51
|
Sukowati CH, El-Khobar K, Jasirwan COM, Kurniawan J, Gani RA. Stemness markers in hepatocellular carcinoma of Eastern vs. Western population: Etiology matters? Ann Hepatol 2024; 29:101153. [PMID: 37734662 DOI: 10.1016/j.aohep.2023.101153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 08/22/2023] [Indexed: 09/23/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common cancers with a high mortality rate. HCC development is associated with its underlying etiologies, mostly caused by infection of chronic hepatitis B virus (HBV) and hepatitis C virus (HCV), alcohol, non-alcoholic fatty liver disease, and exposure to aflatoxins. These variables, together with human genetic susceptibility, contribute to HCC molecular heterogeneity, including at the cellular level. HCC initiation, tumor recurrence, and drug resistance rates have been attributed to the presence of liver cancer stem cells (CSC). This review summarizes available data regarding whether various HCC etiologies may be associated to the appearance of CSC biomarkers. It also described the genetic variations of tumoral tissues obtained from Western and Eastern populations, in particular to the oncogenic effect of HBV in the human genome.
Collapse
Affiliation(s)
- Caecilia Hc Sukowati
- Liver Cancer Unit, Fondazione Italiana Fegato ONLUS, AREA Science Park campus Basovizza, SS14 km 163.5, Trieste 34149, Italy; Eijkman Research Center for Molecular Biology, National Research and Innovation Agency of Indonesia (BRIN), B.J. Habibie Building, Jl. M.H. Thamrin No. 8, Jakarta Pusat 10340, Indonesia.
| | - Korri El-Khobar
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency of Indonesia (BRIN), B.J. Habibie Building, Jl. M.H. Thamrin No. 8, Jakarta Pusat 10340, Indonesia
| | - Chyntia Olivia Maurine Jasirwan
- Hepatobiliary Division, Medical Staff Group of Internal Medicine, Faculty of Medicine, Universitas Indonesia - Dr. Cipto Mangunkusumo General Hospital, Jl. Pangeran Diponegoro No.71, Jakarta 10430, Indonesia
| | - Juferdy Kurniawan
- Hepatobiliary Division, Medical Staff Group of Internal Medicine, Faculty of Medicine, Universitas Indonesia - Dr. Cipto Mangunkusumo General Hospital, Jl. Pangeran Diponegoro No.71, Jakarta 10430, Indonesia
| | - Rino Alvani Gani
- Hepatobiliary Division, Medical Staff Group of Internal Medicine, Faculty of Medicine, Universitas Indonesia - Dr. Cipto Mangunkusumo General Hospital, Jl. Pangeran Diponegoro No.71, Jakarta 10430, Indonesia
| |
Collapse
|
52
|
Yin H, Yan Z, Zhao F. Risk factors of hepatocellular carcinoma associated with nonalcoholic fatty liver disease: Systematic review and meta-analysis. Technol Health Care 2024; 32:3943-3954. [PMID: 39269862 PMCID: PMC11613056 DOI: 10.3233/thc-231331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 04/21/2024] [Indexed: 09/15/2024]
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is currently an important chronic liver disease threatening human life and health. OBJECTIVE To investigate the risk factors of hepatocellular carcinoma (HCC) associated with nonalcoholic fatty liver disease (NAFLD) by systematic review. METHODS We conducted a systematic review and meta-analysis. A systematic search of Chinese and English databases (PubMed, Web of Science, Cochrane Library, China national knowledge infrastructure (CNKI), Wanfang database, and VIP database) was performed until June 30, 2023. Studies were included to investigate the risk factors for HCC in patients with NAFLD. Quality evaluation was performed using the Newcastle-Ottawa Literature Quality Evaluation Scale, and then hazard ratios (HRs) for different influencing factors were combined. RESULTS We reviewed the results of 12 high-quality cohort studies involving 738,934 patients with NAFLD and 1,480 developed HCC. A meta-analysis based on a random-effects model showed that advanced age (HR = 1.81, 95% CI: 1.51-2.17), male gender (HR = 2.51, 95% CI: 1.67-3.78), hypertension (HR = 1.87, 95% CI: 1.05-3.33), and diabetes (HR = 2.27, 95% CI: 1.63-3.16) were risk factors for HCC in NAFLD, and the differences were statistically significant. However, there was no statistically significant effect of current smoking (HR = 1.45, 95% CI: 0.72-2.92) and dyslipidemia (HR = 1.03, 95% CI: 0.72-1.47) on HCC incidence in this study. CONCLUSION Age, sex, hypertension and diabetes are risk factors for HCC in NAFLD patients. Diabetic NAFLD patients have a 2.27-fold increased risk of HCC, and health education and intervention for elderly, male, NAFLD patients with diabetes and hypertension need to be strengthened to promote a reduction in the risk of HCC.
Collapse
Affiliation(s)
| | | | - Fangcheng Zhao
- Department of Infection, The Second Affiliated Hospital of Dalian Medical University, Liaoning, China
| |
Collapse
|
53
|
Danpanichkul P, Ng CH, Muthiah MD, Duangsonk K, Yong JN, Tan DJH, Lim WH, Wong ZY, Syn N, Tsusumi T, Takahashi H, Siddiqui MS, Wong VWS, Mantzoros CS, Huang DQ, Noureddin M, Loomba R, Sanyal AJ, Wijarnpreecha K. The silent burden of non-alcoholic fatty liver disease in the elderly: A global burden of disease analysis. Aliment Pharmacol Ther 2023; 58:1062-1074. [PMID: 37694808 DOI: 10.1111/apt.17714] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/25/2023] [Accepted: 08/30/2023] [Indexed: 09/12/2023]
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) represents a significant health threat worldwide. The growing trend towards an aging population, along with an alarming rise in obesity and diabetes, may have significant implications for the burden of NAFLD. AIM To assess the impact of NAFLD on the elderly. METHODS We utilised data from the Global Burden of Disease study between 2010 and 2019 to conduct a comprehensive analysis of the prevalence, mortality, and disability-adjusted life years (DALYs) associated with NAFLD in the elderly (65-89 years), stratified by region, nation, sociodemographic Index and sex. RESULTS Globally, there were an estimated 228 million cases, 87,230 deaths and 1.46 million DALYs attributed to NAFLD in the elderly. Geographically, the Western Pacific region had the highest burden of NAFLD in the elderly. From 2010 to 2019, there was an increasing prevalence rate in all areas, with the most pronounced change observed in the Western Pacific region (annual percentage change (APC) +0.95%, p < 0.001). Over the study period, there was a more rapid increase in NAFLD prevalence in men (APC +0.74%, p < 0.001) than in women (APC +0.63%, p < 0.001). In most regions, death and DALYs rates have declined, with the exception of the Americas, where there was a slight increase (APC +0.25%, p = 0.002 and 0.38%, p < 0.001, respectively). CONCLUSION Over the past decade, the burden of NAFLD in the elderly has been increasing, necessitating immediate and inclusive measures to tackle the rising burden.
Collapse
Affiliation(s)
- Pojsakorn Danpanichkul
- Immunology Unit, Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Cheng Han Ng
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Mark D Muthiah
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Division of Gastroenterology and Hepatology, Department of Medicine, National University Health System, Singapore
| | - Kwanjit Duangsonk
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Jie Ning Yong
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Darren Jun Hao Tan
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Wen Hui Lim
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Zhen Yu Wong
- Nottingham City Hospital, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Nicholas Syn
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Tsubasa Tsusumi
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Hirokazu Takahashi
- Division of Metabolism and Endocrinology, Faculty of Medicine, Saga University, Saga, Japan
| | - Mohammad Shadab Siddiqui
- Department of Internal Medicine, Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Vincent Wai-Sun Wong
- Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Christos S Mantzoros
- Department of Internal Medicine, Boston VA Healthcare System, and Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
- Faculty of Medicine, Harvard University, Boston, Massachusetts, USA
| | - Daniel Q Huang
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Division of Gastroenterology and Hepatology, Department of Medicine, National University Health System, Singapore
| | | | - Rohit Loomba
- NAFLD Research Center, Division of Gastroenterology, University of California at San Diego, La Jolla, California, USA
- Division of Epidemiology, Department of Family Medicine and Public Health, University of California at San Diego, La Jolla, California, USA
| | - Arun J Sanyal
- Department of Internal Medicine, Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Karn Wijarnpreecha
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Arizona College of Medicine, Phoenix, Arizona, USA
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Banner University Medical Center, Phoenix, Arizona, USA
| |
Collapse
|
54
|
Zhu Z, Hu X, Liu K, Li J, Fan K, Wang H, Wang L, He L, Ma Y, Guan R, Wang Z. E3 ubiquitin ligase Siah1 aggravates NAFLD through Scp2 ubiquitination. Int Immunopharmacol 2023; 124:110897. [PMID: 37696143 DOI: 10.1016/j.intimp.2023.110897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/23/2023] [Accepted: 08/31/2023] [Indexed: 09/13/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is one of the most common liver disorders and accompanied by multiple metabolic dysfunctions. Although excessive lipid accumulation in hepatocytes has been identified as a crucial mediator of NAFLD development, the underlying mechanisms are very complicated and remain largely unknown. In this study, we reported that upregulated expression of the seven in absentia homolog 1 (Siah1) in the liver exacerbated NAFLD progression. Conversely, Siah1 downregulation markedly alleviated the high fat diet-induced accumulation of hepatic fat and expression of genes related to lipid metabolism in vitro and in vivo. The mechanistic study revealed that Siah1 interacted with sterol carrier protein 2 (Scp2) and promotes its ubiquitination and degradation, suggesting that Siah1 is an important activator of Scp2 ubiquitination in the context of NAFLD. Our results demonstrated that Siah1 regulated the lipid accumulation in NAFLD by interacting with Scp2. Thus, this study presents Siah1 as a promising therapeutic target in the development of NAFLD.
Collapse
Affiliation(s)
- Zhu Zhu
- Department of Biological Sample Bank, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, PR China
| | - Xiao Hu
- Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan 450052, PR China; Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, PR China
| | - Kehan Liu
- Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan 450052, PR China; Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, PR China
| | - Jingpei Li
- Department of Thoracic Surgery/Oncology, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, PR China
| | - Kun Fan
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200000, PR China
| | - Huafei Wang
- Department of Biological Sample Bank, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, PR China
| | - Li Wang
- Department of Biological Sample Bank, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, PR China
| | - Lulu He
- Department of Biological Sample Bank, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, PR China
| | - Yihui Ma
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, PR China
| | - Ruijuan Guan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510000, PR China.
| | - Zhengyang Wang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, PR China.
| |
Collapse
|
55
|
Danpanichkul P, Kongarin S, Permpatdechakul S, Polpichai N, Duangsonk K, Manosroi W, Chaiyakunapruk N, Mousa OY, Kim D, Chen VL, Wijarnpreecha K. The Surreptitious Burden of Nonalcoholic Fatty Liver Disease in the Elderly in the Asia-Pacific Region: An Insight from the Global Burden of Disease Study 2019. J Clin Med 2023; 12:6456. [PMID: 37892594 PMCID: PMC10607093 DOI: 10.3390/jcm12206456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/28/2023] [Accepted: 10/08/2023] [Indexed: 10/29/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) represents a significant health threat worldwide. The aging population and a rise in metabolic syndrome in Asia might influence the epidemiology of NAFLD among the elderly. However, there is a lack of understanding of the burden and recommendations for NAFLD in this group. Our study sought to investigate the trends in the NAFLD burden among the elderly in the Asia-Pacific region. We employed data from the Global Burden of Disease 2019 study for an in-depth analysis of the prevalence and disability-adjusted life years (DALYs) along with age-standardized rate (ASR) associated with NAFLD in elderly populations (age 65-89 years) across the Asia-Pacific region, including the Southeast Asia (SEA) and Western Pacific (WP) regions, from 2010 to 2019. This study also examined the trends and disparities in NAFLD burden across different nations and sexes. In 2019, there were over 120 million cases of NAFLD in the elderly in the Asia-Pacific region. The ASR of prevalence was higher in SEA compared to WP (36,995.37 vs. 32,821.78 per 100,000). ASR of prevalence increased with annual percentage change (APC) +0.95% in the WP while it increased by +0.87% in SEA. During the study period, the ASR of DALYs decreased in SEA (APC -0.41%) but remained stable in the WP region. The burden of NAFLD in the elderly population in Asia-Pacific has increased, underscoring the timely intervention to tackle this high and rising burden.
