51
|
Abstract
ERK1 and ERK2 (ERK1/2) are the primary effector kinases of the RAS-RAF-MEK-ERK signaling pathway. A variety of substrates and regulatory partners associate with ERK1/2 through distinct D-peptide- and DEF-docking sites on their kinase domains. While understanding of D-peptides that bind to ERK1/2 has become increasingly clear over the last decade, only more recently have structures of proteins interacting with other binding sites on ERK1/2 become available. PEA-15 is a 130-residue ERK1/2 regulator that engages both the D-peptide- and DEF-docking sites of ERK kinases, and directly sequesters the ERK2 activation loop in various different phosphorylation states. Here we describe the methods used to derive crystallization-grade complexes of ERK2-PEA-15, which may also be adapted for other regulators that associate with the activation loop of ERK1/2.
Collapse
Affiliation(s)
- Johannes F Weijman
- Biochemistry Department, Otago School of Medical Sciences, University of Otago, 56, 710 Cumberland St., Dunedin, 9054, New Zealand
| | - Stefan J Riedl
- Cell Death and Survival Networks Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Peter D Mace
- Biochemistry Department, Otago School of Medical Sciences, University of Otago, 56, 710 Cumberland St., Dunedin, 9054, New Zealand.
| |
Collapse
|
52
|
Chen M, Peters A, Huang T, Nan X. Ras Dimer Formation as a New Signaling Mechanism and Potential Cancer Therapeutic Target. Mini Rev Med Chem 2016; 16:391-403. [PMID: 26423697 PMCID: PMC5421135 DOI: 10.2174/1389557515666151001152212] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 08/31/2015] [Accepted: 09/18/2015] [Indexed: 12/12/2022]
Abstract
The K-, N-, and HRas small GTPases are key regulators of cell physiology and are frequently mutated in human cancers. Despite intensive research, previous efforts to target hyperactive Ras based on known mechanisms of Ras signaling have been met with little success. Several studies have provided compelling evidence for the existence and biological relevance of Ras dimers, establishing a new mechanism for regulating Ras activity in cells additionally to GTP-loading and membrane localization. Existing data also start to reveal how Ras proteins dimerize on the membrane. We propose a dimer model to describe Ras-mediated effector activation, which contrasts existing models of Ras signaling as a monomer or as a 5-8 membered multimer. We also discuss potential implications of this model in both basic and translational Ras biology.
Collapse
Affiliation(s)
| | | | | | - Xiaolin Nan
- Department of Biomedical Engineering, Knight Cancer Institute, and OHSU Center for Spatial Systems Biomedicine (OCSSB), Oregon Health and Science University, Portland, OR.
| |
Collapse
|
53
|
Reconsolidation-induced memory persistence: Participation of late phase hippocampal ERK activation. Neurobiol Learn Mem 2016; 133:79-88. [DOI: 10.1016/j.nlm.2016.06.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 06/10/2016] [Accepted: 06/13/2016] [Indexed: 11/19/2022]
|
54
|
Ryan MB, Finn AJ, Pedone KH, Thomas NE, Der CJ, Cox AD. ERK/MAPK Signaling Drives Overexpression of the Rac-GEF, PREX1, in BRAF- and NRAS-Mutant Melanoma. Mol Cancer Res 2016; 14:1009-1018. [PMID: 27418645 DOI: 10.1158/1541-7786.mcr-16-0184] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 07/01/2016] [Indexed: 12/14/2022]
Abstract
Recently, we identified that PREX1 overexpression is critical for metastatic but not tumorigenic growth in a mouse model of NRAS-driven melanoma. In addition, a PREX1 gene signature correlated with and was dependent on ERK MAPK activation in human melanoma cell lines. In the current study, the underlying mechanism of PREX1 overexpression in human melanoma was assessed. PREX1 protein levels were increased in melanoma tumor tissues and cell lines compared with benign nevi and normal melanocytes, respectively. Suppression of PREX1 by siRNA impaired invasion but not proliferation in vitro PREX1-dependent invasion was attributable to PREX1-mediated activation of the small GTPase RAC1 but not the related small GTPase CDC42. Pharmacologic inhibition of ERK signaling reduced PREX1 gene transcription and additionally regulated PREX1 protein stability. This ERK-dependent upregulation of PREX1 in melanoma, due to both increased gene transcription and protein stability, contrasts with the mechanisms identified in breast and prostate cancers, in which PREX1 overexpression was driven by gene amplification and HDAC-mediated gene transcription, respectively. Thus, although PREX1 expression is aberrantly upregulated and regulates RAC1 activity and invasion in these three different tumor types, the mechanisms of its upregulation are distinct and context dependent. IMPLICATIONS This study identifies an ERK-dependent mechanism that drives PREX1 upregulation and subsequent RAC1-dependent invasion in BRAF- and NRAS-mutant melanoma. Mol Cancer Res; 14(10); 1009-18. ©2016 AACR.
Collapse
Affiliation(s)
- Meagan B Ryan
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Alexander J Finn
- Department of Dermatology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Katherine H Pedone
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Nancy E Thomas
- Department of Dermatology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Channing J Der
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina. Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.
| | - Adrienne D Cox
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina. Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina. Department of Radiation Oncology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.
| |
Collapse
|
55
|
Fey D, Matallanas D, Rauch J, Rukhlenko OS, Kholodenko BN. The complexities and versatility of the RAS-to-ERK signalling system in normal and cancer cells. Semin Cell Dev Biol 2016; 58:96-107. [PMID: 27350026 DOI: 10.1016/j.semcdb.2016.06.011] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 06/18/2016] [Indexed: 12/19/2022]
Abstract
The intricate dynamic control and plasticity of RAS to ERK mitogenic, survival and apoptotic signalling has mystified researches for more than 30 years. Therapeutics targeting the oncogenic aberrations within this pathway often yield unsatisfactory, even undesired results, as in the case of paradoxical ERK activation in response to RAF inhibition. A direct approach of inhibiting single oncogenic proteins misses the dynamic network context governing the network signal processing. In this review, we discuss the signalling behaviour of RAS and RAF proteins in normal and in cancer cells, and the emerging systems-level properties of the RAS-to-ERK signalling network. We argue that to understand the dynamic complexities of this control system, mathematical models including mechanistic detail are required. Looking into the future, these dynamic models will build the foundation upon which more effective, rational approaches to cancer therapy will be developed.
Collapse
Affiliation(s)
- Dirk Fey
- Systems Biology Ireland, UCD School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland; Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland.
| | - David Matallanas
- Systems Biology Ireland, UCD School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland; Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Jens Rauch
- Systems Biology Ireland, UCD School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland; Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Oleksii S Rukhlenko
- Systems Biology Ireland, UCD School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland; Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Boris N Kholodenko
- Systems Biology Ireland, UCD School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland; Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
56
|
Abstract
ERK1/2 MAP Kinases become activated in response to multiple intra- and extra-cellular stimuli through a signaling module composed of sequential tiers of cytoplasmic kinases. Scaffold proteins regulate ERK signals by connecting the different components of the module into a multi-enzymatic complex by which signal amplitude and duration are fine-tuned, and also provide signal fidelity by isolating this complex from external interferences. In addition, scaffold proteins play a central role as spatial regulators of ERKs signals. In this respect, depending on the subcellular localization from which the activating signals emanate, defined scaffolds specify which substrates are amenable to be phosphorylated. Recent evidence has unveiled direct interactions among different scaffold protein species. These scaffold-scaffold macro-complexes could constitute an additional level of regulation for ERK signals and may serve as nodes for the integration of incoming signals and the subsequent diversification of the outgoing signals with respect to substrate engagement.
Collapse
Affiliation(s)
- Berta Casar
- Instituto de Biomedicina y Biotecnología de Cantabria, Consejo Superior de Investigaciones Científicas (CSIC) - Universidad de Cantabria Santander, Spain
| | - Piero Crespo
- Instituto de Biomedicina y Biotecnología de Cantabria, Consejo Superior de Investigaciones Científicas (CSIC) - Universidad de Cantabria Santander, Spain
| |
Collapse
|
57
|
Zhou B, Ritt DA, Morrison DK, Der CJ, Cox AD. Protein Kinase CK2α Maintains Extracellular Signal-regulated Kinase (ERK) Activity in a CK2α Kinase-independent Manner to Promote Resistance to Inhibitors of RAF and MEK but Not ERK in BRAF Mutant Melanoma. J Biol Chem 2016; 291:17804-15. [PMID: 27226552 DOI: 10.1074/jbc.m115.712885] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Indexed: 11/06/2022] Open
Abstract
The protein kinase casein kinase 2 (CK2) is a pleiotropic and constitutively active kinase that plays crucial roles in cellular proliferation and survival. Overexpression of CK2, particularly the α catalytic subunit (CK2α, CSNK2A1), has been implicated in a wide variety of cancers and is associated with poorer survival and resistance to both conventional and targeted anticancer therapies. Here, we found that CK2α protein is elevated in melanoma cell lines compared with normal human melanocytes. We then tested the involvement of CK2α in drug resistance to Food and Drug Administration-approved single agent targeted therapies for melanoma. In BRAF mutant melanoma cells, ectopic CK2α decreased sensitivity to vemurafenib (BRAF inhibitor), dabrafenib (BRAF inhibitor), and trametinib (MEK inhibitor) by a mechanism distinct from that of mutant NRAS. Conversely, knockdown of CK2α sensitized cells to inhibitor treatment. CK2α-mediated RAF-MEK kinase inhibitor resistance was tightly linked to its maintenance of ERK phosphorylation. We found that CK2α post-translationally regulates the ERK-specific phosphatase dual specificity phosphatase 6 (DUSP6) in a kinase dependent-manner, decreasing its abundance. However, we unexpectedly showed, by using a kinase-inactive mutant of CK2α, that RAF-MEK inhibitor resistance did not rely on CK2α kinase catalytic function, and both wild-type and kinase-inactive CK2α maintained ERK phosphorylation upon inhibition of BRAF or MEK. That both wild-type and kinase-inactive CK2α bound equally well to the RAF-MEK-ERK scaffold kinase suppressor of Ras 1 (KSR1) suggested that CK2α increases KSR facilitation of ERK phosphorylation. Accordingly, CK2α did not cause resistance to direct inhibition of ERK by the ERK1/2-selective inhibitor SCH772984. Our findings support a kinase-independent scaffolding function of CK2α that promotes resistance to RAF- and MEK-targeted therapies.
