51
|
Wang K, Yang T, Wu Q, Zhao X, Nice EC, Huang C. Chemistry-based functional proteomics for drug target deconvolution. Expert Rev Proteomics 2013; 9:293-310. [PMID: 22809208 DOI: 10.1586/epr.12.19] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Drug target deconvolution, a process that identifies targets to small molecules in complex biological samples, which underlie the biological responses that are observed when a drug is administered, plays an important role in current drug discovery. Despite the fact that genomics and proteomics have provided a flood of information that contributes to the progress of drug target identification and validation, the current approach to drug target deconvolution still poses dilemmas. Chemistry-based functional proteomics, a multidisciplinary strategy, has become the preferred method of choice to deconvolute drug target pools, based on direct interactions between small molecules and their protein targets. This approach has already identified a broad panel of previously undefined enzymes with potential as drug targets and defined targets that can rationalize side effects and toxicity for new drug candidates and existing therapeutics. Herein, the authors discuss both activity-based protein profiling and compound-centric chemical proteomics approaches used in chemistry-based functional proteomics and their applications for the identification and characterization of small molecular targets.
Collapse
Affiliation(s)
- Kui Wang
- The State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, PR China
| | | | | | | | | | | |
Collapse
|
52
|
Zorn JA, Wolan DW, Agard NJ, Wells JA. Fibrils colocalize caspase-3 with procaspase-3 to foster maturation. J Biol Chem 2012; 287:33781-95. [PMID: 22872644 DOI: 10.1074/jbc.m112.386128] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Most proteases are expressed as inactive precursors, or zymogens, that become activated by limited proteolysis. We previously identified a small molecule, termed 1541, that dramatically promotes the maturation of the zymogen, procaspase-3, to its mature form, caspase-3. Surprisingly, compound 1541 self-assembles into nanofibrils, and localization of procaspase-3 to the fibrils promotes activation. Here, we interrogate the biochemical mechanism of procaspase-3 activation on 1541 fibrils in addition to proteogenic amyloid-β(1-40) fibrils. In contrast to previous reports, we find no evidence that procaspase-3 alone is capable of self-activation, consistent with its fate-determining role in executing apoptosis. In fact, mature caspase-3 is >10(7)-fold more active than procaspase-3, making this proenzyme a remarkably inactive zymogen. However, we also show that fibril-induced colocalization of trace amounts of caspase-3 or other initiator proteases with procaspase-3 dramatically stimulates maturation of the proenzyme in vitro. Thus, similar to known cellular signaling complexes, these synthetic or natural fibrils can serve as platforms to concentrate procaspase-3 for trans-activation by upstream proteases.
Collapse
Affiliation(s)
- Julie A Zorn
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158, USA
| | | | | | | |
Collapse
|
53
|
Ferreira KS, Kreutz C, Macnelly S, Neubert K, Haber A, Bogyo M, Timmer J, Borner C. Caspase-3 feeds back on caspase-8, Bid and XIAP in type I Fas signaling in primary mouse hepatocytes. Apoptosis 2012; 17:503-15. [PMID: 22246639 DOI: 10.1007/s10495-011-0691-0] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The TNF-R1 like receptor Fas is highly expressed on the plasma membrane of hepatocytes and plays an essential role in liver homeostasis. We recently showed that in collagen-cultured primary mouse hepatocytes, Fas stimulation triggers apoptosis via the so-called type I extrinsic signaling pathway. Central to this pathway is the direct caspase-8-mediated cleavage and activation of caspase-3 as compared to the type II pathway which first requires caspase-8-mediated Bid cleavage to trigger mitochondrial cytochrome c release for caspase-3 activation. Mathematical modeling can be used to understand complex signaling systems such as crosstalks and feedback or feedforward loops. A previously published model predicted a positive feedback loop between active caspases-3 and -8 in both type I and type II FasL signaling in lymphocytes and Hela cells, respectively. Here we experimentally tested this hypothesis in our hepatocytic type I Fas signaling pathway by using wild-type and XIAP-deficient primary hepatocytes and two recently characterized, selective caspase-3/-7 inhibitors (AB06 and AB13). Caspase-3/-7 activity assays and quantitative western blotting confirmed that fully processed, active p17 caspase-3 feeds back on caspase-8 by cleaving its partially processed p43 form into the fully processed p18 species. Our data do not discriminate if p18 positively or negatively influences FasL-induced apoptosis or is responsible for non-apoptotic aspects of FasL signaling. However, we found that caspase-3 also feeds back on Bid and degrades its own inhibitor XIAP, both events that may enhance caspase-3 activity and apoptosis. Thus, potent, selective caspase-3 inhibitors are useful tools to understand complex signaling circuitries in apoptosis.
Collapse
Affiliation(s)
- Karine Sá Ferreira
- Institute of Molecular Medicine and Cell Research, University of Freiburg, Freiburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
54
|
Edgington LE, van Raam BJ, Verdoes M, Wierschem C, Salvesen GS, Bogyo M. An optimized activity-based probe for the study of caspase-6 activation. ACTA ACUST UNITED AC 2012; 19:340-52. [PMID: 22444589 DOI: 10.1016/j.chembiol.2011.12.021] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Revised: 11/19/2011] [Accepted: 12/20/2011] [Indexed: 10/28/2022]
Abstract
Although significant efforts have been made to understand the mechanisms of caspase activation during apoptosis, many questions remain regarding how and when executioner caspases get activated. We describe the design and synthesis of an activity-based probe that labels caspase-3/-6/-7, allowing direct monitoring of all executioner caspases simultaneously. This probe has enhanced in vivo properties and reduced cross-reactivity compared to our previously reported probe, AB50. Using this probe, we find that caspase-6 undergoes a conformational change and can bind substrates even in the absence of cleavage of the proenzyme. We also demonstrate that caspase-6 activation does not require active caspase-3/-7, suggesting that it may autoactivate or be cleaved by other proteases. Together, our results suggest that caspase-6 activation proceeds through a unique mechanism that may be important for its diverse biological functions.
Collapse
Affiliation(s)
- Laura E Edgington
- Cancer Biology Program, Stanford School of Medicine, 300 Pasteur Drive, Stanford, CA 94305-5324, USA
| | | | | | | | | | | |
Collapse
|
55
|
Pace NJ, Pimental DR, Weerapana E. An inhibitor of glutathione S-transferase omega 1 that selectively targets apoptotic cells. Angew Chem Int Ed Engl 2012; 51:8365-8. [PMID: 22777685 DOI: 10.1002/anie.201203730] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Indexed: 11/11/2022]
Affiliation(s)
- Nicholas J Pace
- Department of Chemistry, Merkert Chemistry Center, Boston College, 2609 Beacon Street, Chestnut Hill, MA 02467, USA
| | | | | |
Collapse
|
56
|
Pace NJ, Pimental DR, Weerapana E. An Inhibitor of Glutathione S-Transferase Omega 1 that Selectively Targets Apoptotic Cells. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201203730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
57
|
Serim S, Haedke U, Verhelst SHL. Activity-based probes for the study of proteases: recent advances and developments. ChemMedChem 2012; 7:1146-59. [PMID: 22431376 DOI: 10.1002/cmdc.201200057] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 02/28/2012] [Indexed: 11/11/2022]
Abstract
Proteases are important targets for the treatment of human disease. Several protease inhibitors have failed in clinical trials due to a lack of in vivo specificity, indicating the need for studies of protease function and inhibition in complex, disease-related models. The tight post-translational regulation of protease activity complicates protease analysis by traditional proteomics methods. Activity-based protein profiling is a powerful technique that can resolve this issue. It uses small-molecule tools-activity-based probes-to label and analyze active enzymes in lysates, cells, and whole animals. Over the last twelve years, a wide variety of protease activity-based probes have been developed. These synthetic efforts have enabled techniques ranging from real-time in vivo imaging of protease activity to high-throughput screening of uncharacterized proteases. This Review introduces the general principles of activity-based protein profiling and describes the recent advancements in probe design and analysis techniques, which have increased the knowledge of protease biology and will aid future protease drug discovery.
