51
|
Luo W, Zhang C, Jiang YH, Brouwer CR. Systematic reconstruction of autism biology from massive genetic mutation profiles. SCIENCE ADVANCES 2018; 4:e1701799. [PMID: 29651456 PMCID: PMC5895441 DOI: 10.1126/sciadv.1701799] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 02/22/2018] [Indexed: 06/08/2023]
Abstract
Autism spectrum disorder (ASD) affects 1% of world population and has become a pressing medical and social problem worldwide. As a paradigmatic complex genetic disease, ASD has been intensively studied and thousands of gene mutations have been reported. Because these mutations rarely recur, it is difficult to (i) pinpoint the fewer disease-causing versus majority random events and (ii) replicate or verify independent studies. A coherent and systematic understanding of autism biology has not been achieved. We analyzed 3392 and 4792 autism-related mutations from two large-scale whole-exome studies across multiple resolution levels, that is, variants (single-nucleotide), genes (protein-coding unit), and pathways (molecular module). These mutations do not recur or replicate at the variant level, but significantly and increasingly do so at gene and pathway levels. Genetic association reveals a novel gene + pathway dual-hit model, where the mutation burden becomes less relevant. In multiple independent analyses, hundreds of variants or genes repeatedly converge to several canonical pathways, either novel or literature-supported. These pathways define recurrent and systematic ASD biology, distinct from previously reported gene groups or networks. They also present a catalog of novel ASD risk factors including 118 variants and 72 genes. At a subpathway level, most variants disrupt the pathway-related gene functions, and in the same gene, they tend to hit residues extremely close to each other and in the same domain. Multiple interacting variants spotlight key modules, including the cAMP (adenosine 3',5'-monophosphate) second-messenger system and mGluR (metabotropic glutamate receptor) signaling regulation by GRKs (G protein-coupled receptor kinases). At a superpathway level, distinct pathways further interconnect and converge to three biology themes: synaptic function, morphology, and plasticity.
Collapse
Affiliation(s)
- Weijun Luo
- Department of Bioinformatics and Genomics, University of North Carolina (UNC) at Charlotte, Charlotte, NC 28223, USA
- UNC Charlotte Bioinformatics Service Division, North Carolina Research Campus, Kannapolis, NC 28081, USA
| | - Chaolin Zhang
- Department of Systems Biology, Department of Biochemistry and Molecular Biophysics, Center for Motor Neuron Biology and Disease, Columbia University, New York, NY 10032, USA
| | - Yong-hui Jiang
- Department of Pediatrics, Department of Neurobiology, Program in Genetics and Genomics, School of Medicine, Duke University, Durham, NC 27710, USA
| | - Cory R. Brouwer
- Department of Bioinformatics and Genomics, University of North Carolina (UNC) at Charlotte, Charlotte, NC 28223, USA
- UNC Charlotte Bioinformatics Service Division, North Carolina Research Campus, Kannapolis, NC 28081, USA
| |
Collapse
|
52
|
|
53
|
Wheeler AC, Sacco P, Cabo R. Unmet clinical needs and burden in Angelman syndrome: a review of the literature. Orphanet J Rare Dis 2017; 12:164. [PMID: 29037196 PMCID: PMC5644259 DOI: 10.1186/s13023-017-0716-z] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 10/05/2017] [Indexed: 11/25/2022] Open
Abstract
Background Angelman syndrome (AS) is a rare disorder with a relatively well-defined phenotype. Despite this, very little is known regarding the unmet clinical needs and burden of this condition, especially with regard to some of the most prevalent clinical features—movement disorders, communication impairments, behavior, and sleep. Main text A targeted literature review using electronic medical databases (e.g., PubMed) was conducted to identify recent studies focused on specific areas of the AS phenotype (motor, communication, behavior, sleep) as well as epidemiology, diagnostic processes, treatment, and burden. 142 articles were reviewed and summarized. Findings suggest significant impairment across the life span in all areas of function. While some issues may resolve as individuals get older (e.g., hyperactivity), others become worse (e.g., movement disorders, aggression, anxiety). There are no treatments focused on the underlying etiology, and the symptom-based therapies currently prescribed do not have much, if any, empirical support. Conclusions The lack of standardized treatment protocols or approved therapies, combined with the severity of the condition, results in high unmet clinical needs in the areas of motor functioning, communication, behavior, and sleep for individuals with AS and their families.
Collapse
Affiliation(s)
- Anne C Wheeler
- RTI International, 3040 Cornwallis Road, PO Box 12194, Research Triangle Park, NC, 27709-2194, USA.
| | - Patricia Sacco
- RTI Health Solutions, 200 Park Offices Drive, Research Triangle Park, NC, 27709, USA
| | - Raquel Cabo
- Ovid Therapeutics Inc., 1460 Broadway, New York, NY, 10036, USA
| |
Collapse
|
54
|
Baribeau DA, Dupuis A, Paton TA, Scherer SW, Schachar RJ, Arnold PD, Szatmari P, Nicolson R, Georgiades S, Crosbie J, Brian J, Iaboni A, Lerch J, Anagnostou E. Oxytocin Receptor Polymorphisms are Differentially Associated with Social Abilities across Neurodevelopmental Disorders. Sci Rep 2017; 7:11618. [PMID: 28912494 PMCID: PMC5599599 DOI: 10.1038/s41598-017-10821-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 08/15/2017] [Indexed: 12/17/2022] Open
Abstract
Oxytocin is a pituitary neuropeptide that affects social behaviour. Single nucleotide polymorphisms (SNPs) in the oxytocin receptor gene (OXTR) have been shown to explain some variability in social abilities in control populations. Whether these variants similarly contribute to the severity of social deficits experienced by children with neurodevelopmental disorders is unclear. Social abilities were assessed in a group of children with autism spectrum disorder (ASD, n = 341) or attention deficit hyperactivity disorder (ADHD, n = 276) using two established social measures. Scores were compared by OXTR genotype (rs53576, rs237887, rs13316193, rs2254298). Unexpectedly, the two most frequently studied OXTR SNPs in the general population (rs53576 and rs2254298) were associated with an increased severity of social deficits in ASD (p < 0.0001 and p = 0.0005), yet fewer social deficits in ADHD (p = 0.007 and p < 0.0001). We conclude that these genetic modifier alleles are not inherently risk-conferring with respect to their impact on social abilities; molecular investigations are greatly needed.
Collapse
Affiliation(s)
| | - Annie Dupuis
- Department of Biostatistics Design and Analysis, The Hospital for Sick Children, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Tara A Paton
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Stephen W Scherer
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada.,The McLaughlin Centre, University of Toronto, Toronto, Ontario, Canada
| | - Russell J Schachar
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.,Department of Psychiatry, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Paul D Arnold
- Hotchkiss Brain Institute, Departments of Psychiatry & Medical Genetics, University of Calgary, Calgary, Alberta, Canada
| | - Peter Szatmari
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.,Department of Psychiatry, The Hospital for Sick Children, Toronto, Ontario, Canada.,The Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Rob Nicolson
- The Children's Health Research Institute and Western University, London, Ontario, Canada
| | - Stelios Georgiades
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Chedoke Hospital, Hamilton, Ontario, Canada
| | - Jennifer Crosbie
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.,Department of Psychiatry, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jessica Brian
- Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada.,Autism Research Centre, Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Ontario, Canada
| | - Alana Iaboni
- Autism Research Centre, Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Ontario, Canada
| | - Jason Lerch
- Program in Neuroscience and Mental Health, The Hospital for Sick Children, Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Evdokia Anagnostou
- Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada. .,Autism Research Centre, Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Ontario, Canada.
| |
Collapse
|
55
|
Vitamin D Receptor Gene Polymorphisms Associated with Childhood Autism. Brain Sci 2017; 7:brainsci7090115. [PMID: 28891930 PMCID: PMC5615256 DOI: 10.3390/brainsci7090115] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 09/02/2017] [Accepted: 09/06/2017] [Indexed: 02/06/2023] Open
Abstract
Background: Autism spectrum disorder (ASD) is a group of heterogeneous, behaviorally defined disorders whereby currently no biological markers are common to all affected individuals. A deregulated immune response may be contributing to the etiology of ASD. The active metabolite of vitamin D3 has an immunoregulatory role mediated by binding to the vitamin D receptor (VDR) in monocyte, macrophages, and lymphocytes. The effects of vitamin D and interaction with the VDR may be influenced by polymorphism in the VDR gene. Methods: Genetic association of four different VDR polymorphisms (Apa-I, Bsm-I, Taq-I, Fok-I) associated with susceptibility to the development of autism in children was investigated. Results: We uniquely found an association between the presence of the T allele at position Taq-I and presence of the a allele at position Apa-I of the VDR gene with decreased ASD incidence. There was also an association between female gender and the presence of the T allele. We found no statistical significant correlation between VDR single nucleotide polymorphisms (SNPs) and vitamin D3 concentration in serum of ASD children. Conclusion: Genetic polymorphism in two SNP in VDR may be correlated with development of ASD symptoms by influencing functionality of vitamin D3 metabolism, while vitamin D3 levels were not significantly different between ASD and non-ASD children.
Collapse
|
56
|
Hong MP, Guilfoyle JL, Mooney LN, Wink LK, Pedapati EV, Shaffer RC, Sweeney JA, Erickson CA. Eye gaze and pupillary response in Angelman syndrome. RESEARCH IN DEVELOPMENTAL DISABILITIES 2017; 68:88-94. [PMID: 28750207 PMCID: PMC7169996 DOI: 10.1016/j.ridd.2017.06.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 03/09/2017] [Accepted: 06/23/2017] [Indexed: 05/09/2023]
Abstract
BACKGROUND Angelman syndrome (AS) is a rare neurological disorder characterized by severe developmental disability, communication impairment, elevated seizure risk, and motor system abnormalities. AIMS The aims of this study were to determine the feasibility of social scene eye tracking and pupillometry measures in individuals with AS and to compare the performance of AS participants to individuals with idiopathic Autism Spectrum Disorder (ASD) and typically developing controls (TDC). METHODS AND PROCEDURES Individuals with AS and age- and gender- matched controls completed a social eye tracking paradigm. Neurobehavioral characterization of AS participants was completed via a battery of psychological testing and caregiver behavioral evaluations. OUTCOMES AND RESULTS Eight of seventeen recruited AS participants completed the eye tracking paradigm. Compared to TDC, AS subjects demonstrated significantly less preference for social scenes than geometric shapes. Additionally, AS subjects showed less pupil dilation, compared to TDC, when viewing social scenes versus geometric shapes. There was no statistically significant difference found between AS and ASD subjects in either social eye tracking or pupillometry. CONCLUSIONS AND IMPLICATIONS The use of eye tracking and pupillometry may represent an innovative measure for quantifying AS-associated impairments in social salience.
