51
|
Matyszczuk K, Krzepiłko A. Model Study for Interaction of Sublethal Doses of Zinc Oxide Nanoparticles with Environmentally Beneficial Bacteria Bacillus thuringiensis and Bacillus megaterium. Int J Mol Sci 2022; 23:ijms231911820. [PMID: 36233126 PMCID: PMC9570281 DOI: 10.3390/ijms231911820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/14/2022] [Accepted: 09/27/2022] [Indexed: 11/21/2022] Open
Abstract
Zinc oxide nanoparticles (ZnO NPs), due to their antibacterial effects, are commonly used in various branches of the economy and can affect rhizobacteria that promote plant growth. We describe the effect of ZnO NPs on two model bacteria strains, B. thuringiensis and B. megaterium, that play an important role in the environment. The MIC (minimum inhibitory concentration) value determined after 48 h of incubation with ZnO NPs was more than 1.6 mg/mL for both strains tested, while the MBC (minimum bactericidal concentration) was above 1.8 mg/mL. We tested the effect of ZnO NPs at concentrations below the MIC (0.8 mg/mL, 0.4 mg/mL and 0.2 mg/mL (equal to 50%, 25% and 12,5% MIC, respectively) in order to identify the mechanisms activated by Bacillus species in the presence of these nanoparticles. ZnO NPs in sublethal concentrations inhibited planktonic cell growth, stimulated endospore formation and reduced decolorization of Evans blue. The addition of ZnO NPs caused oxidative stress, measured using nitroblue tetrazolium (NBT), and reduced the activity of catalase. It was confirmed that zinc oxide nanoparticles in sublethal concentrations change metabolic processes in Bacillus bacteria that are important for their effects on the environment. B. thuringiensis after treatment with ZnO NPs decreased indole acetic acid (IAA) production and increased biofilm formation, whereas B. megaterium decreased IAA production but, inversely, increased biofilm formation. Comparison of different Bacillus species in a single experiment made it possible to better understand the mechanisms of toxicity of zinc oxide nanoparticles and the individual reactions of closely related bacterial species.
Collapse
|
52
|
He J, Hong M, Xie W, Chen Z, Chen D, Xie S. Progress and prospects of nanomaterials against resistant bacteria. J Control Release 2022; 351:301-323. [PMID: 36165865 DOI: 10.1016/j.jconrel.2022.09.030] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 12/18/2022]
Abstract
Drug-resistant bacterial infections are increasingly heightening, which lead to more severe illness, higher cost of treatment and increased risk of death. Nanomaterials-based therapy, an "outrider", serving as a kind of innovative antimicrobial therapeutics, showing promise in replacing antimicrobial agents and enhancing the activity of antibiotics, generally bases on the various inorganic and/or organic materials. When the size of those materials is below to a certain nano-level and the content of nanomaterials is above a certain amount, they are lethal to the resistant bacteria, which bypass the traditional bacterial resistance mechanisms. This review highlights the effect of nanomaterials in combating extracellular/intracellular bacteria and eradicating biofilms. Based on the studies searched on the Web of Science through relevant keywords, this review article starts with analyzing the current situation, resistance mechanisms, and treatment difficulties of bacteria resistance. Then, the efficacy of nanomaterials against resistant bacteria and their mechanisms (e.g., physical impairment, biofilm lysis, regulating bacterial metabolism, protein and DNA replication as well as enhancing the antibiotics concentration in infected cells) are collected. Lastly, the factors affecting the antibacterial efficacy are argued from the side of nanomatrials and bacterium, which followed by the emerging challenges and recent perspectives of achieving higher targeting released nanomaterials as antibacterial therapeutics.
Collapse
Affiliation(s)
- Jian He
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Mian Hong
- National Reference Laboratory of Veterinary Drug Residues (HZAU), MAO Key Laboratory for Detection of Veterinary Drug Residues, China
| | - Wenqing Xie
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Zhen Chen
- National Reference Laboratory of Veterinary Drug Residues (HZAU), MAO Key Laboratory for Detection of Veterinary Drug Residues, China
| | - Dongmei Chen
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| | - Shuyu Xie
- National Reference Laboratory of Veterinary Drug Residues (HZAU), MAO Key Laboratory for Detection of Veterinary Drug Residues, China.
| |
Collapse
|
53
|
Biosynthesis of zinc oxide nanoparticles via endophyte Trichoderma viride and evaluation of their antimicrobial and antioxidant properties. Arch Microbiol 2022; 204:620. [PMID: 36100763 DOI: 10.1007/s00203-022-03218-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/26/2022] [Accepted: 08/25/2022] [Indexed: 11/02/2022]
Abstract
The biogenic method for synthesis of nanoparticles is preferred over the traditional strategies, on account of its ease, environmental friendliness, and cost-effectivity, wherein fungi endorse themselves to be the most appropriate precursor for the same. In recent times numerous metal nanoparticles have been reported to exhibit significant therapeutic activities, out of which Zinc Oxide nanoparticles (ZnO NPs) stand apart on account of their multidimensional nature. Thus, this study was carried out with an aim to biosynthesize ZnO NPs utilizing endophyte Trichoderma viride, isolated from the seeds of Momordica charantia. The physicochemical characterization of NPs was done via employing a combination of spectroscopic and microscopic techniques. The NPs were found to have a hexagonal shape and possessed an average particle size of around 63.3 nm. The antimicrobial activity of NPs was evaluated against multi-drug resistant organisms and it was observed to be an appreciable one whereas the antioxidant activity was deduced to be dose-dependent. Thus, these ZnO NPs can be considered as a probable active ingredient of any future therapeutic conceptualization after undertaking a thorough toxicological assessment.
Collapse
|
54
|
Jiao H, Zhou X, Jin J, Zhao K, Tang Y, Zhang X, Song S. Theoretical calculation and antibacterial properties of raspberry like BaTiO3. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.139864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
55
|
Qu B, Luo Y. Preparation and characterization of carboxymethyl cellulose capped zinc oxide nanoparticles: A proof-of-concept study. Food Chem 2022; 389:133001. [DOI: 10.1016/j.foodchem.2022.133001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/07/2022] [Accepted: 04/16/2022] [Indexed: 11/04/2022]
|
56
|
ZnO Nano-swirlings for Azo Dye AR183 photocatalytic degradation and antimycotic activity. Sci Rep 2022; 12:14023. [PMID: 35982131 PMCID: PMC9388521 DOI: 10.1038/s41598-022-17924-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 08/02/2022] [Indexed: 11/09/2022] Open
Abstract
The sol-gel technique was used to fabricate ZnO Nano-swirlings (ZNsw) at a predetermined agitation rate (of >> 1900 rpm), with around 21.94 gm of zinc acetate dihydrate and 0.2 g cetyltrimethylammoniumbromide (CTAB) and a cationic surfactant (drop-wise). The impact of the predetermined agitation condition on the molecular size and morphology of ZNsw is examined, and the outcomes are dissected by useful characterization tools and techniques viz. XRD, SEM embedded with EDS, TEM, FT-IR and UV-visible. The SEM and TEM results suggest that the product formed into a big cluster of adequate ZNsw, containing a significant quantity of folded long thread-lengths. Each group indicated a fair amount of the volume of these lengths. The photocatalytic process of ZNsw was carried out as a result of the irradiation time due to the deterioration of Azo Dye AR183, resulting in approximately 79 percent dye discoloration following an 80-min UV light irradiation in the presence of ZNsw. Additionally, the synthesized ZNsw was tested for antagonistic activity, and the growth hindrance of two plant pathogenic fungal strains found. Per cent inhibition in growth of Rhizoctonia solani and Alternaria alternata were observed in response to ZNsw.
Collapse
|
57
|
Khan SS, Ullah I, Zada S, Ahmad A, Ahmad W, Xu H, Ullah S, Liu L. Functionalization of Se-Te Nanorods with Au Nanoparticles for Enhanced Anti-Bacterial and Anti-Cancer Activities. MATERIALS 2022; 15:ma15144813. [PMID: 35888280 PMCID: PMC9316951 DOI: 10.3390/ma15144813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/03/2022] [Accepted: 07/06/2022] [Indexed: 11/23/2022]
Abstract
The use of medical devices for therapeutic and diagnostic purpose is globally increasing; however, bacterial colonization on therapeutic devices can occur, causing severe infections in the human body. It has become an issue for public health. It is necessary to develop a nanomaterial based on photothermal treatment to kill toxic bacterial strains. Appropriately, high photothermal conversion and low-cost powerful photothermal agents have been investigated. Recently, gold nanocomposites have attracted great interest in biological applications. Here, we prepared rod-shaped Se-Te@Au nanocomposites of about 200 nm with uniform shape and surface-coated with gold nanoparticles for the first time showing high anti-bacterial and anti-cancer activities. Se-Te@Au showed proper structural consistency and natural resistance to bacterial and cancer cells. The strong absorption and high photothermal conversion efficacy made it a good photothermal agent material for the photothermal treatment of bacterial and cancer cells. The Se-Te@Au rod showed excellent anti-bacterial efficacy against Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus, with highest recorded inhibition zones of 25 ± 2 mm and 22 ± 2 mm, respectively. More than 99% of both types of strains were killed after 5 min with a near-infrared (NIR) laser at the very low concentration of 48 µg/mL. The Se-Te@Au rod’s explosion in HeLa cells was extensively repressed and demonstrated high toxicity at 100 µg/mL for 5 min when subjected to an NIR laser. As a result of its high photothermal characteristics, the exceptional anti-bacterial and anti-cancer effects of the Se-Te@Au rod are considerably better than those of other methods previously published in articles. This study could open a new framework for sterilization applications on the industrial level.
Collapse
Affiliation(s)
- Shahin Shah Khan
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; (S.S.K.); (I.U.); (A.A.); (W.A.); (H.X.)
| | - Irfan Ullah
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; (S.S.K.); (I.U.); (A.A.); (W.A.); (H.X.)
| | - Shah Zada
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Research Center for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China;
| | - Aftab Ahmad
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; (S.S.K.); (I.U.); (A.A.); (W.A.); (H.X.)
| | - Waqar Ahmad
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; (S.S.K.); (I.U.); (A.A.); (W.A.); (H.X.)
| | - Haijun Xu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; (S.S.K.); (I.U.); (A.A.); (W.A.); (H.X.)
| | - Sadeeq Ullah
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; (S.S.K.); (I.U.); (A.A.); (W.A.); (H.X.)