Collapse
Affiliation(s)
- Sevnur Serim
- Center for Integrated Protein Science Munich (CIPS(M)), Lehrstuhl für Chemie der Biopolymere, Technische Universität München, Weihenstephaner Berg 3, 85354 Freising, Germany
| | | | | |
Collapse
|
58
|
Deu E, Verdoes M, Bogyo M. New approaches for dissecting protease functions to improve probe development and drug discovery. Nat Struct Mol Biol 2012; 19:9-16. [PMID: 22218294 DOI: 10.1038/nsmb.2203] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Proteases are well-established targets for pharmaceutical development because of their known enzymatic mechanism and their regulatory roles in many pathologies. However, many potent clinical lead compounds have been unsuccessful either because of a lack of specificity or because of our limited understanding of the biological roles of the targeted protease. In order to successfully develop protease inhibitors as drugs, it is necessary to understand protease functions and to expand the platform of inhibitor development beyond active site-directed design and in vitro optimization. Several newly developed technologies will enhance assessment of drug selectivity in living cells and animal models, allowing researchers to focus on compounds with high specificity and minimal side effects in vivo. In this review, we highlight advances in the development of chemical probes, proteomic methods and screening tools that we feel will help facilitate this paradigm shift in drug discovery.
Collapse
Affiliation(s)
- Edgar Deu
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | | | | |
Collapse
|
59
|
Lee J, Bogyo M. Synthesis and evaluation of aza-peptidyl inhibitors of the lysosomal asparaginyl endopeptidase, legumain. Bioorg Med Chem Lett 2011; 22:1340-3. [PMID: 22243962 DOI: 10.1016/j.bmcl.2011.12.079] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Revised: 12/13/2011] [Accepted: 12/14/2011] [Indexed: 11/16/2022]
Abstract
Legumain or asparaginly endopeptidase (AEP) is a lysosomal cysteine protease with a high level of specificity for cleavage of protein substrates after an asparagine residue. It is also capable of cleaving after aspartic acids sites when in the acidic environment of the lysosome. Legumain expression and activity is linked to a number of pathological conditions including cancer, atherosclerosis and inflammation, yet its biological role in these pathologies is not well-understood. Highly potent and selective inhibitors of legumain would not only be valuable for studying the functional roles of legumain in these conditions, but may have therapeutic potential as well. We describe here the design, synthesis and in vitro evaluation of selective legumain inhibitors based on the aza-asparaginyl scaffold. We synthesized a library of aza-peptidyl inhibitors with various non-natural amino acids and different electrophilic warheads, and characterized the kinetic properties of inactivation of legumain. We also synthesized fluorescently labeled inhibitors to investigate cell permeability and selectivity of the compounds. The inhibitors have second order rate constants of up to 5 × 10(4)M(-1)s(-1) and IC(50) values as low as 4 nM against recombinant mouse legumain. In addition, the inhibitors are highly selective toward legumain and have little or no cross-reactivity with cathepsins. Overall, we have identified several valuable new inhibitors of legumain that can be used to study legumain function in multiple disease models.
Collapse
Affiliation(s)
- Jiyoun Lee
- Department of Pathology and Microbiology and Immunology, Stanford University School of Medicine, 300 Pasteur Dr. Stanford, CA 94305-5324, USA.
| | | |
Collapse
|
60
|
Edgington LE, Verdoes M, Bogyo M. Functional imaging of proteases: recent advances in the design and application of substrate-based and activity-based probes. Curr Opin Chem Biol 2011; 15:798-805. [PMID: 22098719 DOI: 10.1016/j.cbpa.2011.10.012] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 09/25/2011] [Accepted: 10/17/2011] [Indexed: 02/06/2023]
Abstract
Proteases are enzymes that cleave peptide bonds in protein substrates. This process can be important for regulated turnover of a target protein but it can also produce protein fragments that then perform other functions. Because the last few decades of protease research have confirmed that proteolysis is an essential regulatory process in both normal physiology and in multiple disease-associated conditions, there has been an increasing interest in developing methods to image protease activity. Proteases are also considered to be one of the few 'druggable' classes of proteins and therefore a large number of small molecule based inhibitors of proteases have been reported. These compounds serve as a starting point for the design of probes that can be used to target active proteases for imaging applications. Currently, several classes of fluorescent probes have been developed to visualize protease activity in live cells and even whole organisms. The two primary classes of protease probes make use of either peptide/protein substrates or covalent inhibitors that produce a fluorescent signal when bound to an active protease target. This review outlines some of the most recent advances in the design of imaging probes for proteases. In particular, it highlights the strengths and weaknesses of both substrate-based and activity-based probes and their applications for imaging cysteine proteases that are important biomarkers for multiple human diseases.
Collapse
Affiliation(s)
- Laura E Edgington
- Cancer Biology Program, Stanford University School of Medicine, 300 Pasteur Dr., Stanford, CA 94305-5324, USA
| | | | | |
Collapse
|
61
|
Khanna M, Chen CH, Kimble-Hill A, Parajuli B, Perez-Miller S, Baskaran S, Kim J, Dria K, Vasiliou V, Mochly-Rosen D, Hurley TD. Discovery of a novel class of covalent inhibitor for aldehyde dehydrogenases. J Biol Chem 2011; 286:43486-94. [PMID: 22021038 DOI: 10.1074/jbc.m111.293597] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Human aldehyde dehydrogenases (ALDHs) comprise a family of 17 homologous enzymes that metabolize different biogenic and exogenic aldehydes. To date, there are relatively few general ALDH inhibitors that can be used to probe the contribution of this class of enzymes to particular metabolic pathways. Here, we report the discovery of a general class of ALDH inhibitors with a common mechanism of action. The combined data from kinetic studies, mass spectrometric measurements, and crystallographic analyses demonstrate that these inhibitors undergo an enzyme-mediated β-elimination reaction generating a vinyl ketone intermediate that covalently modifies the active site cysteine residue present in these enzymes. The studies described here can provide the basis for rational approach to design ALDH isoenzyme-specific inhibitors as research tools and perhaps as drugs, to address diseases such as cancer where increased ALDH activity is associated with a cellular phenotype.
Collapse
Affiliation(s)
- May Khanna
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Blais DR, Nasheri N, McKay CS, Legault MC, Pezacki JP. Activity-based protein profiling of host-virus interactions. Trends Biotechnol 2011; 30:89-99. [PMID: 21944551 PMCID: PMC7114118 DOI: 10.1016/j.tibtech.2011.08.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Revised: 07/29/2011] [Accepted: 08/01/2011] [Indexed: 02/08/2023]
Abstract
Virologists have benefited from large-scale profiling methods to discover new host–virus interactions and to learn about the mechanisms of pathogenesis. One such technique, referred to as activity-based protein profiling (ABPP), uses active site-directed probes to monitor the functional state of enzymes, taking into account post-translational interactions and modifications. ABPP gives insight into the catalytic activity of enzyme families that does not necessarily correlate with protein abundance. ABPP has been used to investigate several viruses and their interactions with their hosts. Differential enzymatic activity induced by viruses has been monitored using ABPP. In this review, we present recent advances and trends involving the use of ABPP methods in understanding host–virus interactions and in identifying novel targets for diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- David R. Blais
- Steacie Institute for Molecular Sciences, National Research Council Canada, 100 Sussex Drive, Ottawa, ON, K1A 0R6, Canada
| | - Neda Nasheri
- Steacie Institute for Molecular Sciences, National Research Council Canada, 100 Sussex Drive, Ottawa, ON, K1A 0R6, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Craig S. McKay
- Steacie Institute for Molecular Sciences, National Research Council Canada, 100 Sussex Drive, Ottawa, ON, K1A 0R6, Canada
- Department of Chemistry, University of Ottawa, 10 Marie Curie Private, Ottawa, ON, K1N 6N5, Canada
| | - Marc C.B. Legault
- Steacie Institute for Molecular Sciences, National Research Council Canada, 100 Sussex Drive, Ottawa, ON, K1A 0R6, Canada
- Department of Chemistry, University of Ottawa, 10 Marie Curie Private, Ottawa, ON, K1N 6N5, Canada
| | - John Paul Pezacki
- Steacie Institute for Molecular Sciences, National Research Council Canada, 100 Sussex Drive, Ottawa, ON, K1A 0R6, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
- Department of Chemistry, University of Ottawa, 10 Marie Curie Private, Ottawa, ON, K1N 6N5, Canada
| |
Collapse
|
63
|
Maillard MC, Brookfield FA, Courtney SM, Eustache FM, Gemkow MJ, Handel RK, Johnson LC, Johnson PD, Kerry MA, Krieger F, Meniconi M, Muñoz-Sanjuán I, Palfrey JJ, Park H, Schaertl S, Taylor MG, Weddell D, Dominguez C. Exploiting differences in caspase-2 and -3 S₂ subsites for selectivity: structure-based design, solid-phase synthesis and in vitro activity of novel substrate-based caspase-2 inhibitors. Bioorg Med Chem 2011; 19:5833-51. [PMID: 21903398 DOI: 10.1016/j.bmc.2011.08.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Revised: 08/06/2011] [Accepted: 08/09/2011] [Indexed: 11/17/2022]
Abstract
Several caspases have been implicated in the pathogenesis of Huntington's disease (HD); however, existing caspase inhibitors lack the selectivity required to investigate the specific involvement of individual caspases in the neuronal cell death associated with HD. In order to explore the potential role played by caspase-2, the potent but non-selective canonical Ac-VDVAD-CHO caspase-2 inhibitor 1 was rationally modified at the P(2) residue in an attempt to decrease its activity against caspase-3. With the aid of structural information on the caspase-2, and -3 active sites and molecular modeling, a 3-(S)-substituted-l-proline along with four additional scaffold variants were selected as P(2) elements for their predicted ability to clash sterically with a residue of the caspase-3 S(2) pocket. These elements were then incorporated by solid-phase synthesis into pentapeptide aldehydes 33a-v. Proline-based compound 33h bearing a bulky 3-(S)-substituent displayed advantageous characteristics in biochemical and cellular assays with 20- to 60-fold increased selectivity for caspase-2 and ∼200-fold decreased caspase-3 potency compared to the reference inhibitor 1. Further optimization of this prototype compound may lead to the discovery of valuable pharmacological tools for the study of caspase-2 mediated cell death, particularly as it relates to HD.