Collapse
Affiliation(s)
| | - Daniel A Ritt
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, NCI, National Institutes of Health, Frederick, Maryland 21702
| | - Deborah K Morrison
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, NCI, National Institutes of Health, Frederick, Maryland 21702
| | - Channing J Der
- From the Department of Pharmacology, Lineberger Comprehensive Cancer Center, and
| | - Adrienne D Cox
- From the Department of Pharmacology, Lineberger Comprehensive Cancer Center, and Department of Radiation Oncology, University of North Carolina, Chapel Hill, North Carolina 27599 and
| |
Collapse
|
58
|
Differential localization of A-Raf regulates MST2-mediated apoptosis during epithelial differentiation. Cell Death Differ 2016; 23:1283-95. [PMID: 26891695 DOI: 10.1038/cdd.2016.2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Revised: 12/20/2016] [Accepted: 01/05/2016] [Indexed: 12/12/2022] Open
Abstract
A-Raf belongs to the family of oncogenic Raf kinases that are involved in mitogenic signaling by activating the MEK-ERK pathway. Low kinase activity of A-Raf toward MEK suggested that A-Raf might have alternative functions. We recently identified A-Raf as a potent inhibitor of the proapoptotic mammalian sterile 20-like kinase (MST2) tumor suppressor pathway in several cancer entities including head and neck, colon, and breast. Independent of kinase activity, A-Raf binds to MST2 thereby efficiently inhibiting apoptosis. Here, we show that the interaction of A-Raf with the MST2 pathway is regulated by subcellular compartmentalization. Although in proliferating normal cells and tumor cells A-Raf localizes to the mitochondria, differentiated non-carcinogenic cells of head and neck epithelia, which express A-Raf at the plasma membrane. The constitutive or induced re-localization of A-Raf to the plasma membrane compromises its ability to efficiently sequester and inactivate MST2, thus rendering cells susceptible to apoptosis. Physiologically, A-Raf re-localizes to the plasma membrane upon epithelial differentiation in vivo. This re-distribution is regulated by the scaffold protein kinase suppressor of Ras 2 (KSR2). Downregulation of KSR2 during mammary epithelial cell differentiation or siRNA-mediated knockdown re-localizes A-Raf to the plasma membrane causing the release of MST2. By using the MCF7 cell differentiation system, we could demonstrate that overexpression of A-Raf in MCF7 cells, which induces differentiation. Our findings offer a new paradigm to understand how differential localization of Raf complexes affects diverse signaling functions in normal cells and carcinomas.
Collapse
|
59
|
The dynamic subcellular localization of ERK: mechanisms of translocation and role in various organelles. Curr Opin Cell Biol 2016; 39:15-20. [PMID: 26827288 DOI: 10.1016/j.ceb.2016.01.007] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Revised: 01/11/2016] [Accepted: 01/13/2016] [Indexed: 12/27/2022]
Abstract
The dynamic subcellular localization of ERK in resting and stimulated cells plays an important role in its regulation. In resting cells, ERK localizes in the cytoplasm, and upon stimulation, it translocates to its target substrates and organelles. ERK signaling initiated from different places in resting cells has distinct outcomes. In this review, we summarize the mechanisms of ERK1/2 translocation to the nucleus and mitochondria, and of ERK1c to the Golgi. We also show that ERK1/2 translocation to the nucleus is a useful anti cancer target. Unraveling the complex subcellular localization of ERK and its dynamic changes upon stimulation provides a better understanding of the regulation of ERK signaling and may result in the development of new strategies to combat ERK-related diseases.
Collapse
|
60
|
Abstract
The three RAS genes comprise the most frequently mutated oncogene family in cancer. With significant and compelling evidence that continued function of mutant RAS is required for tumor maintenance, it is widely accepted that effective anti-RAS therapy will have a significant impact on cancer growth and patient survival. However, despite more than three decades of intense research and pharmaceutical industry efforts, a clinically effective anti-RAS drug has yet to be developed. With the recent renewed interest in targeting RAS, exciting and promising progress has been made. In this review, we discuss the prospects and challenges of drugging oncogenic RAS. In particular we focus on new inhibitors of RAS effector signaling and the ERK mitogen-activated protein kinase cascade.
Collapse
|
61
|
Herrero A, Crespo P. Tumors topple when ERKs uncouple. Mol Cell Oncol 2015; 3:e1091875. [PMID: 27308614 DOI: 10.1080/23723556.2015.1091875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 09/03/2015] [Accepted: 09/04/2015] [Indexed: 10/22/2022]
Abstract
Current antitumor therapies targeting the RAS-ERK pathway have been mostly aimed at inhibiting the activity of the kinases that populate the route. A small-molecule inhibitor of ERK dimerization effectively prevents the progression of tumors harboring oncogenic RAS and BRAF, demonstrating that targeting regulatory protein-protein interactions can be a valid strategy for treating RAS-ERK pathway-driven neoplasia.
Collapse
Affiliation(s)
- Ana Herrero
- Systems Biology Ireland, Conway Institute, University College Dublin , Belfield, Dublin, Ireland
| | - Piero Crespo
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC) , Spain
| |
Collapse
|
62
|
Herrero A, Pinto A, Colón-Bolea P, Casar B, Jones M, Agudo-Ibáñez L, Vidal R, Tenbaum SP, Nuciforo P, Valdizán EM, Horvath Z, Orfi L, Pineda-Lucena A, Bony E, Keri G, Rivas G, Pazos A, Gozalbes R, Palmer HG, Hurlstone A, Crespo P. Small Molecule Inhibition of ERK Dimerization Prevents Tumorigenesis by RAS-ERK Pathway Oncogenes. Cancer Cell 2015; 28:170-82. [PMID: 26267534 DOI: 10.1016/j.ccell.2015.07.001] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 04/30/2015] [Accepted: 07/08/2015] [Indexed: 12/15/2022]
Abstract
Nearly 50% of human malignancies exhibit unregulated RAS-ERK signaling; inhibiting it is a valid strategy for antineoplastic intervention. Upon activation, ERK dimerize, which is essential for ERK extranuclear, but not for nuclear, signaling. Here, we describe a small molecule inhibitor for ERK dimerization that, without affecting ERK phosphorylation, forestalls tumorigenesis driven by RAS-ERK pathway oncogenes. This compound is unaffected by resistance mechanisms that hamper classical RAS-ERK pathway inhibitors. Thus, ERK dimerization inhibitors provide the proof of principle for two understudied concepts in cancer therapy: (1) the blockade of sub-localization-specific sub-signals, rather than total signals, as a means of impeding oncogenic RAS-ERK signaling and (2) targeting regulatory protein-protein interactions, rather than catalytic activities, as an approach for producing effective antitumor agents.
Collapse
Affiliation(s)
- Ana Herrero
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Cantabria, Santander 39011, Spain
| | - Adán Pinto
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Cantabria, Santander 39011, Spain
| | - Paula Colón-Bolea
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Cantabria, Santander 39011, Spain
| | - Berta Casar
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Cantabria, Santander 39011, Spain
| | - Mary Jones
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PL, UK
| | - Lorena Agudo-Ibáñez
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Cantabria, Santander 39011, Spain
| | - Rebeca Vidal
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Cantabria, Santander 39011, Spain; Departamento de Fisiología y Farmacología, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III Universidad de Cantabria, Santander 39011, Spain
| | - Stephan P Tenbaum
- Stem Cells and Cancer Laboratory, Translational Research Program, Vall d'Hebron Institute of Oncology (VHIO), Barcelona 08035, Spain
| | - Paolo Nuciforo
- Stem Cells and Cancer Laboratory, Translational Research Program, Vall d'Hebron Institute of Oncology (VHIO), Barcelona 08035, Spain
| | - Elsa M Valdizán
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Cantabria, Santander 39011, Spain; Departamento de Fisiología y Farmacología, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III Universidad de Cantabria, Santander 39011, Spain
| | | | - Laszlo Orfi
- Vichem Chemie Research Ltd., 1022 Budapest, Hungary; Department of Pharmaceutical Chemistry, Semmelweis University, 1092 Budapest, Hungary
| | | | - Emilie Bony
- Pharmacognosy Research Group, Louvain Drug Research Institute, Université Catholique de Louvain, 1200 Bruxelles, Belgium
| | - Gyorgy Keri
- Vichem Chemie Research Ltd., 1022 Budapest, Hungary; MTA-SE Pathobiochemistry Research Group, Department of Medical Chemistry, Semmelweis University, 1092 Budapest, Hungary
| | - Germán Rivas
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, 28040 Madrid, Spain
| | - Angel Pazos
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Cantabria, Santander 39011, Spain; Departamento de Fisiología y Farmacología, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III Universidad de Cantabria, Santander 39011, Spain
| | | | - Héctor G Palmer
- Stem Cells and Cancer Laboratory, Translational Research Program, Vall d'Hebron Institute of Oncology (VHIO), Barcelona 08035, Spain
| | - Adam Hurlstone
- Departamento de Fisiología y Farmacología, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III Universidad de Cantabria, Santander 39011, Spain
| | - Piero Crespo
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Cantabria, Santander 39011, Spain.
| |
Collapse
|
63
|
Abstract
In this issue of Cancer Cell, Herrero and colleagues identify an anti-tumorigenic small molecule that blocks ERK dimerization, but neither its catalytic activity nor its phosphorylation by MEK. These findings demonstrate that targeting protein dimerization could be a therapeutic avenue for inhibiting kinase signaling pathways associated with lower drug resistance.