- Correspondence: (S.U.); (L.L.)
| | - Luo Liu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; (S.S.K.); (I.U.); (A.A.); (W.A.); (H.X.)
- Correspondence: (S.U.); (L.L.)
| |
Collapse
|
58
|
Microbial Mediated Synthesis of Zinc Oxide Nanoparticles, Characterization and Multifaceted Applications. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02406-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
AbstractNanoparticles have gained considerable importance compared to bulk counterparts due to their unique properties. Due to their high surface to volume ratio and high reactivity, metallic and metal-oxide nanostructures have shown great potential applications. Among them, zinc oxide nanoparticles (ZnONPs) have gained tremendous attention attributed to their unique properties such as low toxicity, biocompatibility, simplicity, easy fabrication, and environmental friendly. Remarkably, ZnONPs exhibit optical, physical, antimicrobial, anticancer, anti-inflammatory and wound healing properties. These nanoparticles have been applied in various fields such as in biomedicine, biosensors, electronics, food, cosmetic industries, textile, agriculture and environment. The synthesis of ZnONPs can be performed by chemical, physical and biological methods. Although the chemical and physical methods suffer from some disadvantages such as the involvement of high temperature and pressure conditions, high cost and not environmentally friendly, the green synthesis of ZnONPs offers a promising substitute to these conventional methods. On that account, the microbial mediated synthesis of ZnONPs is clean, eco-friendly, nontoxic and biocompatible method. This paper reviews the microbial synthesis of ZnONPs, parameters used for the optimization process and their physicochemical properties. The potential applications of ZnONPs in biomedical, agricultural and environmental fields as well as their toxic aspects on human beings and animals have been reviewed.
Collapse
|
59
|
Choline acetate modified ZnO nanostructure as efficient electrochemical sensor for hydrazine detection. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
60
|
Wei Y, Wang J, Wu S, Zhou R, Zhang K, Zhang Z, Liu J, Qin S, Shi J. Nanomaterial-Based Zinc Ion Interference Therapy to Combat Bacterial Infections. Front Immunol 2022; 13:899992. [PMID: 35844505 PMCID: PMC9279624 DOI: 10.3389/fimmu.2022.899992] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 05/27/2022] [Indexed: 01/04/2023] Open
Abstract
Pathogenic bacterial infections are the second highest cause of death worldwide and bring severe challenges to public healthcare. Antibiotic resistance makes it urgent to explore new antibacterial therapy. As an essential metal element in both humans and bacteria, zinc ions have various physiological and biochemical functions. They can stabilize the folded conformation of metalloproteins and participate in critical biochemical reactions, including DNA replication, transcription, translation, and signal transduction. Therefore, zinc deficiency would impair bacterial activity and inhibit the growth of bacteria. Interestingly, excess zinc ions also could cause oxidative stress to damage DNA, proteins, and lipids by inhibiting the function of respiratory enzymes to promote the formation of free radicals. Such dual characteristics endow zinc ions with unparalleled advantages in the direction of antibacterial therapy. Based on the fascinating features of zinc ions, nanomaterial-based zinc ion interference therapy emerges relying on the outstanding benefits of nanomaterials. Zinc ion interference therapy is divided into two classes: zinc overloading and zinc deprivation. In this review, we summarized the recent innovative zinc ion interference strategy for the treatment of bacterial infections and focused on analyzing the antibacterial mechanism of zinc overloading and zinc deprivation. Finally, we discuss the current limitations of zinc ion interference antibacterial therapy and put forward problems of clinical translation for zinc ion interference antibacterial therapy.
Collapse
Affiliation(s)
- Yongbin Wei
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Jiaming Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Sixuan Wu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Ruixue Zhou
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Kaixiang Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou, China
- Key Laboratory of Key Drug Preparation Technology Ministry of Education, Zhengzhou University, Zhengzhou, China
| | - Zhenzhong Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou, China
- Key Laboratory of Key Drug Preparation Technology Ministry of Education, Zhengzhou University, Zhengzhou, China
| | - Junjie Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou, China
- Key Laboratory of Key Drug Preparation Technology Ministry of Education, Zhengzhou University, Zhengzhou, China
| | - Shangshang Qin
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou, China
- Key Laboratory of Key Drug Preparation Technology Ministry of Education, Zhengzhou University, Zhengzhou, China
| | - Jinjin Shi
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou, China
- Key Laboratory of Key Drug Preparation Technology Ministry of Education, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
61
|
Yildirim B, Washington A, Doutch J, Cole JM. Calculating small-angle scattering intensity functions from electron-microscopy images. RSC Adv 2022; 12:16656-16662. [PMID: 35754871 PMCID: PMC9169464 DOI: 10.1039/d2ra00685e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 04/19/2022] [Indexed: 11/21/2022] Open
Abstract
We outline procedures to calculate small-angle scattering (SAS) intensity functions from 2-dimensional electron-microscopy (EM) images. Two types of scattering systems were considered: (a) the sample is a set of particles confined to a plane; or (b) the sample is modelled as parallel, infinitely long cylinders that extend into the image plane. In each case, an EM image is segmented into particle instances and the background, whereby coordinates and morphological parameters are computed and used to calculate the constituents of the SAS-intensity function. We compare our results with experimental SAS data, discuss limitations, both general and case specific, and outline some applications of this method which could potentially complement experimental SAS.
Collapse
Affiliation(s)
- Batuhan Yildirim
- Cavendish Laboratory, Department of Physics, University of Cambridge J. J. Thomson Avenue Cambridge CB3 0HE UK
- ISIS Neutron and Muon Source, STFC Rutherford Appleton Laboratory Didcot Oxfordshire OX11 0QX UK
- Research Complex at Harwell, Rutherford Appleton Laboratory Didcot Oxfordshire OX11 0FA UK
| | - Adam Washington
- ISIS Neutron and Muon Source, STFC Rutherford Appleton Laboratory Didcot Oxfordshire OX11 0QX UK
| | - James Doutch
- ISIS Neutron and Muon Source, STFC Rutherford Appleton Laboratory Didcot Oxfordshire OX11 0QX UK
| | - Jacqueline M Cole
- Cavendish Laboratory, Department of Physics, University of Cambridge J. J. Thomson Avenue Cambridge CB3 0HE UK
- ISIS Neutron and Muon Source, STFC Rutherford Appleton Laboratory Didcot Oxfordshire OX11 0QX UK
- Research Complex at Harwell, Rutherford Appleton Laboratory Didcot Oxfordshire OX11 0FA UK
| |
Collapse
|
62
|
Antibacterial Vancomycin@ZIF-8 Loaded PVA Nanofiber Membrane for Infected Bone Repair. Int J Mol Sci 2022; 23:ijms23105629. [PMID: 35628439 PMCID: PMC9145349 DOI: 10.3390/ijms23105629] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/13/2022] [Accepted: 05/15/2022] [Indexed: 02/06/2023] Open
Abstract
Bone substitutes with strong antibacterial properties and bone regeneration effects have an inherent potential in the treatment of severe bone tissue infections, such as osteomyelitis. In this study, vancomycin (Van) was loaded into zeolitic imidazolate framework-8 (ZIF-8) to prepare composite particles, which is abbreviated as V@Z. As a pH-responsive particle, ZIF-8 can be cleaved in the weak acid environment caused by bacterial infection to realize the effective release of drugs. Then, V@Z was loaded into polyvinyl alcohol (PVA) fiber by electrospinning to prepare PVA/V@Z composite bone filler. The drug-loading rate of V@Z was about 6.735%. The membranes exhibited super hydrophilicity, water absorption and pH-controlled Van release behavior. The properties of anti E. coli and S. aureus were studied under the pH conditions of normal physiological tissues and infected tissues (pH 7.4 and pH 6.5, respectively). It was found that the material had good surface antibacterial adhesion and antibacterial property. The PVA/V@Z membrane had the more prominent bacteria-killing effect compared with the same amount of single antibacterial agent containing membrane such as ZIF-8 or Van loaded PVA, and the antibacterial rate was up to 99%. The electrospun membrane had good biocompatibility and can promote MC3T3-E1 cell spreading on it.
Collapse
|
63
|
He Y, Capobianco J, Irwin P, Reed S, Lee J. Antimicrobial effect of zinc oxide nanoparticles on
Campylobacter jejuni
and
Salmonella enterica
serovar Enteritidis. J Food Saf 2022. [DOI: 10.1111/jfs.12979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yiping He
- United States Department of Agriculture, Agriculture Research Service Eastern Regional Research Center Wyndmoor Pennsylvania USA
| | - Joseph Capobianco
- United States Department of Agriculture, Agriculture Research Service Eastern Regional Research Center Wyndmoor Pennsylvania USA
| | - Peter Irwin
- United States Department of Agriculture, Agriculture Research Service Eastern Regional Research Center Wyndmoor Pennsylvania USA
| | - Sue Reed
- United States Department of Agriculture, Agriculture Research Service Eastern Regional Research Center Wyndmoor Pennsylvania USA
| | - Joe Lee
- United States Department of Agriculture, Agriculture Research Service Eastern Regional Research Center Wyndmoor Pennsylvania USA
| |
Collapse
|
64
|
Zhang J, Yu C, Li Z, Li J, Chen Y, Wang T, Wang C. Effects of Zinc Oxide Nanoparticles on Growth, Intestinal Barrier, Oxidative Status and Mineral Deposition in 21-Day-Old Broiler Chicks. Biol Trace Elem Res 2022; 200:1826-1834. [PMID: 34101102 DOI: 10.1007/s12011-021-02771-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/28/2021] [Indexed: 01/20/2023]
Abstract
This experiment was to study the effects of zinc oxide nanoparticles (ZnO-NPs) on growth, intestinal barrier, oxidative status, and mineral deposition. In total, 256 one-day-old chicks were randomly allotted to 4 dietary groups and fed with basal diet plus 80 mg/kg ZnSO4 (ZnSO4 group) or plus 40, 80, and 160 mg/kg ZnO-NPs, respectively, for 21 days. Compared with the ZnSO4 group, dietary 40, 80, and 160 mg/kg ZnO-NPs did not alter growth (average daily gain, body weight, and gain to feed ratio), and serum activities of glutamic-pyruvic transaminase, alkaline phosphatase and glutamic oxalacetic transaminase (P > 0.05). However, dietary 80 and 160 mg/kg ZnO-NPs linearly decreased serum D-lactate content and diamine oxidase activity (P < 0.01). Moreover, 80 mg/kg ZnO-NPs enhanced zonula occludens-1 (ZO-1) mRNA expression in jejunal mucosa (P = 0.02). Dietary ZnO-NPs increased total antioxidant capacity activity (P = 0.01), and 80 mg/kg ZnO-NPs decreased malondialdehyde content in jejunal mucosa as compared to the ZnSO4 group (P = 0.02). In contrast, dietary ZnO-NPs did not alter mRNA expressions of superoxide dismutase, catalase, glutathione peroxidase, glutathione S-transferase, heme oxygennase-1 (HO-1) and NAD (P)H: quinone oxidoreductase 1 (NQO1) (P > 0.05). No significant difference was found in selected mineral concentrations (Mn, Cu, Fe and Zn) in the liver among ZnSO4 and 3 ZnO-NP groups (P > 0.05). However, 160 mg/kg ZnO-NPs increased fecal contents of Zn, Fe and Cu (P < 0.01), but did not affect fecal Mn level (P > 0.05). Therefore, results suggested that ZnO-NPs could be an additive to enhance the intestinal barrier and antioxidant capacity of broiler chicks, whereas the inclusion of 80 mg/kg would be more efficient.