Collapse
Affiliation(s)
- Michel C Maillard
- CHDI Management, Inc., 6080 Center Drive Suite 100, Los Angeles, CA 90045, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Nicholls SB, Chu J, Abbruzzese G, Tremblay KD, Hardy JA. Mechanism of a genetically encoded dark-to-bright reporter for caspase activity. J Biol Chem 2011; 286:24977-86. [PMID: 21558267 PMCID: PMC3137071 DOI: 10.1074/jbc.m111.221648] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 05/02/2011] [Indexed: 12/16/2022] Open
Abstract
Fluorescent proteins have revolutionized modern biology with their ability to report the presence of tagged proteins in living systems. Although several fluorescent proteins have been described in which the excitation and emission properties can be modulated by external triggers, no fluorescent proteins have been described that can be activated from a silent dark state to a bright fluorescent state directly by the activity of an enzyme. We have developed a version of GFP in which fluorescence is completely quenched by appendage of a hydrophobic quenching peptide that tetramerizes GFP and prevents maturation of the chromophore. The fluorescence can be fully restored by catalytic removal of the quenching peptide, making it a robust reporter of proteolysis. We have demonstrated the utility of this uniquely dark state of GFP as a genetically encoded apoptosis reporter that monitors the function of caspases, which catalyze the fate-determining step in programmed cell death. Caspase Activatable-GFP (CA-GFP) can be activated both in vitro and in vivo, resulting in up to a 45-fold increase in fluorescent signal in bacteria and a 3-fold increase in mammalian cells. We used CA-GFP successfully to monitor real-time apoptosis in mammalian cells. This dark state of GFP may ultimately serve as a useful platform for probes of other enzymatic processes.
Collapse
Affiliation(s)
| | - Jun Chu
- From the Departments of Chemistry and
- Veterinary and Animal Sciences, University of Massachusetts, Amherst, Massachusetts 01003
| | | | | | | |
Collapse
|
65
|
Albrow VE, Ponder EL, Fasci D, Békés M, Deu E, Salvesen GS, Bogyo M. Development of small molecule inhibitors and probes of human SUMO deconjugating proteases. CHEMISTRY & BIOLOGY 2011; 18:722-32. [PMID: 21700208 PMCID: PMC3131534 DOI: 10.1016/j.chembiol.2011.05.008] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Revised: 05/17/2011] [Accepted: 05/20/2011] [Indexed: 11/28/2022]
Abstract
Sentrin specific proteases (SENPs) are responsible for activating and deconjugating SUMO (Small Ubiquitin like MOdifier) from target proteins. It remains difficult to study this posttranslational modification due to the lack of reagents that can be used to block the removal of SUMO from substrates. Here, we describe the identification of small molecule SENP inhibitors and active site probes containing aza-epoxide and acyloxymethyl ketone (AOMK) reactive groups. Both classes of compounds are effective inhibitors of hSENPs 1, 2, 5, and 7 while only the AOMKs efficiently inhibit hSENP6. Unlike previous reported peptide vinyl sulfones, these compounds covalently labeled the active site cysteine of multiple recombinantly expressed SENP proteases and the AOMK probe showed selective labeling of these SENPs when added to complex protein mixtures. The AOMK compound therefore represents promising new reagents to study the process of SUMO deconjugation.
Collapse
Affiliation(s)
- Victoria E. Albrow
- Department of Pathology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305, USA
| | - Elizabeth L. Ponder
- Department of Microbiology and Immunology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305, USA
| | - Domenico Fasci
- Program in Apoptosis and Cell Death Research, Burnham Institute for Medical Research, 10901 North Torrey Pines Road, La Jolla. CA 92037
| | - Miklós Békés
- Program in Apoptosis and Cell Death Research, Burnham Institute for Medical Research, 10901 North Torrey Pines Road, La Jolla. CA 92037
| | - Edgar Deu
- Department of Pathology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305, USA
| | - Guy S. Salvesen
- Program in Apoptosis and Cell Death Research, Burnham Institute for Medical Research, 10901 North Torrey Pines Road, La Jolla. CA 92037
| | - Matthew Bogyo
- Department of Pathology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305, USA
| |
Collapse
|
66
|
Shen A, Lupardus PJ, Puri AW, Albrow VE, Gersch MM, Garcia KC, Bogyo M. Defining an allosteric circuit in the cysteine protease domain of Clostridium difficile toxins. Nat Struct Mol Biol 2011; 18:364-71. [PMID: 21317893 PMCID: PMC3076311 DOI: 10.1038/nsmb.1990] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Accepted: 11/24/2010] [Indexed: 01/04/2023]
Abstract
An internal cysteine protease domain (CPD) autoproteolytically regulates Clostridium difficile glucosylating toxins by releasing a cytotoxic effector domain into target cells. CPD activity is itself allosterically regulated by the eukaryote-specific molecule inositol hexakisphosphate (InsP(6)). Although allostery controls the function of most proteins, the molecular details underlying this regulatory mechanism are often difficult to characterize. Here we use chemical probes to show that apo-CPD is in dynamic equilibrium between active and inactive states. InsP(6) markedly shifts this equilibrium toward an active conformer that is further restrained upon binding a suicide substrate. Structural analyses combined with systematic mutational and disulfide bond engineering studies show that residues within a β-hairpin region functionally couple the InsP(6)-binding site to the active site. Collectively, our results identify an allosteric circuit that allows bacterial virulence factors to sense and respond to the eukaryotic environment.
Collapse
Affiliation(s)
- Aimee Shen
- Department of Pathology, Stanford School of Medicine, Stanford, California, USA
| | - Patrick J. Lupardus
- Department of Molecular and Cellular Physiology Stanford School of Medicine, Stanford, California, USA
- Howard Hughes Institute, USA, Stanford School of Medicine, Stanford, California, USA
| | - Aaron W. Puri
- Department of Chemical and Systems Biology, Stanford School of Medicine, Stanford, California, USA
| | - Victoria E. Albrow
- Department of Pathology, Stanford School of Medicine, Stanford, California, USA
| | - Malte M. Gersch
- Department of Chemistry and Biochemistry, Ludwig Maximilians University (LMU) Munich, Germany
| | - K. Christopher Garcia
- Department of Molecular and Cellular Physiology Stanford School of Medicine, Stanford, California, USA
- Howard Hughes Institute, USA, Stanford School of Medicine, Stanford, California, USA
| | - Matthew Bogyo
- Department of Pathology, Stanford School of Medicine, Stanford, California, USA
- Department of Microbiology and Immunology, Stanford School of Medicine, Stanford, California, USA
| |
Collapse
|
67
|
Shen A. Allosteric regulation of protease activity by small molecules. MOLECULAR BIOSYSTEMS 2010; 6:1431-43. [PMID: 20539873 DOI: 10.1039/c003913f] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Proteases regulate a plethora of biological processes. Because they irreversibly cleave peptide bonds, the activity of proteases is strictly controlled. While there are many ways to regulate protease activity, an emergent mechanism is the modulation of protease function by small molecules acting at allosteric sites. This mode of regulation holds the potential to allow for the specific and temporal control of a given biological process using small molecules. These compounds also serve as useful tools for studying protein dynamics and function. This review highlights recent advances in identifying and characterizing natural and synthetic small molecule allosteric regulators of proteases and discusses their utility in studies of protease function, drug discovery and protein engineering.