Collapse
Affiliation(s)
- Michael P Hong
- Cincinnati Children's Hospital Medical Center, United States
| | | | | | - Logan K Wink
- Cincinnati Children's Hospital Medical Center, United States; University of Cincinnati, College of Medicine, United States
| | - Ernest V Pedapati
- Cincinnati Children's Hospital Medical Center, United States; University of Cincinnati, College of Medicine, United States
| | | | - John A Sweeney
- University of Cincinnati, College of Medicine, United States
| | - Craig A Erickson
- Cincinnati Children's Hospital Medical Center, United States; University of Cincinnati, College of Medicine, United States; Indiana University School of Medicine, United States.
| |
Collapse
|
57
|
Hamza M, Halayem S, Mrad R, Bourgou S, Charfi F, Belhadj A. Implication de l’épigénétique dans les troubles du spectre autistique : revue de la littérature. Encephale 2017; 43:374-381. [DOI: 10.1016/j.encep.2016.07.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 07/04/2016] [Accepted: 07/04/2016] [Indexed: 01/24/2023]
|
58
|
de Kluiver H, Buizer‐Voskamp JE, Dolan CV, Boomsma DI. Paternal age and psychiatric disorders: A review. Am J Med Genet B Neuropsychiatr Genet 2017; 174:202-213. [PMID: 27770494 PMCID: PMC5412832 DOI: 10.1002/ajmg.b.32508] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 10/03/2016] [Indexed: 12/22/2022]
Abstract
We review the hypotheses concerning the association between the paternal age at childbearing and childhood psychiatric disorders (autism spectrum- and attention deficit/hyperactive disorder) and adult disorders (schizophrenia, bipolar-, obsessive-compulsive-, and major depressive disorder) based on epidemiological studies. Several hypotheses have been proposed to explain the paternal age effect. We discuss the four main-not mutually exclusive-hypotheses. These are the de novo mutation hypothesis, the hypothesis concerning epigenetic alterations, the selection into late fatherhood hypothesis, and the environmental resource hypothesis. Advanced paternal age in relation to autism spectrum disorders and schizophrenia provided the most robust epidemiological evidence for an association, with some studies reporting a monotonic risk increase over age, and others reporting a marked increase at a given age threshold. Although there is evidence for the de novo mutation hypothesis and the selection into late fatherhood hypothesis, the mechanism(s) underlying the association between advanced paternal age and psychiatric illness in offspring remains to be further clarified. © 2016 The Authors. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Hilde de Kluiver
- Department of Biological PsychologyVrije Universiteit AmsterdamAmsterdamThe Netherlands
- EMGO+ Institute for Health and Care ResearchAmsterdamThe Netherlands
| | | | - Conor V. Dolan
- Department of Biological PsychologyVrije Universiteit AmsterdamAmsterdamThe Netherlands
- EMGO+ Institute for Health and Care ResearchAmsterdamThe Netherlands
| | - Dorret I. Boomsma
- Department of Biological PsychologyVrije Universiteit AmsterdamAmsterdamThe Netherlands
- EMGO+ Institute for Health and Care ResearchAmsterdamThe Netherlands
- Neuroscience Campus AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
59
|
Modabbernia A, Velthorst E, Reichenberg A. Environmental risk factors for autism: an evidence-based review of systematic reviews and meta-analyses. Mol Autism 2017; 8:13. [PMID: 28331572 PMCID: PMC5356236 DOI: 10.1186/s13229-017-0121-4] [Citation(s) in RCA: 463] [Impact Index Per Article: 57.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 02/12/2017] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND According to recent evidence, up to 40-50% of variance in autism spectrum disorder (ASD) liability might be determined by environmental factors. In the present paper, we conducted a review of systematic reviews and meta-analyses of environmental risk factors for ASD. We assessed each review for quality of evidence and provided a brief overview of putative mechanisms of environmental risk factors for ASD. FINDINGS Current evidence suggests that several environmental factors including vaccination, maternal smoking, thimerosal exposure, and most likely assisted reproductive technologies are unrelated to risk of ASD. On the contrary, advanced parental age is associated with higher risk of ASD. Birth complications that are associated with trauma or ischemia and hypoxia have also shown strong links to ASD, whereas other pregnancy-related factors such as maternal obesity, maternal diabetes, and caesarian section have shown a less strong (but significant) association with risk of ASD. The reviews on nutritional elements have been inconclusive about the detrimental effects of deficiency in folic acid and omega 3, but vitamin D seems to be deficient in patients with ASD. The studies on toxic elements have been largely limited by their design, but there is enough evidence for the association between some heavy metals (most important inorganic mercury and lead) and ASD that warrants further investigation. Mechanisms of the association between environmental factors and ASD are debated but might include non-causative association (including confounding), gene-related effect, oxidative stress, inflammation, hypoxia/ischemia, endocrine disruption, neurotransmitter alterations, and interference with signaling pathways. CONCLUSIONS Compared to genetic studies of ASD, studies of environmental risk factors are in their infancy and have significant methodological limitations. Future studies of ASD risk factors would benefit from a developmental psychopathology approach, prospective design, precise exposure measurement, reliable timing of exposure in relation to critical developmental periods and should take into account the dynamic interplay between gene and environment by using genetically informed designs.
Collapse
Affiliation(s)
- Amirhossein Modabbernia
- Department of Psychiatry and Seaver Autism Center, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Eva Velthorst
- Department of Psychiatry and Seaver Autism Center, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Preventive Medicine, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Abraham Reichenberg
- Department of Psychiatry and Seaver Autism Center, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Preventive Medicine, Icahn School of Medicine at Mount Sinai, New York, USA
- Friedman Brain Institute, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, USA
- Seaver Autism Center, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, USA
| |
Collapse
|
60
|
Robert C, Pasquier L, Cohen D, Fradin M, Canitano R, Damaj L, Odent S, Tordjman S. Role of Genetics in the Etiology of Autistic Spectrum Disorder: Towards a Hierarchical Diagnostic Strategy. Int J Mol Sci 2017; 18:E618. [PMID: 28287497 PMCID: PMC5372633 DOI: 10.3390/ijms18030618] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 02/17/2017] [Accepted: 02/20/2017] [Indexed: 12/27/2022] Open
Abstract
Progress in epidemiological, molecular and clinical genetics with the development of new techniques has improved knowledge on genetic syndromes associated with autism spectrum disorder (ASD). The objective of this article is to show the diversity of genetic disorders associated with ASD (based on an extensive review of single-gene disorders, copy number variants, and other chromosomal disorders), and consequently to propose a hierarchical diagnostic strategy with a stepwise evaluation, helping general practitioners/pediatricians and child psychiatrists to collaborate with geneticists and neuropediatricians, in order to search for genetic disorders associated with ASD. The first step is a clinical investigation involving: (i) a child psychiatric and psychological evaluation confirming autism diagnosis from different observational sources and assessing autism severity; (ii) a neuropediatric evaluation examining neurological symptoms and developmental milestones; and (iii) a genetic evaluation searching for dysmorphic features and malformations. The second step involves laboratory and if necessary neuroimaging and EEG studies oriented by clinical results based on clinical genetic and neuropediatric examinations. The identification of genetic disorders associated with ASD has practical implications for diagnostic strategies, early detection or prevention of co-morbidity, specific treatment and follow up, and genetic counseling.
Collapse
Affiliation(s)
- Cyrille Robert
- Pôle Hospitalo-Universitaire de Psychiatrie de l'Enfant et de l'Adolescent (PHUPEA), University of Rennes 1 and Centre Hospitalier Guillaume Régnier, 35200 Rennes, France.
- Service de Génétique Clinique, Centre de Référence Maladies Rares Anomalies du Développement (Centre Labellisé pour les Anomalies du Développement de l'Ouest: CLAD Ouest), Hôpital Sud, Centre Hospitalier Universitaire de Rennes, 35200 Rennes, France.
| | - Laurent Pasquier
- Service de Génétique Clinique, Centre de Référence Maladies Rares Anomalies du Développement (Centre Labellisé pour les Anomalies du Développement de l'Ouest: CLAD Ouest), Hôpital Sud, Centre Hospitalier Universitaire de Rennes, 35200 Rennes, France.
| | - David Cohen
- Hospital-University Department of Child and Adolescent Psychiatry, Pitié-Salpétrière Hospital, Paris 6 University, 75013 Paris, France.
| | - Mélanie Fradin
- Service de Génétique Clinique, Centre de Référence Maladies Rares Anomalies du Développement (Centre Labellisé pour les Anomalies du Développement de l'Ouest: CLAD Ouest), Hôpital Sud, Centre Hospitalier Universitaire de Rennes, 35200 Rennes, France.
| | - Roberto Canitano
- Division of Child and Adolescent Neuropsychiatry, University Hospital of Siena, 53100 Siena, Italy.
| | - Léna Damaj
- Service de Génétique Clinique, Centre de Référence Maladies Rares Anomalies du Développement (Centre Labellisé pour les Anomalies du Développement de l'Ouest: CLAD Ouest), Hôpital Sud, Centre Hospitalier Universitaire de Rennes, 35200 Rennes, France.
| | - Sylvie Odent
- Service de Génétique Clinique, Centre de Référence Maladies Rares Anomalies du Développement (Centre Labellisé pour les Anomalies du Développement de l'Ouest: CLAD Ouest), Hôpital Sud, Centre Hospitalier Universitaire de Rennes, 35200 Rennes, France.
| | - Sylvie Tordjman
- Pôle Hospitalo-Universitaire de Psychiatrie de l'Enfant et de l'Adolescent (PHUPEA), University of Rennes 1 and Centre Hospitalier Guillaume Régnier, 35200 Rennes, France.
- Laboratory of Psychology of Perception, University Paris Descartes, 75270 Paris, France.
| |
Collapse
|
61
|
Schenkel LC, Rodenhiser D, Siu V, McCready E, Ainsworth P, Sadikovic B. Constitutional Epi/Genetic Conditions: Genetic, Epigenetic, and Environmental Factors. J Pediatr Genet 2017; 6:30-41. [PMID: 28180025 PMCID: PMC5288004 DOI: 10.1055/s-0036-1593849] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 04/14/2016] [Indexed: 12/12/2022]
Abstract
There are more than 4,000 phenotypes for which the molecular basis is at least partly known. Though defects in primary DNA structure constitute a major cause of these disorders, epigenetic disruption is emerging as an important alternative mechanism in the etiology of a broad range of congenital and developmental conditions. These include epigenetic defects caused by either localized (in cis) genetic alterations or more distant (in trans) genetic events but can also include environmental effects. Emerging evidence suggests interplay between genetic and environmental factors in the epigenetic etiology of several constitutional "epi/genetic" conditions. This review summarizes our broadening understanding of how epigenetics contributes to pediatric disease by exploring different classes of epigenomic disorders. It further challenges the simplistic dogma of "DNA encodes RNA encodes protein" to best understand the spectrum of factors that can influence genetic traits in a pediatric population.
Collapse
Affiliation(s)
- Laila C. Schenkel
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada
- Children's Health Research Institute, London, Ontario, Canada
| | - David Rodenhiser
- Children's Health Research Institute, London, Ontario, Canada
- Department of Biochemistry, Western University, London, Ontario, Canada
- Department of Pediatrics, Western University, London, Ontario, Canada
- London Regional Cancer Program, London Health Sciences Centre, London, Ontario, Canada
- Department of Oncology, Western University, London, Ontario, Canada
| | - Victoria Siu
- Children's Health Research Institute, London, Ontario, Canada
- Department of Pediatrics, Western University, London, Ontario, Canada
- London Regional Cancer Program, London Health Sciences Centre, London, Ontario, Canada
| | - Elizabeth McCready
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Peter Ainsworth
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada
- Children's Health Research Institute, London, Ontario, Canada
- Department of Biochemistry, Western University, London, Ontario, Canada
- Department of Pediatrics, Western University, London, Ontario, Canada
- London Regional Cancer Program, London Health Sciences Centre, London, Ontario, Canada
- Department of Oncology, Western University, London, Ontario, Canada
| | - Bekim Sadikovic
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada
- Children's Health Research Institute, London, Ontario, Canada
- London Regional Cancer Program, London Health Sciences Centre, London, Ontario, Canada
| |
Collapse
|
62
|
Janecka M, Mill J, Basson MA, Goriely A, Spiers H, Reichenberg A, Schalkwyk L, Fernandes C. Advanced paternal age effects in neurodevelopmental disorders-review of potential underlying mechanisms. Transl Psychiatry 2017; 7:e1019. [PMID: 28140401 PMCID: PMC5299396 DOI: 10.1038/tp.2016.294] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 11/23/2016] [Accepted: 12/15/2016] [Indexed: 01/09/2023] Open
Abstract
Multiple epidemiological studies suggest a relationship between advanced paternal age (APA) at conception and adverse neurodevelopmental outcomes in offspring, particularly with regard to increased risk for autism and schizophrenia. Conclusive evidence about how age-related changes in paternal gametes, or age-independent behavioral traits affect neural development is still lacking. Recent evidence suggests that the origins of APA effects are likely to be multidimensional, involving both inherited predisposition and de novo events. Here we provide a review of the epidemiological and molecular findings to date. Focusing on the latter, we present the evidence for genetic and epigenetic mechanisms underpinning the association between late fatherhood and disorder in offspring. We also discuss the limitations of the APA literature. We propose that different hypotheses relating to the origins of the APA effects are not mutually exclusive. Instead, multiple mechanisms likely contribute, reflecting the etiological complexity of neurodevelopmental disorders.