Collapse
Affiliation(s)
- Jiaqi Zhang
- College of Animal Science and Technology, National Experimental Teaching Demonstration Centre of Animal Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Caiyun Yu
- College of Animal Science and Technology, National Experimental Teaching Demonstration Centre of Animal Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhihua Li
- College of Animal Science and Technology, National Experimental Teaching Demonstration Centre of Animal Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jian Li
- College of Animal Science and Technology, National Experimental Teaching Demonstration Centre of Animal Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yueping Chen
- College of Animal Science and Technology, National Experimental Teaching Demonstration Centre of Animal Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Tian Wang
- College of Animal Science and Technology, National Experimental Teaching Demonstration Centre of Animal Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chao Wang
- College of Animal Science and Technology, National Experimental Teaching Demonstration Centre of Animal Science, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
65
|
Abstract
Metal nanoparticles (NPs) are increasingly being used in many areas, e.g., industry, pharmacy, and biomedical engineering. NPs can be obtained through chemical and biological synthesis or using physical methods. AgNPs, AuNPs, CuNPs, FeNPs, MgNPs, SnO2NPs, TiO2NPs, and ZnONPs are the most commonly synthesized metal nanoparticles. Many of them have anti-microbial properties and documented activity supported by many tests against some species of pathogenic bacteria, viruses, and fungi. AgNPs, which are used for the production of commercial self-sterilizing packages, are one of the best-explored nanoparticles. Moreover, the EFSA has approved the use of small doses of silver nanoparticles (0.05 mg Ag·kg−1) to food products. Recent studies have shown that metal NPs can be used for the production of coatings to prevent the spread of the SARS-CoV-2 virus, which has caused the global pandemic. Some nanoparticles (e.g., ZnONPs and MgONPs) have the Generally Recognized As Safe (GRAS) status, i.e., they are considered safe for consumption and can be used for the production of edible coatings, protecting food against spoilage. Promising results have been obtained in research on the use of more than one type of nanometals, which prevents the development of pathogen resistance through various mechanisms of inactivation thereof.
Collapse
|
66
|
Arumugasamy SK, Ramakrishnan S, Yoo DJ, Govindaraju S, Yun K. Tuning the interfacial electronic transitions of bi-dimensional nanocomposites (pGO/ZnO) towards photocatalytic degradation and energy application. ENVIRONMENTAL RESEARCH 2022; 204:112050. [PMID: 34516981 DOI: 10.1016/j.envres.2021.112050] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 08/13/2021] [Accepted: 08/26/2021] [Indexed: 06/13/2023]
Abstract
The two-dimensional carbonaceous nanocomposites tend to have extreme capacitance and catalysis activity because of their surface tunability of oxygenated moieties aiding in photocatalytic degradation. Herewith, we performed microwave-assisted alkaline treatment of graphene oxide sheets to attain defective sites on the graphitic surface by altering microwave parameters. The synergism of zinc oxide (ZnO) on the graphitic surface impacts electronic transitions paving paths for vacant oxygen sites to promote photocatalytic degradation and catalytic activity. The photocatalytic efficiency of the synthesized material for the degradation of rhodamine B (RhB) because of its susceptibility in industrial effluents, and the degradation rate was estimated to be around 87.5% within a short span of 30 min by utilizing UV irradiation. Concomitantly, the pGO/ZnO coated substrate exhibits a specific capacity of 561.7 mAh/g and incredible coulombic efficiency illustrating pseudocapacitive nature. Furthermore, on subjecting the composite modified electrode to oxygen evolution catalysis due to the vacant sites located at the lattice edges attributing to the d-d coulombic interaction within the local electron clouds possessing a low overpotential of 205 mV with a Tafel slope of 84 mV/dec. This modest approach boosts an eco-friendly composite to develop photocatalytic degradability and bifunctional catalytic activity for futuristic necessity.
Collapse
Affiliation(s)
| | - Shanmugam Ramakrishnan
- Deparment of Energy Storage/Conversion Engineering of Graduate School (BK21 FOUR), Jeonbuk National University, Jeollabuk-do 54896, Republic of Korea
| | - Dong Jin Yoo
- Department of life science, R&D Education Center for Whole Life Cycle, R&D of Fuel Cell Systems, Jeonbuk National University, Jeonju, Jeollabuk-do, 54896, Republic of Korea; Deparment of Energy Storage/Conversion Engineering of Graduate School (BK21 FOUR), Jeonbuk National University, Jeollabuk-do 54896, Republic of Korea
| | - Saravanan Govindaraju
- Department of Bionanotechnology, Gachon University, Seongnam-si, 13120, Republic of Korea.
| | - Kyusik Yun
- Department of Bionanotechnology, Gachon University, Seongnam-si, 13120, Republic of Korea.
| |
Collapse
|
67
|
Guerra RO, do Carmo Neto JR, de Albuquerque Martins T, Farnesi-de-Assunção TS, Junior VR, de Oliveira CJF, Silva ACA, da Silva MV. Metallic Nanoparticles: A New Frontier in the Fight Against Leishmaniasis. Curr Med Chem 2022; 29:4547-4573. [DOI: 10.2174/0929867329666220225111052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/29/2021] [Accepted: 01/01/2022] [Indexed: 11/22/2022]
Abstract
Abstract:
Leishmaniasis is a cutaneous, mucocutaneous, or visceral parasitic disease caused by protozoa of the Leishmania genus. According to the World Health Organization, Leishmaniasis causes approximately 20–40 thousand deaths annually, and Brazil, India, and some countries in Africa are the most affected by this neglected disease. In addition to parasite’s ability to evade the host’s immune system, the incidence of vectors, the genetics of different hosts, and the large number of deaths are mainly due to failures in conventional treatments that have high toxicity, low effectiveness, and prolonged therapeutic regimens. Thus, the development of new alternative therapeutics with more effective and safer actions has become one of the main challenges for researchers studying leishmaniasis. Among the many research and tested options, metallic nanoparticles, such as gold, silver, zinc oxide, and titanium dioxide, have been shown to be one of the most promising therapeutic tool because they are easily prepared and chemically modified, have a broad spectrum of action, low toxicity, and can generate reactive oxygen species and other immune responses that favor their use against different species of Leishmania. This review explores the progress of the use of metallic nanoparticles as a new tool in the treatment of leishmaniasis, as well as discusses the gaps in knowledge that need to be addressed to consolidate a safe, effective, and definitive therapeutic intervention against these infections.
Collapse
Affiliation(s)
- Rhanoica Oliveira Guerra
- Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences of Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - José Rodrigues do Carmo Neto
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goias, Goiania, GO, Brazil
| | - Tarcísio de Albuquerque Martins
- Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences of Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Thaís Soares Farnesi-de-Assunção
- Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences of Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Virmondes Rodrigues Junior
- Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences of Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Carlo José Freire de Oliveira
- Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences of Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Anielle Christine Almeida Silva
- Laboratório de Novos Materiais Nanoestruturados e Funcionais (LNMIS), Physics Institute, Federal University of Alagoas, Maceió, Alagoas, Brazil
| | - Marcos Vinicius da Silva
- Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences of Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| |
Collapse
|
68
|
A Facile Hydrothermal Synthesis of MWCNT(SH)/CeO2@Se Nanohybrid Materials with Enhanced Antimicrobial Activity. BIONANOSCIENCE 2022. [DOI: 10.1007/s12668-022-00942-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
69
|
Anastasiadis SH, Chrissopoulou K, Stratakis E, Kavatzikidou P, Kaklamani G, Ranella A. How the Physicochemical Properties of Manufactured Nanomaterials Affect Their Performance in Dispersion and Their Applications in Biomedicine: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:552. [PMID: 35159897 PMCID: PMC8840392 DOI: 10.3390/nano12030552] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/29/2022] [Accepted: 02/01/2022] [Indexed: 11/21/2022]
Abstract
The growth in novel synthesis methods and in the range of possible applications has led to the development of a large variety of manufactured nanomaterials (MNMs), which can, in principle, come into close contact with humans and be dispersed in the environment. The nanomaterials interact with the surrounding environment, this being either the proteins and/or cells in a biological medium or the matrix constituent in a dispersion or composite, and an interface is formed whose properties depend on the physicochemical interactions and on colloidal forces. The development of predictive relationships between the characteristics of individual MNMs and their potential practical use critically depends on how the key parameters of MNMs, such as the size, shape, surface chemistry, surface charge, surface coating, etc., affect the behavior in a test medium. This relationship between the biophysicochemical properties of the MNMs and their practical use is defined as their functionality; understanding this relationship is very important for the safe use of these nanomaterials. In this mini review, we attempt to identify the key parameters of nanomaterials and establish a relationship between these and the main MNM functionalities, which would play an important role in the safe design of MNMs; thus, reducing the possible health and environmental risks early on in the innovation process, when the functionality of a nanomaterial and its toxicity/safety will be taken into account in an integrated way. This review aims to contribute to a decision tree strategy for the optimum design of safe nanomaterials, by going beyond the compromise between functionality and safety.
Collapse
Affiliation(s)
- Spiros H. Anastasiadis
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, N. Plastira 100, 700 13 Heraklion, Crete, Greece; (K.C.); (E.S.); (P.K.); (G.K.); (A.R.)