Collapse
Affiliation(s)
- Aimee Shen
- Department of Pathology, Stanford School of Medicine, Stanford, California 94305, USA.
| |
Collapse
|
68
|
auf dem Keller U, Schilling O. Proteomic techniques and activity-based probes for the system-wide study of proteolysis. Biochimie 2010; 92:1705-14. [PMID: 20493233 DOI: 10.1016/j.biochi.2010.04.027] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Accepted: 04/29/2010] [Indexed: 11/17/2022]
Abstract
Proteolysis constitutes a major post-translational modification but specificity and substrate selectivity of numerous proteases have remained elusive. In this review, we highlight how advanced techniques in the areas of proteomics and activity-based probes can be used to investigate i) protease active site specificity; ii) protease in vivo substrates; iii) protease contribution to proteome homeostasis and composition; and iv) detection and localization of active proteases. Peptide libraries together with genetical or biochemical selection have traditionally been used for active site profiling of proteases. These are now complemented by proteome-derived peptide libraries that simultaneously determine prime and non-prime specificity and characterize subsite cooperativity. Cell-contextual discovery of protease substrates is rendered possible by techniques that isolate and quantitate protein termini. Here, a novel approach termed Terminal Amine Isotopic Labeling of Substrates (TAILS) provides an integrated platform for substrate discovery and appropriate statistical evaluation of terminal peptide identification and quantification. Proteolytically generated carboxy-termini can now also be analyzed on a proteome-wide level. Proteolytic regulation of proteome composition is monitored by quantitative proteomic approaches employing stable isotope coding or label free quantification. Activity-based probes specifically recognize active proteases. In proteomic screens, they can be used to detect and quantitate proteolytic activity while their application in cellular histology allows to locate proteolytic activity in situ. Activity-based probes - especially in conjunction with positron emission tomography - are also promising tools to monitor proteolytic activities on an organism-wide basis with a focus on in vivo tumor imaging. Together, this array of methodological possibilities enables unveiling physiological protease substrate repertoires and defining protease function in the cellular- and organism-wide context.
Collapse
Affiliation(s)
- Ulrich auf dem Keller
- ETH Zürich Institute of Cell Biology, Schafmattstrasse 18, CH-8093 Zurich, Switzerland
| | | |
Collapse
|
69
|
Features of programmed cell death in intact Xenopus oocytes and early embryos revealed by near-infrared fluorescence and real-time monitoring. Cell Death Differ 2010; 17:170-9. [PMID: 19730443 PMCID: PMC2794955 DOI: 10.1038/cdd.2009.120] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Factors influencing apoptosis of vertebrate eggs and early embryos have been studied in cell-free systems and in intact embryos by analyzing individual apoptotic regulators or caspase activation in static samples. A novel method for monitoring caspase activity in living Xenopus oocytes and early embryos is described here. The approach, using microinjection of a near-infrared caspase substrate that emits fluorescence only after its proteolytic cleavage by active effector caspases, has enabled the elucidation of otherwise cryptic aspects of apoptotic regulation. In particular, we show that brief caspase activity (10 min) is sufficient to cause apoptotic death in this system. We illustrate a cytochrome c dose threshold in the oocyte, which is lowered by Smac, a protein that binds thereby neutralizing the inhibitor of apoptosis proteins. We show that meiotic oocytes develop resistance to cytochrome c, and that the eventual death of oocytes arrested in meiosis is caspase-independent. Finally, data acquired through imaging caspase activity in the Xenopus embryo suggest that apoptosis in very early development is not cell-autonomous. These studies both validate this assay as a useful tool for apoptosis research and reveal subtleties in the cell death program during early development. Moreover, this method offers a potentially valuable screening modality for identifying novel apoptotic regulators.
Collapse
|
70
|
Lee J, Bogyo M. Development of near-infrared fluorophore (NIRF)-labeled activity-based probes for in vivo imaging of legumain. ACS Chem Biol 2010; 5:233-43. [PMID: 20017516 DOI: 10.1021/cb900232a] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Asparaginyl endopeptidase, or legumain, is a lysosomal cysteine protease that was originally identified in plants and later found to be involved in antigen presentation in higher eukaryotes. Legumain is also up-regulated in a number of human cancers, and recent studies suggest that it may play important functional roles in the process of tumorigenesis. However, detailed functional studies in relevant animal models of human disease have been hindered by the lack of suitably selective small molecule inhibitors and imaging reagents. Here we present the design, optimization, and in vivo application of fluorescently labeled activity-based probes (ABPs) for legumain. We demonstrate that optimized aza-peptidyl Asn epoxides are highly selective and potent inhibitors that can be readily converted into near-infrared fluorophore-labeled ABPs for whole body, noninvasive imaging applications. We show that these probes specifically label legumain in various normal tissues as well as in solid tumors when applied in vivo. Interestingly, addition of cell-penetrating peptides to the probes enhanced cellular uptake but resulted in increased cross-reactivity toward other lysosomal proteases as the result of their accumulation in lysosomes. Overall, we find that aza-peptidyl Asn ABPs are valuable new tools for the future study of legumain function in more complex models of human disease.
Collapse
Affiliation(s)
- Jiyoun Lee
- Departments of Pathology and Microbiology and Immunology, Stanford University School of Medicine, 300 Pasteur Dr., Stanford, California 94305-5324
| | - Matthew Bogyo
- Departments of Pathology and Microbiology and Immunology, Stanford University School of Medicine, 300 Pasteur Dr., Stanford, California 94305-5324
| |
Collapse
|
71
|
Pratt MR, Sekedat MD, Chiang KP, Muir TW. Direct measurement of cathepsin B activity in the cytosol of apoptotic cells by an activity-based probe. ACTA ACUST UNITED AC 2010; 16:1001-12. [PMID: 19778728 DOI: 10.1016/j.chembiol.2009.07.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Revised: 06/26/2009] [Accepted: 07/23/2009] [Indexed: 12/22/2022]
Abstract
Cells control their own death through a program termed apoptosis, which is indispensable for development and homeostasis in all metazoans. Lysosomal cysteine proteases are not normally thought of as participating in apoptosis; however, recent reports have shown that the cathepsin proteases can be released from the lysosome during apoptosis, where they can participate in cell death. We report here the development of an activity-based probe that, under optimized conditions, reports on cathepsin B activity only in apoptotic cells by reading out the release of cathepsin B from the lysosomes. Biochemical characterization of apoptosis in cells from cathepsin B null mice shows delayed and suboptimal activation of caspases. Our data further supports a role for cathepsin B in the cytosol as a positive regulator of a cell death feed-forward loop and provides a chemical tool for future investigations.
Collapse
Affiliation(s)
- Matthew R Pratt
- Laboratory of Synthetic Protein Chemistry, The Rockefeller University, New York, NY 10065, USA.
| | | | | | | |
Collapse
|
72
|
Zhang L, Gallagher PJ. Mind bomb 1 regulation of cFLIP interactions. Am J Physiol Cell Physiol 2009; 297:C1275-83. [PMID: 19710364 PMCID: PMC2777394 DOI: 10.1152/ajpcell.00214.2009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Accepted: 08/19/2009] [Indexed: 02/08/2023]
Abstract
Mind bomb 1 (Mib1) is a multidomain E3 ligase that directs ubiquitination of the Notch ligands Delta and Jagged to promote their endocytosis. Here we examine Notch-independent functions of Mib1 and find that its activities are linked to the initiation of the extrinsic cell death pathway. Expression of Mib1 induces a spontaneous, caspase-dependent cell death. Consistent with this, depletion of endogenous Mib1 decreases tumor-necrosis factor (TNF)-induced cell death. Mib1 was found to bind to cellular Fas-associated death domain (FADD)-like IL-1b converting enzyme (FLICE)-like inhibitory proteins (cFLIP-L and cFLIP-S), whereas only cFLIP-s can inhibit Mib1-induced cell death. The interaction between Mib1 and cFLIP decreases the association of caspase-8 with cFLIP, which activates caspase-8 and induces cell death. Collectively, these results suggest that in addition to a central role in Notch signaling, Mib1 has an important role in regulating the extrinsic cell death pathway.
