51
|
Peck T, Davis C, Lenihan-Geels G, Griffiths M, Spijkers-Shaw S, Zubkova OV, La Flamme AC. The novel HS-mimetic, Tet-29, regulates immune cell trafficking across barriers of the CNS during inflammation. J Neuroinflammation 2023; 20:251. [PMID: 37915090 PMCID: PMC10619265 DOI: 10.1186/s12974-023-02925-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/10/2023] [Indexed: 11/03/2023] Open
Abstract
BACKGROUND Disruption of the extracellular matrix at the blood-brain barrier (BBB) underpins neuroinflammation in multiple sclerosis (MS). The degradation of extracellular matrix components, such as heparan sulfate (HS) proteoglycans, can be prevented by treatment with HS-mimetics through their ability to inhibit the enzyme heparanase. The heparanase-inhibiting ability of our small dendrimer HS-mimetics has been investigated in various cancers but their efficacy in neuroinflammatory models has not been evaluated. This study investigates the use of a novel HS-mimetic, Tet-29, in an animal model of MS. METHODS Neuroinflammation was induced in mice by experimental autoimmune encephalomyelitis, a murine model of MS. In addition, the BBB and choroid plexus were modelled in vitro using transmigration assays, and migration of immune cells in vivo and in vitro was quantified by flow cytometry. RESULTS We found that Tet-29 significantly reduced lymphocyte accumulation in the central nervous system which, in turn, decreased disease severity in experimental autoimmune encephalomyelitis. The disease-modifying effect of Tet-29 was associated with a rescue of BBB integrity, as well as inhibition of activated lymphocyte migration across the BBB and choroid plexus in transwell models. In contrast, Tet-29 did not significantly impair in vivo or in vitro steady state-trafficking under homeostatic conditions. CONCLUSIONS Together these results suggest that Tet-29 modulates, rather than abolishes, trafficking across central nervous system barriers.
Collapse
Affiliation(s)
- Tessa Peck
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
- Centre for Biodiscovery Wellington, Victoria University of Wellington, Wellington, New Zealand
| | - Connor Davis
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
- Centre for Biodiscovery Wellington, Victoria University of Wellington, Wellington, New Zealand
| | - Georgia Lenihan-Geels
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
- Centre for Biodiscovery Wellington, Victoria University of Wellington, Wellington, New Zealand
| | - Maddie Griffiths
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
- Centre for Biodiscovery Wellington, Victoria University of Wellington, Wellington, New Zealand
| | - Sam Spijkers-Shaw
- Ferrier Research Institute, Victoria University of Wellington, Wellington, New Zealand
| | - Olga V Zubkova
- Centre for Biodiscovery Wellington, Victoria University of Wellington, Wellington, New Zealand
- Ferrier Research Institute, Victoria University of Wellington, Wellington, New Zealand
| | - Anne Camille La Flamme
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand.
- Centre for Biodiscovery Wellington, Victoria University of Wellington, Wellington, New Zealand.
- Malaghan Institute of Medical Research, Wellington, New Zealand.
| |
Collapse
|
52
|
Mora P, Chapouly C. Astrogliosis in multiple sclerosis and neuro-inflammation: what role for the notch pathway? Front Immunol 2023; 14:1254586. [PMID: 37936690 PMCID: PMC10627009 DOI: 10.3389/fimmu.2023.1254586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/09/2023] [Indexed: 11/09/2023] Open
Abstract
Multiple sclerosis is an autoimmune inflammatory disease of the central nervous system leading to neurodegeneration. It affects 2.3 million people worldwide, generally younger than 50. There is no known cure for the disease, and current treatment options - mainly immunotherapies to limit disease progression - are few and associated with serious side effects. In multiple sclerosis, disruption of the blood-brain barrier is an early event in the pathogenesis of lesions, predisposing to edema, excito-toxicity and inflammatory infiltration into the central nervous system. Recently, the vision of the blood brain barrier structure and integrity has changed and include contributions from all components of the neurovascular unit, among which astrocytes. During neuro-inflammation, astrocytes become reactive. They undergo morphological and molecular changes named "astrogliosis" driving the conversion from acute inflammatory injury to a chronic neurodegenerative state. Astrogliosis mechanisms are minimally explored despite their significance in regulating the autoimmune response during multiple sclerosis. Therefore, in this review, we take stock of the state of knowledge regarding astrogliosis in neuro-inflammation and highlight the central role of NOTCH signaling in the process of astrocyte reactivity. Indeed, a very detailed nomenclature published in nature neurosciences in 2021, listing all the reactive astrocyte markers fully identified in the literature, doesn't cover the NOTCH signaling. Hence, we discuss evidence supporting NOTCH1 receptor as a central regulator of astrogliosis in the pathophysiology of neuro-inflammation, notably multiple sclerosis, in human and experimental models.
Collapse
Affiliation(s)
- Pierre Mora
- Université de Bordeaux, Institut national de la santé et de la recherche médicale (INSERM), Biology of Cardiovascular Diseases, Pessac, France
| | | |
Collapse
|
53
|
Lau K, Porschen LT, Richter F, Gericke B. Microvascular blood-brain barrier alterations in isolated brain capillaries of mice over-expressing alpha-synuclein (Thy1-aSyn line 61). Neurobiol Dis 2023; 187:106298. [PMID: 37716515 DOI: 10.1016/j.nbd.2023.106298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/22/2023] [Accepted: 09/13/2023] [Indexed: 09/18/2023] Open
Abstract
Dysfunction of the blood-brain barrier (BBB) is suggested to play a critical role in the pathological mechanisms of Parkinson's disease (PD). PD-related pathology such as alpha-synuclein accumulation and inflammatory processes potentially affect the integrity of the BBB early in disease progression, which in turn may alter the crosstalk of the central and peripheral immune response. Importantly, BBB dysfunction could also affect drug response in PD. Here we analyzed microvascular changes in isolated brain capillaries and brain sections on a cellular and molecular level during disease progression in an established PD mouse model that overexpresses human wild-type alpha-synuclein (Thy1-aSyn, line 61). BBB alterations observed in Thy1-aSyn mice included reduced vessel density, reduced aquaporin-4 coverage, reduced P-glycoprotein expression, increased low-density lipoprotein receptor-related protein 1 expression, increased pS129-alpha-synuclein deposition, and increased adhesion protein and matrix metalloprotease expression together with alterations in tight junction proteins. Striatal capillaries presented with more dysregulated BBB integrity markers compared to cortical capillaries. These alterations of BBB integrity lead, however, not to an overt IgG leakage in brain parenchyma. Our data reveals intricate alterations in key proteins of BBB function together with histological evidence for altered structure of the brain vasculature. Thy1-aSyn mice represent a useful model to investigate therapeutic targeting of BBB alterations in synucleinopathies.
Collapse
Affiliation(s)
- Kristina Lau
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, Bünteweg 17, 30559 Hannover, Germany; Center for Systems Neuroscience, Hannover, Germany.
| | - Lisa T Porschen
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, Bünteweg 17, 30559 Hannover, Germany
| | - Franziska Richter
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, Bünteweg 17, 30559 Hannover, Germany; Center for Systems Neuroscience, Hannover, Germany.
| | - Birthe Gericke
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, Bünteweg 17, 30559 Hannover, Germany; Center for Systems Neuroscience, Hannover, Germany.
| |
Collapse
|
54
|
Kim YC, Ahn JH, Jin H, Yang MJ, Hong SP, Yoon JH, Kim SH, Gebre TN, Lee HJ, Kim YM, Koh GY. Immaturity of immune cells around the dural venous sinuses contributes to viral meningoencephalitis in neonates. Sci Immunol 2023; 8:eadg6155. [PMID: 37801517 DOI: 10.1126/sciimmunol.adg6155] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 07/24/2023] [Indexed: 10/08/2023]
Abstract
High neonatal susceptibility to meningitis has been attributed to the anatomical barriers that act to protect the central nervous system (CNS) from infection being immature and not fully developed. However, the mechanisms by which pathogens breach CNS barriers are poorly understood. Using the Armstrong strain of lymphocytic choriomeningitis virus (LCMV) to study virus propagation into the CNS during systemic infection, we demonstrate that mortality in neonatal, but not adult, mice is high after infection. Virus propagated extensively from the perivenous sinus region of the dura mater to the leptomeninges, choroid plexus, and cerebral cortex. Although the structural barrier of CNS border tissues is comparable between neonates and adults, immunofluorescence staining and single-cell RNA sequencing analyses revealed that the neonatal dural immune cells are immature and predominantly composed of CD206hi macrophages, with major histocompatibility complex class II (MHCII)hi macrophages being rare. In adults, however, perivenous sinus immune cells were enriched in MHCIIhi macrophages that are specialized for producing antiviral molecules and chemokines compared with CD206hi macrophages and protected the CNS against systemic virus invasion. Our findings clarify how systemic pathogens enter the CNS through its border tissues and how the immune barrier at the perivenous sinus region of the dura blocks pathogen access to the CNS.
Collapse
Affiliation(s)
- Young-Chan Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
- Center for Vascular Research, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
- Department of Internal Medicine, Seoul National University Hospital, Seoul 03080, Republic of Korea
| | - Ji Hoon Ahn
- Center for Vascular Research, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Hokyung Jin
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
- Center for Vascular Research, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Myung Jin Yang
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
- Center for Vascular Research, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Seon Pyo Hong
- Center for Vascular Research, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Jin-Hui Yoon
- Center for Vascular Research, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Sang-Hoon Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Tirhas Niguse Gebre
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Hyuek Jong Lee
- Center for Vascular Research, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - You-Me Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Gou Young Koh
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
- Center for Vascular Research, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| |
Collapse
|
55
|
Nair AL, Groenendijk L, Overdevest R, Fowke TM, Annida R, Mocellin O, de Vries HE, Wevers NR. Human BBB-on-a-chip reveals barrier disruption, endothelial inflammation, and T cell migration under neuroinflammatory conditions. Front Mol Neurosci 2023; 16:1250123. [PMID: 37818458 PMCID: PMC10561300 DOI: 10.3389/fnmol.2023.1250123] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/06/2023] [Indexed: 10/12/2023] Open
Abstract
The blood-brain barrier (BBB) is a highly selective barrier that ensures a homeostatic environment for the central nervous system (CNS). BBB dysfunction, inflammation, and immune cell infiltration are hallmarks of many CNS disorders, including multiple sclerosis and stroke. Physiologically relevant human in vitro models of the BBB are essential to improve our understanding of its function in health and disease, identify novel drug targets, and assess potential new therapies. We present a BBB-on-a-chip model comprising human brain microvascular endothelial cells (HBMECs) cultured in a microfluidic platform that allows parallel culture of 40 chips. In each chip, a perfused HBMEC vessel was grown against an extracellular matrix gel in a membrane-free manner. BBBs-on-chips were exposed to varying concentrations of pro-inflammatory cytokines tumor necrosis factor alpha (TNFα) and interleukin-1 beta (IL-1β) to mimic inflammation. The effect of the inflammatory conditions was studied by assessing the BBBs-on-chips' barrier function, cell morphology, and expression of cell adhesion molecules. Primary human T cells were perfused through the lumen of the BBBs-on-chips to study T cell adhesion, extravasation, and migration. Under inflammatory conditions, the BBBs-on-chips showed decreased trans-endothelial electrical resistance (TEER), increased permeability to sodium fluorescein, and aberrant cell morphology in a concentration-dependent manner. Moreover, we observed increased expression of cell adhesion molecules and concomitant monocyte adhesion. T cells extravasated from the inflamed blood vessels and migrated towards a C-X-C Motif Chemokine Ligand 12 (CXCL12) gradient. T cell adhesion was significantly reduced and a trend towards decreased migration was observed in presence of Natalizumab, an antibody drug that blocks very late antigen-4 (VLA-4) and is used in the treatment of multiple sclerosis. In conclusion, we demonstrate a high-throughput microfluidic model of the human BBB that can be used to model neuroinflammation and assess anti-inflammatory and barrier-restoring interventions to fight neurological disorders.
Collapse
Affiliation(s)
- Arya Lekshmi Nair
- MIMETAS BV, Oegstgeest, Netherlands
- Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience – Neuroinfection and Neuroinflammation, Amsterdam, Netherlands
| | | | | | | | | | | | - Helga E. de Vries
- Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience – Neuroinfection and Neuroinflammation, Amsterdam, Netherlands
| | | |
Collapse
|
56
|
Floryanzia SD, Nance E. Applications and Considerations for Microfluidic Systems To Model the Blood-Brain Barrier. ACS APPLIED BIO MATERIALS 2023; 6:3617-3632. [PMID: 37582179 PMCID: PMC11646049 DOI: 10.1021/acsabm.3c00364] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
In a myriad of developmental and degenerative brain diseases, characteristic pathological biomarkers are often associated with cerebral blood flow and vasculature. However, the relationship between vascular dysfunction and markers of brain disease is not well-defined. Additionally, it is difficult to deliver effective therapeutics to the brain due to the highly regulated blood-brain barrier (BBB) at the microvasculature interface of the brain. This Review first covers the need for modeling the BBB and the challenges of modeling the BBB. In vitro models of the BBB enable the study of the relationship between vascular dysfunction, BBB function, and disease progression and can serve as a platform to screen therapeutics. In particular, microfluidic-based in vitro BBB models are useful for studying brain vasculature as they support cell culture within the presence of continuous perfusion, which mirrors the in vivo flow and associated stress conditions in the brain. Early microfluidic models of the BBB created the most simplistic models possible that still displayed some functional aspects of the in vivo BBB. Therefore, this Review also discusses the emerging unique ways in which microfluidics in tandem with recent advancements in cell culture, biomaterials, and in vitro modeling can be used to develop more complex and physiologically relevant models of the BBB. Finally, we discuss the current and future state-of-the-art application of microfluidic BBB models for drug development and disease modeling, and the ongoing areas of needed innovation in this field.
Collapse
Affiliation(s)
- Sydney D Floryanzia
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Elizabeth Nance
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
- Department of Bioengineering, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
57
|
Shahabifard H, Zarei M, Kookli K, Esmalian Afyouni N, Soltani N, Maghsoodi S, Adili A, Mahmoudi J, Shomali N, Sandoghchian Shotorbani S. An updated overview of the application of CAR-T cell therapy in neurological diseases. Biotechnol Prog 2023; 39:e3356. [PMID: 37198722 DOI: 10.1002/btpr.3356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/29/2023] [Accepted: 05/03/2023] [Indexed: 05/19/2023]
Abstract
Genetically modified immune cells, especially CAR-T cells, have captured the attention of scientists over the past 10 years. In the fight against cancer, these cells have a special place. Treatment for hematological cancers, autoimmune disorders, and cancers must include CAR-T cell therapy. Determining the therapeutic targets, side effects, and use of CAR-T cells in neurological disorders, including cancer and neurodegenerative diseases, is the goal of this study. Due to advancements in genetic engineering, CAR-T cells have become crucial in treating some neurological disorders. CAR-T cells have demonstrated a positive role in treating neurological cancers like Glioblastoma and Neuroblastoma due to their ability to cross the blood-brain barrier and use diverse targets. However, CAR-T cell therapy for MS diseases is being researched and could be a potential treatment option. This study aimed to access the most recent studies and scientific articles in the field of CAR-T cells in neurological diseases and/or disorders.