Collapse
Affiliation(s)
- Pojsakorn Danpanichkul
- Immunology Unit, Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Siwanart Kongarin
- Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | | | - Natchaya Polpichai
- Department of Internal Medicine, Weiss Memorial Hospital, Chicago, IL 60640, USA;
| | - Kwanjit Duangsonk
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Worapaka Manosroi
- Division of Endocrinology, Department of Internal Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Clinical Epidemiology and Clinical Statistics Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nathorn Chaiyakunapruk
- Department of Pharmacotherapy, College of Pharmacy, University of Utah, Salt Lake City, UT 84112, USA;
- IDEAS Center, Veterans Affairs Salt Lake City Healthcare System, Salt Lake City, UT 84108, USA
| | - Omar Y. Mousa
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Mayo Clinic, Rochester, Mayo Clinic Health System, Rochester, MN 55902, USA
| | - Donghee Kim
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA 94305, USA;
| | - Vincent L. Chen
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 41809, USA
| | - Karn Wijarnpreecha
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Arizona College of Medicine, Phoenix, AZ 85004, USA
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Banner University Medical Center, Phoenix, AZ 85006, USA
| |
Collapse
|
56
|
Shahrani S, Gill SS, Sooi CY, Skantha R, Kumar CVC, Limun MF, Affendi NANM, Chuah KH, Khoo S, Rajaram RB, Chan WK, Mahadeva S. Frequency of significant steatosis and compensated advanced chronic liver disease among adults with chronic liver disease. J Gastroenterol Hepatol 2023; 38:1818-1822. [PMID: 37587719 DOI: 10.1111/jgh.16313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/31/2023] [Accepted: 07/19/2023] [Indexed: 08/18/2023]
Abstract
BACKGROUND With changes in the epidemiology and treatment of chronic liver disease (CLD), the impact of various etiologies of liver disease on steatosis and advanced fibrosis are uncertain. METHODS A retrospective study was conducted among liver disease patients of various etiologies undergoing transient elastography (TE) over a 9-year duration. RESULTS Data for 2886 patients were analyzed and had the following demographics: The median age was 60 (IQR: 45-69) years, 51% were males, and ethnicity was predominantly Chinese (52.5%), followed by Malays (34%) and Indians (12.3%). The median CAP score was 272 (IQR: 219-319) dB/m and the median liver stiffness measurement (LSM) score was 6.5 (IQR: 4.9-9.7) kPa. Hepatic steatosis occurred across the spectrum of etiologies of CLD. Among patients with steatosis, the most common etiologies were nonalcoholic fatty liver disease (NAFLD) at 62% and chronic hepatitis B (CHB) at 26.3%. TE findings suggestive of cACLD (10.1-15 kPa) and highly suggestive of cACLD (>15 kPa) were observed in 11.3% and 12.4% of patients, respectively. NAFLD was found to be the most common etiology for cases with suggestive of cACLD (47.2%) and highly suggestive of cACLD (41.5%). CONCLUSION Hepatic steatosis is common in CLD, regardless of etiology. Compared with other etiologies, NAFLD is now the leading cause of cACLD.
Collapse
Affiliation(s)
- Shahreedhan Shahrani
- Department of Medicine, University of Malaya Medical Centre, Kuala Lumpur, Malaysia
| | | | - Choong Yeong Sooi
- Department of Medicine, University of Malaya Medical Centre, Kuala Lumpur, Malaysia
| | - Ruben Skantha
- Department of Medicine, University of Malaya Medical Centre, Kuala Lumpur, Malaysia
| | | | - Mohd Fairul Limun
- Department of Medicine, University of Malaya Medical Centre, Kuala Lumpur, Malaysia
| | - Nik Arsyad Nik Muhamad Affendi
- Department of Medicine, University of Malaya Medical Centre, Kuala Lumpur, Malaysia
- Faculty of Medicine, International Islamic University, Kuantan, Malaysia
| | - Kee Huat Chuah
- Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Stanley Khoo
- Department of Medicine, University of Malaya Medical Centre, Kuala Lumpur, Malaysia
| | | | - Wah Kheong Chan
- Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Sanjiv Mahadeva
- Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
57
|
Miura K, Hayashi H, Kamada Y, Fujii H, Takahashi H, Oeda S, Iwaki M, Kawaguchi T, Tomita E, Yoneda M, Tokushige A, Ueda S, Aishima S, Sumida Y, Nakajima A, Okanoue T. Agile 3+ and Agile 4, noninvasive tests for liver fibrosis, are excellent formulae to predict liver-related events in nonalcoholic fatty liver disease. Hepatol Res 2023; 53:978-988. [PMID: 37353881 DOI: 10.1111/hepr.13938] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 06/11/2023] [Accepted: 06/13/2023] [Indexed: 06/25/2023]
Abstract
AIM The noninvasive tests (NITs) Agile 3+ and Agile 4 effectively identify patients with nonalcoholic fatty liver disease (NAFLD) complicated with advanced fibrosis (F3-4) and cirrhosis (F4), respectively. Little information is available on associations between Agile scores and intra-/extrahepatic events. The aim of this study was to determine the predictive performance of Agile scores for intra-/extrahepatic events in Asian patients with biopsy-proven NAFLD. METHODS We undertook a retrospective multicenter cohort study to investigate associations between intra-/extrahepatic events and two Agile scores, Agile 3+ and Agile 4. The scores were obtained by combining clinical parameters and liver stiffness measurement using transient elastography. RESULTS Among 403 enrolled patients, 11 had liver-related events (LREs), including seven with hepatocellular carcinoma (HCC). The incidence of LREs and HCC showed a stepwise increase in the advanced fibrosis group (F3-4), Agile 3+ rule-in (F3-4, highly suspected), and Agile 4 rule-in (F4, highly suspected) groups, compared to their counterparts. Hazard ratios for LREs in the advanced fibrosis group, Agile 3+ rule-in, and Agile 4 rule-in groups were 4.05 (p = 0.03), 23.5 (p = 0.003), and 45.5 (p < 0.001), respectively. The predictive performance results for Agile 3+ and Agile 4 were 0.780 and 0.866, respectively, which were higher than for fibrosis (0.595). Unlike for LREs, Agile scores failed to identify patients with extrahepatic events, including cardiovascular events and extrahepatic cancer. CONCLUSIONS Agile 3+ and Agile 4 scores are excellent NITs for predicting LREs in patients with NAFLD, possibly without histological assessment.
Collapse
Affiliation(s)
- Kouichi Miura
- Department of Medicine, Division of Gastroenterology, Jichi Medical University, Shimotsuke, Japan
| | - Hideki Hayashi
- Department of Gastroenterology and Hepatology, Gifu Municipal Hospital, Gifu, Japan
| | - Yoshihiro Kamada
- Department of Advanced Metabolic Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Hideki Fujii
- Department of Hepatology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | | | - Satoshi Oeda
- Liver Center, Saga University Hospital, Saga, Japan
| | - Michihiro Iwaki
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Takumi Kawaguchi
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Eiichi Tomita
- Department of Gastroenterology and Hepatology, Gifu Municipal Hospital, Gifu, Japan
| | - Masato Yoneda
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Akihiro Tokushige
- Department of Clinical Pharmacology and Therapeutics, University of the Ryukyus School of Medicine, Okinawa, Japan
| | - Shinichiro Ueda
- Department of Clinical Pharmacology and Therapeutics, University of the Ryukyus School of Medicine, Okinawa, Japan
| | - Shinichi Aishima
- Department of Pathology and Microbiology, Faculty of Medicine, Saga University, Saga, Japan
| | - Yoshio Sumida
- Graduate School of Healthcare and Welfare Management, International University of Healthcare and Welfare, Tokyo, Japan
| | - Atsushi Nakajima
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Takeshi Okanoue
- Department of Gastroenterology, Saiseikai Suita Hospital, Suita, Japan
| |
Collapse
|
58
|
Xi Y, Kim S, Nguyen TTT, Lee PJ, Zheng J, Lin Z, Cho N. 2-Geranyl-1-methoxyerythrabyssin II alleviates lipid accumulation and inflammation in hepatocytes through AMPK activation and AKT inhibition. Arch Pharm Res 2023; 46:808-824. [PMID: 37782374 DOI: 10.1007/s12272-023-01464-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 09/12/2023] [Indexed: 10/03/2023]
Abstract
A growing proportion of the global adult and pediatric populations are currently affected by nonalcoholic steatohepatitis (NASH), leading to rising rates of liver fibrosis and hepatocellular carcinoma without effective pharmacotherapy. Here, we investigated whether 2-geranyl-1-methoxyerythrabyssin II (GMET), isolated from Lespedeza bicolor, could alleviate lipid accumulation and inflammatory responses in a NASH model. GMET exhibited potent in vitro and in vivo effects against lipid accumulation and attenuated inflammatory responses without cytotoxicity. Mechanistically, GMET inhibits acetyl-CoA carboxylase (ACC), sterol regulatory element-binding proteins-1c (SREBP1), and mammalian target of rapamycin (mTOR), and activates PPARα by activating AMP-activated kinase (AMPK), leading to the alleviation of lipid accumulation. In addition, GMET suppresses the NF-κB pathway by activating AMPK and inhibiting the activated protein kinase B (AKT)/IκB-kinase (IKK) pathway, leading to the inhibition of the inflammatory response in hepatocytes. All these protective effects of GMET on lipid accumulation and inflammation in vivo and in vitro were largely abolished by co-treatment with dorsomorphin, an AMPK inhibitor. In conclusion, GMET alleviated lipid accumulation and inflammation to preserve normal hepatocyte function in steatohepatitis. Thus, GMET is a novel potential multi-targeting compound to improve steatohepatitis.
Collapse
Affiliation(s)
- Yiyuan Xi
- The Clinical Research Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chonnam National University, Gwangju, 61186, Korea
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Soeun Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chonnam National University, Gwangju, 61186, Korea
| | - Thi Thanh Thuy Nguyen
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chonnam National University, Gwangju, 61186, Korea
| | - Phil Jun Lee
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chonnam National University, Gwangju, 61186, Korea
| | - Jujia Zheng
- The Clinical Research Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Zhuofeng Lin
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| | - Namki Cho
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chonnam National University, Gwangju, 61186, Korea.
| |
Collapse
|
59
|
Gao B, Chen Z, Shi M, Mo Y, Xiao H, Xie Y, Lin M, Chi X. Research landscape and frontiers of non-alcoholic steatohepatitis-associated hepatocellular carcinoma: a bibliometric and visual analysis. Front Pharmacol 2023; 14:1240649. [PMID: 37771721 PMCID: PMC10523561 DOI: 10.3389/fphar.2023.1240649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 09/04/2023] [Indexed: 09/30/2023] Open
Abstract
Background: Due to the widespread prevalence of caloric excess and sedentary behavior on a global scale, there is a growing body of epidemiological evidence indicating that non-alcoholic steatohepatitis (NASH) has rapidly become a leading aetiology underlying of hepatocellular carcinoma (HCC). In light of the escalating incidence of NASH-associated HCC (NASH-HCC), it is imperative to mitigate the impending burden. While there has been an increase in global awareness regarding this issue, it has yet to be examined from a bibliometric standpoint. Therefore, this study seeks to provide a comprehensive bibliometric analysis to characterize the evolution of this field. Method: The present study utilized the Web of Science Core Collection (WoSCC) to identify publications pertaining to NASH-HCC over the past 2 decades. Employing Vosviewer 1.6.19, CiteSpace 6.2.R2, and the Analysis Platform of Bibliometrics, the study conducted an analysis of various dimensions including the quantity of publications, countries, institutions, journals, authors, co-references, keywords, and trend topics in this field. Results: A comprehensive analysis of 3,679 publications pertaining to NASH-HCC, published between 1 January 2002 and 1 April 2023, was conducted. The field in question experienced a rapid increase in publications, with the United States serving as the central hub. Collaboration between institutions was more extensive than that between countries. Notably, HEPATOLOGY (n = 30,168) emerged as the most impactful journal, and Zobair M. Younossi (n = 10,025) as the most frequently cited author in co-citations. The most commonly cited references were KLEINER DE, 2005, HEPATOLOGY (n = 630), followed by YOUNOSSI ZM, 2016, HEPATOLOGY (n = 493). The author keywords were categorized into three distinct clusters, namely, Cluster 1 (Mechanism), Cluster 2 (Factors), and Cluster 3 (Diagnosis). Analysis of high-frequency co-occurring keywords and topical trends revealed emphasis on molecular mechanisms in current research. "macrophages" and "tumor microenvironment" were active research hotspots at present in this field. Conclusion: A bibliometric analysis was performed for the first time on publications pertaining to non-alcoholic steatohepatitis-hepatocellular carcinoma, uncovering co-research networks, developmental trends, and current research hotspots. The emerging frontiers of this field focused on the macrophages and tumor microenvironment, especially the tumor-associated macrophages, offering a fresh perspective for future research directions.
