51
|
DNA Replication Origins in Immunoglobulin Switch Regions Regulate Class Switch Recombination in an R-Loop-Dependent Manner. Cell Rep 2017; 17:2927-2942. [PMID: 27974207 DOI: 10.1016/j.celrep.2016.11.041] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 09/07/2016] [Accepted: 11/11/2016] [Indexed: 11/22/2022] Open
Abstract
Class switch recombination (CSR) at the immunoglobulin heavy chain (IgH) locus generates antibody isotypes. CSR depends on double-strand breaks (DSBs) induced by activation-induced cytidine deaminase (AID). Although DSB formation and repair machineries are active in G1 phase, efficient CSR is dependent on cell proliferation and S phase entry; however, the underlying mechanisms are obscure. Here, we show that efficient CSR requires the replicative helicase, the Mcm complex. Mcm proteins are enriched at IgH switch regions during CSR, leading to assembly of facultative replication origins that require Mcm helicase function for productive CSR. Assembly of CSR-associated origins is facilitated by R loops and promotes the physical proximity (synapsis) of recombining switch regions, which is reduced by R loop inhibition or Mcm complex depletion. Thus, R loops contribute to replication origin specification that promotes DSB resolution in CSR. This suggests a mechanism for the dependence of CSR on S phase and cell division.
Collapse
|
52
|
Zaprazna K, Basu A, Tom N, Jha V, Hodawadekar S, Radova L, Malcikova J, Tichy B, Pospisilova S, Atchison ML. Transcription factor YY1 can control AID-mediated mutagenesis in mice. Eur J Immunol 2017; 48:273-282. [PMID: 29080214 DOI: 10.1002/eji.201747065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 09/24/2017] [Accepted: 10/20/2017] [Indexed: 12/18/2022]
Abstract
Activation-induced cytidine deminase (AID) is crucial for controlling the immunoglobulin (Ig) diversification processes of somatic hypermutation (SHM) and class switch recombination (CSR). AID initiates these processes by deamination of cytosine, ultimately resulting in mutations or double strand DNA breaks needed for SHM and CSR. Levels of AID control mutation rates, and off-target non-Ig gene mutations can contribute to lymphomagenesis. Therefore, factors that control AID levels in the nucleus can regulate SHM and CSR, and may contribute to disease. We previously showed that transcription factor YY1 can regulate the level of AID in the nucleus and Ig CSR. Therefore, we hypothesized that conditional knock-out of YY1 would lead to reduction in AID localization at the Ig locus, and reduced AID-mediated mutations. Using mice that overexpress AID (IgκAID yy1f/f ) or that express normal AID levels (yy1f/f ), we found that conditional knock-out of YY1 results in reduced AID nuclear levels, reduced localization of AID to the Sμ switch region, and reduced AID-mediated mutations. We find that the mechanism of YY1 control of AID nuclear accumulation is likely due to YY1-AID physical interaction which blocks AID ubiquitination.
Collapse
Affiliation(s)
- Kristina Zaprazna
- Central European Institute of Technology, Masaryk University, Centre of Molecular Medicine, Brno, Czech Republic
| | - Arindam Basu
- Department of Biomedical Sciences, University of Pennsylvania, School of Veterinary Medicine, Philadelphia, PA, USA
| | - Nikola Tom
- Central European Institute of Technology, Masaryk University, Centre of Molecular Medicine, Brno, Czech Republic
| | - Vibha Jha
- Department of Biomedical Sciences, University of Pennsylvania, School of Veterinary Medicine, Philadelphia, PA, USA
| | - Suchita Hodawadekar
- Department of Biomedical Sciences, University of Pennsylvania, School of Veterinary Medicine, Philadelphia, PA, USA
| | - Lenka Radova
- Central European Institute of Technology, Masaryk University, Centre of Molecular Medicine, Brno, Czech Republic
| | - Jitka Malcikova
- Central European Institute of Technology, Masaryk University, Centre of Molecular Medicine, Brno, Czech Republic
| | - Boris Tichy
- Central European Institute of Technology, Masaryk University, Centre of Molecular Medicine, Brno, Czech Republic
| | - Sarka Pospisilova
- Central European Institute of Technology, Masaryk University, Centre of Molecular Medicine, Brno, Czech Republic
| | - Michael L Atchison
- Department of Biomedical Sciences, University of Pennsylvania, School of Veterinary Medicine, Philadelphia, PA, USA
| |
Collapse
|
53
|
Mu Y, Zelazowska MA, McBride KM. Phosphorylation promotes activation-induced cytidine deaminase activity at the Myc oncogene. J Exp Med 2017; 214:3543-3552. [PMID: 29122947 PMCID: PMC5716038 DOI: 10.1084/jem.20170468] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 08/16/2017] [Accepted: 09/26/2017] [Indexed: 12/31/2022] Open
Abstract
The molecular mechanisms that regulate AID mutator activity at off-target genes are not well characterized. Mu et al. show AID phosphorylation dynamically controls activity at Myc and other sites. Pharmacological induction of AID phosphorylation leads to increased mutations, double strand breakss and translocations. Activation-induced cytidine deaminase (AID) is a mutator enzyme that targets immunoglobulin (Ig) genes to initiate antibody somatic hypermutation (SHM) and class switch recombination (CSR). Off-target AID association also occurs, which causes oncogenic mutations and chromosome rearrangements. However, AID occupancy does not directly correlate with DNA damage, suggesting that factors beyond AID association contribute to mutation targeting. CSR and SHM are regulated by phosphorylation on AID serine38 (pS38), but the role of pS38 in off-target activity has not been evaluated. We determined that lithium, a clinically used therapeutic, induced high AID pS38 levels. Using lithium and an AID-S38 phospho mutant, we compared the role of pS38 in AID activity at the Ig switch region and off-target Myc gene. We found that deficient pS38 abated AID chromatin association and CSR but not mutation at Myc. Enhanced pS38 elevated Myc translocation and mutation frequency but not CSR or Ig switch region mutation. Thus, AID activity can be differentially targeted by phosphorylation to induce oncogenic lesions.
Collapse
Affiliation(s)
- Yunxiang Mu
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX
| | - Monika A Zelazowska
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX
| | - Kevin M McBride
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX
| |
Collapse
|
54
|
Boulianne B, Feldhahn N. Transcribing malignancy: transcription-associated genomic instability in cancer. Oncogene 2017; 37:971-981. [DOI: 10.1038/onc.2017.402] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 09/12/2017] [Accepted: 09/12/2017] [Indexed: 12/17/2022]
|
55
|
Abstract
PURPOSE OF REVIEW Perturbation of the epigenome is emerging as a central driving force in the pathogenesis of diffuse large B-cell lymphomas (DLBCL) and follicular lymphoma. The purpose of this review is to explain how alteration of different layers of the epigenome contributes to the biology and clinical features of these tumors. RECENT FINDINGS Key new findings implicate DNA methylation heterogeneity as a core feature of DLBCL. Epigenetic diversity is linked to unfavorable clinical outcomes, clonal selection at relapse, and is driven at least in part because of the actions of activation-induced cytosine deaminase, which is a unique feature of B-cell lymphomas. Somatic mutations in histone modifier genes drive lymphomagenesis through the establishment of aberrant gene-specific histone modification signatures. For example, EZH2 somatic mutations drive silencing of bivalent gene promoters through histone 3 lysine 27 trimethylation, whereas KMT2D (MLL2) mutations disrupt specific sets of enhancers through depletion of histone 3 lysine 4 mono and dimethylation (H3K4me1/me2). SUMMARY Appreciation of the epigenome in determining lymphoma clonal heterogeneity and in driving lymphoma phenotypes through altered promoter and enhancer histone modification profiles is leading to a paradigm shift in how we understand and design therapies for DLBCL and follicular lymphoma.
Collapse
|
56
|
Mayer CT, Gazumyan A, Kara EE, Gitlin AD, Golijanin J, Viant C, Pai J, Oliveira TY, Wang Q, Escolano A, Medina-Ramirez M, Sanders RW, Nussenzweig MC. The microanatomic segregation of selection by apoptosis in the germinal center. Science 2017; 358:science.aao2602. [PMID: 28935768 DOI: 10.1126/science.aao2602] [Citation(s) in RCA: 192] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 08/29/2017] [Indexed: 01/04/2023]
Abstract
B cells undergo rapid cell division and affinity maturation in anatomically distinct sites in lymphoid organs called germinal centers (GCs). Homeostasis is maintained in part by B cell apoptosis. However, the precise contribution of apoptosis to GC biology and selection is not well defined. We developed apoptosis-indicator mice and used them to visualize, purify, and characterize dying GC B cells. Apoptosis is prevalent in the GC, with up to half of all GC B cells dying every 6 hours. Moreover, programmed cell death is differentially regulated in the light zone and the dark zone: Light-zone B cells die by default if they are not positively selected, whereas dark-zone cells die when their antigen receptors are damaged by activation-induced cytidine deaminase.
Collapse
Affiliation(s)
- Christian T Mayer
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Anna Gazumyan
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Ervin E Kara
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Alexander D Gitlin
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Jovana Golijanin
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Charlotte Viant
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Joy Pai
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Thiago Y Oliveira
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Qiao Wang
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Amelia Escolano
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Max Medina-Ramirez
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, Netherlands
| | - Rogier W Sanders
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, Netherlands.,Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY 10065, USA
| | - Michel C Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA. .,Howard Hughes Medical Institute (HHMI), The Rockefeller University, New York, NY 10065, USA
| |
Collapse
|
57
|
Choudhary M, Tamrakar A, Singh AK, Jain M, Jaiswal A, Kodgire P. AID Biology: A pathological and clinical perspective. Int Rev Immunol 2017; 37:37-56. [PMID: 28933967 DOI: 10.1080/08830185.2017.1369980] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Activation-induced cytidine deaminase (AID), primarily expressed in activated mature B lymphocytes in germinal centers, is the key factor in adaptive immune response against foreign antigens. AID is responsible for producing high-affinity and high-specificity antibodies against an infectious agent, through the physiological DNA alteration processes of antibody genes by somatic hypermutation (SHM) and class-switch recombination (CSR) and functions by deaminating deoxycytidines (dC) to deoxyuridines (dU), thereby introducing point mutations and double-stranded chromosomal breaks (DSBs). The beneficial physiological role of AID in antibody diversification is outweighed by its detrimental role in the genesis of several chronic immune diseases, under non-physiological conditions. This review offers a comprehensive and better understanding of AID biology and its pathological aspects, as well as addresses the challenges involved in AID-related cancer therapeutics, based on various recent advances and evidence available in the literature till date. In this article, we discuss ways through which our interpretation of AID biology may reflect upon novel clinical insights, which could be successfully translated into designing clinical trials and improving patient prognosis and disease management.
Collapse
Affiliation(s)
- Meenal Choudhary
- a Centre for Biosciences and Biomedical Engineering , Indian Institute of Technology Indore , Simrol , Indore , Madhya Pradesh , India
| | - Anubhav Tamrakar
- a Centre for Biosciences and Biomedical Engineering , Indian Institute of Technology Indore , Simrol , Indore , Madhya Pradesh , India
| | - Amit Kumar Singh
- a Centre for Biosciences and Biomedical Engineering , Indian Institute of Technology Indore , Simrol , Indore , Madhya Pradesh , India
| | - Monika Jain
- a Centre for Biosciences and Biomedical Engineering , Indian Institute of Technology Indore , Simrol , Indore , Madhya Pradesh , India
| | - Ankit Jaiswal
- a Centre for Biosciences and Biomedical Engineering , Indian Institute of Technology Indore , Simrol , Indore , Madhya Pradesh , India
| | - Prashant Kodgire
- a Centre for Biosciences and Biomedical Engineering , Indian Institute of Technology Indore , Simrol , Indore , Madhya Pradesh , India
| |
Collapse
|
58
|
Abstract
During antibody affinity maturation, germinal center (GC) B cells cycle between affinity-driven selection in the light zone (LZ) and proliferation and somatic hypermutation in the dark zone (DZ). Although selection of GC B cells is triggered by antigen-dependent signals delivered in the LZ, DZ proliferation occurs in the absence of such signals. We show that positive selection triggered by T cell help activates the mechanistic target of rapamycin complex 1 (mTORC1), which promotes the anabolic program that supports DZ proliferation. Blocking mTORC1 prior to growth prevented clonal expansion, whereas blockade after cells reached peak size had little to no effect. Conversely, constitutively active mTORC1 led to DZ enrichment but loss of competitiveness and impaired affinity maturation. Thus, mTORC1 activation is required for fueling B cells prior to DZ proliferation rather than for allowing cell-cycle progression itself and must be regulated dynamically during cyclic re-entry to ensure efficient affinity-based selection.
Collapse
|
59
|
Activation-induced cytidine deaminase targets SUV4-20-mediated histone H4K20 trimethylation to class-switch recombination sites. Sci Rep 2017; 7:7594. [PMID: 28790320 PMCID: PMC5548798 DOI: 10.1038/s41598-017-07380-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 06/28/2017] [Indexed: 11/22/2022] Open
Abstract
Activation-induced cytidine deaminase (AID) triggers antibody diversification in B cells by catalysing deamination and subsequently mutating immunoglobulin (Ig) genes. Association of AID with RNA Pol II and occurrence of epigenetic changes during Ig gene diversification suggest participation of AID in epigenetic regulation. AID is mutated in hyper-IgM type 2 (HIGM2) syndrome. Here, we investigated the potential role of AID in the acquisition of epigenetic changes. We discovered that AID binding to the IgH locus promotes an increase in H4K20me3. In 293F cells, we demonstrate interaction between co-transfected AID and the three SUV4-20 histone H4K20 methyltransferases, and that SUV4-20H1.2, bound to the IgH switch (S) mu site, is replaced by SUV4-20H2 upon AID binding. Analysis of HIGM2 mutants shows that the AID truncated form W68X is impaired to interact with SUV4-20H1.2 and SUV4-20H2 and is unable to bind and target H4K20me3 to the Smu site. We finally show in mouse primary B cells undergoing class-switch recombination (CSR) that AID deficiency associates with decreased H4K20me3 levels at the Smu site. Our results provide a novel link between SUV4-20 enzymes and CSR and offer a new aspect of the interplay between AID and histone modifications in setting the epigenetic status of CSR sites.
Collapse
|
60
|
Tahara K, Takizawa M, Yamane A, Osaki Y, Ishizaki T, Mitsui T, Yokohama A, Saitoh T, Tsukamoto N, Matsumoto M, Murakami H, Nojima Y, Handa H. Overexpression of B-cell lymphoma 6 alters gene expression profile in a myeloma cell line and is associated with decreased DNA damage response. Cancer Sci 2017; 108:1556-1564. [PMID: 28544233 PMCID: PMC5543477 DOI: 10.1111/cas.13283] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 04/22/2017] [Accepted: 05/10/2017] [Indexed: 01/02/2023] Open
Abstract
B-cell lymphoma 6 (BCL6) attenuates DNA damage response (DDR) through gene repression and facilitates tolerance to genomic instability during immunoglobulin affinity maturation in germinal center (GC) B cells. Although BCL6 expression is repressed through normal differentiation of GC B cells into plasma cells, a recent study showed the ectopic expression of BCL6 in primary multiple myeloma (MM) cells. However, the functional roles of BCL6 in MM cells are largely unknown. Here, we report that overexpression of BCL6 in a MM cell line, KMS12PE, induced transcriptional repression of ataxia telangiectasia mutated (ATM), a DDR signaling kinase, which was associated with a reduction in γH2AX formation after DNA damage. In contrast, transcription of known targets of BCL6 in GC B cells was not affected, suggesting a cell type-specific function of BCL6. To further investigate the effects of BCL6 overexpression on the MM cell line, we undertook mRNA sequence analysis and found an upregulation in the genomic mutator activation-induced cytidine deaminase (AID) with alteration in the gene expression profile, which is suggestive of de-differentiation from plasma cells. Moreover, interleukin-6 exposure to KMS12PE led to upregulation of BCL6 and AID, downregulation of ATM, and attenuation of DDR, which were consistent with the effects of BCL6 overexpression in this MM cell line. Taken together, these results indicated that overexpression of BCL6 alters gene expression profile and confers decreased DDR in MM cells. This phenotypic change could be reproduced by interleukin-6 stimulation, suggesting an important role of external stimuli in inducing genomic instability, which is a hallmark of MM cells.
Collapse
Affiliation(s)
- Kenichi Tahara
- Department of Medicine and Clinical ScienceGunma University Graduate School of MedicineGunmaJapan
| | - Makiko Takizawa
- Department of Medicine and Clinical ScienceGunma University Graduate School of MedicineGunmaJapan
| | - Arito Yamane
- Department of Medicine and Clinical ScienceGunma University Graduate School of MedicineGunmaJapan
| | - Yohei Osaki
- Department of Medicine and Clinical ScienceGunma University Graduate School of MedicineGunmaJapan
| | - Takuma Ishizaki
- Department of Medicine and Clinical ScienceGunma University Graduate School of MedicineGunmaJapan
| | - Takeki Mitsui
- Department of Medicine and Clinical ScienceGunma University Graduate School of MedicineGunmaJapan
| | - Akihiko Yokohama
- Division of Blood Transfusion ServiceGunma University HospitalGunmaJapan
| | - Takayuki Saitoh
- Department of Laboratory SciencesGunma University Graduate School of Health SciencesGunmaJapan
| | | | - Morio Matsumoto
- Department of HematologyNational Hospital Organization Nishigunma National HospitalGunmaJapan
| | - Hirokazu Murakami
- Department of Laboratory SciencesGunma University Graduate School of Health SciencesGunmaJapan
| | - Yoshihisa Nojima
- Department of Medicine and Clinical ScienceGunma University Graduate School of MedicineGunmaJapan
| | - Hiroshi Handa
- Department of Medicine and Clinical ScienceGunma University Graduate School of MedicineGunmaJapan
| |
Collapse
|
61
|
King JJ, Larijani M. A Novel Regulator of Activation-Induced Cytidine Deaminase/APOBECs in Immunity and Cancer: Schrödinger's CATalytic Pocket. Front Immunol 2017; 8:351. [PMID: 28439266 PMCID: PMC5382155 DOI: 10.3389/fimmu.2017.00351] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 03/10/2017] [Indexed: 12/20/2022] Open
Abstract
Activation-induced cytidine deaminase (AID) and its relative APOBEC3 cytidine deaminases boost immune response by mutating immune or viral genes. Because of their genome-mutating activities, AID/APOBECs are also drivers of tumorigenesis. Due to highly charged surfaces, extensive non-specific protein-protein/nucleic acid interactions, formation of polydisperse oligomers, and general insolubility, structure elucidation of these proteins by X-ray crystallography and NMR has been challenging. Hence, almost all available AID/APOBEC structures are of mutated and/or truncated versions. In 2015, we reported a functional structure for AID using a combined computational-biochemical approach. In so doing, we described a new regulatory mechanism that is a first for human DNA/RNA-editing enzymes. This mechanism involves dynamic closure of the catalytic pocket. Subsequent X-ray and NMR studies confirmed our discovery by showing that other APOBEC3s also close their catalytic pockets. Here, we highlight catalytic pocket closure as an emerging and important regulatory mechanism of AID/APOBEC3s. We focus on three sub-topics: first, we propose that variable pocket closure rates across AID/APOBEC3s underlie differential activity in immunity and cancer and review supporting evidence. Second, we discuss dynamic pocket closure as an ever-present internal regulator, in contrast to other proposed regulatory mechanisms that involve extrinsic binding partners. Third, we compare the merits of classical approaches of X-ray and NMR, with that of emerging computational-biochemical approaches, for structural elucidation specifically for AID/APOBEC3s.
Collapse
Affiliation(s)
- Justin J. King
- Immunology and Infectious Diseases Program, Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Mani Larijani
- Immunology and Infectious Diseases Program, Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL, Canada
| |
Collapse
|
62
|
Phosphatidylinositol 3-kinase δ blockade increases genomic instability in B cells. Nature 2017; 542:489-493. [PMID: 28199309 PMCID: PMC5382874 DOI: 10.1038/nature21406] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 01/20/2017] [Indexed: 12/14/2022]
Abstract
Activation-induced cytidine deaminase (AID) is a B-cell specific enzyme that targets immunoglobulin (Ig) genes to initiate class switch recombination (CSR) and somatic hypermutation (SHM)1. Through off-target activity, however, AID has a much broader impact on genomic instability by initiating oncogenic chromosomal translocations and mutations involved in lymphoma development and progression2. AID expression is tightly regulated in B cells and its overexpression leads to enhanced genomic instability and lymphoma formation3. The phosphatidylinositol 3-kinase (PI3K) δ pathway plays a key role in AID regulation by suppressing its expression in B cells4. Novel drugs for leukemia or lymphoma therapy such as idelalisib, duvelisib or ibrutinib block PI3Kδ activity directly or indirectly5–8, potentially affecting AID expression and, consequently, genomic stability in B cells. Here we show that treatment of primary mouse B cells with idelalisib or duvelisib, and to a lesser extent ibrutinib, enhanced the expression of AID and increased somatic hypermutation (SHM) and chromosomal translocation frequency to the Igh locus and to several AID off-target sites. Both these effects were completely abrogated in AID deficient B cells. PI3Kδ inhibitors or ibrutinib increased the formation of AID-dependent tumors in pristane-treated mice. Consistently, PI3Kδ inhibitors enhanced AID expression and translocation frequency to IgH and AID off-target sites in human chronic lymphocytic leukemia (CLL) and mantle cell lymphoma (MCL) cell lines, and patients treated with idelalisib, but not ibrutinib, showed increased SHM in AID off-targets. In summary, we show that PI3Kδ or BTK inhibitors increase genomic instability in normal and neoplastic B cells by an AID-dependent mechanism, an effect that should be carefully considered as such inhibitors are administered for years to patients.
Collapse
|
63
|
Sapoznik S, Bahar-Shany K, Brand H, Pinto Y, Gabay O, Glick-Saar E, Dor C, Zadok O, Barshack I, Zundelevich A, Gal-Yam EN, Yung Y, Hourvitz A, Korach J, Beiner M, Jacob J, Levanon EY, Barak M, Aviel-Ronen S, Levanon K. Activation-Induced Cytidine Deaminase Links Ovulation-Induced Inflammation and Serous Carcinogenesis. Neoplasia 2016; 18:90-9. [PMID: 26936395 PMCID: PMC5005261 DOI: 10.1016/j.neo.2015.12.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 12/10/2015] [Accepted: 12/22/2015] [Indexed: 12/22/2022] Open
Abstract
In recent years, the notion that ovarian carcinoma results from ovulation-induced inflammation of the fallopian tube epithelial cells (FTECs) has gained evidence. However, the mechanistic pathway for this process has not been revealed yet. In the current study, we propose the mutator protein activation-induced cytidine deaminase (AID) as a link between ovulation-induced inflammation in FTECs and genotoxic damage leading to ovarian carcinogenesis. We show that AID, previously shown to be functional only in B lymphocytes, is expressed in FTECs under physiological conditions, and is induced in vitro upon ovulatory-like stimulation and in vivo in carcinoma-associated FTECs. We also report that AID activity results in epigenetic, genetic and genomic damage in FTECs. Overall, our data provides new insights into the etiology of ovarian carcinogenesis and may set the ground for innovative approaches aimed at prevention and early detection.
Collapse
Affiliation(s)
- Stav Sapoznik
- Sheba Cancer Research Center, Chaim Sheba Medical Center, Ramat Gan, 52621, Israel
| | - Keren Bahar-Shany
- Sheba Cancer Research Center, Chaim Sheba Medical Center, Ramat Gan, 52621, Israel
| | - Hadar Brand
- Sheba Cancer Research Center, Chaim Sheba Medical Center, Ramat Gan, 52621, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Ramat Aviv, 69978, Israel
| | - Yishay Pinto
- The Mina and Everard Goodman Faculty of Life Science, Bar Ilan University, Ramat-Gan, 52900, Israel
| | - Orshay Gabay
- The Mina and Everard Goodman Faculty of Life Science, Bar Ilan University, Ramat-Gan, 52900, Israel
| | - Efrat Glick-Saar
- Sheba Cancer Research Center, Chaim Sheba Medical Center, Ramat Gan, 52621, Israel
| | - Chen Dor
- Sheba Cancer Research Center, Chaim Sheba Medical Center, Ramat Gan, 52621, Israel
| | - Oranit Zadok
- Department of Pathology, Chaim Sheba Medical Center, Ramat-Gan 52621, Israel
| | - Iris Barshack
- Department of Pathology, Chaim Sheba Medical Center, Ramat-Gan 52621, Israel
| | - Adi Zundelevich
- Sheba Cancer Research Center, Chaim Sheba Medical Center, Ramat Gan, 52621, Israel
| | - Einav Nili Gal-Yam
- Sheba Cancer Research Center, Chaim Sheba Medical Center, Ramat Gan, 52621, Israel; The Talpiot Medical Leadership Program, Chaim Sheba Medical Center, Ramat Gan, 52621, Israel
| | - Yuval Yung
- IVF Unit and Reproduction Lab, Department of Obstetrics and Gynecology, Chaim Sheba Medical Center, Ramat-Gan, 52621, Israel
| | - Ariel Hourvitz
- IVF Unit and Reproduction Lab, Department of Obstetrics and Gynecology, Chaim Sheba Medical Center, Ramat-Gan, 52621, Israel
| | - Jacob Korach
- Department of Gynecologic Oncology, Chaim Sheba Medical Center, Ramat Gan, 52621, Israel
| | - Mario Beiner
- Department of Gynecologic Oncology, Chaim Sheba Medical Center, Ramat Gan, 52621, Israel
| | - Jasmine Jacob
- Sheba Cancer Research Center, Chaim Sheba Medical Center, Ramat Gan, 52621, Israel
| | - Erez Y Levanon
- The Mina and Everard Goodman Faculty of Life Science, Bar Ilan University, Ramat-Gan, 52900, Israel
| | - Michal Barak
- The Mina and Everard Goodman Faculty of Life Science, Bar Ilan University, Ramat-Gan, 52900, Israel
| | - Sarit Aviel-Ronen
- Department of Pathology, Chaim Sheba Medical Center, Ramat-Gan 52621, Israel; The Talpiot Medical Leadership Program, Chaim Sheba Medical Center, Ramat Gan, 52621, Israel
| | - Keren Levanon
- Sheba Cancer Research Center, Chaim Sheba Medical Center, Ramat Gan, 52621, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Ramat Aviv, 69978, Israel; The Talpiot Medical Leadership Program, Chaim Sheba Medical Center, Ramat Gan, 52621, Israel.
| |
Collapse
|
64
|
Carbone A, Gloghini A, Caruso A, De Paoli P, Dolcetti R. The impact of EBV and HIV infection on the microenvironmental niche underlying Hodgkin lymphoma pathogenesis. Int J Cancer 2016; 140:1233-1245. [DOI: 10.1002/ijc.30473] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 10/11/2016] [Indexed: 12/31/2022]
Affiliation(s)
- Antonino Carbone
- Department of Pathology; Centro di Riferimento Oncologico - IRCCS, National Cancer Institute; Aviano PN Italy
| | - Annunziata Gloghini
- Department of Diagnostic Pathology and Laboratory Medicine; Fondazione IRCCS Istituto Nazionale dei Tumori; Milano Italy
| | - Arnaldo Caruso
- Department of Molecular and Translational Medicine; University of Brescia Medical School; Brescia Italy
| | - Paolo De Paoli
- Molecular Virology Unit and Scientific Directorate; Centro di Riferimento Oncologico - IRCCS, National Cancer Institute; Aviano PN Italy
| | - Riccardo Dolcetti
- Cancer Bio-Immunotherapy Unit, Centro di Riferimento Oncologico - IRCCS; National Cancer Institute; Aviano PN Italy
- University of Queensland Diamantina Institute, Translational Research Institute, University of Queensland; Brisbane QLD Australia
| |
Collapse
|
65
|
Slot LM, Hoogeboom R, Smit LA, Wormhoudt TAM, Biemond BJ, Oud MECM, Schilder-Tol EJM, Mulder AB, Jongejan A, van Kampen AHC, Kluin PM, Guikema JEJ, Bende RJ, van Noesel CJM. B-Lymphoblastic Lymphomas Evolving from Follicular Lymphomas Co-Express Surrogate Light Chains and Mutated Gamma Heavy Chains. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:3273-3284. [PMID: 27750045 DOI: 10.1016/j.ajpath.2016.07.027] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 06/30/2016] [Accepted: 07/28/2016] [Indexed: 01/19/2023]
Abstract
Follicular lymphoma (FL) is an indolent B-cell non-Hodgkin lymphoma able to transform into germinal center-type diffuse large B-cell lymphoma. We describe four extraordinary cases of FL, which progressed to TdT+CD20- precursor B-lymphoblastic lymphoma (B-LBL). Fluorescence in situ hybridization analysis showed that all four B-LBLs had acquired a MYC translocation on transformation. Comparative genomic hybridization analysis of one case demonstrated that in addition to 26 numerical aberrations that were shared between the FL and B-LBL, deletion of CDKN2A/B and 17q11, 14q32 amplification, and copy-neutral loss of heterozygosity of 9p were gained in the B-LBL cells. Whole-exome sequencing revealed mutations in FMN2, NEB, and SYNE1 and a nonsense mutation in KMT2D, all shared by the FL and B-LBL, and TNFRSF14, SMARCA2, CCND3 mutations uniquely present in the B-LBL. Remarkably, all four FL-B-LBL pairs expressed IgG. In two B-LBLs, evidence was obtained for ongoing rearrangement of IG light chain variable genes and expression of the surrogate light chain. IGHV mutation analysis showed that all FL-B-LBL pairs harbored identical or near-identical somatic mutations. From the somatic gene alterations found in the IG and non-IG genes, we conclude that the FLs and B-LBLs did not develop in parallel from early t(14;18)-positive IG-unmutated precursors, but that the B-LBLs developed from preexistent FL subclones that accumulated additional genetic damage.
Collapse
Affiliation(s)
- Linda M Slot
- Department of Pathology, Academic Medical Center Amsterdam, Amsterdam, the Netherlands; Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam, the Netherlands
| | - Robbert Hoogeboom
- Department of Pathology, Academic Medical Center Amsterdam, Amsterdam, the Netherlands; Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam, the Netherlands
| | - Laura A Smit
- Department of Pathology, Academic Medical Center Amsterdam, Amsterdam, the Netherlands
| | - Thera A M Wormhoudt
- Department of Pathology, Academic Medical Center Amsterdam, Amsterdam, the Netherlands; Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam, the Netherlands
| | - Bart J Biemond
- Department of Haematology, Academic Medical Center Amsterdam, Amsterdam, the Netherlands
| | - Monique E C M Oud
- Department of Pathology, Academic Medical Center Amsterdam, Amsterdam, the Netherlands
| | | | - André B Mulder
- Department of Laboratory Medicine, University Medical Centre Groningen, University of Groningen, Groningen, the Netherlands
| | - Aldo Jongejan
- Bioinformatics Laboratory, Klinische Epidemiologie, Biostatistiek en Bio-informatica (KEBB), Academic Medical Center Amsterdam, Amsterdam, the Netherlands
| | - Antoine H C van Kampen
- Bioinformatics Laboratory, Klinische Epidemiologie, Biostatistiek en Bio-informatica (KEBB), Academic Medical Center Amsterdam, Amsterdam, the Netherlands; Biosystems Data Analysis, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | - Philip M Kluin
- Department of Pathology, University Medical Centre Groningen, University of Groningen, Groningen, the Netherlands
| | - Jeroen E J Guikema
- Department of Pathology, Academic Medical Center Amsterdam, Amsterdam, the Netherlands; Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam, the Netherlands
| | - Richard J Bende
- Department of Pathology, Academic Medical Center Amsterdam, Amsterdam, the Netherlands; Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam, the Netherlands
| | - Carel J M van Noesel
- Department of Pathology, Academic Medical Center Amsterdam, Amsterdam, the Netherlands; Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam, the Netherlands.
| |
Collapse
|
66
|
Cortizas EM, Zahn A, Safavi S, Reed JA, Vega F, Di Noia JM, Verdun RE. UNG protects B cells from AID-induced telomere loss. J Exp Med 2016; 213:2459-2472. [PMID: 27697833 PMCID: PMC5068241 DOI: 10.1084/jem.20160635] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 08/16/2016] [Indexed: 02/05/2023] Open
Abstract
Verdun and colleagues find that the uracil-DNA glycosylase UNG, which promotes DNA breaks in the immunoglobulin genes during class switch recombination and is required for AID-induced chromosomal translocations, protects telomeres from AID-induced DNA damage and subsequent dysfunction. Activation-induced deaminase (AID) initiates antibody gene diversification by creating G:U mismatches in the immunoglobulin loci. However, AID also deaminates nonimmunoglobulin genes, and failure to faithfully repair these off-target lesions can cause B cell lymphoma. In this study, we identify a mechanism by which processing of G:U produced by AID at the telomeres can eliminate B cells at risk of genomic instability. We show that telomeres are off-target substrates of AID and that B cell proliferation depends on protective repair by uracil-DNA glycosylase (UNG). In contrast, in the absence of UNG activity, deleterious processing by mismatch repair leads to telomere loss and defective cell proliferation. Indeed, we show that UNG deficiency reduces B cell clonal expansion in the germinal center in mice and blocks the proliferation of tumor B cells expressing AID. We propose that AID-induced damage at telomeres acts as a fail-safe mechanism to limit the tumor promoting activity of AID when it overwhelms uracil excision repair.
Collapse
Affiliation(s)
- Elena M Cortizas
- Department of Medicine, Division of Hematology-Oncology, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136
| | - Astrid Zahn
- Institut de Recherches Cliniques de Montréal, Montréal, Québec H2W 1R7, Canada
| | - Shiva Safavi
- Institut de Recherches Cliniques de Montréal, Montréal, Québec H2W 1R7, Canada.,Department of Medicine, Division of Experimental Medicine, McGill University, Montréal, Québec H3A 0G4, Canada
| | - Joseph A Reed
- Department of Medicine, Division of Hematology-Oncology, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136
| | - Francisco Vega
- Department of Pathology and Laboratory Medicine, Division of Hematopathology, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33146
| | - Javier M Di Noia
- Institut de Recherches Cliniques de Montréal, Montréal, Québec H2W 1R7, Canada .,Department of Medicine, Division of Experimental Medicine, McGill University, Montréal, Québec H3A 0G4, Canada.,Department of Medicine, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| | - Ramiro E Verdun
- Department of Medicine, Division of Hematology-Oncology, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136 .,Geriatric Research, Education, and Clinical Center, Miami VA Healthcare System, FL 33125
| |
Collapse
|
67
|
Trabucco SE, Gerstein RM, Zhang H. YY1 Regulates the Germinal Center Reaction by Inhibiting Apoptosis. THE JOURNAL OF IMMUNOLOGY 2016; 197:1699-707. [PMID: 27448584 DOI: 10.4049/jimmunol.1600721] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 07/01/2016] [Indexed: 01/19/2023]
Abstract
The germinal center (GC) reaction produces high-affinity Abs for a robust adaptive immune response. When dysregulated, the same processes cause GC B cells to become susceptible to lymphomagenesis. It is important to understand how the GC reaction is regulated. In this study, we show that transcription factor YY1 is required to maintain a robust GC reaction in mice. Selective ablation of YY1 significantly decreased in the frequency and number of GC B cells during the GC reaction. This decrease of GC B cells was accompanied by increased apoptosis in these cells. Furthermore, we found that loss of YY1 disrupted the balance between dark zones and light zones, leading to a preferential decrease in dark zone cells. Collectively, these results indicate that YY1 plays an important role in regulating the balance between dark zone and light zone cells in GCs and between survival and death of GC B cells.
Collapse
Affiliation(s)
- Sally E Trabucco
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA 01655; and
| | - Rachel M Gerstein
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01655
| | - Hong Zhang
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA 01655; and
| |
Collapse
|
68
|
Xu-Monette ZY, Deng Q, Manyam GC, Tzankov A, Li L, Xia Y, Wang XX, Zou D, Visco C, Dybkær K, Li J, Zhang L, Liang H, Montes-Moreno S, Chiu A, Orazi A, Zu Y, Bhagat G, Richards KL, Hsi ED, Choi WWL, van Krieken JH, Huh J, Ponzoni M, Ferreri AJM, Parsons BM, Møller MB, Wang SA, Miranda RN, Piris MA, Winter JN, Medeiros LJ, Li Y, Young KH. Clinical and Biologic Significance of MYC Genetic Mutations in De Novo Diffuse Large B-cell Lymphoma. Clin Cancer Res 2016; 22:3593-3605. [PMID: 26927665 PMCID: PMC4947447 DOI: 10.1158/1078-0432.ccr-15-2296] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 02/09/2016] [Indexed: 12/21/2022]
Abstract
PURPOSE MYC is a critical driver oncogene in many cancers, and its deregulation in the forms of translocation and overexpression has been implicated in lymphomagenesis and progression of diffuse large B-cell lymphoma (DLBCL). The MYC mutational profile and its roles in DLBCL are unknown. This study aims to determine the spectrum of MYC mutations in a large group of patients with DLBCL, and to evaluate the clinical significance of MYC mutations in patients with DLBCL treated with rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP) immunochemotherapy. EXPERIMENTAL DESIGN We identified MYC mutations in 750 patients with DLBCL using Sanger sequencing and evaluated the prognostic significance in 602 R-CHOP-treated patients. RESULTS The frequency of MYC mutations was 33.3% at the DNA level (mutations in either the coding sequence or the untranslated regions) and 16.1% at the protein level (nonsynonymous mutations). Most of the nonsynonymous mutations correlated with better survival outcomes; in contrast, T58 and F138 mutations (which were associated with MYC rearrangements), as well as several mutations occurred at the 3' untranslated region, correlated with significantly worse survival outcomes. However, these mutations occurred infrequently (only in approximately 2% of DLBCL). A germline SNP encoding the Myc-N11S variant (observed in 6.5% of the study cohort) was associated with significantly better patient survival, and resulted in reduced tumorigenecity in mouse xenografts. CONCLUSIONS Various types of MYC gene mutations are present in DLBCL and show different impact on Myc function and clinical outcomes. Unlike MYC gene translocations and overexpression, most MYC gene mutations may not have a role in driving lymphomagenesis. Clin Cancer Res; 22(14); 3593-605. ©2016 AACR.
Collapse
Affiliation(s)
- Zijun Y Xu-Monette
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Qipan Deng
- Department of Cancer Biology, Cleveland Clinic, Cleveland, Ohio
| | - Ganiraju C Manyam
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Ling Li
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yi Xia
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Xiao-Xiao Wang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Dehui Zou
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | | | - Jun Li
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Li Zhang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Han Liang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - April Chiu
- Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Attilio Orazi
- Weill Medical College of Cornell University, New York, New York
| | - Youli Zu
- The Methodist Hospital, Houston, Texas
| | - Govind Bhagat
- Columbia University Medical Center and New York Presbyterian Hospital, New York, New York
| | - Kristy L Richards
- University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | | | - William W L Choi
- University of Hong Kong Li Ka Shing Faculty of Medicine, Hong Kong, China
| | - J Han van Krieken
- Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
| | - Jooryung Huh
- Asan Medical Center, Ulsan University College of Medicine, Seoul, Korea
| | | | | | - Ben M Parsons
- Gundersen Lutheran Health System, La Crosse, Wisconsin
| | | | - Sa A Wang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Roberto N Miranda
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Miguel A Piris
- Hospital Universitario Marqués de Valdecilla, Santander, Spain
| | - Jane N Winter
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - L Jeffrey Medeiros
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yong Li
- Department of Cancer Biology, Cleveland Clinic, Cleveland, Ohio.
| | - Ken H Young
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas. The University of Texas School of Medicine, Graduate School of Biomedical Sciences, Houston, Texas.
| |
Collapse
|
69
|
Pérez-García A, Pérez-Durán P, Wossning T, Sernandez IV, Mur SM, Cañamero M, Real FX, Ramiro AR. AID-expressing epithelium is protected from oncogenic transformation by an NKG2D surveillance pathway. EMBO Mol Med 2016; 7:1327-36. [PMID: 26282919 PMCID: PMC4604686 DOI: 10.15252/emmm.201505348] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Activation-induced deaminase (AID) initiates secondary antibody diversification in germinal center B cells, giving rise to higher affinity antibodies through somatic hypermutation (SHM) or to isotype-switched antibodies through class switch recombination (CSR). SHM and CSR are triggered by AID-mediated deamination of cytosines in immunoglobulin genes. Importantly, AID activity in B cells is not restricted to Ig loci and can promote mutations and pro-lymphomagenic translocations, establishing a direct oncogenic mechanism for germinal center-derived neoplasias. AID is also expressed in response to inflammatory cues in epithelial cells, raising the possibility that AID mutagenic activity might drive carcinoma development. We directly tested this hypothesis by generating conditional knock-in mouse models for AID overexpression in colon and pancreas epithelium. AID overexpression alone was not sufficient to promote epithelial cell neoplasia in these tissues, in spite of displaying mutagenic and genotoxic activity. Instead, we found that heterologous AID expression in pancreas promotes the expression of NKG2D ligands, the recruitment of CD8+ T cells, and the induction of epithelial cell death. Our results indicate that AID oncogenic potential in epithelial cells can be neutralized by immunosurveillance protective mechanisms.
Collapse
Affiliation(s)
- Arantxa Pérez-García
- B Cell Biology Lab, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Pablo Pérez-Durán
- B Cell Biology Lab, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Thomas Wossning
- B Cell Biology Lab, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Isora V Sernandez
- B Cell Biology Lab, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Sonia M Mur
- B Cell Biology Lab, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | | | - Francisco X Real
- Epithelial Carcinogenesis Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Almudena R Ramiro
- B Cell Biology Lab, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| |
Collapse
|
70
|
Abstract
Chromosomal translocations are a hallmark of cancer. Unraveling the molecular mechanism of these rare genetic events requires a clear distinction between correlative and causative risk-determinants, where technical and analytical issues can be excluded. To meet this goal, we performed in-depth analyses of publicly available genome-wide datasets. In contrast to several recent reports, we demonstrate that chromosomal translocation risk is causally unrelated to promoter stalling (Spt5), transcriptional activity, or off-targeting activity of the activation-induced cytidine deaminase. Rather, an open chromatin configuration, which is not promoter-specific, explained the elevated translocation risk of promoter regions. Furthermore, the fact that gene size directly correlates with the translocation risk in mice and human cancers further demonstrated the general irrelevance of promoter-specific activities. Interestingly, a subset of translocations observed in cancer patients likely initiates from double-strand breaks induced by an access-independent process. Together, these unexpected and novel insights are fundamental in understanding the origin of chromosome translocations and, consequently, cancer.
Collapse
|
71
|
Shi Y, Zhao X, Durkin L, Rogers HJ, Hsi ED. Aberrant activation-induced cytidine deaminase expression in Philadelphia chromosome-positive B-cell acute lymphoblastic leukemia. Hum Pathol 2016; 52:173-8. [PMID: 26980048 DOI: 10.1016/j.humpath.2016.01.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 01/16/2016] [Accepted: 01/21/2016] [Indexed: 11/30/2022]
Abstract
Activation-induced cytidine deaminase (AID) is expressed in germinal center B cells and plays a critical role in somatic hypermutation and class-switch recombination of immunoglobulin genes. Philadelphia chromosome-positive (Ph+) acute lymphoblastic leukemia (ALL) carries a poor prognosis and is specifically treated with tyrosine kinase inhibitors. Interestingly, AID has been shown to be aberrantly expressed and functional in Ph+ ALL and is thought to contribute to genetic instability. We hypothesized that AID might be detectable in routinely processed bone marrow biopsies by immunohistochemistry (IHC) and assist in identifying Ph+ ALL. We found that AID was expressed in 26 (70%) of 37 cases of Ph+ ALL but only 1 (2.9%) of 38 cases of Ph- ALL cases. There was a significant difference in AID expression between these 2 ALL groups (P < .001, Fisher exact test). The expression of AID was confirmed by RT-PCR (reverse-transcriptase polymerase chain reaction) and correlated with IHC scoring. AID protein is expressed in a large proportion of Ph+ ALL cases at levels detectable by IHC in clinical samples and might be useful to rapidly identify cases likely to have a BCR/ABL1 fusion.
Collapse
Affiliation(s)
- Yang Shi
- Department of Laboratory Medicine, Cleveland Clinic, L-11, Cleveland, OH, USA 44195.
| | - Xiaoxian Zhao
- Department of Laboratory Medicine, Cleveland Clinic, L-11, Cleveland, OH, USA 44195.
| | - Lisa Durkin
- Department of Laboratory Medicine, Cleveland Clinic, L-11, Cleveland, OH, USA 44195.
| | - Heesun Joyce Rogers
- Department of Laboratory Medicine, Cleveland Clinic, L-11, Cleveland, OH, USA 44195.
| | - Eric D Hsi
- Department of Laboratory Medicine, Cleveland Clinic, L-11, Cleveland, OH, USA 44195.
| |
Collapse
|
72
|
Sakaguchi N, Maeda K. Germinal Center B-Cell-Associated Nuclear Protein (GANP) Involved in RNA Metabolism for B Cell Maturation. Adv Immunol 2016; 131:135-86. [PMID: 27235683 DOI: 10.1016/bs.ai.2016.02.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Germinal center B-cell-associated nuclear protein (GANP) is upregulated in germinal center B cells against T-cell-dependent antigens in mice and humans. In mice, GANP depletion in B cells impairs antibody affinity maturation. Conversely, its transgenic overexpression augments the generation of high-affinity antigen-specific B cells. GANP associates with AID in the cytoplasm, shepherds AID into the nucleus, and augments its access to the rearranged immunoglobulin (Ig) variable (V) region of the genome in B cells, thereby precipitating the somatic hypermutation of V region genes. GANP is also upregulated in human CD4(+) T cells and is associated with APOBEC3G (A3G). GANP interacts with A3G and escorts it to the virion cores to potentiate its antiretroviral activity by inactivating HIV-1 genomic cDNA. Thus, GANP is characterized as a cofactor associated with AID/APOBEC cytidine deaminase family molecules in generating diversity of the IgV region of the genome and genetic alterations of exogenously introduced viral targets. GANP, encoded by human chromosome 21, as well as its mouse equivalent on chromosome 10, contains a region homologous to Saccharomyces Sac3 that was characterized as a component of the transcription/export 2 (TREX-2) complex and was predicted to be involved in RNA export and metabolism in mammalian cells. The metabolism of RNA during its maturation, from the transcription site at the chromosome within the nucleus to the cytoplasmic translation apparatus, needs to be elaborated with regard to acquired and innate immunity. In this review, we summarize the current knowledge on GANP as a component of TREX-2 in mammalian cells.
Collapse
Affiliation(s)
- N Sakaguchi
- WPI Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka, Japan; Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.
| | - K Maeda
- WPI Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka, Japan; Laboratory of Host Defense, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| |
Collapse
|
73
|
Mutations, kataegis and translocations in B cells: understanding AID promiscuous activity. Nat Rev Immunol 2016; 16:164-76. [PMID: 26898111 DOI: 10.1038/nri.2016.2] [Citation(s) in RCA: 142] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
As B cells engage in the immune response, they express activation-induced cytidine deaminase (AID) to initiate the hypermutation and recombination of immunoglobulin genes, which are crucial processes for the efficient recognition and disposal of pathogens. However, AID must be tightly controlled in B cells to minimize off-target mutations, which can drive chromosomal translocations and the development of B cell malignancies, such as lymphomas. Recent genomic and biochemical analyses have begun to unravel the mechanisms of how AID-mediated deamination is targeted outside immunoglobulin genes. Here, we discuss the transcriptional and topological features that are emerging as key drivers of AID promiscuous activity.
Collapse
|
74
|
A lymphomagenic role for HIV beyond immune suppression? Blood 2016; 127:1403-9. [PMID: 26773045 DOI: 10.1182/blood-2015-11-681411] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 01/11/2016] [Indexed: 12/26/2022] Open
Abstract
Despite the immune reconstitution promoted by combined antiretroviral therapy (cART), lymphomas still represent the most common type of cancer in HIV-infected individuals. Cofactors related to immunodeficiency such as oncogenic viruses, chronic antigenic stimulation, and cytokine overproduction are thought to be the main drivers of HIV lymphomagenesis, although the current scenario does not convincingly explain the still-high incidence of lymphomas and the occurrence of peculiar lymphoma histotypes in HIV-infected patients under cART. Recent findings are challenging the current view of a mainly indirect role of HIV in lymphoma development and support the possibility that HIV may directly contribute to lymphomagenesis. In fact, mechanisms other than immune suppression involve biologic effects mediated by HIV products that are secreted and accumulate in lymphoid tissues, mainly within lymph node germinal centers. Notably, HIV-infected patients with lymphomas, but not those not affected by these tumors, were recently shown to carry HIV p17 protein variants with enhanced B-cell clonogenic activity. HIV p17 protein variants were characterized by the presence of distinct insertions at the C-terminal region of the protein responsible for a structural destabilization and the acquisition of novel biologic properties. These data are changing the current paradigm assuming that HIV is only indirectly related to lymphomagenesis. Furthermore, these recent findings are consistent with a role of HIV as a critical microenvironmental factor promoting lymphoma development and pave the way for further studies that may lead to the design of more effective strategies for an early identification and improved control of lymphomas in the HIV setting.
Collapse
|
75
|
Chen Z, Elos MT, Viboolsittiseri SS, Gowan K, Leach SM, Rice M, Eder MD, Jones K, Wang JH. Combined deletion of Xrcc4 and Trp53 in mouse germinal center B cells leads to novel B cell lymphomas with clonal heterogeneity. J Hematol Oncol 2016; 9:2. [PMID: 26740101 PMCID: PMC4704435 DOI: 10.1186/s13045-015-0230-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 12/28/2015] [Indexed: 01/19/2023] Open
Abstract
Background Activated B lymphocytes harbor programmed DNA double-strand breaks (DSBs) initiated by activation-induced deaminase (AID) and repaired by non-homologous end-joining (NHEJ). While it has been proposed that these DSBs during secondary antibody gene diversification are the primary source of chromosomal translocations in germinal center (GC)-derived B cell lymphomas, this point has not been directly addressed due to the lack of proper mouse models. Methods In the current study, we establish a unique mouse model by specifically deleting a NHEJ gene, Xrcc4, and a cell cycle checkpoint gene, Trp53, in GC B cells, which results in the spontaneous development of B cell lymphomas that possess features of GC B cells. Results We show that these NHEJ deficient lymphomas harbor translocations frequently targeting immunoglobulin (Ig) loci. Furthermore, we found that Ig translocations were associated with distinct mechanisms, probably caused by AID- or RAG-induced DSBs. Intriguingly, the AID-associated Ig loci translocations target either c-myc or Pvt-1 locus whereas the partners of RAG-associated Ig translocations scattered randomly in the genome. Lastly, these NHEJ deficient lymphomas harbor complicated genomes including segmental translocations and exhibit a high level of ongoing DNA damage and clonal heterogeneity. Conclusions We propose that combined NHEJ and p53 defects may serve as an underlying mechanism for a high level of genomic complexity and clonal heterogeneity in cancers. Electronic supplementary material The online version of this article (doi:10.1186/s13045-015-0230-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhangguo Chen
- Department of Immunology and Microbiology, University of Colorado, Anschutz Medical Campus, 12800 E. 19th Ave, Mail Stop 8333, Aurora, CO, 80045, USA.,Department of Biomedical Research, National Jewish Health, Denver, CO, 80206, USA
| | - Mihret T Elos
- Department of Immunology and Microbiology, University of Colorado, Anschutz Medical Campus, 12800 E. 19th Ave, Mail Stop 8333, Aurora, CO, 80045, USA
| | - Sawanee S Viboolsittiseri
- