showed positive immunoreactivity for types II and X collagen, and was sometimes positive for type I collagen. Proteoglycan contents of the repair tissue were generally higher than of the surrounding cartilage. The repair tissue was always more cellular than the adjacent articular cartilage. Histological scoring of the repair tissue revealed a mean Sellers score of 17.6 ± 3.0 and an ICRS grading of 7-9. CONCLUSION Failed marrow stimulation of articular cartilage defects in patients with early osteoarthritis is characterized by fibrocartilaginous repair. The balance of cell number to extracellular matrix is shifted towards an increased cell number in this tissue. Articular cartilage repair did not reach the quality of normal hyaline articular cartilage. LEVEL OF EVIDENCE IV.
Collapse
|
94
|
Russo A, Shelyakova T, Casino D, Lopomo N, Strazzari A, Ortolani A, Visani A, Dediu V, Marcacci M. A new approach to scaffold fixation by magnetic forces: Application to large osteochondral defects. Med Eng Phys 2012; 34:1287-93. [DOI: 10.1016/j.medengphy.2011.12.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 12/20/2011] [Accepted: 12/21/2011] [Indexed: 10/28/2022]
|
95
|
Kon E, Filardo G, Roffi A, Andriolo L, Marcacci M. New trends for knee cartilage regeneration: from cell-free scaffolds to mesenchymal stem cells. Curr Rev Musculoskelet Med 2012; 5:236-43. [PMID: 22797862 PMCID: PMC3535079 DOI: 10.1007/s12178-012-9135-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In the last decade, huge steps forward have been made in the field of cartilage regeneration. The most recent trend for treating chondral/osteochondral lesions is based on the application of smart biomaterials that could lead to "in situ" regeneration of not only cartilage, but also subchondral bone, preferably through a single step procedure to reduce the costs and the morbidity for the patient. This innovative approach is currently under investigation as several "scaffolds" have been proposed in clinical practice, with or without the aid of cells, with the opportunity, in the second case, of bypassing the strict limits imposed by cell manipulation regulations. Furthermore, the fascinating potential of mesenchymal stem cells has recently opened new paths of research to discover how and whether these powerful entities can really contribute to tissue regeneration. The first clinical trials have been published but further high quality research is needed to understand their mechanisms of action, their limits, and their clinical efficacy.
Collapse
Affiliation(s)
- Elizaveta Kon
- />Nanobiotechnology Laboratory and III Orthopaedic Clinic, Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy
| | - Giuseppe Filardo
- />Nanobiotechnology Laboratory and III Orthopaedic Clinic, Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy
| | - Alice Roffi
- />Nanobiotechnology Laboratory, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Luca Andriolo
- />Nanobiotechnology Laboratory and III Orthopaedic Clinic, Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy
| | - Maurilio Marcacci
- />Biomechanics Laboratory and III Orthopaedic Clinic, Istituto Ortopedico Rizzoli, Bologna, Italy
| |
Collapse
|
96
|
Filardo G, Di Martino A, Kon E, Delcogliano M, Marcacci M. Midterm Results of a Combined Biological and Mechanical Approach for the Treatment of a Complex Knee Lesion. Cartilage 2012; 3:288-92. [PMID: 26069639 PMCID: PMC4297116 DOI: 10.1177/1947603512436371] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVE Complex fractures of the tibial plateau are difficult to treat and present a high complication rate. The goal of this report is to describe a combined biological and mechanical approach to restore all morphological and functional knee properties. METHODS We treated a 50-year-old woman, who was affected by a posttraumatic osteochondral lesion and depression of the lateral tibial plateau with knee valgus deviation. The mechanical axis was corrected with a lateral tibial plateau elevation osteotomy, the damaged joint surface was replaced by a recently developed biomimetic osteochondral scaffold, and a hinged dynamic external fixator was applied to protect the graft and at the same time to allow postoperative joint mobilization. RESULTS A marked clinical improvement was documented at 12 months and further improved up to 5 years, with pain-free full range of motion and return to previous activities. The MRI evaluation at 12 and 24 months showed that the implant remained in site with a hyaline-like signal and restoration of the articular surface. CONCLUSION This case report describes a combined surgical approach for complex knee lesions that could represent a treatment option to avoid or at least delay posttraumatic osteoarthritis and more invasive procedures.