Collapse
Affiliation(s)
- Hesam Shahabifard
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Zarei
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Keihan Kookli
- International Campus, Iran University of Medical Sciences, Tehran, Iran
| | - Nazgol Esmalian Afyouni
- Isfahan Neurosciences Research Center, Alzahra Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Narges Soltani
- School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Sairan Maghsoodi
- Department of Laboratory Sciences, Faculty of Paramedical Sciences, Kurdistan University of Medical Sciences (MUK), Sanandaj, Iran
| | - Ali Adili
- Department of Oncology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javad Mahmoudi
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Navid Shomali
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
58
|
Wang Y, Jia Y, Xu Q, Yang P, Sun L, Liu Y, Chang X, He Y, Shi M, Guo D, Zhang Y, Zhu Z. Association Between Prekallikrein and Stroke: A Mendelian Randomization Study. J Am Heart Assoc 2023; 12:e030525. [PMID: 37581399 PMCID: PMC10492928 DOI: 10.1161/jaha.123.030525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 07/18/2023] [Indexed: 08/16/2023]
Abstract
Background High plasma prekallikrein was reported to be associated with increased risks of stroke, but the causality for these associations remains unclear. We aimed to investigate the associations of genetically predicted plasma prekallikrein concentrations with all-cause stroke, ischemic stroke, 3 ischemic stroke subtypes, and intracerebral hemorrhage (ICH) using a 2-sample Mendelian randomization approach. Methods and Results Seven independent prekallikrein-related single-nucleotide polymorphisms were identified as genetic instruments for prekallikrein based on a genome-wide association study with 1000 European individuals. The summary statistics for all-cause stroke, ischemic stroke, and ischemic stroke subtypes were obtained from the Multiancestry Genome-wide Association Study of Stroke Consortium with 40 585 cases and 406 111 controls of European ancestry. The summary statistics for ICH were obtained from the ISGC (International Stroke Genetics Consortium) with 1545 ICH cases and 1481 controls of European ancestry. In the main analysis, the inverse-variance weighted method was applied to estimate the associations of plasma prekallikrein concentrations with all-cause stroke, ischemic stroke, ischemic stroke subtypes, and ICH. Genetically predicted high plasma prekallikrein levels were significantly associated with elevated risks of all-cause stroke (odds ratio [OR] per SD increase, 1.04 [95% CI, 1.02-1.06]; P=5.44×10-5), ischemic stroke (OR per SD increase, 1.05 [95% CI, 1.03-1.07]; P=1.42×10-5), cardioembolic stroke (OR per SD increase, 1.08 [95% CI, 1.03-1.12]; P=3.75×10-4), and small vessel stroke (OR per SD increase, 1.11 [95% CI, 1.06-1.17]; P=3.02×10-5). However, no significant associations were observed for genetically predicted prekallikrein concentrations with large artery stroke and ICH. Conclusions This Mendelian randomization study found that genetically predicted high plasma prekallikrein concentrations were associated with increased risks of all-cause stroke, ischemic stroke, cardioembolic stroke, and small vessel stroke, indicating that prekallikrein might have a critical role in the development of stroke.
Collapse
Affiliation(s)
- Yinan Wang
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric DiseasesSuzhou Medical College of Soochow UniversitySuzhouChina
| | - Yiming Jia
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric DiseasesSuzhou Medical College of Soochow UniversitySuzhouChina
| | - Qingyun Xu
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric DiseasesSuzhou Medical College of Soochow UniversitySuzhouChina
| | - Pinni Yang
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric DiseasesSuzhou Medical College of Soochow UniversitySuzhouChina
| | - Lulu Sun
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric DiseasesSuzhou Medical College of Soochow UniversitySuzhouChina
| | - Yi Liu
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric DiseasesSuzhou Medical College of Soochow UniversitySuzhouChina
| | - Xinyue Chang
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric DiseasesSuzhou Medical College of Soochow UniversitySuzhouChina
| | - Yu He
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric DiseasesSuzhou Medical College of Soochow UniversitySuzhouChina
| | - Mengyao Shi
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric DiseasesSuzhou Medical College of Soochow UniversitySuzhouChina
| | - Daoxia Guo
- School of NursingSuzhou Medical College of Soochow UniversitySuzhouChina
| | - Yonghong Zhang
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric DiseasesSuzhou Medical College of Soochow UniversitySuzhouChina
| | - Zhengbao Zhu
- Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric DiseasesSuzhou Medical College of Soochow UniversitySuzhouChina
| |
Collapse
|
59
|
Jankowska A, Chwojnicki K, Grzywińska M, Trzonkowski P, Szurowska E. Choroid Plexus Volume Change-A Candidate for a New Radiological Marker of MS Progression. Diagnostics (Basel) 2023; 13:2668. [PMID: 37627928 PMCID: PMC10453931 DOI: 10.3390/diagnostics13162668] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/06/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
(1) Background: Multiple sclerosis (MS) is an auto-immune, chronic, neuroinflammatory, demyelinating disease that affects mainly young patients. This progressive inflammatory process causes the chronic loss of brain tissue and results in a deterioration in quality of life. To monitor neuroinflammatory process activity and predict the further development of disease, it is necessary to find a suitable biomarker that could easily be used. In this research, we verify the usability of choroid plexus (CP) volume, a new MS biomarker, in the monitoring of the progression of multiple sclerosis disease. (2) Methods: A single-center, prospective study with three groups of patients was conducted based on the following groups: MS patients who received experimental cellular therapy (Treg), treatment-naïve MS patients and healthy controls. (3) Results: This study concludes that there is a correlation between the CPV/TIV (choroid plexus/total intracranial volume) ratio and the progress of multiple sclerosis disease-patients with MS (MS + Treg) had larger volumes of choroid plexuses. CPV/TIV ratios in MS groups were constantly and significantly growing. In the Treg group, patients with relapses had larger plexuses in comparison to the group with no relapses of MS. A similar correlation was observed for the GD+ group (patients with postcontrast enhancing plaques) compared against the non-GD group (patients without postcontrast enhancing plaques). (4) Conclusion: Choroid plexus volume, due to its immunological function, correlates with the inflammatory process in the central nervous system. We consider it to become a valuable radiological biomarker of MS activity.
Collapse
Affiliation(s)
- Anna Jankowska
- 2nd Department of Radiology, Medical University of Gdańsk, Smoluchowskiego 17, 80-214 Gdańsk, Poland;
| | - Kamil Chwojnicki
- Department of Anesthesiology and Intensive Care, Medical University of Gdańsk, Debinki 7, 80-210 Gdańsk, Poland;
| | - Małgorzata Grzywińska
- Neuroinformatics and Artificial Intelligence Lab, Department of Neurophysiology, Neuropsychology and Neuroinformatics, Medical University of Gdańsk, Debinki 7, 80-210 Gdańsk, Poland;
| | - Piotr Trzonkowski
- Department of Medical Immunology, Medical University of Gdańsk, Debinki 7, 80-210 Gdańsk, Poland;
| | - Edyta Szurowska
- 2nd Department of Radiology, Medical University of Gdańsk, Smoluchowskiego 17, 80-214 Gdańsk, Poland;
| |
Collapse
|
60
|
Hegde MM, Sandbhor P, J. A, Gota V, Goda JS. Insight into lipid-based nanoplatform-mediated drug and gene delivery in neuro-oncology and their clinical prospects. Front Oncol 2023; 13:1168454. [PMID: 37483515 PMCID: PMC10357293 DOI: 10.3389/fonc.2023.1168454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 06/16/2023] [Indexed: 07/25/2023] Open
Abstract
Tumors of the Central nervous System (CNS) are a spectrum of neoplasms that range from benign lesions to highly malignant and aggressive lesions. Despite aggressive multimodal treatment approaches, the morbidity and mortality are high with dismal survival outcomes in these malignant tumors. Moreover, the non-specificity of conventional treatments substantiates the rationale for precise therapeutic strategies that selectively target infiltrating tumor cells within the brain, and minimize systemic and collateral damage. With the recent advancement of nanoplatforms for biomaterials applications, lipid-based nanoparticulate systems present an attractive and breakthrough impact on CNS tumor management. Lipid nanoparticles centered immunotherapeutic agents treating malignant CNS tumors could convene the clear need for precise treatment strategies. Immunotherapeutic agents can selectively induce specific immune responses by active or innate immune responses at the local site within the brain. In this review, we discuss the therapeutic applications of lipid-based nanoplatforms for CNS tumors with an emphasis on revolutionary approaches in brain targeting, imaging, and drug and gene delivery with immunotherapy. Lipid-based nanoparticle platforms represent one of the most promising colloidal carriers for chemotherapeutic, and immunotherapeutic drugs. Their current application in oncology especially in brain tumors has brought about a paradigm shift in cancer treatment by improving the antitumor activity of several agents that could be used to selectively target brain tumors. Subsequently, the lab-to-clinic transformation and challenges towards translational feasibility of lipid-based nanoplatforms for drug and gene/immunotherapy delivery in the context of CNS tumor management is addressed.
Collapse
Affiliation(s)
- Manasa Manjunath Hegde
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Puja Sandbhor
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Mumbai, India
| | - Aishwarya J.
- Advance Centre for Treatment Research and Education in Cancer, Tata Memorial Centre and Homi Bhabha National Institute, Mumbai, India
| | - Vikram Gota
- Advance Centre for Treatment Research and Education in Cancer, Tata Memorial Centre and Homi Bhabha National Institute, Mumbai, India
| | - Jayant S. Goda
- Advance Centre for Treatment Research and Education in Cancer, Tata Memorial Centre and Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
61
|
Lazarevic I, Soldati S, Mapunda JA, Rudolph H, Rosito M, de Oliveira AC, Enzmann G, Nishihara H, Ishikawa H, Tenenbaum T, Schroten H, Engelhardt B. The choroid plexus acts as an immune cell reservoir and brain entry site in experimental autoimmune encephalomyelitis. Fluids Barriers CNS 2023; 20:39. [PMID: 37264368 DOI: 10.1186/s12987-023-00441-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 05/15/2023] [Indexed: 06/03/2023] Open
Abstract
The choroid plexus (ChP) has been suggested as an alternative central nervous system (CNS) entry site for CCR6+ Th17 cells during the initiation of experimental autoimmune encephalomyelitis (EAE), an animal model for multiple sclerosis (MS). To advance our understanding of the importance of the ChP in orchestrating CNS immune cell entry during neuroinflammation, we here directly compared the accumulation of CD45+ immune cell subsets in the ChP, the brain and spinal cord at different stages of EAE by flow cytometry. We found that the ChP harbors high numbers of CD45int resident innate but also of CD45hi adaptive immune cell subsets including CCR6+ Th17 cells. With the exception to tissue-resident myeloid cells and B cells, numbers of CD45+ immune cells and specifically of CD4+ T cells increased in the ChP prior to EAE onset and remained elevated while declining in brain and spinal cord during chronic disease. Increased numbers of ChP immune cells preceded their increase in the cerebrospinal fluid (CSF). Th17 but also other CD4+ effector T-cell subsets could migrate from the basolateral to the apical side of the blood-cerebrospinal fluid barrier (BCSFB) in vitro, however, diapedesis of effector Th cells including that of Th17 cells did not require interaction of CCR6 with BCSFB derived CCL20. Our data underscore the important role of the ChP as CNS immune cell entry site in the context of autoimmune neuroinflammation.
Collapse
Affiliation(s)
- Ivana Lazarevic
- Theodor Kocher Institute, University of Bern, Freiestrasse 1, Bern, CH-3012, Switzerland
| | - Sasha Soldati
- Theodor Kocher Institute, University of Bern, Freiestrasse 1, Bern, CH-3012, Switzerland
| | - Josephine A Mapunda
- Theodor Kocher Institute, University of Bern, Freiestrasse 1, Bern, CH-3012, Switzerland
| | - Henriette Rudolph
- Klinik für Kinder - und Jugendmedizin, Universitätsmedizin Mannheim, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
- Present address: Clinic for Pediatrics and Adolescent Medicine, Johann Wolfgang Goethe University, Frankfurt/Main, Germany
| | - Maria Rosito
- Theodor Kocher Institute, University of Bern, Freiestrasse 1, Bern, CH-3012, Switzerland
- Present address: Department of Physiology and Pharmacology, Sapienza University, Rome, 00185, Italy
| | | | - Gaby Enzmann
- Theodor Kocher Institute, University of Bern, Freiestrasse 1, Bern, CH-3012, Switzerland
| | - Hideaki Nishihara
- Theodor Kocher Institute, University of Bern, Freiestrasse 1, Bern, CH-3012, Switzerland
- Present address: Department of Neurotherapeutics, Yamaguchi University, Yamaguchi, 755-8505, Japan
| | - Hiroshi Ishikawa
- Laboratory of Clinical Regenerative Medicine, Department of Neurosurgery, University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan
| | - Tobias Tenenbaum
- Klinik für Kinder - und Jugendmedizin, Universitätsmedizin Mannheim, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
- Present address: Clinic for Pediatrics and Adolescent Medicine, Sana Clinic Lichtenberg, Charité, Berlin, Germany
| | - Horst Schroten
- Klinik für Kinder - und Jugendmedizin, Universitätsmedizin Mannheim, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Britta Engelhardt
- Theodor Kocher Institute, University of Bern, Freiestrasse 1, Bern, CH-3012, Switzerland.
| |
Collapse
|
62
|
Su Y, Zheng H, Shi C, Li X, Zhang S, Guo G, Yu W, Zhang S, Hu Z, Yang J, Xia Z, Mao C, Xu Y. Meningeal immunity and neurological diseases: new approaches, new insights. J Neuroinflammation 2023; 20:125. [PMID: 37231449 DOI: 10.1186/s12974-023-02803-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/10/2023] [Indexed: 05/27/2023] Open
Abstract
The meninges, membranes surrounding the central nervous system (CNS) boundary, harbor a diverse array of immunocompetent immune cells, and therefore, serve as an immunologically active site. Meningeal immunity has emerged as a key factor in modulating proper brain function and social behavior, performing constant immune surveillance of the CNS, and participating in several neurological diseases. However, it remains to be determined how meningeal immunity contributes to CNS physiology and pathophysiology. With the advances in single-cell omics, new approaches, such as single-cell technologies, unveiled the details of cellular and molecular mechanisms underlying meningeal immunity in CNS homeostasis and dysfunction. These new findings contradict some previous dogmas and shed new light on new possible therapeutic targets. In this review, we focus on the complicated multi-components, powerful meningeal immunosurveillance capability, and its crucial involvement in physiological and neuropathological conditions, as recently revealed by single-cell technologies.
Collapse
Affiliation(s)
- Yun Su
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, No.1 Eastern Jian-She Road, Zhengzhou, 450052, Henan, China
- The Academy of Medical Sciences of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Huimin Zheng
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, No.1 Eastern Jian-She Road, Zhengzhou, 450052, Henan, China
- The Academy of Medical Sciences of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Changhe Shi
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, No.1 Eastern Jian-She Road, Zhengzhou, 450052, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Xinwei Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, No.1 Eastern Jian-She Road, Zhengzhou, 450052, Henan, China
- The Academy of Medical Sciences of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Shuyu Zhang
- Neuro-Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Guangyu Guo
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, No.1 Eastern Jian-She Road, Zhengzhou, 450052, Henan, China
| | - Wenkai Yu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, No.1 Eastern Jian-She Road, Zhengzhou, 450052, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Shuo Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, No.1 Eastern Jian-She Road, Zhengzhou, 450052, Henan, China
- The Academy of Medical Sciences of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Zhengwei Hu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, No.1 Eastern Jian-She Road, Zhengzhou, 450052, Henan, China
- The Academy of Medical Sciences of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Jing Yang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, No.1 Eastern Jian-She Road, Zhengzhou, 450052, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Zongping Xia
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, No.1 Eastern Jian-She Road, Zhengzhou, 450052, Henan, China
| | - Chengyuan Mao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, No.1 Eastern Jian-She Road, Zhengzhou, 450052, Henan, China.
- The Academy of Medical Sciences of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, Henan, China.
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, Henan, China.
- Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China.
| | - Yuming Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, No.1 Eastern Jian-She Road, Zhengzhou, 450052, Henan, China.
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, Henan, China.
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
63
|
Rocha Pinheiro SL, Lemos FFB, Marques HS, Silva Luz M, de Oliveira Silva LG, Faria Souza Mendes dos Santos C, da Costa Evangelista K, Calmon MS, Sande Loureiro M, Freire de Melo F. Immunotherapy in glioblastoma treatment: Current state and future prospects. World J Clin Oncol 2023; 14:138-159. [PMID: 37124134 PMCID: PMC10134201 DOI: 10.5306/wjco.v14.i4.138] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/06/2023] [Accepted: 04/12/2023] [Indexed: 04/21/2023] Open
Abstract
Glioblastoma remains as the most common and aggressive malignant brain tumor, standing with a poor prognosis and treatment prospective. Despite the aggressive standard care, such as surgical resection and chemoradiation, median survival rates are low. In this regard, immunotherapeutic strategies aim to become more attractive for glioblastoma, considering its recent advances and approaches. In this review, we provide an overview of the current status and progress in immunotherapy for glioblastoma, going through the fundamental knowledge on immune targeting to promising strategies, such as Chimeric antigen receptor T-Cell therapy, immune checkpoint inhibitors, cytokine-based treatment, oncolytic virus and vaccine-based techniques. At last, it is discussed innovative methods to overcome diverse challenges, and future perspectives in this area.