Collapse
Affiliation(s)
- Liguo Zhang
- Department of Cellular & Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana 46202-5120, USA
| | | |
Collapse
|
73
|
Mueggler T, Baltes C, Rudin M. Molecular neuroimaging in rodents: assessing receptor expression and function. Eur J Neurosci 2009; 30:1860-9. [DOI: 10.1111/j.1460-9568.2009.06987.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
74
|
Comparative assessment of substrates and activity based probes as tools for non-invasive optical imaging of cysteine protease activity. PLoS One 2009; 4:e6374. [PMID: 19636372 PMCID: PMC2712068 DOI: 10.1371/journal.pone.0006374] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2009] [Accepted: 06/25/2009] [Indexed: 11/19/2022] Open
Abstract
Recent advances in the field of non-invasive optical imaging have included the development of contrast agents that report on the activity of enzymatic targets associated with disease pathology. In particular, proteases have proven to be ideal targets for development of optical sensors for cancer. Recently developed contrast agents for protease activity include both small peptides and large polymer-based quenched fluorescent substrates as well as fluorescently labeled activity based probes (ABPs). While substrates produce a fluorescent signal as a result of processing by a protease, ABPs are retained at the site of proteolysis due to formation of a permanent covalent bond with the active site catalytic residue. Both methods have potential advantages and disadvantages yet a careful comparison of substrates and ABPs has not been performed. Here we present the results of a direct comparison of commercially available protease substrates with several recently described fluorescent ABPs in a mouse model of cancer. The results demonstrate that fluorescent ABPs show more rapid and selective uptake into tumors as well as overall brighter signals compared to substrate probes. These data suggest that the lack of signal amplification for an ABP is offset by the increased kinetics of tissue uptake and prolonged retention of the probes once bound to a protease target. Furthermore, fluorescent ABPs can be used as imaging reagents with similar or better results as the commercially available protease substrates.
Collapse
|
75
|
Noninvasive optical imaging of apoptosis by caspase-targeted activity-based probes. Nat Med 2009; 15:967-73. [PMID: 19597506 DOI: 10.1038/nm.1938] [Citation(s) in RCA: 229] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Accepted: 02/03/2009] [Indexed: 11/08/2022]
Abstract
Imaging agents that enable direct visualization and quantification of apoptosis in vivo have great potential value for monitoring chemotherapeutic response as well as for early diagnosis and disease monitoring. We describe here the development of fluorescently labeled activity-based probes (ABPs) that covalently label active caspases in vivo. We used these probes to monitor apoptosis in the thymi of mice treated with dexamethasone as well as in tumor-bearing mice treated with the apoptosis-inducing monoclonal antibody Apomab (Genentech). Caspase ABPs provided direct readouts of the kinetics of apoptosis in live mice, whole organs and tissue extracts. The probes produced a maximum fluorescent signal that could be monitored noninvasively and that coincided with the peak in caspase activity, as measured by gel analysis. Overall, these studies demonstrate that caspase-specific ABPs have the potential to be used for noninvasive imaging of apoptosis in both preclinical and clinical settings.
Collapse
|
76
|
Hardy JA, Wells JA. Dissecting an allosteric switch in caspase-7 using chemical and mutational probes. J Biol Chem 2009; 284:26063-9. [PMID: 19581639 DOI: 10.1074/jbc.m109.001826] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Apoptotic caspases, such as caspase-7, are stored as inactive protease zymogens, and when activated, lead to a fate-determining switch to induce cell death. We previously discovered small molecule thiol-containing inhibitors that when tethered revealed an allosteric site and trapped a conformation similar to the zymogen form of the enzyme. We noted three structural transitions that the compounds induced: (i) breaking of an interaction between Tyr-223 and Arg-187 in the allosteric site, which prevents proper ordering of the catalytic cysteine; (ii) pinning the L2' loop over the allosteric site, which blocks critical interactions for proper ordering of the substrate-binding groove; and (iii) a hinge-like rotation at Gly-188 positioned after the catalytic Cys-186 and Arg-187. Here we report a systematic mutational analysis of these regions to dissect their functional importance to mediate the allosteric transition induced by these compounds. Mutating the hinge Gly-188 to the restrictive proline causes a massive approximately 6000-fold reduction in catalytic efficiency. Mutations in the Arg-187-Tyr-223 couple have a far less dramatic effect (3-20-fold reductions). Interestingly, although the allosteric couple mutants still allow binding and allosteric inhibition, they partially relieve the mutual exclusivity of binding between inhibitors at the active and allosteric sites. These data highlight a small set of residues critical for mediating the transition from active to inactive zymogen-like states.
Collapse
Affiliation(s)
- Jeanne A Hardy
- Sunesis Pharmaceuticals, South San Francisco, California 94080, USA
| | | |
Collapse
|
77
|
Witkowski WA, Hardy JA. L2' loop is critical for caspase-7 active site formation. Protein Sci 2009; 18:1459-68. [PMID: 19530232 PMCID: PMC2775214 DOI: 10.1002/pro.151] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2009] [Revised: 04/06/2009] [Accepted: 04/13/2009] [Indexed: 01/06/2023]
Abstract
The active sites of caspases are composed of four mobile loops. A loop (L2) from one half of the dimer interacts with a loop (L2') from the other half of the dimer to bind substrate. In an inactive form, the two L2' loops form a cross-dimer hydrogen-bond network over the dimer interface. Although the L2' loop has been implicated as playing a central role in the formation of the active-site loop bundle, its precise role in catalysis has not been shown. A detailed understanding of the active and inactive conformations is essential to control the caspase function. We have interrogated the contributions of the residues in the L2' loop to catalytic function and enzyme stability. In wild-type and all mutants, active-site binding results in substantial stabilization of the complex. One mutation, P214A, is significantly destabilized in the ligand-free conformation, but is as stable as wild type when bound to substrate, indicating that caspase-7 rests in different conformations in the absence and presence of substrate. Residues K212 and I213 in the L2' loop are shown to be essential for substrate-binding and thus proper catalytic function of the caspase. In the crystal structure of I213A, the void created by side-chain deletion is compensated for by rearrangement of tyrosine 211 to fill the void, suggesting that the requirements of substrate-binding are sufficiently strong to induce the active conformation. Thus, although the L2' loop makes no direct contacts with substrate, it is essential for buttressing the substrate-binding groove and is central to native catalytic efficiency.
Collapse
Affiliation(s)
| | - Jeanne A Hardy
- Department of Chemistry, University of Massachusetts AmherstAmherst, Massachusetts 01003
| |
Collapse
|
78
|
Noninvasive structural, functional, and molecular imaging in drug development. Curr Opin Chem Biol 2009; 13:360-71. [DOI: 10.1016/j.cbpa.2009.03.025] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2009] [Accepted: 03/30/2009] [Indexed: 11/19/2022]
|
79
|
Barbero S, Mielgo A, Torres V, Teitz T, Shields DJ, Mikolon D, Bogyo M, Barilà D, Lahti JM, Schlaepfer D, Stupack DG. Caspase-8 association with the focal adhesion complex promotes tumor cell migration and metastasis. Cancer Res 2009; 69:3755-63. [PMID: 19383910 PMCID: PMC2684981 DOI: 10.1158/0008-5472.can-08-3937] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Caspase-8 is a proapoptotic protease that suppresses neuroblastoma metastasis by inducing programmed cell death. Paradoxically, caspase-8 can also promote cell migration among nonapoptotic cells; here, we show that caspase-8 can promote metastasis when apoptosis is compromised. Migration is enhanced by caspase-8 recruitment to the cellular migration machinery following integrin ligation. Caspase-8 catalytic activity is not required for caspase-8-enhanced cell migration; rather, caspase-8 interacts with a multiprotein complex that can include focal adhesion kinase and calpain 2 (CPN2), enhancing cleavage of focal adhesion substrates and cell migration. Caspase-8 association with CPN2/calpastatin disrupts calpastatin-mediated inhibition of CPN2. In vivo, knockdown of either caspase-8 or CPN2 disrupts metastasis among apoptosis-resistant tumors. This unexpected molecular collaboration provides an explanation for the continued or elevated expression of caspase-8 observed in many tumors.