Collapse
Affiliation(s)
- G. Filardo
- III Clinic, Biomechanics Laboratory, Rizzoli Orthopaedic Institute, Bologna, Italy
| | - A. Di Martino
- III Clinic, Biomechanics Laboratory, Rizzoli Orthopaedic Institute, Bologna, Italy
| | - E. Kon
- III Clinic, Biomechanics Laboratory, Rizzoli Orthopaedic Institute, Bologna, Italy
| | - M. Delcogliano
- III Clinic, Biomechanics Laboratory, Rizzoli Orthopaedic Institute, Bologna, Italy
| | - M. Marcacci
- III Clinic, Biomechanics Laboratory, Rizzoli Orthopaedic Institute, Bologna, Italy
| |
Collapse
|
97
|
Li Y, Liu L, Tang X, Pei F, Wang G, Fang Y, Zhang H, Crook N. Comparison of low, multidirectional locked nailing and plating in the treatment of distal tibial metadiaphyseal fractures. INTERNATIONAL ORTHOPAEDICS 2012; 36:1457-62. [PMID: 22310971 PMCID: PMC3385886 DOI: 10.1007/s00264-012-1494-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Accepted: 01/13/2012] [Indexed: 02/05/2023]
Abstract
PURPOSE The aim of this study was to compare the results of a new technique for low, multidirectional locked nailing with closed reduction and minimally invasive plating in the treatment of distal tibial metadiaphyseal fractures. METHODS Forty-six matched patients were divided according to age, gender, Injury Severity Score, and fracture pattern into group A (expert tibial nailing) and group B (minimally invasive plating). Then, the patients were followed up, and the clinical and radiographic results were retrospectively analysed. RESULTS The mean followed-up was 24.7±2.7 months in group A and 25.8±2.8 months in group B. No patient had nonunion, shortening, hardware breakdown, or deep-seated infection. Patients in group A had a significantly shorter mean operating time, hospital stay, full weight-bearing time and union time (76±16.6 vs. 90±20.3 minutes, p=0.000; 5.8±2.1 vs. 8.9±3.1 days, p=0.000; 9.0±1.4 vs. 11.1±1.7 weeks, p=0.000; and 21.3±3.5 vs. 23.1±3.6 weeks, p=0.047, respectively). Three patients in group A and one patient in group B presented with malalignment (p=0.608). The mean Olerud-Molander Ankle score was 89.0±7.1 in group A and 87.6±8.4 in group B (p=0.478). CONCLUSIONS Distal tibia metadiaphyseal fractures may be treated successfully with low, multidirectional locked nails or plates. However, low, multidirectional locked nailing may represent a superior surgical option, since it offers advantages in terms of mean operating time, hospital stay, full weight-bearing time and union time.
Collapse
MESH Headings
- Adult
- Bone Malalignment/etiology
- Bone Nails
- Bone Plates
- Female
- Fracture Fixation, Internal/adverse effects
- Fracture Fixation, Internal/instrumentation
- Fracture Fixation, Internal/methods
- Fractures, Closed/classification
- Fractures, Closed/diagnosis
- Fractures, Closed/surgery
- Fractures, Open/classification
- Fractures, Open/diagnosis
- Fractures, Open/surgery
- Humans
- Length of Stay
- Male
- Middle Aged
- Minimally Invasive Surgical Procedures
- Outcome Assessment, Health Care
- Postoperative Complications/etiology
- Retrospective Studies
- Tibial Fractures/classification
- Tibial Fractures/diagnosis
- Tibial Fractures/surgery
- Time Factors
- Trauma Severity Indices
- Treatment Outcome
- Weight-Bearing
- Young Adult
Collapse
Affiliation(s)
- Yong Li
- Department of Orthopaedic Surgery, West China Hospital of Sichuan University, No.37, Guo-xue-xiang, Chengdu, 610041 People’s Republic of China
| | - Lei Liu
- Department of Orthopaedic Surgery, West China Hospital of Sichuan University, No.37, Guo-xue-xiang, Chengdu, 610041 People’s Republic of China
| | - Xin Tang
- Department of Orthopaedic Surgery, West China Hospital of Sichuan University, No.37, Guo-xue-xiang, Chengdu, 610041 People’s Republic of China
| | - Fuxing Pei
- Department of Orthopaedic Surgery, West China Hospital of Sichuan University, No.37, Guo-xue-xiang, Chengdu, 610041 People’s Republic of China
| | - Guanglin Wang
- Department of Orthopaedic Surgery, West China Hospital of Sichuan University, No.37, Guo-xue-xiang, Chengdu, 610041 People’s Republic of China
| | - Yue Fang
- Department of Orthopaedic Surgery, West China Hospital of Sichuan University, No.37, Guo-xue-xiang, Chengdu, 610041 People’s Republic of China
| | - Hui Zhang
- Department of Orthopaedic Surgery, West China Hospital of Sichuan University, No.37, Guo-xue-xiang, Chengdu, 610041 People’s Republic of China
| | - Nicolas Crook
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, 610041 People’s Republic of China
| |
Collapse
|
98
|