- Department of Chemistry, University of Crete, 700 13 Heraklion, Crete, Greece
| | - Kiriaki Chrissopoulou
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, N. Plastira 100, 700 13 Heraklion, Crete, Greece; (K.C.); (E.S.); (P.K.); (G.K.); (A.R.)
| | - Emmanuel Stratakis
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, N. Plastira 100, 700 13 Heraklion, Crete, Greece; (K.C.); (E.S.); (P.K.); (G.K.); (A.R.)
- Department of Physics, University of Crete, 700 13 Heraklion, Crete, Greece
| | - Paraskevi Kavatzikidou
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, N. Plastira 100, 700 13 Heraklion, Crete, Greece; (K.C.); (E.S.); (P.K.); (G.K.); (A.R.)
| | - Georgia Kaklamani
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, N. Plastira 100, 700 13 Heraklion, Crete, Greece; (K.C.); (E.S.); (P.K.); (G.K.); (A.R.)
| | - Anthi Ranella
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, N. Plastira 100, 700 13 Heraklion, Crete, Greece; (K.C.); (E.S.); (P.K.); (G.K.); (A.R.)
| |
Collapse
|
70
|
Yang S, Yu W, Zhang J, Han X, Wang J, Sun D, Shi R, Zhou Y, Zhang H, Zhao J. The antibacterial property of zinc oxide/graphene oxide modified porous polyetheretherketone against S. sanguinis, F. nucleatum and P. gingivalis. Biomed Mater 2022; 17. [PMID: 35114651 DOI: 10.1088/1748-605x/ac51ba] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 02/03/2022] [Indexed: 11/11/2022]
Abstract
About 30% failures of implant are caused by peri-implantitis. Subgingival plaque, consisting of S. sanguinis, F. nucleatum, P. gingivalis et. al, is the initiating factor of peri-implantitis. Polyetheretherketone(PEEK) is widely used for the fabrication of implant abutment, healing cap and temporary abutment in dental applications. As a biologically inert material, PEEK has shown poor antibacterial properties. To promote the antibacterial activity of PEEK, we loaded ZnO/GO on sulfonated PEEK. We screened out that when mass ratio of ZnO/GO was 4:1, dip-coating time was 25 min, ZnO/GO modified SPEEK shown the best physical and chemical properties. At the meantime, the ZnO/GO-SPEEK samples possess a good biocompatibility. The ZnO/GO-SPEEK inhibits P. gingivalis obviously, and could exert an antibacterial activity to S. sanguinis in the early stage, prevents biofilm formation effectively. With the favorable in vitro performances, the modification of PEEK with ZnO/GO is promising for preventing peri-implantitis.
Collapse
Affiliation(s)
- Shihui Yang
- Hospital of Stomatology, Department of Dental Implantology, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Jilin University, 1500 Qinghua Road, Changchun, Jilin, 130021, CHINA
| | - Wanqi Yu
- Hospital of Stomatology, Department of Dental Implantology, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Jilin University, 1500 Qinghua Road, Changchun, Jilin, 130021, CHINA
| | - Jingjie Zhang
- Hospital of Stomatology, Department of Dental Implantology, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Jilin University, 1500 Qinghua Road, Changchun, Jilin, 130021, CHINA
| | - Xiao Han
- Hospital of Stomatology, Department of Dental Implantology, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Jilin University, 1500 Qinghua Road, Changchun, Jilin, 130021, CHINA
| | - Junyan Wang
- Hospital of Stomatology, Department of Dental Implantology, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Jilin University, 1500 Qinghua Road, Changchun, Jilin, 130021, CHINA
| | - Duo Sun
- Hospital of Stomatology, Department of Dental Implantology, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Jilin University, 1500 Qinghua Road, Changchun, Jilin, 130021, CHINA
| | - Ruining Shi
- Hospital of Stomatology, Department of Dental Implantology, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Jilin University, 1500 Qinghua Road, Changchun, Jilin, 130021, CHINA
| | - Yanmin Zhou
- Hospital of Stomatology, Department of Dental Implantology, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Jilin University, 1500 Qinghua Road, Changchun, Jilin, 130021, CHINA
| | - Haibo Zhang
- Engineering Research Center of High Performance Plastic, Ministry of Education, College of Chemistry, Jilin University, 1500 Qinghua Road, Changchun, Jilin, 130021, CHINA
| | - Jinghui Zhao
- Hospital of Stomatology, Department of Dental Implantology, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Jilin University, 1500 Qinghua Road, Changchun, Jilin, 130021, CHINA
| |
Collapse
|
71
|
Pachamuthu P, Pricilla Jeyakumari A, Srinivasan N, Chandrasekaran R, Revathi K, Karuppannan P. Structure, surface analysis and bioactivity of Mn doped zinc oxide nanoparticles. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100342] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
72
|
Applications of Inorganic Nanoparticles in Food Packaging: A Comprehensive Review. Polymers (Basel) 2022; 14:polym14030521. [PMID: 35160510 PMCID: PMC8838940 DOI: 10.3390/polym14030521] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/18/2022] [Accepted: 01/25/2022] [Indexed: 02/04/2023] Open
Abstract
Nanoparticles (NPs) have acquired significance in technological breakthroughs due to their unique properties, such as size, shape, chemical composition, physiochemical stability, crystal structure, and larger surface area. There is a huge demand for packaging materials that can keep food fresher for extended periods of time. The incorporation of nanoscale fillers in the polymer matrix would assists in the alleviation of packaging material challenges while also improving functional qualities. Increased barrier properties, thermal properties like melting point and glass transition temperatures, and changed functionalities like surface wettability and hydrophobicity are all features of these polymers containing nanocomposites. Inorganic nanoparticles also have the potential to reduce the growth of bacteria within the packaging. By incorporating nano-sized components into biopolymer-based packaging materials, waste material generated during the packaging process may be reduced. The different inorganic nanoparticles such as titanium oxide, zinc oxide, copper oxide, silver, and gold are the most preferred inorganic nanoparticles used in food packaging. Food systems can benefit from using these packaging materials and improve physicochemical and functional properties. The compatibility of inorganic nanoparticles and their various forms with different polymers make them excellent components for package fortification. This review article describes the various aspects of developing and applying inorganic nanoparticles in food packaging. This study provides diverse uses of metals and metal oxides nanoparticles in food packaging films for the development of improved packaging films that can extend the shelf life of food products. These packaging solutions containing nanoparticles would effectively preserve, protect, and maintain the quality of the food material.
Collapse
|
73
|
Al-Mohaimeed AM, Al-Onazi WA, El-Tohamy MF. Multifunctional Eco-Friendly Synthesis of ZnO Nanoparticles in Biomedical Applications. Molecules 2022; 27:579. [PMID: 35056891 PMCID: PMC8780092 DOI: 10.3390/molecules27020579] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/08/2022] [Accepted: 01/11/2022] [Indexed: 02/01/2023] Open
Abstract
This work describes an environmental-friendly preparation of ZnO nanoparticles using aqueous oat extract. The advanced electrochemical and optical features of green synthesized ZnONPs displayed excellent antibacterial activity and exhibited an important role in pharmaceutical determinations. The formation of nanoscale ZnO was confirmed using various spectroscopic and microscopic investigations. The formed nanoparticles were found to be around 100 nm. The as-prepared ZnONPs were monitored for their antibacterial potential against different bacterial strains. The inhibition zones for ZnONPs were found as Escherichia coli (16 mm), Pseudomonas aeruginosa (17 mm), Staphylococcus aureus (12 mm) and Bacillus subtilis (11 mm) using a 30-µg mL-1 sample concentration. In addition, ZnONPs exhibited significant antioxidant effects, from 58 to 67%, with an average IC50 value of 0.88 ± 0.03 scavenging activity and from 53 to 71% (IC50 value of 0.73 ± 0.05) versus the scavenging free radicals DPPH and ABTS, respectively. The photocatalytic potential of ZnONPs for Rhodamine B dye degradation under UV irradiation was calculated. The photodegradation process was carried out as a function of time-dependent and complete degradation (nearly 98%), with color removal after 120 min. Conclusively, the synthesized ZnONPs using oat biomass might provide a great promise in the future for biomedical applications.
Collapse
Affiliation(s)
- Amal Mohamed Al-Mohaimeed
- Department of Chemistry, College of Science, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia; (W.A.A.-O.); (M.F.E.-T.)
| | | | | |
Collapse
|
74
|
Kang S, Wang H, Su Z, Lu L, Huang S, Yu Y, Chen X. Photo-regulated dual-functional zinc oxide nanocomposite for synergistic sterilization and antioxidant treatment. NEW J CHEM 2022. [DOI: 10.1039/d2nj02667h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The C-FZnO-RT composite achieved synergistic bactericidal performance against both E. coli and S. aureus under light conditions.