Collapse
Affiliation(s)
- Aroon S Karra
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Clinton A Taylor
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Curtis A Thorne
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Melanie H Cobb
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
64
|
Kong LR, Chua KN, Sim WJ, Ng HC, Bi C, Ho J, Nga ME, Pang YH, Ong WR, Soo RA, Huynh H, Chng WJ, Thiery JP, Goh BC. MEK Inhibition Overcomes Cisplatin Resistance Conferred by SOS/MAPK Pathway Activation in Squamous Cell Carcinoma. Mol Cancer Ther 2015; 14:1750-60. [PMID: 25939760 DOI: 10.1158/1535-7163.mct-15-0062] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 04/26/2015] [Indexed: 11/16/2022]
Abstract
Genomic analyses of squamous cell carcinoma (SCC) have yet to yield significant strategies against pathway activation to improve treatment. Platinum-based chemotherapy remains the mainstay of treatment for SCC of different histotypes either as a single-agent or alongside other chemotherapeutic drugs or radiotherapy; however, resistance inevitably emerges, which limits the duration of treatment response. To elucidate mechanisms that mediate resistance to cisplatin, we compared drug-induced perturbations to gene and protein expression between cisplatin-sensitive and -resistant SCC cells, and identified MAPK-ERK pathway upregulation and activation in drug-resistant cells. ERK-induced resistance appeared to be activated by Son of Sevenless (SOS) upstream, and mediated through Bim degradation downstream. Clinically, elevated p-ERK expression was associated with shorter disease-free survival in patients with locally advanced head and neck SCC treated with concurrent chemoradiation. Inhibition of MEK/ERK, but not that of EGFR or RAF, augmented cisplatin sensitivity in vitro and demonstrated efficacy and tolerability in vivo. Collectively, these findings suggest that inhibition of the activated SOS-MAPK-ERK pathway may augment patient responses to cisplatin treatment.
Collapse
Affiliation(s)
- Li Ren Kong
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Kian Ngiap Chua
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Wen Jing Sim
- Institute of Molecular and Cell Biology, A*STAR, Singapore
| | - Hsien Chun Ng
- Institute of Molecular and Cell Biology, A*STAR, Singapore
| | - Chonglei Bi
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Jingshan Ho
- Department of Hematology-Oncology, National University Hospital, Singapore. National University Cancer Institute, Singapore
| | - Min En Nga
- Department of Pathology, National University Hospital, Singapore
| | - Yin Huei Pang
- Department of Pathology, National University Hospital, Singapore
| | | | - Ross Andrew Soo
- Cancer Science Institute of Singapore, National University of Singapore, Singapore. Department of Hematology-Oncology, National University Hospital, Singapore. National University Cancer Institute, Singapore
| | | | - Wee Joo Chng
- Cancer Science Institute of Singapore, National University of Singapore, Singapore. Department of Hematology-Oncology, National University Hospital, Singapore. National University Cancer Institute, Singapore
| | - Jean-Paul Thiery
- Cancer Science Institute of Singapore, National University of Singapore, Singapore. Institute of Molecular and Cell Biology, A*STAR, Singapore. Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Boon Cher Goh
- Cancer Science Institute of Singapore, National University of Singapore, Singapore. Department of Hematology-Oncology, National University Hospital, Singapore. National University Cancer Institute, Singapore.
| |
Collapse
|
65
|
Krawczyk M, Blake M, Baratti C, Romano A, Boccia M, Feld M. Memory reconsolidation of an inhibitory avoidance task in mice involves cytosolic ERK2 bidirectional modulation. Neuroscience 2015; 294:227-37. [DOI: 10.1016/j.neuroscience.2015.03.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Revised: 03/05/2015] [Accepted: 03/09/2015] [Indexed: 01/23/2023]
|
66
|
Abstract
Leishmania amazonensis is an intracellular protozoan parasite responsible for chronic cutaneous leishmaniasis (CL). CL is a neglected tropical disease responsible for infecting millions of people worldwide. L. amazonensis promotes alteration of various signaling pathways that are essential for host cell survival. Specifically, through parasite-mediated phosphorylation of extracellular signal regulated kinase (ERK), L. amazonensis inhibits cell-mediated parasite killing and promotes its own survival by co-opting multiple host cell functions. In this review, we highlight Leishmania-host cell signaling alterations focusing on those specific to (1) motor proteins, (2) prevention of NADPH subunit phosphorylation impairing reactive oxygen species production, and (3) localized endosomal signaling to up-regulate ERK phosphorylation. This review will focus upon mechanisms and possible explanations as to how Leishmania spp. evades the various layers of defense employed by the host immune response.
Collapse
|
67
|
Autophagy proteins regulate ERK phosphorylation. Nat Commun 2014; 4:2799. [PMID: 24240988 PMCID: PMC3868163 DOI: 10.1038/ncomms3799] [Citation(s) in RCA: 204] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 10/22/2013] [Indexed: 12/18/2022] Open
Abstract
Autophagy is a conserved pathway that maintains cellular quality control. Extracellular signal-regulated kinase (ERK) controls various aspects of cell physiology including proliferation. Multiple signalling cascades, including ERK, have been shown to regulate autophagy, however whether autophagy proteins (ATG) regulate cell signalling is unknown. Here we show that growth factor exposure increases the interaction of ERK cascade components with ATG proteins in the cytosol and nucleus. ERK and its upstream kinase MEK localize to the extra-luminal face of autophagosomes. ERK2 interacts with ATG proteins via its substrate-binding domains. Deleting Atg7 or Atg5 or blocking LC3 lipidation or ATG5–ATG12 conjugation decreases ERK phosphorylation. Conversely, increasing LC3-II availability by silencing the cysteine protease ATG4B or acute trehalose exposure increases ERK phosphorylation. Decreased ERK phosphorylation in Atg5−/− cells does not occur from overactive phosphatases. Our findings thus reveal an unconventional function of ATG proteins as cellular scaffolds in the regulation of ERK phosphorylation. The spatial organisation of mitogen-activated protein kinase (MAPK) signalling by scaffold proteins is an important determinant of signalling specificity. Martinez-Lopez et al. show that pre-autophagosomal structures can also act as scaffolds, recruiting the MAPK ERK1/2 and regulating its phosphorylation.
Collapse
|
68
|
Cell activation-induced phosphoinositide 3-kinase alpha/beta dimerization regulates PTEN activity. Mol Cell Biol 2014; 34:3359-73. [PMID: 24958106 DOI: 10.1128/mcb.00167-14] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The phosphoinositide 3-kinase (PI3K)/PTEN (phosphatase and tensin homolog) pathway is one of the central routes that enhances cell survival, division, and migration, and it is frequently deregulated in cancer. PI3K catalyzes formation of phosphatidylinositol 3,4,5-triphosphate [PI(3,4,5)P3] after cell activation; PTEN subsequently reduces these lipids to basal levels. Activation of the ubiquitous p110α isoform precedes that of p110β at several points during the cell cycle. We studied the potential connections between p110α and p110β activation, and we show that cell stimulation promotes p110α and p110β association, demonstrating oligomerization of PI3K catalytic subunits within cells. Cell stimulation also promoted PTEN incorporation into this complex, which was necessary for PTEN activation. Our results show that PI3Ks dimerize in vivo and that PI3K and PTEN activities modulate each other in a complex that controls cell PI(3,4,5)P3 levels.
Collapse
|
69
|
"RAF" neighborhood: protein-protein interaction in the Raf/Mek/Erk pathway. FEBS Lett 2014; 588:2398-406. [PMID: 24937142 PMCID: PMC4099524 DOI: 10.1016/j.febslet.2014.06.025] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 06/05/2014] [Accepted: 06/06/2014] [Indexed: 12/19/2022]
Abstract
The Raf/Mek/Erk signaling pathway, activated downstream of Ras primarily to promote proliferation, represents the best studied of the evolutionary conserved MAPK cascades. The investigation of the pathway has continued unabated since its discovery roughly 30 years ago. In the last decade, however, the identification of unexpected in vivo functions of pathway components, as well as the discovery of Raf mutations in human cancer, the ensuing quest for inhibitors, and the efforts to understand their mechanism of action, have boosted interest tremendously. From this large body of work, protein-protein interaction has emerged as a recurrent, crucial theme. This review focuses on the role of protein complexes in the regulation of the Raf/Mek/Erk pathway and in its cross-talk with other signaling cascades. Mapping these interactions and finding a way of exploiting them for therapeutic purposes is one of the challenges of future molecule-targeted therapy.
Collapse
|
70
|
Abstract
The Raf/MEK/extracellular signal-regulated kinase (ERK) pathway has a pivotal role in facilitating cell proliferation, and its deregulated activation is a central signature of many epithelial cancers. However paradoxically, sustained activity of Raf/MEK/ERK can also result in growth arrest in many different cell types. This anti-proliferative Raf/MEK/ERK signaling also has physiological significance, as exemplified by its potential as a tumor suppressive mechanism. Therefore, significant questions include in which cell types and by what mechanisms this pathway can mediate such an opposing context of signaling. Particularly, our understating of the role of ERK1 and ERK2, the focal points of pathway signaling, in growth arrest signaling is still limited. This review discusses these aspects of Raf/MEK/ERK-mediated growth arrest signaling.