Collapse
Affiliation(s)
- Samuel Luca Rocha Pinheiro
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Fabian Fellipe Bueno Lemos
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Hanna Santos Marques
- Campus Vitória da Conquista, Universidade Estadual do Sudoeste da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Marcel Silva Luz
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | | | | | | | - Mariana Santos Calmon
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Matheus Sande Loureiro
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Fabrício Freire de Melo
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| |
Collapse
|
64
|
Charabati M, Zandee S, Fournier AP, Tastet O, Thai K, Zaminpeyma R, Lécuyer MA, Bourbonnière L, Larouche S, Klement W, Grasmuck C, Tea F, Zierfuss B, Filali-Mouhim A, Moumdjian R, Bouthillier A, Cayrol R, Peelen E, Arbour N, Larochelle C, Prat A. MCAM+ brain endothelial cells contribute to neuroinflammation by recruiting pathogenic CD4+ T lymphocytes. Brain 2023; 146:1483-1495. [PMID: 36319587 PMCID: PMC10115172 DOI: 10.1093/brain/awac389] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 09/12/2022] [Accepted: 10/01/2022] [Indexed: 01/13/2023] Open
Abstract
The trafficking of autoreactive leucocytes across the blood-brain barrier endothelium is a hallmark of multiple sclerosis pathogenesis. Although the blood-brain barrier endothelium represents one of the main CNS borders to interact with the infiltrating leucocytes, its exact contribution to neuroinflammation remains understudied. Here, we show that Mcam identifies inflammatory brain endothelial cells with pro-migratory transcriptomic signature during experimental autoimmune encephalomyelitis. In addition, MCAM was preferentially upregulated on blood-brain barrier endothelial cells in multiple sclerosis lesions in situ and at experimental autoimmune encephalomyelitis disease onset by molecular MRI. In vitro and in vivo, we demonstrate that MCAM on blood-brain barrier endothelial cells contributes to experimental autoimmune encephalomyelitis development by promoting the cellular trafficking of TH1 and TH17 lymphocytes across the blood-brain barrier. Last, we showcase ST14 as an immune ligand to brain endothelial MCAM, enriched on CD4+ T lymphocytes that cross the blood-brain barrier in vitro, in vivo and in multiple sclerosis lesions as detected by flow cytometry on rapid autopsy derived brain tissue from multiple sclerosis patients. Collectively, our findings reveal that MCAM is at the centre of a pathological pathway used by brain endothelial cells to recruit pathogenic CD4+ T lymphocyte from circulation early during neuroinflammation. The therapeutic targeting of this mechanism is a promising avenue to treat multiple sclerosis.
Collapse
Affiliation(s)
- Marc Charabati
- Neuroimmunology Research Laboratory, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, Quebec H2X 0A9, Canada
- Department of Neurosciences, Université de Montréal, Montreal, Quebec H3T 1J4, Canada
| | - Stephanie Zandee
- Neuroimmunology Research Laboratory, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, Quebec H2X 0A9, Canada
- Department of Neurosciences, Université de Montréal, Montreal, Quebec H3T 1J4, Canada
| | - Antoine P Fournier
- Neuroimmunology Research Laboratory, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, Quebec H2X 0A9, Canada
- Department of Neurosciences, Université de Montréal, Montreal, Quebec H3T 1J4, Canada
| | - Olivier Tastet
- Neuroimmunology Research Laboratory, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, Quebec H2X 0A9, Canada
| | - Karine Thai
- Neuroimmunology Research Laboratory, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, Quebec H2X 0A9, Canada
- Department of Neurosciences, Université de Montréal, Montreal, Quebec H3T 1J4, Canada
| | - Roxaneh Zaminpeyma
- Neuroimmunology Research Laboratory, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, Quebec H2X 0A9, Canada
| | - Marc-André Lécuyer
- Neuroimmunology Research Laboratory, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, Quebec H2X 0A9, Canada
- Department of Microbiology, Infectious Diseases and Immunology, Université de Montréal, Montreal, Quebec H3T 1J4, Canada
| | - Lyne Bourbonnière
- Neuroimmunology Research Laboratory, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, Quebec H2X 0A9, Canada
| | - Sandra Larouche
- Neuroimmunology Research Laboratory, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, Quebec H2X 0A9, Canada
| | - Wendy Klement
- Neuroimmunology Research Laboratory, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, Quebec H2X 0A9, Canada
| | - Camille Grasmuck
- Neuroimmunology Research Laboratory, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, Quebec H2X 0A9, Canada
- Department of Neurosciences, Université de Montréal, Montreal, Quebec H3T 1J4, Canada
| | - Fiona Tea
- Neuroimmunology Research Laboratory, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, Quebec H2X 0A9, Canada
- Department of Neurosciences, Université de Montréal, Montreal, Quebec H3T 1J4, Canada
| | - Bettina Zierfuss
- Neuroimmunology Research Laboratory, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, Quebec H2X 0A9, Canada
- Department of Neurosciences, Université de Montréal, Montreal, Quebec H3T 1J4, Canada
| | - Ali Filali-Mouhim
- Neuroimmunology Research Laboratory, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, Quebec H2X 0A9, Canada
| | - Robert Moumdjian
- Division of Neurosurgery, Centre Hospitalier de l’Université de Montréal (CHUM), Montreal, Quebec H2X 0C1, Canada
- Department of Surgery, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| | - Alain Bouthillier
- Division of Neurosurgery, Centre Hospitalier de l’Université de Montréal (CHUM), Montreal, Quebec H2X 0C1, Canada
- Department of Surgery, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| | - Romain Cayrol
- Clinical Department of Laboratory Medicine, CHUM, Montreal, Quebec H2X 0C1, Canada
- Department of Pathology and Cell Biology, Université de Montréal, Montreal, Quebec H3T 1J4, Canada
| | - Evelyn Peelen
- Neuroimmunology Research Laboratory, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, Quebec H2X 0A9, Canada
- Department of Neurosciences, Université de Montréal, Montreal, Quebec H3T 1J4, Canada
| | - Nathalie Arbour
- Neuroimmunology Research Laboratory, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, Quebec H2X 0A9, Canada
- Department of Neurosciences, Université de Montréal, Montreal, Quebec H3T 1J4, Canada
| | - Catherine Larochelle
- Neuroimmunology Research Laboratory, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, Quebec H2X 0A9, Canada
- Department of Neurosciences, Université de Montréal, Montreal, Quebec H3T 1J4, Canada
- Multiple Sclerosis Clinic, Division of Neurology, CHUM, Montreal, Quebec H2L 4M1, Canada
| | - Alexandre Prat
- Neuroimmunology Research Laboratory, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, Quebec H2X 0A9, Canada
- Department of Neurosciences, Université de Montréal, Montreal, Quebec H3T 1J4, Canada
- Multiple Sclerosis Clinic, Division of Neurology, CHUM, Montreal, Quebec H2L 4M1, Canada
| |
Collapse
|
65
|
Ou A, Wang Y, Zhang J, Huang Y. Living Cells and Cell-Derived Vesicles: A Trojan Horse Technique for Brain Delivery. Pharmaceutics 2023; 15:pharmaceutics15041257. [PMID: 37111742 PMCID: PMC10145830 DOI: 10.3390/pharmaceutics15041257] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/30/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Brain diseases remain a significant global healthcare burden. Conventional pharmacological therapy for brain diseases encounters huge challenges because of the blood-brain barrier (BBB) limiting the delivery of therapeutics into the brain parenchyma. To address this issue, researchers have explored various types of drug delivery systems. Cells and cell derivatives have attracted increasing interest as "Trojan horse" delivery systems for brain diseases, owing to their superior biocompatibility, low immunogenicity, and BBB penetration properties. This review provided an overview of recent advancements in cell- and cell-derivative-based delivery systems for the diagnosis and treatment of brain diseases. Additionally, it discussed the challenges and potential solutions for clinical translation.
Collapse
Affiliation(s)
- Ante Ou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuewei Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiaxin Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yongzhuo Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528437, China
- NMPA Key Laboratory for Quality Research and Evaluation of Pharmaceutical Excipients, Shanghai 201203, China
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
66
|
Li T, Li D, Wei Q, Shi M, Xiang J, Gao R, Chen C, Xu ZX. Dissecting the neurovascular unit in physiology and Alzheimer's disease: Functions, imaging tools and genetic mouse models. Neurobiol Dis 2023; 181:106114. [PMID: 37023830 DOI: 10.1016/j.nbd.2023.106114] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/22/2023] [Accepted: 04/02/2023] [Indexed: 04/08/2023] Open
Abstract
The neurovascular unit (NVU) plays an essential role in regulating neurovascular coupling, which refers to the communication between neurons, glia, and vascular cells to control the supply of oxygen and nutrients in response to neural activity. Cellular elements of the NVU coordinate to establish an anatomical barrier to separate the central nervous system from the milieu of the periphery system, restricting the free movement of substances from the blood to the brain parenchyma and maintaining central nervous system homeostasis. In Alzheimer's disease, amyloid-β deposition impairs the normal functions of NVU cellular elements, thus accelerating the disease progression. Here, we aim to describe the current knowledge of the NVU cellular elements, including endothelial cells, pericytes, astrocytes, and microglia, in regulating the blood-brain barrier integrity and functions in physiology as well as alterations encountered in Alzheimer's disease. Furthermore, the NVU functions as a whole, therefore specific labeling and targeting NVU components in vivo enable us to understand the mechanism mediating cellular communication. We review approaches including commonly used fluorescent dyes, genetic mouse models, and adeno-associated virus vectors for imaging and targeting NVU cellular elements in vivo.
Collapse
Affiliation(s)
- Tiantian Li
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Department of Neonatology, Children's Hospital of Fudan University, Shanghai, China; Key Laboratory of Neonatal Diseases, National Health Commission, Shanghai, China
| | - Dianyi Li
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Department of Neonatology, Children's Hospital of Fudan University, Shanghai, China
| | - Qingyuan Wei
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Department of Neonatology, Children's Hospital of Fudan University, Shanghai, China
| | - Minghong Shi
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Department of Neonatology, Children's Hospital of Fudan University, Shanghai, China
| | - Jiakun Xiang
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Department of Neonatology, Children's Hospital of Fudan University, Shanghai, China
| | - Ruiwei Gao
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Department of Neonatology, Children's Hospital of Fudan University, Shanghai, China; Key Laboratory of Neonatal Diseases, National Health Commission, Shanghai, China.
| | - Chao Chen
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Department of Neonatology, Children's Hospital of Fudan University, Shanghai, China; Key Laboratory of Neonatal Diseases, National Health Commission, Shanghai, China.
| | - Zhi-Xiang Xu
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Department of Neonatology, Children's Hospital of Fudan University, Shanghai, China; Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, China.
| |
Collapse
|
67
|
Rada CC, Yuki K, Ding J, Kuo CJ. Regulation of the Blood-Brain Barrier in Health and Disease. Cold Spring Harb Perspect Med 2023; 13:a041191. [PMID: 36987582 PMCID: PMC10691497 DOI: 10.1101/cshperspect.a041191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
The neurovascular unit is a dynamic microenvironment with tightly controlled signaling and transport coordinated by the blood-brain barrier (BBB). A properly functioning BBB allows sufficient movement of ions and macromolecules to meet the high metabolic demand of the central nervous system (CNS), while protecting the brain from pathogenic and noxious insults. This review describes the main cell types comprising the BBB and unique molecular signatures of these cells. Additionally, major signaling pathways for BBB development and maintenance are highlighted. Finally, we describe the pathophysiology of BBB diseases, their relationship to barrier dysfunction, and identify avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Cara C Rada
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Kanako Yuki
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Jie Ding
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Calvin J Kuo
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, California 94305, USA
| |
Collapse
|
68
|
Kurdi M, Mulla N, Malibary H, Bamaga AK, Fadul MM, Faizo E, Hakamy S, Baeesa S. Immune microenvironment of medulloblastoma: The association between its molecular subgroups and potential targeted immunotherapeutic receptors. World J Clin Oncol 2023; 14:117-130. [PMID: 37009528 PMCID: PMC10052334 DOI: 10.5306/wjco.v14.i3.117] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/08/2023] [Accepted: 02/22/2023] [Indexed: 03/19/2023] Open
Abstract
Medulloblastoma (MB) is considered the commonest malignant brain tumor in children. Multimodal treatments consisting of surgery, radiation, and chemotherapy have improved patients’ survival. Nevertheless, the recurrence occurs in 30% of cases. The persistent mortality rates, the failure of current therapies to extend life expectancy, and the serious complications of non-targeted cytotoxic treatment indicate the need for more refined therapeutic approaches. Most MBs originating from the neurons of external granular layer line the outer surface of neocerebellum and responsible for the afferent and efferent connections. Recently, MBs have been segregated into four molecular subgroups: Wingless-activated (WNT-MB) (Group 1); Sonic-hedgehog-activated (SHH-MB) (Group 2); Group 3 and 4 MBs. These molecular alterations follow specific gene mutations and disease-risk stratifications. The current treatment protocols and ongoing clinical trials against these molecular subgroups are still using common chemotherapeutic agents by which their efficacy have improved the progression-free survival but did not change the overall survival. However, the need to explore new therapies targeting specific receptors in MB microenvironment became essential. The immune microenvironment of MBs consists of distinctive cellular heterogeneities including immune cells and none-immune cells. Tumour associate macrophage and tumour infiltrating lymphocyte are considered the main principal cells in tumour microenvironment, and their role are still under investigation. In this review, we discuss the mechanism of interaction between MB cells and immune cells in the microenvironment, with an overview of the recent investigations and clinical trials
Collapse
Affiliation(s)
- Maher Kurdi
- Department of Pathology, Faculty of Medicine, King Abdulaziz University, Rabigh 213733, Saudi Arabia
- Neuromuscular Unit, King Fahad Medical Research Center, King Abdulaziz University, Jeddah 213733, Saudi Arabia
| | - Nasser Mulla
- Department of Internal Medicine, Faculty of Medicine, Taibah University, Medina 213733, Saudi Arabia
| | - Husam Malibary
- Department of Internal Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah 213733, Saudi Arabia
| | - Ahmed K Bamaga
- Department of Paediatrics, Faculty of Medicine, King Abdulaziz University, Jeddah 213733, Saudi Arabia
| | - Motaz M Fadul
- Department of Pathology, Faculty of Medicine, King Abdulaziz University, Rabigh 213733, Saudi Arabia
| | - Eyad Faizo
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine, Tabuk University, Tabuk 213733, Saudi Arabia
| | - Sahar Hakamy
- Neurmuscular Unit, Center of Excellence of Genomic Medicine, Jeddah 21423, Saudi Arabia
| | - Saleh Baeesa
- Department of Neuroscience, King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia
| |
Collapse
|
69
|
Lerch M, Bauer A, Reindl M. The Potential Pathogenicity of Myelin Oligodendrocyte Glycoprotein Antibodies in the Optic Pathway. J Neuroophthalmol 2023; 43:5-16. [PMID: 36729854 PMCID: PMC9924971 DOI: 10.1097/wno.0000000000001772] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND Myelin oligodendrocyte glycoprotein (MOG) antibody-associated disease (MOGAD) is an acquired inflammatory demyelinating disease with optic neuritis (ON) as the most frequent clinical symptom. The hallmark of the disease is the presence of autoantibodies against MOG (MOG-IgG) in the serum of patients. Whereas the role of MOG in the experimental autoimmune encephalomyelitis animal model is well-established, the pathogenesis of the human disease and the role of human MOG-IgG is still not fully clear. EVIDENCE ACQUISITION PubMed was searched for the terms "MOGAD," "optic neuritis," "MOG antibodies," and "experimental autoimmune encephalomyelitis" alone or in combination, to find articles of interest for this review. Only articles written in English language were included and reference lists were searched for further relevant papers. RESULTS B and T cells play a role in the pathogenesis of human MOGAD. The distribution of lesions and their development toward the optic pathway is influenced by the genetic background in animal models. Moreover, MOGAD-associated ON is frequently bilateral and often relapsing with generally favorable visual outcome. Activated T-cell subsets create an inflammatory environment and B cells are necessary to produce autoantibodies directed against the MOG protein. Here, pathologic mechanisms of MOG-IgG are discussed, and histopathologic findings are presented. CONCLUSIONS MOGAD patients often present with ON and harbor antibodies against MOG. Furthermore, pathogenesis is most likely a synergy between encephalitogenic T and antibody producing B cells. However, to which extent MOG-IgG are pathogenic and the exact pathologic mechanism is still not well understood.
Collapse
|
70
|
Microglia drive transient insult-induced brain injury by chemotactic recruitment of CD8 + T lymphocytes. Neuron 2023; 111:696-710.e9. [PMID: 36603584 DOI: 10.1016/j.neuron.2022.12.009] [Citation(s) in RCA: 80] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 09/03/2022] [Accepted: 12/05/2022] [Indexed: 01/06/2023]
Abstract
The crosstalk between the nervous and immune systems has gained increasing attention for its emerging role in neurological diseases. Radiation-induced brain injury (RIBI) remains the most common medical complication of cranial radiotherapy, and its pathological mechanisms have yet to be elucidated. Here, using single-cell RNA and T cell receptor sequencing, we found infiltration and clonal expansion of CD8+ T lymphocytes in the lesioned brain tissues of RIBI patients. Furthermore, by strategies of genetic or pharmacologic interruption, we identified a chemotactic action of microglia-derived CCL2/CCL8 chemokines in mediating the infiltration of CCR2+/CCR5+ CD8+ T cells and tissue damage in RIBI mice. Such a chemotactic axis also participated in the progression of cerebral infarction in the mouse model of ischemic injury. Our findings therefore highlight the critical role of microglia in mediating the dysregulation of adaptive immune responses and reveal a potential therapeutic strategy for non-infectious brain diseases.
Collapse
|
71
|
Miao YB, Zhao W, Renchi G, Gong Y, Shi Y. Customizing delivery nano-vehicles for precise brain tumor therapy. J Nanobiotechnology 2023; 21:32. [PMID: 36707835 PMCID: PMC9883977 DOI: 10.1186/s12951-023-01775-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 01/09/2023] [Indexed: 01/29/2023] Open
Abstract
Although some tumor has become a curable disease for many patients, involvement of the central nervous system (CNS) is still a major concern. The blood-brain barrier (BBB), a special structure in the CNS, protects the brain from bloodborne pathogens via its excellent barrier properties and hinders new drug development for brain tumor. Recent breakthroughs in nanotechnology have resulted in various nanovehicless (NPs) as drug carriers to cross the BBB by different strategys. Here, the complex compositions and special characteristics of causes of brain tumor formation and BBB are elucidated exhaustively. Additionally, versatile drug nanovehicles with their recent applications and their pathways on different drug delivery strategies to overcome the BBB obstacle for anti-brain tumor are briefly discussed. Customizing nanoparticles for brain tumor treatments is proposed to improve the efficacy of brain tumor treatments via drug delivery from the gut to the brain. This review provides a broad perspective on customizing delivery nano-vehicles characteristics facilitate drug distribution across the brain and pave the way for the creation of innovative nanotechnology-based nanomaterials for brain tumor treatments.
Collapse
Affiliation(s)
- Yang-Bao Miao
- grid.410646.10000 0004 1808 0950Department of Haematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine of University of Electronic Science and Technology of China, No. 32, West Section 2, First Ring Road, Qingyang District, Chengdu, 610000 China ,Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, 610072 Sichuan China
| | - Wang Zhao
- grid.410646.10000 0004 1808 0950Department of Haematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine of University of Electronic Science and Technology of China, No. 32, West Section 2, First Ring Road, Qingyang District, Chengdu, 610000 China ,Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, 610072 Sichuan China
| | - Gao Renchi
- grid.410646.10000 0004 1808 0950Department of Haematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine of University of Electronic Science and Technology of China, No. 32, West Section 2, First Ring Road, Qingyang District, Chengdu, 610000 China ,Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, 610072 Sichuan China
| | - Ying Gong
- grid.263901.f0000 0004 1791 7667School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031 People’s Republic of China
| | - Yi Shi
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, 610072 Sichuan China ,grid.9227.e0000000119573309Natural Products Research Center, Institute of Chengdu Biology, Sichuan Translational Medicine Hospital, Chinese Academy of Sciences, Chengdu, 610072 Sichuan China ,grid.410646.10000 0004 1808 0950Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, Chengdu, 610072 Sichuan China
| |
Collapse
|
72
|
Zhang Y, Ren Y, Zhang Y, Li Y, Xu C, Peng Z, Jia Y, Qiao S, Zhang Z, Shi L. T-cell infiltration in the central nervous system and their association with brain calcification in Slc20a2-deficient mice. Front Mol Neurosci 2023; 16:1073723. [PMID: 36741925 PMCID: PMC9894888 DOI: 10.3389/fnmol.2023.1073723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/03/2023] [Indexed: 01/21/2023] Open
Abstract
Primary familial brain calcification (PFBC) is a rare neurodegenerative and neuropsychiatric disorder characterized by bilateral symmetric intracranial calcification along the microvessels or inside neuronal cells in the basal ganglia, thalamus, and cerebellum. Slc20a2 homozygous (HO) knockout mice are the most commonly used model to simulate the brain calcification phenotype observed in human patients. However, the cellular and molecular mechanisms related to brain calcification, particularly at the early stage much prior to the emergence of brain calcification, remain largely unknown. In this study, we quantified the central nervous system (CNS)-infiltrating T-cells of different age groups of Slc20a2-HO and matched wild type mice and found CD45+CD3+ T-cells to be significantly increased in the brain parenchyma, even in the pre-calcification stage of 1-month-old -HO mice. The accumulation of the CD3+ T-cells appeared to be associated with the severity of brain calcification. Further immunophenotyping revealed that the two main subtypes that had increased in the brain were CD3+ CD4- CD8- and CD3+ CD4+ T-cells. The expression of endothelial cell (EC) adhesion molecules increased, while that of tight and adherents junction proteins decreased, providing the molecular precondition for T-cell recruitment to ECs and paracellular migration into the brain. The fusion of lymphocytes and EC membranes and transcellular migration of CD3-related gold particles were captured, suggesting enhancement of transcytosis in the brain ECs. Exogenous fluorescent tracers and endogenous IgG and albumin leakage also revealed an impairment of transcellular pathway in the ECs. FTY720 significantly alleviated brain calcification, probably by reducing T-cell infiltration, modulating neuroinflammation and ossification process, and enhancing the autophagy and phagocytosis of CNS-resident immune cells. This study clearly demonstrated CNS-infiltrating T-cells to be associated with the progression of brain calcification. Impairment of blood-brain barrier (BBB) permeability, which was closely related to T-cell invasion into the CNS, could be explained by the BBB alterations of an increase in the paracellular and transcellular pathways of brain ECs. FTY720 was found to be a potential drug to protect patients from PFBC-related lesions in the future.
Collapse
Affiliation(s)
- Yi Zhang
- Human Molecular Genetics Group, NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China,Department of Medical Genetics, College of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Yaqiong Ren
- Human Molecular Genetics Group, NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yueni Zhang
- Human Molecular Genetics Group, NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China,Department of Medical Genetics, College of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Ying Li
- Human Molecular Genetics Group, NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China,Department of Child and Adolescent Health, School of Public Health, Harbin Medical University, Harbin, China
| | - Chao Xu
- Human Molecular Genetics Group, NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China,Department of Pediatrics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ziyue Peng
- Human Molecular Genetics Group, NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China,Department of Pediatrics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ying Jia
- Department of Medical Genetics, College of Basic Medical Sciences, Harbin Medical University, Harbin, China,Department of Child and Adolescent Health, School of Public Health, Harbin Medical University, Harbin, China
| | - Shupei Qiao
- Human Molecular Genetics Group, NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China,Department of Child and Adolescent Health, School of Public Health, Harbin Medical University, Harbin, China
| | - Zitong Zhang
- Human Molecular Genetics Group, NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China,Department of Medical Genetics, College of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Lei Shi
- Human Molecular Genetics Group, NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China,Department of Medical Genetics, College of Basic Medical Sciences, Harbin Medical University, Harbin, China,*Correspondence: Lei Shi,
| |
Collapse
|
73
|
Biose IJ, Ismael S, Ouvrier B, White AL, Bix GJ. The Potential Role of Integrin Signaling in Memory and Cognitive Impairment. Biomolecules 2023; 13:biom13010108. [PMID: 36671492 PMCID: PMC9855855 DOI: 10.3390/biom13010108] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/29/2022] [Accepted: 01/02/2023] [Indexed: 01/06/2023] Open
Abstract
Dementia currently has no cure and, due to the increased prevalence and associated economic and personal burden of this condition, current research efforts for the development of potential therapies have intensified. Recently, targeting integrins as a strategy to ameliorate dementia and other forms of cognitive impairment has begun to gain traction. Integrins are major bidirectional signaling receptors in mammalian cells, mediating various physiological processes such as cell-cell interaction and cell adhesion, and are also known to bind to the extracellular matrix. In particular, integrins play a critical role in the synaptic transmission of signals, hence their potential contribution to memory formation and significance in cognitive impairment. In this review, we describe the physiological roles that integrins play in the blood-brain barrier (BBB) and in the formation of memories. We also provide a clear overview of how integrins are implicated in BBB disruption following cerebral pathology. Given that vascular contributions to cognitive impairment and dementia and Alzheimer's' disease are prominent forms of dementia that involve BBB disruption, as well as chronic inflammation, we present current approaches shown to improve dementia-like conditions with integrins as a central focus. We conclude that integrins are vital in memory formation and that their disruption could lead to various forms of cognitive impairment. While further research to understand the relationships between integrins and memory is needed, we propose that the translational relevance of research efforts in this area could be improved through the use of appropriately aged, comorbid, male and female animals.
Collapse
Affiliation(s)
- Ifechukwude Joachim Biose
- Clinical Neuroscience Research Center, Department of Neurosurgery, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Saifudeen Ismael
- Clinical Neuroscience Research Center, Department of Neurosurgery, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Blake Ouvrier
- Clinical Neuroscience Research Center, Department of Neurosurgery, Tulane University School of Medicine, New Orleans, LA 70112, USA
- Tulane Brain Institute, Tulane University, New Orleans, LA 70112, USA
| | - Amanda Louise White
- Clinical Neuroscience Research Center, Department of Neurosurgery, Tulane University School of Medicine, New Orleans, LA 70112, USA
- Tulane Brain Institute, Tulane University, New Orleans, LA 70112, USA
| | - Gregory Jaye Bix
- Clinical Neuroscience Research Center, Department of Neurosurgery, Tulane University School of Medicine, New Orleans, LA 70112, USA
- School of Medicine, Tulane University, New Orleans, LA 70112, USA
- Department of Neurology, Tulane University School of Medicine, New Orleans, LA 70112, USA
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA
- School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70122, USA
- Correspondence: ; Tel.: +1-504-988-3564
| |
Collapse
|
74
|
Gil E, Wall E, Noursadeghi M, Brown JS. Streptococcus pneumoniae meningitis and the CNS barriers. Front Cell Infect Microbiol 2023; 12:1106596. [PMID: 36683708 PMCID: PMC9845635 DOI: 10.3389/fcimb.2022.1106596] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 12/08/2022] [Indexed: 01/05/2023] Open
Abstract
Streptococcus pneumoniae (SPN) is a globally significant cause of meningitis, the pathophysiology of which involves damage to the brain by both bacterial virulence factors and the host inflammatory response. In most cases of SPN meningitis bacteria translocate from the blood into the central nervous system (CNS). The principal site of SPN translocation into the CNS is not known, with possible portals of entry proposed to be the cerebral or meningeal blood vessels or the choroid plexus. All require SPN to bind to and translocate across the vascular endothelial barrier, and subsequently the basement membrane and perivascular structures, including an additional epithelial barrier in the case of the blood-CSF barrier. The presence of SPN in the CNS is highly inflammatory resulting in marked neutrophilic infiltration. The secretion of toxic inflammatory mediators by activated neutrophils within the CNS damages pathogen and host alike, including the non-replicative neurons which drives morbidity and mortality. As with the translocation of SPN, the recruitment of neutrophils into the CNS in SPN meningitis necessitates the translocation of neutrophils from the circulation across the vascular barrier, a process that is tightly regulated under basal conditions - a feature of the 'immune specialization' of the CNS. The brain barriers are therefore central to SPN meningitis, both through a failure to exclude bacteria and maintain CNS sterility, and subsequently through the active recruitment and/or failure to exclude circulating leukocytes. The interactions of SPN with these barriers, barrier inflammatory responses, along with their therapeutic implications, are explored in this review.
Collapse
Affiliation(s)
- Eliza Gil
- Division of Infection and Immunity, University College London, London, United Kingdom,*Correspondence: Eliza Gil,
| | - Emma Wall
- Francis Crick Institute, London, United Kingdom,UCLH Biomedical Research Centre, London, United Kingdom
| | - Mahdad Noursadeghi
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Jeremy S. Brown
- Division of Medicine, University College London, London, United Kingdom
| |
Collapse
|
75
|
Saunders NR, Dziegielewska KM, Fame RM, Lehtinen MK, Liddelow SA. The choroid plexus: a missing link in our understanding of brain development and function. Physiol Rev 2023; 103:919-956. [PMID: 36173801 PMCID: PMC9678431 DOI: 10.1152/physrev.00060.2021] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 09/01/2022] [Accepted: 09/17/2022] [Indexed: 11/22/2022] Open
Abstract
Studies of the choroid plexus lag behind those of the more widely known blood-brain barrier, despite a much longer history. This review has two overall aims. The first is to outline long-standing areas of research where there are unanswered questions, such as control of cerebrospinal fluid (CSF) secretion and blood flow. The second aim is to review research over the past 10 years where the focus has shifted to the idea that there are choroid plexuses located in each of the brain's ventricles that make specific contributions to brain development and function through molecules they generate for delivery via the CSF. These factors appear to be particularly important for aspects of normal brain growth. Most research carried out during the twentieth century dealt with the choroid plexus, a brain barrier interface making critical contributions to the composition and stability of the brain's internal environment throughout life. More recent research in the twenty-first century has shown the importance of choroid plexus-generated CSF in neurogenesis, influence of sex and other hormones on choroid plexus function, and choroid plexus involvement in circadian rhythms and sleep. The advancement of technologies to facilitate delivery of brain-specific therapies via the CSF to treat neurological disorders is a rapidly growing area of research. Conversely, understanding the basic mechanisms and implications of how maternal drug exposure during pregnancy impacts the developing brain represents another key area of research.
Collapse
Affiliation(s)
- Norman R Saunders
- Department of Neuroscience, The Alfred Centre, Monash University, Melbourne, Victoria, Australia
| | | | - Ryann M Fame
- Department of Pathology, Boston Children's Hospital, Boston, Massachusetts
| | - Maria K Lehtinen
- Department of Pathology, Boston Children's Hospital, Boston, Massachusetts
| | - Shane A Liddelow
- Neuroscience Institute, NYU Grossman School of Medicine, New York, New York
- Department of Neuroscience and Physiology, NYU Grossman School of Medicine, New York, New York
- Department of Ophthalmology, NYU Grossman School of Medicine, New York, New York
- Parekh Center for Interdisciplinary Neurology, NYU Grossman School of Medicine, New York, New York
| |
Collapse
|
76
|
Mannion AJ, Odell AF, Baker SM, Matthews LC, Jones PF, Cook GP. Pro- and anti-tumour activities of CD146/MCAM in breast cancer result from its heterogeneous expression and association with epithelial to mesenchymal transition. Front Cell Dev Biol 2023; 11:1129015. [PMID: 37138793 PMCID: PMC10150653 DOI: 10.3389/fcell.2023.1129015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/13/2023] [Indexed: 05/05/2023] Open
Abstract
CD146, also known as melanoma cell adhesion molecule (MCAM), is expressed in numerous cancers and has been implicated in the regulation of metastasis. We show that CD146 negatively regulates transendothelial migration (TEM) in breast cancer. This inhibitory activity is reflected by a reduction in MCAM gene expression and increased promoter methylation in tumour tissue compared to normal breast tissue. However, increased CD146/MCAM expression is associated with poor prognosis in breast cancer, a characteristic that is difficult to reconcile with inhibition of TEM by CD146 and its epigenetic silencing. Single cell transcriptome data revealed MCAM expression in multiple cell types, including the malignant cells, tumour vasculature and normal epithelium. MCAM expressing malignant cells were in the minority and expression was associated with epithelial to mesenchymal transition (EMT). Furthermore, gene expression signatures defining invasiveness and a stem cell-like phenotype were most strongly associated with mesenchymal-like tumour cells with low levels of MCAM mRNA, likely to represent a hybrid epithelial/mesenchymal (E/M) state. Our results show that high levels of MCAM gene expression are associated with poor prognosis in breast cancer because they reflect tumour vascularisation and high levels of EMT. We suggest that high levels of mesenchymal-like malignant cells reflect large populations of hybrid E/M cells and that low CD146 expression on these hybrid cells is permissive for TEM, aiding metastasis.
Collapse
Affiliation(s)
- Aarren J. Mannion
- Leeds Institute of Medical Research, University of Leeds School of Medicine, St. James’s University Hospital, Leeds, United Kingdom
| | - Adam F. Odell
- Leeds Institute of Medical Research, University of Leeds School of Medicine, St. James’s University Hospital, Leeds, United Kingdom
| | - Syed Murtuza Baker
- Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| | - Laura C. Matthews
- Leeds Institute of Medical Research, University of Leeds School of Medicine, St. James’s University Hospital, Leeds, United Kingdom
| | - Pamela F. Jones
- Leeds Institute of Medical Research, University of Leeds School of Medicine, St. James’s University Hospital, Leeds, United Kingdom
| | - Graham P. Cook
- Leeds Institute of Medical Research, University of Leeds School of Medicine, St. James’s University Hospital, Leeds, United Kingdom
- *Correspondence: Graham P. Cook,
| |
Collapse
|
77
|
Gulbins A, Görtz GE, Gulbins E, Eckstein A. Sphingolipids in thyroid eye disease. Front Endocrinol (Lausanne) 2023; 14:1170884. [PMID: 37082124 PMCID: PMC10112667 DOI: 10.3389/fendo.2023.1170884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 03/22/2023] [Indexed: 04/22/2023] Open
Abstract
Graves' disease (GD) is caused by an autoimmune formation of autoantibodies and autoreactive T-cells against the thyroid stimulating hormone receptor (TSHR). The autoimmune reaction does not only lead to overstimulation of the thyroid gland, but very often also to an immune reaction against antigens within the orbital tissue leading to thyroid eye disease, which is characterized by activation of orbital fibroblasts, orbital generation of adipocytes and myofibroblasts and increased hyaluronan production in the orbit. Thyroid eye disease is the most common extra-thyroidal manifestation of the autoimmune Graves' disease. Several studies indicate an important role of sphingolipids, in particular the acid sphingomyelinase/ceramide system and sphingosine 1-phosphate in thyroid eye disease. Here, we discuss how the biophysical properties of sphingolipids contribute to cell signaling, in particular in the context of thyroid eye disease. We further review the role of the acid sphingomyelinase/ceramide system in autoimmune diseases and its function in T lymphocytes to provide some novel hypotheses for the pathogenesis of thyroid eye disease and potentially allowing the development of novel treatments.
Collapse
Affiliation(s)
- Anne Gulbins
- Department of Ophthalmology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Gina-Eva Görtz
- Department of Ophthalmology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Erich Gulbins
- Institute of Molecular Biology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- *Correspondence: Anja Eckstein, ; Erich Gulbins,
| | - Anja Eckstein
- Department of Ophthalmology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- *Correspondence: Anja Eckstein, ; Erich Gulbins,
| |
Collapse
|
78
|
Del Baldo G, Del Bufalo F, Pinacchio C, Carai A, Quintarelli C, De Angelis B, Merli P, Cacchione A, Locatelli F, Mastronuzzi A. The peculiar challenge of bringing CAR-T cells into the brain: Perspectives in the clinical application to the treatment of pediatric central nervous system tumors. Front Immunol 2023; 14:1142597. [PMID: 37025994 PMCID: PMC10072260 DOI: 10.3389/fimmu.2023.1142597] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/09/2023] [Indexed: 04/08/2023] Open
Abstract
Childhood malignant brain tumors remain a significant cause of death in the pediatric population, despite the use of aggressive multimodal treatments. New therapeutic approaches are urgently needed for these patients in order to improve prognosis, while reducing side effects and long-term sequelae of the treatment. Immunotherapy is an attractive option and, in particular, the use of gene-modified T cells expressing a chimeric antigen receptor (CAR-T cells) represents a promising approach. Major hurdles in the clinical application of this approach in neuro-oncology, however, exist. The peculiar location of brain tumors leads to both a difficulty of access to the tumor mass, shielded by the blood-brain barrier (BBB), and to an increased risk of potentially life-threatening neurotoxicity, due to the primary location of the disease in the CNS and the low intracranial volume reserve. There are no unequivocal data on the best way of CAR-T cell administration. Multiple trials exploring the use of CD19 CAR-T cells for hematologic malignancies proved that genetically engineered T cells can cross the BBB, suggesting that systemically administered CAR-T cell can be used in the neuro-oncology setting. Intrathecal and intra-tumoral delivery can be easily managed with local implantable devices, suitable also for a more precise neuro-monitoring. The identification of specific approaches of neuro-monitoring is of utmost importance in these patients. In the present review, we highlight the most relevant potential challenges associated with the application of CAR-T cell therapy in pediatric brain cancers, focusing on the evaluation of the best route of delivery, the peculiar risk of neurotoxicity and the related neuro-monitoring.
Collapse
Affiliation(s)
- Giada Del Baldo
- Department of Pediatric Haematology and Oncology, and Cell and Gene Therapy Bambino Gesù Children’s Hospital, Scientific Institute for Reasearch, Hospitalization and Healthcare (IRCCS), Rome, Italy
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Francesca Del Bufalo
- Department of Pediatric Haematology and Oncology, and Cell and Gene Therapy Bambino Gesù Children’s Hospital, Scientific Institute for Reasearch, Hospitalization and Healthcare (IRCCS), Rome, Italy
| | - Claudia Pinacchio
- Department of Pediatric Haematology and Oncology, and Cell and Gene Therapy Bambino Gesù Children’s Hospital, Scientific Institute for Reasearch, Hospitalization and Healthcare (IRCCS), Rome, Italy
| | - Andrea Carai
- Department of Neurosciences, Neurosurgery Unit, Bambino Gesù Children’s Hospital, Scientific Institute for Reasearch, Hospitalization and Healthcare (IRCCS), Rome, Italy
| | - Concetta Quintarelli
- Department of Pediatric Haematology and Oncology, and Cell and Gene Therapy Bambino Gesù Children’s Hospital, Scientific Institute for Reasearch, Hospitalization and Healthcare (IRCCS), Rome, Italy
| | - Biagio De Angelis
- Department of Pediatric Haematology and Oncology, and Cell and Gene Therapy Bambino Gesù Children’s Hospital, Scientific Institute for Reasearch, Hospitalization and Healthcare (IRCCS), Rome, Italy
| | - Pietro Merli
- Department of Pediatric Haematology and Oncology, and Cell and Gene Therapy Bambino Gesù Children’s Hospital, Scientific Institute for Reasearch, Hospitalization and Healthcare (IRCCS), Rome, Italy
| | - Antonella Cacchione
- Department of Pediatric Haematology and Oncology, and Cell and Gene Therapy Bambino Gesù Children’s Hospital, Scientific Institute for Reasearch, Hospitalization and Healthcare (IRCCS), Rome, Italy
| | - Franco Locatelli
- Department of Pediatric Haematology and Oncology, and Cell and Gene Therapy Bambino Gesù Children’s Hospital, Scientific Institute for Reasearch, Hospitalization and Healthcare (IRCCS), Rome, Italy
- Department of Life Sciences and Public Health, Catholic University of the Sacred Heart, Rome, Italy
| | - Angela Mastronuzzi
- Department of Pediatric Haematology and Oncology, and Cell and Gene Therapy Bambino Gesù Children’s Hospital, Scientific Institute for Reasearch, Hospitalization and Healthcare (IRCCS), Rome, Italy
- *Correspondence: Angela Mastronuzzi,
| |
Collapse
|
79
|
Fan X, Wang K, Lu Q, Lu Y, Sun J. Cell-Based Drug Delivery Systems Participate in the Cancer Immunity Cycle for Improved Cancer Immunotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205166. [PMID: 36437050 DOI: 10.1002/smll.202205166] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Immunotherapy aims to activate the cancer patient's immune system for cancer therapy. The whole process of the immune system against cancer referred to as the "cancer immunity cycle", gives insight into how drugs can be designed to affect every step of the anticancer immune response. Cancer immunotherapy such as immune checkpoint inhibitor (ICI) therapy, cancer vaccines, as well as small molecule modulators has been applied to fight various cancers. However, the effect of immunotherapy in clinical applications is still unsatisfactory due to the limited response rate and immune-related adverse events. Mounting evidence suggests that cell-based drug delivery systems (DDSs) with low immunogenicity, superior targeting, and prolonged circulation have great potential to improve the efficacy of cancer immunotherapy. Therefore, with the rapid development of cell-based DDSs, understanding their important roles in various stages of the cancer immunity cycle guides the better design of cell-based cancer immunotherapy. Herein, an overview of how cell-based DDSs participate in cancer immunotherapy at various stages is presented and an outlook on possible challenges of clinical translation and application in future development.
Collapse
Affiliation(s)
- Xiaoyuan Fan
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, China
| | - Kaiyuan Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, China
| | - Qi Lu
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, China
| | - Yutong Lu
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, China
| | - Jin Sun
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, China
| |
Collapse
|
80
|
Akeret K, Buzzi RM, Thomson BR, Schwendinger N, Klohs J, Schulthess-Lutz N, Baselgia L, Hansen K, Regli L, Vallelian F, Hugelshofer M, Schaer DJ. MyD88-TLR4-dependent choroid plexus activation precedes perilesional inflammation and secondary brain edema in a mouse model of intracerebral hemorrhage. J Neuroinflammation 2022; 19:290. [PMID: 36482445 PMCID: PMC9730653 DOI: 10.1186/s12974-022-02641-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/10/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The functional neurological outcome of patients with intracerebral hemorrhage (ICH) strongly relates to the degree of secondary brain injury (ICH-SBI) evolving within days after the initial bleeding. Different mechanisms including the incitement of inflammatory pathways, dysfunction of the blood-brain barrier (BBB), activation of resident microglia, and an influx of blood-borne immune cells, have been hypothesized to contribute to ICH-SBI. Yet, the spatiotemporal interplay of specific inflammatory processes within different brain compartments has not been sufficiently characterized, limiting potential therapeutic interventions to prevent and treat ICH-SBI. METHODS We used a whole-blood injection model in mice, to systematically characterized the spatial and temporal dynamics of inflammatory processes after ICH using 7-Tesla magnetic resonance imaging (MRI), spatial RNA sequencing (spRNAseq), functional BBB assessment, and immunofluorescence average-intensity-mapping. RESULTS We identified a pronounced early response of the choroid plexus (CP) peaking at 12-24 h that was characterized by inflammatory cytokine expression, epithelial and endothelial expression of leukocyte adhesion molecules, and the accumulation of leukocytes. In contrast, we observed a delayed secondary reaction pattern at the injection site (striatum) peaking at 96 h, defined by gene expression corresponding to perilesional leukocyte infiltration and correlating to the delayed signal alteration seen on MRI. Pathway analysis revealed a dependence of the early inflammatory reaction in the CP on toll-like receptor 4 (TLR4) signaling via myeloid differentiation factor 88 (MyD88). TLR4 and MyD88 knockout mice corroborated this observation, lacking the early upregulation of adhesion molecules and leukocyte infiltration within the CP 24 h after whole-blood injection. CONCLUSIONS We report a biphasic brain reaction pattern after ICH with a MyD88-TLR4-dependent early inflammatory response of the CP, preceding inflammation, edema and leukocyte infiltration at the lesion site. Pharmacological targeting of the early CP activation might harbor the potential to modulate the development of ICH-SBI.
Collapse
Affiliation(s)
- Kevin Akeret
- grid.7400.30000 0004 1937 0650Department of Neurosurgery, Clinical Neuroscience Center, Universitätsspital and University of Zurich, Frauenklinikstrasse 10, 8091 Zurich, Switzerland
| | - Raphael M. Buzzi
- grid.7400.30000 0004 1937 0650Division of Internal Medicine, Universitätsspital and University of Zurich, Zurich, Switzerland
| | - Bart R. Thomson
- grid.7400.30000 0004 1937 0650Department of Neurosurgery, Clinical Neuroscience Center, Universitätsspital and University of Zurich, Frauenklinikstrasse 10, 8091 Zurich, Switzerland ,grid.7400.30000 0004 1937 0650Division of Internal Medicine, Universitätsspital and University of Zurich, Zurich, Switzerland
| | - Nina Schwendinger
- grid.7400.30000 0004 1937 0650Department of Neurosurgery, Clinical Neuroscience Center, Universitätsspital and University of Zurich, Frauenklinikstrasse 10, 8091 Zurich, Switzerland ,grid.7400.30000 0004 1937 0650Division of Internal Medicine, Universitätsspital and University of Zurich, Zurich, Switzerland
| | - Jan Klohs
- grid.7400.30000 0004 1937 0650Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Nadja Schulthess-Lutz
- grid.7400.30000 0004 1937 0650Division of Internal Medicine, Universitätsspital and University of Zurich, Zurich, Switzerland
| | - Livio Baselgia
- grid.7400.30000 0004 1937 0650Division of Internal Medicine, Universitätsspital and University of Zurich, Zurich, Switzerland
| | - Kerstin Hansen
- grid.7400.30000 0004 1937 0650Division of Internal Medicine, Universitätsspital and University of Zurich, Zurich, Switzerland
| | - Luca Regli
- grid.7400.30000 0004 1937 0650Department of Neurosurgery, Clinical Neuroscience Center, Universitätsspital and University of Zurich, Frauenklinikstrasse 10, 8091 Zurich, Switzerland
| | - Florence Vallelian
- grid.7400.30000 0004 1937 0650Division of Internal Medicine, Universitätsspital and University of Zurich, Zurich, Switzerland
| | - Michael Hugelshofer
- grid.7400.30000 0004 1937 0650Department of Neurosurgery, Clinical Neuroscience Center, Universitätsspital and University of Zurich, Frauenklinikstrasse 10, 8091 Zurich, Switzerland
| | - Dominik J. Schaer
- grid.7400.30000 0004 1937 0650Division of Internal Medicine, Universitätsspital and University of Zurich, Zurich, Switzerland
| |
Collapse
|
81
|
Fournier AP, Tastet O, Charabati M, Hoornaert C, Bourbonnière L, Klement W, Larouche S, Tea F, Wang YC, Larochelle C, Arbour N, Ragoussis J, Zandee S, Prat A. Single-Cell Transcriptomics Identifies Brain Endothelium Inflammatory Networks in Experimental Autoimmune Encephalomyelitis. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2022; 10:10/1/e200046. [PMID: 36446612 PMCID: PMC9709715 DOI: 10.1212/nxi.0000000000200046] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/31/2022] [Indexed: 12/05/2022]
Abstract
BACKGROUND AND OBJECTIVES Multiple sclerosis (MS) is a neuroinflammatory and neurodegenerative disease characterized by infiltration of immune cells in multifocal areas of the CNS. The specific molecular processes allowing autoreactive immune cells to enter the CNS compartment through the blood-brain barrier remain elusive. METHODS Using endothelial cell (EC) enrichment and single-cell RNA sequencing, we characterized the cells implicated in the neuroinflammatory processes in experimental autoimmune encephalomyelitis, an animal model of MS. Validations on human MS brain sections of the most differentially expressed genes in venous ECs were performed using immunohistochemistry and confocal microscopy. RESULTS We found an upregulation of genes associated with antigen presentation and interferon in most populations of CNS-resident cells, including ECs. Interestingly, instead of transcriptionally distinct profiles, a continuous gradient of gene expression separated the arteriovenous zonation of the brain vasculature. However, differential gene expression analysis presented more transcriptomic alterations on the venous side of the axis, suggesting a prominent role of venous ECs in neuroinflammation. Furthermore, analysis of ligand-receptor interactions identified important potential molecular communications between venous ECs and infiltrated immune populations. To confirm the relevance of our observation in the context of human disease, we validated the protein expression of the most upregulated genes (Ackr1 and Lcn2) in MS lesions. DISCUSSION In this study, we provide a landscape of the cellular heterogeneity associated with neuroinflammation. We also present important molecular insights for further exploration of specific cell processes that promote infiltration of immune cells inside the brain of experimental autoimmune encephalomyelitis mice.
Collapse
Affiliation(s)
- Antoine Philippe Fournier
- From the Neuroimmunology Research Laboratory (A.P.F., O.T., M.C., C.H., L.B., W.K., S.L., F.T., C.L., N.A., S.Z., A.P.), Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM); Department of Neurosciences (A.P.F., C.L., N.A., S.Z., A.P.), Faculty of Medicine, Université de Montréal; Multiple Sclerosis Clinic (C.L., A.P.), Division of Neurology, Centre Hospitalier de l'Université de Montréal (CHUM); Department of Human Genetics (J.R.), McGill University, Montréal; and McGill Genome Centre (Y.C.W., J.R.), Montréal, Québec, Canada
| | - Olivier Tastet
- From the Neuroimmunology Research Laboratory (A.P.F., O.T., M.C., C.H., L.B., W.K., S.L., F.T., C.L., N.A., S.Z., A.P.), Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM); Department of Neurosciences (A.P.F., C.L., N.A., S.Z., A.P.), Faculty of Medicine, Université de Montréal; Multiple Sclerosis Clinic (C.L., A.P.), Division of Neurology, Centre Hospitalier de l'Université de Montréal (CHUM); Department of Human Genetics (J.R.), McGill University, Montréal; and McGill Genome Centre (Y.C.W., J.R.), Montréal, Québec, Canada
| | - Marc Charabati
- From the Neuroimmunology Research Laboratory (A.P.F., O.T., M.C., C.H., L.B., W.K., S.L., F.T., C.L., N.A., S.Z., A.P.), Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM); Department of Neurosciences (A.P.F., C.L., N.A., S.Z., A.P.), Faculty of Medicine, Université de Montréal; Multiple Sclerosis Clinic (C.L., A.P.), Division of Neurology, Centre Hospitalier de l'Université de Montréal (CHUM); Department of Human Genetics (J.R.), McGill University, Montréal; and McGill Genome Centre (Y.C.W., J.R.), Montréal, Québec, Canada
| | - Chloé Hoornaert
- From the Neuroimmunology Research Laboratory (A.P.F., O.T., M.C., C.H., L.B., W.K., S.L., F.T., C.L., N.A., S.Z., A.P.), Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM); Department of Neurosciences (A.P.F., C.L., N.A., S.Z., A.P.), Faculty of Medicine, Université de Montréal; Multiple Sclerosis Clinic (C.L., A.P.), Division of Neurology, Centre Hospitalier de l'Université de Montréal (CHUM); Department of Human Genetics (J.R.), McGill University, Montréal; and McGill Genome Centre (Y.C.W., J.R.), Montréal, Québec, Canada
| | - Lyne Bourbonnière
- From the Neuroimmunology Research Laboratory (A.P.F., O.T., M.C., C.H., L.B., W.K., S.L., F.T., C.L., N.A., S.Z., A.P.), Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM); Department of Neurosciences (A.P.F., C.L., N.A., S.Z., A.P.), Faculty of Medicine, Université de Montréal; Multiple Sclerosis Clinic (C.L., A.P.), Division of Neurology, Centre Hospitalier de l'Université de Montréal (CHUM); Department of Human Genetics (J.R.), McGill University, Montréal; and McGill Genome Centre (Y.C.W., J.R.), Montréal, Québec, Canada
| | - Wendy Klement
- From the Neuroimmunology Research Laboratory (A.P.F., O.T., M.C., C.H., L.B., W.K., S.L., F.T., C.L., N.A., S.Z., A.P.), Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM); Department of Neurosciences (A.P.F., C.L., N.A., S.Z., A.P.), Faculty of Medicine, Université de Montréal; Multiple Sclerosis Clinic (C.L., A.P.), Division of Neurology, Centre Hospitalier de l'Université de Montréal (CHUM); Department of Human Genetics (J.R.), McGill University, Montréal; and McGill Genome Centre (Y.C.W., J.R.), Montréal, Québec, Canada
| | - Sandra Larouche
- From the Neuroimmunology Research Laboratory (A.P.F., O.T., M.C., C.H., L.B., W.K., S.L., F.T., C.L., N.A., S.Z., A.P.), Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM); Department of Neurosciences (A.P.F., C.L., N.A., S.Z., A.P.), Faculty of Medicine, Université de Montréal; Multiple Sclerosis Clinic (C.L., A.P.), Division of Neurology, Centre Hospitalier de l'Université de Montréal (CHUM); Department of Human Genetics (J.R.), McGill University, Montréal; and McGill Genome Centre (Y.C.W., J.R.), Montréal, Québec, Canada
| | - Fiona Tea
- From the Neuroimmunology Research Laboratory (A.P.F., O.T., M.C., C.H., L.B., W.K., S.L., F.T., C.L., N.A., S.Z., A.P.), Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM); Department of Neurosciences (A.P.F., C.L., N.A., S.Z., A.P.), Faculty of Medicine, Université de Montréal; Multiple Sclerosis Clinic (C.L., A.P.), Division of Neurology, Centre Hospitalier de l'Université de Montréal (CHUM); Department of Human Genetics (J.R.), McGill University, Montréal; and McGill Genome Centre (Y.C.W., J.R.), Montréal, Québec, Canada
| | - Yu Chang Wang
- From the Neuroimmunology Research Laboratory (A.P.F., O.T., M.C., C.H., L.B., W.K., S.L., F.T., C.L., N.A., S.Z., A.P.), Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM); Department of Neurosciences (A.P.F., C.L., N.A., S.Z., A.P.), Faculty of Medicine, Université de Montréal; Multiple Sclerosis Clinic (C.L., A.P.), Division of Neurology, Centre Hospitalier de l'Université de Montréal (CHUM); Department of Human Genetics (J.R.), McGill University, Montréal; and McGill Genome Centre (Y.C.W., J.R.), Montréal, Québec, Canada
| | - Catherine Larochelle
- From the Neuroimmunology Research Laboratory (A.P.F., O.T., M.C., C.H., L.B., W.K., S.L., F.T., C.L., N.A., S.Z., A.P.), Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM); Department of Neurosciences (A.P.F., C.L., N.A., S.Z., A.P.), Faculty of Medicine, Université de Montréal; Multiple Sclerosis Clinic (C.L., A.P.), Division of Neurology, Centre Hospitalier de l'Université de Montréal (CHUM); Department of Human Genetics (J.R.), McGill University, Montréal; and McGill Genome Centre (Y.C.W., J.R.), Montréal, Québec, Canada
| | - Nathalie Arbour
- From the Neuroimmunology Research Laboratory (A.P.F., O.T., M.C., C.H., L.B., W.K., S.L., F.T., C.L., N.A., S.Z., A.P.), Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM); Department of Neurosciences (A.P.F., C.L., N.A., S.Z., A.P.), Faculty of Medicine, Université de Montréal; Multiple Sclerosis Clinic (C.L., A.P.), Division of Neurology, Centre Hospitalier de l'Université de Montréal (CHUM); Department of Human Genetics (J.R.), McGill University, Montréal; and McGill Genome Centre (Y.C.W., J.R.), Montréal, Québec, Canada
| | - Jiannis Ragoussis
- From the Neuroimmunology Research Laboratory (A.P.F., O.T., M.C., C.H., L.B., W.K., S.L., F.T., C.L., N.A., S.Z., A.P.), Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM); Department of Neurosciences (A.P.F., C.L., N.A., S.Z., A.P.), Faculty of Medicine, Université de Montréal; Multiple Sclerosis Clinic (C.L., A.P.), Division of Neurology, Centre Hospitalier de l'Université de Montréal (CHUM); Department of Human Genetics (J.R.), McGill University, Montréal; and McGill Genome Centre (Y.C.W., J.R.), Montréal, Québec, Canada
| | - Stephanie Zandee
- From the Neuroimmunology Research Laboratory (A.P.F., O.T., M.C., C.H., L.B., W.K., S.L., F.T., C.L., N.A., S.Z., A.P.), Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM); Department of Neurosciences (A.P.F., C.L., N.A., S.Z., A.P.), Faculty of Medicine, Université de Montréal; Multiple Sclerosis Clinic (C.L., A.P.), Division of Neurology, Centre Hospitalier de l'Université de Montréal (CHUM); Department of Human Genetics (J.R.), McGill University, Montréal; and McGill Genome Centre (Y.C.W., J.R.), Montréal, Québec, Canada
| | - Alexandre Prat
- From the Neuroimmunology Research Laboratory (A.P.F., O.T., M.C., C.H., L.B., W.K., S.L., F.T., C.L., N.A., S.Z., A.P.), Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM); Department of Neurosciences (A.P.F., C.L., N.A., S.Z., A.P.), Faculty of Medicine, Université de Montréal; Multiple Sclerosis Clinic (C.L., A.P.), Division of Neurology, Centre Hospitalier de l'Université de Montréal (CHUM); Department of Human Genetics (J.R.), McGill University, Montréal; and McGill Genome Centre (Y.C.W., J.R.), Montréal, Québec, Canada.
| |
Collapse
|
82
|
Linking Cerebrovascular Dysfunction to Age-Related Hearing Loss and Alzheimer’s Disease—Are Systemic Approaches for Diagnosis and Therapy Required? Biomolecules 2022; 12:biom12111717. [DOI: 10.3390/biom12111717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/09/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
Alzheimer’s disease (AD), the most common cause of dementia in the elderly, is a neurodegenerative disorder associated with neurovascular dysfunction, cognitive decline, and the accumulation of amyloid β peptide (Aβ) in the brain and tau-related lesions in neurons termed neurofibrillary tangles (NFTs). Aβ deposits and NFT formation are the central pathological hallmarks in AD brains, and the majority of AD cases have been shown to exhibit a complex combination of systemic comorbidities. While AD is the foremost common cause of dementia in the elderly, age-related hearing loss (ARHL) is the most predominant sensory deficit in the elderly. During aging, chronic inflammation and resulting endothelial dysfunction have been described and might be key contributors to AD; we discuss an intriguing possible link between inner ear strial microvascular pathology and blood–brain barrier pathology and present ARHL as a potentially modifiable and treatable risk factor for AD development. We present compelling evidence that ARHL might well be seen as an important risk factor in AD development: progressive hearing impairment, leading to social isolation, and its comorbidities, such as frailty, falls, and late-onset depression, link ARHL with cognitive decline and increased risk of dementia, rendering it tempting to speculate that ARHL might be a potential common molecular and pathological trigger for AD. Additionally, one could speculate that amyloid-beta might damage the blood–labyrinth barrier as it does to the blood–brain barrier, leading to ARHL pathology. Finally, there are options for the treatment of ARHL by targeted neurotrophic factor supplementation to the cochlea to improve cognitive outcomes; they can also prevent AD development and AD-related comorbidity in the future.
Collapse
|
83
|
Lee H, Guo Y, Ross JL, Schoen S, Degertekin FL, Arvanitis C. Spatially targeted brain cancer immunotherapy with closed-loop controlled focused ultrasound and immune checkpoint blockade. SCIENCE ADVANCES 2022; 8:eadd2288. [PMID: 36399574 PMCID: PMC9674274 DOI: 10.1126/sciadv.add2288] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 10/21/2022] [Indexed: 05/28/2023]
Abstract
Despite the challenges in treating glioblastomas (GBMs) with immune adjuvants, increasing evidence suggests that targeting the immune cells within the tumor microenvironment (TME) can lead to improved responses. Here, we present a closed-loop controlled, microbubble-enhanced focused ultrasound (MB-FUS) system and test its abilities to safely and effectively treat GBMs using immune checkpoint blockade. The proposed system can fine-tune the exposure settings to promote MB acoustic emission-dependent expression of the proinflammatory marker ICAM-1 and delivery of anti-PD1 in a mouse model of GBM. In addition to enhanced interaction of proinflammatory macrophages within the PD1-expressing TME and significant improvement in survival (P < 0.05), the combined treatment induced long-lived memory T cell formation within the brain that supported tumor rejection in rechallenge experiments. Collectively, our findings demonstrate the ability of MB-FUS to augment the therapeutic impact of immune checkpoint blockade in GBMs and reinforce the notion of spatially tumor-targeted (loco-regional) brain cancer immunotherapy.
Collapse
Affiliation(s)
- Hohyun Lee
- G.W. School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Yutong Guo
- G.W. School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - James L. Ross
- Department of Microbiology and Immunology, Emory University, Atlanta, GA, USA
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Scott Schoen
- Harvard Medical School and Massachusetts General Hospital, Boston, MA, USA
| | - F. Levent Degertekin
- G.W. School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Costas Arvanitis
- G.W. School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
- Georgia Institute of Technology and Emory University, Department of Biomedical Engineering, Atlanta, GA, USA
| |
Collapse
|
84
|
Wu S, Yin Y, Du L. Blood-Brain Barrier Dysfunction in the Pathogenesis of Major Depressive Disorder. Cell Mol Neurobiol 2022; 42:2571-2591. [PMID: 34637015 PMCID: PMC11421634 DOI: 10.1007/s10571-021-01153-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/01/2021] [Indexed: 12/11/2022]
Abstract
Major depression represents a complex and prevalent psychological disease that is characterized by persistent depressed mood, impaired cognitive function and complicated pathophysiological and neuroendocrine alterations. Despite the multifactorial etiology of depression, one of the most recent factors to be identified as playing a critical role in the development of depression is blood-brain barrier (BBB) disruption. The occurrence of BBB integrity disruption contributes to the disturbance of brain homeostasis and leads to complications of neurological diseases, such as stroke, chronic neurodegenerative disorders, neuroinflammatory disorders. Recently, BBB associated tight junction disruption has been shown to implicate in the pathophysiology of depression and contribute to increased susceptibility to depression. However, the underlying mechanisms and importance of BBB damage in depression remains largely unknown. This review highlights how BBB disruption regulates the depression process and the possible molecular mechanisms involved in development of depression-induced BBB dysfunction. Moreover, insight on promising therapeutic targets for treatment of depression with associated BBB dysfunctions are also discussed.
Collapse
Affiliation(s)
- Shusheng Wu
- Department of Immunology, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Yuye Yin
- Department of Immunology, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Longfei Du
- Department of Laboratory Medicine, Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu, China.
| |
Collapse
|
85
|
CNS Pericytes Modulate Local T Cell Infiltration in EAE. Int J Mol Sci 2022; 23:ijms232113081. [PMID: 36361868 PMCID: PMC9658756 DOI: 10.3390/ijms232113081] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/18/2022] [Accepted: 10/25/2022] [Indexed: 11/24/2022] Open
Abstract
Pericytes at the blood–brain barrier (BBB) are located between the tight endothelial cell layer of the blood vessels and astrocytic endfeet. They contribute to central nervous system (CNS) homeostasis by regulating BBB development and maintenance. Loss of pericytes results in increased numbers of infiltrating immune cells in the CNS in experimental autoimmune encephalomyelitis (EAE), the mouse model for multiple sclerosis (MS). However, little is known about their competence to modulate immune cell activation or function in CNS autoimmunity. To evaluate the capacity of pericytes to directly interact with T cells in an antigen-specific fashion and potentially (re)shape their function, we depleted major histocompatibility complex (MHC) class II from pericytes in a cell type-specific fashion and performed T cell-pericyte cocultures and EAE experiments. We found that pericytes present antigen in vitro to induce T cell activation and proliferation. In an adoptive transfer EAE experiment, pericyte-specific MHC II KO resulted in locally enhanced T cell infiltration in the CNS; even though, overall disease course of mice was not affected. Thus, pericytes may serve as non-professional antigen-presenting cells affecting states of T cell activation, thereby locally shaping lesion formation in CNS inflammation but without modulating disease severity.
Collapse
|
86
|
Li Y, Lv H, Liang D, Jiang T, Zhao W, Zhou F, Jiao C, Zhou Y, Yu H. Effects of Low-dose Splenic Irradiation on T lymphocyte Immune Function. HEALTH PHYSICS 2022; 123:00004032-990000000-00041. [PMID: 36223337 DOI: 10.1097/hp.0000000000001615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
ABSTRACT Relevant studies have confirmed that the stimulation of spleen function caused by low-dose splenic irradiation can have positive effects on tumors and other diseases. This study aimed to determine radiation-induced changes in spleen index, lymphocyte subsets, spleen cell apoptosis, and pathological features of the spleen in mice. The mouse model was established by irradiating the spleen at different doses. The mice were divided into the following groups: blank control, low-dose, low-dose fractionated irradiation, and challenge dose irradiation. The mice were sacrificed under humanitarian conditions, and spleen tissue and peripheral blood were collected. The spleen index was calculated, and flow cytometry was used to analyze spleen T lymphocyte subsets and spleen apoptosis. The pathological changes in the spleen were determined by hematoxylin and eosin (H&E) staining. The spleen index of mice in the low-dose fractionated irradiation group was significantly increased compared with that in the blank control group. The spleen indexes of the low-dose irradiation and low-dose fractionated irradiation groups were much higher than that of the challenge dose irradiation group. Compared with the blank control group, the percentage of CD3+ and CD4+ T lymphocytes in the peripheral blood and spleen tissues in the low-dose irradiation and low-dose fractionated irradiation groups was significantly increased, whereas that from the challenge dose irradiation group was obviously decreased. CD8+ T lymphocytes in the peripheral blood and spleen tissues in the low-dose irradiation, low-dose fractionated irradiation, and challenge dose irradiation groups were significantly lower than those in the blank control group. The apoptosis rate of the spleen in the challenge dose irradiation group was significantly higher than that in the blank control, low-dose irradiation, and low-dose fractionated irradiation groups. H&E staining analysis of the spleen showed pathological changes in the different irradiation groups compared with the blank control group. Low-dose irradiation and low-dose fractionated irradiation can change the T lymphocyte subsets in the peripheral blood and spleen of mice, which can promote immune excitation and improve immune effects.
Collapse
Affiliation(s)
- Yanzi Li
- Department of Radiation Oncology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Hongying Lv
- Department of Radiation Oncology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Donghai Liang
- Department of Radiation Oncology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Tao Jiang
- Department of Radiation Oncology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Wei Zhao
- Department of Radiation Oncology, Huangdao District Hospital of Traditional Chinese Medicine, Qingdao 266000, China
| | - Fei Zhou
- Department of Radiation Oncology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Chenchen Jiao
- Department of Radiation Oncology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Yuyuan Zhou
- Department of Radiation Oncology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Hongsheng Yu
- Department of Radiation Oncology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| |
Collapse
|
87
|
Wu F, Liu Z, Zhou L, Ye D, Zhu Y, Huang K, Weng Y, Xiong X, Zhan R, Shen J. Systemic immune responses after ischemic stroke: From the center to the periphery. Front Immunol 2022; 13:911661. [PMID: 36211352 PMCID: PMC9533176 DOI: 10.3389/fimmu.2022.911661] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 07/18/2022] [Indexed: 12/01/2022] Open
Abstract
Ischemic stroke is a leading cause of disability and death. It imposes a heavy economic burden on individuals, families and society. The mortality rate of ischemic stroke has decreased with the help of thrombolytic drug therapy and intravascular intervention. However, the nerve damage caused by ischemia-reperfusion is long-lasting and followed by multiple organ dysfunction. In this process, the immune responses manifested by systemic inflammatory responses play an important role. It begins with neuroinflammation following ischemic stroke. The large number of inflammatory cells released after activation of immune cells in the lesion area, along with the deactivated neuroendocrine and autonomic nervous systems, link the center with the periphery. With the activation of systemic immunity and the emergence of immunosuppression, peripheral organs become the second “battlefield” of the immune response after ischemic stroke and gradually become dysfunctional and lead to an adverse prognosis. The purpose of this review was to describe the systemic immune responses after ischemic stroke. We hope to provide new ideas for future research and clinical treatments to improve patient outcomes and quality of life.
Collapse
Affiliation(s)
- Fan Wu
- Department of Neurosurgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Zongchi Liu
- Department of Neurosurgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Lihui Zhou
- Department of Neurosurgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Di Ye
- Department of Neurosurgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yu Zhu
- Department of Neurosurgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Kaiyuan Huang
- Department of Neurosurgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yuxiang Weng
- Department of Neurosurgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaoxing Xiong
- Department of Clinical Laboratory, Renmin Hospital, Faculty of Medical Sciences, Wuhan University, Wuhan, China
| | - Renya Zhan
- Department of Neurosurgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- *Correspondence: Jian Shen, ; Renya Zhan,
| | - Jian Shen
- Department of Neurosurgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- *Correspondence: Jian Shen, ; Renya Zhan,
| |
Collapse
|
88
|
Harrer C, Otto F, Radlberger RF, Moser T, Pilz G, Wipfler P, Harrer A. The CXCL13/CXCR5 Immune Axis in Health and Disease—Implications for Intrathecal B Cell Activities in Neuroinflammation. Cells 2022; 11:cells11172649. [PMID: 36078057 PMCID: PMC9454489 DOI: 10.3390/cells11172649] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/21/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
The chemokine C-X-C- ligand 13 (CXCL13) is a major B cell chemoattractant to B cell follicles in secondary lymphoid organs (SLO) that proposedly recruits B cells to the cerebrospinal fluid (CSF) during neuroinflammation. CXCR5, the cognate receptor of CXCL13, is expressed on B cells and certain T cell subsets, in particular T follicular helper cells (Tfh cells), enabling them to follow CXCL13 gradients towards B cell follicles for spatial proximity, a prerequisite for productive T cell–B cell interaction. Tfh cells are essential contributors to B cell proliferation, differentiation, and high-affinity antibody synthesis and are required for germinal center formation and maintenance. Circulating Tfh cells (cTfh) have been observed in the peripheral blood and CSF. Furthermore, CXCL13/CXCR5-associated immune activities organize and shape adaptive B cell-related immune responses outside of SLO via the formation of ectopic lymphoid structures in inflamed tissues, including the central nervous system (CNS). This review summarizes the recent advances in our understanding of the CXCL13/CXCR5 immune axis and its role in vaccination, autoimmunity, and infection with a special focus on its relevance for intrathecal B cell activities in inflammatory CNS diseases.
Collapse
Affiliation(s)
- Christine Harrer
- Department of Neurology, Christian Doppler University Hospital, Paracelsus Medical University and Center for Cognitive Neuroscience, 5020 Salzburg, Austria
- Clinical Division of Social Psychiatry, Department of Psychiatry and Psychotherapy, Medical University of Vienna, 1090 Vienna, Austria
| | - Ferdinand Otto
- Department of Neurology, Christian Doppler University Hospital, Paracelsus Medical University and Center for Cognitive Neuroscience, 5020 Salzburg, Austria
| | - Richard Friedrich Radlberger
- Department of Neurology, Christian Doppler University Hospital, Paracelsus Medical University and Center for Cognitive Neuroscience, 5020 Salzburg, Austria
| | - Tobias Moser
- Department of Neurology, Christian Doppler University Hospital, Paracelsus Medical University and Center for Cognitive Neuroscience, 5020 Salzburg, Austria
| | - Georg Pilz
- Department of Neurology, Christian Doppler University Hospital, Paracelsus Medical University and Center for Cognitive Neuroscience, 5020 Salzburg, Austria
| | - Peter Wipfler
- Department of Neurology, Christian Doppler University Hospital, Paracelsus Medical University and Center for Cognitive Neuroscience, 5020 Salzburg, Austria
| | - Andrea Harrer
- Department of Neurology, Christian Doppler University Hospital, Paracelsus Medical University and Center for Cognitive Neuroscience, 5020 Salzburg, Austria
- Department of Dermatology and Allergology, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria
- Correspondence:
| |
Collapse
|
89
|
Mao XC, Yang CC, Yang YF, Yan LJ, Ding ZN, Liu H, Yan YC, Dong ZR, Wang DX, Li T. Peripheral cytokine levels as novel predictors of survival in cancer patients treated with immune checkpoint inhibitors: A systematic review and meta-analysis. Front Immunol 2022; 13:884592. [PMID: 36072577 PMCID: PMC9441870 DOI: 10.3389/fimmu.2022.884592] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 07/28/2022] [Indexed: 11/29/2022] Open
Abstract
Background Early identification of patients who will benefit from immune checkpoint inhibitors (ICIs) has recently become a hot issue in cancer immunotherapy. Peripheral cytokines are key regulators in the immune system that can induce the expression of immune checkpoint molecules; however, the association between peripheral cytokines and the efficiency of ICIs remains unclear. Methods A systematic review was conducted in several public databases from inception through 3 February 2022 to identify studies investigating the association between peripheral cytokines (i.e., IL-1β, IL-2, IL-2RA, IL-2R, IL-4, IL-5, IL-6, IL-8, IL-10, IL-12, IL-15, IL-17, TNF-α, IFN-γ, and TGF-β) and ICI treatment. Survival data, including overall survival (OS) and/or progression-free survival (PFS), were extracted, and meta-analyses were performed. Results Twenty-four studies were included in this analysis. The pooled results demonstrated that the pretreatment peripheral levels of IL-6 (univariate analysis: HR = 2.53, 95% CI = 2.21–2.89, p < 0.00001; multivariate analysis: HR = 2.21, 95% CI = 1.67–2.93, p < 0.00001) and IL-8 (univariate analysis: HR = 2.17, 95% CI = 1.98–2.38, p < 0.00001; multivariate analysis: HR = 1.88, 95% CI= 1.70–2.07, p < 0.00001) were significantly associated with worse OS of cancer patients receiving ICI treatment in both univariate and multivariate analysis. However, high heterogeneity was found for IL-6, which might be attributed to region, cancer type, treatment method, sample source, and detection method. Conclusion The peripheral level of IL-8 may be used as a prognostic marker to identify patients with inferior response to ICIs. More high-quality prospective studies are warranted to assess the predictive value of peripheral cytokines for ICI treatment.
Collapse
Affiliation(s)
- Xin-Cheng Mao
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Chun-Cheng Yang
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Ya-Fei Yang
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Lun-Jie Yan
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Zi-Niu Ding
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Hui Liu
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Yu-Chuan Yan
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Zhao-Ru Dong
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Dong-Xu Wang
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Tao Li
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, China
- Department of Hepatobiliary Surgery, The Second Hospital of Shandong University, Jinan, China
- *Correspondence: Tao Li,
| |
Collapse
|
90
|
Kim H, Kim J, Sa JK, Ryu BK, Park KJ, Kim J, Ha H, Park Y, Shin MH, Kim J, Lee H, Kim D, Lee K, Jang B, Lee KM, Kang SH. Calcipotriol, a synthetic Vitamin D analog, promotes antitumor immunity via CD4+T-dependent CTL/NK cell activation. Biomed Pharmacother 2022; 154:113553. [PMID: 35994815 DOI: 10.1016/j.biopha.2022.113553] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/09/2022] [Accepted: 08/14/2022] [Indexed: 11/02/2022] Open
Abstract
To overcome the hurdles of immunotherapy, we investigated whether calcipotriol, a synthetic vitamin D analog, could overcome the immune evasion of glioblastoma multiforme (GBM) by modulating immune responses and the immunosuppressive tumor microenvironment. Administration of calcipotriol considerably reduced tumor growth. Both in vivo and in vitro studies revealed that CD8+T and natural killer (NK) cell gene signatures were enriched and activated, producing high levels of IFN-γ and granzyme B. In contrast, regulatory T cells (Treg) were significantly reduced in the calcipotriol-treated group. The expression of CD127, the receptor for thymic stromal lymphopoietin (TSLP), is elevated in CD4+T cells and potentially supports T-cell priming. Depleting CD4+T cells, but not NK or CD8+T cells, completely abrogated the antitumor efficacy of calcipotriol. These data highlight that the calcipotriol/TSLP/CD4+T axis can activate CD8+T and NK cells with a concomitant reduction in the number of Tregs in GBM. Therefore, calcipotriol can be a novel therapeutic modality to overcome the immune resistance of GBM by converting immunologically "cold" tumors into "hot" tumors. DATA AVAILABILITY: Data are available upon reasonable request. The RNA-seq dataset comparing the transcriptomes of control and calcipotriol-treated GL261 tumors is available from the corresponding author upon request.
Collapse
Affiliation(s)
- Hyungsin Kim
- Department of Neurosurgery, Korea University College of Medicine, Seoul, the Republic of Korea
| | - Jeongsoo Kim
- Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul, the Republic of Korea
| | - Jason K Sa
- Biomedical Sciences, Korea University College of Medicine, Seoul, the Republic of Korea
| | - Byung-Kyu Ryu
- Department of Neurosurgery, Korea University College of Medicine, Seoul, the Republic of Korea
| | - Kyung-Jae Park
- Department of Neurosurgery, Korea University College of Medicine, Seoul, the Republic of Korea
| | - Jiyoung Kim
- Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul, the Republic of Korea
| | - Hyojeong Ha
- Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul, the Republic of Korea
| | - Yejin Park
- Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul, the Republic of Korea
| | - Min Hwa Shin
- Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul, the Republic of Korea
| | - Jungwon Kim
- Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul, the Republic of Korea
| | - Hyemin Lee
- Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul, the Republic of Korea
| | - Daham Kim
- Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul, the Republic of Korea
| | - Kyunghye Lee
- Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul, the Republic of Korea
| | - Byunghyun Jang
- Biomedical Sciences, Korea University College of Medicine, Seoul, the Republic of Korea
| | - Kyung-Mi Lee
- Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul, the Republic of Korea.
| | - Shin-Hyuk Kang
- Department of Neurosurgery, Korea University College of Medicine, Seoul, the Republic of Korea.
| |
Collapse
|
91
|
Ziaka M, Exadaktylos A. ARDS associated acute brain injury: from the lung to the brain. Eur J Med Res 2022; 27:150. [PMID: 35964069 PMCID: PMC9375183 DOI: 10.1186/s40001-022-00780-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 07/29/2022] [Indexed: 01/10/2023] Open
Abstract
A complex interrelation between lung and brain in patients with acute lung injury (ALI) has been established by experimental and clinical studies during the last decades. Although, acute brain injury represents one of the most common insufficiencies in patients with ALI and acute respiratory distress syndrome (ARDS), the underlying pathophysiology of the observed crosstalk remains poorly understood due to its complexity. Specifically, it involves numerous pathophysiological parameters such as hypoxemia, neurological adverse events of lung protective ventilation, hypotension, disruption of the BBB, and neuroinflammation in such a manner that the brain of ARDS patients-especially hippocampus-becomes very vulnerable to develop secondary lung-mediated acute brain injury. A protective ventilator strategy could reduce or even minimize further systemic release of inflammatory mediators and thus maintain brain homeostasis. On the other hand, mechanical ventilation with low tidal volumes may lead to self-inflicted lung injury, hypercapnia and subsequent cerebral vasodilatation, increased cerebral blood flow, and intracranial hypertension. Therefore, by describing the pathophysiology of ARDS-associated acute brain injury we aim to highlight and discuss the possible influence of mechanical ventilation on ALI-associated acute brain injury.
Collapse
Affiliation(s)
- Mairi Ziaka
- Department of Internal Medicine, Thun General Hospital, Thun, Switzerland
| | - Aristomenis Exadaktylos
- Department of Emergency Medicine, Inselspital, University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
92
|
Strużyńska L, Dąbrowska-Bouta B, Sulkowski G. Developmental neurotoxicity of silver nanoparticles: the current state of knowledge and future directions. Nanotoxicology 2022; 16:1-26. [PMID: 35921173 DOI: 10.1080/17435390.2022.2105172] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/17/2022] [Accepted: 07/20/2022] [Indexed: 10/16/2022]
Abstract
The increasing production and use of silver nanoparticles (AgNPs) as an antimicrobial agent in an array of medical and commercial products, including those designed for infants and children, poses a substantial risk of exposure during the developmental period. This review summarizes current knowledge on developmental neurotoxicity of AgNPs in both pre- and post-natal stages with a focus on the biological specificity of immature organisms that predisposes them to neurotoxic insults as well as the molecular mechanisms underlying AgNP-induced neurotoxicity. The current review revealed that AgNPs increase the permeability of the blood-brain barrier (BBB) and selectively damage neurons in the brain of immature rats exposed pre and postnatally. Among the AgNP-induced molecular mechanisms underlying toxic insult is cellular stress, which can consequently lead to cell death. Glutamatergic neurons and NMDAR-mediated neurotransmission also appear to be a target for AgNPs during the postnatal period of exposure. Collected data indicate also that our current knowledge of the impact of AgNPs on the developing nervous system remains insufficient and further studies are required during different stages of development with investigation of environmentally-relevant doses of exposure.
Collapse
Affiliation(s)
- Lidia Strużyńska
- Department of Neurochemistry, Laboratory of Pathoneurochemistry, Mossakowski Medical, Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Beata Dąbrowska-Bouta
- Department of Neurochemistry, Laboratory of Pathoneurochemistry, Mossakowski Medical, Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Grzegorz Sulkowski
- Department of Neurochemistry, Laboratory of Pathoneurochemistry, Mossakowski Medical, Research Institute, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
93
|
Bierhansl L, Hartung HP, Aktas O, Ruck T, Roden M, Meuth SG. Thinking outside the box: non-canonical targets in multiple sclerosis. Nat Rev Drug Discov 2022; 21:578-600. [PMID: 35668103 PMCID: PMC9169033 DOI: 10.1038/s41573-022-00477-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2022] [Indexed: 12/11/2022]
Abstract
Multiple sclerosis (MS) is an immune-mediated disease of the central nervous system that causes demyelination, axonal degeneration and astrogliosis, resulting in progressive neurological disability. Fuelled by an evolving understanding of MS immunopathogenesis, the range of available immunotherapies for clinical use has expanded over the past two decades. However, MS remains an incurable disease and even targeted immunotherapies often fail to control insidious disease progression, indicating the need for new and exceptional therapeutic options beyond the established immunological landscape. In this Review, we highlight such non-canonical targets in preclinical MS research with a focus on five highly promising areas: oligodendrocytes; the blood-brain barrier; metabolites and cellular metabolism; the coagulation system; and tolerance induction. Recent findings in these areas may guide the field towards novel targets for future therapeutic approaches in MS.
Collapse
Affiliation(s)
- Laura Bierhansl
- Department of Neurology, Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Hans-Peter Hartung
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Orhan Aktas
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Tobias Ruck
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Michael Roden
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Department of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
- German Center of Diabetes Research, Partner Düsseldorf, Neuherberg, Germany
| | - Sven G Meuth
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
94
|
van Olst L, Coenen L, Nieuwland JM, Rodriguez-Mogeda C, de Wit NM, Kamermans A, Middeldorp J, de Vries HE. Crossing borders in Alzheimer's disease: A T cell's perspective. Adv Drug Deliv Rev 2022; 188:114398. [PMID: 35780907 DOI: 10.1016/j.addr.2022.114398] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/31/2022] [Accepted: 06/03/2022] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) is the most common form of dementia affecting millions of people worldwide. While different immunotherapies are imminent, currently only disease-modifying medications are available and a cure is lacking. Over the past decade, immunological interfaces of the central nervous system (CNS) and their role in neurodegenerative diseases received increasing attention. Specifically, emerging evidence shows that subsets of circulating CD8+ T cells cross the brain barriers and associate with AD pathology. To gain more insight into how the adaptive immune system is involved in disease pathogenesis, we here provide a comprehensive overview of the contribution of T cells to AD pathology, incorporating changes at the brain barriers. In addition, we review studies that provide translation of these findings by targeting T cells to combat AD pathology and cognitive decline. Importantly, these data show that immunological changes in AD are not confined to the CNS and that AD-associated systemic immune changes appear to affect brain homeostasis.
Collapse
Affiliation(s)
- L van Olst
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - L Coenen
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands; Department of Neurobiology and Aging, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - J M Nieuwland
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands; Department of Neurobiology and Aging, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - C Rodriguez-Mogeda
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - N M de Wit
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - A Kamermans
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - J Middeldorp
- Department of Neurobiology and Aging, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - H E de Vries
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands.
| |
Collapse
|
95
|
Choi J, Kim BR, Akuzum B, Chang L, Lee JY, Kwon HK. TREGking From Gut to Brain: The Control of Regulatory T Cells Along the Gut-Brain Axis. Front Immunol 2022; 13:916066. [PMID: 35844606 PMCID: PMC9279871 DOI: 10.3389/fimmu.2022.916066] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/30/2022] [Indexed: 12/12/2022] Open
Abstract
The human gastrointestinal tract has an enormous and diverse microbial community, termed microbiota, that is necessary for the development of the immune system and tissue homeostasis. In contrast, microbial dysbiosis is associated with various inflammatory and autoimmune diseases as well as neurological disorders in humans by affecting not only the immune system in the gastrointestinal tract but also other distal organs. FOXP3+ regulatory T cells (Tregs) are a subset of CD4+ helper T cell lineages that function as a gatekeeper for immune activation and are essential for peripheral autoimmunity prevention. Tregs are crucial to the maintenance of immunological homeostasis and tolerance at barrier regions. Tregs reside in both lymphoid and non-lymphoid tissues, and tissue-resident Tregs have unique tissue-specific phenotype and distinct function. The gut microbiota has an impact on Tregs development, accumulation, and function in periphery. Tregs, in turn, modulate antigen-specific responses aimed towards gut microbes, which supports the host–microbiota symbiotic interaction in the gut. Recent studies have indicated that Tregs interact with a variety of resident cells in central nervous system (CNS) to limit the progression of neurological illnesses such as ischemic stroke, Alzheimer’s disease, and Parkinson’s disease. The gastrointestinal tract and CNS are functionally connected, and current findings provide insights that Tregs function along the gut-brain axis by interacting with immune, epithelial, and neuronal cells. The purpose of this study is to explain our current knowledge of the biological role of tissue-resident Tregs, as well as the interaction along the gut-brain axis.
Collapse
Affiliation(s)
- Juli Choi
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul, South Korea
- Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, South Korea
| | - Bo-Ram Kim
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul, South Korea
| | - Begum Akuzum
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul, South Korea
| | - Leechung Chang
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul, South Korea
- Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, South Korea
| | - June-Yong Lee
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul, South Korea
- Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, South Korea
- Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, South Korea
- *Correspondence: June-Yong Lee, ; Ho-Keun Kwon,
| | - Ho-Keun Kwon
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul, South Korea
- Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, South Korea
- Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, South Korea
- *Correspondence: June-Yong Lee, ; Ho-Keun Kwon,
| |
Collapse
|
96
|
Targeted BRD4 protein degradation by dBET1 ameliorates acute ischemic brain injury and improves functional outcomes associated with reduced neuroinflammation and oxidative stress and preservation of blood-brain barrier integrity. J Neuroinflammation 2022; 19:168. [PMID: 35761277 PMCID: PMC9237998 DOI: 10.1186/s12974-022-02533-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/16/2022] [Indexed: 11/22/2022] Open
Abstract
Bromodomain-containing protein 4 (BRD4), a member of the bromodomain and extra-terminal domain (BET) protein family, plays a crucial role in regulating inflammation and oxidative stress that are tightly related to stroke development and progression. Consequently, BRD4 blockade has attracted increasing interest for associated neurological diseases, including stroke. dBET1 is a novel and effective BRD4 degrader through the proteolysis-targeting chimera (PROTAC) strategy. We hypothesized that dBET1 protects against brain damage and neurological deficits in a transient focal ischemic stroke mouse model by reducing inflammation and oxidative stress and preserving the blood–brain barrier (BBB) integrity. Post-ischemic dBET1 treatment starting 4 h after stroke onset significantly ameliorated severe neurological deficits and reduced infarct volume 48 h after stroke. dBET1 markedly reduced inflammation and oxidative stress after stroke, indicated by multiple pro-inflammatory cytokines and chemokines including IL-1β, IL-6, TNF-α, CCL2, CXCL1 and CXCL10, and oxidative damage markers 4-hydroxynonenal (4-HNE) and gp91phox and antioxidative proteins SOD2 and GPx1. Meanwhile, stroke-induced BBB disruption, increased MMP-9 levels, neutrophil infiltration, and increased ICAM-1 were significantly attenuated by dBET1 treatment. Post-ischemic dBET1 administration also attenuated ischemia-induced reactive gliosis in microglia and astrocytes. Overall, these findings demonstrate that BRD4 degradation by dBET1 improves acute stroke outcomes, which is associated with reduced neuroinflammation and oxidative stress and preservation of BBB integrity. This study identifies a novel role of BET proteins in the mechanisms resulting in ischemic brain damage, which can be leveraged to develop novel therapies.
Collapse
|
97
|
Li T, Liesz A. Immunity in Stroke: The Next Frontier. Thromb Haemost 2022; 122:1454-1460. [PMID: 35688450 DOI: 10.1055/s-0042-1748890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Translational stroke research has long been focusing on neuroprotective strategies to prevent secondary tissue injury and promote recovery after acute ischemic brain injury. The inflammatory response to stroke has more recently emerged as a key pathophysiological pathway contributing to stroke outcome. It is now accepted that the inflammatory response is functionally involved in all phases of the ischemic stroke pathophysiology. The immune response is therefore considered a breakthrough target for ischemic stroke treatment. On one side, stroke induces a local neuroinflammatory response, in which the inflammatory activation of glial, endothelial and brain-invading cells contributes to lesion progression after stroke. On the other side, ischemic brain injury perturbs systemic immune homeostasis and results in long-lasting changes of systemic immunity. Here, we briefly summarize current concepts in local neuroinflammation and the systemic immune responses after stroke, and highlight two promising therapeutic strategies for poststroke inflammation.
Collapse
Affiliation(s)
- Ting Li
- Institute for Stroke and Dementia Research, University Hospital, LMU Munich, Munich, Germany.,Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Arthur Liesz
- Institute for Stroke and Dementia Research, University Hospital, LMU Munich, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
98
|
Huang J, Li YB, Charlebois C, Nguyen T, Liu Z, Bloemberg D, Zafer A, Baumann E, Sodja C, Leclerc S, Fewell G, Liu Q, Prabhakarpandian B, McComb S, Stanimirovic DB, Jezierski A. Application of blood brain barrier models in pre-clinical assessment of glioblastoma-targeting CAR-T based immunotherapies. Fluids Barriers CNS 2022; 19:38. [PMID: 35650594 PMCID: PMC9161615 DOI: 10.1186/s12987-022-00342-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/11/2022] [Indexed: 11/30/2022] Open
Abstract
Human blood brain barrier (BBB) models derived from induced pluripotent stem cells (iPSCs) have become an important tool for the discovery and preclinical evaluation of central nervous system (CNS) targeting cell and gene-based therapies. Chimeric antigen receptor (CAR)-T cell therapy is a revolutionary form of gene-modified cell-based immunotherapy with potential for targeting solid tumors, such as glioblastomas. Crossing the BBB is an important step in the systemic application of CAR-T therapy for the treatment of glioblastomas and other CNS malignancies. In addition, even CAR-T therapies targeting non-CNS antigens, such as the well-known CD19-CAR-T therapies, are known to trigger CNS side-effects including brain swelling due to BBB disruption. In this study, we used iPSC-derived brain endothelial-like cell (iBEC) transwell co-culture model to assess BBB extravasation of CAR-T based immunotherapies targeting U87MG human glioblastoma (GBM) cells overexpressing the tumor-specific mutated protein EGFRvIII (U87vIII). Two types of anti-EGFRvIII targeting CAR-T cells, with varying tonic signaling profiles (CAR-F263 and CAR-F269), and control Mock T cells were applied on the luminal side of BBB model in vitro. CAR-F263 and CAR-F269 T cells triggered a decrease in transendothelial electrical resistance (TEER) and an increase in BBB permeability. CAR-T cell extravasation and U87vIII cytotoxicity were assessed from the abluminal compartment using flow cytometry and Incucyte real-time viability imaging, respectively. A significant decrease in U87vIII cell viability was observed over 48 h, with the most robust cytotoxicity response observed for the constitutively activated CAR-F263. CAR-F269 T cells showed a similar cytotoxic profile but were approximately four fold less efficient at killing the U87vIII cells compared to CAR-F263, despite similar transmigration rates. Visualization of CAR-T cell extravasation across the BBB was further confirmed using BBTB-on-CHIP models. The described BBB assay was able to discriminate the cytotoxic efficacies of different EGFRvIII-CARs and provide a measure of potential alterations to BBB integrity. Collectively, we illustrate how BBB models in vitro can be a valuable tool in deciphering the mechanisms of CAR-T–induced BBB disruption, accompanying toxicity and effector function on post-barrier target cells.
Collapse
Affiliation(s)
- Jez Huang
- Human Health Therapeutics Research Centre, National Research Council of Canada, Building M-54, Montreal Road, ON, K1A 0R6, Ottawa, Canada
| | - Ying Betty Li
- Human Health Therapeutics Research Centre, National Research Council of Canada, Building M-54, Montreal Road, ON, K1A 0R6, Ottawa, Canada
| | - Claudie Charlebois
- Human Health Therapeutics Research Centre, National Research Council of Canada, Building M-54, Montreal Road, ON, K1A 0R6, Ottawa, Canada
| | - Tina Nguyen
- Human Health Therapeutics Research Centre, National Research Council of Canada, Building M-54, Montreal Road, ON, K1A 0R6, Ottawa, Canada
| | - Ziying Liu
- Human Health Therapeutics Research Centre, National Research Council of Canada, Building M-54, Montreal Road, ON, K1A 0R6, Ottawa, Canada
| | - Darin Bloemberg
- Human Health Therapeutics Research Centre, National Research Council of Canada, Building M-54, Montreal Road, ON, K1A 0R6, Ottawa, Canada
| | - Ahmed Zafer
- Human Health Therapeutics Research Centre, National Research Council of Canada, Building M-54, Montreal Road, ON, K1A 0R6, Ottawa, Canada
| | - Ewa Baumann
- Human Health Therapeutics Research Centre, National Research Council of Canada, Building M-54, Montreal Road, ON, K1A 0R6, Ottawa, Canada
| | - Caroline Sodja
- Human Health Therapeutics Research Centre, National Research Council of Canada, Building M-54, Montreal Road, ON, K1A 0R6, Ottawa, Canada
| | - Sonia Leclerc
- Human Health Therapeutics Research Centre, National Research Council of Canada, Building M-54, Montreal Road, ON, K1A 0R6, Ottawa, Canada
| | - Gwen Fewell
- SynVivo Inc, Huntsville, AL, USA, 35806, 701 McMillian Way NW
| | - Qing Liu
- Human Health Therapeutics Research Centre, National Research Council of Canada, Building M-54, Montreal Road, ON, K1A 0R6, Ottawa, Canada
| | | | - Scott McComb
- Human Health Therapeutics Research Centre, National Research Council of Canada, Building M-54, Montreal Road, ON, K1A 0R6, Ottawa, Canada.,Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada, 451 Smyth Rd, K1H 8M5
| | - Danica B Stanimirovic
- Human Health Therapeutics Research Centre, National Research Council of Canada, Building M-54, Montreal Road, ON, K1A 0R6, Ottawa, Canada
| | - Anna Jezierski
- Human Health Therapeutics Research Centre, National Research Council of Canada, Building M-54, Montreal Road, ON, K1A 0R6, Ottawa, Canada. .,Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada, 451 Smyth Rd, K1H 8M5.
| |
Collapse
|
99
|
Nervous system manifestations related to COVID-19 and their possible mechanisms. Brain Res Bull 2022; 187:63-74. [PMID: 35772604 PMCID: PMC9236920 DOI: 10.1016/j.brainresbull.2022.06.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 05/23/2022] [Accepted: 06/26/2022] [Indexed: 12/15/2022]
Abstract
In December 2019, the novel coronavirus disease (COVID-19) due to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection broke. With the gradual deepening understanding of SARS-CoV-2 and COVID-19, researchers and clinicians noticed that this disease is closely related to the nervous system and has complex effects on the central nervous system (CNS) and peripheral nervous system (PNS). In this review, we summarize the effects and mechanisms of SARS-CoV-2 on the nervous system, including the pathways of invasion, direct and indirect effects, and associated neuropsychiatric diseases, to deepen our knowledge and understanding of the relationship between COVID-19 and the nervous system.
Collapse
|
100
|
Aschman T, Mothes R, Heppner FL, Radbruch H. What SARS-CoV-2 does to our brains. Immunity 2022; 55:1159-1172. [PMID: 35777361 PMCID: PMC9212726 DOI: 10.1016/j.immuni.2022.06.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/22/2022] [Accepted: 06/15/2022] [Indexed: 11/28/2022]
Abstract
Neurological symptoms in SARS-CoV-2-infected patients have been reported, but their cause remains unclear. In theory, the neurological symptoms observed after SARS-CoV-2 infection could be (1) directly caused by the virus infecting brain cells, (2) indirectly by our body’s local or systemic immune response toward the virus, (3) by coincidental phenomena, or (4) a combination of these factors. As indisputable evidence of intact and replicating SARS-CoV-2 particles in the central nervous system (CNS) is currently lacking, we suggest focusing on the host’s immune reaction when trying to understand the neurocognitive symptoms associated with SARS-CoV-2 infection. In this perspective, we discuss the possible immune-mediated mechanisms causing functional or structural CNS alterations during acute infection as well as in the post-infectious context. We also review the available literature on CNS affection in the context of COVID-19 infection, as well as observations from animal studies on the molecular pathways involved in sickness behavior.
Collapse
|