Collapse
Affiliation(s)
- M Janecka
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - J Mill
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- University of Exeter Medical School, University of Exeter, Exeter, UK
| | - M A Basson
- Department of Craniofacial and Stem Cell Biology, MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - A Goriely
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - H Spiers
- University of Exeter Medical School, University of Exeter, Exeter, UK
| | - A Reichenberg
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - L Schalkwyk
- School of Biological Sciences, University of Essex, Colchester, UK
| | - C Fernandes
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| |
Collapse
|
63
|
Tordjman S, Cohen D, Coulon N, Anderson GM, Botbol M, Canitano R, Roubertoux PL. Reframing autism as a behavioral syndrome and not a specific mental disorder: Implications of genetic and phenotypic heterogeneity. Neurosci Biobehav Rev 2017; 80:210. [PMID: 28153685 DOI: 10.1016/j.neubiorev.2017.01.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 12/18/2016] [Accepted: 01/23/2017] [Indexed: 12/13/2022]
Abstract
Clinical and molecular genetics have advanced current knowledge on genetic disorders associated with autism. A review of diverse genetic disorders associated with autism is presented and for the first time discussed extensively with regard to possible common underlying mechanisms leading to a similar cognitive-behavioral phenotype of autism. The possible role of interactions between genetic and environmental factors, including epigenetic mechanisms, is in particular examined. Finally, the pertinence of distinguishing non-syndromic autism (isolated autism) from syndromic autism (autism associated with genetic disorders) will be reconsidered. Given the high genetic and etiological heterogeneity of autism, autism can be viewed as a behavioral syndrome related to known genetic disorders (syndromic autism) or currently unknown disorders (apparent non-syndromic autism), rather than a specific categorical mental disorder. It highlights the need to study autism phenotype and developmental trajectory through a multidimensional, non-categorical approach with multivariate analyses within autism spectrum disorder but also across mental disorders, and to conduct systematically clinical genetic examination searching for genetic disorders in all individuals (children but also adults) with autism.
Collapse
Affiliation(s)
- S Tordjman
- Pôle Hospitalo-Universitaire de Psychiatrie de l'Enfant et de l'Adolescent, Université de Rennes 1 and Centre Hospitalier Guillaume Régnier, 154 rue de Châtillon, 35200 Rennes, France; Laboratoire Psychologie de la Perception, Université Paris Descartes and CNRS UMR 8158, Paris, France.
| | - D Cohen
- Department of Child and Adolescent Psychiatry, AP-HP, GH Pitié-Salpétrière, CNRS FRE 2987, Université Pierre et Marie Curie, Paris, France
| | - N Coulon
- Laboratoire Psychologie de la Perception, Université Paris Descartes and CNRS UMR 8158, Paris, France
| | - G M Anderson
- Child Study Center, Yale University School of Medicine, New Haven, CT, USA
| | - M Botbol
- Departement Hospitalo-Universitaire de Psychiatrie de l'Enfant et de l'Adolescent, Université de Bretagne Occidentale, Brest, France
| | - R Canitano
- Division of Child and Adolescent Neuropsychiatry, University Hospital of Siena, Siena, Italy
| | - P L Roubertoux
- Aix Marseille Université, GMGF, Inserm, UMR_S 910, 13385, Marseille, France
| |
Collapse
|
64
|
Medical history of discordant twins and environmental etiologies of autism. Transl Psychiatry 2017; 7:e1014. [PMID: 28140403 PMCID: PMC5299390 DOI: 10.1038/tp.2016.269] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 11/13/2016] [Indexed: 12/27/2022] Open
Abstract
The environmental contributions to autism spectrum disorder (ASD) and their informative content for diagnosing the condition are still largely unknown. The objective of this study was to investigate associations between early medical events and ASD, as well as autistic traits, in twins, to test the hypothesis of a cumulative environmental effect on ASD risk. A total of 80 monozygotic (MZ) twin pairs (including a rare sample of 13 twin pairs discordant for clinical ASD) and 46 dizygotic (DZ) twin pairs with varying autistic traits, were examined for intra-pair differences in early medical events (for example, obstetric and neonatal factors, first year infections). First, differences in early medical events were investigated using multisource medical records in pairs qualitatively discordant for ASD. The significant intra-pair differences identified were then tested in relation to autistic traits in the remaining sample of 100 pairs, applying generalized estimating equations analyses. Significant association of the intra-pair differences in the MZ pairs were found for the cumulative load of early medical events and clinical ASD (Z=-2.85, P=0.004) and autistic traits (β=78.18, P=0.002), as well as infant dysregulation (feeding, sleeping abnormalities, excessive crying and worriedness), when controlling for intelligence quotient and attention deficit hyperactivity disorder comorbidity. The cumulative load of early medical events in general, and infant dysregulation in particular, may index children at risk of ASD owing to non-shared environmental contributions. In clinical practice, these findings may facilitate screening and early detection of ASD.
Collapse
|
65
|
Sener EF, Cıkılı Uytun M, Korkmaz Bayramov K, Zararsiz G, Oztop DB, Canatan H, Ozkul Y. The roles of CC2D1A and HTR1A gene expressions in autism spectrum disorders. Metab Brain Dis 2016; 31:613-9. [PMID: 26782176 DOI: 10.1007/s11011-016-9795-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 01/12/2016] [Indexed: 10/22/2022]
Abstract
Classical autism belongs to a group of heterogeneous disorders known as autism spectrum disorders (ASD). Autism is defined as a neurodevelopmental disorder, characterized by repetitive stereotypic behaviors or restricted interests, social withdrawal, and communication deficits. Numerous susceptibility genes and chromosomal abnormalities have been reported in association with autism but the etiology of this disorder is unknown in many cases. CC2D1A gene has been linked to mental retardation (MR) in a family with a large deletion before. Intellectual disability (ID) is a common feature of autistic cases. Therefore we aimed to investigate the expressions of CC2D1A and HTR1A genes with the diagnosis of autism in Turkey. Forty-four autistic patients (35 boys, 9 girls) and 27 controls were enrolled and obtained whole blood samples to isolate RNA samples from each participant. CC2D1A and HTR1A gene expressions were assessed by quantitative Real-Time PCR (qRT-PCR) in Genome and Stem Cell Center, Erciyes University. Both expressions of CC2D1A and HTR1A genes studied on ASD cases and controls were significantly different (p < 0.001). The expression of HTR1A was undetectable in the ASD samples. Comparison of ID and CC2D1A gene expression was also found statistically significant (p = 0.028). CC2D1A gene expression may be used as a candidate gene for ASD cases with ID. Further studies are needed to investigate the potential roles of these CC2D1A and HTR1A genes in their related pathways in ASD.
Collapse
Affiliation(s)
- Elif Funda Sener
- Department of Medical Biology, Erciyes University Medical School, 38039, Kayseri, Turkey.
- Genome and Stem Cell Center (GENKOK), Erciyes University, Kayseri, Turkey.
| | - Merve Cıkılı Uytun
- Department of Child Psychiatry, Education and Research Hospital, Kayseri, Turkey
| | - Keziban Korkmaz Bayramov
- Genome and Stem Cell Center (GENKOK), Erciyes University, Kayseri, Turkey
- Department of Medical Genetics, Erciyes University Medical School, 38039, Kayseri, Turkey
| | - Gokmen Zararsiz
- Department of Biostatistics, Erciyes University Medical School, 38039, Kayseri, Turkey
| | - Didem Behice Oztop
- Department of Child Psychiatry, Surp Pirgic Armenian Hospital, Istanbul, Turkey
| | - Halit Canatan
- Department of Medical Biology, Erciyes University Medical School, 38039, Kayseri, Turkey
| | - Yusuf Ozkul
- Genome and Stem Cell Center (GENKOK), Erciyes University, Kayseri, Turkey
- Department of Medical Genetics, Erciyes University Medical School, 38039, Kayseri, Turkey
| |
Collapse
|
66
|
Oliver VF, Jaffe AE, Song J, Wang G, Zhang P, Branham KE, Swaroop A, Eberhart CG, Zack DJ, Qian J, Merbs SL. Differential DNA methylation identified in the blood and retina of AMD patients. Epigenetics 2016; 10:698-707. [PMID: 26067391 DOI: 10.1080/15592294.2015.1060388] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Age-related macular degeneration (AMD) is a major cause of blindness in the western world. While genetic studies have linked both common and rare variants in genes involved in regulation of the complement system to increased risk of development of AMD, environmental factors, such as smoking and nutrition, can also significantly affect the risk of developing the disease and the rate of disease progression. Since epigenetics has been implicated in mediating, in part, the disease risk associated with some environmental factors, we investigated a possible epigenetic contribution to AMD. We performed genome-wide DNA methylation profiling of blood from AMD patients and controls. No differential methylation site reached genome-wide significance; however, when epigenetic changes in and around known GWAS-defined AMD risk loci were explored, we found small but significant DNA methylation differences in the blood of neovascular AMD patients near age-related maculopathy susceptibility 2 (ARMS2), a top-ranked GWAS locus preferentially associated with neovascular AMD. The methylation level of one of the CpG sites significantly correlated with the genotype of the risk SNP rs10490924, suggesting a possible epigenetic mechanism of risk. Integrating genome-wide DNA methylation analysis of retina samples with and without AMD together with blood samples, we further identified a consistent, replicable change in DNA methylation in the promoter region of protease serine 50 (PRSS50). These methylation changes may identify sites in novel genes that are susceptible to non-genetic factors known to contribute to AMD development and progression.
Collapse
Key Words
- AMD, Age-related macular degeneration
- AMD-MMAP, Michigan, Mayo
- AREDS, Age-Related Eye Disease Study
- AREDS, and Pennsylvania
- DNA methylation
- DNAm, DNA methylation
- GA, geographic atrophy
- GWAS, genome-wide association study
- KEC, Kellogg Eye Center
- LCLs, lymphoblastoid cell lines
- NV, choroidal neovascularization
- RPE, retinal pigment epithelium
- age-related macular degeneration
- genome-wide methylation
- meQTL, methylation quantitative trait loci
- methyl-QTL
- peripheral blood leukocytes
- retina
Collapse
Affiliation(s)
- Verity F Oliver
- a Department of Ophthalmology; Johns Hopkins University; School of Medicine ; Baltimore , MD USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Vijayakumar NT, Judy MV. Autism spectrum disorders: Integration of the genome, transcriptome and the environment. J Neurol Sci 2016; 364:167-76. [PMID: 27084239 DOI: 10.1016/j.jns.2016.03.026] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 02/18/2016] [Accepted: 03/10/2016] [Indexed: 10/22/2022]
Abstract
Autism spectrum disorders denote a series of lifelong neurodevelopmental conditions characterized by an impaired social communication profile and often repetitive, stereotyped behavior. Recent years have seen the complex genetic architecture of the disease being progressively unraveled with advancements in gene finding technology and next generation sequencing methods. However, a complete elucidation of the molecular mechanisms behind autism is necessary for potential diagnostic and therapeutic applications. A multidisciplinary approach should be adopted where the focus is not only on the 'genetics' of autism but also on the combinational roles of epigenetics, transcriptomics, immune system disruption and environmental factors that could all influence the etiopathogenesis of the disease. ASD is a clinically heterogeneous disorder with great genetic complexity; only through an integrated multidimensional effort can modern autism research progress further.
Collapse
Affiliation(s)
- N Thushara Vijayakumar
- Department of Computer Science & IT., Amrita School of Arts & Sciences, Amrita Vishwa Vidyapeetham, Amrita University, Kochi, India.
| | - M V Judy
- Department of Computer Science & IT., Amrita School of Arts & Sciences, Amrita Vishwa Vidyapeetham, Amrita University, Kochi, India
| |
Collapse
|
68
|
Keil KP, Lein PJ. DNA methylation: a mechanism linking environmental chemical exposures to risk of autism spectrum disorders? ENVIRONMENTAL EPIGENETICS 2016; 2:dvv012. [PMID: 27158529 PMCID: PMC4856164 DOI: 10.1093/eep/dvv012] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
There is now compelling evidence that gene by environment interactions are important in the etiology of autism spectrum disorders (ASDs). However, the mechanisms by which environmental factors interact with genetic susceptibilities to confer individual risk for ASD remain a significant knowledge gap in the field. The epigenome, and in particular DNA methylation, is a critical gene expression regulatory mechanism in normal and pathogenic brain development. DNA methylation can be influenced by environmental factors such as diet, hormones, stress, drugs, or exposure to environmental chemicals, suggesting that environmental factors may contribute to adverse neurodevelopmental outcomes of relevance to ASD via effects on DNA methylation in the developing brain. In this review, we describe epidemiological and experimental evidence implicating altered DNA methylation as a potential mechanism by which environmental chemicals confer risk for ASD, using polychlorinated biphenyls (PCBs), lead, and bisphenol A (BPA) as examples. Understanding how environmental chemical exposures influence DNA methylation and how these epigenetic changes modulate the risk and/or severity of ASD will not only provide mechanistic insight regarding gene-environment interactions of relevance to ASD but may also suggest potential intervention strategies for these and potentially other neurodevelopmental disorders.