Collapse
Affiliation(s)
- Bowen Gao
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhiheng Chen
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Meijie Shi
- Department of Hepatology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Yousheng Mo
- Department of Hepatology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Huanming Xiao
- Department of Hepatology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Yubao Xie
- Department of Hepatology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Ming Lin
- Department of Hepatology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Xiaoling Chi
- Department of Hepatology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| |
Collapse
|
60
|
Li Q, Wang W, Duan F, Wang Y, Chen S, Shi K, Xia Y, Li X, Gao Y, Liu G. DNMT3B Alleviates Liver Steatosis Induced by Chronic Low-grade LPS via Inhibiting CIDEA Expression. Cell Mol Gastroenterol Hepatol 2023; 17:59-77. [PMID: 37703946 PMCID: PMC10665944 DOI: 10.1016/j.jcmgh.2023.09.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 09/02/2023] [Accepted: 09/05/2023] [Indexed: 09/15/2023]
Abstract
BACKGROUND & AIMS Nonalcoholic fatty liver disease is the most prevalent chronic liver disease and threats to human health. Gut dysbiosis caused by lipopolysaccharide (LPS) leakage has been strongly related to nonalcoholic fatty liver disease progression, although the underlying mechanisms remain unclear. METHODS Previous studies have shown that low-grade LPS administration to mice on a standard, low-fat chow diet is sufficient to induce symptoms of fatty liver. This study confirmed these findings and supported LPS as a lipid metabolism regulator in the liver. RESULTS Mechanically, LPS induced dysregulated lipid metabolism by inhibiting the expression of DNA methyltransferases 3B (DNMT3B). Genetic overexpression of DNMT3B alleviated LPS-induced lipid accumulation, whereas its knockdown increased steatosis in mice and human hepatocytes. LPS-induced lower expression of DNMT3B led to hypomethylation in promoter region of CIDEA, resulting in increased binding of SREBP-1c to its promoter and activated CIDEA expression. Hepatic interference of CIDEA reversed the effect of LPS on lipogenesis. These effects were independent of a high-fat diet or high fatty acid action. CONCLUSIONS Overall, these findings sustain the conclusion that LPS is a lipogenic factor and could be involved in hepatic steatosis progression.
Collapse
Affiliation(s)
- Qiang Li
- Department of Cell Biology, School of Life Science, Bengbu Medical College, Anhui, China; Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Anhui, China.
| | - Wenjing Wang
- Department of Cell Biology, School of Life Science, Bengbu Medical College, Anhui, China
| | - Feifan Duan
- Department of Cell Biology, School of Life Science, Bengbu Medical College, Anhui, China
| | - Yaju Wang
- Department of Cell Biology, School of Life Science, Bengbu Medical College, Anhui, China
| | - Shuya Chen
- Department of Cell Biology, School of Life Science, Bengbu Medical College, Anhui, China
| | - Kangyun Shi
- Department of Cell Biology, School of Life Science, Bengbu Medical College, Anhui, China
| | - Yinyin Xia
- Department of Cell Biology, School of Life Science, Bengbu Medical College, Anhui, China
| | - Xinyu Li
- Department of Cell Biology, School of Life Science, Bengbu Medical College, Anhui, China
| | - Yu Gao
- Department of Cell Biology, School of Life Science, Bengbu Medical College, Anhui, China; Bengbu Medical College Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, Bengbu Medical College, Bengbu, China
| | - Guoquan Liu
- Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Anhui, China; Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical College, Anhui, China.
| |
Collapse
|
61
|
Wong VWS, Ekstedt M, Wong GLH, Hagström H. Changing epidemiology, global trends and implications for outcomes of NAFLD. J Hepatol 2023; 79:842-852. [PMID: 37169151 DOI: 10.1016/j.jhep.2023.04.036] [Citation(s) in RCA: 256] [Impact Index Per Article: 128.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/29/2023] [Accepted: 04/25/2023] [Indexed: 05/13/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) has rapidly become the most common liver disease globally and is currently estimated to affect 38% of the global population. Only a minority of patients with NAFLD will progress to cirrhosis or hepatocellular carcinoma, but from this vast population the total number of patients who are at risk of such severe outcomes is increasing. Worryingly, individuals are increasingly being affected by NAFLD at an earlier age, meaning there is more time for them to develop severe complications. With considerable changes in dietary composition and urbanisation, alongside the growth in obesity and type 2 diabetes in the global population, in particular in developing countries, the global proportion of persons affected by NAFLD is projected to increase further. Yet, there are large geographical discrepancies in the prevalence rates of NAFLD and its inflammatory component non-alcoholic steatohepatitis (NASH). Such differences are partly related to differing socio-economic milieus, but also to genetic predisposition. In this narrative review, we discuss recent changes in the epidemiology of NAFLD and NASH from regional and global perspectives, as well as in special populations. We also discuss the potential consequences of these changes on hepatic and extrahepatic events.
Collapse
Affiliation(s)
- Vincent Wai-Sun Wong
- Medical Data Analytics Center, Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong; State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong
| | - Mattias Ekstedt
- Department of Gastroenterology and Hepatology, Department of Health, Medicine, and Caring Sciences, Linköping University, Linköping, Sweden
| | - Grace Lai-Hung Wong
- Medical Data Analytics Center, Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong; State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong.
| | - Hannes Hagström
- Department of Medicine, Huddinge, Karolinska Institutet, Stockholm, Sweden; Division of Hepatology, Department of Upper GI Diseases, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
62
|
Wu CWK, Wong GLH, Wong VWS, Yam TF, Yip TCF, Wong ACH, Chan BWN, Fong MML, Lai JCT, Tse YK, Lee KF, Mok TSK, Chan HLY, Lui RNS, Chan SL, Ng KKC. Baveno VII criteria identify varices needing treatment in patients with hepatocellular carcinoma of different Barcelona Clinic Liver Cancer stages. J Gastroenterol Hepatol 2023; 38:1381-1388. [PMID: 37218373 DOI: 10.1111/jgh.16218] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 04/13/2023] [Accepted: 05/03/2023] [Indexed: 05/24/2023]
Abstract
BACKGROUND Baveno VII criteria for predicting varices needing treatment (VNT) have not been tested in hepatocellular carcinoma (HCC) population. We evaluated Baveno VII consensus for VNT in HCC patients of different stages according to Barcelona Clinic Liver Cancer (BCLC) stages undergoing curative hepatectomy. METHODS This was a prospective cohort study of patients with HCC. Patients underwent transient elastography examination before HCC treatment and received at least one upper endoscopic examination afterwards. Patients were prospectively followed for clinical events including VNT. RESULTS Six hundred and seventy-three patients (83.1% male, median age 62 years) with HCC of BCLC stage 0 (10%), A (57%), B (17%) and C (15%) were recruited and followed for 47 months. The median (range) LSM was 10.5 (6.9-20.4) kPa; 74% had LSM ≤ 20 kPa and 58% had platelet count ≥150 × 10/L, respectively. VNT occurred in 51 (7.6%) patients. In patients who fulfilled Baveno VII criteria, that is, LSM ≤ 20 kPa and platelet count above 150 × 10/L, only 11 (1.6%) patients had VNT. In all BCLC stages of HCC, the proportion of patients with VNT was below 5%, which support the validity and applicability of Baveno VII criteria in all BCLC stages of HCC. CONCLUSIONS The Baveno VII criteria are valid and applicable in HCC patients undergoing curative hepatectomy for selecting patients to undergo screening endoscopy for VNT. The validity was consistent across different BCLC stages of HCC.
Collapse
Affiliation(s)
- Claudia Wing-Kwan Wu
- Medical Data Analytics Centre, The Chinese University of Hong Kong, Hong Kong SAR, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
- Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Grace Lai-Hung Wong
- Medical Data Analytics Centre, The Chinese University of Hong Kong, Hong Kong SAR, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
- Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Vincent Wai-Sun Wong
- Medical Data Analytics Centre, The Chinese University of Hong Kong, Hong Kong SAR, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
- Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Tsz-Fai Yam
- Medical Data Analytics Centre, The Chinese University of Hong Kong, Hong Kong SAR, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
- Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Terry Cheuk-Fung Yip
- Medical Data Analytics Centre, The Chinese University of Hong Kong, Hong Kong SAR, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
- Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Angus Chun-Hei Wong
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Brian Wai-Nok Chan
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Matthew Man-Lok Fong
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jimmy Che-To Lai
- Medical Data Analytics Centre, The Chinese University of Hong Kong, Hong Kong SAR, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
- Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yee-Kit Tse
- Medical Data Analytics Centre, The Chinese University of Hong Kong, Hong Kong SAR, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
- Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Kit-Fai Lee
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Tony Shu-Kam Mok
- State Key Laboratory of Translational Oncology, Department of Clinical Oncology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Henry Lik-Yuen Chan
- Medical Data Analytics Centre, The Chinese University of Hong Kong, Hong Kong SAR, China
- Union Hospital, Hong Kong SAR, China
| | - Rashid Nok-Shun Lui
- Medical Data Analytics Centre, The Chinese University of Hong Kong, Hong Kong SAR, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
- Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Stephen Lam Chan
- State Key Laboratory of Translational Oncology, Department of Clinical Oncology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Kelvin Kwok-Chai Ng
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
63
|
Chen Y, Zhu Z, Zhang L, Wang J, Ren H. Roles of N6-methyladenosine epitranscriptome in non-alcoholic fatty liver disease and hepatocellular carcinoma. SMART MEDICINE 2023; 2:e20230008. [PMID: 39188344 PMCID: PMC11235706 DOI: 10.1002/smmd.20230008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/26/2023] [Indexed: 08/28/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a typical chronic liver disease connected to a high risk of developing hepatocellular carcinoma (HCC). The development of NAFLD and HCC has been associated with changes in epigenetics, such as histone modifications and micro RNA (miRNA)-mediated processes. Recently, in the realm of epitranscriptomics, RNA alterations have become important regulators. N6-methyladenosine (m6A) is the most common and crucial alteration for controlling mRNA stability, splicing, and translation. It is particularly important for controlling liver disease progression and hepatic function. This review aims to conclude recent research on the functions of m6A epitranscriptome in the molecular mechanisms behind NAFLD and HCC development, with special attention to the effects of m6A alteration on how HCC develops and its possible roles in the progression of NAFLD to HCC. Additionally, the review discusses the possible effects of m6A alteration on the treatment and diagnostic of NAFLD and HCC. It is crucial to remember that m6A modification is a reversible action controlled via the coordinated functions of the proteins that write and delete, enabling quick adaptability to environmental changes. The review also discusses m6A-binding proteins' function in mRNA alternative splicing, translation, and degradation and their ability to modulate mRNA stability and processing. Understanding RNA modification regulation and its part in the emergence of HCC and NAFLD may provide new avenues for diagnosing and treating these diseases.
Collapse
Affiliation(s)
- Yuyan Chen
- Department of Hepatobiliary SurgeryNanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
| | - Zhengyi Zhu
- Department of Hepatobiliary SurgeryNanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
| | - Lu Zhang
- Department of Hepatobiliary SurgeryNanjing Drum Tower Hospital Clinical College of Xuzhou Medical UniversityNanjingChina
| | - Jinglin Wang
- Department of Hepatobiliary SurgeryNanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
- Department of Hepatobiliary SurgeryNanjing Drum Tower Hospital Clinical College of Xuzhou Medical UniversityNanjingChina
| | - Haozhen Ren
- Department of Hepatobiliary SurgeryNanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
- Department of Hepatobiliary SurgeryNanjing Drum Tower Hospital Clinical College of Xuzhou Medical UniversityNanjingChina
| |
Collapse
|
64
|
Liu X, Wang K, Wang L, Kong L, Hou S, Wan Y, Ma C, Chen J, Xing X, Xing C, Jiang Q, Zhao Q, Cui B, Huang Z, Li P. Hepatocyte leukotriene B4 receptor 1 promotes NAFLD development in obesity. Hepatology 2023; 78:562-577. [PMID: 35931467 DOI: 10.1002/hep.32708] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 01/04/2023]
Abstract
BACKGROUND AND AIMS NAFLD is the most prevalent chronic liver disease worldwide and has emerged as a serious public health issue with no approved treatment. The development of NAFLD is strongly associated with hepatic lipid content, and patients with NAFLD have significantly higher rates of hepatic de novo lipogenesis (DNL) than lean individuals. Leukotriene B4 (LTB4), a metabolite of arachidonic acid, is dramatically increased in obesity and plays important role in proinflammatory cytokine production and insulin resistance. But the role of liver LTB4/LTB4 receptor 1 (Ltb4r1) in lipid metabolism is unclear. APPROACH AND RESULTS Hepatocyte-specific knockout (HKO) of Ltb4r1 improved hepatic steatosis and systemic insulin resistance in both diet-induced and genetically induced obese mice. The mRNA level of key enzymes involved in DNL and fatty acid esterification decreased in Ltb4r1 HKO obese mice. LTB4/Ltb4r1 directly promoted lipogenesis in HepG2 cells and primary hepatocytes. Mechanically, LTB4/Ltb4r1 promoted lipogenesis by activating the cAMP-protein kinase A (PKA)-inositol-requiring enzyme 1α (IRE1α)-spliced X-box-binding protein 1 (XBP1s) axis in hepatocytes, which in turn promoted the expression of lipogenesis genes regulated by XBP1s. In addition, Ltb4r1 suppression through the Ltb4r1 inhibitor or lentivirus-short hairpin RNA delivery alleviated the fatty liver phenotype in obese mice. CONCLUSIONS LTB4/Ltb4r1 promotes hepatocyte lipogenesis directly by activating PKA-IRE1α-XBP1s to promote lipogenic gene expression. Inhibition of hepatocyte Ltb4r1 improved hepatic steatosis and insulin resistance. Ltb4r1 is a potential therapeutic target for NAFLD.
