51
|
Xie Q, Tong C, Xiong X. An overview of the co-transcription factor NACC1: Beyond its pro-tumor effects. Life Sci 2024; 336:122314. [PMID: 38030057 DOI: 10.1016/j.lfs.2023.122314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/20/2023] [Accepted: 11/26/2023] [Indexed: 12/01/2023]
Abstract
Nucleus accumbens-associated protein 1 (NACC1) is a member of the broad complex, tramtrack, bric-a-brac/poxvirus and zinc finger (BTB/POZ) protein families, mainly exerting its biological functions as a transcription co-regulator. NACC1 forms homo- or hetero-dimers through the BTB/POZ or BANP, E5R, and NACC1 (BEN) domain with other transcriptional regulators to regulate downstream signals. Recently, the overexpression of NACC1 has been observed in various tumors and is positively associated with tumor progression, high recurrence rate, indicating poor prognosis. NACC1 also regulates biological processes such as embryonic development, stem cell pluripotency, innate immunity, and related diseases. Our review combines recent research to summarize advancements in the structure, biological functions, and relative molecular mechanisms of NACC1. The future development of NACC1 clinical appliances is also discussed.
Collapse
Affiliation(s)
- Qing Xie
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang, 330006, China; School of Basic Medical Sciences, Nanchang University, Nanchang, 330006, China
| | - Chang Tong
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang, 330006, China
| | - Xiangyang Xiong
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang, 330006, China; Province Key Laboratory of Tumor Pathogens and Molecular Pathology, Nanchang University, Nanchang 330006, China.
| |
Collapse
|
52
|
Hübner M, Zaiss MM, Azizov V. Double-edged sword: Alcohol's effect on rheumatoid arthritis and beyond. Joint Bone Spine 2024; 91:105626. [PMID: 37543136 DOI: 10.1016/j.jbspin.2023.105626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 07/21/2023] [Indexed: 08/07/2023]
Affiliation(s)
- Michel Hübner
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander- University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany; Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Mario M Zaiss
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander- University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany; Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany.
| | - Vugar Azizov
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander- University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany; Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany; Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| |
Collapse
|
53
|
Vuletić A, Mirjačić Martinović K, Spasić J. Role of Histone Deacetylase 6 and Histone Deacetylase 6 Inhibition in Colorectal Cancer. Pharmaceutics 2023; 16:54. [PMID: 38258065 PMCID: PMC10818982 DOI: 10.3390/pharmaceutics16010054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/22/2023] [Accepted: 12/27/2023] [Indexed: 01/24/2024] Open
Abstract
Histone deacetylase 6 (HDAC6), by deacetylation of multiple substrates and association with interacting proteins, regulates many physiological processes that are involved in cancer development and invasiveness such as cell proliferation, apoptosis, motility, epithelial to mesenchymal transition, and angiogenesis. Due to its ability to remove misfolded proteins, induce autophagy, and regulate unfolded protein response, HDAC6 plays a protective role in responses to stress and enables tumor cell survival. The scope of this review is to discuss the roles of HDCA6 and its implications for the therapy of colorectal cancer (CRC). As HDAC6 is overexpressed in CRC, correlates with poor disease prognosis, and is not essential for normal mammalian development, it represents a good therapeutic target. Selective inhibition of HDAC6 impairs growth and progression without inducing major adverse events in experimental animals. In CRC, HDAC6 inhibitors have shown the potential to reduce tumor progression and enhance the therapeutic effect of other drugs. As HDAC6 is involved in the regulation of immune responses, HDAC6 inhibitors have shown the potential to improve antitumor immunity by increasing the immunogenicity of tumor cells, augmenting immune cell activity, and alleviating immunosuppression in the tumor microenvironment. Therefore, HDAC6 inhibitors may represent promising candidates to improve the effect of and overcome resistance to immunotherapy.
Collapse
Affiliation(s)
- Ana Vuletić
- Department of Experimental Oncology, Institute of Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade, Serbia;
| | - Katarina Mirjačić Martinović
- Department of Experimental Oncology, Institute of Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade, Serbia;
| | - Jelena Spasić
- Clinic for Medical Oncology, Institute of Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade, Serbia;
| |
Collapse
|
54
|
Artcibasova A, Wang L, Anchisi S, Yamauchi Y, Schmolke M, Matthias P, Stelling J. A quantitative model for virus uncoating predicts influenza A infectivity. Cell Rep 2023; 42:113558. [PMID: 38103200 DOI: 10.1016/j.celrep.2023.113558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/13/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
For virus infection of new host cells, the disassembly of the protective outer protein shell (capsid) is a critical step, but the mechanisms and host-virus interactions underlying the dynamic, active, and regulated uncoating process are largely unknown. Here, we develop an experimentally supported, multiscale kinetics model that elucidates mechanisms of influenza A virus (IAV) uncoating in cells. Biophysical modeling demonstrates that interactions between capsid M1 proteins, host histone deacetylase 6 (HDAC6), and molecular motors can physically break the capsid in a tug-of-war mechanism. Biochemical analysis and biochemical-biophysical modeling identify unanchored ubiquitin chains as essential and allow robust prediction of uncoating efficiency in cells. Remarkably, the different infectivity of two clinical strains can be ascribed to a single amino acid variation in M1 that affects binding to HDAC6. By identifying crucial modules of viral infection kinetics, the mechanisms and models presented here could help formulate novel strategies for broad-range antiviral treatment.
Collapse
Affiliation(s)
- Alina Artcibasova
- Department of Biosystems Science and Engineering and SIB Swiss Institute of Bioinformatics, ETH Zurich, 4058 Basel, Switzerland
| | - Longlong Wang
- Friedrich Miescher Institute for Biomedical Research (FMI), 4058 Basel, Switzerland; Faculty of Sciences, University of Basel, 4031 Basel, Switzerland
| | - Stephanie Anchisi
- Department of Microbiology and Molecular Medicine and Geneva Center of Inflammation Research, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Yohei Yamauchi
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Mirco Schmolke
- Department of Microbiology and Molecular Medicine and Geneva Center of Inflammation Research, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Patrick Matthias
- Friedrich Miescher Institute for Biomedical Research (FMI), 4058 Basel, Switzerland; Faculty of Sciences, University of Basel, 4031 Basel, Switzerland.
| | - Jörg Stelling
- Department of Biosystems Science and Engineering and SIB Swiss Institute of Bioinformatics, ETH Zurich, 4058 Basel, Switzerland.
| |
Collapse
|
55
|
Duda J, Thomas SN. Interactions of Histone Deacetylase 6 with DNA Damage Repair Factors Strengthen its Utility as a Combination Drug Target in High-Grade Serous Ovarian Cancer. ACS Pharmacol Transl Sci 2023; 6:1924-1933. [PMID: 38107255 PMCID: PMC10723650 DOI: 10.1021/acsptsci.3c00215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/23/2023] [Accepted: 10/25/2023] [Indexed: 12/19/2023]
Abstract
High-grade serous ovarian cancer (HGSOC) is the deadliest gynecologic malignancy in women. The low survival rate is largely due to drug resistance. Approximately 80% of patients who initially respond to treatment relapse and become drug-resistant. The lack of effective second-line therapeutics remains a substantial challenge for BRCA-1/2 wild-type HGSOC patients. Histone Deacetylases (HDACs) are promising targets in HGSOC treatment; however, the mechanism and efficacy of HDAC inhibitors are understudied in HGSOC. In order to consider HDACs as a treatment target, an improved understanding of their function within HGSOC is required. This includes elucidating HDAC6-specific protein-protein interactions. In this study, we carried out substrate trapping followed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) to elucidate HDAC6 catalytic domain (CD)-specific interactors in the context of BRCA-1/2 wild-type HGSOC. Overall, this study identified new HDAC6 substrates that may be unique to HGSOC. The HDAC6-CD1 mutant condition contained the largest number of significant proteins compared to the CD2 mutant and the CD1/2 mutant conditions, suggesting the HDAC6-CD1 domain has catalytic activity that is independent of CD2. Among the identified substrates were proteins involved in DNA damage repair including PARP proteins. These findings further justify the use of HDAC inhibitors as a combination treatment with platinum chemotherapy agents and PARP inhibitors in HGSOC.
Collapse
Affiliation(s)
- Jolene
M. Duda
- Department
of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Stefani N. Thomas
- Department
of Laboratory Medicine and Pathology, University
of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
56
|
Chowdhury SG, Karmakar P. Revealing the role of epigenetic and post-translational modulations of autophagy proteins in the regulation of autophagy and cancer: a therapeutic approach. Mol Biol Rep 2023; 51:3. [PMID: 38063905 DOI: 10.1007/s11033-023-08961-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/26/2023] [Indexed: 12/18/2023]
Abstract
Autophagy is a process that is characterized by the destruction of redundant components and the removal of dysfunctional ones to maintain cellular homeostasis. Autophagy dysregulation has been linked to various illnesses, such as neurodegenerative disorders and cancer. The precise transcription of the genes involved in autophagy is regulated by a network of epigenetic factors. This includes histone modifications and histone-modifying enzymes. Epigenetics is a broad category of heritable, reversible changes in gene expression that do not include changes to DNA sequences, such as chromatin remodeling, histone modifications, and DNA methylation. In addition to affecting the genes that are involved in autophagy, the epigenetic machinery can also alter the signals that control this process. In cancer, autophagy plays a dual role by preventing the development of tumors on one hand and this process may suppress tumor progression. This may be the control of an oncogene that prevents autophagy while, conversely, tumor suppression may promote it. The development of new therapeutic strategies for autophagy-related disorders could be initiated by gaining a deeper understanding of its intricate regulatory framework. There is evidence showing that certain machineries and regulators of autophagy are affected by post-translational and epigenetic modifications, which can lead to alterations in the levels of autophagy and these changes can then trigger disease or affect the therapeutic efficacy of drugs. The goal of this review is to identify the regulatory pathways associated with post-translational and epigenetic modifications of different proteins in autophagy which may be the therapeutic targets shortly.
Collapse
Affiliation(s)
| | - Parimal Karmakar
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata, 700032, India.
| |
Collapse
|
57
|
Ling H, Li Y, Peng C, Yang S, Seto E. HDAC10 blockade upregulates SPARC expression thereby repressing melanoma cell growth and BRAF inhibitor resistance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.05.570182. [PMID: 38106051 PMCID: PMC10723323 DOI: 10.1101/2023.12.05.570182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Secreted Protein Acidic and Rich in Cysteine (SPARC), a highly conserved secreted glycoprotein, is crucial for various bioprocesses. Here we demonstrate that histone deacetylase 10 (HDAC10) is a key regulator of SPARC expression. HDAC10 depletion or inhibition upregulates, while overexpression of HDAC10 downregulates, SPARC expression. Mechanistically, HDAC10 coordinates with histone acetyltransferase p300 to modulate the acetylation state of histone H3 lysine 27 (H3K27ac) at SPARC regulatory elements and the recruitment of bromodomain-containing protein 4 (BRD4) to these regions, thereby tuning SPARC transcription. HDAC10 depletion and resultant SPARC upregulation repress melanoma cell growth, primarily by induction of autophagy via activation of AMPK signaling. Moreover, SPARC upregulation due to HDAC10 depletion partly accounts for the resensitivity of resistant cells to a BRAF inhibitor. Our work reveals the role of HDAC10 in gene regulation through epigenetic modification and suggests a potential therapeutic strategy for melanoma or other cancers by targeting HDAC10 and SPARC. Highlights HDAC10 is the primary HDAC member that tightly controls SPARC expression. HDAC10 coordinates with p300 in modulating the H3K27ac state at SPARC regulatory elements and the recruitment of BRD4 to these regions. HDAC10 depletion and resultant SPARC upregulation inhibit melanoma cell growth by inducing autophagy via activation of AMPK signaling.SPARC upregulation as a result of HDAC10 depletion resensitizes resistant cells to BRAF inhibitors.
Collapse
|
58
|
Uba AI, Zengin G. In the quest for histone deacetylase inhibitors: current trends in the application of multilayered computational methods. Amino Acids 2023; 55:1709-1726. [PMID: 37367966 DOI: 10.1007/s00726-023-03297-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 06/20/2023] [Indexed: 06/28/2023]
Abstract
Histone deacetylase (HDAC) inhibitors have gained attention over the past three decades because of their potential in the treatment of different diseases including various forms of cancers, neurodegenerative disorders, autoimmune, inflammatory diseases, and other metabolic disorders. To date, 5 HDAC inhibitor drugs are marketed for the treatment of hematological malignancies and several drug-candidate HDAC inhibitors are at different stages of clinical trials. However, due to the toxic side effects of these drugs resulting from the lack of target selectivity, active studies are ongoing to design and develop either class-selective or isoform-selective inhibitors. Computational methods have aided the discovery of HDAC inhibitors with the desired potency and/or selectivity. These methods include ligand-based approaches such as scaffold hopping, pharmacophore modeling, three-dimensional quantitative structure-activity relationships (3D-QSAR); and structure-based virtual screening (molecular docking). The current trends involve the application of the combination of these methods and incorporating molecular dynamics simulations coupled with Poisson-Boltzmann/molecular mechanics generalized Born surface area (MM-PBSA/MM-GBSA) to improve the prediction of ligand binding affinity. This review aimed at understanding the current trends in applying these multilayered strategies and their contribution to the design/identification of HDAC inhibitors.
Collapse
Affiliation(s)
- Abdullahi Ibrahim Uba
- Department of Molecular Biology and Genetics, Istanbul AREL University, Istanbul, 34537, Turkey.