Collapse
Affiliation(s)
- Kimberly P. Keil
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| | - Pamela J. Lein
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
- *Correspondence address. Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, 1089 Veterinary Medicine Drive, Davis, CA 95616, USA. Tel:
(530) 752-1970
; Fax:
(530) 752-7690
; E-mail:
| |
Collapse
|
69
|
DiGuiseppi CG, Daniels JL, Fallin DM, Rosenberg SA, Schieve LA, Thomas KC, Windham GC, Goss CW, Soke GN, Currie DW, Singer AB, Lee LC, Bernal P, Croen LA, Miller LA, Pinto-Martin JA, Young LM, Schendel DE. Demographic profile of families and children in the Study to Explore Early Development (SEED): Case-control study of autism spectrum disorder. Disabil Health J 2016; 9:544-51. [PMID: 26917104 DOI: 10.1016/j.dhjo.2016.01.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 01/05/2016] [Accepted: 01/12/2016] [Indexed: 02/05/2023]
Abstract
BACKGROUND The Study to Explore Early Development (SEED) is designed to enhance knowledge of autism spectrum disorder characteristics and etiologies. OBJECTIVE This paper describes the demographic profile of enrolled families and examines sociodemographic differences between children with autism spectrum disorder and children with other developmental problems or who are typically developing. METHODS This multi-site case-control study used health, education, and birth certificate records to identify and enroll children aged 2-5 years into one of three groups: 1) cases (children with autism spectrum disorder), 2) developmental delay or disorder controls, or 3) general population controls. Study group classification was based on sampling source, prior diagnoses, and study screening tests and developmental evaluations. The child's primary caregiver provided demographic characteristics through a telephone (or occasionally face-to-face) interview. Groups were compared using ANOVA, chi-squared test, or multinomial logistic regression as appropriate. RESULTS Of 2768 study children, sizeable proportions were born to mothers of non-White race (31.7%), Hispanic ethnicity (11.4%), and foreign birth (17.6%); 33.0% of households had incomes below the US median. The autism spectrum disorder and population control groups differed significantly on nearly all sociodemographic parameters. In contrast, the autism spectrum disorder and developmental delay or disorder groups had generally similar sociodemographic characteristics. CONCLUSIONS SEED enrolled a sociodemographically diverse sample, which will allow further, in-depth exploration of sociodemographic differences between study groups and provide novel opportunities to explore sociodemographic influences on etiologic risk factor associations with autism spectrum disorder and phenotypic subtypes.
Collapse
Affiliation(s)
- Carolyn G DiGuiseppi
- Department of Epidemiology, Colorado School of Public Health, Campus Box B119, 13001 E. 17th Place, Aurora, CO 80045, USA.
| | - Julie L Daniels
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, CB #7435, Chapel Hill, NC 27599-7435, USA
| | - Daniele M Fallin
- Wendy Klag Center for Autism and Developmental Disabilities, Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, 624 N. Broadway, HH 850, Baltimore, MD 21205, USA
| | - Steven A Rosenberg
- Department of Psychiatry, University of Colorado School of Medicine, Campus Box F546, 13001 E. 17th Place, Aurora, CO 80045, USA
| | - Laura A Schieve
- National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Kathleen C Thomas
- Cecil G. Sheps Center for Health Services Research, University of North Carolina at Chapel Hill, 725 Martin Luther King Jr. Blvd., CB#7590, Chapel Hill, NC 27599-7590, USA
| | - Gayle C Windham
- California Department of Public Health, 850 Marina Bay Pkwy, Bldg. P/EHIB, Richmond, CA 94804, USA
| | - Cynthia W Goss
- Department of Epidemiology, Colorado School of Public Health, Campus Box B119, 13001 E. 17th Place, Aurora, CO 80045, USA
| | - Gnakub N Soke
- Department of Epidemiology, Colorado School of Public Health, Campus Box B119, 13001 E. 17th Place, Aurora, CO 80045, USA
| | - Dustin W Currie
- Department of Epidemiology, Colorado School of Public Health, Campus Box B119, 13001 E. 17th Place, Aurora, CO 80045, USA
| | - Alison B Singer
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, 615 N Wolfe St, Baltimore, MD 21205, USA
| | - Li-Ching Lee
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, 615 N Wolfe St, Baltimore, MD 21205, USA
| | - Pilar Bernal
- Kaiser Permanente, ASD Center, Department of Psychiatry, 6620 Via del Oro, San Jose, CA 95119, USA
| | - Lisa A Croen
- Autism Research Program, Kaiser Permanente Division of Research, 2000 Broadway, Oakland, CA 94612, USA
| | - Lisa A Miller
- Division of Disease Control and Environmental Epidemiology, Colorado Department of Public Health and Environment, 4300 Cherry Creek Drive South, Denver, CO 80246-1530, USA
| | - Jennifer A Pinto-Martin
- Center for Autism and Developmental Disabilities, Research and Epidemiology (CADDRE), University of Pennsylvania, School of Nursing, 418 Curie Blvd, Claire Fagan Hall, Philadelphia, PA 19104, USA
| | - Lisa M Young
- Center for Autism and Developmental Disabilities, Research and Epidemiology (CADDRE), University of Pennsylvania, School of Nursing, 418 Curie Blvd, Claire Fagan Hall, Philadelphia, PA 19104, USA
| | - Diana E Schendel
- National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| |
Collapse
|
70
|
El Aidy S, Stilling R, Dinan TG, Cryan JF. Microbiome to Brain: Unravelling the Multidirectional Axes of Communication. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 874:301-36. [PMID: 26589226 DOI: 10.1007/978-3-319-20215-0_15] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The gut microbiome plays a crucial role in host physiology. Disruption of its community structure and function can have wide-ranging effects making it critical to understand exactly how the interactive dialogue between the host and its microbiota is regulated to maintain homeostasis. An array of multidirectional signalling molecules is clearly involved in the host-microbiome communication. This interactive signalling not only impacts the gastrointestinal tract, where the majority of microbiota resides, but also extends to affect other host systems including the brain and liver as well as the microbiome itself. Understanding the mechanistic principles of this inter-kingdom signalling is fundamental to unravelling how our supraorganism function to maintain wellbeing, subsequently opening up new avenues for microbiome manipulation to favour desirable mental health outcome.
Collapse
Affiliation(s)
- Sahar El Aidy
- Microbial Physiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Roman Stilling
- Laboratory of Neurogastroenterology, Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland.,Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Timothy G Dinan
- Laboratory of Neurogastroenterology, Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland.,Department of Psychiatry, University College Cork, Cork, Ireland
| | - John F Cryan
- Laboratory of Neurogastroenterology, Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland. .,Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.
| |
Collapse
|
71
|
Lee BK, McGrath JJ. Advancing parental age and autism: multifactorial pathways. Trends Mol Med 2015; 21:118-25. [PMID: 25662027 DOI: 10.1016/j.molmed.2014.11.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 11/07/2014] [Accepted: 11/20/2014] [Indexed: 01/09/2023]
Abstract
Converging evidence from epidemiological, genetic, and animal studies supports the hypothesis that advancing parental age, both of the father and mother, increases the risk of autism spectrum disorders (ASD) in offspring. Paternal age has received considerable attention, with whole-genome sequencing studies linking older fathers to higher rates of de novo mutations and increased risk of ASD. The current evidence suggests that the increased risk of ASD in the offspring of older mothers may be related to mechanisms different from those operating in older fathers. Causal pathways probably involve the interaction of multiple risk factors. Although the etiology of ASD is still poorly understood, studies of parental age provide clues into the genetic and environ-mental mechanisms that mediate the risk of ASD.
Collapse
|
72
|
Wasilewska J, Klukowski M. Gastrointestinal symptoms and autism spectrum disorder: links and risks - a possible new overlap syndrome. Pediatric Health Med Ther 2015; 6:153-166. [PMID: 29388597 PMCID: PMC5683266 DOI: 10.2147/phmt.s85717] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Autism spectrum disorder (ASD) is a genetically determined neurodevelopmental brain disorder presenting with restricted, repetitive patterns of behaviors, interests, and activities, or persistent deficits in social communication and social interaction. ASD is characterized by many different clinical endophenotypes and is potentially linked with certain comorbidities. According to current recommendations, children with ASD are at risk of having alimentary tract disorders - mainly, they are at a greater risk of general gastrointestinal (GI) concerns, constipation, diarrhea, and abdominal pain. GI symptoms may overlap with ASD core symptoms through different mechanisms. These mechanisms include multilevel pathways in the gut-brain axis contributing to alterations in behavior and cognition. Shared pathogenetic factors and pathophysiological mechanisms possibly linking ASD and GI disturbances, as shown by most recent studies, include intestinal inflammation with or without autoimmunity, immunoglobulin E-mediated and/or cell-mediated GI food allergies as well as gluten-related disorders (celiac disease, wheat allergy, non-celiac gluten sensitivity), visceral hypersensitivity linked with functional abdominal pain, and dysautonomia linked with GI dysmotility and gastroesophageal reflux. Dysregulation of the gut microbiome has also been shown to be involved in modulating GI functions with the ability to affect intestinal permeability, mucosal immune function, and intestinal motility and sensitivity. Metabolic activity of the microbiome and dietary components are currently suspected to be associated with alterations in behavior and cognition also in patients with other neurodegenerative diseases. All the above-listed GI factors may contribute to brain dysfunction and neuroinflammation depending upon an individual patient's genetic vulnerability. Due to a possible clinical endophenotype presenting as comorbidity of ASD and GI disorders, we propose treating this situation as an "overlap syndrome". Practical use of the concept of an overlap syndrome of ASD and GI disorders may help in identifying those children with ASD who suffer from an alimentary tract disease. Unexplained worsening of nonverbal behaviors (agitation, anxiety, aggression, self-injury, sleep deprivation) should alert professionals about this possibility. This may shorten the time to diagnosis and treatment commencement, and thereby alleviate both GI and ASD symptoms through reducing pain, stress, or discomfort. Furthermore, this may also protect children against unnecessary dietary experiments and restrictions that have no medical indications. A personalized approach to each patient is necessary. Our understanding of ASDs has come a long way, but further studies and more systematic research are warranted.
Collapse
Affiliation(s)
- Jolanta Wasilewska
- Department of Pediatrics, Gastroenterology and Allergology, Medical University of Bialystok, Bialystok, Poland
| | - Mark Klukowski
- Department of Pediatrics, Gastroenterology and Allergology, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
73
|
van der Burg JW, Allred EN, Kuban K, O'Shea TM, Dammann O, Leviton A. Maternal obesity and development of the preterm newborn at 2 years. Acta Paediatr 2015; 104:900-3. [PMID: 25982514 DOI: 10.1111/apa.13038] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 04/14/2015] [Accepted: 05/07/2015] [Indexed: 11/28/2022]
Abstract
AIM To evaluate to what extent extremely preterm children (<28 weeks' gestational age) of overweight (BMI 25-29) or obese (BMI ≥30) women are at increased risk of adverse development at 2 years measured with the Bayley Scales of Infant Development II in a multicenter prospective cohort study. METHODS Heights and prepregnancy weights of the mothers of 852 preterm born children were collected and included in multinomial logistic regression models. RESULTS Compared to newborns born to mothers with normal BMIs, newborns of obese mothers, but not those of overweight mothers, were more likely to have Bayley Scales indices more than 3 standard deviations below the reference mean (mental: OR = 2.1; 95% CI: 1.3, 3.5) (motor: OR = 1.7; 95% CI: 1.1, 2.7). These associations were even more prominent in children who did not have the intermittent or sustained systemic inflammation profile previously shown to be associated with severely impaired development (mental: OR = 4.6; 95% CI: 1.6, 14) (motor: OR = 3.7; 95% CI: 1.5, 8.9). CONCLUSION Maternal obesity is associated with an increased risk of impaired offspring development. Some of this impaired development cannot be attributed to confounding due to immaturity, socio-economic correlates or neonatal systemic inflammation.