Collapse
Affiliation(s)
- Xingfeng Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica , Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing , China
- Diabetes Research Center of the Chinese Academy of Medical Sciences , Beijing , China
- CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis , Beijing , China
| | - Kai Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica , Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing , China
- Diabetes Research Center of the Chinese Academy of Medical Sciences , Beijing , China
- CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis , Beijing , China
| | - Luhai Wang
- School of Pharmaceutical Sciences , Wenzhou Medical University , Wenzhou , Zhejiang , China
| | - Lijuan Kong
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica , Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing , China
- Diabetes Research Center of the Chinese Academy of Medical Sciences , Beijing , China
- CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis , Beijing , China
| | - Shaocong Hou
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica , Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing , China
- Diabetes Research Center of the Chinese Academy of Medical Sciences , Beijing , China
- CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis , Beijing , China
| | - Yanjun Wan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica , Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing , China
- Diabetes Research Center of the Chinese Academy of Medical Sciences , Beijing , China
- CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis , Beijing , China
| | - Chunxiao Ma
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica , Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing , China
- Diabetes Research Center of the Chinese Academy of Medical Sciences , Beijing , China
- CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis , Beijing , China
| | - Jingwen Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica , Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing , China
- Diabetes Research Center of the Chinese Academy of Medical Sciences , Beijing , China
- CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis , Beijing , China
| | - Xiaowei Xing
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica , Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing , China
- Diabetes Research Center of the Chinese Academy of Medical Sciences , Beijing , China
- CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis , Beijing , China
| | - Caiyi Xing
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica , Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing , China
- Diabetes Research Center of the Chinese Academy of Medical Sciences , Beijing , China
- CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis , Beijing , China
| | - Qian Jiang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica , Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing , China
- Diabetes Research Center of the Chinese Academy of Medical Sciences , Beijing , China
- CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis , Beijing , China
| | - Qijin Zhao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica , Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing , China
- Diabetes Research Center of the Chinese Academy of Medical Sciences , Beijing , China
- CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis , Beijing , China
| | - Bing Cui
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica , Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing , China
| | - Zhifeng Huang
- School of Pharmaceutical Sciences , Wenzhou Medical University , Wenzhou , Zhejiang , China
| | - Pingping Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica , Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing , China
- Diabetes Research Center of the Chinese Academy of Medical Sciences , Beijing , China
- CAMS Key Laboratory of Molecular Mechanism and Target Discovery of Metabolic Disorder and Tumorigenesis , Beijing , China
| |
Collapse
|
65
|
Abdalla MMI. Serum resistin and the risk for hepatocellular carcinoma in diabetic patients. World J Gastroenterol 2023; 29:4271-4288. [PMID: 37545641 PMCID: PMC10401662 DOI: 10.3748/wjg.v29.i27.4271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/11/2023] [Accepted: 06/27/2023] [Indexed: 07/13/2023] Open
Abstract
Hepatocellular carcinoma (HCC), the predominant type of liver cancer, is a major contributor to cancer-related fatalities across the globe. Diabetes has been identified as a significant risk factor for HCC, with recent research indicating that the hormone resistin could be involved in the onset and advancement of HCC in diabetic individuals. Resistin is a hormone that is known to be involved in inflammation and insulin resistance. Patients with HCC have been observed to exhibit increased resistin levels, which could be correlated with more severe disease stages and unfavourable prognoses. Nevertheless, the exact processes through which resistin influences the development and progression of HCC in diabetic patients remain unclear. This article aims to examine the existing literature on the possible use of resistin levels as a biomarker for HCC development and monitoring. Furthermore, it reviews the possible pathways of HCC initiation due to elevated resistin and offers new perspectives on comprehending the fundamental mechanisms of HCC in diabetic patients. Gaining a better understanding of these processes may yield valuable insights into HCC’s development and progression, as well as identify possible avenues for prevention and therapy.
Collapse
Affiliation(s)
- Mona Mohamed Ibrahim Abdalla
- Department of Human Biology, School of Medicine, International Medical University, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| |
Collapse
|
66
|
Zhang Y, Liang X, Lian Q, Liu L, Zhang B, Dong Z, Liu K. Transcriptional analysis of the expression and prognostic value of lipid droplet-localized proteins in hepatocellular carcinoma. BMC Cancer 2023; 23:677. [PMID: 37464334 DOI: 10.1186/s12885-023-10987-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 05/20/2023] [Indexed: 07/20/2023] Open
Abstract
The accumulation of lipid droplets (LDs) in hepatocytes is the main pathogenesis in nonalcoholic fatty liver disease (NAFLD), which is also the key risk factor for the progression of hepatocellular carcinoma (HCC). LDs behaviors are demonstrated to be associated with HCC advancement, and are tightly regulated by a subset protein localized on the surface of LDs. However, the role of LDs-localized protein in HCC has been rarely investigated. This study is focused on the transcriptional dynamic and prognostic value of LDs-localized protein in HCC. Firstly, we summarized the known LDs-localized proteins, which are demonstrated by immunofluorescence according to previous studies. Next, by the use of GEPIA/UALCAN/The Human Protein Atlas databases, we screened the transcriptional change in tumor and normal liver tissues, and found that 13 LDs-localized proteins may involve in the progression of HCC. Then we verified the transcriptional changes of 13 LDs-localized proteins by the use of HCC samples. Moreover, based on the assays of fatty liver of mice and human NAFLD liver samples, we found that the hepatic steatosis mainly contributed to the transcriptional change of selected LDs-localized proteins, indicating the involvement of these LDs-localized proteins in the negative role of NAFLD in HCC progression. Finally, we focused on the role of PLIN3 in HCC, and revealed that NAFLD status significantly promoted PLIN3 transcription in HCC tissue. Functional studies revealed that PLIN3 knockdown significantly limited the migration and chemosensitivity of hepatoma cells, suggesting the positive role of PLIN3 in HCC progression. Our study not only revealed the transcriptional change and prognostic value of lipid droplet-localized proteins in HCC, but also built the correlation between HCC and hepatic steatosis.
Collapse
Affiliation(s)
- Yize Zhang
- Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Gene Hospital of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xue Liang
- School of Life Science, Beijing University of Chinese Medicine, Beijing, China
| | - Qinghai Lian
- Cell-gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Liwen Liu
- Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Gene Hospital of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Baoyu Zhang
- Department of Neurosurgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| | - Zihui Dong
- Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
- Gene Hospital of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Kunpeng Liu
- Cell-gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
- School of Medicine, Guangxi University, Nanning, Guangxi, China.
| |
Collapse
|
67
|
Younossi ZM, Wong G, Anstee QM, Henry L. The Global Burden of Liver Disease. Clin Gastroenterol Hepatol 2023; 21:1978-1991. [PMID: 37121527 DOI: 10.1016/j.cgh.2023.04.015] [Citation(s) in RCA: 164] [Impact Index Per Article: 82.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 04/09/2023] [Accepted: 04/23/2023] [Indexed: 05/02/2023]
Abstract
Chronic liver disease (CLD) and its associated complications (cirrhosis and liver cancer) cause significant mortality, morbidity, and economic burden. Published data from the World Health Organization and/or the Global Burden of Disease show that the burden of CLD is large and increasing, primarily owing to the increasing burden of nonalcoholic fatty liver disease and alcohol-related liver disease (ALD). Middle Eastern, Northern African, and Asian regions of the globe are most affected by hepatitis B and hepatitis C virus. Furthermore, Middle Eastern and North African regions also are affected by nonalcoholic fatty liver disease, and Eastern European, West African, and Central Asian regions are affected by ALD. In this context, the rate of increase for cirrhosis is highest in the Middle East, as well as in middle high and high sociodemographic index (SDI) regions. On the other hand, the highest SDI countries are experiencing increasing rates of hepatocellular carcinoma (HCC). Assessing HCC burden based on country and etiology shows that China, Korea, India, Japan, and Thailand have the highest hepatitis B virus-related HCC cases, while China, Japan, and the United States have the highest hepatitis C virus-related HCC cases. Additionally, the United States has the highest ALD-related HCC cases, while India, the United States, and Thailand have the highest nonalcoholic steatohepatitis-related HCC cases. Although the burden of CLD is increasing globally, regions of the world are impacted differently as a result of a number of sociodemographic factors.
Collapse
Affiliation(s)
- Zobair M Younossi
- Betty and Guy Beatty Center for Integrated Research, Inova Health System, Falls Church, Virginia; Center for Liver Disease, Department of Medicine, Inova Fairfax Medical Campus, Falls Church, Virginia; Inova Medicine, Inova Health System, Falls Church, Virginia.
| | - Grace Wong
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong
| | - Quentin M Anstee
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom; Newcastle National Institute Health and Care Research Biomedical Research Centre, Newcastle upon Tyne Hospitals National Health Service Trust, Newcastle upon Tyne, United Kingdom
| | - Linda Henry
- Betty and Guy Beatty Center for Integrated Research, Inova Health System, Falls Church, Virginia; Inova Medicine, Inova Health System, Falls Church, Virginia; Center for Outcomes Research in Liver Disease, Washington, District of Columbia
| |
Collapse
|
68
|
Li J, Kou C, Sun T, Liu J, Zhang H. Identification and Validation of Hub Immune-Related Genes in Non-Alcoholic Fatty Liver Disease. Int J Gen Med 2023; 16:2609-2621. [PMID: 37362825 PMCID: PMC10289249 DOI: 10.2147/ijgm.s413545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/10/2023] [Indexed: 06/28/2023] Open
Abstract
Background Nonalcoholic fatty liver disease (NAFLD) is the most common progressive liver disease worldwide. It can cause liver cancer and possibly death. Abnormal immune infiltration is involved in the progression of NAFLD. The aim of this study was to identify and validate the hub immune-related genes in NAFLD. Methods Microarray data were downloaded from Gene Expression Omnibus, and immune-related differentially expressed genes (IRDEGs) were obtained. A protein-protein interaction network was used to further screen. The diagnostic value of the IRDEGs was evaluated by receiver operating characteristic curves. Differences in immune infiltration levels were analyzed using single-sample gene set enrichment analysis. Hub IRDEGs were identified by correlation analysis with immune infiltration levels. Finally, molecular experiments were used to confirm the expression of the hub IRDEGs and explore their roles in NAFLD. Results We obtained 18 IRDEGs. Five hub genes were further identified by protein-protein interaction network, receiver operating characteristic curves and correlation analysis: AQP9, BACH2, CD4, IL17RE and S100A9. Based on functional enrichment analysis, the hub genes were enriched primarily in many immune-related pathways. In NAFLD, AQP9, CD4, and IL17RE expression was significantly reduced, whereas BACH2 and S100A9 expression was elevated. PCR, oil red O staining and triglyceride detection revealed that the knock-down of BACH2 and S100A9 reduced lipid accumulation in NAFLD cells. Conclusion This study provided insight into the profile of immune infiltration underlying NAFLD and identified AQP9, BACH2, CD4, IL17RE and S100A9 as ancillary diagnostic indicators of NAFLD. And BACH2 and S100A9 might be therapeutic targets for NAFLD.
Collapse
Affiliation(s)
- Juyi Li
- Department of Endocrinology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, People’s Republic of China
- Department of Endocrinology, Geriatrics Center, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, 230001, People's Republic of China
| | - Chunjia Kou
- Department of Endocrinology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, People’s Republic of China
| | - Tiantian Sun
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People’s Republic of China
| | - Jia Liu
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People’s Republic of China
- Shandong Clinical Medical Center of Endocrinology and Metabolism, Jinan, Shandong, People’s Republic of China
- Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong, People’s Republic of China
| | - Haiqing Zhang
- Department of Endocrinology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, People’s Republic of China
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People’s Republic of China
- Shandong Clinical Medical Center of Endocrinology and Metabolism, Jinan, Shandong, People’s Republic of China
- Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong, People’s Republic of China
| |
Collapse
|
69
|
Wang G, Zhao H, Sun L, Wan G, Xie W. Clinical characteristics of hospitalized patients with metabolic-associated fatty liver disease-related liver cancer: data from a single center, 2010-2019. Ther Adv Chronic Dis 2023; 14:20406223231173896. [PMID: 37342267 PMCID: PMC10278433 DOI: 10.1177/20406223231173896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 04/19/2023] [Indexed: 06/22/2023] Open
Abstract
Background Metabolic-associated fatty liver disease (MAFLD) has become an important cause of liver cancer. The current understanding of MAFLD-related liver cancer is not sufficient, however. Objective The objective of this study was to investigate the clinical and metabolic characteristics of inpatients with MAFLD-related liver cancer. Design This is a cross-sectional investigation. Methods An investigation was conducted to collect the cases of hepatic malignant tumor hospitalized in Beijing Ditan Hospital, Capital Medical University from 1 January 2010 to December 31 2019. The basic information, medical history, laboratory examination results, and imaging examination results of 273 patients diagnosed with MAFLD-related liver cancer were recorded. The general information and metabolic characteristics of patients with MAFLD-related liver cancer were analyzed. Results In total, 5958 patients were diagnosed with hepatic malignant tumor. Among them, liver cancer due to other causes accounted for 6.19% (369/5958), MAFLD-related liver cancer was diagnosed in 273 cases of them. From 2010 to 2019, MAFLD-related liver cancer showed an increasing trend. Among 273 patients with MAFLD-related liver cancer, 60.07% were male, 66.30% were ⩾60 years old, and 43.22% had cirrhosis. The 273 patients were comprised by 38 patients with evidence of fatty liver and 235 patients without evidence of fatty liver. There was no significant difference in the proportions of sex, age, overweight/obesity, type 2 diabetes, and the presence of ⩾2 metabolic-related factors between the two groups. In the group without evidence of fatty liver, 47.23% patients had cirrhosis, which was significantly higher than 18.42% in the group with evidence of fatty liver (p < 0.001). Conclusion MAFLD-related liver cancer should be considered in liver cancer patients with metabolic risk factors. Half of MAFLD-related liver cancer occurred in the absence of cirrhosis.
Collapse
Affiliation(s)
- Guishuang Wang
- Center of Medical Insurance, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Hong Zhao
- Center of Liver Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Lei Sun
- Department of Pathology, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Gang Wan
- Department of Medical Records and Statistics, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Wen Xie
- Center of Liver Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- National Medical Center for Infectious Disease, Beijing, China
| |
Collapse
|
70
|
Wu HC, Hsieh YR, Wang W, Chang CW, Chang IW, Chen CL, Chang CC, Chang CH, Kao WY, Huang SY. Potential Hepatic Lipid Markers Associated with Nonalcoholic Steatohepatitis and Fibrosis in Morbid Obesity Patients. J Clin Med 2023; 12:jcm12113730. [PMID: 37297926 DOI: 10.3390/jcm12113730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
This study investigated differences in lipidomic profile features in nonalcoholic steatohepatitis (NASH) between mild and significant liver fibrosis cases among patients with morbid obesity. Wedge liver biopsy was performed during sleeve gastrectomy and significant liver fibrosis was defined as a fibrosis score ≥ 2. We selected patients with NASH with non/mild fibrosis (stage F0-F1; n = 30) and NASH with significant fibrosis (stage F2-F4; n = 30). The results of the liver tissue lipidomic analysis revealed that the fold changes of triglyceride (TG) (52:6); cholesterol ester (CE) (20:1); phosphatidylcholine (PC) (38:0) and (50:8); phosphatidic acid (PA) (40:4); phosphatidylinositol (PI) (49:4); phosphatidylglycerol (PG) (40:2); and sphingomyelin (SM) (35:0) and (37:0) were significantly lower in patients with NASH with F2-F4 than those with NASH with F0-F1 (p < 0.05). However, the fold changes of PC (42:4) were relatively higher in patients with NASH with stage 2-4 fibrosis (p < 0.05). Moreover, predictive models incorporating serum markers levels, ultrasonographic studies, and levels of specific lipid components [PC (42:4) and PG (40:2)] yielded the highest area under receiver operating curve (0.941), suggesting a potential correlation between NASH fibrosis stages and liver lipid accumulation among specific lipid species subclasses. This study demonstrated that the concentrations of particular lipid species in the liver correlate with NASH fibrosis stages and may indicate hepatic steatosis regression or progression in patients with morbid obesity.
Collapse
Affiliation(s)
- Hua-Chien Wu
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Yin-Ru Hsieh
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei 110, Taiwan
| | - Weu Wang
- Division of Digestive Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei 110, Taiwan
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- TMU Research Center for Digestive Medicine, Taipei Medical University, Taipei 110, Taiwan
- Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei 110, Taiwan
| | - Ching-Wen Chang
- Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei 110, Taiwan
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD 247202, USA
| | - I-Wei Chang
- Department of Pathology, Taipei Medical University Hospital, Taipei 110, Taiwan
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Department of Clinical Pathology, Wan Fang Hospital, Taipei Medical University, Taipei 110, Taiwan
- Department of Pathology, Shuang Ho Hospital, Taipei Medical University, Taipei 110, Taiwan
| | - Chi-Long Chen
- Department of Pathology, Taipei Medical University Hospital, Taipei 110, Taiwan
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Chun-Chao Chang
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- TMU Research Center for Digestive Medicine, Taipei Medical University, Taipei 110, Taiwan
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei 110, Taiwan
| | - Chia-Hsuan Chang
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei 110, Taiwan
| | - Wei-Yu Kao
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- TMU Research Center for Digestive Medicine, Taipei Medical University, Taipei 110, Taiwan
- Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei 110, Taiwan
- Department of Pathology, Shuang Ho Hospital, Taipei Medical University, Taipei 110, Taiwan
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei 110, Taiwan
- Taipei Cancer Center, Taipei Medical University, Taipei 110, Taiwan
| | - Shih-Yi Huang
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei 110, Taiwan
- TMU Research Center for Digestive Medicine, Taipei Medical University, Taipei 110, Taiwan
- Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei 110, Taiwan
- Nutrition Research Center, Taipei Medical University Hospital, Taipei 110, Taiwan
| |
Collapse
|
71
|
Wu CWK, Lui RNS, Wong VWS, Yam TF, Yip TCF, Liu K, Lai JCT, Tse YK, Mok TSK, Chan HLY, Ng KKC, Wong GLH, Chan SL. Baveno VII Criteria Is an Accurate Risk Stratification Tool to Predict High-Risk Varices Requiring Intervention and Hepatic Events in Patients with Advanced Hepatocellular Carcinoma. Cancers (Basel) 2023; 15:2480. [PMID: 37173947 PMCID: PMC10177352 DOI: 10.3390/cancers15092480] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/16/2023] [Accepted: 04/23/2023] [Indexed: 05/15/2023] Open
Abstract
The Baveno VII criteria are used in patients with liver cirrhosis to predict high-risk varices in patients with liver cirrhosis. Yet its use in patients with advanced hepatocellular carcinoma (HCC) has not been validated. HCC alone is accompanied with a higher variceal bleeding risk due to its association with liver cirrhosis and portal vein thrombosis. The use of systemic therapy in advanced HCC has been thought to further augment this risk. Upper endoscopy is commonly used to evaluate for the presence of varices before initiation of treatment with systemic therapy. Yet it is associated with procedural risks, waiting time and limited availability in some localities which may delay the commencement of systemic therapy. Our study successfully validated the Baveno VI criteria with a 3.5% varices needing treatment (VNT) missed rate, also with acceptable <5% VNT missed rates when considering alternative liver stiffness (LSM) and platelet cut-offs. The Baveno VII clinically significant portal hypertension rule-out criteria (LSM < 15 kPa and platelet >150 × 109/L) also revealed a low frequency (2%) of hepatic events, whilst the rule-in criteria (LSM > 25 kPa) was predictive of a higher proportion of hepatic events (14%). Therefore, our study has successfully validated the Baveno VII criteria as a non-invasive stratification of the risk of variceal bleeding and hepatic decompensation in the HCC population.
Collapse
Affiliation(s)
- Claudia Wing-Kwan Wu
- Medical Data Analytics Centre, Hong Kong SAR, China
- Department of Medicine and Therapeutics, Prince of Wales Hospital, Hong Kong SAR, China
- Institute of Digestive Disease, Prince of Wales Hospital, Hong Kong SAR, China
| | - Rashid Nok-Shun Lui
- Medical Data Analytics Centre, Hong Kong SAR, China
- Department of Medicine and Therapeutics, Prince of Wales Hospital, Hong Kong SAR, China
- Institute of Digestive Disease, Prince of Wales Hospital, Hong Kong SAR, China
| | - Vincent Wai-Sun Wong
- Medical Data Analytics Centre, Hong Kong SAR, China
- Department of Medicine and Therapeutics, Prince of Wales Hospital, Hong Kong SAR, China
- Institute of Digestive Disease, Prince of Wales Hospital, Hong Kong SAR, China
| | - Tsz-Fai Yam
- Medical Data Analytics Centre, Hong Kong SAR, China
- Department of Medicine and Therapeutics, Prince of Wales Hospital, Hong Kong SAR, China
- Institute of Digestive Disease, Prince of Wales Hospital, Hong Kong SAR, China
| | - Terry Cheuk-Fung Yip
- Medical Data Analytics Centre, Hong Kong SAR, China
- Department of Medicine and Therapeutics, Prince of Wales Hospital, Hong Kong SAR, China
- Institute of Digestive Disease, Prince of Wales Hospital, Hong Kong SAR, China
| | - Ken Liu
- AW Morrow Gastroenterology and Liver Centre, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia
| | - Jimmy Che-To Lai
- Medical Data Analytics Centre, Hong Kong SAR, China
- Department of Medicine and Therapeutics, Prince of Wales Hospital, Hong Kong SAR, China
- Institute of Digestive Disease, Prince of Wales Hospital, Hong Kong SAR, China
| | - Yee-Kit Tse
- Medical Data Analytics Centre, Hong Kong SAR, China
- Department of Medicine and Therapeutics, Prince of Wales Hospital, Hong Kong SAR, China
- Institute of Digestive Disease, Prince of Wales Hospital, Hong Kong SAR, China
| | - Tony Shu-Kam Mok
- State Key Laboratory of Translational Oncology, Department of Clinical Oncology, The Hong Kong Cancer Institute, Hong Kong SAR, China
| | - Henry Lik-Yuen Chan
- Medical Data Analytics Centre, Hong Kong SAR, China
- Union Hospital, Hong Kong SAR, China
| | - Kelvin Kwok-Chai Ng
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Grace Lai-Hung Wong
- Medical Data Analytics Centre, Hong Kong SAR, China
- Department of Medicine and Therapeutics, Prince of Wales Hospital, Hong Kong SAR, China
- Institute of Digestive Disease, Prince of Wales Hospital, Hong Kong SAR, China
| | - Stephen Lam Chan
- State Key Laboratory of Translational Oncology, Department of Clinical Oncology, The Hong Kong Cancer Institute, Hong Kong SAR, China
| |
Collapse
|
72
|
Yip TCF, Vilar-Gomez E, Petta S, Yilmaz Y, Wong GLH, Adams LA, de Lédinghen V, Sookoian S, Wong VWS. Geographical similarity and differences in the burden and genetic predisposition of NAFLD. Hepatology 2023; 77:1404-1427. [PMID: 36062393 DOI: 10.1002/hep.32774] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 08/28/2022] [Accepted: 09/01/2022] [Indexed: 12/13/2022]
Abstract
NAFLD has become a major public health problem for more than 2 decades with a growing prevalence in parallel with the epidemic of obesity and type 2 diabetes (T2D). The disease burden of NAFLD differs across geographical regions and ethnicities. Variations in prevalence of metabolic diseases, extent of urban-rural divide, dietary habits, lifestyles, and the prevalence of NAFLD risk and protective alleles can contribute to such differences. The rise in NAFLD has led to a remarkable increase in the number of cases of cirrhosis, hepatocellular carcinoma, hepatic decompensation, and liver-related mortality related to NAFLD. Moreover, NAFLD is associated with multiple extrahepatic manifestations. Most of them are risk factors for the progression of liver fibrosis and thus worsen the prognosis of NAFLD. All these comorbidities and complications affect the quality of life in subjects with NAFLD. Given the huge and growing size of the population with NAFLD, it is expected that patients, healthcare systems, and the economy will suffer from the ongoing burden related to NAFLD. In this review, we examine the disease burden of NAFLD across geographical areas and ethnicities, together with the distribution of some well-known genetic variants for NAFLD. We also describe some special populations including patients with T2D, lean patients, the pediatric population, and patients with concomitant liver diseases. We discuss extrahepatic outcomes, patient-reported outcomes, and economic burden related to NAFLD.
Collapse
Affiliation(s)
- Terry Cheuk-Fung Yip
- Medical Data Analytics Center, Department of Medicine and Therapeutics , The Chinese University of Hong Kong , Hong Kong
- State Key Laboratory of Digestive Disease , The Chinese University of Hong Kong , Hong Kong
| | - Eduardo Vilar-Gomez
- Division of Gastroenterology and Hepatology, Department of Medicine , Indiana University School of Medicine , Indianapolis , Indiana , USA
| | - Salvatore Petta
- Section of Gastroenterology and Hepatology, Dipartimento Di Promozione Della Salute, Materno Infantile, Medicina Interna e Specialistica Di Eccellenza (PROMISE) , University of Palermo , Palermo , Italy
| | - Yusuf Yilmaz
- Department of Gastroenterology, School of Medicine , Recep Tayyip Erdogan University , Rize , Turkey
- Liver Research Unit , Institute of Gastroenterology , Marmara University , Istanbul , Turkey
| | - Grace Lai-Hung Wong
- Medical Data Analytics Center, Department of Medicine and Therapeutics , The Chinese University of Hong Kong , Hong Kong
- State Key Laboratory of Digestive Disease , The Chinese University of Hong Kong , Hong Kong
| | - Leon A Adams
- Department of Hepatology , Sir Charles Gairdner Hospital , Perth , Australia
- Medical School , University of Western Australia , Perth , Australia
| | - Victor de Lédinghen
- Hepatology Unit , Hôpital Haut Lévêque, Bordeaux University Hospital , Bordeaux , France
- INSERM U1312 , Bordeaux University , Bordeaux , France
| | - Silvia Sookoian
- School of Medicine, Institute of Medical Research A Lanari , University of Buenos Aires , Ciudad Autónoma de Buenos Aires , Argentina
- Department of Clinical and Molecular Hepatology, Institute of Medical Research (IDIM) , National Scientific and Technical Research Council (CONICET), University of Buenos Aires , Ciudad Autónoma de Buenos Aires , Argentina
| | - Vincent Wai-Sun Wong
- Medical Data Analytics Center, Department of Medicine and Therapeutics , The Chinese University of Hong Kong , Hong Kong
- State Key Laboratory of Digestive Disease , The Chinese University of Hong Kong , Hong Kong
| |
Collapse
|
73
|
Kouroumalis E, Tsomidis I, Voumvouraki A. Iron as a therapeutic target in chronic liver disease. World J Gastroenterol 2023; 29:616-655. [PMID: 36742167 PMCID: PMC9896614 DOI: 10.3748/wjg.v29.i4.616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/03/2022] [Accepted: 12/31/2022] [Indexed: 01/20/2023] Open
Abstract
It was clearly realized more than 50 years ago that iron deposition in the liver may be a critical factor in the development and progression of liver disease. The recent clarification of ferroptosis as a specific form of regulated hepatocyte death different from apoptosis and the description of ferritinophagy as a specific variation of autophagy prompted detailed investigations on the association of iron and the liver. In this review, we will present a brief discussion of iron absorption and handling by the liver with emphasis on the role of liver macrophages and the significance of the iron regulators hepcidin, transferrin, and ferritin in iron homeostasis. The regulation of ferroptosis by endogenous and exogenous mod-ulators will be examined. Furthermore, the involvement of iron and ferroptosis in various liver diseases including alcoholic and non-alcoholic liver disease, chronic hepatitis B and C, liver fibrosis, and hepatocellular carcinoma (HCC) will be analyzed. Finally, experimental and clinical results following interventions to reduce iron deposition and the promising manipulation of ferroptosis will be presented. Most liver diseases will be benefited by ferroptosis inhibition using exogenous inhibitors with the notable exception of HCC, where induction of ferroptosis is the desired effect. Current evidence mostly stems from in vitro and in vivo experimental studies and the need for well-designed future clinical trials is warranted.
Collapse
Affiliation(s)
- Elias Kouroumalis
- Liver Research Laboratory, University of Crete Medical School, Heraklion 71003, Greece
| | - Ioannis Tsomidis
- First Department of Internal Medicine, AHEPA University Hospital, Thessaloniki 54621, Greece
| | - Argyro Voumvouraki
- First Department of Internal Medicine, AHEPA University Hospital, Thessaloniki 54621, Greece
| |
Collapse
|
74
|
Metabolic Syndrome, Nonalcoholic Fatty Liver Disease, and Chronic Hepatitis B: A Narrative Review. Infect Dis Ther 2023; 12:53-66. [PMID: 36441483 PMCID: PMC9868033 DOI: 10.1007/s40121-022-00725-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 11/03/2022] [Indexed: 11/29/2022] Open
Abstract
Chronic hepatitis B (CHB) remains a relatively major public health problem. Simultaneously, an unhealthy lifestyle causes a series of metabolic abnormalities, the most critical of which are metabolic syndrome (MS) and nonalcoholic fatty liver disease (NAFLD). Therefore, it is increasingly common for MS and NAFLD to coexist with CHB. MS is a cluster of metabolic disorders, while NAFLD is always considered as the manifestation of MS in the liver. The aim of this article is to review recent advances to explain the complex relationship among MS, NAFLD, and hepatitis B virus (HBV) infection. MS and NAFLD both have obesity and insulin resistance as central factors and both can lead to adverse hepatic and extrahepatic outcomes. However, there is insufficient evidence to associate NAFLD with all components of MS, and genetically related NAFLD has little association with MS. Incidences of MS and NAFLD are inversely associated with HBV infection. However, the effect of HBV infection on the risk of insulin resistance and dyslipidemia is not well understood. Evidence from both clinical studies and animal experiments suggested that hepatic steatosis inhibits HBV replication. MS and NAFLD may have adverse effects on CHB disease progression and prognosis. Furthermore, in related studies of CHB with normal alanine aminotransferase (ALT), the roles of MS and NAFLD should also be emphasized. In conclusion, there are complicated interactions that are not yet fully defined among MS, NAFLD, and CHB. To control chronic liver disease effectively, the relationship among the three must be clarified.
Collapse
|
75
|
Wong GLH, Hui VWK, Yip TCF, Lui GCY, Hui DSC, Wong VWS. Minimal Risk of Drug-Induced Liver Injury With Molnupiravir and Ritonavir-Boosted Nirmatrelvir. Gastroenterology 2023; 164:151-153. [PMID: 36126688 PMCID: PMC9568277 DOI: 10.1053/j.gastro.2022.09.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/01/2022] [Accepted: 09/14/2022] [Indexed: 02/03/2023]
Affiliation(s)
- Grace Lai-Hung Wong
- Department of Medicine and Therapeutics, Medical Data Analytics Centre, Institute of Digestive Disease, Chinese University of Hong Kong, Hong Kong
| | - Vicki Wing-Ki Hui
- Department of Medicine and Therapeutics, Medical Data Analytics Centre, Institute of Digestive Disease, Chinese University of Hong Kong, Hong Kong
| | - Terry Cheuk-Fung Yip
- Department of Medicine and Therapeutics, Medical Data Analytics Centre, Institute of Digestive Disease, Chinese University of Hong Kong, Hong Kong
| | - Grace Chung-Yan Lui
- Department of Medicine and Therapeutics, Medical Data Analytics Centre, Stanley Ho Centre for Emerging Infectious Diseases, Chinese University of Hong Kong, Hong Kong
| | - David Shu-Cheong Hui
- Department of Medicine and Therapeutics, Medical Data Analytics Centre, Stanley Ho Centre for Emerging Infectious Diseases, Chinese University of Hong Kong, Hong Kong.
| | - Vincent Wai-Sun Wong
- Department of Medicine and Therapeutics, Medical Data Analytics Centre, Institute of Digestive Disease, Chinese University of Hong Kong, Hong Kong.
| |
Collapse
|
76
|
Zhang J, Zhang W, Yang L, Zhao W, Liu Z, Wang E, Wang J. Phytochemical gallic acid alleviates nonalcoholic fatty liver disease via AMPK-ACC-PPARa axis through dual regulation of lipid metabolism and mitochondrial function. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 109:154589. [PMID: 36610145 DOI: 10.1016/j.phymed.2022.154589] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/18/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) usually includes NAFL called simple hepatosteatosis and nonalcoholic steatohepatitis (NASH) called more steatohepatitis. The latter is a leading pathogenic promotor of hepatocellular carcinoma (HCC). Phytochemical gallic acid (GA) has been proved to exert positive efficacy in HCC in our work, but it remains unclear whether its hepatoprotective effect attributes to the controlled transition from simple steatosis to steatohepatitis. PURPOSE This work aims to provide mechanistic evidence that the therapeutic application of GA in NAFLD is indispensable for GA-meliorated NASH progression. METHODS The high-fat diet (HFD)-fed mice and palmitic acid (PA) and oleic acid (OA)-treated hepatocytes were used collectively in this study. Bioinformatic analysis, clinical subjects, RNA-Seq, molecular docking, and confirmatory experiments were performed comprehensively to uncover the pathological link between the AMPK-ACC-PPARα axis and the treatment of NAFLD. RESULTS By analyzing the clinical subjects and GEO database, we find a close link between the activation of AMPK-ACC-PPARα axis and the progression of NAFLD in human fatty liver. Subsequent assays show that GA exhibits pharmacological activation of AMPK, reprogramming lipid metabolism, and reversing mitochondrial function in cellular and murine fatty liver models. AMPK activation conferred substantial protection against murine NASH and fibrosis in the context of HFD-induced NAFLD. In contrast, silencing AMPK badly aggravates lipid deposition in hepatocytes, boosting NASH and NAFLD-associated HCC progression. The in silico docking, in vitro surface plasmon resonance and in vivo cellular thermal shift assay collectively reveal that GA directly interacts with AMPKα, which inactivates the ACC-PPARα axis signaling. Notably, GA repairs the liver damage, lipotoxicity, and mitochondrial respiratory capacity caused by excessive mtROS, while showing minimal effects in other major organs in mice. CONCLUSION Our work identifies GA as an important suppressor of NAFLD-HCC progression, and underscores the AMPK-ACC-PPARα signal axis as a potential therapeutic target for NAFLD treatment.
Collapse
Affiliation(s)
- Jiaxin Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Wenxin Zhang
- Second Hospital of Jilin University, Changchun 130041, China
| | - Li Yang
- Hepatobiliary Hospital of Jilin Province, Changchun 130062, China
| | - Wenjing Zhao
- Hepatobiliary Hospital of Jilin Province, Changchun 130062, China
| | - Zuojia Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | - Erkang Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | - Jin Wang
- Department of Chemistry and Physics, Stony Brook University, Stony Brook, New York 11794-3400, USA.
| |
Collapse
|
77
|
Li S, Yin S, Ding H, Shao Y, Zhou S, Pu W, Han L, Wang T, Yu H. Polyphenols as potential metabolism mechanisms regulators in liver protection and liver cancer prevention. Cell Prolif 2023; 56:e13346. [PMID: 36229407 DOI: 10.1111/cpr.13346] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/19/2022] [Accepted: 09/29/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Liver cancer is one of the common malignancies. The dysregulation of metabolism is a driver of accelerated tumourigenesis. Metabolic changes are well documented to maintain tumour growth, proliferation and survival. Recently, a variety of polyphenols have been shown to have a crucial role both in liver disease prevention and metabolism regulation. METHODS We conducted a literature search and combined recent data with systematic analysis to comprehensively describe the molecular mechanisms that link polyphenols to metabolic regulation and their contribution in liver protection and liver cancer prevention. RESULTS Targeting metabolic dysregulation in organisms prevents and resists the development of liver cancer, which has important implications for identifying new therapeutic strategies for the management and treatment of cancer. Polyphenols are a class of complex compounds composed of multiple phenolic hydroxyl groups and are the main active ingredients of many natural plants. They mediate a broad spectrum of biological and pharmacological functions containing complex lipid metabolism, glucose metabolism, iron metabolism, intestinal flora imbalance, as well as the direct interaction of their metabolites with key cell-signalling proteins. A large number of studies have found that polyphenols affect the metabolism of organisms by interfering with a variety of intracellular signals, thereby protecting the liver and reducing the risk of liver cancer. CONCLUSION This review systematically illustrates that various polyphenols, including resveratrol, chlorogenic acid, caffeic acid, dihydromyricetin, quercetin, catechins, curcumin, etc., improve metabolic disorders through direct or indirect pathways to protect the liver and fight liver cancer.
Collapse
Affiliation(s)
- Shuangfeng Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Shuangshuang Yin
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Hui Ding
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yingying Shao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Shiyue Zhou
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Weiling Pu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Lifeng Han
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Tao Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Haiyang Yu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| |
Collapse
|
78
|
Xie D, Zhang G, Ma Y, Wu D, Jiang S, Zhou S, Jiang X. Circulating Metabolic Markers Related to the Diagnosis of Hepatocellular Carcinoma. JOURNAL OF ONCOLOGY 2022; 2022:7840606. [PMID: 36532884 PMCID: PMC9757943 DOI: 10.1155/2022/7840606] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 01/04/2025]
Abstract
Primary liver carcinoma is the sixth most common cancer worldwide, while hepatocellular carcinoma (HCC) is the most dominant cancer type. Chronic hepatitis B and C virus infections and aflatoxin exposure are the main risk factors, while nonalcoholic fatty liver disease caused by obesity, diabetes, and metabolic syndrome are the more common risk factors for HCC. Metabolic disorders caused by these high-risk factors are closely related to the tumor microenvironment of HCC, revealing a possible cause-and-effect relationship between the two. These metabolic disorders involve many complex metabolic pathways, such as carbohydrate, lipid, lipid derivative, amino acid, and amino acid derivative metabolic processes. The resulting metabolites with significant abnormal changes in the concentration level in circulating blood may be used as biomarkers to guide the diagnosis, treatment, or prognosis of HCC. At present, there are high-throughput technologies that can quickly detect small molecular metabolites in many samples. Compared to tissue biopsy, blood samples are easier to obtain, and patients' willingness to participate is higher, which makes it possible to study blood HCC biomarkers. Over the past few years, a substantial body of research has been performed worldwide, and other potential biomarkers have been identified. Unfortunately, due to the limitations of each study, only a few markers have been widely verified and are suitable for clinical use. This review briefly summarizes the potential blood metabolic markers related to the diagnosis of HCC, mainly focusing on amino acids and their derivative metabolism, lipids and their derivative metabolism, and other possible related metabolisms.
Collapse
Affiliation(s)
- Da Xie
- Department of Gastroenterology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou 570100, China
| | - Guangcong Zhang
- Department of Gastroenterology and Hepatology, Zhongshan Hospital of Fudan University, Shanghai 200030, China
| | - Yanan Ma
- Department of Gastroenterology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou 570100, China
| | - Dongyu Wu
- Department of Gastroenterology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou 570100, China
| | - Shuang Jiang
- Department of Gastroenterology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou 570100, China
| | - Songke Zhou
- Department of Gastroenterology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou 570100, China
| | - Xuemei Jiang
- Department of Gastroenterology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou 570100, China
| |
Collapse
|
79
|
Teng YX, Xie S, Guo PP, Deng ZJ, Zhang ZY, Gao W, Zhang WG, Zhong JH. Hepatocellular Carcinoma in Non-alcoholic Fatty Liver Disease: Current Progresses and Challenges. J Clin Transl Hepatol 2022; 10:955-964. [PMID: 36304509 PMCID: PMC9547250 DOI: 10.14218/jcth.2021.00586] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 01/24/2022] [Accepted: 04/18/2022] [Indexed: 01/27/2023] Open
Abstract
The rising global prevalence of metabolic diseases has increased the prevalence of non-alcoholic fatty liver disease (NAFLD), leading to an increase in cases of NAFLD-related hepatocellular carcinoma (HCC). To provide an updated literature review detailing epidemiology, risk factors, pathogenic pathways, and treatment strategies linked to NAFLD-related HCC, we conducted a literature search on PubMed from its inception to December 31, 2021. About 25% of the global population suffers from NAFLD. The annual incidence of HCC among NAFLD patients is approximately 1.8 per 1,000 person-years. Older age, male sex, metabolic comorbidities, unhealthy lifestyle habits (such as smoking and alcohol consumption), physical inactivity, genetic susceptibility, liver fibrosis, and degree of cirrhosis in NAFLD patients are important risk factors for NAFLD-related HCC. Therefore, low-calorie diet, moderate-intensity exercise, treatment of metabolic comorbidities, and cessation of smoking and alcohol are the main measures to prevent NAFLD-related HCC. In addition, all patients with advanced NAFLD-related fibrosis or cirrhosis should be screened for HCC. Immune suppression disorders and changes in the liver microenvironment may be the main pathogenesis of NAFLD-related HCC. Hepatic resection, liver transplantation, ablation, transarterial chemoembolization, radiotherapy, targeted drugs, and immune checkpoint inhibitors are used to treat NAFLD-related HCC. Lenvatinib treatment may lead to better overall survival, while immune checkpoint inhibitors may lead to worse overall survival. Given the specific risk factors for NAFLD-related HCC, primary prevention is key. Moreover, the same treatment may differ substantially in efficacy against NAFLD-related HCC than against HCC of other etiologies.
Collapse
Affiliation(s)
- Yu-Xian Teng
- Hepatobiliary Surgery Department, Guangxi Liver Cancer Diagnosis and Treatment Engineering and Technology Research Center, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Si Xie
- Hepatobiliary Surgery Department, Guangxi Liver Cancer Diagnosis and Treatment Engineering and Technology Research Center, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Ping-Ping Guo
- Hepatobiliary Surgery Department, Guangxi Liver Cancer Diagnosis and Treatment Engineering and Technology Research Center, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Zhu-Jian Deng
- Hepatobiliary Surgery Department, Guangxi Liver Cancer Diagnosis and Treatment Engineering and Technology Research Center, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Zi-Yi Zhang
- Hepatobiliary Surgery Department, Guangxi Liver Cancer Diagnosis and Treatment Engineering and Technology Research Center, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Wei Gao
- Hepatobiliary Surgery Department, Guangxi Liver Cancer Diagnosis and Treatment Engineering and Technology Research Center, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Wan-Guang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jian-Hong Zhong
- Hepatobiliary Surgery Department, Guangxi Liver Cancer Diagnosis and Treatment Engineering and Technology Research Center, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education; Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Nanning, Guangxi, China
| |
Collapse
|
80
|
Cavalcante LN, Dezan MGF, Paz CLDSL, Lyra AC. RISK FACTORS FOR HEPATOCELLULAR CARCINOMA IN PATIENTS WITH NON-ALCOHOLIC FATTY LIVER DISEASE. ARQUIVOS DE GASTROENTEROLOGIA 2022; 59:540-548. [PMID: 36515349 DOI: 10.1590/s0004-2803.202204000-93] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022]
Abstract
Non-alcoholic fatty liver disease is growing in worldwide prevalence and thus, is expected to have a higher number of NAFLD-related hepatocellular carcinoma (HCC) in the following years. This review describes the risk factors associated with HCC in NAFLD-patients. The presence of liver cirrhosis is the preponderant one. Male gender, PNPLA3 variants, diabetes, and obesity also appear to predispose to the development of HCC, even in non-cirrhotic subjects. Thus far, intensive lifestyle modifications, including glycemic control, and obesity treatment, are effective therapies for NAFLD/ non-alcoholic steatohepatitis and, therefore, probably, also for HCC. Some drugs that aimed at decreasing inflammatory activity and fibrosis, as well as obesity, were studied. Other data have suggested the possibility of HCC chemoprevention. So far, however, there is no definitive evidence for the routine utilization of these drugs. We hope, in the future, to be able to profile patients at higher risk of NAFLD-HCC and outline strategies for early diagnosis and prevention.
Collapse
Affiliation(s)
- Lourianne Nascimento Cavalcante
- Universidade Federal da Bahia, Salvador, BA, Brasil.,Hospital São Rafael, Serviço de Gastro-Hepatologia, Salvador, BA, Brasil
| | | | | | - André Castro Lyra
- Universidade Federal da Bahia, Salvador, BA, Brasil.,Hospital São Rafael, Serviço de Gastro-Hepatologia, Salvador, BA, Brasil
| |
Collapse
|
81
|
Chelerythrine-Induced Apoptotic Cell Death in HepG2 Cells Involves the Inhibition of Akt Pathway and the Activation of Oxidative Stress and Mitochondrial Apoptotic Pathway. Antioxidants (Basel) 2022; 11:antiox11091837. [PMID: 36139911 PMCID: PMC9495744 DOI: 10.3390/antiox11091837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/10/2022] [Accepted: 09/15/2022] [Indexed: 11/29/2022] Open
Abstract
Chelerythrine (CHE) is a majorly harmful isoquinoline alkaloid ingredient in Chelidonium majus that could trigger potential hepatotoxicity, but the pivotal molecular mechanisms remain largely unknown. In the present study, CHE-induced cytotoxicity and the underlying toxic mechanisms were investigated using human HepG2 cells in vitro. Data showed that CHE treatment (at 1.25–10 μM)-induced cytotoxicity in HepG2 cells is dose-dependent. CHE treatment increased the production of ROS and induced oxidative stress in HepG2 cells. Additionally, CHE treatment triggered the loss of mitochondrial membrane potential, decreased the expression of mitochondrial complexes, upregulated the expression of Bax, CytC, and cleaved-PARP1 proteins and the activities of caspase-9 and caspase-3, and downregulated the expression of Bcl-XL, and HO-1 proteins, finally resulting in cell apoptosis. N-acetylcysteine supplementation significantly inhibited CHE-induced ROS production and apoptosis. Furthermore, CHE treatment significantly downregulated the expression of phosphorylation (p)-Akt (Ser473), p-mTOR (Ser2448), and p-AMPK (Thr172) proteins in HepG2 cells. Pharmacology inhibition of Akt promoted CHE-induced the downregulation of HO-1 protein, caspase activation, and apoptosis. In conclusion, CHE-induced cytotoxicity may involve the inhibition of Akt pathway and the activation of oxidative stress-mediated mitochondrial apoptotic pathway in HepG2 cells. This study sheds new insights into understanding the toxic mechanisms and health risks of CHE.
Collapse
|
82
|
Han HT, Jin WL, Li X. Mesenchymal stem cells-based therapy in liver diseases. MOLECULAR BIOMEDICINE 2022; 3:23. [PMID: 35895169 PMCID: PMC9326420 DOI: 10.1186/s43556-022-00088-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/20/2022] [Indexed: 12/24/2022] Open
Abstract
Multiple immune cells and their products in the liver together form a complex and unique immune microenvironment, and preclinical models have demonstrated the importance of imbalances in the hepatic immune microenvironment in liver inflammatory diseases and immunocompromised liver diseases. Various immunotherapies have been attempted to modulate the hepatic immune microenvironment for the purpose of treating liver diseases. Mesenchymal stem cells (MSCs) have a comprehensive and plastic immunomodulatory capacity. On the one hand, they have been tried for the treatment of inflammatory liver diseases because of their excellent immunosuppressive capacity; On the other hand, MSCs have immune-enhancing properties in immunocompromised settings and can be modified into cellular carriers for targeted transport of immune enhancers by genetic modification, physical and chemical loading, and thus they are also used in the treatment of immunocompromised liver diseases such as chronic viral infections and hepatocellular carcinoma. In this review, we discuss the immunological basis and recent strategies of MSCs for the treatment of the aforementioned liver diseases. Specifically, we update the immune microenvironment of the liver and summarize the distinct mechanisms of immune microenvironment imbalance in inflammatory diseases and immunocompromised liver diseases, and how MSCs can fully exploit their immunotherapeutic role in liver diseases with both immune imbalance patterns.
Collapse
Affiliation(s)
- Heng-Tong Han
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, P. R, China
| | - Wei-Lin Jin
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, P. R, China
- Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, No. 1 West Donggang Road, Lanzhou, 730000, People's Republic of China
| | - Xun Li
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, P. R, China.
- Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, No. 1 West Donggang Road, Lanzhou, 730000, People's Republic of China.
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, 730000, People's Republic of China.
- Key Laboratory Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, 730000, People's Republic of China.
| |
Collapse
|
83
|
Tsuchiya H. Iron-Induced Hepatocarcinogenesis—Preventive Effects of Nutrients. Front Oncol 2022; 12:940552. [PMID: 35832553 PMCID: PMC9271801 DOI: 10.3389/fonc.2022.940552] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/03/2022] [Indexed: 01/10/2023] Open
Abstract
The liver is a primary organ that stores body iron, and plays a central role in the regulation of iron homeostasis. Hepatic iron overload (HIO) is a prevalent feature among patients with chronic liver diseases (CLDs), including alcoholic/nonalcoholic liver diseases and hepatitis C. HIO is suggested to promote the progression toward hepatocellular carcinoma because of the pro-oxidant nature of iron. Iron metabolism is tightly regulated by various factors, such as hepcidin and ferroportin, in healthy individuals to protect the liver from such deteriorative effects. However, their intrinsic expressions or functions are frequently compromised in patients with HIO. Thus, various nutrients have been reported to regulate hepatic iron metabolism and protect the liver from iron-induced damage. These nutrients are beneficial in HIO-associated CLD treatment and eventually prevent iron-mediated hepatocarcinogenesis. This mini-review aimed to discuss the mechanisms and hepatocarcinogenic risk of HIO in patients with CLDs. Moreover, nutrients that hold the potential to prevent iron-induced hepatocarcinogenesis are summarized.
Collapse
|
84
|
Feng J, Liu Y, Chen J, Bai Y, He J, Cao H, Che Q, Guo J, Su Z. Marine Chitooligosaccharide Alters Intestinal Flora Structure and Regulates Hepatic Inflammatory Response to Influence Nonalcoholic Fatty Liver Disease. Mar Drugs 2022; 20:md20060383. [PMID: 35736186 PMCID: PMC9231394 DOI: 10.3390/md20060383] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 12/23/2022] Open
Abstract
In this study, C57BL/6 mice were given an HFHSD diet for 8 weeks to induce hepatic steatosis and then given COSM solution orally for 12 weeks. The study found that the HFHSD diet resulted in steatosis and insulin resistance in mice. The formation of NAFLD induced by HFHSD diet was related to the imbalance of intestinal flora. However, after COSM intervention, the abundance of beneficial bacteria increased significantly, while the abundance of harmful bacteria decreased significantly. The HFHSD diet also induced changes in intestinal bacterial metabolites, and the content of short-chain fatty acids in cecal contents after COSM intervention was significantly higher than that in the model group. In addition, COSM not only improved LPS levels and barrier dysfunction in the ileum and colon but upregulated protein levels of ZO-1, occludin, and claudin in the colon and downregulated the liver LPS/TLR4/NF-κB inflammatory pathway. We concluded that the treatment of marine chitooligosaccharide COSM could improve the intestinal microflora structure of the fatty liver and activate an inflammatory signaling pathway, thus alleviating the intrahepatic lipid accumulation induced by HFHSD.
Collapse
Affiliation(s)
- Jiayao Feng
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; (J.F.); (Y.L.); (J.C.)
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yongjian Liu
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; (J.F.); (Y.L.); (J.C.)
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jiajia Chen
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; (J.F.); (Y.L.); (J.C.)
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yan Bai
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China; (Y.B.); (J.H.)
| | - Jincan He
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China; (Y.B.); (J.H.)
| | - Hua Cao
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan 528458, China;
| | - Qishi Che
- Guangzhou Rainhome Pharm & Tech Co., Ltd., Science City, Guangzhou 510663, China;
| | - Jiao Guo
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Correspondence: (J.G.); (Z.S.); Tel.: +86-20-3935-2067 (Z.S.)
| | - Zhengquan Su
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; (J.F.); (Y.L.); (J.C.)
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Correspondence: (J.G.); (Z.S.); Tel.: +86-20-3935-2067 (Z.S.)
| |
Collapse
|
85
|
Fu J, Qin W, Tong Q, Li Z, Shao Y, Liu Z, Liu C, Wang Z, Xu X. A novel DNA methylation-driver gene signature for long-term survival prediction of hepatitis-positive hepatocellular carcinoma patients. Cancer Med 2022; 11:4721-4735. [PMID: 35637633 PMCID: PMC9741990 DOI: 10.1002/cam4.4838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 05/05/2022] [Accepted: 05/07/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Abnormal DNA methylation is one of the most general epigenetic modifications in hepatocellular carcinoma (HCC). Recent research showed that DNA methylation was a prognostic indicator of all-cause HCC and nonviral HCC. However, whether DNA methylation-driver genes could be used for predicting survival, the probability of hepatitis-positive HCC remains unclear. METHODS In this study, DNA methylation-driver genes (MDGs) were screened by a joint analysis of methylome and transcriptome data of 142 hepatitis-positive HCC patients. Subsequently, a prognostic risk score and nomogram were constructed. Finally, correlation analyses between the risk score and signaling pathways and immunity were conducted by GSVA and CIBERSORT. RESULTS Through random forest screening and Cox progression analysis, 10 prognostic methylation-driver genes (AC008271.1, C11orf53, CASP8, F2RL2, GBP5, LUCAT1, RP11-114B7.6, RP11-149I23.3, RP11-383 J24.1, and SLC35G2) were screened out. As a result, a prognostic risk score signature was constructed. The independent value of the risk score for prognosis prediction were addressed in the TCGA-HCC and the China-HCC cohorts. Next, clinicopathological features were analyzed and HBV status and histological grade were screened to construct a nomogram together with the risk score. The prognostic efficiency of the nomogram was validated by the calibration curves and the concordance index (C index: 0.829, 95% confidence interval: 0.794-0.864), while its clinical application ability was confirmed by decision curve analysis (DCA). At last, the relationship between the risk score and signaling pathways, as well as the correlations between immune cells were elucidated preliminary. CONCLUSIONS Taken together, our study explored a novel DNA methylation-driver gene risk score signature and an efficient nomogram for long-term survival prediction of hepatitis-positive HCC patients.
Collapse
Affiliation(s)
- Jie Fu
- Department of General SurgeryThe Second Xiangya Hospital of Central South UniversityChangshaChina
| | - Wei Qin
- Department of General SurgeryThe Second Xiangya Hospital of Central South UniversityChangshaChina
| | - Qing Tong
- Department of General SurgeryThe Second Xiangya Hospital of Central South UniversityChangshaChina
| | - Zhenghao Li
- Department of General SurgeryThe Second Xiangya Hospital of Central South UniversityChangshaChina
| | - Yaoli Shao
- Department of General SurgeryThe Second Xiangya Hospital of Central South UniversityChangshaChina
| | - Zhiqiang Liu
- Department of General SurgeryThe Second Xiangya Hospital of Central South UniversityChangshaChina
| | - Chun Liu
- Department of General SurgeryThe Second Xiangya Hospital of Central South UniversityChangshaChina
| | - Zicheng Wang
- Department of General SurgeryThe Second Xiangya Hospital of Central South UniversityChangshaChina
| | - Xundi Xu
- Department of General SurgeryThe Second Xiangya Hospital of Central South UniversityChangshaChina,Department of General SurgerySouth China Hospital of Shenzhen UniversityShenzhenChina
| |
Collapse
|
86
|
Eugenol alleviated nonalcoholic fatty liver disease in rat via a gut-brain-liver axis involving glucagon-like Peptide-1. Arch Biochem Biophys 2022; 725:109269. [PMID: 35508252 DOI: 10.1016/j.abb.2022.109269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 12/16/2022]
|
87
|
Yan J, Nie Y, Liu Y, Li J, Wu L, Chen Z, He B. Yiqi-Bushen-Tiaozhi Recipe Attenuated High-Fat and High-Fructose Diet Induced Nonalcoholic Steatohepatitis in Mice via Gut Microbiota. Front Cell Infect Microbiol 2022; 12:824597. [PMID: 35531334 PMCID: PMC9072834 DOI: 10.3389/fcimb.2022.824597] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/21/2022] [Indexed: 12/19/2022] Open
Abstract
Aim To investigate the treating effect of Yiqi-Bushen-Tiaozhi (YBT) recipe on nonalcoholic steatohepatitis (NASH) mice, determine whether the outcome was associated with gut microbiota, and clarify the regulating mechanism. Methods NASH mice were induced by high-fat and high-fructose diets (HFFD). In the fifth week, mice in the YBT group were orally administrated YBT (22.12g·kg-1·d-1) daily for 12 weeks. Fresh stool of mice was collected at the 16th week for fecal 16S rDNA analysis. Hepatic pathology and biochemical indicators were used to reflect the improvement of YBT on hepatic inflammation and lipid metabolism in NASH mice. Quantitative real-time PCR (qRT-PCR) was used to verify the results of PICRUSt analysis. Results Results of the pathological and biochemical index showed that YBT could improve NASH mice. Compared with improving inflammation and hepatocyte damage, YBT may be more focused on enhancing metabolic disorders in mice, such as increasing HDL-c level. The diversity and richness of the gut microbiota of NASH mice induced by HFFD are significantly different from the normal control (NC) group. After YBT treatment, the diversity and richness of the mice microbiota will be increased to similar NC mice. Intestinimonas, Acetatifactor, Alistipes, Intestinimonas, Acetatifactor, and Alistipes have the most significant changes in the class level. PICRUSt analysis was performed to predict genomic functions based on the 16S rDNA results and reference sequencing. The efficacy of YBT in the treatment of NASH can be achieved by regulating the diversity and richness of gut microbiota. PICRUSt analysis results showed that the most relevant function of the microbiota construction variations is α- Linolenic acid (ALA) metabolism. Results of qRT-PCR showed significant differences between groups in the expression of Fatty acid desaturase 1 (FADS1), Fatty acid desaturase 2 (FADS2), Acyl-CoA Oxidase 1 (ACOX1), and Acyl-CoA Oxidase 2 (ACOX2) related to ALA metabolism. The expression of the above genes will be inhibited in the liver and small intestine of the HFFD group mice, and the expression can be restored after YBT treatment. Conclusion YBT could treat NASH mice by improving the diversity and richness of gut microbiota and further the improvement of ALA metabolism.
Collapse
Affiliation(s)
- Junbin Yan
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
- The Second Central Laboratory, Key Lab of Integrative Chinese and Western Medicine for the Diagnosis and Treatment of Circulatory Diseases of Zhejiang Province, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Yunmeng Nie
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Yuan Liu
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
- The Second Central Laboratory, Key Lab of Integrative Chinese and Western Medicine for the Diagnosis and Treatment of Circulatory Diseases of Zhejiang Province, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Jingya Li
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
- The Second Central Laboratory, Key Lab of Integrative Chinese and Western Medicine for the Diagnosis and Treatment of Circulatory Diseases of Zhejiang Province, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Liyan Wu
- Department of Gastroenterology, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Zhiyun Chen
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
- The Second Central Laboratory, Key Lab of Integrative Chinese and Western Medicine for the Diagnosis and Treatment of Circulatory Diseases of Zhejiang Province, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Beihui He
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
- The Second Central Laboratory, Key Lab of Integrative Chinese and Western Medicine for the Diagnosis and Treatment of Circulatory Diseases of Zhejiang Province, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
88
|
Leowattana W. Angiotensin-converting enzyme 2 receptors, chronic liver diseases, common medications, and clinical outcomes in coronavirus disease 2019 patients. World J Virol 2021; 10:86-96. [PMID: 34079691 PMCID: PMC8152453 DOI: 10.5501/wjv.v10.i3.86] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/10/2021] [Accepted: 04/26/2021] [Indexed: 02/06/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus responsible for coronavirus disease 2019 (COVID-19), enters affected cells through the angiotensin-converting enzyme 2 (ACE2) receptor, which is highly expressed in type II alveolar cells, enterocytes, and cholangiocytes. SARS-CoV-2 infection causes fever, dry cough, and breathing difficulty, which can progress to respiratory distress due to interstitial pneumonia, and hepatobiliary injury due to COVID-19 is increasingly recognized. The hepatobiliary injury may be evident at presentation of the disease or develop during the disease progression. The development of more severe clinical outcomes in patients with chronic liver diseases (CLD) with or without cirrhosis infected with SARS-CoV-2 has not been elucidated. Moreover, there is limited data related to common medications that affect the disease severity of COVID-19 patients. Additionally, ACE2 receptor expression of hepatobiliary tissue related to the disease severity also have not been clarified. This review summarized the current situation regarding the clinical outcomes of COVID-19 patients with chronic liver diseases who were treated with common medications. Furthermore, the association between ACE2 receptor expression and disease severity in these patients is discussed.
Collapse
Affiliation(s)
- Wattana Leowattana
- Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|