Collapse
Affiliation(s)
- Shiyu Kang
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Hui Wang
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Zhen Su
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Lingxia Lu
- School of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Shan Huang
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Yadong Yu
- School of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Xiaojun Chen
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, 210042, P. R. China
| |
Collapse
|
75
|
Ye J, Li B, Li M, Zheng Y, Wu S, Han Y. Formation of a ZnO nanorods-patterned coating with strong bactericidal capability and quantitative evaluation of the contribution of nanorods-derived puncture and ROS-derived killing. Bioact Mater 2021; 11:181-191. [PMID: 34938922 PMCID: PMC8665260 DOI: 10.1016/j.bioactmat.2021.09.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/21/2021] [Accepted: 09/07/2021] [Indexed: 11/29/2022] Open
Abstract
To endow Ti-based orthopedic implants with strong bactericidal activity, a ZnO nanorods-patterned coating (namely ZNR) was fabricated on Ti utilizing a catalyst- and template-free method of micro-arc oxidation (MAO) and hydrothermal treatment (HT). The coating comprises an outer layer of ZnO nanorods and a partially crystallized inner layer with nanocrystalline TiO2 and Zn2TiO4 embedded amorphous matrix containing Ti, O and Zn. During HT, Zn2+ ions contained in amorphous matrix of the as-MAOed layer migrate to surface and react with OH− in hydrothermal solution to form ZnO nuclei growing in length at expense of the migrated Zn2+. ZNR exhibits intense bactericidal activity against the adhered and planktonic S. aureus in vitro and in vivo. The crucial contributors to kill the adhered bacteria are ZnO nanorods derived mechano-penetration and released reactive oxygen species (ROS). Within 30 min of S. aureus incubation, ROS is the predominant bactericidal contributor with quantitative contribution value of ∼20%, which transforms into mechano-penetration with prolonging time to reach quantitative contribution value of ∼96% at 24 h. In addition, the bactericidal contributor against the planktonic bacteria of ZNR is relied on the released Zn2+. This work discloses an in-depth bactericidal mechanism of ZnO nanorods. A templates and catalysts-free method is used to fabricate ZnO nanorods on Ti ZnO nanorods-arrayed coating shows intense broad-spectrum bactericidal activity Main bactericidal contributor of ZnO nanorods to adhered bacteria is mechano-puncture Main bactericidal contributor of ZnO nanorods to planktonic bacteria is released Zn2+
Collapse
Affiliation(s)
- Jing Ye
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Bo Li
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Mei Li
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China.,Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Yufeng Zheng
- Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Shuilin Wu
- School of Materials Science & Engineering, The Key Laboratory of Advanced Ceramics and Machining Technology By the Ministry of Education of China, Tianjin University, Tianjin, 300072, China
| | - Yong Han
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
76
|
Avila-Quezada GD, Golinska P, Rai M. Engineered nanomaterials in plant diseases: can we combat phytopathogens? Appl Microbiol Biotechnol 2021; 106:117-129. [PMID: 34913996 DOI: 10.1007/s00253-021-11725-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 02/07/2023]
Abstract
Engineered nanomaterials (ENM) have a high potential for use in several areas of agriculture including plant pathology. Nanoparticles (NPs) alone can be applied for disease management due to their antimicrobial properties. Moreover, nanobiosensors allow a rapid and sensitive diagnosis of pathogens because NPs can be conjugated with nucleic acids, proteins and other biomolecules. The use of ENM in diagnosis, delivery of fungicides and therapy is an eco-friendly and economically viable alternative. This review focuses on different promising studies concerning ENM used for plant disease management including viruses, fungi, oomycetes and bacteria; diagnosis and delivery of antimicrobials and factors affecting the efficacy of nanomaterials, entry, translocation and toxicity. Although much research is required on metallic NPs due to the possible risks to the final consumer, ENMs are undoubtedly very useful tools to achieve food security in the world. KEY POINTS: • Increasing global population and fungicides have necessitated alternative technologies. • Nanomaterials can be used for detection, delivery and therapy of plant diseases. • The toxicity issues and safety should be considered before the use of nanomaterials.
Collapse
Affiliation(s)
| | - Patrycja Golinska
- Department of Microbiology, Nicolaus Copernicus University, 87-100, Toruń, Poland
| | - Mahendra Rai
- Department of Microbiology, Nicolaus Copernicus University, 87-100, Toruń, Poland.
- Nanotechnology Laboratory, Department of Biotechnology, SGB Amravati University, Amravati, 444 602, Maharashtra, India.
| |
Collapse
|
77
|
Iqbal T, Azhar S, Zafar M, Kiran H, Kebaili I, Alrobei H. Synthesis and characterization of Ag-ZnO nano-composites for investigation of variations in the germination of peanut and kidney beans. APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-021-02244-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
78
|
Facile synthesis of silver modified zinc oxide nanocomposite: An efficient visible light active nanomaterial for bacterial inhibition and dye degradation. Photodiagnosis Photodyn Ther 2021; 36:102619. [PMID: 34748999 DOI: 10.1016/j.pdpdt.2021.102619] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/24/2021] [Accepted: 11/01/2021] [Indexed: 12/15/2022]
Abstract
The present study reports the synthesis of silver (Ag) decorated zinc oxide (ZnO) nanocomposite via green synthesis method by using Acacia arabica plant leaves extract as both reducing and capping agent. The results clearly indicate a uniform distribution of Ag nanoparticles (NPs) over ZnO surface. Various analytical and spectroscopic techniques were used for investigating the formation and morphology of as-synthesized Ag/ZnO nanocomposites. Emergence of SPR at 424 and 378 nm confirmed the synthesis of AgNPs and ZnO respectively. The confirmation of elemental composition and crystal structure of prepared nanomaterials (NMs) was carried out via EDX and XRD analysis. Results obtained from HRTEM and SEM analysis indicated small sized spherically shaped NMs. The as-synthesized was checked for its photocatalytic activity towards degradation of MB in the presence as well as absence of light irradiation. Results of degradation study revealed that Ag/ZnO exhibits remarkable photocatalytic activity in the presence of light whereby removing 90% of MB within 80 min. Moreover, the antibacterial activity of synthesized nanocomposite was examined in both visible light and dark conditions. The experiment showed that nanomaterial depicts enhanced antibacterial activity in light in comparison to dark. The results showed that the inhibition diameter of Ag/ZnO nanocomposite in light was found to be 18 (±0.2), 22 (±0.3) against E. coli and S. aureus respectively. The inhibition zone of the said nanomaterial against E. coli and S. aureus in dark was 11 (±0.3), 14 (±0.5) respectively. These results conclude that activity is delivered both in the presence of visible light and dark but efficiency of antibacterial activity is found to be more in visible light in comparison.
Collapse
|
79
|
Gangwar J, Sebastian JK. Unlocking the potential of biosynthesized zinc oxide nanoparticles for degradation of synthetic organic dyes as wastewater pollutants. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2021; 84:3286-3310. [PMID: 34850728 DOI: 10.2166/wst.2021.430] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The azo dyes released into water from different industries are accumulating in the water bodies and bioaccumulating within living systems thereby affecting environmental health. This is a major concern in developing countries where stringent regulations are not followed for the discharge of industrial waste into water bodies. This has led to the accumulation of various pollutants including dyes. As these developing countries also face acute water shortages and due to the lack of cost-effective systems to remove these pollutants, it is essential to remove these toxic dyes from water bodies, eradicate dyes, or generate fewer toxic derivatives. The photocatalysis mechanism of degradation of azo dyes has gained importance due to its eco-friendly and non-toxic roles in the environment. The zinc nanoparticles act as photocatalysts in combination with plant extracts. Plant-based nanoparticles over the years have shown the potential to degrade dyes efficiently. This is carried out by adjusting the dye and nanoparticle concentrations and combinations of nanoparticles. Our review article considers increasing the efficiency of degradation of dyes using zinc oxide (ZnO) nanoparticles and understanding the photocatalytic mechanisms in the degradation of dyes and the toxic effects of these dyes and nanoparticles in different tropic levels.
Collapse
Affiliation(s)
- Jaya Gangwar
- Department of Life Sciences, Christ University, Bangalore, Karnataka, India E-mail:
| | | |
Collapse
|
80
|
Vázquez K, Vanegas P, Cruzat C, Novoa N, Arrué R, Vanegas E. Antibacterial and Antifungal Properties of Electrospun Recycled PET Polymeric Fibers Functionalized with Zinc Oxide Nanoparticles. Polymers (Basel) 2021; 13:3763. [PMID: 34771320 PMCID: PMC8587058 DOI: 10.3390/polym13213763] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/22/2021] [Accepted: 10/26/2021] [Indexed: 01/27/2023] Open
Abstract
Currently, to reduce the environmental problems associated with plastic waste, methods are being sought to use this waste as raw materials in different applications, such as fibers. In addition, to improve these materials and provide different properties, nanoparticles (NPs) are incorporated. In the present work, polymeric fibers made of recycled polyethylene terephthalate (r-PET) from post-consumer water bottles, functionalized with 0%, 1.5%, 3% and 6% zinc oxide nanoparticles (ZnO-NPs) in function of r-PET weight, were elaborated to evaluate their antibacterial and antifungal characteristics. The ZnO-NPs were synthesized by the solvothermal method, obtaining particles with a mean diameter of 38.15 nm, while the fibers were obtained by electrospinning with a diameter range between 200-5000 nm. The functionalized fibers were carried out against Escherichia coli and Bacillus subtilis through the agar diffusion method, obtaining the highest inhibition halo at 6% w/w ZnO-NPs, being 26.5 mm and 34.25 mm, respectively. In addition, the same method was used to evaluate the antifungal activity of Penicillium s.p. and Fusarium graminearum, observing antifungal properties due to the presence of nanoparticles in the fibers.
Collapse
Affiliation(s)
- Katherine Vázquez
- Chemical Engineering, Faculty of Chemical Sciences, University of Cuenca, Cuenca 010203, Ecuador;
| | - Paul Vanegas
- Department of Space and Population, Faculty of Chemical Sciences, University of Cuenca, Cuenca 010203, Ecuador;
| | - Christian Cruzat
- Center for Environmental Studies, Department of Applied Chemisty and Production Systems, Faculty of Chemical Sciences, University of Cuenca, Cuenca 010203, Ecuador;
| | - Néstor Novoa
- Laboratorio de Química Inorgánica y Organometálica, Departamento de Química Analítica e Inorgánica, Facultad de Ciencias Químicas, Universidad de Concepción, Edmundo Larenas 129, Casilla 160-C, Concepción 4070386, Chile; (N.N.); (R.A.)
| | - Ramón Arrué
- Laboratorio de Química Inorgánica y Organometálica, Departamento de Química Analítica e Inorgánica, Facultad de Ciencias Químicas, Universidad de Concepción, Edmundo Larenas 129, Casilla 160-C, Concepción 4070386, Chile; (N.N.); (R.A.)
| | - Eulalia Vanegas
- Center for Environmental Studies, Department of Applied Chemisty and Production Systems, Faculty of Chemical Sciences, University of Cuenca, Cuenca 010203, Ecuador;
| |
Collapse
|
81
|
Wang Z, Wang X, Wang Y, Zhu Y, Liu X, Zhou Q. NanoZnO-modified titanium implants for enhanced anti-bacterial activity, osteogenesis and corrosion resistance. J Nanobiotechnology 2021; 19:353. [PMID: 34717648 PMCID: PMC8557588 DOI: 10.1186/s12951-021-01099-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 10/20/2021] [Indexed: 02/08/2023] Open
Abstract
Titanium (Ti) implants are widely used in dentistry and orthopedics owing to their excellent corrosion resistance, biocompatibility, and mechanical properties, which have gained increasing attention from the viewpoints of fundamental research and practical applications. Also, numerous studies have been carried out to fine-tune the micro/nanostructures of Ti and/or incorporate chemical elements to improve overall implant performance. Zinc oxide nanoparticles (nano-ZnO) are well-known for their good antibacterial properties and low cytotoxicity along with their ability to synergize with a variety of substances, which have received increasingly widespread attention as biomodification materials for implants. In this review, we summarize recent research progress on nano-ZnO modified Ti-implants. Their preparation methods of nano-ZnO modified Ti-implants are introduced, followed by a further presentation of the antibacterial, osteogenic, and anti-corrosion properties of these implants. Finally, challenges and future opportunities for nano-ZnO modified Ti-implants are proposed.
Collapse
Affiliation(s)
- Zheng Wang
- Institute for Translational Medicine, Department of Orthodontics, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266003, China
- School of Stomatology, Qingdao University, Qingdao, 266003, China
| | - Xiaojing Wang
- School of Stomatology, Qingdao University, Qingdao, 266003, China
- Department of Oral Implantology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Yingruo Wang
- Shandong University of Science and Technology, Qingdao, 266590, China
| | - Yanli Zhu
- School of Stomatology, Qingdao University, Qingdao, 266003, China
| | - Xinqiang Liu
- Institute for Translational Medicine, Department of Orthodontics, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266003, China.
- School of Stomatology, Qingdao University, Qingdao, 266003, China.
| | - Qihui Zhou
- Institute for Translational Medicine, Department of Orthodontics, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266003, China.
- School of Stomatology, Qingdao University, Qingdao, 266003, China.
| |
Collapse
|
82
|
Influence of Physical Dimension and Morphological-Dependent Antibacterial Characteristics of ZnO Nanoparticles Coated on Orthodontic NiTi Wires. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6397698. [PMID: 34692836 PMCID: PMC8531772 DOI: 10.1155/2021/6397698] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 09/11/2021] [Accepted: 09/16/2021] [Indexed: 11/17/2022]
Abstract
White spot lesions (WSLs) are one of the adverse effects of fixed orthodontic treatments. They are the primary sign of caries, which means inhibiting this process by antibacterial agents will reverse the procedure. The current study tested the surface modification of nickel-titanium (NiTi) wires with ZnO nanoparticles (NPs), as antimicrobial agents. As the morphology of NPs is one of the most critical factors for their properties, the antibacterial properties of different morphologies of ZnO nanostructures coated on the NiTi wire were investigated. For the preparation of ZnO nanostructures, five coating methods, including chemical vapor deposition (CVD), chemical precipitation method, polymer composite coating, sol-gel synthesis, and electrospinning process, were used. The antibacterial activity of NPs was assessed against Streptococcus mutans by the colony counting method. The obtained results showed that all the samples had antibacterial effects. The antibacterial properties of ZnO NPs were significantly improved when the specific surface area of particles increased, by the ZnO nanocrystals prepared via the CVD coating method.
Collapse
|
83
|
Darvish M, Ajji A. Effect of Polyethylene Film Thickness on the Antimicrobial Activity of Embedded Zinc Oxide Nanoparticles. ACS OMEGA 2021; 6:26201-26209. [PMID: 34660979 PMCID: PMC8515594 DOI: 10.1021/acsomega.1c03223] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 08/24/2021] [Indexed: 05/11/2023]
Abstract
Microbial contamination of most foods occurs primarily at the surface during postprocessing and handling; therefore, preventing cross-contamination by incorporation of antimicrobial substances in contact with the surface of the product is an efficient strategy in reducing food contamination risks. Zinc oxide nanoparticles (ZnONPs) have been used widely to achieve antimicrobial films in various applications including the food industry. This work describes the fabrication of antimicrobial polymeric films containing ZnONPs produced by the coextrusion and dip-coating techniques. Effects of skin layer thicknesses containing ZnONPs on the antimicrobial effectiveness of the film by their capability to inactivate Gram-positive and Gram-negative bacteria were studied for both methods. The antimicrobial properties of the coextruded multilayer LLDPE/ZnONP nanocomposite films evidenced antimicrobial activity in the range 0.5-1.5 log reductions, while in the case of a sandblasted multilayer film, it showed high antimicrobial properties as around 99.99%. The optical properties of coextruded multilayer films were measured and discussed. Furthermore, to achieve a thinner LLDPE thickness, ZnONPs were coated with different concentrations of LLDPE solution by the dip-coating method. TEM confirmed that a homogeneous layer is formed on the surface of ZnONPs. The thickness of the LLDPE layer estimated by TEM was about 2 nm and film produced 3 log and 4 log reductions for E. coli and S. aureus, respectively. The results show that developed films have the potential to be used as food packaging films and can extend shelf life, maintain quality, and assure the safety of food. The antimicrobial mechanisms of ZnONPs were also investigated. It was found that direct contact of particles with products is necessary to assure high antibacterial activity of the films.
Collapse
|
84
|
Subhan MA, Chandra Saha P, Hossain A, Asiri AM, Alam MM, Al-Mamun M, Ghann W, Uddin J, Raihan T, Azad AK, Rahman MM. Photocatalytic performance, anti-bacterial activities and 3-chlorophenol sensor fabrication using MnAl 2O 4·ZnAl 2O 4 nanomaterials. NANOSCALE ADVANCES 2021; 3:5872-5889. [PMID: 36132679 PMCID: PMC9419424 DOI: 10.1039/d1na00627d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 08/23/2021] [Indexed: 06/16/2023]
Abstract
A MnAl2O4·ZnAl2O4 nanomaterial was synthesized by co-precipitation and characterized by XRD, SEM, EDS, TEM, AFM, FTIR, PL, CV and EIS. The photocatalytic activity of the nanocomposite against MV dye and its MDR anti-bacterial functions were studied. The nanocomposite shows excellent photocatalytic as well as anti-bacterial activity. A MnAl2O4·ZnAl2O4 nanomaterial/Nafion/GCE electrode was fabricated and implemented as the working electrode of a 3-CP sensor. The sensor exhibited good sensitivity, with the lowest detection limit, fast response time, large linear dynamic range (LDR), and long-term stability in the chemical environment. The estimated sensitivity is 70.07 μA mM-1 cm-2. The LDR, limit of detection (LOD), and limit of quantification (LOQ) are 0.1 nM to 0.01 M, 0.0014 ± 0.0001 nM, and 0.004 nM, respectively. The MnAl2O4·ZnAl2O4 nanomaterial/Nafion/GCE is a promising fabricated sensor probe for the selective detection of 3-CP for the environmental safety and healthcare fields on a large scale.
Collapse
Affiliation(s)
- Md Abdus Subhan
- Department of Chemistry, Shahjalal University of Science and Technology Sylhet 3114 Bangladesh
| | - Pallab Chandra Saha
- Department of Chemistry, Shahjalal University of Science and Technology Sylhet 3114 Bangladesh
| | - Anwar Hossain
- Department of Chemistry, Shahjalal University of Science and Technology Sylhet 3114 Bangladesh
| | - Abdullah M Asiri
- Department of Chemistry, Faculty of Science, King Abdulaziz University P.O. Box 80203 Jeddah 21589 Saudi Arabia
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University P. O. Box 80203 Jeddah 21589 Saudi Arabia
| | - M M Alam
- Department of Chemical Engineering and Polymer Science, Shahjalal University of Science and Technology Sylhet 3114 Bangladesh
| | - Mohammad Al-Mamun
- Centre for Clean Environment and Energy, Griffith School of Environment, Gold Coast Campus, Griffith University QLD 4222 Australia
| | - William Ghann
- Center for Nanotechnology, Department of Natural Sciences, Coppin State University Baltimore MD 21216 USA
| | - Jamal Uddin
- Center for Nanotechnology, Department of Natural Sciences, Coppin State University Baltimore MD 21216 USA
| | - Topu Raihan
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology Sylhet 3114 Bangladesh
| | - A K Azad
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology Sylhet 3114 Bangladesh
| | - Mohammed M Rahman
- Department of Chemistry, Faculty of Science, King Abdulaziz University P.O. Box 80203 Jeddah 21589 Saudi Arabia
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University P. O. Box 80203 Jeddah 21589 Saudi Arabia
| |
Collapse
|
85
|
Maruthapandi M, Saravanan A, Das P, Luong JHT, Gedanken A. Microbial inhibition and biosensing with multifunctional carbon dots: Progress and perspectives. Biotechnol Adv 2021; 53:107843. [PMID: 34624454 DOI: 10.1016/j.biotechadv.2021.107843] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 09/29/2021] [Accepted: 10/03/2021] [Indexed: 12/25/2022]
Abstract
Carbon dots (CDs) and their doped counterparts including nitrogen-doped CDs (N@CDs) have been synthesized by bottom-up or top-down approaches from different precursors. The attractiveness of such emerging 2D‑carbon-based nanosized materials is attributed to their excellent biocompatibility, preparation, aqueous dispersibility, and functionality. The antimicrobial, optical, and electrochemical properties of CDs have been advocated for two important biotechnological applications: bacterial eradication and sensing/biosensing. CDs as well as N@CDs act as antimicrobial agents as their surfaces encompass functional hydroxyl, carboxyl, and amino groups that generate free radicals. As a new class of photoluminescent nanomaterials, CDs can be employed in diversified analytics. CDs with surface carboxyl or amino groups form nanocomposites with nanomaterials or be conjugated with biorecognition molecules toward the development of sensors/biosensors. The deployment of conductive CDs in electrochemical sensing has also increased significantly because of their quantum size, excellent biocompatibility, enzyme-mimicking activity, and high surface area. The review also addresses the ongoing challenges and promises of CDs in pathogenesis and analytics. Perspectives on the future possibilities include the use of CDs in microbial viability assay, wound healing, antiviral therapy, and medical devices.
Collapse
Affiliation(s)
- Moorthy Maruthapandi
- Department of Chemistry, Bar-Ilan Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Arumugam Saravanan
- Department of Chemistry, Bar-Ilan Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Poushali Das
- Department of Chemistry, Bar-Ilan Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - John H T Luong
- School of Chemistry, University College Cork, Cork T12 YN60, Ireland
| | - Aharon Gedanken
- Department of Chemistry, Bar-Ilan Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel.
| |
Collapse
|
86
|
Nikolic MV, Vasiljevic ZZ, Auger S, Vidic J. Metal oxide nanoparticles for safe active and intelligent food packaging. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.08.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
87
|
Tănase MA, Soare AC, Oancea P, Răducan A, Mihăescu CI, Alexandrescu E, Petcu C, Diţu LM, Ferbinteanu M, Cojocaru B, Cinteza LO. Facile In Situ Synthesis of ZnO Flower-like Hierarchical Nanostructures by the Microwave Irradiation Method for Multifunctional Textile Coatings. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2574. [PMID: 34685015 PMCID: PMC8538429 DOI: 10.3390/nano11102574] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 09/23/2021] [Accepted: 09/27/2021] [Indexed: 12/12/2022]
Abstract
ZnO nanoparticle-based multifunctional coatings were prepared by a simple, time-saving microwave method. Arginine and ammonia were used as precipitation agents, and zinc acetate dehydrate was used as a zinc precursor. Under the optimized conditions, flower-like morphologies of ZnO aggregates were obtained. The prepared nanopowders were characterized using X-ray powder diffraction (XRD), scanning electron microscopy (SEM), and UV/Visible spectroscopy. The developed in situ synthesis with microwave irradiation enabled significant ZnO nanoparticle deposition on cotton fabrics, without additional steps. The functionalized textiles were tested as a photocatalyst in methylene blue (MB) photodegradation and showed good self-cleaning and UV-blocking properties. The coated cotton fabrics exhibited good antibacterial properties against common microbial trains (Staphylococcus aureus, Escherichia coli, and Candida albicans), together with self-cleaning and photocatalytic efficiency in organic dye degradation. The proposed microwave-assisted in situ synthesis of ZnO nanocoatings on textiles shows high potential as a rapid, efficient, environmentally friendly, and scalable method to fabricate functional fabrics.
Collapse
Affiliation(s)
- Maria Antonia Tănase
- Physical Chemistry Department, Faculty of Chemistry, University of Bucharest, 4-12 Regina Elisabeta Blv., 030018 Bucharest, Romania; (M.A.T.); (A.C.S.); (P.O.); (A.R.)
| | - Andreia Cristina Soare
- Physical Chemistry Department, Faculty of Chemistry, University of Bucharest, 4-12 Regina Elisabeta Blv., 030018 Bucharest, Romania; (M.A.T.); (A.C.S.); (P.O.); (A.R.)
| | - Petruţa Oancea
- Physical Chemistry Department, Faculty of Chemistry, University of Bucharest, 4-12 Regina Elisabeta Blv., 030018 Bucharest, Romania; (M.A.T.); (A.C.S.); (P.O.); (A.R.)
| | - Adina Răducan
- Physical Chemistry Department, Faculty of Chemistry, University of Bucharest, 4-12 Regina Elisabeta Blv., 030018 Bucharest, Romania; (M.A.T.); (A.C.S.); (P.O.); (A.R.)
| | - Cătălin Ionuţ Mihăescu
- Polymers Department, National Institute for Research and Development in Chemistry and Petrochemistry—ICECHIM, 202 Spl. Independentei, 060021 Bucharest, Romania; (C.I.M.); (E.A.)
| | - Elvira Alexandrescu
- Polymers Department, National Institute for Research and Development in Chemistry and Petrochemistry—ICECHIM, 202 Spl. Independentei, 060021 Bucharest, Romania; (C.I.M.); (E.A.)
| | - Cristian Petcu
- Polymers Department, National Institute for Research and Development in Chemistry and Petrochemistry—ICECHIM, 202 Spl. Independentei, 060021 Bucharest, Romania; (C.I.M.); (E.A.)
| | - Lia Mara Diţu
- Microbiology Department, Faculty of Biology, University of Bucharest, 1-3 Aleea Portocalilor, 060101 Bucharest, Romania;
| | - Marilena Ferbinteanu
- Inorganic Chemistry Department, Faculty of Chemistry, University of Bucharest, 23 Dumbrava Rosie, 020462 Bucharest, Romania;
| | - Bogdan Cojocaru
- Organic Chemistry, Biochemistry and Catalysis Department, Faculty of Chemistry, University of Bucharest, 4-12 Regina Elisabeta Blv., 030018 Bucharest, Romania;
| | - Ludmila Otilia Cinteza
- Physical Chemistry Department, Faculty of Chemistry, University of Bucharest, 4-12 Regina Elisabeta Blv., 030018 Bucharest, Romania; (M.A.T.); (A.C.S.); (P.O.); (A.R.)
| |
Collapse
|
88
|
Bharathi DS, Boopathyraja A, Nachimuthu S, Kannan K. Green Synthesis, Characterization and Antibacterial Activity of SiO2–ZnO Nanocomposite by Dictyota bartayresiana Extract and Its Cytotoxic Effect on HT29 Cell Line. J CLUST SCI 2021. [DOI: 10.1007/s10876-021-02170-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
89
|
Singh TA, Sharma A, Tejwan N, Ghosh N, Das J, Sil PC. A state of the art review on the synthesis, antibacterial, antioxidant, antidiabetic and tissue regeneration activities of zinc oxide nanoparticles. Adv Colloid Interface Sci 2021; 295:102495. [PMID: 34375877 DOI: 10.1016/j.cis.2021.102495] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/19/2021] [Accepted: 07/21/2021] [Indexed: 12/25/2022]
Abstract
Recently, zinc oxide nanoparticles (ZnONPs) are gaining much interest of nanobiotechnologists due to their profound biomedical applications. ZnONPs are used as antibacterial agents, which cause both gram-positive and negative bacterial cell death through the generation of reactive free radicals as well as membrane rupture. ZnONPs show excellent antioxidant properties in normal mammalian cells via the scavenging of reactive free radicals and up-regulation of antioxidant enzyme activities. Besides, it also shows hypoglycaemic effect in diabetic animals via pancreatic β-cells mediated increased insulin secretion and glucose uptake by liver, skeletal muscles and adipose tissues. Among the other potential applications, ZnONPs-induced bone and soft-tissue regeneration open a new horizon in the field of tissue engineering. Here, first we reviewed the complete synthesis routes of ZnONPs by physical, chemical, and biological pathways as well as outlined the advantages and disadvantages of the techniques. Further, we discussed the several important aspects of physicochemical analysis of ZnONPs. Additionally, we extensively reviewed the important biomedical applications of ZnONPs as antibacterial, antioxidant, and antidiabetic agents, and in the field of tissue engineering with special emphasis on their mechanisms of actions. Furthermore, the future perspectives of the ZnONPs are also discussed.
Collapse
Affiliation(s)
- Th Abhishek Singh
- School of Advanced Chemical Sciences, Faculty of Basic Sciences, Shoolini University, Solan, Himachal Pradesh 173212, India
| | - Anirudh Sharma
- School of Advanced Chemical Sciences, Faculty of Basic Sciences, Shoolini University, Solan, Himachal Pradesh 173212, India
| | - Neeraj Tejwan
- School of Advanced Chemical Sciences, Faculty of Basic Sciences, Shoolini University, Solan, Himachal Pradesh 173212, India
| | - Noyel Ghosh
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, India
| | - Joydeep Das
- Department of Chemistry, Physical Sciences, Mizoram University, Aizawl, 796004, Mizoram, India.
| | - Parames C Sil
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, India.
| |
Collapse
|
90
|
Yusuf A, Al Jitan S, Garlisi C, Palmisano G. A review of recent and emerging antimicrobial nanomaterials in wastewater treatment applications. CHEMOSPHERE 2021; 278:130440. [PMID: 33838416 DOI: 10.1016/j.chemosphere.2021.130440] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 03/23/2021] [Accepted: 03/28/2021] [Indexed: 06/12/2023]
Abstract
In this paper, we present a critical review on antimicrobial nanomaterials with demonstrated potential for application as a disinfection technology in wastewater treatment. Studies involving fabrication and testing of antimicrobial nanomaterials for wastewater treatment were gathered, critically reviewed, and analyzed. Our review shows that there are only a few eligible candidate nanoparticles (NPs) (metal and metal oxide) that can adequately serve as an antimicrobial agent. Nanosilver (nAg) was the most studied and moderately understood metal NPs with proven antimicrobial activity followed by ZnO (among antimicrobial metal oxide NPs) which outperformed titania (in the absence of light) in efficacy due to its better solubility in aqueous condition. The direction of future work was found to be in the development of antimicrobial nanocomposites, since they provide more stability for antimicrobial metal and metal oxides NPs in water, thereby increasing their activity. This review will serve as an updated survey, yet touching also the fundamentals of the antimicrobial activity, with vital information for researchers planning to embark on the development of superior antimicrobial nanomaterials for wastewater treatment applications.
Collapse
Affiliation(s)
- Ahmed Yusuf
- Department of Chemical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Research and Innovation Center on CO(2) and H(2), Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Center for Membrane and Advanced Water Technology, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Samar Al Jitan
- Department of Chemical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Research and Innovation Center on CO(2) and H(2), Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Corrado Garlisi
- Department of Chemical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Research and Innovation Center on CO(2) and H(2), Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Giovanni Palmisano
- Department of Chemical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Research and Innovation Center on CO(2) and H(2), Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Center for Membrane and Advanced Water Technology, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
91
|
Wasim M, Shi F, Liu J, Farooq A, Khan SU, Salam A, Hassan T, Zhao X. An overview of Zn/ZnO modified cellulosic nanocomposites and their potential applications. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02689-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
92
|
Unravelling the Role of Synthesis Conditions on the Structure of Zinc Oxide-Reduced Graphene Oxide Nanofillers. NANOMATERIALS 2021; 11:nano11082149. [PMID: 34443981 PMCID: PMC8399407 DOI: 10.3390/nano11082149] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 02/06/2023]
Abstract
The diversity of zinc oxide (ZnO) particles and derived composites applications is highly dependent on their structure, size, morphology, defect amounts, and/or presence of dopant molecules. In this work, ZnO nanostructures are grown in situ on graphene oxide (GO) sheets by an easily implementable solvothermal method with simultaneous reduction of GO. The effect of two zinc precursors (zinc acetate (ZA) and zinc acetate dihydrate (ZAD)), NaOH concentration (0.5, 1 or 2 M), and concentration (1 and 12.5 mg/mL) and pH (pH = 1, 4, 8, and 12) of GO suspension were evaluated. While the ZnO particle morphology shows to be precursor dependent, the average particle size length decreases with lower NaOH concentration, as well as with the addition of a higher basicity and concentration of GO suspension. A lowered band gap and a higher specific surface area are obtained from the ZnO composites with higher amounts of GO suspension. Otherwise, the low concentration and the higher pH of GO suspension induce more lattice defects on the ZnO crystal structure. The role of the different condition parameters on the ZnO nanostructures and their interaction with graphene sheets was observed to tune the ZnO–rGO nanofiller properties for photocatalytic and antimicrobial activities.
Collapse
|
93
|
Zhang M, Qiao X, Han W, Jiang T, Liu F, Zhao X. Alginate-chitosan oligosaccharide-ZnO composite hydrogel for accelerating wound healing. Carbohydr Polym 2021; 266:118100. [PMID: 34044919 DOI: 10.1016/j.carbpol.2021.118100] [Citation(s) in RCA: 147] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/07/2021] [Accepted: 04/16/2021] [Indexed: 12/11/2022]
Abstract
Moist, breathable and antibacterial microenvironment can promote cell proliferation and migration, which is beneficial to wound healing. Here, we fabricated a novel sodium alginate-chitosan oligosaccharide‑zinc oxide (SA-COS-ZnO) composite hydrogel by spontaneous Schiff base reaction, using aldehydated sodium alginate (SA), chitosan oligosaccharide (COS), and zinc oxide (ZnO) nanoparticles, which can provide a moist and antibacterial environment for wound healing. The porosity and swelling degree of SA-COS-ZnO hydrogel are 80% and 150%, respectively, and its water vapor permeability is 682 g/m2/24h. The composite hydrogel showed good biocompatibility to blood cells, 3T3 cells, and 293T cells, and significant antibacterial activity against Escherichia coli, Staphylococcus aureus, Candida albicans, and Bacillus subtilis. Moreover, the hydrogel showed a promoting effect on wound healing in a rat scald model. The present study suggests that marine carbohydrates composite hydrogels are promising in wound care management.
Collapse
Affiliation(s)
- Miao Zhang
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Xiaoni Qiao
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Wenwei Han
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Marine Biomedical Research Institute of Qingdao, Qingdao 266071, China
| | - Tianze Jiang
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Fei Liu
- Marine Biomedical Research Institute of Qingdao, Qingdao 266071, China
| | - Xia Zhao
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
94
|
Luo Y, Zhai F, Zhang Y, Chen Z, Ding M, Qin D, Yang J, Feng G, Li L. A superfine glass fibre air filter with rapid response to photocatalytic antibacterial properties under visible light by loading rGO/ZnO. ROYAL SOCIETY OPEN SCIENCE 2021; 8:202285. [PMID: 34457329 PMCID: PMC8371377 DOI: 10.1098/rsos.202285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 07/22/2021] [Indexed: 05/14/2023]
Abstract
The development of high-performance air filter has become more and more important to public health. However, it has always been very challenging for developing a multifunctional air filter to simultaneously achieve excellent filtration and antibacterial properties. Herein, a versatile air filter was prepared with loading the reduced graphene (rGO) and zinc oxide on the superfine glass fibre (s-GF) with the three-dimensional network structure by in situ sol-gel process followed by calcination, which aims to achieve synergistic high-efficiency air filtration and rapid response to photocatalytic antibacterial properties under visible light. The air filter showed a three-dimensional network structure based on a rGO/ZnO/s-GF multilayer and exhibited the highest catalytic performance by achieving a 95% degradation effect on rhodamine B within 2 h and achieving 100% antibacterial inactivation of the Escherichia coli and Staphylococcus aureus within 4 h under visible light when the weight ratio of rGO in rGO/ZnO is 1.6%. The air filtration efficiency can also be maintained at 99% after loading ZnO and rGO photocatalytic particles. The spectrum of the photoluminescence (PL), UV-Vis diffuse reflectance spectra (DRS) and electron spin resonance (ESR) indicate that the combination of rGO and ZnO on the s-GF can increase the separation of photogenerated carriers and the specific surface area of the air filter, thereby increasing the photocatalytic response and antibacterial properties of the s-GF air filter under visible light in a short time.
Collapse
Affiliation(s)
- Yongyi Luo
- School of Materials and Energy, Southwest University, Chongqing 402160, People's Republic of China
| | - Fuqiang Zhai
- Micro/Nano Optoelectronic Materials and Devices International Science and Technology Cooperation Base of China, Chongqing University of Arts and Sciences, Chongqing 402160, People's Republic of China
| | - Yingchun Zhang
- College of Pharmaceutical Sciences, Southwest University, Chongqing 402160, People's Republic of China
| | - Zhiqian Chen
- School of Materials and Energy, Southwest University, Chongqing 402160, People's Republic of China
| | - Mingde Ding
- Micro/Nano Optoelectronic Materials and Devices International Science and Technology Cooperation Base of China, Chongqing University of Arts and Sciences, Chongqing 402160, People's Republic of China
| | - Dajiang Qin
- Chongqing Zisun Technology Co., Ltd., Chongqing 401120, People's Republic of China
| | - Jinming Yang
- Chongqing Zisun Technology Co., Ltd., Chongqing 401120, People's Republic of China
| | - Guang Feng
- Engineering Research Center of Optical Instrument and System, Chongqing Institute of East China Normal University, Chongqing 401120, People's Republic of China
| | - Lu Li
- Micro/Nano Optoelectronic Materials and Devices International Science and Technology Cooperation Base of China, Chongqing University of Arts and Sciences, Chongqing 402160, People's Republic of China
| |
Collapse
|
95
|
Maleic anhydride grafted acrylonitrile butadiene styrene (ABS)/zinc oxide nanocomposite: an anti-microbial material. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02632-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
96
|
Metal Oxide Nanoparticles: Evidence of Adverse Effects on the Male Reproductive System. Int J Mol Sci 2021; 22:ijms22158061. [PMID: 34360825 PMCID: PMC8348343 DOI: 10.3390/ijms22158061] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/22/2021] [Accepted: 07/23/2021] [Indexed: 12/12/2022] Open
Abstract
Metal oxide nanoparticles (MONPs) are inorganic materials that have become a valuable tool for many industrial sectors, especially in healthcare, due to their versatility, unique intrinsic properties, and relatively inexpensive production cost. As a consequence of their wide applications, human exposure to MONPs has increased dramatically. More recently, their use has become somehow controversial. On one hand, MONPs can interact with cellular macromolecules, which makes them useful platforms for diagnostic and therapeutic interventions. On the other hand, research suggests that these MONPs can cross the blood–testis barrier and accumulate in the testis. Although it has been demonstrated that some MONPs have protective effects on male germ cells, contradictory reports suggest that these nanoparticles compromise male fertility by interfering with spermatogenesis. In fact, in vitro and in vivo studies indicate that exposure to MONPs could induce the overproduction of reactive oxygen species, resulting in oxidative stress, which is the main suggested molecular mechanism that leads to germ cells’ toxicity. The latter results in subsequent damage to proteins, cell membranes, and DNA, which ultimately may lead to the impairment of the male reproductive system. The present manuscript overviews the therapeutic potential of MONPs and their biomedical applications, followed by a critical view of their potential risks in mammalian male fertility, as suggested by recent scientific literature.
Collapse
|
97
|
Structural and thermal properties of pure and chromium doped zinc oxide nanoparticles. SN APPLIED SCIENCES 2021. [DOI: 10.1007/s42452-021-04682-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Abstract
Pure ZnO and Cr-doped ZnO nanoparticles have been synthesized via a facile chemical co-precipitation route and their structural, thermal characteristics were discussed systematically. In the experimental producer, the doping concentration has varied the range, 0.05–0.1 M, while calcined at 600 °C. The influence of Cr-doping on the physical characteristics of ZnO nanoparticles was investigated and addressed. As-prepared samples were analyzed via XRD, FTIR, TGA/DTA, BET, and ICP-MS. XRD analysis shows that ZnO and Cr doped ZnO nanoparticles with average particle sizes between 23 and 39 nm were successfully developed with hexagonal wurtzite structure. The FTIR spectroscopy analysis confirms the existence of chromium in the doped ZnO nanoparticles and the formation of ZnO. The TGA/DTA analysis shows that Cr–ZnO nanoparticles are more thermally stable than ZnO nanoparticles. Moreover, the dopant concentration has been analyzed via ICP-MS and showed a good agreement with the expected chromium concentration. The BET surface area measurement shows that 176.25 m2/g and 287.17 m2/g for un-doped ZnO, and 0.1 M Cr-doped ZnO nanoparticles, respectively. Hence, doping of Cr enhances the surface area and thermal stability. Thus, Cr–ZnO nanoparticles show good thermal stability, and high surface area, which is an excellent characteristices of nanomaterials.
Graphic abstract
Collapse
|
98
|
ZnO Nano-Rod Arrays Synthesized with Exposed {0001} Facets and the Investigation of Photocatalytic Activity. CRYSTALS 2021. [DOI: 10.3390/cryst11050522] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Zinc oxide (ZnO) possesses superior chemical and physical properties so that it can occupy an essential position in the application of nanostructures. In this paper, ZnO nano-rod arrays were synthesized by a simple one-step hydrothermal approach with the assistance of cetyl trimethyl ammonium bromide (CTAB). Exposure of the {0001} facets could be controlled by adjusting the amount of CTAB and the maximum exposure of the {0001} facets of ZnO nanorods is obtained at 1.2 g of CTAB. The photocurrent, EIS, and PL measurements support the facile charge transfer with minimum recombination of the photogenerated excitons of the ZnO nano-rod arrays obtained at 1.2 g of CTAB. Consequently, the obtained ZnO nano-rod arrays at the optimal CTAB of 1.2 g exhibit an excellent photocatalytic degradation rate of 99.7% for rhodamine B (RhB), while the degradation rate of RhB by the ZnO obtained without CTAB is only 35%.
Collapse
|
99
|
Saranya A, Murad A, Thamer A, Priyadharsan A, Maheshwaran P. Preparation of Reduced ZnO/Ag Nanocomposites by a Green Microwave‐Assisted Method and Their Applications in Photodegradation of Methylene Blue Dye, and as Antimicrobial and Anticancer Agents. ChemistrySelect 2021. [DOI: 10.1002/slct.202100413] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Arumugam Saranya
- Department of Chemistry PGP College of Arts and science Namakkal 637 207 Tamil Nadu India
| | - Alsawalha Murad
- Department of Chemical and Process Engineering Technology Jubail Industrial College P.O. Box 10099 Jubail 31961 Saudi Arabia
| | - Alomayri Thamer
- Department of Physics Faculty of Applied Science Umm Al-Qura University PO.Box 21955 Makkah Saudi Arabia
| | - Arumugam Priyadharsan
- Department of Physics E.R.K Arts and Science College Erumiyampatti Tamil Nadu 636 905 India
| | | |
Collapse
|
100
|
Singh A, Nenavathu BP, Irfan, Mohsin M. Facile synthesis of Te-doped ZnO nanoparticles and their morphology-dependent antibacterial studies. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01654-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|