Collapse
|
71
|
Luan Z, He Y, Alattar M, Chen Z, He F. Targeting the prohibitin scaffold-CRAF kinase interaction in RAS-ERK-driven pancreatic ductal adenocarcinoma. Mol Cancer 2014; 13:38. [PMID: 24568222 PMCID: PMC3938031 DOI: 10.1186/1476-4598-13-38] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 02/19/2014] [Indexed: 12/19/2022] Open
Abstract
Background Robust ERK1/2 activity, which frequently results from KRAS mutation, invariably occurs in pancreatic ductal adenocarcinoma (PDAC). However, direct interference of KRAS signaling has not led to clinically successful drugs. Correct localization of RAF is regulated by the scaffold protein prohibitin (PHB) that ensures the spatial organization between RAS and RAF in plasma membranes, thus leading to activation of downstream effectors. Methods PHB expression was analyzed in human pancreatic cancer cell lines, normal pancreas, and PDAC tissue. Furthermore, genetic ablation or pharmacological inhibition of PHB was performed to determine its role in growth, migration, and signaling of pancreatic cancer cells in vitro and in vivo. Results The level of PHB expression was crucial for maintenance of oncogenic ERK-driven pancreatic tumorigenesis. Additionally, rocaglamide (RocA), a small molecular inhibitor, selectively bound to PHB with nanomolar affinity to disrupt the PHB-CRAF interaction by altering its localization to the plasma membrane. Consequently, there was an impairment of oncogenic RAS-ERK signaling, thereby blocking in vitro and in vivo growth and metastasis of pancreatic cancer cells that were addicted to RAS-ERK signaling. More importantly, RocA treatment resulted in a significant increase of the lifespan of tumor-bearing mice without any detectable toxicity. Conclusions Blockade of the PHB scaffold-CRAF kinase interaction, which is distinct from direct kinase inhibition, may be a new therapeutic strategy to target oncogenic ERK-driven pancreatic cancer.
Collapse
Affiliation(s)
| | | | | | - Zhishui Chen
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | | |
Collapse
|
72
|
Overexpression of Raf-1 in basal-like carcinoma of the breast: correlation with clinicopathology and prognosis. Contemp Oncol (Pozn) 2014; 18:391-5. [PMID: 25784836 PMCID: PMC4355656 DOI: 10.5114/wo.2014.47037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Revised: 12/21/2013] [Accepted: 02/03/2014] [Indexed: 11/17/2022] Open
Abstract
Aim of the study Increased Raf-1 expression has been associated with an aggressive behaviour in some carcinomas such as pulmonary carcinoma and renal carcinoma. However, its role in breast cancer, especially in basal-like carcinoma of the breast (BLBC), has not been defined. Material and methods The current study attempted to investigate the expression pattern of Raf-1 protein in BLBC, in relation to the biological behaviour and prognosis of the carcinoma. Expression of Raf-1 was detected by immunohistochemistry in carcinoma specimens from 74 cases of BLBC, and associations between their expression and the clinicopathological characteristics were statistically assessed. Results The patients’ age, tumour size, BRCA1, and p53 protein expression was not significantly different between the Raf-1-positive and Raf-1-negative expression groups (p > 0.05). The proportion of histological grade 3 tumours was not significantly higher in the Raf-1 positive group than that of grade 2 tumours (p > 0.05). However, positive cytoplasmic Raf-1 expression was positively correlated to Ki-67 expression (p < 0.05). Also, increased Raf-1 protein was found to exert an unfavourable impact on patients’ axillary lymph node metastasis and overall survival (p < 0.05). Conclusions The study implies that positive Raf-1 expression in BLBC is associated with a more aggressive phenotype and could be considered as a new prognostic biomarker for poor survival in BLBC patients.
Collapse
|
73
|
Mace PD, Wallez Y, Egger MF, Dobaczewska MK, Robinson H, Pasquale EB, Riedl SJ. Structure of ERK2 bound to PEA-15 reveals a mechanism for rapid release of activated MAPK. Nat Commun 2013; 4:1681. [PMID: 23575685 PMCID: PMC3640864 DOI: 10.1038/ncomms2687] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 02/28/2013] [Indexed: 02/08/2023] Open
Abstract
ERK1/2 kinases are the principal effectors of a central signaling cascade that converts extracellular stimuli into cell proliferation and migration responses and, when deregulated, can promote cell oncogenic transformation. The scaffolding protein PEA-15 is a death effector domain (DED) protein that directly interacts with ERK1/2 and affects ERK1/2 subcellular localization and phosphorylation. Here, to understand this ERK1/2 signaling complex, we have solved the crystal structures of PEA-15 bound to three different ERK2 phospho-conformers. The structures reveal that PEA-15 uses a bipartite binding mode, occupying two key docking sites of ERK2. Remarkably, PEA-15 can efficiently bind the ERK2 activation loop in the critical Thr-X-Tyr region in different phosphorylation states. PEA-15 binding triggers an extended allosteric conduit in dually phosphorylated ERK2, disrupting key features of active ERK2. At the same time PEA-15 binding protects ERK2 from dephosphorylation, thus setting the stage for immediate ERK activity upon its release from the PEA-15 inhibitory complex.
Collapse
Affiliation(s)
- Peter D Mace
- Program in Apoptosis and Cell Death Research, Cancer Center, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, California 92037, USA
| | | | | | | | | | | | | |
Collapse
|
74
|
Abstract
Classic nuclear shuttling is mediated by an importin-α∙β heterodimer that binds to cargoes containing a nuclear localization signal, and shuttles most nuclear proteins immediately after their translation. Aside from this canonical mechanism, kariopheryn-βs or β-like importins operate by binding to non-canonical nuclear localization signals to mediate translocation without the assistance of importin-α. The mechanism by which these components operate is much less understood and is currently under investigation. Recently, several β-like importins have been implicated in the stimulated nuclear translocation of signaling proteins. Here, we propose that this group of importins might be responsible for the swift nuclear shuttling of many proteins following various stimuli.
Collapse
|
75
|
Zhang S, Guo T, Chan H, Sze SK, Koh CG. Integrative transcriptome and proteome study to identify the signaling network regulated by POPX2 phosphatase. J Proteome Res 2013; 12:2525-36. [PMID: 23621870 DOI: 10.1021/pr301113c] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
POPX2 is a serine/threonine phosphatase belonging to the protein phosphatase 2C (PP2C) family that has been found to be elevated in invasive breast cancer cells. Silencing of POPX2 results in lower cell motility and invasiveness. The molecular mechanism of POPX2-regulated cell motility is not well understood. To identify the relevant signaling pathways, we investigated the transcriptome and proteome of POPX2-knockdown MDA-MB-231 breast cancer cells. Our data suggest that POPX2 might be involved in the regulation of focal adhesions and cytoskeleton dynamics through the regulation of MAP kinase (MAPK1/3) and glycogen synthase kinase 3 (GSK3α/β) activities. Silencing POPX2 alters phosphorylation levels of MAPK1/3 and GSK3α/β and results in reduced activity of these kinases. Both MAPK and GSK3 are known to regulate the activities of transcription factors. MAPK1/3 are also implicated in the phosphorylation of stathmin. The level of phospho-stathmin was found to be lower in POPX2 knockdown cells. As phosphorylation of stathmin inhibits its microtubule severing activity, we observed less stable microtubules in POPX2 knockdown cells. Taken together, our data suggest that POPX2 might regulate cell motility through its regulation of the MAPK1/3, leading to changes in the cytoskeleton and cell motility.
Collapse
Affiliation(s)
- Songjing Zhang
- School of Biological Sciences, Nanyang Technological University, Singapore 6387551
| | | | | | | | | |
Collapse
|
76
|
Meister M, Tomasovic A, Banning A, Tikkanen R. Mitogen-Activated Protein (MAP) Kinase Scaffolding Proteins: A Recount. Int J Mol Sci 2013; 14:4854-84. [PMID: 23455463 PMCID: PMC3634400 DOI: 10.3390/ijms14034854] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 02/17/2013] [Accepted: 02/21/2013] [Indexed: 12/20/2022] Open
Abstract
The mitogen-activated protein kinase (MAPK) pathway is the canonical signaling pathway for many receptor tyrosine kinases, such as the Epidermal Growth Factor Receptor. Downstream of the receptors, this pathway involves the activation of a kinase cascade that culminates in a transcriptional response and affects processes, such as cell migration and adhesion. In addition, the strength and duration of the upstream signal also influence the mode of the cellular response that is switched on. Thus, the same components can in principle coordinate opposite responses, such as proliferation and differentiation. In recent years, it has become evident that MAPK signaling is regulated and fine-tuned by proteins that can bind to several MAPK signaling proteins simultaneously and, thereby, affect their function. These so-called MAPK scaffolding proteins are, thus, important coordinators of the signaling response in cells. In this review, we summarize the recent advances in the research on MAPK/extracellular signal-regulated kinase (ERK) pathway scaffolders. We will not only review the well-known members of the family, such as kinase suppressor of Ras (KSR), but also put a special focus on the function of the recently identified or less studied scaffolders, such as fibroblast growth factor receptor substrate 2, flotillin-1 and mitogen-activated protein kinase organizer 1.