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, Konya, 42130, Turkey.
| |
Collapse
|
59
|
Kim HI, Park J, Gallo D, Shankar S, Konecna B, Han Y, Banner-Goodspeed V, Capers KR, Ko SG, Otterbein LE, Itagaki K, Hauser CJ. DANGER Signals Activate G -Protein Receptor Kinases Suppressing Neutrophil Function and Predisposing to Infection After Tissue Trauma. Ann Surg 2023; 278:e1277-e1288. [PMID: 37154066 DOI: 10.1097/sla.0000000000005898] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
OBJECTIVE Injured tissue predisposes the subject to local and systemic infection. We studied injury-induced immune dysfunction seeking novel means to reverse such predisposition. BACKGROUND Injury mobilizes primitive "DANGER signals" [danger-associated molecular patterns (DAMPs)] activating innate immunocyte (neutrophils, PMN) signaling and function. Mitochondrial formyl peptides activate G -protein coupled receptors (GPCR) like formyl peptide receptor-1. Mitochondrial DNA and heme activate toll-like receptors (TLR9 and TLR2/4). GPCR kinases (GRKs) can regulate GPCR activation. METHODS We studied human and mouse PMN signaling elicited by mitochondrial DAMPs (GPCR surface expression; protein phosphorylation, or acetylation; Ca 2+ flux) and antimicrobial functions [cytoskeletal reorganization, chemotaxis (CTX), phagocytosis, bacterial killing] in cellular systems and clinical injury samples. Predicted rescue therapies were assessed in cell systems and mouse injury-dependent pneumonia models. RESULTS Mitochondrial formyl peptides activate GRK2, internalizing GPCRs and suppressing CTX. Mitochondrial DNA suppresses CTX, phagocytosis, and killing through TLR9 through a novel noncanonical mechanism that lacks GPCR endocytosis. Heme also activates GRK2. GRK2 inhibitors like paroxetine restore functions. GRK2 activation through TLR9 prevented actin reorganization, implicating histone deacetylases (HDACs). Actin polymerization, CTX, bacterial phagocytosis, and killing were also rescued, therefore, by the HDAC inhibitor valproate. Trauma repository PMN showed GRK2 activation and cortactin deacetylation, which varied with severity and was most marked in patients developing infections. Either GRK2 or HDAC inhibition prevented loss of mouse lung bacterial clearance, but only the combination rescued clearance when given postinjury. CONCLUSIONS Tissue injury-derived DAMPs suppress antimicrobial immunity through canonical GRK2 activation and a novel TLR-activated GRK2-pathway impairing cytoskeletal organization. Simultaneous GRK2/HDAC inhibition rescues susceptibility to infection after tissue injury.
Collapse
Affiliation(s)
- Hyo In Kim
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Jinbong Park
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - David Gallo
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Sidharth Shankar
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Barbora Konecna
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Yohan Han
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Valerie Banner-Goodspeed
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Krystal R Capers
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Seong-Gyu Ko
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Leo E Otterbein
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Kiyoshi Itagaki
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Carl J Hauser
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| |
Collapse
|
60
|
Drakontaeidi A, Pontiki E. A Review on Molecular Docking on HDAC Isoforms: Novel Tool for Designing Selective Inhibitors. Pharmaceuticals (Basel) 2023; 16:1639. [PMID: 38139766 PMCID: PMC10746130 DOI: 10.3390/ph16121639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/01/2023] [Accepted: 11/03/2023] [Indexed: 12/24/2023] Open
Abstract
Research into histone deacetylases (HDACs) has experienced a remarkable surge in recent years. These enzymes are key regulators of several fundamental biological processes, often associated with severe and potentially fatal diseases. Inhibition of their activity represents a promising therapeutic approach and a prospective strategy for the development of new therapeutic agents. A critical aspect of their inhibition is to achieve selectivity in terms of enzyme isoforms, which is essential to improve treatment efficacy while reducing undesirable pleiotropic effects. The development of computational chemistry tools, particularly molecular docking, is greatly enhancing the precision of designing molecules with inherent potential for specific activity. Therefore, it was considered necessary to review the molecular docking studies conducted on the major isozymes of the enzyme in order to identify the specific interactions associated with each selective HDAC inhibitor. In particular, the most critical isozymes of HDAC (1, 2, 3, 6, and 8) have been thoroughly investigated within the scope of this review.
Collapse
Affiliation(s)
| | - Eleni Pontiki
- Department of Pharmaceutical Chemistry, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| |
Collapse
|
61
|
Chen X, Wang J, Zhao P, Dang B, Liang T, Steimbach RR, Miller AK, Liu J, Wang X, Zhang T, Luan X, Hu J, Gao J. Tetrahydro-β-carboline derivatives as potent histone deacetylase 6 inhibitors with broad-spectrum antiproliferative activity. Eur J Med Chem 2023; 260:115776. [PMID: 37660484 DOI: 10.1016/j.ejmech.2023.115776] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/28/2023] [Accepted: 08/28/2023] [Indexed: 09/05/2023]
Abstract
A series of tetrahydro-β-carboline (THβC)-based hydroxamic acids were rationally designed and synthesized as novel selective HDAC6 inhibitors (sHDAC6is) by the application of scaffold hopping strategy. Several THβC analogues were highly potent (IC50 < 5 nM) and selective against HDAC6 enzyme and exhibited good antiproliferative activity against human multiple myeloma (MM) cell. Molecular docking interpreted the structure activity relationship (SAR). Target engagement of HDAC6 was confirmed in RPMI-8226 cells using the WB assay. In vitro, (1S, 3R)-1-(4-chlorophenyl)-N-(4-(hydroxycarbamoyl)benzyl)-2,3,4,9-tetrahydro-1H-pyrido[3, 4-b]indole-3-carboxamide (14g) showed potent broad antiproliferative activity against various tumors including leukemia, colon cancer, melanoma, and breast cancer cell lines, better than ACY-1215. Moreover, 14g also showed good pharmacokinetics properties in mice via oral administration.
Collapse
Affiliation(s)
- Xin Chen
- Shaanxi Key Labotory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, PR China.
| | - Jiayun Wang
- Shaanxi Key Labotory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, PR China
| | - Peng Zhao
- Shaanxi Key Labotory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, PR China
| | - Baiyun Dang
- Shaanxi Key Labotory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, PR China
| | - Ting Liang
- Shaanxi Key Labotory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, PR China
| | - Raphael R Steimbach
- Cancer Drug Development Group, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany; Biosciences Faculty, University of Heidelberg, 69120, Heidelberg, Germany
| | - Aubry K Miller
- Cancer Drug Development Group, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany; German Cancer Consortium (DKTK), 69120, Heidelberg, Germany
| | - Jia Liu
- Pharmaceutical Animal Experimental Center, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China
| | - Xin Wang
- Department of Clinical Research Center, Chia Tai Tianqing Pharmaceutical Group Co.,Ltd, Jiangsu, China
| | - Tongtong Zhang
- Shaanxi Key Labotory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, PR China
| | - Xiaofa Luan
- Shaanxi Key Labotory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, PR China
| | - Jiadong Hu
- School of Medicinal and Chemical Engineering, Yangling Vocational & Technical College, 24 Weihui Road, Yangling, 712100, Shaanxi, PR China.
| | - Jinming Gao
- Shaanxi Key Labotory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, PR China.
| |
Collapse
|
62
|
Wang K, Kong F, Qiu Y, Chen T, Fu J, Jin X, Su Y, Gu Y, Hu Z, Li J. Autophagy regulation and protein kinase activity of PIK3C3 controls sertoli cell polarity through its negative regulation on SCIN (scinderin). Autophagy 2023; 19:2934-2957. [PMID: 37450577 PMCID: PMC10549198 DOI: 10.1080/15548627.2023.2235195] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 06/25/2023] [Accepted: 07/06/2023] [Indexed: 07/18/2023] Open
Abstract
Sertoli cells are highly polarized testicular cells that provide a nurturing environment for germ cell development and maturation during spermatogenesis. The class III phosphatidylinositol 3-kinase (PtdIns3K) plays core roles in macroautophagy in various cell types; however, its role in Sertoli cells remains unclear. Here, we generated a mouse line in which the gene encoding the catalytic subunit, Pik3c3, was specifically deleted in Sertoli cells (cKO) and found that after one round of normal spermatogenesis, the cKO mice quickly became infertile and showed disruption of Sertoli cell polarity and impaired spermiogenesis. Subsequent proteomics and phosphoproteomics analyses enriched the F-actin cytoskeleton network involved in the disorganized Sertoli-cell structure in cKO testis which we identified a significant increase of the F-actin negative regulator SCIN (scinderin) and the reduced phosphorylation of HDAC6, an α-tubulin deacetylase. Our results further demonstrated that the accumulation of SCIN in cKO Sertoli cells caused the disorder and disassembly of the F-actin cytoskeleton, which was related to the failure of SCIN degradation through the autophagy-lysosome pathway. Additionally, we found that the phosphorylation of HDAC6 at site S59 by PIK3C3 was essential for its degradation through the ubiquitin-proteasome pathway. As a result, the HDAC6 that accumulated in cKO Sertoli cells deacetylated SCIN at site K189 and led to a disorganized F-actin cytoskeleton. Taken together, our findings elucidate a new mechanism for PIK3C3 in maintaining the polarity of Sertoli cells, in which both its autophagy regulation or protein kinase activities are required for the stabilization of the actin cytoskeleton.Abbreviations: ACTB: actin, beta; AR: androgen receptor; ATG14: autophagy related 14; BafA1: bafilomycin A1; BECN1: beclin 1, autophagy related; BTB: blood-testis barrier; CASP3: caspase 3; CDC42: cell division cycle 42; CDH2: cadherin 2; CHX: cycloheximide; CTNNA1: catenin (cadherin associated protein), alpha 1; CYP11A1: cytochrome P450, family 11, subfamily A, polypeptide 1; EBSS: Earle's balanced salt solution; ES: ectoplasmic specialization; FITC: fluorescein isothiocyanate; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GCNA: germ cell nuclear acidic protein; GJA1: gap junction protein, alpha 1; H2AX: H2A.X variant histone; HDAC6: histone deacetylase 6; KIT: KIT proto-oncogene, receptor tyrosine kinase; LAMP1: lysosomal associated membrane protein 1; MAP3K5: mitogen-activated protein kinase kinase kinase 5; MAP1LC3B: microtubule associated protein 1 light chain 3 beta; OCLN: occludin; PIK3C3: phosphatidylinositol 3-kinase catalytic subunit type 3; PIK3R4: phosphoinositide-3-kinase regulatory subunit 4; PNA: arachis hypogaea lectin; RAC1: Rac family small GTPase 1; SCIN: scinderin; SQSTM1/p62: sequestosome 1; SSC: spermatogonia stem cell; STK11: serine/threonine kinase 11; TJP1: tight junction protein 1; TubA: tubastatin A; TUBB3: tubulin beta 3 class III; TUNEL: TdT-mediated dUTP nick-end labeling; UB: ubiquitin; UVRAG: UV radiation resistance associated gene; VIM: vimentin; WT1: WT1 transcription factor; ZBTB16: zinc finger and BTB domain containing 16.
Collapse
Affiliation(s)
- Kehan Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Feifei Kong
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yuexin Qiu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Tao Chen
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jiayi Fu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xin Jin
- Department of Center of Reproductive Medicine, Wuxi Maternity and Child Health Care Hospital, Nanjing Medical University, Wuxi, Jiangsu, China
| | - Youqiang Su
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, Shandong, China
| | - Yayun Gu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhibin Hu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Epidemiology and Biostatistics, International Joint Research Center on Environment and Human Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jing Li
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
63
|
McKenna ED, Sarbanes SL, Cummings SW, Roll-Mecak A. The Tubulin Code, from Molecules to Health and Disease. Annu Rev Cell Dev Biol 2023; 39:331-361. [PMID: 37843925 DOI: 10.1146/annurev-cellbio-030123-032748] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
Microtubules are essential dynamic polymers composed of α/β-tubulin heterodimers. They support intracellular trafficking, cell division, cellular motility, and other essential cellular processes. In many species, both α-tubulin and β-tubulin are encoded by multiple genes with distinct expression profiles and functionality. Microtubules are further diversified through abundant posttranslational modifications, which are added and removed by a suite of enzymes to form complex, stereotyped cellular arrays. The genetic and chemical diversity of tubulin constitute a tubulin code that regulates intrinsic microtubule properties and is read by cellular effectors, such as molecular motors and microtubule-associated proteins, to provide spatial and temporal specificity to microtubules in cells. In this review, we synthesize the rapidly expanding tubulin code literature and highlight limitations and opportunities for the field. As complex microtubule arrays underlie essential physiological processes, a better understanding of how cells employ the tubulin code has important implications for human disease ranging from cancer to neurological disorders.
Collapse
Affiliation(s)
- Elizabeth D McKenna
- Cell Biology and Biophysics Unit, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland, USA;
| | - Stephanie L Sarbanes
- Cell Biology and Biophysics Unit, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland, USA;
| | - Steven W Cummings
- Cell Biology and Biophysics Unit, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland, USA;
| | - Antonina Roll-Mecak
- Cell Biology and Biophysics Unit, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland, USA;
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA
| |
Collapse
|
64
|
König B, Watson PR, Reßing N, Cragin AD, Schäker-Hübner L, Christianson DW, Hansen FK. Difluoromethyl-1,3,4-oxadiazoles Are Selective, Mechanism-Based, and Essentially Irreversible Inhibitors of Histone Deacetylase 6. J Med Chem 2023; 66:13821-13837. [PMID: 37782298 PMCID: PMC10591924 DOI: 10.1021/acs.jmedchem.3c01345] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Histone deacetylase 6 (HDAC6) is an important drug target in oncological and non-oncological diseases. Most available HDAC6 inhibitors (HDAC6i) utilize hydroxamic acids as a zinc-binding group, which limits therapeutic opportunities due to its genotoxic potential. Recently, difluoromethyl-1,3,4-oxadiazoles (DFMOs) were reported as potent and selective HDAC6i but their mode of inhibition remained enigmatic. Herein, we report that DFMOs act as mechanism-based and essentially irreversible HDAC6i. Biochemical data confirm that DFMO 6 is a tight-binding HDAC6i capable of inhibiting HDAC6 via a two-step slow-binding mechanism. Crystallographic and mechanistic experiments suggest that the attack of 6 by the zinc-bound water at the sp2 carbon closest to the difluoromethyl moiety followed by a subsequent ring opening of the oxadiazole yields deprotonated difluoroacetylhydrazide 13 as active species. The strong anionic zinc coordination of 13 and the binding of the difluoromethyl moiety in the P571 pocket finally result in an essentially irreversible inhibition of HDAC6.
Collapse
Affiliation(s)
- Beate König
- Department of Pharmaceutical and Cell Biological Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, Bonn 53121, Germany
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - Paris R Watson
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - Nina Reßing
- Department of Pharmaceutical and Cell Biological Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, Bonn 53121, Germany
| | - Abigail D Cragin
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - Linda Schäker-Hübner
- Department of Pharmaceutical and Cell Biological Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, Bonn 53121, Germany
| | - David W Christianson
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - Finn K Hansen
- Department of Pharmaceutical and Cell Biological Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, Bonn 53121, Germany
| |
Collapse
|
65
|
Yang J, Liu Y, Yin H, Xie S, Zhang L, Dong X, Ni H, Bu W, Ma H, Liu P, Zhu H, Guo R, Sun L, Wu Y, Qin J, Sun B, Li D, Luo HR, Liu M, Xuan C, Zhou J. HDAC6 deacetylates IDH1 to promote the homeostasis of hematopoietic stem and progenitor cells. EMBO Rep 2023; 24:e56009. [PMID: 37642636 PMCID: PMC10561360 DOI: 10.15252/embr.202256009] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 07/27/2023] [Accepted: 08/14/2023] [Indexed: 08/31/2023] Open
Abstract
Hematopoietic stem and progenitor cells (HSPCs) are cells mainly present in the bone marrow and capable of forming mature blood cells. However, the epigenetic mechanisms governing the homeostasis of HSPCs remain elusive. Here, we demonstrate an important role for histone deacetylase 6 (HDAC6) in regulating this process. Our data show that the percentage of HSPCs in Hdac6 knockout mice is lower than in wild-type mice due to decreased HSPC proliferation. HDAC6 interacts with isocitrate dehydrogenase 1 (IDH1) and deacetylates IDH1 at lysine 233. The deacetylation of IDH1 inhibits its catalytic activity and thereby decreases the 5-hydroxymethylcytosine level of ten-eleven translocation 2 (TET2) target genes, changing gene expression patterns to promote the proliferation of HSPCs. These findings uncover a role for HDAC6 and IDH1 in regulating the homeostasis of HSPCs and may have implications for the treatment of hematological diseases.