Collapse
Affiliation(s)
- Jelske W. van der Burg
- Health and Life Sciences; Faculty of Earth and Life Sciences; VU University; Amsterdam The Netherlands
- Department of Public Health and Community Medicine; Tufts University School of Medicine; Boston MA USA
| | - Elizabeth N. Allred
- Neuroepidemiology Unit; Department of Neurology; Boston Children's Hospital; Harvard University; Boston MA USA
| | - Karl Kuban
- Division of Neurology; Department of Pediatrics; Boston Medical Center and Boston University; Boston MA USA
| | - T Michael O'Shea
- Department of Pediatrics; Wake Forest University; Winston-Salem NC USA
| | - Olaf Dammann
- Department of Public Health and Community Medicine; Tufts University School of Medicine; Boston MA USA
- Neuroepidemiology Unit; Department of Neurology; Boston Children's Hospital; Harvard University; Boston MA USA
- Perinatal Epidemiology Unit; Hannover Medical School; Hannover Germany
| | - Alan Leviton
- Neuroepidemiology Unit; Department of Neurology; Boston Children's Hospital; Harvard University; Boston MA USA
| |
Collapse
|
74
|
Neurodevelopmental sequelae associated with gray and white matter changes and their cellular basis: A comparison between Autism Spectrum Disorder, ADHD and dyslexia. Int J Dev Neurosci 2015; 46:132-43. [PMID: 26456538 DOI: 10.1016/j.ijdevneu.2015.02.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 02/11/2015] [Accepted: 02/17/2015] [Indexed: 11/22/2022] Open
Abstract
Many psychiatric diseases, such as major depression and schizophrenia, are accompanied by patterns of gray matter and white matter changes in the cortex that may be due to structural pathologies of synapses and their dendrites in the gray matter on the one hand and to pathologies in myelinating oligodendrocytes on the other. Here the possibility has been briefly examined that such a generalization might also hold for Autistic Spectrum Disorders (ASD). Evidence is presented that gray matter changes that accompany ASD may in fact reflect changes in synapses and subsequently of their dendrites, whereas those in the white matter reflect changes in myelination due to pathologies of oligodendrocytes. It is proposed that such structural pathologies during development provide a coherent biological model not only for the onset and course of ASD but also provide the basis for development and systematic evaluation of new treatment strategies.
Collapse
|
75
|
Wink LK, Fitzpatrick S, Shaffer R, Melnyk S, Begtrup AH, Fox E, Schaefer TL, Mathieu-Frasier L, Ray B, Lahiri D, Horn PA, Erickson CA. The neurobehavioral and molecular phenotype of Angelman Syndrome. Am J Med Genet A 2015. [DOI: 10.1002/ajmg.a.37254] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Logan K. Wink
- Cincinnati Children's Hospital Medical Center; Cincinnati Ohio
| | | | - Rebecca Shaffer
- Cincinnati Children's Hospital Medical Center; Cincinnati Ohio
| | - Sophia Melnyk
- Cincinnati Children's Hospital Medical Center; Cincinnati Ohio
| | | | - Emma Fox
- Cincinnati Children's Hospital Medical Center; Cincinnati Ohio
| | | | | | - Balmiki Ray
- Indiana University School of Medicine; Indianapolis Indiana
| | - Debomoy Lahiri
- Indiana University School of Medicine; Indianapolis Indiana
| | - Paul A. Horn
- Cincinnati Children's Hospital Medical Center; Cincinnati Ohio
| | | |
Collapse
|
76
|
Molecular underpinnings of prefrontal cortex development in rodents provide insights into the etiology of neurodevelopmental disorders. Mol Psychiatry 2015; 20:795-809. [PMID: 25450230 PMCID: PMC4486649 DOI: 10.1038/mp.2014.147] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 09/12/2014] [Accepted: 09/17/2014] [Indexed: 12/20/2022]
Abstract
The prefrontal cortex (PFC), seat of the highest-order cognitive functions, constitutes a conglomerate of highly specialized brain areas and has been implicated to have a role in the onset and installation of various neurodevelopmental disorders. The development of a properly functioning PFC is directed by transcription factors, guidance cues and other regulatory molecules and requires the intricate and temporal orchestration of a number of developmental processes. Disturbance or failure of any of these processes causing neurodevelopmental abnormalities within the PFC may contribute to several of the cognitive deficits seen in patients with neurodevelopmental disorders. In this review, we elaborate on the specific processes underlying prefrontal development, such as induction and patterning of the prefrontal area, proliferation, migration and axonal guidance of medial prefrontal progenitors, and their eventual efferent and afferent connections. We furthermore integrate for the first time the available knowledge from genome-wide studies that have revealed genes linked to neurodevelopmental disorders with experimental molecular evidence in rodents. The integrated data suggest that the pathogenic variants in the neurodevelopmental disorder-associated genes induce prefrontal cytoarchitectonical impairments. This enhances our understanding of the molecular mechanisms of prefrontal (mis)development underlying the four major neurodevelopmental disorders in humans, that is, intellectual disability, autism spectrum disorders, attention deficit hyperactivity disorder and schizophrenia, and may thus provide clues for the development of novel therapies.
Collapse
|
77
|
Shorter KR, Felder MR, Vrana PB. Consequences of dietary methyl donor supplements: Is more always better? PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2015; 118:14-20. [PMID: 25841986 DOI: 10.1016/j.pbiomolbio.2015.03.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 03/11/2015] [Accepted: 03/13/2015] [Indexed: 11/16/2022]
Abstract
Epigenetic mechanisms are now recognized to play roles in disease etiology. Several diseases increasing in frequency are associated with altered DNA methylation. DNA methylation is accomplished through metabolism of methyl donors such as folate, vitamin B12, methionine, betaine (trimethylglycine), and choline. Increased intake of these compounds correlates with decreased neural tube defects, although this mechanism is not well understood. Consumption of these methyl donor pathway components has increased in recent years due to fortification of grains and high supplemental levels of these compounds (e.g. vitamins, energy drinks). Additionally, people with mutations in one of the enzymes that assists in the methyl donor pathway (5-MTHFR) are directed to consume higher amounts of methyl donors to compensate. Recent evidence suggests that high levels of methyl donor intake may also have detrimental effects. Individualized medicine may be necessary to determine the appropriate amounts of methyl donors to be consumed, particularly in women of child bearing age.
Collapse
Affiliation(s)
- Kimberly R Shorter
- University of Florida School of Medicine, Department of Psychiatry at the McKnight Brain Institute, 1149 Newell Drive, Gainesville, FL 32611, USA
| | - Michael R Felder
- University of South Carolina, Department of Biological Sciences, 715 Sumter Street, Columbia, SC 29208, USA; Peromyscus Genetic Stock Center, University of South Carolina, 715 Sumter Street, Columbia, SC 29208, USA
| | - Paul B Vrana
- University of South Carolina, Department of Biological Sciences, 715 Sumter Street, Columbia, SC 29208, USA; Peromyscus Genetic Stock Center, University of South Carolina, 715 Sumter Street, Columbia, SC 29208, USA.
| |
Collapse
|
78
|
Cieślińska A, Sienkiewicz-Szłapka E, Wasilewska J, Fiedorowicz E, Chwała B, Moszyńska-Dumara M, Cieśliński T, Bukało M, Kostyra E. Influence of candidate polymorphisms on the dipeptidyl peptidase IV and μ-opioid receptor genes expression in aspect of the β-casomorphin-7 modulation functions in autism. Peptides 2015; 65:6-11. [PMID: 25625371 DOI: 10.1016/j.peptides.2014.11.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 11/07/2014] [Accepted: 11/08/2014] [Indexed: 02/08/2023]
Abstract
Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder with population prevalence of approximately 60-70 per 10,000. Data shows that both opioid system function enhancement and opiate administration can result in autistic-like symptoms. Cow milk opioid peptides, including β-casomorphin-7 (BCM7, Tyr-Pro-Phe-Pro-Gly-Pro-Ile), affect the μ-opioid receptor (MOR) and are subjected to degradation resulting from the proline dipeptidyl peptidase IV (DPPIV, EC 3.4.14.5) enzyme activity. The presence of MOR and DPPIV activity are crucial factors determining biological activity of BCM7 in the human body. Our study examined the effect of β-casomorphin-7 on the MOR and DPPIV genes expression according to specific point mutations in these genes. In addition, we investigated frequency of A118G SNP in the MOR gene and rs7608798 of the DPPIV (A/G) gene in healthy and autistic children. Our research indicated correlation in DPPIV gene expression under the influence of BCM7 and hydrolyzed milk between healthy and ASD-affected children with genotype GG (P<0.0001). We also observed increased MOR gene expression in healthy children with genotype AG at polymorphic site A118G under influence of BCM7 and hydrolyzed milk. The G allele frequency was 0.09 in MOR gene and 0.68 in the DPPIV gene. But our results suggest no association between presence of the alleles G and A at position rs7608798 in DPPIV gene nor alleles A and G at position A118G of the MOR and increased incidence of ASD. Our studies emphasize the compulsion for genetic analysis in correlation with genetic factors affecting development and enhancement of autism symptoms.
Collapse
Affiliation(s)
- Anna Cieślińska
- Faculty of Biology and Biotechnology, University of Warmia and Mazury, Oczapowskiego 1A Street, 10-19 Olsztyn, Poland
| | - Edyta Sienkiewicz-Szłapka
- Faculty of Biology and Biotechnology, University of Warmia and Mazury, Oczapowskiego 1A Street, 10-19 Olsztyn, Poland
| | - Jolanta Wasilewska
- Department of Paediatrics, Gastroenterology and Allergology, Medical University of Białystok, Poland
| | - Ewa Fiedorowicz
- Faculty of Biology and Biotechnology, University of Warmia and Mazury, Oczapowskiego 1A Street, 10-19 Olsztyn, Poland
| | - Barbara Chwała
- Regional Children's Hospital in Olsztyn, Zolnierska 18 A Street, 10-561 Olsztyn, Poland
| | - Małgorzata Moszyńska-Dumara
- Center for Diagnosis, Treatment and Therapy of Autism at the Regional Children's Hospital in Olsztyn, Zolnierska 18 A Street, 10-561 Olsztyn, Poland
| | - Tomasz Cieśliński
- Center for Diagnosis, Treatment and Therapy of Autism at the Regional Children's Hospital in Olsztyn, Zolnierska 18 A Street, 10-561 Olsztyn, Poland
| | - Marta Bukało
- Faculty of Biology and Biotechnology, University of Warmia and Mazury, Oczapowskiego 1A Street, 10-19 Olsztyn, Poland
| | - Elżbieta Kostyra
- Faculty of Biology and Biotechnology, University of Warmia and Mazury, Oczapowskiego 1A Street, 10-19 Olsztyn, Poland.
| |
Collapse
|
79
|
King K, Murphy S, Hoyo C. Epigenetic regulation of Newborns' imprinted genes related to gestational growth: patterning by parental race/ethnicity and maternal socioeconomic status. J Epidemiol Community Health 2015; 69:639-47. [PMID: 25678712 DOI: 10.1136/jech-2014-204781] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 01/22/2015] [Indexed: 12/30/2022]
Abstract
BACKGROUND Children born to parents with lower income and education are at risk for obesity and later-life risk of common chronic diseases, and epigenetics has been hypothesised to link these associations. However, epigenetic targets are unknown. We focus on a cluster of well-characterised genomically imprinted genes because their monoallelic expression is regulated by DNA methylation at differentially methylated regions (DMRs), are critical in fetal growth, and DNA methylation patterns at birth have been associated with increased risk of birth weight extremes and overweight status or obesity in early childhood. METHODS We measured DNA methylation at DMRs regulating genomically imprinted domains (IGF2/H19, DLK1/MEG3, NNAT and PLAGL1) using umbilical cord blood leucocytes from 619 infants recruited in Durham, North Carolina in 2010-2011. We examined differences in DNA methylation levels by race/ethnicity of both parents, and the role that maternal socioeconomic status (SES) may play in the association between race/ethnic epigenetic differences. RESULTS Unadjusted race/ethnic differences only were evident for DMRs regulating MEG3 and IGF2; race/ethnic differences persisted in IGF2/H19 and NNAT after accounting for income and education. CONCLUSIONS Results suggest that parental factors may not only influence DNA methylation, but also do so in ways that vary by DMR. Findings support the hypothesis that epigenetics may link the observed lower SES during the prenatal period and poor outcomes such as low birth weight; lower birth weight has previously been associated with adult-onset chronic diseases and conditions that include cardiovascular diseases, diabetes, obesity and some cancers.