Collapse
Affiliation(s)
- Melanie Meister
- Institute of Biochemistry, Medical Faculty, University of Giessen, Friedrichstrasse 24, 35392 Giessen, Germany; E-Mails: (M.M.); (A.B.)
| | - Ana Tomasovic
- Department of Molecular Hematology, University of Frankfurt, Medical School, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; E-Mail:
| | - Antje Banning
- Institute of Biochemistry, Medical Faculty, University of Giessen, Friedrichstrasse 24, 35392 Giessen, Germany; E-Mails: (M.M.); (A.B.)
| | - Ritva Tikkanen
- Institute of Biochemistry, Medical Faculty, University of Giessen, Friedrichstrasse 24, 35392 Giessen, Germany; E-Mails: (M.M.); (A.B.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +49-641-9947-420; Fax: +49-641-9947-429
| |
Collapse
|
77
|
Witzel F, Maddison L, Blüthgen N. How scaffolds shape MAPK signaling: what we know and opportunities for systems approaches. Front Physiol 2012; 3:475. [PMID: 23267331 PMCID: PMC3527831 DOI: 10.3389/fphys.2012.00475] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 12/04/2012] [Indexed: 11/13/2022] Open
Abstract
Scaffolding proteins add a new layer of complexity to the dynamics of cell signaling. Above their basic function to bring several components of a signaling pathway together, recent experimental research has found that scaffolds influence signaling in a much more complex way: scaffolds can exert some catalytic function, influence signaling by allosteric mechanisms, are feedback-regulated, localize signaling activity to distinct regions of the cell or increase pathway fidelity. Here we review experimental and theoretical approaches that address the function of two MAPK scaffolds, Ste5, a scaffold of the yeast mating pathway and KSR1/2, a scaffold of the classical mammalian MAPK signaling pathway. For the yeast scaffold Ste5, detailed mechanistic models have been valuable for the understanding of its function. For scaffolds in mammalian signaling, however, models have been rather generic and sketchy. For example, these models predicted narrow optimal scaffold concentrations, but when revisiting these models by assuming typical concentrations, rather a range of scaffold levels optimally supports signaling. Thus, more realistic models are needed to understand the role of scaffolds in mammalian signal transduction, which opens a big opportunity for systems biology.
Collapse
Affiliation(s)
- Franziska Witzel
- Institute of Pathology, Charité-Universitätsmedizin Berlin Berlin, Germany ; Institute for Theoretical Biology, Humboldt University Berlin Berlin, Germany
| | | | | |
Collapse
|
78
|
Yang SH, Sharrocks AD, Whitmarsh AJ. MAP kinase signalling cascades and transcriptional regulation. Gene 2012; 513:1-13. [PMID: 23123731 DOI: 10.1016/j.gene.2012.10.033] [Citation(s) in RCA: 313] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 10/08/2012] [Accepted: 10/18/2012] [Indexed: 02/06/2023]
Abstract
The MAP kinase (MAPK) signalling pathways play fundamental roles in a wide range of cellular processes and are often deregulated in disease states. One major mode of action for these pathways is in controlling gene expression, in particular through regulating transcription. In this review, we discuss recent significant advances in this area. In particular we focus on the mechanisms by which MAPKs are targeted to the nucleus and chromatin, and once there, how they impact on chromatin structure and subsequent gene regulation. We also discuss how systems biology approaches have contributed to our understanding of MAPK signaling networks, and also how the MAPK pathways intersect with other regulatory pathways in the nucleus. Finally, we summarise progress in studying the physiological functions of key MAPK transcriptional targets.
Collapse
Affiliation(s)
- Shen-Hsi Yang
- Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| | | | | |
Collapse
|
79
|
Qiu ZX, Wang L, Han J, Liu D, Huang W, Altaf K, Qiu XS, Javed MA, Zheng J, Chen BJ, Li WM. Prognostic impact of Raf-1 and p-Raf-1 expressions for poor survival rate in non-small cell lung cancer. Cancer Sci 2012; 103:1774-9. [PMID: 22738312 DOI: 10.1111/j.1349-7006.2012.02375.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Revised: 06/13/2012] [Accepted: 06/23/2012] [Indexed: 12/21/2022] Open
Abstract
Overexpression of Raf-1 has commonly been observed in solid tumors including non-small cell lung cancer (NSCLC). The objective of this study was to investigate whether overexpression of Raf-1, phosphorylated-Raf-1 (p-Raf-1) or both correlates with poor survival rate in NSCLC patients and to explore associations between expression of these proteins and NSCLC cell fate both in vitro and in vivo. Expression of Raf-1 and p-Raf-1 were detected by immunohistochemistry in tumor specimens from 152 NSCLC patients and associations between their expression and the clinicopathological characteristics were assessed. Five-year median survival rate of patients were analyzed by Kaplan-Meier method, log-rank test and Cox regression. Cell fate was compared between normal tumor cells and those with Raf-1 silencing, in both the adenocarcinoma cell line A549 and xenografted mice that were infected with the A549 cell line. The incidence of overexpression of both Raf-1 and p-Raf-1 in NSCLC was much higher than normal control (P < 0.05), and the survival rate of patients with positive expression of Raf-1, p-Raf-1 or both was found to be significantly lower than the negative group (P < 0.05). Both univariate and multivariate analyses showed Raf-1 (P = 0.000, P = 0.010), p-Raf-1 (P = 0.004, P = 0.046), or both (P = 0.001, P = 0.016) was good prognostic markers for poor survival rate in NSCLC patients. Suppression of Raf-1 inhibited tumorigenesis by inducing apoptosis both in vitro and in vivo. These findings demonstrate that overexpression of Raf-1, p-Raf-1 or both could be considered as a new independent prognostic biomarker for poor survival rates for NSCLC patients.
Collapse
Affiliation(s)
- Zhi-Xin Qiu
- Department of Respiratory Medicine, Sichuan University, Chengdu, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Moore CJ, Winder SJ. The inside and out of dystroglycan post-translational modification. Neuromuscul Disord 2012; 22:959-65. [PMID: 22770978 DOI: 10.1016/j.nmd.2012.05.016] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 04/27/2012] [Accepted: 05/28/2012] [Indexed: 01/06/2023]
Abstract
In neuromuscular systems dystroglycan provides a vital link between laminin in the extracellular matrix and dystrophin in the membrane cytoskeleton. The integrity of this link is maintained and regulated by post-translational modifications of dystroglycan that have effects both inside and outside the cell. Glycosylation of α-dystroglycan is crucial for its link to laminin and phosphorylation of β-dystroglycan on tyrosine regulates its association with intracellular binding partners. This short review focuses on some of the recent developments in our understanding of the role of these post-translational modification in regulating dystroglycan function, and how new knowledge of signalling through the laminin-dystroglycan axis is leading to hope for treatment for some neuromuscular diseases associated with this adhesion complex.
Collapse
Affiliation(s)
- Chris J Moore
- Department of Biomedical Science, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK.
| | | |
Collapse
|
81
|
ERK1/2 MAP kinases: structure, function, and regulation. Pharmacol Res 2012; 66:105-43. [PMID: 22569528 DOI: 10.1016/j.phrs.2012.04.005] [Citation(s) in RCA: 1176] [Impact Index Per Article: 90.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Accepted: 04/20/2012] [Indexed: 11/21/2022]
Abstract
ERK1 and ERK2 are related protein-serine/threonine kinases that participate in the Ras-Raf-MEK-ERK signal transduction cascade. This cascade participates in the regulation of a large variety of processes including cell adhesion, cell cycle progression, cell migration, cell survival, differentiation, metabolism, proliferation, and transcription. MEK1/2 catalyze the phosphorylation of human ERK1/2 at Tyr204/187 and then Thr202/185. The phosphorylation of both tyrosine and threonine is required for enzyme activation. Whereas the Raf kinase and MEK families have narrow substrate specificity, ERK1/2 catalyze the phosphorylation of hundreds of cytoplasmic and nuclear substrates including regulatory molecules and transcription factors. ERK1/2 are proline-directed kinases that preferentially catalyze the phosphorylation of substrates containing a Pro-Xxx-Ser/Thr-Pro sequence. Besides this primary structure requirement, many ERK1/2 substrates possess a D-docking site, an F-docking site, or both. A variety of scaffold proteins including KSR1/2, IQGAP1, MP1, β-Arrestin1/2 participate in the regulation of the ERK1/2 MAP kinase cascade. The regulatory dephosphorylation of ERK1/2 is mediated by protein-tyrosine specific phosphatases, protein-serine/threonine phosphatases, and dual specificity phosphatases. The combination of kinases and phosphatases make the overall process reversible. The ERK1/2 catalyzed phosphorylation of nuclear transcription factors including those of Ets, Elk, and c-Fos represents an important function and requires the translocation of ERK1/2 into the nucleus by active and passive processes involving the nuclear pore. These transcription factors participate in the immediate early gene response. The activity of the Ras-Raf-MEK-ERK cascade is increased in about one-third of all human cancers, and inhibition of components of this cascade by targeted inhibitors represents an important anti-tumor strategy. Thus far, however, only inhibition of mutant B-Raf (Val600Glu) has been found to be therapeutically efficacious.
Collapse
|
82
|
Lee S, Bae YS. Monomeric and dimeric models of ERK2 in conjunction with studies on cellular localization, nuclear translocation, and in vitro analysis. Mol Cells 2012; 33:325-34. [PMID: 22450690 PMCID: PMC3887802 DOI: 10.1007/s10059-012-0023-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 02/21/2012] [Accepted: 02/27/2012] [Indexed: 11/24/2022] Open
Abstract
Extracellular signal-regulated protein kinase 2 (ERK2) plays many vital roles in cellular signal regulation. Phosphorylation of ERK2 leads to propagation and execution of various extracellular stimuli, which influence cellular responses to stress. The final response of the ERK2 signaling pathway is determined by localization and duration of active ERK2 at specific target cell compartments through protein-protein interactions of ERK2 with various cytoplasmic and nuclear substrates, scaffold proteins, and anchoring counterparts. In this respect, dimerization of phosphorylated ERK2 has been suggested to be a part of crucial regulating mechanism in various protein-protein interactions. After the report of putative dimeric structure of active ERK2 (Canagarajah et al., 1997), dimeric model was employed to explain many in vivo and in vitro experimental results. But more recently, many reports have been presented questioning the validity of dimer hypothesis of active ERK2. In this review, we summarize the various in vitro and in vivo studies concerning the Monomeric or the dimeric forms of ERK2 and the validity of the dimer hypothesis.