Collapse
Affiliation(s)
- Jia Yang
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Yang Liu
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Hanxiao Yin
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Songbo Xie
- Center for Cell Structure and Function, College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of ShandongShandong Normal UniversityJinanChina
| | - Linlin Zhang
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Xifeng Dong
- Department of HematologyTianjin Medical University General HospitalTianjinChina
| | - Hua Ni
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Weiwen Bu
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Hongbo Ma
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Peng Liu
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeTianjinChina
| | - Haiyan Zhu
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeTianjinChina
| | - Rongxia Guo
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeTianjinChina
| | - Lei Sun
- Center for Cell Structure and Function, College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of ShandongShandong Normal UniversityJinanChina
| | - Yue Wu
- Center for Cell Structure and Function, College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of ShandongShandong Normal UniversityJinanChina
| | - Juan Qin
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Baofa Sun
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Dengwen Li
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Hongbo R Luo
- Department of Pathology, Department of Laboratory Medicine, Harvard Medical SchoolChildren's Hospital Boston, Dana‐Farber/Harvard Cancer CenterBostonMAUSA
| | - Min Liu
- Laboratory of Tissue HomeostasisHaihe Laboratory of Cell EcosystemTianjinChina
| | - Chenghao Xuan
- The Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical SciencesTianjin Medical UniversityTianjinChina
| | - Jun Zhou
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
- Center for Cell Structure and Function, College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of ShandongShandong Normal UniversityJinanChina
| |
Collapse
|
66
|
Poonia P, Sharma M, Jha P, Chopra M. Pharmacophore-based virtual screening of ZINC database, molecular modeling and designing new derivatives as potential HDAC6 inhibitors. Mol Divers 2023; 27:2053-2071. [PMID: 36214962 DOI: 10.1007/s11030-022-10540-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 09/30/2022] [Indexed: 11/25/2022]
Abstract
To date, many HDAC6 inhibitors have been identified and developed but none is clinically approved as of now. Through this study, we aim to obtain novel HDAC6 selective inhibitors and provide new insights into the detailed structural design of potential HDAC6 inhibitors. A HypoGen-based 3D QSAR HDAC6 pharmacophore was built and used as a query model to screen approximately 8 million ZINC database compounds. First, the ZINC Database was filtered using ADMET, followed by pharmacophore-based library screening. Using fit value and estimated activity cutoffs, a final set of 54 ZINC hits was obtained that were further investigated using molecular docking with the crystal structure of human histone deacetylase 6 catalytic domain 2 in complex with Trichostatin A (PDB ID: 5EDU). Through detailed in silico screening of the ZINC database, we shortlisted three hits as the lead molecules for designing novel HDAC6 inhibitors with better efficacy. Docking with 5EDU, followed by ADMET and TOPKAT analysis of modified ZINC hits provided 9 novel potential HDAC6 inhibitors that possess better docking scores and 2D interactions as compared to the control ZINC hit molecules. Finally, a 50 ns MD analysis run followed by Protein-Ligand Interaction Energy (PLIE) analysis of the top scored hits provided a novel molecule N1 that showed promisingly similar results to that of Ricolinostat (a known HDAC6 inhibitor). The comparable result of the designed hits to established HDAC6 inhibitors suggests that these compounds might prove to be successful HDAC6 inhibitors in future. Designed novel hits that might act as good HDAC6 inhibitors derived from ZINC database using combined molecular docking and modeling approaches.
Collapse
Affiliation(s)
- Priya Poonia
- Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, 110036, India
| | - Monika Sharma
- Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, 110036, India
| | - Prakash Jha
- Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, 110036, India
| | - Madhu Chopra
- Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, 110036, India.
| |
Collapse
|
67
|
Toro TB, Skripnikova EV, Bornes KE, Zhang K, Watt TJ. Endogenous expression of inactive lysine deacetylases reveals deacetylation-dependent cellular mechanisms. PLoS One 2023; 18:e0291779. [PMID: 37721967 PMCID: PMC10506724 DOI: 10.1371/journal.pone.0291779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 09/05/2023] [Indexed: 09/20/2023] Open
Abstract
Acetylation of lysine residues is an important and common post-translational regulatory mechanism occurring on thousands of non-histone proteins. Lysine deacetylases (KDACs or HDACs) are a family of enzymes responsible for removing acetylation. To identify the biological mechanisms regulated by individual KDACs, we created HT1080 cell lines containing chromosomal point mutations, which endogenously express either KDAC6 or KDAC8 having single inactivated catalytic domain. Engineered HT1080 cells expressing inactive KDA6 or KDAC8 domains remained viable and exhibited enhanced acetylation on known substrate proteins. RNA-seq analysis revealed that many changes in gene expression were observed when KDACs were inactivated, and that these gene sets differed significantly from knockdown and knockout cell lines. Using GO ontology, we identified several critical biological processes associated specifically with catalytic activity and others attributable to non-catalytic interactions. Treatment of wild-type cells with KDAC-specific inhibitors Tubastatin A and PCI-34051 resulted in gene expression changes distinct from those of the engineered cell lines, validating this approach as a tool for evaluating in-cell inhibitor specificity and identifying off-target effects of KDAC inhibitors. Probing the functions of specific KDAC domains using these cell lines is not equivalent to doing so using previously existing methods and provides novel insight into the catalytic functions of individual KDACs by investigating the molecular and cellular changes upon genetic inactivation.
Collapse
Affiliation(s)
- Tasha B. Toro
- Department of Chemistry, Xavier University of Louisiana, New Orleans, LA, United States of America
| | - Elena V. Skripnikova
- Division of Basic and Pharmaceutical Sciences, Xavier University of Louisiana, New Orleans, LA, United States of America
| | - Kiara E. Bornes
- Department of Chemistry, Xavier University of Louisiana, New Orleans, LA, United States of America
| | - Kun Zhang
- Department of Computer Science, Xavier University of Louisiana, New Orleans, LA, United States of America
- Bioinformatics Core, Xavier University of Louisiana, New Orleans, LA, United States of America
| | - Terry J. Watt
- Department of Chemistry, Xavier University of Louisiana, New Orleans, LA, United States of America
| |
Collapse
|
68
|
Peng J, Xie F, Qin P, Liu Y, Niu H, Sun J, Xue H, Zhao Q, Liu J, Wu J. Recent development of selective inhibitors targeting the HDAC6 as anti-cancer drugs: Structure, function and design. Bioorg Chem 2023; 138:106622. [PMID: 37244230 DOI: 10.1016/j.bioorg.2023.106622] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/09/2023] [Accepted: 05/19/2023] [Indexed: 05/29/2023]
Abstract
HDAC6, a member of the histone deacetylase family, mainly is a cytosolic protein and regulates cell growth by acting on non-histone substrates, such as α -tubulin, cortactin, heat shock protein HSP90, programmed death 1 (PD-1) and programmed death ligand 1 (PD-L1), that are closely related to the proliferation, invasion, immune escape and angiogenesis of cancer tissues. The approved drugs targeting the HDACs are all pan-inhibitors and have many side effects due to their lack of selectivity. Therefore, development of selective inhibitors of HDAC6 has attracted much attention in the field of cancer therapy. In this review, we will summarize the relationship between HDAC6 and cancer, and discuss the design strategies of HDAC6 inhibitors for cancer treatment in recent years.
Collapse
Affiliation(s)
- Jie Peng
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Fei Xie
- Department of Pharmacy, Qilu Hospital of Shandong University, Jinan 250012, PR China
| | - Pengxia Qin
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Yujing Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Haoqian Niu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Jie Sun
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Haoyu Xue
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Qianlong Zhao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Jingqian Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Jingde Wu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China.
| |
Collapse
|
69
|
Qu M, Zhang H, Cheng P, Wubshet AK, Yin X, Wang X, Sun Y. Histone deacetylase 6's function in viral infection, innate immunity, and disease: latest advances. Front Immunol 2023; 14:1216548. [PMID: 37638049 PMCID: PMC10450946 DOI: 10.3389/fimmu.2023.1216548] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/14/2023] [Indexed: 08/29/2023] Open
Abstract
In the family of histone-deacetylases, histone deacetylase 6 (HDAC6) stands out. The cytoplasmic class IIb histone deacetylase (HDAC) family is essential for many cellular functions. It plays a crucial and debatable regulatory role in innate antiviral immunity. This review summarises the current state of our understanding of HDAC6's structure and function in light of the three mechanisms by which it controls DNA and RNA virus infection: cytoskeleton regulation, host innate immune response, and autophagy degradation of host or viral proteins. In addition, we summed up how HDAC6 inhibitors are used to treat a wide range of diseases, and how its upstream signaling plays a role in the antiviral mechanism. Together, the findings of this review highlight HDAC6's importance as a new therapeutic target in antiviral immunity, innate immune response, and some diseases, all of which offer promising new avenues for the development of drugs targeting the immune response.
Collapse
Affiliation(s)
- Min Qu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Huijun Zhang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Pengyuan Cheng
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Ashenafi Kiros Wubshet
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Department of Basic and Diagnostic Sciences, College of Veterinary Science, Mekelle University, Mekelle, Tigray, Ethiopia
| | - Xiangping Yin
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xiangwei Wang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yuefeng Sun
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
70
|
Liu F, Liu C, Chai Q, Zhao C, Meng H, Xue X, Yao TP, Zhang Y. Discovery of the First Irreversible HDAC6 Isoform Selective Inhibitor with Potent Anti-Multiple Myeloma Activity. J Med Chem 2023; 66:10080-10091. [PMID: 37463038 DOI: 10.1021/acs.jmedchem.3c00977] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
In our previous research, a series of phenylsulfonylfuroxan-based hydroxamates were developed, among which compound 1 exhibited remarkable in vitro and in vivo antitumor potency due to its histone deacetylase (HDAC) inhibitory and nitric oxide (NO)-donating activities. Herein, the in-depth study of compound 1 revealed that this HDAC inhibitor-NO donor hybrid could enduringly increase the intracellular levels of acetyl histones and acetyl α-tubulin, which could be ascribed to its irreversible inhibition toward class I HDACs and HDAC6. Structural modification of compound 1 led to a novel phenylsulfonylfuroxan-based hydroxamate 4, which exhibited considerable HDAC6 inhibitory activity and selectivity. Furthermore, compound 4 could inhibit intracellular HDAC6 both selectively and irreversibly. To the best of our knowledge, this is the first research reporting the irreversible inhibition of HDAC6. It was also demonstrated that compared with ACY-241 (a reversible HDAC6 inhibitor in clinical trials), the irreversible HDAC6 selective inhibitor 4 exhibited not only superior anti-multiple myeloma activity but also improved therapeutic index.
Collapse
Affiliation(s)
- Fengling Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Chunxi Liu
- Department of Pharmacy, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Qipeng Chai
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Chunlong Zhao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Hongwei Meng
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Xia Xue
- Department of Pharmacy, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Tso-Pang Yao
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina 27710, United States
| | - Yingjie Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
71
|
Zhang QQ, Zhang WJ, Chang S. HDAC6 inhibition: a significant potential regulator and therapeutic option to translate into clinical practice in renal transplantation. Front Immunol 2023; 14:1168848. [PMID: 37545520 PMCID: PMC10401441 DOI: 10.3389/fimmu.2023.1168848] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 05/30/2023] [Indexed: 08/08/2023] Open
Abstract
Histone deacetylase 6 (HDAC6), an almost exclusively cytoplasmic enzyme, plays an essential role in many biological processes and exerts its deacetylation-dependent/independent effects on a variety of target molecules, which has contributed to the flourishing growth of relatively isoform-specific enzyme inhibitors. Renal transplantation (RT) is one of the alternatively preferred treatments and the most cost-effective treatment approaches for the great majority of patients with end-stage renal disease (ESRD). HDAC6 expression and activity have recently been shown to be increased in kidney disease in a number of studies. To date, a substantial amount of validated studies has identified HDAC6 as a pivotal modulator of innate and adaptive immunity, and HDAC6 inhibitors (HDAC6i) are being developed and investigated for use in arrays of immune-related diseases, making HDAC6i a promising therapeutic candidate for the management of a variety of renal diseases. Based on accumulating evidence, HDAC6i markedly open up new avenues for therapeutic intervention to protect against oxidative stress-induced damage, tip the balance in favor of the generation of tolerance-related immune cells, and attenuate fibrosis by inhibiting multiple activations of cell profibrotic signaling pathways. Taken together, we have a point of view that targeting HDAC6 may be a novel approach for the therapeutic strategy of RT-related complications, including consequences of ischemia-reperfusion injury, induction of immune tolerance in transplantation, equilibrium of rejection, and improvement of chronic renal graft interstitial fibrosis after transplantation in patients. Herein, we will elaborate on the unique function of HDAC6, which focuses on therapeutical mechanism of action related to immunological events with a general account of the tantalizing potential to the clinic.
Collapse
Affiliation(s)
- Qian-qian Zhang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Wei-jie Zhang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Sheng Chang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| |
Collapse
|
72
|
Azizov V, Hübner M, Frech M, Hofmann J, Kubankova M, Lapuente D, Tenbusch M, Guck J, Schett G, Zaiss MM. Alcohol-sourced acetate impairs T cell function by promoting cortactin acetylation. iScience 2023; 26:107230. [PMID: 37485352 PMCID: PMC10362326 DOI: 10.1016/j.isci.2023.107230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 02/28/2023] [Accepted: 06/23/2023] [Indexed: 07/25/2023] Open
Abstract
Alcohol is among the most widely consumed dietary substances. Excessive alcohol consumption damages the liver, heart, and brain. Alcohol also has strong immunoregulatory properties. Here, we report how alcohol impairs T cell function via acetylation of cortactin, a protein that binds filamentous actin and facilitates branching. Upon alcohol consumption, acetate, the metabolite of alcohol, accumulates in lymphoid organs. T cells exposed to acetate, exhibit increased acetylation of cortactin. Acetylation of cortactin inhibits filamentous actin binding and hence reduces T cell migration, immune synapse formation and activation. While mutated, acetylation-resistant cortactin rescues the acetate-induced inhibition of T cell migration, primary mouse cortactin knockout T cells exhibited impaired migration. Acetate-induced cytoskeletal changes effectively inhibited activation, proliferation, and immune synapse formation in T cells in vitro and in vivo in an influenza infection model in mice. Together these findings reveal cortactin as a possible target for mitigation of T cell driven autoimmune diseases.
Collapse
Affiliation(s)
- Vugar Azizov
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Michel Hübner
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Michael Frech
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Jörg Hofmann
- Division of Biochemistry, Department of Biology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Marketa Kubankova
- Max Planck Institute for the Science of Light & Max Planck Zentrum für Physik und Medizin, Erlangen, Germany
| | - Dennis Lapuente
- Institute of Clinical and Molecular Virology, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Matthias Tenbusch
- Institute of Clinical and Molecular Virology, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Jochen Guck
- Max Planck Institute for the Science of Light & Max Planck Zentrum für Physik und Medizin, Erlangen, Germany
| | - Georg Schett
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Mario M. Zaiss
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| |
Collapse
|
73
|
López-Guajardo A, Zafar A, Al Hennawi K, Rossi V, Alrwaili A, Medcalf JD, Dunning M, Nordgren N, Pettersson T, Estabrook ID, Hawkins RJ, Gad AKB. Regulation of cellular contractile force, shape and migration of fibroblasts by oncogenes and Histone deacetylase 6. Front Mol Biosci 2023; 10:1197814. [PMID: 37564130 PMCID: PMC10411354 DOI: 10.3389/fmolb.2023.1197814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/05/2023] [Indexed: 08/12/2023] Open
Abstract
The capacity of cells to adhere to, exert forces upon and migrate through their surrounding environment governs tissue regeneration and cancer metastasis. The role of the physical contractile forces that cells exert in this process, and the underlying molecular mechanisms are not fully understood. We, therefore, aimed to clarify if the extracellular forces that cells exert on their environment and/or the intracellular forces that deform the cell nucleus, and the link between these forces, are defective in transformed and invasive fibroblasts, and to indicate the underlying molecular mechanism of control. Confocal, Epifluorescence and Traction force microscopy, followed by computational analysis, showed an increased maximum contractile force that cells apply on their environment and a decreased intracellular force on the cell nucleus in the invasive fibroblasts, as compared to normal control cells. Loss of HDAC6 activity by tubacin-treatment and siRNA-mediated HDAC6 knockdown also reversed the reduced size and more circular shape and defective migration of the transformed and invasive cells to normal. However, only tubacin-mediated, and not siRNA knockdown reversed the increased force of the invasive cells on their surrounding environment to normal, with no effects on nuclear forces. We observed that the forces on the environment and the nucleus were weakly positively correlated, with the exception of HDAC6 siRNA-treated cells, in which the correlation was weakly negative. The transformed and invasive fibroblasts showed an increased number and smaller cell-matrix adhesions than control, and neither tubacin-treatment, nor HDAC6 knockdown reversed this phenotype to normal, but instead increased it further. This highlights the possibility that the control of contractile force requires separate functions of HDAC6, than the control of cell adhesions, spreading and shape. These data are consistent with the possibility that defective force-transduction from the extracellular environment to the nucleus contributes to metastasis, via a mechanism that depends upon HDAC6. To our knowledge, our findings present the first correlation between the cellular forces that deforms the surrounding environment and the nucleus in fibroblasts, and it expands our understanding of how cells generate contractile forces that contribute to cell invasion and metastasis.
Collapse
Affiliation(s)
- Ana López-Guajardo
- Department of Oncology and Metabolism, The Medical School, University of Sheffield, Sheffield, United Kingdom
| | - Azeer Zafar
- Department of Oncology and Metabolism, The Medical School, University of Sheffield, Sheffield, United Kingdom
| | - Khairat Al Hennawi
- Department of Oncology and Metabolism, The Medical School, University of Sheffield, Sheffield, United Kingdom
| | - Valentina Rossi
- Immunology and Molecular Oncology Diagnostics, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy
| | - Abdulaziz Alrwaili
- Department of Oncology and Metabolism, The Medical School, University of Sheffield, Sheffield, United Kingdom
| | - Jessica D. Medcalf
- Department of Oncology and Metabolism, The Medical School, University of Sheffield, Sheffield, United Kingdom
| | - Mark Dunning
- Bioinformatics Core, The Medical School, The University of Sheffield, Sheffield, United Kingdom
| | - Niklas Nordgren
- Division Bioeconomy and Health, RISE Research Institutes of Sweden, Stockholm, Sweden
| | - Torbjörn Pettersson
- Fibre and Polymer Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Ian D. Estabrook
- Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom
- Center for Advancing Electronics Dresden, Technische Universität Dresden, Dresden, Germany
| | - Rhoda J. Hawkins
- Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom
- African Institute for Mathematical Sciences, Accra, Ghana
| | - Annica K. B. Gad
- Department of Oncology and Metabolism, The Medical School, University of Sheffield, Sheffield, United Kingdom
- Madeira Chemistry Research Centre, University of Madeira, Funchal, Portugal
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
74
|
Han X, Sun Y. PROTACs: A novel strategy for cancer drug discovery and development. MedComm (Beijing) 2023; 4:e290. [PMID: 37261210 PMCID: PMC10227178 DOI: 10.1002/mco2.290] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 06/02/2023] Open
Abstract
Proteolysis targeting chimera (PROTAC) technology has become a powerful strategy in drug discovery, especially for undruggable targets/proteins. A typical PROTAC degrader consists of three components: a small molecule that binds to a target protein, an E3 ligase ligand (consisting of an E3 ligase and its small molecule recruiter), and a chemical linker that hooks first two components together. In the past 20 years, we have witnessed advancement of multiple PROTAC degraders into the clinical trials for anticancer therapies. However, one of the major challenges of PROTAC technology is that only very limited number of E3 ligase recruiters are currently available as E3 ligand for targeted protein degradation (TPD), although human genome encodes more than 600 E3 ligases. Thus, there is an urgent need to identify additional effective E3 ligase recruiters for TPD applications. In this review, we summarized the existing RING-type E3 ubiquitin ligase and their small molecule recruiters that act as effective E3 ligands of PROTAC degraders and their application in anticancer drug discovery. We believe that this review could serve as a reference in future development of efficient E3 ligands of PROTAC technology for cancer drug discovery and development.
Collapse
Affiliation(s)
- Xin Han
- Cancer Institute (Key Laboratory of Cancer Prevention and InterventionChina National Ministry of Education) of the Second Affiliated Hospital and Institute of Translational MedicineZhejiang University School of MedicineHangzhouChina
- Cancer Center of Zhejiang UniversityHangzhouChina
- Zhejiang Provincial Clinical Research Center for CANCERZhejiang ProvinceChina
- Key Laboratory of Molecular Biology in Medical SciencesZhejiang ProvinceChina
| | - Yi Sun
- Cancer Institute (Key Laboratory of Cancer Prevention and InterventionChina National Ministry of Education) of the Second Affiliated Hospital and Institute of Translational MedicineZhejiang University School of MedicineHangzhouChina
- Cancer Center of Zhejiang UniversityHangzhouChina
- Zhejiang Provincial Clinical Research Center for CANCERZhejiang ProvinceChina
- Key Laboratory of Molecular Biology in Medical SciencesZhejiang ProvinceChina
- Research Center for Life Science and Human HealthBinjiang Institute of Zhejiang UniversityHangzhouChina
| |
Collapse
|
75
|
Zhu Y, Feng M, Wang B, Zheng Y, Jiang D, Zhao L, Mamun MAA, Kang H, Nie H, Zhang X, Guo N, Qin S, Wang N, Liu H, Gao Y. New insights into the non-enzymatic function of HDAC6. Biomed Pharmacother 2023; 161:114438. [PMID: 37002569 DOI: 10.1016/j.biopha.2023.114438] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 03/11/2023] Open
Abstract
Histone deacetylase 6 (HDAC6) is a class IIb histone deacetylase that contains two catalytic domains and a zinc-finger ubiquitin binding domain (ZnF-UBP) domain. The deacetylation function of HDAC6 has been extensively studied with common substrates such as α-tubulin, cortactin, and Hsp90. Apart from its deacetylase activity, HDAC6 ZnF-UBP binds to unanchored ubiquitin of specific sequences and serves as a carrier for transporting aggregated proteins. As a result, aggresomes are formed and protein degradation is facilitated by the autophagy-lysosome pathway. This HDAC6-dependent microtubule transport can be used by cells to assemble and activate inflammasomes, which play a critical role in immune regulation. Even viruses can benefit from the carrier of HDAC6 to assist in uncoating their surfaces during their infection cycle. However, HDAC6 is also capable of blocking virus invasion and replication in a non-enzymatic manner. Given these non-enzymatic functions, HDAC6 is closely associated with various diseases, including neurodegeneration, inflammasome-associated diseases, cancer, and viral infections. Small molecule inhibitors targeting the ubiquitin binding pocket of HDAC6 have been investigated. In this review, we focus on mechanisms in non-enzymatic functions of HDAC6 and discuss the rationality and prospects of therapeutic strategies by intervening the activation of HDAC6 ZnF-UBP in concrete diseases.
Collapse
Affiliation(s)
- Yuanzai Zhu
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Key Laboratory of Henan Province for Drug Quality and Evaluation, Henan Province, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Institute of Drug Discovery and Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Mengkai Feng
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Key Laboratory of Henan Province for Drug Quality and Evaluation, Henan Province, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Institute of Drug Discovery and Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Bo Wang
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Key Laboratory of Henan Province for Drug Quality and Evaluation, Henan Province, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Institute of Drug Discovery and Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450001, China
| | - Yichao Zheng
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Key Laboratory of Henan Province for Drug Quality and Evaluation, Henan Province, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Institute of Drug Discovery and Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Dandan Jiang
- Department of Pharmacy, People's Hospital of Henan Province, Zhengzhou University, Henan 450001, China
| | - Lijuan Zhao
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Key Laboratory of Henan Province for Drug Quality and Evaluation, Henan Province, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Institute of Drug Discovery and Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - M A A Mamun
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Key Laboratory of Henan Province for Drug Quality and Evaluation, Henan Province, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Institute of Drug Discovery and Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Huiqin Kang
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Key Laboratory of Henan Province for Drug Quality and Evaluation, Henan Province, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Institute of Drug Discovery and Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Haiqian Nie
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Key Laboratory of Henan Province for Drug Quality and Evaluation, Henan Province, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Institute of Drug Discovery and Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Xiya Zhang
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Key Laboratory of Henan Province for Drug Quality and Evaluation, Henan Province, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Institute of Drug Discovery and Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Ningjie Guo
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Key Laboratory of Henan Province for Drug Quality and Evaluation, Henan Province, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Institute of Drug Discovery and Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Shangshang Qin
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Key Laboratory of Henan Province for Drug Quality and Evaluation, Henan Province, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Institute of Drug Discovery and Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Ning Wang
- The School of Chinese Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Hongmin Liu
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Key Laboratory of Henan Province for Drug Quality and Evaluation, Henan Province, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Institute of Drug Discovery and Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China.
| | - Ya Gao
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Key Laboratory of Henan Province for Drug Quality and Evaluation, Henan Province, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Institute of Drug Discovery and Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China.
| |
Collapse
|
76
|
Zecha J, Bayer FP, Wiechmann S, Woortman J, Berner N, Müller J, Schneider A, Kramer K, Abril-Gil M, Hopf T, Reichart L, Chen L, Hansen FM, Lechner S, Samaras P, Eckert S, Lautenbacher L, Reinecke M, Hamood F, Prokofeva P, Vornholz L, Falcomatà C, Dorsch M, Schröder A, Venhuizen A, Wilhelm S, Médard G, Stoehr G, Ruland J, Grüner BM, Saur D, Buchner M, Ruprecht B, Hahne H, The M, Wilhelm M, Kuster B. Decrypting drug actions and protein modifications by dose- and time-resolved proteomics. Science 2023; 380:93-101. [PMID: 36926954 PMCID: PMC7615311 DOI: 10.1126/science.ade3925] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 02/21/2023] [Indexed: 03/18/2023]
Abstract
Although most cancer drugs modulate the activities of cellular pathways by changing posttranslational modifications (PTMs), little is known regarding the extent and the time- and dose-response characteristics of drug-regulated PTMs. In this work, we introduce a proteomic assay called decryptM that quantifies drug-PTM modulation for thousands of PTMs in cells to shed light on target engagement and drug mechanism of action. Examples range from detecting DNA damage by chemotherapeutics, to identifying drug-specific PTM signatures of kinase inhibitors, to demonstrating that rituximab kills CD20-positive B cells by overactivating B cell receptor signaling. DecryptM profiling of 31 cancer drugs in 13 cell lines demonstrates the broad applicability of the approach. The resulting 1.8 million dose-response curves are provided as an interactive molecular resource in ProteomicsDB.
Collapse
Affiliation(s)
- Jana Zecha
- Technical University of Munich, TUM School of Life Sciences, Department of Molecular Life Sciences, 85354 Freising, Germany
- German Cancer Consortium, Partner Site Munich, 80336 Munich, Germany
| | - Florian P. Bayer
- Technical University of Munich, TUM School of Life Sciences, Department of Molecular Life Sciences, 85354 Freising, Germany
| | - Svenja Wiechmann
- Technical University of Munich, TUM School of Life Sciences, Department of Molecular Life Sciences, 85354 Freising, Germany
- German Cancer Consortium, Partner Site Munich, 80336 Munich, Germany
| | - Julia Woortman
- Technical University of Munich, TUM School of Life Sciences, Department of Molecular Life Sciences, 85354 Freising, Germany
| | - Nicola Berner
- Technical University of Munich, TUM School of Life Sciences, Department of Molecular Life Sciences, 85354 Freising, Germany
- German Cancer Consortium, Partner Site Munich, 80336 Munich, Germany
| | - Julian Müller
- Technical University of Munich, TUM School of Life Sciences, Department of Molecular Life Sciences, 85354 Freising, Germany
| | - Annika Schneider
- Technical University of Munich, TUM School of Life Sciences, Department of Molecular Life Sciences, 85354 Freising, Germany
| | - Karl Kramer
- Technical University of Munich, TUM School of Life Sciences, Department of Molecular Life Sciences, 85354 Freising, Germany
| | - Mar Abril-Gil
- Technical University of Munich, School of Medicine, Institute of Clinical Chemistry and Pathobiochemistry, Klinikum rechts der Isar, 81675 Munich, Germany
| | - Thomas Hopf
- OmicScouts GmbH, Lise-Meitner-Str. 30, 85354 Freising, Germany
| | - Leonie Reichart
- OmicScouts GmbH, Lise-Meitner-Str. 30, 85354 Freising, Germany
| | - Lin Chen
- Technical University of Munich, TUM School of Life Sciences, Department of Molecular Life Sciences, 85354 Freising, Germany
| | - Fynn M. Hansen
- Technical University of Munich, TUM School of Life Sciences, Department of Molecular Life Sciences, 85354 Freising, Germany
| | - Severin Lechner
- Technical University of Munich, TUM School of Life Sciences, Department of Molecular Life Sciences, 85354 Freising, Germany
| | - Patroklos Samaras
- Technical University of Munich, TUM School of Life Sciences, Department of Molecular Life Sciences, 85354 Freising, Germany
| | - Stephan Eckert
- Technical University of Munich, TUM School of Life Sciences, Department of Molecular Life Sciences, 85354 Freising, Germany
- German Cancer Consortium, Partner Site Munich, 80336 Munich, Germany
| | - Ludwig Lautenbacher
- Technical University of Munich, TUM School of Life Sciences, Department of Molecular Life Sciences, 85354 Freising, Germany
| | - Maria Reinecke
- Technical University of Munich, TUM School of Life Sciences, Department of Molecular Life Sciences, 85354 Freising, Germany
| | - Firas Hamood
- Technical University of Munich, TUM School of Life Sciences, Department of Molecular Life Sciences, 85354 Freising, Germany
| | - Polina Prokofeva
- Technical University of Munich, TUM School of Life Sciences, Department of Molecular Life Sciences, 85354 Freising, Germany
| | - Larsen Vornholz
- Technical University of Munich, School of Medicine, Institute of Clinical Chemistry and Pathobiochemistry, Klinikum rechts der Isar, 81675 Munich, Germany
| | - Chiara Falcomatà
- German Cancer Consortium, Partner Site Munich, 80336 Munich, Germany
- Technical University of Munich, School of Medicine, Institute of Experimental Cancer Therapy, Klinikum rechts der Isar, 80336 Munich, Germany
| | - Madeleine Dorsch
- West German Cancer Center, University Hospital Essen, Department of Medical Oncology, 45147 Essen, Germany
- German Cancer Consortium (DKTK), Partner Site University Hospital Essen, 45147 Essen, Germany
| | - Ayla Schröder
- OmicScouts GmbH, Lise-Meitner-Str. 30, 85354 Freising, Germany
| | - Anton Venhuizen
- Technical University of Munich, TUM School of Life Sciences, Department of Molecular Life Sciences, 85354 Freising, Germany
| | - Stephanie Wilhelm
- Technical University of Munich, TUM School of Life Sciences, Department of Molecular Life Sciences, 85354 Freising, Germany
| | - Guillaume Médard
- Technical University of Munich, TUM School of Life Sciences, Department of Molecular Life Sciences, 85354 Freising, Germany
| | - Gabriele Stoehr
- OmicScouts GmbH, Lise-Meitner-Str. 30, 85354 Freising, Germany
| | - Jürgen Ruland
- German Cancer Consortium, Partner Site Munich, 80336 Munich, Germany
- Technical University of Munich, School of Medicine, Institute of Clinical Chemistry and Pathobiochemistry, Klinikum rechts der Isar, 81675 Munich, Germany
- German Center for Infection Research (DZIF), partner site Munich, 81675 Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), 81675 Munich, Germany
| | - Barbara M. Grüner
- West German Cancer Center, University Hospital Essen, Department of Medical Oncology, 45147 Essen, Germany
- German Cancer Consortium (DKTK), Partner Site University Hospital Essen, 45147 Essen, Germany
| | - Dieter Saur
- German Cancer Consortium, Partner Site Munich, 80336 Munich, Germany
- Technical University of Munich, School of Medicine, Institute of Experimental Cancer Therapy, Klinikum rechts der Isar, 80336 Munich, Germany
| | - Maike Buchner
- Technical University of Munich, School of Medicine, Institute of Clinical Chemistry and Pathobiochemistry, Klinikum rechts der Isar, 81675 Munich, Germany
| | - Benjamin Ruprecht
- Technical University of Munich, TUM School of Life Sciences, Department of Molecular Life Sciences, 85354 Freising, Germany
| | - Hannes Hahne
- OmicScouts GmbH, Lise-Meitner-Str. 30, 85354 Freising, Germany
| | - Matthew The
- Technical University of Munich, TUM School of Life Sciences, Department of Molecular Life Sciences, 85354 Freising, Germany
| | - Mathias Wilhelm
- Technical University of Munich, TUM School of Life Sciences, Department of Molecular Life Sciences, 85354 Freising, Germany
| | - Bernhard Kuster
- Technical University of Munich, TUM School of Life Sciences, Department of Molecular Life Sciences, 85354 Freising, Germany
- German Cancer Consortium, Partner Site Munich, 80336 Munich, Germany
| |
Collapse
|
77
|
Carmona B, Marinho HS, Matos CL, Nolasco S, Soares H. Tubulin Post-Translational Modifications: The Elusive Roles of Acetylation. BIOLOGY 2023; 12:biology12040561. [PMID: 37106761 PMCID: PMC10136095 DOI: 10.3390/biology12040561] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/27/2023] [Accepted: 04/03/2023] [Indexed: 04/29/2023]
Abstract
Microtubules (MTs), dynamic polymers of α/β-tubulin heterodimers found in all eukaryotes, are involved in cytoplasm spatial organization, intracellular transport, cell polarity, migration and division, and in cilia biology. MTs functional diversity depends on the differential expression of distinct tubulin isotypes and is amplified by a vast number of different post-translational modifications (PTMs). The addition/removal of PTMs to α- or β-tubulins is catalyzed by specific enzymes and allows combinatory patterns largely enriching the distinct biochemical and biophysical properties of MTs, creating a code read by distinct proteins, including microtubule-associated proteins (MAPs), which allow cellular responses. This review is focused on tubulin-acetylation, whose cellular roles continue to generate debate. We travel through the experimental data pointing to α-tubulin Lys40 acetylation role as being a MT stabilizer and a typical PTM of long lived MTs, to the most recent data, suggesting that Lys40 acetylation enhances MT flexibility and alters the mechanical properties of MTs, preventing MTs from mechanical aging characterized by structural damage. Additionally, we discuss the regulation of tubulin acetyltransferases/desacetylases and their impacts on cell physiology. Finally, we analyze how changes in MT acetylation levels have been found to be a general response to stress and how they are associated with several human pathologies.
Collapse
Affiliation(s)
- Bruno Carmona
- Centro de Química Estrutural, Institute of Molecular Sciences, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
- Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa, Av. D. João II, Lote 4.69.01, 1990-096 Lisboa, Portugal
| | - H Susana Marinho
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Catarina Lopes Matos
- Centro de Química Estrutural, Institute of Molecular Sciences, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Sofia Nolasco
- Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa, Av. D. João II, Lote 4.69.01, 1990-096 Lisboa, Portugal
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Helena Soares
- Centro de Química Estrutural, Institute of Molecular Sciences, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
- Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa, Av. D. João II, Lote 4.69.01, 1990-096 Lisboa, Portugal
| |
Collapse
|
78
|
Xu W, Yan P, Zhou Z, Yao J, Pan H, Jiang L, Bo Z, Ni B, Sun M, Gao S, Huan C. HDAC6 Triggers the ATM-Dependent DNA Damage Response To Promote PRV Replication. Microbiol Spectr 2023; 11:e0213222. [PMID: 36951571 PMCID: PMC10101138 DOI: 10.1128/spectrum.02132-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 03/01/2023] [Indexed: 03/24/2023] Open
Abstract
Pseudorabies virus (PRV) infection is modulated by various cellular host factors. In this study, we investigated the role of histone deacetylase 6 (HDAC6) in this process. We determined HDAC6 expression in vitro and performed gene knockout, pharmacological inhibition analyses, immunofluorescence assays, and statistical analyses. We found that the pharmacological and genetic inhibition of HDAC6 significantly decreased PRV replication, whereas its overexpression promoted PRV replication. Additionally, we demonstrated that PRV infection can induce the phosphorylation of histone H2AX and lead to DNA damage response (DDR), and the ataxia telangiectasia mutated (ATM) inhibitor KU55933 inhibits DDR and PRV infection. Mechanistically, the HDAC6 inhibitor tubacin and HDAC6 knockout can decrease DDR. The results of this study suggested that HDAC6 may be a crucial factor in PRV-induced ATM-dependent DDR to promote PRV replication. IMPORTANCE Pseudorabies virus (PRV) is a member of the subfamily Alphaherpesvirinae of the family Herpesviridae. PRV infection in swine can lead to high morbidity and mortality of swine, causing huge economic losses. In particular, PRV variants can cause severe damage to the nervous and respiratory systems of humans, revealing that PRV may be a potential zoonotic pathogen. Vaccines for PRV have been developed that can delay or reduce the epidemic, but they currently cannot eliminate this disease completely. Therefore, studies should investigate new targets for the prevention and control of PRV infection. In this study, we demonstrated that HDAC6 can induce ataxia telangiectasia mutated-dependent DNA damage response to foster PRV replication, indicating that HDAC6 is a therapeutic target for PRV infection.
Collapse
Affiliation(s)
- Weiyin Xu
- Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China
| | - Ping Yan
- Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China
| | - Ziyan Zhou
- Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China
| | - Jingting Yao
- Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China
| | - Haochun Pan
- Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China
| | - Luyao Jiang
- Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China
| | - Zongyi Bo
- Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Bo Ni
- China Animal Health and Epidemiology Center, Qingdao, China
| | - Mingxia Sun
- Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Song Gao
- Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China
| | - Changchao Huan
- Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China
| |
Collapse
|
79
|
Hsieh TH, Hsu CY, Wu CW, Wang SH, Yeh CH, Cheng KH, Tsai EM. Vorinostat decrease M2 macrophage polarization through ARID1A 6488delG/HDAC6/IL-10 signaling pathway in endometriosis-associated ovarian carcinoma. Biomed Pharmacother 2023; 161:114500. [PMID: 36958195 DOI: 10.1016/j.biopha.2023.114500] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/23/2023] [Accepted: 03/07/2023] [Indexed: 03/25/2023] Open
Abstract
Endometriosis is a common disease in women and may be one of the factors that induces malignant epithelial ovarian tumors. Previous studies suggested that endometriosis is related to ARID1A mutation mediating the expression of HDAC6, but the detailed pathogenic mechanism is still unclear. First, we collected endometriosis-associated ovarian carcinoma (EAOC) clinical samples and examined the expression of HDAC6. Our results found that the high HDAC6 expression group was positively correlated with EAOC histology (P = 0.015), stage (P < 0.000), and tumor size (P < 0.000) and inversely correlated with survival (P < 0.000). We also found that ARID1A6488delG/HDAC6 induced M2 polarization of macrophages through IL-10. In addition, the HDAC inhibitor (HDACi) vorinostat inhibited cell growth and blocked the effect of HDAC6. Tomographic microscopy was used to monitor the live cell morphology of these treated cells, and we found that vorinostat treatment resulted in substantial cell apoptosis by 3 h 42 min. Next, we established a transgenic mouse model of EAOC and found that vorinostat significantly reduced the size of ovarian tumors by inhibiting M2 macrophage polarization in mice. Together, these data demonstrate that the signaling pathway of E4F1/ARID1A6488delG/HDAC6/GATA3 mediates macrophage polarization and provides a novel immune cell-associated therapeutic strategy targeting IL-10 in EAOC.
Collapse
Affiliation(s)
- Tsung-Hua Hsieh
- Department of Medical Research, E-Da Hospital/E-Da Cancer Hospital, I-Shou University, Kaohsiung 82445, Taiwan.
| | - Chia-Yi Hsu
- Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
| | - Chia-Wei Wu
- Department of Medical Research, E-Da Hospital/E-Da Cancer Hospital, I-Shou University, Kaohsiung 82445, Taiwan
| | - Shih-Ho Wang
- Division of General Surgery, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Cheng-Hsi Yeh
- Division of General Surgery, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Kuang-Hung Cheng
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Eing-Mei Tsai
- Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
| |
Collapse
|
80
|
Pezzotta A, Brioschi L, Carbone S, Mazzoleni B, Bontempi V, Monastra F, Mauri L, Marozzi A, Mione M, Pistocchi A, Viani P. Combined Inhibition of Hedgehog and HDAC6: In Vitro and In Vivo Studies Reveal a New Role for Lysosomal Stress in Reducing Glioblastoma Cell Viability. Int J Mol Sci 2023; 24:ijms24065771. [PMID: 36982845 PMCID: PMC10051748 DOI: 10.3390/ijms24065771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 03/22/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most common and malignant brain tumor in adults. The invasiveness and the rapid progression that characterize GBM negatively impact patients’ survival. Temozolomide (TMZ) is currently considered the first-choice chemotherapeutic agent. Unfortunately, over 50% of patients with GBM do not respond to TMZ treatment, and the mutation-prone nature of GBM enables the development of resistance mechanisms. Therefore, efforts have been devoted to the dissection of aberrant pathways involved in GBM insurgence and resistance in order to identify new therapeutic targets. Among them, sphingolipid signaling, Hedgehog (Hh) pathway, and the histone deacetylase 6 (HDAC6) activity are frequently dysregulated and may represent key targets to counteract GBM progression. Given the positive correlation between Hh/HDAC6/sphingolipid metabolism in GBM, we decided to perform a dual pharmacological inhibition of Hh and HDAC6 through cyclopamine and tubastatin A, respectively, in a human GMB cell line and zebrafish embryos. The combined administration of these compounds elicited a more significant reduction of GMB cell viability than did single treatments in vitro and in cells orthotopically transplanted in the zebrafish hindbrain ventricle. We demonstrated, for the first time, that the inhibition of these pathways induces lysosomal stress which results in an impaired fusion of lysosomes with autophagosomes and a block of sphingolipid degradation in GBM cell lines. This condition, which we also recapitulated in zebrafish embryos, suggests an impairment of lysosome-dependent processes involving autophagy and sphingolipid homeostasis and might be instrumental in the reduction of GBM progression.
Collapse
Affiliation(s)
- Alex Pezzotta
- Department of Medical Biotechnology and Translational Medicine, University of Milan, L.I.T.A., Via Fratelli Cervi 93, Segrate, 20054 Milano, Italy
| | - Loredana Brioschi
- Department of Medical Biotechnology and Translational Medicine, University of Milan, L.I.T.A., Via Fratelli Cervi 93, Segrate, 20054 Milano, Italy
| | - Sabrina Carbone
- Department of Medical Biotechnology and Translational Medicine, University of Milan, L.I.T.A., Via Fratelli Cervi 93, Segrate, 20054 Milano, Italy
| | - Beatrice Mazzoleni
- Department of Medical Biotechnology and Translational Medicine, University of Milan, L.I.T.A., Via Fratelli Cervi 93, Segrate, 20054 Milano, Italy
- Molecular Mechanisms Unit, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Via Giacomo Venezian, 1, 20133 Milano, Italy
| | - Vittorio Bontempi
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123 Trento, Italy
| | - Federica Monastra
- Department of Medical Biotechnology and Translational Medicine, University of Milan, L.I.T.A., Via Fratelli Cervi 93, Segrate, 20054 Milano, Italy
| | - Laura Mauri
- Department of Medical Biotechnology and Translational Medicine, University of Milan, L.I.T.A., Via Fratelli Cervi 93, Segrate, 20054 Milano, Italy
| | - Anna Marozzi
- Department of Medical Biotechnology and Translational Medicine, University of Milan, L.I.T.A., Via Fratelli Cervi 93, Segrate, 20054 Milano, Italy
| | - Marina Mione
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123 Trento, Italy
| | - Anna Pistocchi
- Department of Medical Biotechnology and Translational Medicine, University of Milan, L.I.T.A., Via Fratelli Cervi 93, Segrate, 20054 Milano, Italy
- Correspondence: (A.P.); (P.V.)
| | - Paola Viani
- Department of Medical Biotechnology and Translational Medicine, University of Milan, L.I.T.A., Via Fratelli Cervi 93, Segrate, 20054 Milano, Italy
- Correspondence: (A.P.); (P.V.)
| |
Collapse
|
81
|
Zheng YC, Kang HQ, Wang B, Zhu YZ, Mamun MAA, Zhao LF, Nie HQ, Liu Y, Zhao LJ, Zhang XN, Gao MM, Jiang DD, Liu HM, Gao Y. Curriculum vitae of HDAC6 in solid tumors. Int J Biol Macromol 2023; 230:123219. [PMID: 36642357 DOI: 10.1016/j.ijbiomac.2023.123219] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/05/2023] [Accepted: 01/07/2023] [Indexed: 01/15/2023]
Abstract
Histone deacetylase 6 (HDAC6) is the only member of the HDAC family that resides primarily in the cytoplasm with two catalytic domains and a ubiquitin-binding domain. HDAC6 is highly expressed in various solid tumors and participates in a wide range of biological activities, including hormone receptors, the p53 signaling pathway, and the kinase cascade signaling pathway due to its unique structural foundation and abundant substrate types. Additionally, HDAC6 can function as an oncogenic factor in solid tumors, boosting tumor cell proliferation, invasion and metastasis, drug resistance, stemness, and lowering tumor cell immunogenicity, so assisting in carcinogenesis. Pan-HDAC inhibitors for cancer prevention are associated with potential cardiotoxicity in clinical investigations. It's interesting that HDAC6 silencing didn't cause any significant harm to normal cells. Currently, the use of HDAC6 specific inhibitors, individually or in combination, is among the most promising therapies in solid tumors. This review's objective is to give a general overview of the structure, biological functions, and mechanism of HDAC6 in solid tumor cells and in the immunological milieu and discuss the preclinical and clinical trials of selective HDAC6 inhibitors. These endeavors highlight that targeting HDAC6 could effectively kill tumor cells and enhance patients' immunity during solid tumor therapy.
Collapse
Affiliation(s)
- Yi-Chao Zheng
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Hui-Qin Kang
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Bo Wang
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450001, China
| | - Yuan-Zai Zhu
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - M A A Mamun
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Long-Fei Zhao
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Hai-Qian Nie
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Ying Liu
- Henan Key Laboratory of Precision Clinical Pharmacy, The First Affiliated Hospital of Zhengzhou University, Henan 450001, China
| | - Li-Juan Zhao
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Xiao-Nan Zhang
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Mei-Mei Gao
- Henan Key Laboratory of Precision Clinical Pharmacy, The First Affiliated Hospital of Zhengzhou University, Henan 450001, China
| | - Dan-Dan Jiang
- Department of Pharmacy, People's Hospital of Henan Province, Zhengzhou University, Henan 450001, China
| | - Hong-Min Liu
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China.
| | - Ya Gao
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China.
| |
Collapse
|
82
|
Xue Y, Gan B, Zhou Y, Wang T, Zhu T, Peng X, Zhang X, Zhou Y. Advances in the Mechanistic Study of the Control of Oxidative Stress Injury by Modulating HDAC6 Activity. Cell Biochem Biophys 2023; 81:127-139. [PMID: 36749475 PMCID: PMC9925596 DOI: 10.1007/s12013-022-01125-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 12/14/2022] [Indexed: 02/08/2023]
Abstract
Oxidative stress is defined as an injury resulting from a disturbance in the dynamic equilibrium of the redox environment due to the overproduction of active/radical oxygen exceeding the antioxidative ability of the body. This is a key step in the development of various diseases. Oxidative stress is modulated by different factors and events, including the modification of histones, which are the cores of nucleosomes. Histone modification includes acetylation and deacetylation of certain amino acid residues; this process is catalyzed by different enzymes. Histone deacetylase 6 (HDAC6) is a unique deacetylating protease that also catalyzes the deacetylation of different nonhistone substrates to regulate various physiologic processes. The intimate relationship between HDAC6 and oxidative stress has been demonstrated by different studies. The present paper aims to summarize the data obtained from a mechanistic study of HDAC6 and oxidative stress to guide further investigations on mechanistic characterization and drug development.
Collapse
Affiliation(s)
- Yuanye Xue
- Department of Pathophysiology, Guangdong Medical University, Dongguan, 523808, China
| | - Bing Gan
- The Third Affiliated Hospital of Guangdong Medical University, Fo Shan, 528000, Guangdong, China
| | - Yanxing Zhou
- School of Medical Technology, Guangdong Medical University, Dongguan, 523808, China
| | - Tingyu Wang
- Department of Pathophysiology, Guangdong Medical University, Dongguan, 523808, China
| | - Tong Zhu
- Department of Pathophysiology, Guangdong Medical University, Dongguan, 523808, China
| | - Xinsheng Peng
- Biomedical Innovation Center, Guangdong Medical University, Dongguan, 523808, China.
- Institute of Marine Medicine, Guangdong Medical University, Zhanjiang, 524023, China.
| | - Xiangning Zhang
- Department of Pathophysiology, Guangdong Medical University, Dongguan, 523808, China.
| | - Yanfang Zhou
- Department of Pathophysiology, Guangdong Medical University, Dongguan, 523808, China.
| |
Collapse
|
83
|
Upregulation of Profilin 2 on HDAC6 overexpression in mouse GC-1 cells and its putative role in germ cell migration in the testis. Cell Tissue Res 2023:10.1007/s00441-023-03755-9. [PMID: 36788143 DOI: 10.1007/s00441-023-03755-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 01/30/2023] [Indexed: 02/16/2023]
Abstract
Previous reports from this laboratory have demonstrated the involvement of histone deacetylase 6 (HDAC6) in sperm motility. As the presence of HDAC6 has also been reported in the earlier stage germ cells, studies were undertaken to explore its role during these stages of spermatogenesis. HDAC6 was overexpressed in GC-1spg cells, which represent the stage between type B spermatogonia and primary spermatocyte, and its effect on germ cell transcriptome was investigated by microarray. Among the many transcripts that were differentially regulated, Profilin 2, reported previously as a neuronal specific isoform, was observed as one of the genes highly upregulated at the transcript level, which was further confirmed by real-time PCR, and the protein confirmed by indirect immunofluorescence (IIF). Profilin 2 colocalized with HDAC6, as seen both in GC-1 cells and sperm. On the sperm, the presence of Profilin 2 was detected throughout the flagella with its colocalization with HDAC6 seen conspicuously in the mid-piece region of the flagella. Co-immunoprecipitation studies confirmed Profilin 2 interaction with HDAC6. Docking studies using Z dock suggested the interaction of 8 residues of HDAC6 with 6 residues of Profilin 2. The novel observation of Profilin 2 in spermatogonial cells, its significant upregulation on HDAC6 overexpression and its interaction with HDAC6 suggests that HDAC6 in collaboration with Profilin 2 may play a role in regulating the movement of germ cells from one stage/compartment to the next.
Collapse
|
84
|
Shukla S, Komarek J, Novakova Z, Nedvedova J, Ustinova K, Vankova P, Kadek A, Uetrecht C, Mertens H, Barinka C. In-solution structure and oligomerization of human histone deacetylase 6 - an integrative approach. FEBS J 2023; 290:821-836. [PMID: 36062318 DOI: 10.1111/febs.16616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 07/08/2022] [Accepted: 09/02/2022] [Indexed: 02/04/2023]
Abstract
Human histone deacetylase 6 (HDAC6) is a structurally unique, multidomain protein implicated in a variety of physiological processes including cytoskeletal remodelling and the maintenance of cellular homeostasis. Our current understanding of the HDAC6 structure is limited to isolated domains, and a holistic picture of the full-length protein structure, including possible domain interactions, is missing. Here, we used an integrative structural biology approach to build a solution model of HDAC6 by combining experimental data from several orthogonal biophysical techniques complemented by molecular modelling. We show that HDAC6 is best described as a mosaic of folded and intrinsically disordered domains that in-solution adopts an ensemble of conformations without any stable interactions between structured domains. Furthermore, HDAC6 forms dimers/higher oligomers in a concentration-dependent manner, and its oligomerization is mediated via the positively charged N-terminal microtubule-binding domain. Our findings provide the first insights into the structure of full-length human HDAC6 and can be used as a basis for further research into structure function and physiological studies of this unique deacetylase.
Collapse
Affiliation(s)
- Shivam Shukla
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic.,Department of Physical Chemistry, Faculty of Natural Science, Charles University, Prague, Czech Republic
| | - Jan Komarek
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic
| | - Zora Novakova
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic
| | - Jana Nedvedova
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic
| | - Kseniya Ustinova
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic
| | - Pavla Vankova
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic
| | - Alan Kadek
- Leibniz Institute of Virology (LIV), Hamburg, Germany.,European XFEL GmbH, Schenefeld, Germany
| | - Charlotte Uetrecht
- Leibniz Institute of Virology (LIV), Hamburg, Germany.,European XFEL GmbH, Schenefeld, Germany.,Centre for Structural Systems Biology, Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany.,Department of Health Sciences and Biomedicine, School of Life Sciences, University of Siegen, Germany
| | - Haydyn Mertens
- European Molecular Biology Laboratory (EMBL)-Hamburg Outstation, c/o DESY, Germany
| | - Cyril Barinka
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic
| |
Collapse
|
85
|
Targeting histone deacetylases for cancer therapy: Trends and challenges. Acta Pharm Sin B 2023. [DOI: 10.1016/j.apsb.2023.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023] Open
|
86
|
Liang T, Xie Z, Dang B, Wang J, Zhang T, Luan X, Lu T, Cao C, Chen X. Discovery of indole-piperazine derivatives as selective histone deacetylase 6 inhibitors with neurite outgrowth-promoting activities and neuroprotective activities. Bioorg Med Chem Lett 2023; 81:129148. [PMID: 36690041 DOI: 10.1016/j.bmcl.2023.129148] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/15/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023]
Abstract
Novel indole-piperazine derivatives with a hydroxamic acid moiety were designed and synthesized as selective histone deacetylase 6 (HDAC6) inhibitors. In enzymatic assays, all compounds exhibited nanomolar IC50 values. N-hydroxy-4-((4-(7-methyl-1H-indole-3-carbonyl)piperazin-1-yl)methyl)benzamide, 9c, was the most potent HDAC6 inhibitor (IC50, 13.6 nM). In vitro, 9c induced neurite outgrowth of PC12 cells without producing toxic effects, better than Tubastatin A (Tub A). Additionally, 9c demonstrated blatant neuroprotective activity in PC12 cells against H2O2-induced oxidative damage. In western blot assay, 9c could increase the acetylation of α-tubulin in a dose-dependent manner.
Collapse
Affiliation(s)
- Ting Liang
- Shaanxi Key Labotory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, PR China
| | - Zhao Xie
- Shaanxi Key Labotory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, PR China
| | - Baiyun Dang
- Shaanxi Key Labotory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, PR China
| | - Jiayun Wang
- Shaanxi Key Labotory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, PR China
| | - Tongtong Zhang
- Shaanxi Key Labotory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, PR China
| | - Xiaofa Luan
- Shaanxi Key Labotory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, PR China
| | - Tao Lu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China.
| | - Chenyu Cao
- Shaanxi Key Labotory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, PR China.
| | - Xin Chen
- Shaanxi Key Labotory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, PR China.
| |
Collapse
|
87
|
Enzyme Inhibitors from Gorgonians and Soft Corals. Mar Drugs 2023; 21:md21020104. [PMID: 36827145 PMCID: PMC9963996 DOI: 10.3390/md21020104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/28/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023] Open
Abstract
For decades, gorgonians and soft corals have been considered promising sources of bioactive compounds, attracting the interest of scientists from different fields. As the most abundant bioactive compounds within these organisms, terpenoids, steroids, and alkaloids have received the highest coverage in the scientific literature. However, enzyme inhibitors, a functional class of bioactive compounds with high potential for industry and biomedicine, have received much less notoriety. Thus, we revised scientific literature (1974-2022) on the field of marine natural products searching for enzyme inhibitors isolated from these taxonomic groups. In this review, we present representative enzyme inhibitors from an enzymological perspective, highlighting, when available, data on specific targets, structures, potencies, mechanisms of inhibition, and physiological roles for these molecules. As most of the characterization studies for the new inhibitors remain incomplete, we also included a methodological section presenting a general strategy to face this goal by accomplishing STRENDA (Standards for Reporting Enzymology Data) project guidelines.
Collapse
|
88
|
Yan J, Yue K, Fan X, Xu X, Wang J, Qin M, Zhang Q, Hou X, Li X, Wang Y. Synthesis and bioactivity evaluation of ferrocene-based hydroxamic acids as selective histone deacetylase 6 inhibitors. Eur J Med Chem 2023; 246:115004. [PMID: 36516583 DOI: 10.1016/j.ejmech.2022.115004] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022]
Abstract
Histone deacetylase 6 (HDAC6) is involved in multiple regulatory processes and emerges as a promising target for treating cancer and neurodegenerative diseases. Benefited from the unique sandwich conformation of ferrocene, a series of ferrocene-based hydroxamic acids have been developed as novel HDAC6 inhibitors in this paper, especially the two ansa-ferrocenyl complexes with IC50s at the nanomolar level. [3]-Ferrocenophane hydroxamic acid analog II-5 displays the most potent inhibitory activity on HDAC6 and establishes remarkable selectivity towards other HDAC isoforms. Compound II-5 dose-dependently induces accumulation of acetylated α-tubulin while having a negligible effect on the level of acetylated Histone H3, confirming its isoform selectivity. Further biological evaluation of II-5 on cancer cells corroborates its antiproliferative effect, which mainly contributed to the induction of cellular apoptosis. It is worth noting that compound II-5 demonstrates an optimal profile on human plasma stability. These results strengthen ferrocene's unique role in developing selective protein inhibitors and indicate that compound II-5 may be a suitable lead for further evaluation and development for treating HDAC6-associated disorders and diseases.
Collapse
Affiliation(s)
- Jiangkun Yan
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 26003, Shandong, PR China; Laboratory for Marine Drugs and Bioproducts, Center for Innovation Marine Drug Screening & Evaluation, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266200, PR China
| | - Kairui Yue
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 26003, Shandong, PR China; Laboratory for Marine Drugs and Bioproducts, Center for Innovation Marine Drug Screening & Evaluation, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266200, PR China
| | - Xuejing Fan
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 26003, Shandong, PR China; Laboratory for Marine Drugs and Bioproducts, Center for Innovation Marine Drug Screening & Evaluation, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266200, PR China
| | - Ximing Xu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 26003, Shandong, PR China; Marine Biomedical Research Institute of Qingdao, Qingdao, Shandong, 266071, PR China
| | - Jing Wang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 26003, Shandong, PR China; Laboratory for Marine Drugs and Bioproducts, Center for Innovation Marine Drug Screening & Evaluation, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266200, PR China
| | - Mengting Qin
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 26003, Shandong, PR China
| | - Qianer Zhang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 26003, Shandong, PR China; Laboratory for Marine Drugs and Bioproducts, Center for Innovation Marine Drug Screening & Evaluation, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266200, PR China
| | - Xiaohan Hou
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 26003, Shandong, PR China; Laboratory for Marine Drugs and Bioproducts, Center for Innovation Marine Drug Screening & Evaluation, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266200, PR China
| | - Xiaoyang Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 26003, Shandong, PR China; Laboratory for Marine Drugs and Bioproducts, Center for Innovation Marine Drug Screening & Evaluation, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266200, PR China.
| | - Yong Wang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 26003, Shandong, PR China; Laboratory for Marine Drugs and Bioproducts, Center for Innovation Marine Drug Screening & Evaluation, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266200, PR China.
| |
Collapse
|
89
|
Kabir F, Atkinson R, Cook AL, Phipps AJ, King AE. The role of altered protein acetylation in neurodegenerative disease. Front Aging Neurosci 2023; 14:1025473. [PMID: 36688174 PMCID: PMC9845957 DOI: 10.3389/fnagi.2022.1025473] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/03/2022] [Indexed: 01/06/2023] Open
Abstract
Acetylation is a key post-translational modification (PTM) involved in the regulation of both histone and non-histone proteins. It controls cellular processes such as DNA transcription, RNA modifications, proteostasis, aging, autophagy, regulation of cytoskeletal structures, and metabolism. Acetylation is essential to maintain neuronal plasticity and therefore essential for memory and learning. Homeostasis of acetylation is maintained through the activities of histone acetyltransferases (HAT) and histone deacetylase (HDAC) enzymes, with alterations to these tightly regulated processes reported in several neurodegenerative diseases including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS). Both hyperacetylation and hypoacetylation can impair neuronal physiological homeostasis and increase the accumulation of pathophysiological proteins such as tau, α-synuclein, and Huntingtin protein implicated in AD, PD, and HD, respectively. Additionally, dysregulation of acetylation is linked to impaired axonal transport, a key pathological mechanism in ALS. This review article will discuss the physiological roles of protein acetylation and examine the current literature that describes altered protein acetylation in neurodegenerative disorders.
Collapse
|
90
|
Mikesova J, Ondrakova M, Jelinkova I, Ptacek J, Novakova Z, Barinka C. Determining Potency of Inhibitors Targeting Histone Deacetylase 6 by Quantification of Acetylated Tubulin in Cells. Methods Mol Biol 2023; 2589:455-466. [PMID: 36255642 DOI: 10.1007/978-1-0716-2788-4_29] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
During the preclinical development of small molecule inhibitors, compounds or compound libraries are typically first screened using purified target enzymes in vitro to select candidates with high potency. In the later stages of the development, however, functional cell-based assays may provide biologically more relevant data. In this chapter, we describe a detailed protocol for determining the potency of inhibitors targeting human histone deacetylase 6 in complex cellular environments. Cells are first treated with a dilution series of tested compounds, cell lysates separated by SDS-PAGE, and electrotransferred to a blotting membrane. The inhibitor potency is then determined indirectly by quantifying the levels of acetylated tubulin as a surrogate readout.
Collapse
Affiliation(s)
- Jana Mikesova
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic
| | - Marketa Ondrakova
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic
| | - Iva Jelinkova
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic
| | - Jakub Ptacek
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic
| | - Zora Novakova
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic
| | - Cyril Barinka
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Vestec, Czech Republic.
| |
Collapse
|
91
|
Miyake Y, Hara Y, Umeda M, Banerjee I. Influenza A Virus: Cellular Entry. Subcell Biochem 2023; 106:387-401. [PMID: 38159235 DOI: 10.1007/978-3-031-40086-5_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
The frequent emergence of pathogenic viruses with pandemic potential has posed a significant threat to human health and economy, despite enormous advances in our understanding of infection mechanisms and devising countermeasures through developing various prophylactic and therapeutic strategies. The recent coronavirus disease (COVID-19) pandemic has re-emphasised the importance of rigorous research on virus infection mechanisms and highlighted the need for our preparedness for potential pandemics. Although viruses cannot self-replicate, they tap into host cell factors and processes for their entry, propagation and dissemination. Upon entering the host cells, viruses ingeniously utilise the innate biological functions of the host cell to replicate themselves and maintain their existence in the hosts. Influenza A virus (IAV), which has a negative-sense, single-stranded RNA as its genome, is no exception. IAVs are enveloped viruses with a lipid bilayer derived from the host cell membrane and have a surface covered with the spike glycoprotein haemagglutinin (HA) and neuraminidase (NA). Viral genome is surrounded by an M1 shell, forming a "capsid" in the virus particle. IAV particles use HA to recognise sialic acids on the cell surface of lung epithelial cells for their attachment. After attachment to the cell surface, IAV particles are endocytosed and sorted into the early endosomes. Subsequently, as the early endosomes mature into late endosomes, the endosomal lumen becomes acidified, and the low pH of the late endosomes induces conformational reaggangements in the HA to initiate fusion between the endosomal and viral membranes. Upon fusion, the viral capsid disintegrates and the viral ribonucleoprotein (vRNP) complexes containing the viral genome are released into the cytosol. The process of viral capsid disintegration is called "uncoating". After successful uncoating, the vRNPs are imported into the nucleus by importin α/β (IMP α/β), where viral replication and transcription take place and the new vRNPs are assembled. Recently, we have biochemically elucidated the molecular mechanisms of the processes of viral capsid uncoating subsequent viral genome dissociation. In this chapter, we present the molecular details of the viral uncoating process.
Collapse
Affiliation(s)
- Yasuyuki Miyake
- Department of Virology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
- Institute for Advanced Research (IAR), Nagoya University, Nagoya, Japan.
| | - Yuya Hara
- Department of Virology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Miki Umeda
- Department of Virology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Indranil Banerjee
- Department of Biological Sciences, Indian Institute of Science Education and Research, Mohali (IISER Mohali), Mohali, India.
| |
Collapse
|
92
|
Wang Y, Yang H, Geerts C, Furtos A, Waters P, Cyr D, Wang S, Mitchell GA. The multiple facets of acetyl-CoA metabolism: Energetics, biosynthesis, regulation, acylation and inborn errors. Mol Genet Metab 2023; 138:106966. [PMID: 36528988 DOI: 10.1016/j.ymgme.2022.106966] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/25/2022] [Accepted: 11/26/2022] [Indexed: 12/05/2022]
Abstract
Acetyl-coenzyme A (Ac-CoA) is a core metabolite with essential roles throughout cell physiology. These functions can be classified into energetics, biosynthesis, regulation and acetylation of large and small molecules. Ac-CoA is essential for oxidative metabolism of glucose, fatty acids, most amino acids, ethanol, and of free acetate generated by endogenous metabolism or by gut bacteria. Ac-CoA cannot cross lipid bilayers, but acetyl groups from Ac-CoA can shuttle across membranes as part of carrier molecules like citrate or acetylcarnitine, or as free acetate or ketone bodies. Ac-CoA is the basic unit of lipid biosynthesis, providing essentially all of the carbon for the synthesis of fatty acids and of isoprenoid-derived compounds including cholesterol, coenzyme Q and dolichols. High levels of Ac-CoA in hepatocytes stimulate lipid biosynthesis, ketone body production and the diversion of pyruvate metabolism towards gluconeogenesis and away from oxidation; low levels exert opposite effects. Acetylation changes the properties of molecules. Acetylation is necessary for the synthesis of acetylcholine, acetylglutamate, acetylaspartate and N-acetyl amino sugars, and to metabolize/eliminate some xenobiotics. Acetylation is a major post-translational modification of proteins. Different types of protein acetylation occur. The most-studied form occurs at the epsilon nitrogen of lysine residues. In histones, lysine acetylation can alter gene transcription. Acetylation of other proteins has diverse, often incompletely-documented effects. Inborn errors related to Ac-CoA feature a broad spectrum of metabolic, neurological and other features. To date, a small number of studies of animals with inborn errors of CoA thioesters has included direct measurement of acyl-CoAs. These studies have shown that low levels of tissue Ac-CoA correlate with the development of clinical signs, hinting that shortage of Ac-CoA may be a recurrent theme in these conditions. Low levels of Ac-CoA could potentially disrupt any of its roles.
Collapse
Affiliation(s)
- Youlin Wang
- Medical Genetics Service, Department of Pediatrics and Research Center, CHU Sainte-Justine and Université de Montréal, Montréal, Québec, Canada
| | - Hao Yang
- Medical Genetics Service, Department of Pediatrics and Research Center, CHU Sainte-Justine and Université de Montréal, Montréal, Québec, Canada
| | - Chloé Geerts
- Medical Genetics Service, Department of Pediatrics and Research Center, CHU Sainte-Justine and Université de Montréal, Montréal, Québec, Canada
| | - Alexandra Furtos
- Département de Chimie, Université de Montréal, Montréal, Québec, Canada
| | - Paula Waters
- Medical Genetics Service, Department of Laboratory Medicine, CHU Sherbrooke and Department of Pediatrics, Université de Sherbrooke, Québec, Canada
| | - Denis Cyr
- Medical Genetics Service, Department of Laboratory Medicine, CHU Sherbrooke and Department of Pediatrics, Université de Sherbrooke, Québec, Canada
| | - Shupei Wang
- Medical Genetics Service, Department of Pediatrics and Research Center, CHU Sainte-Justine and Université de Montréal, Montréal, Québec, Canada
| | - Grant A Mitchell
- Medical Genetics Service, Department of Pediatrics and Research Center, CHU Sainte-Justine and Université de Montréal, Montréal, Québec, Canada.
| |
Collapse
|
93
|
Abstract
The lysine deacetylase HDAC6 has unique structural and functional properties: It contains tandem catalytic domains that can deacetylate a variety of proteins and a zinc finger domain that binds ubiquitin. HDAC6 has been implicated in a variety of biological processes, normal or pathological, such as cellular motility, stress response, cancer, neurodegeneration, or viral infection. Due to this, HDAC6 is considered an attractive therapeutic target, and there is a major interest to identify small molecule inhibitors. To gain a mechanistic understanding of how HDAC6 impacts these different biological processes, there is a continued need to discover additional substrates as well as interacting proteins in different paradigms. One approach to achieve this is to perform HDAC6 immunoprecipitations to identify partner proteins. We describe here our optimized protocols to immunoprecipitate HDAC6 with the goal to identify or validate interacting proteins.
Collapse
Affiliation(s)
- Longlong Wang
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Jacint Sanchez
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Daniel Hess
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Patrick Matthias
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.
- Faculty of Sciences, University of Basel, Basel, Switzerland.
| |
Collapse
|
94
|
Langousis G, Sanchez J, Kempf G, Matthias P. Expression and Crystallization of HDAC6 Tandem Catalytic Domains. Methods Mol Biol 2023; 2589:467-480. [PMID: 36255643 DOI: 10.1007/978-1-0716-2788-4_30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Histone deacetylase 6 (HDAC6) is an atypical lysine deacetylase with tandem catalytic domains and an ubiquitin-binding zinc finger domain. HDAC6 is involved in various biological processes, such as cell motility or stress responses, and has been implicated in pathologies ranging from cancer to neurodegeneration. Due to this broad range of functions, there has been considerable interest in developing HDAC6-specific small molecule inhibitors, several of which are already available. The crystal structure of the tandem catalytic domains of zebrafish HDAC6 has revealed an arrangement with twofold symmetry and extensive surface interaction between the catalytic domains. Further dissection of the biochemical properties of HDAC6 and the development of novel inhibitors will benefit from being able to routinely express high-quality protein. We present here our optimized protocol for expression and crystallization of the zebrafish tandem catalytic domains.
Collapse
Affiliation(s)
| | - Jacint Sanchez
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Georg Kempf
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Patrick Matthias
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.
- Faculty of Sciences, University of Basel, Basel, Switzerland.
| |
Collapse
|
95
|
Zhou X, Chen H, Shi Y, Li J, Ma X, Du L, Hu Y, Tao M, Zhong Q, Yan D, Zhuang S, Liu N. Histone deacetylase 8 inhibition prevents the progression of peritoneal fibrosis by counteracting the epithelial-mesenchymal transition and blockade of M2 macrophage polarization. Front Immunol 2023; 14:1137332. [PMID: 36911746 PMCID: PMC9995794 DOI: 10.3389/fimmu.2023.1137332] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 02/10/2023] [Indexed: 02/25/2023] Open
Abstract
Background Peritoneal dialysis (PD) is an effective replacement therapy for end-stage renal disease patients. However, long-term exposure to peritoneal dialysate will lead to the development of peritoneal fibrosis. Epigenetics has been shown to play an important role in peritoneal fibrosis, but the role of histone deacetylases 8 (HDAC8) in peritoneal fibrosis have not been elucidated. In this research, we focused on the role and mechanisms of HDAC8 in peritoneal fibrosis and discussed the mechanisms involved. Methods We examined the expression of HDAC8 in the peritoneum and dialysis effluent of continuous PD patients. Then we assessed the role and mechanism of HDAC8 in peritoneal fibrosis progression in mouse model of peritoneal fibrosis induced by high glucose peritoneal dialysis fluid by using PCI-34051. In vitro, TGF-β1 or IL-4 were used to stimulate human peritoneal mesothelial cells (HPMCs) or RAW264.7 cells to establish two cell injury models to further explore the role and mechanism of HDAC8 in epithelial-mesenchymal transition (EMT) and macrophage polarization. Results We found that HDAC8 expressed highly in the peritoneum from patients with PD-related peritonitis. We further revealed that the level of HDAC8 in the dialysate increased over time, and HDAC8 was positively correlated with TGF-β1 and vascular endothelial growth factor (VEGF), and negatively correlated with cancer antigen 125. In mouse model of peritoneal fibrosis induced by high glucose dialysate, administration of PCI-34051 (a selective HDAC8 inhibitor) significantly prevented the progression of peritoneal fibrosis. Treatment with PCI-34051 blocked the phosphorylation of epidermal growth factor receptor (EGFR) and the activation of its downstream signaling pathways ERK1/2 and STAT3/HIF-1α. Inhibition of HDAC8 also reduced apoptosis. In vitro, HDAC8 silencing with PCI-34051 or siRNA inhibited TGF-β1-induced EMT and apoptosis in HPMCs. In addition, continuous high glucose dialysate or IL-4 stimulation induced M2 macrophage polarization. Blockade of HDAC8 reduced M2 macrophage polarization by inhibiting the activation of STAT6 and PI3K/Akt signaling pathways. Conclusions We demonstrated that HDAC8 promoted the EMT of HPMCs via EGFR/ERK1/2/STAT3/HIF-1α, induced M2 macrophage polarization via STAT6 and PI3K/Akt signaling pathways, and ultimately accelerated the process of peritoneal fibrosis.
Collapse
Affiliation(s)
- Xun Zhou
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hui Chen
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yingfeng Shi
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jinqing Li
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaoyan Ma
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lin Du
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yan Hu
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Min Tao
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qin Zhong
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Danying Yan
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shougang Zhuang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, RI, United States
| | - Na Liu
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
96
|
Vong P, Messaoudi K, Jankovsky N, Gomilla C, Demont Y, Caulier A, Jedraszak G, Demagny J, Djordjevic S, Boyer T, Marolleau JP, Rochette J, Ouled‐Haddou H, Garçon L. HDAC6 regulates human erythroid differentiation through modulation of JAK2 signalling. J Cell Mol Med 2022; 27:174-188. [PMID: 36578217 PMCID: PMC9843532 DOI: 10.1111/jcmm.17559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 08/25/2022] [Accepted: 09/05/2022] [Indexed: 12/30/2022] Open
Abstract
Among histone deacetylases, HDAC6 is unusual in its cytoplasmic localization. Its inhibition leads to hyperacetylation of non-histone proteins, inhibiting cell cycle, proliferation and apoptosis. Ricolinostat (ACY-1215) is a selective inhibitor of the histone deacetylase HDAC6 with proven efficacy in the treatment of malignant diseases, but anaemia is one of the most frequent side effects. We investigated here the underlying mechanisms of this erythroid toxicity. We first confirmed that HDAC6 was strongly expressed at both RNA and protein levels in CD34+ -cells-derived erythroid progenitors. ACY-1215 exposure on CD34+ -cells driven in vitro towards the erythroid lineage led to a decreased cell count, an increased apoptotic rate and a delayed erythroid differentiation with accumulation of weakly hemoglobinized immature erythroblasts. This was accompanied by drastic changes in the transcriptomic profile of primary cells as shown by RNAseq. In erythroid cells, ACY-1215 and shRNA-mediated HDAC6 knockdown inhibited the EPO-dependent JAK2 phosphorylation. Using acetylome, we identified 14-3-3ζ, known to interact directly with the JAK2 negative regulator LNK, as a potential HDAC6 target in erythroid cells. We confirmed that 14-3-3ζ was hyperacetylated after ACY-1215 exposure, which decreased the 14-3-3ζ/LNK interaction while increased LNK ability to interact with JAK2. Thus, in addition to its previously described role in the enucleation of mouse fetal liver erythroblasts, we identified here a new mechanism of HDAC6-dependent control of erythropoiesis through 14-3-3ζ acetylation level, LNK availability and finally JAK2 activation in response to EPO, which is crucial downstream of EPO-R activation for human erythroid cell survival, proliferation and differentiation.
Collapse
Affiliation(s)
- Pascal Vong
- HEMATIM UR4666Université Picardie Jules VerneAmiensFrance
| | | | | | - Cathy Gomilla
- HEMATIM UR4666Université Picardie Jules VerneAmiensFrance
| | - Yohann Demont
- Service d'Hématologie BiologiqueCentre Hospitalier UniversitaireAmiensFrance
| | - Alexis Caulier
- HEMATIM UR4666Université Picardie Jules VerneAmiensFrance,Service des Maladies du SangCentre Hospitalier UniversitaireAmiensFrance
| | - Guillaume Jedraszak
- HEMATIM UR4666Université Picardie Jules VerneAmiensFrance,Laboratoire de Génétique ConstitutionnelleCentre Hospitalier UniversitaireAmiensFrance
| | - Julien Demagny
- HEMATIM UR4666Université Picardie Jules VerneAmiensFrance,Service d'Hématologie BiologiqueCentre Hospitalier UniversitaireAmiensFrance
| | | | - Thomas Boyer
- HEMATIM UR4666Université Picardie Jules VerneAmiensFrance,Service d'Hématologie BiologiqueCentre Hospitalier UniversitaireAmiensFrance
| | - Jean Pierre Marolleau
- HEMATIM UR4666Université Picardie Jules VerneAmiensFrance,Service des Maladies du SangCentre Hospitalier UniversitaireAmiensFrance
| | | | | | - Loïc Garçon
- HEMATIM UR4666Université Picardie Jules VerneAmiensFrance,Service d'Hématologie BiologiqueCentre Hospitalier UniversitaireAmiensFrance
| |
Collapse
|
97
|
Dual LSD1 and HDAC6 Inhibition Induces Doxorubicin Sensitivity in Acute Myeloid Leukemia Cells. Cancers (Basel) 2022; 14:cancers14236014. [PMID: 36497494 PMCID: PMC9737972 DOI: 10.3390/cancers14236014] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/28/2022] [Accepted: 11/03/2022] [Indexed: 12/12/2022] Open
Abstract
Defects in epigenetic pathways are key drivers of oncogenic cell proliferation. We developed a LSD1/HDAC6 multitargeting inhibitor (iDual), a hydroxamic acid analogue of the clinical candidate LSD1 inhibitor GSK2879552. iDual inhibits both targets with IC50 values of 540, 110, and 290 nM, respectively, against LSD1, HDAC6, and HDAC8. We compared its activity to structurally similar control probes that act by HDAC or LSD1 inhibition alone, as well as an inactive null compound. iDual inhibited the growth of leukemia cell lines at a higher level than GSK2879552 with micromolar IC50 values. Dual engagement with LSD1 and HDAC6 was supported by dose dependent increases in substrate levels, biomarkers, and cellular thermal shift assay. Both histone methylation and acetylation of tubulin were increased, while acetylated histone levels were only mildly affected, indicating selectivity for HDAC6. Downstream gene expression (CD11b, CD86, p21) was also elevated in response to iDual treatment. Remarkably, iDual synergized with doxorubicin, triggering significant levels of apoptosis with a sublethal concentration of the drug. While mechanistic studies did not reveal changes in DNA repair or drug efflux pathways, the expression of AGPAT9, ALOX5, BTG1, HIPK2, IFI44L, and LRP1, previously implicated in doxorubicin sensitivity, was significantly elevated.
Collapse
|
98
|
Sharafutdinov I, Knorr J, Rottner K, Backert S, Tegtmeyer N. Cortactin: A universal host cytoskeletal target of Gram-negative and Gram-positive bacterial pathogens. Mol Microbiol 2022; 118:623-636. [PMID: 36396951 DOI: 10.1111/mmi.15002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 11/19/2022]
Abstract
Pathogenic bacteria possess a great potential of causing infectious diseases and represent a serious threat to human and animal health. Understanding the molecular basis of infection development can provide new valuable strategies for disease prevention and better control. In host-pathogen interactions, actin-cytoskeletal dynamics play a crucial role in the successful adherence, invasion, and intracellular motility of many intruding microbial pathogens. Cortactin, a major cellular factor that promotes actin polymerization and other functions, appears as a central regulator of host-pathogen interactions and different human diseases including cancer development. Various important microbes have been reported to hijack cortactin signaling during infection. The primary regulation of cortactin appears to proceed via serine and/or tyrosine phosphorylation events by upstream kinases, acetylation, and interaction with various other host proteins, including the Arp2/3 complex, filamentous actin, the actin nucleation promoting factor N-WASP, focal adhesion kinase FAK, the large GTPase dynamin-2, the guanine nucleotide exchange factor Vav2, and the actin-stabilizing protein CD2AP. Given that many signaling factors can affect cortactin activities, several microbes target certain unique pathways, while also sharing some common features. Here we review our current knowledge of the hallmarks of cortactin as a major target for eminent Gram-negative and Gram-positive bacterial pathogens in humans.
Collapse
Affiliation(s)
- Irshad Sharafutdinov
- Department of Biology, Division of Microbiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Jakob Knorr
- Department of Biology, Division of Microbiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Klemens Rottner
- Department of Cell Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany.,Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
| | - Steffen Backert
- Department of Biology, Division of Microbiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Nicole Tegtmeyer
- Department of Biology, Division of Microbiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
99
|
Reßing N, Schliehe-Diecks J, Watson PR, Sönnichsen M, Cragin AD, Schöler A, Yang J, Schäker-Hübner L, Borkhardt A, Christianson DW, Bhatia S, Hansen FK. Development of Fluorinated Peptoid-Based Histone Deacetylase (HDAC) Inhibitors for Therapy-Resistant Acute Leukemia. J Med Chem 2022; 65:15457-15472. [PMID: 36351184 PMCID: PMC9691607 DOI: 10.1021/acs.jmedchem.2c01418] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Using a microwave-assisted protocol, we synthesized 16 peptoid-capped HDAC inhibitors (HDACi) with fluorinated linkers and identified two hit compounds. In biochemical and cellular assays, 10h stood out as a potent unselective HDACi with remarkable cytotoxic potential against different therapy-resistant leukemia cell lines. 10h demonstrated prominent antileukemic activity with low cytotoxic activity toward healthy cells. Moreover, 10h exhibited synergistic interactions with the DNA methyltransferase inhibitor decitabine in AML cell lines. The comparison of crystal structures of HDAC6 complexes with 10h and its nonfluorinated counterpart revealed a similar occupation of the L1 loop pocket but slight differences in zinc coordination. The substitution pattern of the acyl residue turned out to be crucial in terms of isoform selectivity. The introduction of an isopropyl group onto the phenyl ring provided the highly HDAC6-selective inhibitor 10p, which demonstrated moderate synergy with decitabine and exceeded the HDAC6 selectivity of tubastatin A.
Collapse
Affiliation(s)
- Nina Reßing
- Pharmaceutical Institute, Pharmaceutical and Cell Biological Chemistry, University of Bonn, An der Immenburg 4, 53121Bonn, Germany
- Institute for Drug Discovery, Medical Faculty, Leipzig University, Brüderstraße 34, 04103Leipzig, Germany
| | - Julian Schliehe-Diecks
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstrasse 5, 40225Düsseldorf, Germany
| | - Paris R Watson
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania19104-6323, United States
| | - Melf Sönnichsen
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstrasse 5, 40225Düsseldorf, Germany
| | - Abigail D Cragin
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania19104-6323, United States
| | - Andrea Schöler
- Institute for Drug Discovery, Medical Faculty, Leipzig University, Brüderstraße 34, 04103Leipzig, Germany
| | - Jing Yang
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstrasse 5, 40225Düsseldorf, Germany
- Department of Medicine, Yangzhou Polytechnic College, West Wenchang Road 458, Yangzhou225009, P. R. China
| | - Linda Schäker-Hübner
- Pharmaceutical Institute, Pharmaceutical and Cell Biological Chemistry, University of Bonn, An der Immenburg 4, 53121Bonn, Germany
| | - Arndt Borkhardt
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstrasse 5, 40225Düsseldorf, Germany
| | - David W Christianson
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania19104-6323, United States
| | - Sanil Bhatia
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstrasse 5, 40225Düsseldorf, Germany
| | - Finn K Hansen
- Pharmaceutical Institute, Pharmaceutical and Cell Biological Chemistry, University of Bonn, An der Immenburg 4, 53121Bonn, Germany
| |
Collapse
|
100
|
Toma G, Karapetian E, Massa C, Quandt D, Seliger B. Characterization of the effect of histone deacetylation inhibitors on CD8 + T cells in the context of aging. J Transl Med 2022; 20:539. [PMID: 36419167 PMCID: PMC9682763 DOI: 10.1186/s12967-022-03733-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 10/30/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Posttranslational protein modifications regulate essential cellular processes, including the immune cell activation. Despite known age-related alterations of the phenotype, composition and cytokine profiles of immune cells, the role of acetylation in the aging process of the immune system was not broadly investigated. Therefore, in the current study the effect of acetylation on the protein expression profiles and function of CD8+ T cells from donors of distinct age was analyzed using histone deacetylase inhibitors (HDACi). METHODS CD8+ T cells isolated from peripheral blood mononuclear cells of 30 young (< 30 years) and 30 old (> 60 years) healthy donors were activated with anti-CD3/anti-CD28 antibodies in the presence and absence of a cocktail of HDACi. The protein expression profiles of untreated and HDACi-treated CD8+ T cells were analyzed using two-dimensional gel electrophoresis. Proteins with a differential expression level (less than 0.66-fold decrease or more than 1.5-fold increase) between CD8+ T cells of young and old donors were identified by matrix-associated laser desorption ionization-time of flight mass spectrometry. Functional enrichment analysis of proteins identified was performed using the online tool STRING. The function of CD8+ T cells was assessed by analyses of cytokine secretion, surface expression of activation markers, proliferative capacity and apoptosis rate. RESULTS The HDACi treatment of CD8+ T cells increased in an age-independent manner the intracellular acetylation of proteins, in particular cytoskeleton components and chaperones. Despite a strong similarity between the protein expression profiles of both age groups, the functional activity of CD8+ T cells significantly differed with an age-dependent increase in cytokine secretion and expression of activation markers for CD8+ T cells from old donors, which was maintained after HDACi treatment. The proliferation and apoptosis rate of CD8+ T cells after HDACi treatment was equal between both age groups. CONCLUSIONS Despite a comparable effect of HDACi treatment on the protein signature of CD8+ T cells from donors of different ages, an initial higher functionality of CD8+ T cells from old donors when compared to CD8+ T cells from young donors was detected, which might have clinical relevance.
Collapse
Affiliation(s)
- Georgiana Toma
- grid.9018.00000 0001 0679 2801Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112 Halle, Germany
| | - Eliza Karapetian
- grid.9018.00000 0001 0679 2801Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112 Halle, Germany
| | - Chiara Massa
- grid.9018.00000 0001 0679 2801Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112 Halle, Germany
| | - Dagmar Quandt
- grid.9018.00000 0001 0679 2801Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112 Halle, Germany
| | - Barbara Seliger
- grid.9018.00000 0001 0679 2801Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112 Halle, Germany ,grid.418008.50000 0004 0494 3022Fraunhofer Institute for Cell Therapy and Immunology, 04103 Leipzig, Germany
| |
Collapse
|