Collapse
Affiliation(s)
- Simone Barbero
- Department of Pathology and the Moores UCSD Cancer Center, University of California, San Diego
| | - Ainhoa Mielgo
- Department of Pathology and the Moores UCSD Cancer Center, University of California, San Diego
| | | | - Tal Teitz
- Departments of Genetics and Tumor Cell Biology, St. Jude Children’s Hospital, Memphis, USA
| | - David J. Shields
- Department of Pathology and the Moores UCSD Cancer Center, University of California, San Diego
| | - David Mikolon
- Department of Pathology and the Moores UCSD Cancer Center, University of California, San Diego
| | - Matthew Bogyo
- Department of Pathology, Stanford University School of Medicine
| | - Daniela Barilà
- Department of Biology, University of Rome, Tor Vergata and Laboratory of Cell Signaling, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Fondazione Santa Lucia, Rome, Italy
| | - Jill M. Lahti
- Department of Pathology, Stanford University School of Medicine
| | - David Schlaepfer
- Department of Reproductive Medicine and the Moores UCSD Cancer Center, University of California, San Diego
| | - Dwayne G. Stupack
- Department of Pathology and the Moores UCSD Cancer Center, University of California, San Diego
| |
Collapse
|
80
|
Ditzel M, Broemer M, Tenev T, Bolduc C, Lee TV, Rigbolt KT, Elliott R, Zvelebil M, Blagoev B, Bergmann A, Meier P. Inactivation of effector caspases through nondegradative polyubiquitylation. Mol Cell 2008; 32:540-53. [PMID: 19026784 PMCID: PMC2713662 DOI: 10.1016/j.molcel.2008.09.025] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2008] [Revised: 08/14/2008] [Accepted: 09/26/2008] [Indexed: 11/26/2022]
Abstract
Ubiquitin-mediated inactivation of caspases has long been postulated to contribute to the regulation of apoptosis. However, detailed mechanisms and functional consequences of caspase ubiquitylation have not been demonstrated. Here we show that the Drosophila Inhibitor of Apoptosis 1, DIAP1, blocks effector caspases by targeting them for polyubiquitylation and nonproteasomal inactivation. We demonstrate that the conjugation of ubiquitin to drICE suppresses its catalytic potential in cleaving caspase substrates. Our data suggest that ubiquitin conjugation sterically interferes with substrate entry and reduces the caspase's proteolytic velocity. Disruption of drICE ubiquitylation, either by mutation of DIAP1's E3 activity or drICE's ubiquitin-acceptor lysines, abrogates DIAP1's ability to neutralize drICE and suppress apoptosis in vivo. We also show that DIAP1 rests in an "inactive" conformation that requires caspase-mediated cleavage to subsequently ubiquitylate caspases. Taken together, our findings demonstrate that effector caspases regulate their own inhibition through a negative feedback mechanism involving DIAP1 "activation" and nondegradative polyubiquitylation.
Collapse
Affiliation(s)
- Mark Ditzel
- The Breakthrough Toby Robins Breast Cancer Research Centre, Institute of Cancer Research, Mary-Jean Mitchell Green Building, Chester Beatty Laboratories, Fulham Road, London SW3 6JB, UK
- Institute of Genetics and Molecular Medicine, Edinburgh Cancer Research Centre, Crewe Road South, Edinburgh EH4 2XR, UK
| | - Meike Broemer
- The Breakthrough Toby Robins Breast Cancer Research Centre, Institute of Cancer Research, Mary-Jean Mitchell Green Building, Chester Beatty Laboratories, Fulham Road, London SW3 6JB, UK
| | - Tencho Tenev
- The Breakthrough Toby Robins Breast Cancer Research Centre, Institute of Cancer Research, Mary-Jean Mitchell Green Building, Chester Beatty Laboratories, Fulham Road, London SW3 6JB, UK
| | - Clare Bolduc
- Biochemistry and Molecular Biology, University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard Unit 1000, Houston, TX 77030-4095, USA
| | - Tom V. Lee
- Biochemistry and Molecular Biology, University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard Unit 1000, Houston, TX 77030-4095, USA
| | - Kristoffer T.G. Rigbolt
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Richard Elliott
- The Breakthrough Toby Robins Breast Cancer Research Centre, Institute of Cancer Research, Mary-Jean Mitchell Green Building, Chester Beatty Laboratories, Fulham Road, London SW3 6JB, UK
| | - Marketa Zvelebil
- The Breakthrough Toby Robins Breast Cancer Research Centre, Institute of Cancer Research, Mary-Jean Mitchell Green Building, Chester Beatty Laboratories, Fulham Road, London SW3 6JB, UK
| | - Blagoy Blagoev
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Andreas Bergmann
- Biochemistry and Molecular Biology, University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard Unit 1000, Houston, TX 77030-4095, USA
| | - Pascal Meier
- The Breakthrough Toby Robins Breast Cancer Research Centre, Institute of Cancer Research, Mary-Jean Mitchell Green Building, Chester Beatty Laboratories, Fulham Road, London SW3 6JB, UK
| |
Collapse
|
81
|
Croall DE, Vanhooser LM, Cashon RE. Detecting the active conformation of calpain with calpastatin-based reagents. BIOCHIMICA ET BIOPHYSICA ACTA 2008; 1784:1676-86. [PMID: 18793761 PMCID: PMC2646846 DOI: 10.1016/j.bbapap.2008.08.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/14/2008] [Revised: 07/14/2008] [Accepted: 08/08/2008] [Indexed: 11/26/2022]
Abstract
The specific, calcium-dependent, high affinity interaction between calpain and its endogenous inhibitor calpastatin was exploited to selectively detect the calcium-bound, catalytically competent, conformation of calpain in vitro. Modification of calpastatin domain-1 (Val(114)-Ser(270)) or its N-terminal fragment (Val(114)-Pro(202)), at selected unique cysteine residues with maleimide-AlexaFluor546 did not compromise calpastatin function (inhibition of calpain) or its binding with calpain. Ca(2+)-dependent binding between catalytically dead calpain-2 (Cys(105)Ala) fused with eGFP and these fluorigenic calpastatin peptides generates fluorescent resonance energy transfer (FRET). The FRET signal documents proximity of calpain-2, C-terminally linked fluorophore to specific sites within calpastatin when the proteins form a complex. These results provide important insights into the calcium-dependent interaction between calpain and calpastatin and for holo-calpain-2 in solution experimentally validate some key features of their predicted interactions. These data also provide proof of concept that the calpastatin-based reagents may be useful to selectively detect the active conformation of calpain.
Collapse
Affiliation(s)
- Dorothy E Croall
- 5735 Hitchner Hall, Department of Biochemistry, Microbiology and Molecular Biology, University of Maine, Orono, Maine 04469-5375, USA.
| | | | | |
Collapse
|
82
|
Pereira NA, Song Z. Some commonly used caspase substrates and inhibitors lack the specificity required to monitor individual caspase activity. Biochem Biophys Res Commun 2008; 377:873-7. [PMID: 18976637 DOI: 10.1016/j.bbrc.2008.10.101] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2008] [Accepted: 10/16/2008] [Indexed: 01/02/2023]
Abstract
Many designated substrates and inhibitors have been widely used to investigate the roles of caspases in apoptotic death during mammalian cell culture. However, the specificities of these substrates and inhibitors have not been systematically evaluated. As a result, conclusions on the roles of specific caspases in apoptotic cells have been published inaccurately. In this study, the interaction between seven commercially available human caspases and their designated substrates and inhibitors was studied. Ac-YVAD-pNA, the designated substrate for caspase-1, is found to be the most specific substrate. All other substrates tested demonstrate cross-reactivity with several caspases. In relation to the enzyme, Caspase-2 is the most specific caspase, followed by caspase-9 and -6. Caspase-3 and -7 cleave three substrates efficiently. The designated substrates for capsase-1 and -8 are not even their best substrates. Fluoromethylketone (fmk) inhibitors exhibit no specificity towards different caspases even at low concentrations. In contrast, aldehyde inhibitor potency shows a distinct relationship to pNA substrate cleavage. These results show that some commonly used caspase substrates and inhibitors lack the specificity required to monitor individual caspase activity.
Collapse
Affiliation(s)
- Natasha Ann Pereira
- Bioprocessing Technology Institute, Agency for Science, Technology and Research, 20 Biopolis Way, 06-01 Centros, Singapore 138668, Singapore
| | | |
Collapse
|
83
|
Wai MSM, Liang Y, Shi C, Cho EYP, Kung HF, Yew DT. Co-localization of hyperphosphorylated tau and caspases in the brainstem of Alzheimer's disease patients. Biogerontology 2008; 10:457-69. [PMID: 18946722 DOI: 10.1007/s10522-008-9189-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2008] [Accepted: 10/07/2008] [Indexed: 11/25/2022]
Abstract
Hyperphosphorylation of microtubule associated protein tau had limited studies in Alzheimer's disease (AD) brainstem. We compared the distribution and number of neurons with hyperphosphorylated tau in two age groups of AD brainstems with mean ages of 65.4 +/- 5.7 and 91.1 +/- 6.4 years. The degree of co-localization of hyperphosphorylated tau positive cells with either cleaved caspase-3 or cleaved caspase-6 was also quantified. Results showed hyperphosphorylated tau mainly occurred in hypoglossal, dorsal motor vagal, trigeminal sensory/motor nuclei as well as in dorsal raphe, locus coeruleus and substantia nigra. Older AD brainstem consistently had higher density of hyperphosphorylated tau cells. Up to 70% of tau positive cells also displayed either cleaved caspase-3 or caspase-6, and the number of co-localized tau cells in each caspase subfamily group was always higher in older aged group. Some hyperphosphorylated tau cells with cleaved caspases had TUNEL positive nuclei. These findings suggest that these latter cells went through the apoptotic process or DNA fragmentation.
Collapse
Affiliation(s)
- Maria Sen Mun Wai
- Department of Anatomy, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China
| | | | | | | | | | | |
Collapse
|
84
|
Abstract
Traditional proteomics methodology allows global analysis of protein abundance but does not provide information on the regulation of protein activity. Proteases, in particular, are known for their multilayered post-translational activity regulation that can lead to a significant difference between protease abundance levels and their enzyme activity. To address these issues, the field of activity-based proteomics has been established in order to characterize protein activity and monitor the functional regulation of enzymes in complex proteomes. In this review, we present structural features of activity-based probes for proteases and discuss their applications in proteomic profiling of various catalytic classes of proteases.
Collapse
Affiliation(s)
- Marko Fonović
- Department of Biochemistry, Molecular and Structural Biology, JoZef Stefan Institute, Jamova Cesta 39, SI-1000 Ljubljana, Slovenia.
| | | |
Collapse
|
85
|
Intracellular protease activation in apoptosis and cell-mediated cytotoxicity characterized by cell-permeable fluorogenic protease substrates. Cell Res 2008; 18:238-47. [PMID: 18227859 DOI: 10.1038/cr.2008.17] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Over the past decade the importance of signaling from reporter molecules inside live cells and tissues has been clearly established. Biochemical events related to inflammation, tumor metastasis and proliferation, and viral infectivity and replication are examples of processes being further defined as more molecular tools for live cell measurements become available. Moreover, in addition to quantitating parameters related to physiologic processes, real-time imaging of molecular interactions that compose basic cellular activities are providing insights into understanding disease mechanisms as well as extending clinical efficacy of therapeutic regimens. In this review the use of highly cell-permeable fluorogenic substrates that report protease activities inside live cells is described; applications to defining the molecular events of two cellular processes, i.e., apoptosis and cell-mediated cytotoxicity, are then illustrated.
Collapse
|
86
|
Uttamchandani M, Li J, Sun H, Yao SQ. Activity-Based Protein Profiling: New Developments and Directions in Functional Proteomics. Chembiochem 2008; 9:667-75. [DOI: 10.1002/cbic.200700755] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
87
|
Paulick MG, Bogyo M. Application of activity-based probes to the study of enzymes involved in cancer progression. Curr Opin Genet Dev 2008; 18:97-106. [PMID: 18294838 PMCID: PMC2474457 DOI: 10.1016/j.gde.2007.12.001] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2007] [Accepted: 12/19/2007] [Indexed: 01/07/2023]
Abstract
Many tumor cells have elevated levels of hydrolytic and proteolytic enzymes, presumably to aid in key processes such as angiogenesis, cancer cell invasion, and metastasis. Functional roles of enzymes in cancer progression are difficult to study using traditional genomic and proteomic methods because the activities of these enzymes are often regulated by post-translational mechanisms. Thus, methods that allow for the direct monitoring of enzyme activity in a physiologically relevant environment are required to better understand the roles of specific players in the complex process of tumorigenesis. This review highlights advances in the field of activity-based proteomics, which uses small molecules known as activity-based probes (ABPs) that covalently bind to the catalytic site of target enzymes. We discuss the application of ABPs to cancer biology, especially to the discovery of tumor biomarkers, the screening of enzyme inhibitors, and the imaging of enzymes implicated in cancer.
Collapse
Affiliation(s)
- Margot G. Paulick
- Department of Pathology, Stanford University, Stanford, CA 94305-5324, USA
| | - Matthew Bogyo
- Department of Pathology, Stanford University, Stanford, CA 94305-5324, USA
- Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305-5324, USA
| |
Collapse
|
88
|
Cravatt BF, Wright AT, Kozarich JW. Activity-based protein profiling: from enzyme chemistry to proteomic chemistry. Annu Rev Biochem 2008; 77:383-414. [PMID: 18366325 DOI: 10.1146/annurev.biochem.75.101304.124125] [Citation(s) in RCA: 987] [Impact Index Per Article: 58.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Genome sequencing projects have provided researchers with a complete inventory of the predicted proteins produced by eukaryotic and prokaryotic organisms. Assignment of functions to these proteins represents one of the principal challenges for the field of proteomics. Activity-based protein profiling (ABPP) has emerged as a powerful chemical proteomic strategy to characterize enzyme function directly in native biological systems on a global scale. Here, we review the basic technology of ABPP, the enzyme classes addressable by this method, and the biological discoveries attributable to its application.
Collapse
Affiliation(s)
- Benjamin F Cravatt
- The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | | | | |
Collapse
|
89
|
Pop C, Salvesen GS, Scott FL. Caspase assays: identifying caspase activity and substrates in vitro and in vivo. Methods Enzymol 2008; 446:351-67. [PMID: 18603133 DOI: 10.1016/s0076-6879(08)01621-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The measurement of general caspase activity and the quantification of purified recombinant caspases in vitro can be accomplished with relative ease. But the determination of which caspases are active in a cellular context is much more challenging. This is because commercially available small molecule substrates and inhibitors do not display sufficient specificity to dissect the complex interplay of caspase pathways. Here we describe procedures that can be used to validate which caspases are active in cell culture models and determine which caspases are responsible for specific cleavage events. We also recommend methods for working with recombinant initiator caspases in vitro and suggest ways to accurately assess the cleavage efficiency of natural caspase substrates.
Collapse
Affiliation(s)
- Cristina Pop
- Program in Apoptosis and Cell Death Research, The Burnham Institute for Medical Research, La Jolla, California, USA
| | | | | |
Collapse
|
90
|
Abstract
Caspases are central to the execution of apoptosis. Their proteolytic activity is responsible for the demise of cells in many physiological and pathological states. Great advances in understanding caspases have been made using recombinant caspase expression and enzymatic characterization. Assays to measure caspase activity in apoptotic cell extracts and the development of a reconstituted cell-free assay were also critical in establishing the hierarchy in the caspase activation cascade and comprehend how caspase-9 is activated by the apoptosome. More recently, new tools such as activity-based probes allowed us to detect caspase activation in their working environment providing readout of the system with minimal interference. This chapter describes some of the methods used by our group to study the activation mechanisms of caspases and their activity.
Collapse
|
91
|
Grifalconi M, Celotti L, Mognato M. Bystander response in human lymphoblastoid TK6 cells. Mutat Res 2007; 625:102-11. [PMID: 17669438 DOI: 10.1016/j.mrfmmm.2007.06.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2006] [Revised: 05/23/2007] [Accepted: 06/01/2007] [Indexed: 05/16/2023]
Abstract
The mechanisms of the medium-mediated bystander response induced by gamma-rays in non-irradiated TK6 cells were investigated. Cell cultures were irradiated and the culture medium discarded immediately after irradiation and replaced with a fresh one. In cells incubated with conditioned medium from irradiated cells (CM), a significant decrease in cell viability and cloning efficiency was observed, together with a significant increase in apoptosis, also in directly irradiated cells. To examine whether bystander apoptosis involved the extrinsic pathway, an inhibitor of caspase-8 was added to CM cultures, which significantly decreased apoptosis to control levels. The addition to CM of ROS scavengers, Cu-Zn superoxide dismutase and N-acetylcysteine did not affect the induction of apoptosis. To assess whether CM treatment activates a DNA damage response, also the formation of gamma-H2AX foci, as markers of double-strand breaks and their colocalisation with 53-binding protein 1 (53BP1) and the protein mutated in the Nijmegen breakage syndrome 1 (NBS1) was analysed. In cultures treated for 2h with CM, 9-11% of cells showed gamma-H2AX foci, which partially or totally lacked colocalisation with 53BP1 and NBS1 foci. About 85% of irradiated cells were positive for gamma-H2AX foci, which colocalised with 53BP1 and NBS1 proteins. At 24h from irradiation, very few irradiated cells retained foci, fitting DNA repair kinetics. The number of foci-positive bystander cells also decreased to background values 24h after CM incubation. Our results suggest that irradiated TK6 cells release into the medium some soluble factors, not ROS, which are responsible for the cytotoxic effects induced in bystander cells. In our experimental system, the role of ROS appeared to be of minor importance in inducing cell mortality, but probably critical in activating the DNA damage response in the responsive fraction of bystander cells.
Collapse
Affiliation(s)
- Mauro Grifalconi
- Department of Biology, University of Padova, Via U. Bassi 58/B, 35131 Padova, Italy
| | | | | |
Collapse
|
92
|
Overlapping cleavage motif selectivity of caspases: implications for analysis of apoptotic pathways. Cell Death Differ 2007; 15:322-31. [PMID: 17975551 DOI: 10.1038/sj.cdd.4402260] [Citation(s) in RCA: 248] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Caspases orchestrate the controlled demise of a cell after an apoptotic signal through specific protease activity and cleavage of many substrates altering protein function and ensuring apoptosis proceeds efficiently. Comparing a variety of substrates of each apoptotic caspase (2, 3, 6, 7, 8, 9 and 10) showed that the cleavage sites had a general motif, sometimes specific for one caspase, but other times specific for several caspases. Using commercially available short peptide-based substrates and inhibitors the promiscuity for different cleavage motifs was indicated, with caspase-3 able to cleave most substrates more efficiently than those caspases to which the substrates are reportedly specific. In a cell-free system, immunodepletion of caspases before or after cytochrome c-dependent activation of the apoptosome indicated that the majority of activity on synthetic substrates was dependent on caspase-3, with minor roles played by caspases-6 and -7. Putative inhibitors of individual caspases were able to abolish all cytochrome c-induced caspase activity in a cell-free system and inhibit apoptosis in whole cells through the extrinsic and intrinsic pathways, raising issues regarding the use of such inhibitors to define relevant caspases and pathways. Finally, caspase activity in cells lacking caspase-9 displayed substrate cleavage activity of a putative caspase-9-specific substrate underlining the lack of selectivity of peptide-based substrates and inhibitors of caspases.
Collapse
|
93
|
Barglow KT, Cravatt BF. Activity-based protein profiling for the functional annotation of enzymes. Nat Methods 2007; 4:822-7. [PMID: 17901872 DOI: 10.1038/nmeth1092] [Citation(s) in RCA: 219] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Activity-based protein profiling (ABPP), the use of active site-directed chemical probes to monitor enzyme function in complex biological systems, is emerging as a powerful post-genomic technology. ABPP probes have been developed for several enzyme classes and have been used to inventory enzyme activities en masse for a range of (patho) physiological processes. By presenting specific examples, we show here that ABPP provides researchers with a distinctive set of chemical tools to embark on the assignment of functions to many of the uncharacterized enzymes that populate eukaryotic and prokaryotic proteomes.
Collapse
Affiliation(s)
- Katherine T Barglow
- The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, USA
| | | |
Collapse
|
94
|
Schilling O, Overall CM. Proteomic discovery of protease substrates. Curr Opin Chem Biol 2007; 11:36-45. [PMID: 17194619 DOI: 10.1016/j.cbpa.2006.11.037] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2006] [Accepted: 11/16/2006] [Indexed: 01/22/2023]
Abstract
Elucidation of in vivo substrate degradomes of a protease is a daunting endeavor because of the large number of proteins in a proteome and often minute and transient amounts of key substrates. Proteomic substrate screens for proteases are currently experiencing impressive progress. Mass spectrometry-based global proteome analysis, interfaced with liquid-chromatography and together with stable isotope labeling strategies, has provided increased coverage and sensitivity for quantitative proteomics. ICAT and iTRAQ labeling have been used to identify a plethora of new matrix metalloproteinase substrates. Emerging techniques focus on the quantitative analysis of proteolytically generated neo amino-termini, which we call terminopes, on a system-wide basis. In vivo SILAC pulse-chase experiments have also enabled the study of individual protein turnover and global proteome dynamics in cells and whole organisms. Together with activity-based probes for the profiling of functional proteases, there is now in place an array of complementary technologies to dissect the 'protease web' and its distortion in pathology.
Collapse
Affiliation(s)
- Oliver Schilling
- The UBC Centre for Blood Research, Departments of Oral Biological & Medical Sciences, and Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
| | | |
Collapse
|
95
|
Berger AB, Sexton KB, Bogyo M. Commonly used caspase inhibitors designed based on substrate specificity profiles lack selectivity. Cell Res 2006; 16:961-3. [PMID: 17117159 DOI: 10.1038/sj.cr.7310112] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
96
|
Mitchell DA, Morton SU, Marletta MA. Design and characterization of an active site selective caspase-3 transnitrosating agent. ACS Chem Biol 2006; 1:659-65. [PMID: 17168570 DOI: 10.1021/cb600393x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The oxidative addition of nitric oxide (NO) to a thiol, S-nitrosation, is a focus of studies on cyclic guanosine monophosphate (cGMP)-independent NO signaling. S-Nitrosation of the catalytic cysteine of the caspase proteases has important effects on apoptosis and consequently has received attention. Here we report on a small molecule that can directly probe the effects of S-nitrosation on the caspase cascade. This chemical tool is capable of permeating the mammalian cell membrane, selectively transnitrosating the caspase-3 active site cysteine, and halting apoptosis in cultured human T-cells. The efficacy of this reagent was compared with the commonly used reagent S-nitrosoglutathione and an esterified derivative.
Collapse
Affiliation(s)
- Douglas A Mitchell
- Department of Chemistry, University of California, Berkeley, California 94720-1460, USA
| | | | | |
Collapse
|
97
|
|
98
|
Denault JB, Békés M, Scott FL, Sexton KMB, Bogyo M, Salvesen GS. Engineered hybrid dimers: tracking the activation pathway of caspase-7. Mol Cell 2006; 23:523-33. [PMID: 16916640 DOI: 10.1016/j.molcel.2006.06.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2006] [Revised: 05/19/2006] [Accepted: 06/07/2006] [Indexed: 11/18/2022]
Abstract
Caspase-7 is an obligate dimer of catalytic domains, with generation of activity requiring limited proteolysis within a region that separates the large and small chains of each domain. Using hybrid dimers we distinguish the relative contribution of each domain to catalysis by the whole molecule. We demonstrate that the zymogen arises from direct dimerization and not domain swapping. In contrast to previous conclusions, we show that only one of the catalytic domains must be proteolyzed to enable activation. The processed domain of this singly cleaved zymogen has the same catalytic activity as a domain of fully active caspase-7. A transient intermediate of singly cleaved dimeric caspase-7 can be found in a cell-free model of apoptosis induction. However, we see no evidence for an analogous intermediate of the related executioner caspase-3. Our study demonstrates the efficiency by which the executioner caspases are activated in vivo.
Collapse
Affiliation(s)
- Jean-Bernard Denault
- The Burnham Institute for Medical Research, 10901 North Torrey Pines Road, La Jolla, California 92037, USA
| | | | | | | | | | | |
Collapse
|