Collapse
Affiliation(s)
- Katherine King
- Environmental Public Health Division, U.S. Environmental Protection Agency, Chapel Hill, North Carolina, USA Department of Community and Family Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - Susan Murphy
- Department of Obstetrics and Gynecology, Duke University, Durham, North Carolina, USA
| | - Cathrine Hoyo
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
80
|
Main PA, Thomas P, Angley MT, Young R, Esterman A, King CE, Fenech MF. Lack of Evidence for Genomic Instability in Autistic Children as Measured by the Cytokinesis-Block Micronucleus Cytome Assay. Autism Res 2014; 8:94-104. [DOI: 10.1002/aur.1428] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 09/26/2014] [Indexed: 01/19/2023]
Affiliation(s)
- Penelope A.E. Main
- Sansom Institute of Health Research; University of South Australia; Adelaide Australia
- Department of Animal, Food and Health Sciences; Commonwealth Scientific and Industrial Research Organisation; Adelaide Australia
| | - Philip Thomas
- Department of Animal, Food and Health Sciences; Commonwealth Scientific and Industrial Research Organisation; Adelaide Australia
| | - Manya T. Angley
- Sansom Institute of Health Research; University of South Australia; Adelaide Australia
| | - Robyn Young
- Finders University of South Australia; Adelaide Australia
| | - Adrian Esterman
- School of Nursing and Midwifery; University of South Australia; Adelaide Australia
- Centre for Research Excellence in Chronic Disease; James Cook University; Townsville Australia
| | - Catherine E. King
- Sansom Institute of Health Research; University of South Australia; Adelaide Australia
| | - Michael F. Fenech
- Department of Animal, Food and Health Sciences; Commonwealth Scientific and Industrial Research Organisation; Adelaide Australia
| |
Collapse
|
81
|
Channell MM, Thurman AJ, Kover ST, Abbeduto L. Patterns of change in nonverbal cognition in adolescents with Down syndrome. RESEARCH IN DEVELOPMENTAL DISABILITIES 2014; 35:2933-41. [PMID: 25112795 PMCID: PMC4155014 DOI: 10.1016/j.ridd.2014.07.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 07/02/2014] [Accepted: 07/07/2014] [Indexed: 05/20/2023]
Abstract
This study was designed to examine longitudinal change in nonverbal cognitive abilities across adolescence for 20 males with Down syndrome (DS). We used hierarchical linear modeling to examine the rate of change in performance on the subtests of the Leiter-R Brief IQ across four annual time points and to determine the relation between maternal IQ and level and rate of change in performance. Results indicated no significant change in IQ (standard scores) with age in the sample, suggesting IQ stability during adolescence for individuals with DS, although several participants performed at floor level on the standard scores for the Leiter-R, limiting interpretation. Growth scores, however, provide a metric of absolute ability level, allow for the examination of change in Leiter-R performance in all participants, and minimize floor effects. Results from the analysis of growth scores indicated significant gain in absolute nonverbal cognitive ability levels (growth score values) over time for the adolescents with DS, although the growth varied by subdomain. Maternal IQ did not explain variability in cognitive performance or change in that performance over time in our sample of adolescents with DS.
Collapse
|
82
|
Abstract
Autism spectrum disorder (ASD) is a heterogeneous neurodevelopmental disorder of multifactorial origin. Today, ASD is generally not curable, although it is treatable to a varying degree to prevent worse outcomes. Some reports indicate the possibility of major improvements or even recovery in ASD. However, these studies are based on scientific shortcomings, and the lack of a clear definition of 'cure' in ASD further compromises interpretation of research findings. The development of animal models and decreasing costs of genome sequencing provide new options for treatment research and individualized medicine in ASD. This article briefly reviews several issues related to the question whether there is recovery from ASD, starting with a short overview of the presumed aetiologies.
Collapse
Affiliation(s)
- Sven Bölte
- Pediatric Neuropsychiatry Unit, Department of Women's and Children's Health, Center of Neurodevelopmental Disorders (KIND), Karolinska Institutet, Stockholm, Sweden; Division of Child and Adolescent Psychiatry, Stockholm County Council, Stockholm, Sweden
| |
Collapse
|
83
|
Braun CMJ, Roberge C. Gender-related protection from or vulnerability to severe CNS diseases: gonado-structural and/or gonado-activational? A meta-analysis of relevant epidemiological studies. Int J Dev Neurosci 2014; 38:36-51. [PMID: 25109841 DOI: 10.1016/j.ijdevneu.2014.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 07/29/2014] [Accepted: 07/30/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND A vast scientific literature has dealt with gender-specific risk for brain disorder. That field is evolving toward a consensus to the effect that the estrogen hormone family is outstandingly and uniquely neuroprotective. However, the epidemiology relevant to this general outlook remains piecemeal. METHOD The present investigation strategically formats the relevant epidemiological findings around the world in order to quantitatively meta-analyze gender ratio of risk for a variety of relevant severe central nervous system (CNS) diseases at all three gonadal stages of the life cycle, pre pubertal, post adolescent/pre menopausal, and post menopausal. RESULTS The data quantitatively establish that (1) no single epidemiological study should be cited as evidence of gender-specific neuroprotection against the most common severe CNS diseases because the gender-specific risk ratios are contradictory from one study to the other; (2) risk for severe CNS disease is indeed significantly gender-specific, but either gender can be protected: it depends on the disease, not at all on the age bracket. CONCLUSION Our assay of gender-specific risk for severe brain disease around the world has not been able to support the idea according to which any one gender-prevalent gonadal steroid hormone dominates as a neuroprotective agent at natural concentrations.
Collapse
Affiliation(s)
- Claude M J Braun
- Department of Psychology, Université du Québec à Montréal, Canada.
| | - Carl Roberge
- Department of Psychology, Université du Québec à Montréal, Canada
| |
Collapse
|
84
|
Tordjman S, Somogyi E, Coulon N, Kermarrec S, Cohen D, Bronsard G, Bonnot O, Weismann-Arcache C, Botbol M, Lauth B, Ginchat V, Roubertoux P, Barburoth M, Kovess V, Geoffray MM, Xavier J. Gene × Environment interactions in autism spectrum disorders: role of epigenetic mechanisms. Front Psychiatry 2014; 5:53. [PMID: 25136320 PMCID: PMC4120683 DOI: 10.3389/fpsyt.2014.00053] [Citation(s) in RCA: 165] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 05/02/2014] [Indexed: 01/03/2023] Open
Abstract
Several studies support currently the hypothesis that autism etiology is based on a polygenic and epistatic model. However, despite advances in epidemiological, molecular and clinical genetics, the genetic risk factors remain difficult to identify, with the exception of a few chromosomal disorders and several single gene disorders associated with an increased risk for autism. Furthermore, several studies suggest a role of environmental factors in autism spectrum disorders (ASD). First, arguments for a genetic contribution to autism, based on updated family and twin studies, are examined. Second, a review of possible prenatal, perinatal, and postnatal environmental risk factors for ASD are presented. Then, the hypotheses are discussed concerning the underlying mechanisms related to a role of environmental factors in the development of ASD in association with genetic factors. In particular, epigenetics as a candidate biological mechanism for gene × environment interactions is considered and the possible role of epigenetic mechanisms reported in genetic disorders associated with ASD is discussed. Furthermore, the example of in utero exposure to valproate provides a good illustration of epigenetic mechanisms involved in ASD and innovative therapeutic strategies. Epigenetic remodeling by environmental factors opens new perspectives for a better understanding, prevention, and early therapeutic intervention of ASD.
Collapse
Affiliation(s)
- Sylvie Tordjman
- Laboratoire Psychologie de la Perception, Université Paris Descartes, CNRS UMR 8158, Paris, France
- Pôle Hospitalo-Universitaire de Psychiatrie de l’Enfant et de l’Adolescent, Université de Rennes 1, Centre Hospitalier Guillaume Régnier, Rennes, France
| | - Eszter Somogyi
- Laboratoire Psychologie de la Perception, Université Paris Descartes, CNRS UMR 8158, Paris, France
| | - Nathalie Coulon
- Laboratoire Psychologie de la Perception, Université Paris Descartes, CNRS UMR 8158, Paris, France
| | - Solenn Kermarrec
- Laboratoire Psychologie de la Perception, Université Paris Descartes, CNRS UMR 8158, Paris, France
- Pôle Hospitalo-Universitaire de Psychiatrie de l’Enfant et de l’Adolescent, Université de Rennes 1, Centre Hospitalier Guillaume Régnier, Rennes, France
| | - David Cohen
- Department of Child and Adolescent Psychiatry, AP-HP, GH Pitié-Salpétrière, CNRS FRE 2987, University Pierre and Marie Curie, Paris, France
| | - Guillaume Bronsard
- Laboratoire de Santé Publique (EA3279), School of Medicine of La Timone, Marseille, France
| | - Olivier Bonnot
- Laboratoire Psychologie de la Perception, Université Paris Descartes, CNRS UMR 8158, Paris, France
| | - Catherine Weismann-Arcache
- Laboratoire Psychologie et Neurosciences de la Cognition et de l’Affectivité, Université de Rouen, Mont Saint Aignan, France
| | - Michel Botbol
- Laboratoire Psychologie de la Perception, Université Paris Descartes, CNRS UMR 8158, Paris, France
- Service Hospitalo-Universitaire de Psychiatrie de l’Enfant et de l’Adolescent, Université de Bretagne Occidentale, CHU de Brest, Brest, France
| | - Bertrand Lauth
- Department of Child and Adolescent Psychiatry, Landspitali University Hospital, University of Iceland, Reykjavik, Iceland
| | - Vincent Ginchat
- Department of Child and Adolescent Psychiatry, AP-HP, GH Pitié-Salpétrière, CNRS FRE 2987, University Pierre and Marie Curie, Paris, France
| | - Pierre Roubertoux
- Laboratoire de Génétique Médicale, Génomique Fonctionnelle, INSERM U 910, Université d’Aix-Marseille 2, Marseille, France
| | - Marianne Barburoth
- Laboratoire Psychologie de la Perception, Université Paris Descartes, CNRS UMR 8158, Paris, France
| | - Viviane Kovess
- Department of Epidemiology and Biostatistics, EHESP School for Public Health, EA 4057 University Paris Descartes, Paris, France
| | - Marie-Maude Geoffray
- Service Universitaire de Psychiatrie de l’Enfant et de l’Adolescent Hospitalier Le Vinatier, Bron, France
| | - Jean Xavier
- Department of Child and Adolescent Psychiatry, AP-HP, GH Pitié-Salpétrière, CNRS FRE 2987, University Pierre and Marie Curie, Paris, France
| |
Collapse
|
85
|
The Role of Heavy Metal Pollution in Neurobehavioral Disorders: a Focus on Autism. REVIEW JOURNAL OF AUTISM AND DEVELOPMENTAL DISORDERS 2014. [DOI: 10.1007/s40489-014-0028-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
86
|
Schaevitz L, Berger-Sweeney J, Ricceri L. One-carbon metabolism in neurodevelopmental disorders: using broad-based nutraceutics to treat cognitive deficits in complex spectrum disorders. Neurosci Biobehav Rev 2014; 46 Pt 2:270-84. [PMID: 24769289 DOI: 10.1016/j.neubiorev.2014.04.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 03/07/2014] [Accepted: 04/15/2014] [Indexed: 12/22/2022]
Abstract
Folate and choline, two nutrients involved in the one-carbon metabolic cycle, are intimately involved in regulating DNA integrity, synthesis, biogenic amine synthesis, and methylation. In this review, we discuss evidence that folate and choline play an important role in normal cognitive development, and that altered levels of these nutrients during periods of high neuronal proliferation and synaptogenesis can result in diminished cognitive function. We also discuss the use of these nutrients as therapeutic agents in a spectrum of developmental disorders in which intellectual disability is a prominent feature, such as in Fragile-X, Rett syndrome, Down syndrome, and Autism spectrum disorders. A survey of recent literature suggests that nutritional supplements have mild, but generally consistent, effects on improving cognition. Intervening with supplements earlier rather than later during development is more effective in improving cognitive outcomes. Given the mild improvements seen after treatments using nutrients alone, and the importance of the genetic profile of parents and offspring, we suggest that using nutraceutics early in development and in combination with other therapeutics are likely to have positive impacts on cognitive outcomes in a broad spectrum of complex neurodevelopmental disorders.
Collapse
Affiliation(s)
| | | | - Laura Ricceri
- Section of Neurotoxicology and Neuroendocrinology, Dept Cell Biology and Neuroscience, Istituto Superiore di Sanità, Rome, Italy.
| |
Collapse
|
87
|
Abstract
Neurodevelopmental disorders affect a substantial minority of the general population. Their origins are still largely unknown, but a complex interplay of genetic and environmental factors causing disturbances of the central nervous system's maturation and a variety of higher cognitive skills is presumed. Only limited research of rather small sample size and narrow scope has been conducted in neurodevelopmental disorders using a twin-differences design. The Roots of Autism and ADHD Twin Study in Sweden (RATSS) is an ongoing project targeting monozygotic twins discordant for categorical or dimensional autistic and inattentive/hyperactive-impulsive phenotypes as well as other neurodevelopmental disorders, and typically developing twin controls. Included pairs are 9 years of age or older, and comprehensively assessed for psychopathology, medical history, neuropsychology, and dysmorphology, as well as structural, functional, and molecular brain imaging. Specimens are collected for induced pluripotent (iPS) and neuroepithelial stem cells, genetic, gut bacteria, protein-/monoamine, and electron microscopy analyses. RATSS's objective is to generate a launch pad for novel surveys to understand the complexity of genotype-environment-phenotype interactions in autism spectrum disorder and attention-deficit hyperactivity disorder (ADHD). By October 2013, RATSS had collected data from 55 twin pairs, among them 10 monozygotic pairs discordant for autism spectrum disorder, seven for ADHD, and four for other neurodevelopmental disorders. This article describes the design, recruitment, data collection, measures, collected pairs' characteristics, as well as ongoing and planned analyses in RATSS. Potential gains of the study comprise the identification of environmentally mediated biomarkers, the emergence of candidates for drug development, translational modeling, and new leads for prevention of incapacitating outcomes.
Collapse
|
88
|
Methylomic analysis of monozygotic twins discordant for autism spectrum disorder and related behavioural traits. Mol Psychiatry 2014; 19:495-503. [PMID: 23608919 PMCID: PMC3906213 DOI: 10.1038/mp.2013.41] [Citation(s) in RCA: 207] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 01/21/2013] [Accepted: 03/06/2013] [Indexed: 12/16/2022]
Abstract
Autism spectrum disorder (ASD) defines a group of common, complex neurodevelopmental disorders. Although the aetiology of ASD has a strong genetic component, there is considerable monozygotic (MZ) twin discordance indicating a role for non-genetic factors. Because MZ twins share an identical DNA sequence, disease-discordant MZ twin pairs provide an ideal model for examining the contribution of environmentally driven epigenetic factors in disease. We performed a genome-wide analysis of DNA methylation in a sample of 50 MZ twin pairs (100 individuals) sampled from a representative population cohort that included twins discordant and concordant for ASD, ASD-associated traits and no autistic phenotype. Within-twin and between-group analyses identified numerous differentially methylated regions associated with ASD. In addition, we report significant correlations between DNA methylation and quantitatively measured autistic trait scores across our sample cohort. This study represents the first systematic epigenomic analyses of MZ twins discordant for ASD and implicates a role for altered DNA methylation in autism.
Collapse
|
89
|
Anderson G, Maes M. Redox Regulation and the Autistic Spectrum: Role of Tryptophan Catabolites, Immuno-inflammation, Autoimmunity and the Amygdala. Curr Neuropharmacol 2014; 12:148-67. [PMID: 24669209 PMCID: PMC3964746 DOI: 10.2174/1570159x11666131120223757] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2013] [Revised: 08/18/2013] [Accepted: 11/02/2013] [Indexed: 12/12/2022] Open
Abstract
The autistic spectrum disorders (ASD) form a set of multi-faceted disorders with significant genetic, epigenetic and environmental determinants. Oxidative and nitrosative stress (O&NS), immuno-inflammatory pathways, mitochondrial dysfunction and dysregulation of the tryptophan catabolite (TRYCATs) pathway play significant interactive roles in driving the early developmental etiology and course of ASD. O&NS interactions with immuno-inflammatory pathways mediate their effects centrally via the regulation of astrocyte and microglia responses, including regional variations in TRYCATs produced. Here we review the nature of these interactions and propose an early developmental model whereby different ASD genetic susceptibilities interact with environmental and epigenetic processes, resulting in glia biasing the patterning of central interarea interactions. A role for decreased local melatonin and N-acetylserotonin production by immune and glia cells may be a significant treatment target.
Collapse
Affiliation(s)
| | - Michael Maes
- Department of Psychiatry, Chulalongkorn University, Bangkok, Thailand
- Department of Psychiatry, Deakin University, Geelong, Australia
| |
Collapse
|
90
|
Epigenetic analysis of neurocognitive development at 1 year of age in a community-based pregnancy cohort. Behav Genet 2014; 44:113-25. [PMID: 24452678 DOI: 10.1007/s10519-014-9641-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 01/09/2014] [Indexed: 10/25/2022]
Abstract
Multiple studies show that molecular genetic changes and epigenetic modifications affect the risk of cognitive disability or impairment. However, the role of epigenetic variation in cognitive development of neurotypical young children remains largely unknown. Using data from a prospective, community-based study of mother-infant pairs, we investigated the association of DNA methylation patterns in neonatal umbilical cord blood with cognitive and language development at 1 year of age. No CpG loci achieved genome-wide significance, although a small number of weakly suggestive associations with Bayley-III Receptive Communication scales were noted. While umbilical cord blood is a convenient resource for genetic analyses of birth outcomes, our results do not provide conclusive evidence that its use for DNA methylation profiling yields epigenetic markers that are directly related to postnatal neurocognitive outcomes at 1 year of age.
Collapse
|
91
|
Stilling RM, Dinan TG, Cryan JF. Microbial genes, brain & behaviour - epigenetic regulation of the gut-brain axis. GENES BRAIN AND BEHAVIOR 2013; 13:69-86. [PMID: 24286462 DOI: 10.1111/gbb.12109] [Citation(s) in RCA: 437] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 11/13/2013] [Accepted: 11/25/2013] [Indexed: 12/12/2022]
Abstract
To date, there is rapidly increasing evidence for host-microbe interaction at virtually all levels of complexity, ranging from direct cell-to-cell communication to extensive systemic signalling, and involving various organs and organ systems, including the central nervous system. As such, the discovery that differential microbial composition is associated with alterations in behaviour and cognition has significantly contributed to establishing the microbiota-gut-brain axis as an extension of the well-accepted gut-brain axis concept. Many efforts have been focused on delineating a role for this axis in health and disease, ranging from stress-related disorders such as depression, anxiety and irritable bowel syndrome to neurodevelopmental disorders such as autism. There is also a growing appreciation of the role of epigenetic mechanisms in shaping brain and behaviour. However, the role of epigenetics in informing host-microbe interactions has received little attention to date. This is despite the fact that there are many plausible routes of interaction between epigenetic mechanisms and the host-microbiota dialogue. From this new perspective we put forward novel, yet testable, hypotheses. Firstly, we suggest that gut-microbial products can affect chromatin plasticity within their host's brain that in turn leads to changes in neuronal transcription and eventually alters host behaviour. Secondly, we argue that the microbiota is an important mediator of gene-environment interactions. Finally, we reason that the microbiota itself may be viewed as an epigenetic entity. In conclusion, the fields of (neuro)epigenetics and microbiology are converging at many levels and more interdisciplinary studies are necessary to unravel the full range of this interaction.
Collapse
|
92
|
Abstract
Epigenetics, the study of functionally relevant chemical modifications to DNA that do not involve a change in the DNA nucleotide sequence, is at the interface between research and clinical medicine. Research on epigenetic marks, which regulate gene expression independently of the underlying genetic code, has dramatically changed our understanding of the interplay between genes and the environment. This interplay alters human biology and developmental trajectories, and can lead to programmed human disease years after the environmental exposure. In addition, epigenetic marks are potentially heritable. In this article, we discuss the underlying concepts of epigenetics and address its current and potential applicability for primary care providers.
Collapse
Affiliation(s)
- Robert Wright
- FAAP, Departments of Preventive Medicine and Pediatrics, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Pl, Box 1057, New York, NY 10029.
| | | |
Collapse
|
93
|
Pedersen L, Parlar S, Kvist K, Whiteley P, Shattock P. Data mining the ScanBrit study of a gluten- and casein-free dietary intervention for children with autism spectrum disorders: behavioural and psychometric measures of dietary response. Nutr Neurosci 2013; 17:207-13. [PMID: 24075141 DOI: 10.1179/1476830513y.0000000082] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
We previously reported results based on the examination of a gluten- and casein-free diet as an intervention for children diagnosed with an autism spectrum disorder as part of the ScanBrit collaboration. Analysis based on grouped results indicated several significant differences between dietary and non-dietary participants across various core and peripheral areas of functioning. Results also indicated some disparity in individual responses to dietary modification potentially indicative of responder and non-responder differences. Further examination of the behavioural and psychometric data garnered from participants was undertaken, with a view to determining potential factors pertinent to response to dietary intervention. Participants with clinically significant scores indicative of inattention and hyperactivity behaviours and who had a significant positive changes to said scores were defined as responders to the dietary intervention. Analyses indicated several factors to be potentially pertinent to a positive response to dietary intervention in terms of symptom presentation. Chronological age was found to be the strongest predictor of response, where those participants aged between 7 and 9 years seemed to derive most benefit from dietary intervention. Further analysis based on the criteria for original study inclusion on the presence of the urine compound, trans-indolyl-3-acryloylglycine may also merit further investigation. These preliminary observations on potential best responder characteristics to a gluten- and casein-free diet for children with autism require independent replication.
Collapse
|
94
|
Hall L, Kelley E. The contribution of epigenetics to understanding genetic factors in autism. AUTISM : THE INTERNATIONAL JOURNAL OF RESEARCH AND PRACTICE 2013; 18:872-81. [PMID: 24126868 DOI: 10.1177/1362361313503501] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Autism spectrum disorder is a grouping of neurodevelopmental disorders characterized by deficits in social communication and language, as well as by repetitive and stereotyped behaviors. While the environment is believed to play a role in the development of autism spectrum disorder, there is now strong evidence for a genetic link to autism. Despite such evidence, studies investigating a potential single-gene cause for autism, although insightful, have been highly inconclusive. A consideration of an epigenetic approach proves to be very promising in clarifying genetic factors involved in autism. The present article is intended to provide a review of key findings pertaining to epigenetics in autism in such a way that a broader audience of individuals who do not have a strong background in genetics may better understand this highly specific and scientific content. Epigenetics refers to non-permanent heritable changes that alter expression of genes without altering the DNA sequence itself and considers the role of environment in this modulation of gene expression. This review provides a brief description of epigenetic processes, highlights evidence in the literature of epigenetic dysregulation in autism, and makes use of noteworthy findings to illustrate how a consideration of epigenetic factors can deepen our understanding of the development of autism. Furthermore, this discussion will present a promising new way for moving forward in the investigation of genetic factors within autism.
Collapse
|
95
|
Simmons RK, Stringfellow SA, Glover ME, Wagle AA, Clinton SM. DNA methylation markers in the postnatal developing rat brain. Brain Res 2013; 1533:26-36. [PMID: 23954679 PMCID: PMC3838910 DOI: 10.1016/j.brainres.2013.08.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 07/30/2013] [Accepted: 08/03/2013] [Indexed: 01/03/2023]
Abstract
In spite of intense interest in how altered epigenetic processes including DNA methylation may contribute to psychiatric and neurodevelopmental disorders, there is a limited understanding of how methylation processes change during early postnatal brain development. The present study used in situ hybridization to assess mRNA expression for the three major DNA methyltranserases (DNMTs)--DNMT1, DNMT3a and DNMT3b--in the developing rat brain at seven developmental timepoints: postnatal days (P) 1, 4, 7, 10, 14, 21, and 75. We also assessed 5-methylcytosine levels (an indicator of global DNA methylation) in selected brain regions during the first three postnatal weeks. DNMT1, DNMT3a and DNMT3b mRNAs are widely expressed throughout the adult and postnatal developing rat brain. Overall, DNMT mRNA levels reached their highest point in the first week of life and gradually decreased over the first three postnatal weeks within the hippocampus, amygdala, striatum, cingulate and lateral septum. Global DNA methylation levels did not follow this developmental pattern; methylation levels gradually increased over the first three postnatal weeks in the hippocampus, and remained stable in the developing amygdala and prefrontal cortex. Our results contribute to a growing understanding of how DNA methylation markers unfold in the developing brain, and highlight how these developmental processes may differ within distinct brain regions.
Collapse
Affiliation(s)
- Rebecca K. Simmons
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Sara A. Stringfellow
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Matthew E. Glover
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Anjali A. Wagle
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Sarah M. Clinton
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
96
|
Rangasamy S, D’Mello SR, Narayanan V. Epigenetics, autism spectrum, and neurodevelopmental disorders. Neurotherapeutics 2013; 10:742-56. [PMID: 24104594 PMCID: PMC3805864 DOI: 10.1007/s13311-013-0227-0] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Epigenetic marks are modifications of DNA and histones. They are considered to be permanent within a single cell during development, and are heritable across cell division. Programming of neurons through epigenetic mechanisms is believed to be critical in neural development. Disruption or alteration in this process causes an array of neurodevelopmental disorders, including autism spectrum disorders (ASDs). Recent studies have provided evidence for an altered epigenetic landscape in ASDs and demonstrated the central role of epigenetic mechanisms in their pathogenesis. Many of the genes linked to the ASDs encode proteins that are involved in transcriptional regulation and chromatin remodeling. In this review we highlight selected neurodevelopmental disorders in which epigenetic dysregulation plays an important role. These include Rett syndrome, fragile X syndrome, Prader-Willi syndrome, Angelman syndrome, and Kabuki syndrome. For each of these disorders, we discuss how advances in our understanding of epigenetic mechanisms may lead to novel therapeutic approaches.
Collapse
Affiliation(s)
- Sampathkumar Rangasamy
- />Developmental Neurogenetics Laboratory, Barrow Neurological Institute, Phoenix, AZ 85013 USA
| | | | - Vinodh Narayanan
- />Developmental Neurogenetics Laboratory, Barrow Neurological Institute, Phoenix, AZ 85013 USA
- />Developmental Neurogenetic Laboratory, Barrow Neurological Institute, Phoenix, AZ 85013 USA
| |
Collapse
|
97
|
Eran A, Li JB, Vatalaro K, McCarthy J, Rahimov F, Collins C, Markianos K, Margulies DM, Brown EN, Calvo SE, Kohane IS, Kunkel LM. Comparative RNA editing in autistic and neurotypical cerebella. Mol Psychiatry 2013; 18:1041-8. [PMID: 22869036 PMCID: PMC3494744 DOI: 10.1038/mp.2012.118] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 06/29/2012] [Accepted: 06/29/2012] [Indexed: 01/03/2023]
Abstract
Adenosine-to-inosine (A-to-I) RNA editing is a neurodevelopmentally regulated epigenetic modification shown to modulate complex behavior in animals. Little is known about human A-to-I editing, but it is thought to constitute one of many molecular mechanisms connecting environmental stimuli and behavioral outputs. Thus, comprehensive exploration of A-to-I RNA editing in human brains may shed light on gene-environment interactions underlying complex behavior in health and disease. Synaptic function is a main target of A-to-I editing, which can selectively recode key amino acids in synaptic genes, directly altering synaptic strength and duration in response to environmental signals. Here, we performed a high-resolution survey of synaptic A-to-I RNA editing in a human population, and examined how it varies in autism, a neurodevelopmental disorder in which synaptic abnormalities are a common finding. Using ultra-deep (>1000 × ) sequencing, we quantified the levels of A-to-I editing of 10 synaptic genes in postmortem cerebella from 14 neurotypical and 11 autistic individuals. A high dynamic range of editing levels was detected across individuals and editing sites, from 99.6% to below detection limits. In most sites, the extreme ends of the population editing distributions were individuals with autism. Editing was correlated with isoform usage, clusters of correlated sites were identified, and differential editing patterns examined. Finally, a dysfunctional form of the editing enzyme adenosine deaminase acting on RNA B1 was found more commonly in postmortem cerebella from individuals with autism. These results provide a population-level, high-resolution view of A-to-I RNA editing in human cerebella and suggest that A-to-I editing of synaptic genes may be informative for assessing the epigenetic risk for autism.
Collapse
Affiliation(s)
- Alal Eran
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA,Program in Genomics, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Jin Billy Li
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Kayla Vatalaro
- Program in Genomics, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Jillian McCarthy
- Program in Genomics, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Fedik Rahimov
- Program in Genomics, Boston Children’s Hospital, Boston, MA 02115, USA,Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Christin Collins
- Program in Genomics, Boston Children’s Hospital, Boston, MA 02115, USA,Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Kyriacos Markianos
- Program in Genomics, Boston Children’s Hospital, Boston, MA 02115, USA,Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - David M. Margulies
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA,Correlagen Diagnostics, Waltham, MA 02452, USA,Center for Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
| | - Emery N. Brown
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA,Neuroscience Statistics Research Laboratory, Department of Anesthesia and Critical Care, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA,Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA
| | - Sarah E. Calvo
- Broad Institute of Harvard and MIT, Cambridge, MA 02139, USA
| | - Isaac S. Kohane
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA,Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA,Center for Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA,Correspondence: Louis Kunkel, Program in Genomics, Department of Genetics, Boston Children’s Hospital, 3 Blackfan Circle, CLS 15027.1, Boston, MA 02115, USA. Telephone: (617) 355-6279, fax: (617) 730-0253, , Isaac Kohane, Department of Pediatrics, Boston Children's Hospital, 300 Longwood Ave., Enders 144, Boston, MA 02115, USA. Telephone: (617) 919-2182, fax: (617) 730-0921,
| | - Louis M. Kunkel
- Program in Genomics, Boston Children’s Hospital, Boston, MA 02115, USA,Department of Genetics, Harvard Medical School, Boston, MA 02115, USA,Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA,The Manton Center for Orphan Disease Research, Boston, MA 02115, USA,Correspondence: Louis Kunkel, Program in Genomics, Department of Genetics, Boston Children’s Hospital, 3 Blackfan Circle, CLS 15027.1, Boston, MA 02115, USA. Telephone: (617) 355-6279, fax: (617) 730-0253, , Isaac Kohane, Department of Pediatrics, Boston Children's Hospital, 300 Longwood Ave., Enders 144, Boston, MA 02115, USA. Telephone: (617) 919-2182, fax: (617) 730-0921,
| |
Collapse
|
98
|
Lyall K, Baker A, Hertz-Picciotto I, Walker CK. Infertility and its treatments in association with autism spectrum disorders: a review and results from the CHARGE study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2013; 10:3715-34. [PMID: 23965925 PMCID: PMC3774465 DOI: 10.3390/ijerph10083715] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 07/31/2013] [Accepted: 08/09/2013] [Indexed: 12/11/2022]
Abstract
Previous findings on relationships between infertility, infertility therapies, and autism spectrum disorders (ASD) have been inconsistent. The goals of this study are first, to briefly review this evidence and second, to examine infertility and its treatments in association with having a child with ASD in newly analyzed data. In review, we identified 14 studies published as of May 2013 investigating infertility and/or its treatments and ASD. Overall, prior results showed little support for a strong association, though some increases in risk with specific treatments were found; many limitations were noted. In new analyses of the CHildhood Autism Risk from Genetics and the Environment (CHARGE) population-based study, cases with autism spectrum disorder (ASD, n = 513) and controls confirmed to have typical development (n = 388) were compared with regard to frequencies of infertility diagnoses and treatments overall and by type. Infertility diagnoses and treatments were also grouped to explore potential underlying pathways. Logistic regression was used to obtain crude and adjusted odds ratios overall and, in secondary analyses, stratified by maternal age (≥35 years) and diagnostic subgroups. No differences in infertility, infertility treatments, or hypothesized underlying pathways were found between cases and controls in crude or adjusted analyses. Numbers were small for rarer therapies and in subgroup analyses; thus the potential for modest associations in specific subsets cannot be ruled out. However, converging evidence from this and other studies suggests that assisted reproductive technology is not a strong independent risk factor for ASD. Recommendations for future studies of this topic are provided.
Collapse
Affiliation(s)
- Kristen Lyall
- Department of Public Health Sciences, University of California Davis, One Shields Ave, Med-Sci 1C, Davis, CA 95616, USA; E-Mail:
| | - Alice Baker
- University of California Davis MIND Institute, 2825 50th Street, Sacramento, CA 95817, USA; E-Mails: (A.B.); (C.K.W.)
| | - Irva Hertz-Picciotto
- Department of Public Health Sciences, University of California Davis, One Shields Ave, Med-Sci 1C, Davis, CA 95616, USA; E-Mail:
- University of California Davis MIND Institute, 2825 50th Street, Sacramento, CA 95817, USA; E-Mails: (A.B.); (C.K.W.)
| | - Cheryl K. Walker
- University of California Davis MIND Institute, 2825 50th Street, Sacramento, CA 95817, USA; E-Mails: (A.B.); (C.K.W.)
- Department of Obstetrics and Gynecology, University of California Davis Health System, 4860 Y St., Suite 2500, Sacramento, CA 95817, USA
| |
Collapse
|
99
|
Ayissi VBO, Ebrahimi A, Schluesenner H. Epigenetic effects of natural polyphenols: a focus on SIRT1-mediated mechanisms. Mol Nutr Food Res 2013; 58:22-32. [PMID: 23881751 DOI: 10.1002/mnfr.201300195] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 05/12/2013] [Accepted: 05/14/2013] [Indexed: 12/21/2022]
Abstract
Polyphenols are a class of natural compounds widely distributed in fruits, vegetables, and plants. They have been reported to possess a wide range of activities in prevention and alleviation of various diseases like cancer, neuroinflammation, diabetes, and aging. Polyphenols are effective against chronic diseases and recent reports indicated strong epigenetic effects of polyphenols. Most of the studies investigating epigenetic effects of natural polyphenols have focused on their beneficial effects in cancer treatment. However, epigenetic defects have been demonstrated in many other diseases as well, and application of polyphenols to modulate the epigenome is becoming an interesting field of research. This review summarizes the effects of natural polyphenols in modulating epigenetic-related enzymes as well as their effect in prevention and treatment of chronic diseases with a focus on SIRT1 modulation. We have also discussed the relation between the structure and function of epigenetic-modifying polyphenols.
Collapse
Affiliation(s)
- Vincent B Owona Ayissi
- Division of Immunopathology of the Nervous System, Department of Neuropathology, Institute of Pathology, University of Tübingen, Tübingen, Germany; Laboratory of Pharmacology and Toxicology, University of Yaoundé I, Cameroon
| | | | | |
Collapse
|
100
|
Gesundheit B, Rosenzweig JP, Naor D, Lerer B, Zachor DA, Procházka V, Melamed M, Kristt DA, Steinberg A, Shulman C, Hwang P, Koren G, Walfisch A, Passweg JR, Snowden JA, Tamouza R, Leboyer M, Farge-Bancel D, Ashwood P. Immunological and autoimmune considerations of Autism Spectrum Disorders. J Autoimmun 2013; 44:1-7. [PMID: 23867105 DOI: 10.1016/j.jaut.2013.05.005] [Citation(s) in RCA: 126] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 05/26/2013] [Accepted: 05/30/2013] [Indexed: 12/22/2022]
Abstract
Autism Spectrum Disorders (ASD) are a group of heterogeneous neurodevelopmental conditions presenting in early childhood with a prevalence ranging from 0.7% to 2.64%. Social interaction and communication skills are impaired and children often present with unusual repetitive behavior. The condition persists for life with major implications for the individual, the family and the entire health care system. While the etiology of ASD remains unknown, various clues suggest a possible association with altered immune responses and ASD. Inflammation in the brain and CNS has been reported by several groups with notable microglia activation and increased cytokine production in postmortem brain specimens of young and old individuals with ASD. Moreover several laboratories have isolated distinctive brain and CNS reactive antibodies from individuals with ASD. Large population based epidemiological studies have established a correlation between ASD and a family history of autoimmune diseases, associations with MHC complex haplotypes, and abnormal levels of various inflammatory cytokines and immunological markers in the blood. In addition, there is evidence that antibodies that are only present in some mothers of children with ASD bind to fetal brain proteins and may be a marker or risk factor for ASD. Studies involving the injection of these ASD specific maternal serum antibodies into pregnant mice during gestation, or gestational exposure of Rhesus monkeys to IgG subclass of these antibodies, have consistently elicited behavioral changes in offspring that have relevance to ASD. We will summarize the various types of studies associating ASD with the immune system, critically evaluate the quality of these studies, and attempt to integrate them in a way that clarifies the areas of immune and autoimmune phenomena in ASD research that will be important indicators for future research.
Collapse
|