Panseri S, Russo A, Cunha C, Bondi A, Di Martino A, Patella S, Kon E. Osteochondral tissue engineering approaches for articular cartilage and subchondral bone regeneration. Knee Surg Sports Traumatol Arthrosc 2012; 20:1182-91. [PMID: 21910001 DOI: 10.1007/s00167-011-1655-1] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2011] [Accepted: 08/30/2011] [Indexed: 12/16/2022]
Abstract
PURPOSE Osteochondral defects (i.e., defects which affect both the articular cartilage and underlying subchondral bone) are often associated with mechanical instability of the joint and therefore with the risk of inducing osteoarthritic degenerative changes. This review addresses the current surgical treatments and most promising tissue engineering approaches for articular cartilage and subchondral bone regeneration. METHODS The capability to repair osteochondral or bone defects remains a challenging goal for surgeons and researchers. So far, most clinical approaches have been shown to have limited capacity to treat severe lesions. Current surgical repair strategies vary according to the nature and size of the lesion and the preference of the operating surgeon. Tissue engineering has emerged as a promising alternative strategy that essentially develops viable substitutes capable of repairing or regenerating the functions of damaged tissue. RESULTS An overview of novel and most promising osteochondroconductive scaffolds, osteochondroinductive signals, osteochondrogenic precursor cells, and scaffold fixation approaches are presented addressing advantages, drawbacks, and future prospectives for osteochondral regenerative medicine. CONCLUSION Tissue engineering has emerged as an excellent approach for the repair and regeneration of damaged tissue, with the potential to circumvent all the limitations of autologous and allogeneic tissue repair. LEVEL OF EVIDENCE Systematic review, Level III.
Collapse
Affiliation(s)
- Silvia Panseri
- Laboratory of Nano-Biotechnology, Rizzoli Orthopaedic Institute, Via di Barbiano 1/10, 40136 Bologna, Italy.
| | | | | | | | | | | | | |
Collapse
|
99
|
Kon E, Vannini F, Buda R, Filardo G, Cavallo M, Ruffilli A, Nanni M, Di Martino A, Marcacci M, Giannini S. How to treat osteochondritis dissecans of the knee: surgical techniques and new trends: AAOS exhibit selection. J Bone Joint Surg Am 2012; 94:e1(1-8). [PMID: 22218387 DOI: 10.2106/jbjs.k.00748] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Osteochondritis dissecans is a relatively common cause of knee pain. The aim of this study was to describe the outcomes of five different surgical techniques in a series of sixty patients with osteochondritis dissecans. METHODS Sixty patients (age 22.4 ± 7.4 years, sixty-two knees) with osteochondritis dissecans of a femoral condyle (forty-five medial and seventeen lateral) were treated with osteochondral autologous transplantation, autologous chondrocyte implantation with bone graft, biomimetic nanostructured osteochondral scaffold (MaioRegen) implantation, bone-cartilage paste graft, or a "one-step" bone-marrow-derived cell transplantation technique. Preoperative and follow-up evaluation included the International Knee Documentation Committee (IKDC) score, the EuroQol visual analog scale (EQ-VAS) score, radiographs, and magnetic resonance imaging. RESULTS The global mean IKDC score improved from 40.1 ± 14.3 preoperatively to 77.2 ± 21.3 (p < 0.0005) at 5.3 ± 4.7 years of follow-up, and the EQ-VAS improved from 51.7 ± 17.0 to 83.5 ± 18.3 (p < 0.0005). No influence of age, lesion size, duration of follow-up, or previous surgical procedures on the result was found. The only difference among the results of the surgical procedures was a trend toward better results following autologous chondrocyte implantation (p = 0.06). CONCLUSIONS All of the techniques were effective in achieving good clinical and radiographic results in patients with osteochondritis dissecans, and the effectiveness of autologous chondrocyte implantation was confirmed at a mean follow-up of five years. Newer techniques such as MaioRegen implantation and the "one-step" transplantation technique are based on different rationales; the first relies on the characteristics of the scaffold and the second on the regenerative potential of mesenchymal cells. Both of these newer procedures have the advantage of being minimally invasive and requiring a single operation.
Collapse
Affiliation(s)
- Elizaveta Kon
- III Clinic of Orthopaedics and Traumatology, Rizzoli Orthopaedic Institute, Bologna 20136, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
100
|
|