Collapse
Affiliation(s)
- Sunbae Lee
- Division of Life Sciences, Center for Cell Signal.ing Research, Ewha Womans University, Seoul 120-750, Korea.
| | | |
Collapse
|
83
|
Mxi2 sustains ERK1/2 phosphorylation in the nucleus by preventing ERK1/2 binding to phosphatases. Biochem J 2011; 441:571-8. [DOI: 10.1042/bj20110870] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
ERK1/2 (extracellular-signal-regulated kinase 1/2) MAPKs (mitogen-activated protein kinases) are tightly regulated by the cellular microenvironment in which they operate. Mxi2 is a p38α splice isoform capable of binding to ERK1/2 and ensuring their translocation to the nucleus. Therein Mxi2 sustains ERK1/2 phosphorylation levels and, as a consequence, ERK1/2 nuclear signals are enhanced. However, the molecular mechanisms underlying this process are still unclear. In the present study, we show that Mxi2 prevents nuclear but not cytoplasmic phosphatases from binding to and dephosphorylating ERK1/2, disclosing an unprecedented mechanism for the spatial regulation of ERK1/2 activation. We also demonstrate that the kinetics of ERK1/2 extranuclear signals can be significantly altered by artificially tethering Mxi2 to the cytoplasm. In this case, Mxi2 abolishes ERK1/2 inactivation by cytoplasmic phosphatases and potentiates ERK1/2 functions at this compartment. These results highlight Mxi2 as a key spatial regulator of ERK1/2 functions, playing a pivotal role in the balance between ERK1/2 nuclear and cytoplasmic signals.
Collapse
|
84
|
Arozarena I, Calvo F, Crespo P. Ras, an actor on many stages: posttranslational modifications, localization, and site-specified events. Genes Cancer 2011; 2:182-94. [PMID: 21779492 DOI: 10.1177/1947601911409213] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Among the wealth of information that we have gathered about Ras in the past decade, the introduction of the concept of space in the field has constituted a major revolution that has enabled many pieces of the Ras puzzle to fall into place. In the early days, it was believed that Ras functioned exclusively at the plasma membrane. Today, we know that within the plasma membrane, the 3 Ras isoforms-H-Ras, K-Ras, and N-Ras-occupy different microdomains and that these isoforms are also present and active in endomembranes. We have also discovered that Ras proteins are not statically associated with these localizations; instead, they traffic dynamically between compartments. And we have learned that at these localizations, Ras is under site-specific regulatory mechanisms, distinctively engaging effector pathways and switching on diverse genetic programs to generate different biological responses. All of these processes are possible in great part due to the posttranslational modifications whereby Ras proteins bind to membranes and to regulatory events such as phosphorylation and ubiquitination that Ras is subject to. As such, space and these control mechanisms act in conjunction to endow Ras signals with an enormous signal variability that makes possible its multiple biological roles. These data have established the concept that the Ras signal, instead of being one single, homogeneous entity, results from the integration of multiple, site-specified subsignals, and Ras has become a paradigm of how space can differentially shape signaling.
Collapse
Affiliation(s)
- Imanol Arozarena
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC)-IDICAN-Universidad de Cantabria, Departamento de Biología Molecular, Facultad de Medicina, Cantabria, Spain
| | | | | |
Collapse
|
85
|
Rodriguez J, Crespo P. Working Without Kinase Activity: Phosphotransfer-Independent Functions of Extracellular Signal-Regulated Kinases. Sci Signal 2011; 4:re3. [DOI: 10.1126/scisignal.2002324] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
86
|
Francis DM, Różycki B, Tortajada A, Hummer G, Peti W, Page R. Resting and active states of the ERK2:HePTP complex. J Am Chem Soc 2011; 133:17138-41. [PMID: 21985012 DOI: 10.1021/ja2075136] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The MAP kinase ERK2 (ERK2, extracellular signal-regulated kinase 2) is regulated by numerous phosphatases that tightly control its activity. For example, the hematopoietic tyrosine phosphatase (HePTP) negatively regulates T cell activation in lymphocytes via ERK2 dephosphorylation. However, only very limited structural information is available for these biologically important complexes. Here, we use small-angle X-ray scattering combined with EROS ensemble refinement to characterize the structures of the resting and active states of ERK2:HePTP complexes. Our data show that the resting state ERK2:HePTP complex adopts a highly extended, dynamic conformation that becomes compact and ordered in the active state complex. This work experimentally demonstrates that these complexes undergo significant dynamic structural changes in solution and provides the first structural insight into an active state MAPK complex.
Collapse
Affiliation(s)
- Dana M Francis
- Department of Molecular Pharmacology, Physiology and Biotechnology, Brown University, Providence, Rhode Island 02912, USA
| | | | | | | | | | | |
Collapse
|
87
|
Talbot AL, Bullock GC, Delehanty LL, Sattler M, Zhao ZJ, Goldfarb AN. Aconitase regulation of erythropoiesis correlates with a novel licensing function in erythropoietin-induced ERK signaling. PLoS One 2011; 6:e23850. [PMID: 21887333 PMCID: PMC3161794 DOI: 10.1371/journal.pone.0023850] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Accepted: 07/26/2011] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Erythroid development requires the action of erythropoietin (EPO) on committed progenitors to match red cell output to demand. In this process, iron acts as a critical cofactor, with iron deficiency blunting EPO-responsiveness of erythroid progenitors. Aconitase enzymes have recently been identified as possible signal integration elements that couple erythropoiesis with iron availability. In the current study, a regulatory role for aconitase during erythropoiesis was ascertained using a direct inhibitory strategy. METHODOLOGY/PRINCIPAL FINDINGS In C57BL/6 mice, infusion of an aconitase active-site inhibitor caused a hypoplastic anemia and suppressed responsiveness to hemolytic challenge. In a murine model of polycythemia vera, aconitase inhibition rapidly normalized red cell counts, but did not perturb other lineages. In primary erythroid progenitor cultures, aconitase inhibition impaired proliferation and maturation but had no effect on viability or ATP levels. This inhibition correlated with a blockade in EPO signal transmission specifically via ERK, with preservation of JAK2-STAT5 and Akt activation. Correspondingly, a physical interaction between ERK and mitochondrial aconitase was identified and found to be sensitive to aconitase inhibition. CONCLUSIONS/SIGNIFICANCE Direct aconitase inhibition interferes with erythropoiesis in vivo and in vitro, confirming a lineage-selective regulatory role involving its enzymatic activity. This inhibition spares metabolic function but impedes EPO-induced ERK signaling and disturbs a newly identified ERK-aconitase physical interaction. We propose a model in which aconitase functions as a licensing factor in ERK-dependent proliferation and differentiation, thereby providing a regulatory input for iron in EPO-dependent erythropoiesis. Directly targeting aconitase may provide an alternative to phlebotomy in the treatment of polycythemia vera.
Collapse
Affiliation(s)
- Anne-Laure Talbot
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, Virginia, United States of America
| | - Grant C. Bullock
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, Virginia, United States of America
| | - Lorrie L. Delehanty
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, Virginia, United States of America
| | - Martin Sattler
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Zhizhuang Joe Zhao
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Adam N. Goldfarb
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, Virginia, United States of America
- * E-mail:
| |
Collapse
|
88
|
Appel S, Morgan KG. Scaffolding proteins and non-proliferative functions of ERK1/2. Commun Integr Biol 2011; 3:354-6. [PMID: 20798825 DOI: 10.4161/cib.3.4.11832] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Accepted: 03/15/2010] [Indexed: 01/09/2023] Open
Abstract
Studies of ERK1/2 generally focus on the regulation of nuclear ERK1/2 function mainly related to proliferation, whereas less attention has been drawn to the role ERK1/2 plays in the cytosol. Scaffolding proteins for ERK1/2 have been shown to control the time point and also the intracellular location of ERK1/2 activation. Hence, by concentrating ERK1/2 within subcellular compartments, scaffolding proteins restrict the substrate specificity of ERK1/2 and thus optimize the cell response for specific signal transduction programs in order to manipulate specific cellular functions. We have presented evidence that the F-actin binding protein calponin represents a new type of ERK1/2 scaffold, controlling the activation of a subfraction of ERK1/2 which is connected solely to contractile and/or migratory events in a cell.
Collapse
Affiliation(s)
- Sarah Appel
- Department of Health Sciences; Boston University; Boston, MA USA
| | | |
Collapse
|
89
|
Nuclear extracellular signal-regulated kinase 1 and 2 translocation is mediated by casein kinase 2 and accelerated by autophosphorylation. Mol Cell Biol 2011; 31:3515-30. [PMID: 21730285 DOI: 10.1128/mcb.05424-11] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The extracellular signal-regulated kinases (ERK) 1 and 2 (ERK1/2) are members of the mitogen-activated protein kinase [MAPK] family. Upon stimulation, these kinases translocate from the cytoplasm to the nucleus, where they induce physiological processes such as proliferation and differentiation. The mechanism of translocation of this kinase involves phosphorylation of two Ser residues within a nuclear translocation signal (NTS), which allows binding to importin7 and a subsequent penetration via nuclear pores. Here we show that the phosphorylation of both Ser residues is mediated mainly by casein kinase 2 (CK2) and that active ERK may assist in the phosphorylation of the N-terminal Ser. We also demonstrate that the phosphorylation is dependent on the release of ERK from cytoplasmic anchoring proteins. Crystal structure of the phosphomimetic ERK revealed that the NTS phosphorylation creates an acidic patch in ERK. Our model is that in resting cells ERK is bound to cytoplasmic anchors, which prevent its NTS phosphorylation. Upon stimulation, phosphorylation of the ERK TEY domain releases ERK and allows phosphorylation of its NTS by CK2 and active ERK to generate a negatively charged patch in ERK, binding to importin 7 and nuclear translocation. These results provide an important role of CK2 in regulating nuclear ERK activities.
Collapse
|
90
|
Kaoud TS, Devkota AK, Harris R, Rana MS, Abramczyk O, Warthaka M, Lee S, Girvin ME, Riggs AF, Dalby KN. Activated ERK2 is a monomer in vitro with or without divalent cations and when complexed to the cytoplasmic scaffold PEA-15. Biochemistry 2011; 50:4568-78. [PMID: 21506533 DOI: 10.1021/bi200202y] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The extracellular signal-regulated protein kinase, ERK2, fully activated by phosphorylation and without a His(6) tag, shows little tendency to dimerize with or without either calcium or magnesium ions when analyzed by light scattering or analytical ultracentrifugation. Light scattering shows that ~90% of ERK2 is monomeric. Sedimentation equilibrium data (obtained at 4.8-11.2 μM ERK2) with or without magnesium (10 mM) are well described by an ideal one-component model with a fitted molar mass of 40180 ± 240 Da (without Mg(2+) ions) or 41290 ± 330 Da (with Mg(2+) ions). These values, close to the sequence-derived mass of 41711 Da, indicate that no significant dimerization of ERK2 occurs in solution. Analysis of sedimentation velocity data for a 15 μM solution of ERK2 with an enhanced van Holde-Weischet method determined the sedimentation coefficient (s) to be ~3.22 S for activated ERK2 with or without 10 mM MgCl(2). The frictional coefficient ratio (f/f(0)) of 1.28 calculated from the sedimentation velocity and equilibrium data is close to that expected for an ~42 kDa globular protein. The translational diffusion coefficient of ~8.3 × 10(-7) cm(2) s(-1) calculated from the experimentally determined molar mass and sedimentation coefficient agrees with the value determined by dynamic light scattering in the absence and presence of calcium or magnesium ions and a value determined by NMR spectrometry. ERK2 has been proposed to homodimerize and bind only to cytoplasmic but not nuclear proteins [Casar, B., et al. (2008) Mol. Cell 31, 708-721]. Our light scattering data show, however, that ERK2 forms a strong 1:1 complex of ~57 kDa with the cytoplasmic scaffold protein PEA-15. Thus, ERK2 binds PEA-15 as a monomer. Our data provide strong evidence that ERK2 is monomeric under physiological conditions. Analysis of the same ERK2 construct with the nonphysiological His(6) tag shows substantial dimerization under the same ionic conditions.
Collapse
Affiliation(s)
- Tamer S Kaoud
- Division of Medicinal Chemistry, University of Texas, Austin, TX 78712, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Mouchel-Vielh E, Rougeot J, Decoville M, Peronnet F. The MAP kinase ERK and its scaffold protein MP1 interact with the chromatin regulator Corto during Drosophila wing tissue development. BMC DEVELOPMENTAL BIOLOGY 2011; 11:17. [PMID: 21401930 PMCID: PMC3062617 DOI: 10.1186/1471-213x-11-17] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Accepted: 03/14/2011] [Indexed: 11/12/2022]
Abstract
Background Mitogen-activated protein kinase (MAPK) cascades (p38, JNK, ERK pathways) are involved in cell fate acquisition during development. These kinase modules are associated with scaffold proteins that control their activity. In Drosophila, dMP1, that encodes an ERK scaffold protein, regulates ERK signaling during wing development and contributes to intervein and vein cell differentiation. Functional relationships during wing development between a chromatin regulator, the Enhancer of Trithorax and Polycomb Corto, ERK and its scaffold protein dMP1, are examined here. Results Genetic interactions show that corto and dMP1 act together to antagonize rolled (which encodes ERK) in the future intervein cells, thus promoting intervein fate. Although Corto, ERK and dMP1 are present in both cytoplasmic and nucleus compartments, they interact exclusively in nucleus extracts. Furthermore, Corto, ERK and dMP1 co-localize on several sites on polytene chromosomes, suggesting that they regulate gene expression directly on chromatin. Finally, Corto is phosphorylated. Interestingly, its phosphorylation pattern differs between cytoplasm and nucleus and changes upon ERK activation. Conclusions Our data therefore suggest that the Enhancer of Trithorax and Polycomb Corto could participate in regulating vein and intervein genes during wing tissue development in response to ERK signaling.
Collapse
Affiliation(s)
- Emmanuèle Mouchel-Vielh
- Université Pierre et Marie Curie-Paris 6; Centre National de la Recherche Scientifique; UMR7622, Laboratoire de Biologie du Développement, Equipe Chromatine et Développement, 75005 Paris, France.
| | | | | | | |
Collapse
|
92
|
Matallanas D, Birtwistle M, Romano D, Zebisch A, Rauch J, von Kriegsheim A, Kolch W. Raf family kinases: old dogs have learned new tricks. Genes Cancer 2011; 2:232-60. [PMID: 21779496 PMCID: PMC3128629 DOI: 10.1177/1947601911407323] [Citation(s) in RCA: 281] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
First identified in the early 1980s as retroviral oncogenes, the Raf proteins have been the objects of intense research. The discoveries 10 years later that the Raf family members (Raf-1, B-Raf, and A-Raf) are bona fide Ras effectors and upstream activators of the ubiquitous ERK pathway increased the interest in these proteins primarily because of the central role that this cascade plays in cancer development. The important role of Raf in cancer was corroborated in 2002 with the discovery of B-Raf genetic mutations in a large number of tumors. This led to intensified drug development efforts to target Raf signaling in cancer. This work yielded not only recent clinical successes but also surprising insights into the regulation of Raf proteins by homodimerization and heterodimerization. Surprising insights also came from the hunt for new Raf targets. Although MEK remains the only widely accepted Raf substrate, new kinase-independent roles for Raf proteins have emerged. These include the regulation of apoptosis by suppressing the activity of the proapoptotic kinases, ASK1 and MST2, and the regulation of cell motility and differentiation by controlling the activity of Rok-α. In this review, we discuss the regulation of Raf proteins and their role in cancer, with special focus on the interacting proteins that modulate Raf signaling. We also describe the new pathways controlled by Raf proteins and summarize the successes and failures in the development of efficient anticancer therapies targeting Raf. Finally, we also argue for the necessity of more systemic approaches to obtain a better understanding of how the Ras-Raf signaling network generates biological specificity.
Collapse
Affiliation(s)
- David Matallanas
- Systems Biology Ireland, University College Dublin, Dublin, Ireland
| | | | | | | | | | | | | |
Collapse
|
93
|
Udell CM, Rajakulendran T, Sicheri F, Therrien M. Mechanistic principles of RAF kinase signaling. Cell Mol Life Sci 2011; 68:553-65. [PMID: 20820846 PMCID: PMC11114552 DOI: 10.1007/s00018-010-0520-6] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Revised: 08/24/2010] [Accepted: 08/25/2010] [Indexed: 12/19/2022]
Abstract
The RAF family of kinases are key components acting downstream of receptor tyrosine kinases and cells employ several distinct mechanisms to strictly control their activity. RAF transitions from an inactive state, where the N-terminal regulatory region binds intramolecularly to the C-terminal kinase domain, to an open state capable of executing the phosphoryl transfer reaction. This transition involves changes both within and between the protein domains in RAF. Many different proteins regulate the transition between inactive and active states of RAF, including RAS and KSR, which are arguably the two most prominent regulators of RAF function. Recent developments have added several new twists to our understanding of RAF regulation. Among others, dimerization of the RAF kinase domain is emerging as a crucial step in the RAF activation process. The multitude of regulatory protein-protein interactions involving RAF remains a largely untapped area for therapeutic applications.
Collapse
Affiliation(s)
- Christian M. Udell
- Laboratory of Intracellular Signaling, Département de pathologie et de biologie cellulaire, Institute for Research in Immunology and Cancer, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montreal, QC H3C 3J7 Canada
| | - Thanashan Rajakulendran
- Centre for Systems Biology, Samuel Lunenfeld Research Institute, Toronto, ON M5G 1X5 Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8 Canada
| | - Frank Sicheri
- Centre for Systems Biology, Samuel Lunenfeld Research Institute, Toronto, ON M5G 1X5 Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8 Canada
| | - Marc Therrien
- Laboratory of Intracellular Signaling, Département de pathologie et de biologie cellulaire, Institute for Research in Immunology and Cancer, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montreal, QC H3C 3J7 Canada
| |
Collapse
|
94
|
Plotnikov A, Zehorai E, Procaccia S, Seger R. The MAPK cascades: signaling components, nuclear roles and mechanisms of nuclear translocation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1813:1619-33. [PMID: 21167873 DOI: 10.1016/j.bbamcr.2010.12.012] [Citation(s) in RCA: 670] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Revised: 12/02/2010] [Accepted: 12/08/2010] [Indexed: 12/15/2022]
Abstract
The MAPK cascades are central signaling pathways that regulate a wide variety of stimulated cellular processes, including proliferation, differentiation, apoptosis and stress response. Therefore, dysregulation, or improper functioning of these cascades, is involved in the induction and progression of diseases such as cancer, diabetes, autoimmune diseases, and developmental abnormalities. Many of these physiological, and pathological functions are mediated by MAPK-dependent transcription of various regulatory genes. In order to induce transcription and the consequent functions, the signals transmitted via the cascades need to enter the nucleus, where they may modulate the activity of transcription factors and chromatin remodeling enzymes. In this review, we briefly cover the composition of the MAPK cascades, as well as their physiological and pathological functions. We describe, in more detail, many of the important nuclear activities of the MAPK cascades, and we elaborate on the mechanisms of ERK1/2 translocation into the nucleus, including the identification of their nuclear translocation sequence (NTS) binding to the shuttling protein importin7. Overall, the nuclear translocation of signaling components may emerge as an important regulatory layer in the induction of cellular processes, and therefore, may serve as targets for therapeutic intervention in signaling-related diseases such as cancer and diabetes. This article is part of a Special Issue entitled: Regulation of Signaling and Cellular Fate through Modulation of Nuclear Protein Import.
Collapse
Affiliation(s)
- Alexander Plotnikov
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Isreal
| | | | | | | |
Collapse
|
95
|
Activity-dependent calcium signaling and ERK-MAP kinases in neurons: a link to structural plasticity of the nucleus and gene transcription regulation. Cell Calcium 2010; 49:296-305. [PMID: 21163523 DOI: 10.1016/j.ceca.2010.11.009] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Revised: 11/15/2010] [Accepted: 11/16/2010] [Indexed: 12/11/2022]
Abstract
Activity-dependent gene expression is important for the formation and maturation of neuronal networks, neuronal survival and for plastic modifications within mature networks. At the level of individual neurons, expression of new protein is required for dendritic branching, synapse formation and elimination. Experience-driven synaptic activity induces membrane depolarization, which in turn evokes intracellular calcium transients that are decoded according to their source and strength by intracellular calcium sensing proteins. In order to activate the gene transcription machinery of the cell, calcium signals have to be conveyed from the site of their generation in the cytoplasm to the cell nucleus. This can occur via a variety of mechanisms and with different kinetics depending on the source and amplitude of calcium influx. One mechanism involves the propagation of calcium itself, leading to nuclear calcium transients that subsequently activate transcription. The mitogen-activated protein kinase (MAPK) cascade represents a second central signaling module that transduces information from the site of calcium signal generation at the plasma membrane to the nucleus. Nuclear signaling of the MAPK cascades catalyzes the phosphorylation of transcription factors but also regulates gene transcription more globally at the level of chromatin remodeling as well as through its recently identified role in the modulation of nuclear shape. Here we discuss the possible mechanisms by which the MAPKs ERK1 and ERK2, activated by synaptically evoked calcium influx, can signal to the nucleus and regulate gene transcription. Moreover, we describe how MAPK-dependent structural plasticity of the nuclear envelope enhances nuclear calcium signaling and suggest possible implications for the regulation of gene transcription in the context of nuclear geometry.
Collapse
|
96
|
Keshet Y, Seger R. The MAP kinase signaling cascades: a system of hundreds of components regulates a diverse array of physiological functions. Methods Mol Biol 2010; 661:3-38. [PMID: 20811974 DOI: 10.1007/978-1-60761-795-2_1] [Citation(s) in RCA: 435] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Sequential activation of kinases within the mitogen-activated protein (MAP) kinase (MAPK) cascades is a common, and evolutionary-conserved mechanism of signal transduction. Four MAPK cascades have been identified in the last 20 years and those are usually named according to the MAPK components that are the central building blocks of each of the cascades. These are the extracellular signal-regulated kinase 1/2 (ERK1/2), c-Jun N-Terminal kinase (JNK), p38, and ERK5 cascades. Each of these cascades consists of a core module of three tiers of protein kinases termed MAPK, MAPKK, and MAP3K, and often two additional tiers, the upstream MAP4K and the downstream MAPKAPK, which can complete five tiers of each cascade in certain cell lines or stimulations. The transmission of the signal via each cascade is mediated by sequential phosphorylation and activation of the components in the sequential tiers. These cascades cooperate in transmitting various extracellular signals and thus control a large number of distinct and even opposing cellular processes such as proliferation, differentiation, survival, development, stress response, and apoptosis. One way by which the specificity of each cascade is regulated is through the existence of several distinct components in each tier of the different cascades. About 70 genes, which are each translated to several alternatively spliced isoforms, encode the entire MAPK system, and allow the wide array of cascade's functions. These components, their regulation, as well as their involvement together with other mechanisms in the determination of signaling specificity by the MAPK cascade is described in this review. Mis-regulation of the MAPKs signals usually leads to diseases such as cancer and diabetes; therefore, studying the mechanisms of specificity-determination may lead to better understanding of these signaling-related diseases.
Collapse
Affiliation(s)
- Yonat Keshet
- Department of Biological Regulation, The Weizmann Institute of Science, Rehovot, Israel
| | | |
Collapse
|
97
|
Wimmer R, Baccarini M. Partner exchange: protein-protein interactions in the Raf pathway. Trends Biochem Sci 2010; 35:660-8. [PMID: 20621483 DOI: 10.1016/j.tibs.2010.06.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Revised: 05/27/2010] [Accepted: 06/07/2010] [Indexed: 01/07/2023]
Abstract
The three-tiered Raf-MEK-ERK kinase module is activated downstream of Ras and has been traditionally linked to cellular proliferation. Mammals have three Raf, two Mek and two Erk genes. Recently, the analysis of protein-protein interactions in the pathway has begun to provide a rationale for the redundancy within each tier. New results show that the MEK-ERK-activating unit consists of Raf hetero- and homodimers; downstream of Raf, MEK1-MEK2 heterodimers and ERK dimers are required for temporal and spatial pathway regulation. Finally, C-Raf mediates pathway crosstalk downstream of Ras by directly binding to and inhibiting kinases engaged in other signaling cascades. Given the roles of these interactions in tumorigenesis, their study will provide new opportunities for molecule-based therapies that target the pathway.
Collapse
Affiliation(s)
- Reiner Wimmer
- University of Vienna, Center for Molecular Biology, Max F. Perutz Laboratories, Doktor-Bohr-Gasse 9, A-1030 Vienna, Austria
| | | |
Collapse
|
98
|
Abstract
Advances in the generation and interpretation of proteomics data have spurred a transition from focusing on protein identification to functional analysis. Here we review recent proteomics results that have elucidated new aspects of the roles and regulation of signal transduction pathways in cancer using the epidermal growth factor receptor (EGFR), ERK and breakpoint cluster region (BCR)-ABL1 networks as examples. The emerging theme is to understand cancer signalling as networks of multiprotein machines which process information in a highly dynamic environment that is shaped by changing protein interactions and post-translational modifications (PTMs). Cancerous genetic mutations derange these protein networks in complex ways that are tractable by proteomics.
Collapse
Affiliation(s)
- Walter Kolch
- Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland.
| | | |
Collapse
|
99
|
Lee SY, Stadanlick J, Kappes DJ, Wiest DL. Towards a molecular understanding of the differential signals regulating alphabeta/gammadelta T lineage choice. Semin Immunol 2010; 22:237-46. [PMID: 20471282 PMCID: PMC2906684 DOI: 10.1016/j.smim.2010.04.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Accepted: 04/14/2010] [Indexed: 10/19/2022]
Abstract
While insights into the molecular processes that specify adoption of the alphabeta and gammadelta fates are beginning to emerge, the basis for control of specification remains highly controversial. This review highlights the current models attempting to explain T lineage commitment. Recent observations support the hypothesis that the T cell receptor (TCR) provides instructive cues through differences in TCR signaling intensity and/or longevity. Accordingly, we review evidence addressing the importance of differences in signal strength/longevity, how signals differing in intensity/longevity may be generated, and finally how such signals modulate the activity of downstream effectors to promote the opposing developmental fates.
Collapse
MESH Headings
- Animals
- Cell Lineage
- Humans
- Models, Immunological
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Signal Transduction
- T-Lymphocytes/cytology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
Collapse
Affiliation(s)
- Sang-Yun Lee
- Immune Cell Development and Host Defense Program, Blood Cell Development and Cancer Keystone, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111
| | - Jason Stadanlick
- Immune Cell Development and Host Defense Program, Blood Cell Development and Cancer Keystone, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111
| | - Dietmar J. Kappes
- Immune Cell Development and Host Defense Program, Blood Cell Development and Cancer Keystone, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111
| | - David L. Wiest
- Immune Cell Development and Host Defense Program, Blood Cell Development and Cancer Keystone, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111
| |
Collapse
|
100
|
Calvo F, Agudo-Ibáñez L, Crespo P. The Ras-ERK pathway: understanding site-specific signaling provides hope of new anti-tumor therapies. Bioessays 2010; 32:412-21. [PMID: 20414899 DOI: 10.1002/bies.200900155] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Recent discoveries have suggested the concept that intracellular signals are the sum of multiple, site-specified subsignals, rather than single, homogeneous entities. In the context of cancer, searching for compounds that selectively block subsignals essential for tumor progression, but not those regulating "house-keeping" functions, could help in producing drugs with reduced side effects compared to compounds that block signaling completely. The Ras-ERK pathway has become a paradigm of how space can differentially shape signaling. Today, we know that Ras proteins are found in different plasma membrane microdomains and endomembranes. At these localizations, Ras is subject to site-specific regulatory mechanisms, distinctively engaging effector pathways and switching-on diverse genetic programs to generate different biological responses. The Ras effector pathway leading to ERKs activation is also under strict, space-related regulatory processes. These findings may open a gate for aiming at the Ras-ERK pathway in a spatially restricted fashion, in our quest for new anti-tumor therapies.
Collapse
Affiliation(s)
- Fernando Calvo
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC), IDICAN, Universidad de Cantabria, Cantabria, Spain
| | | | | |
Collapse
|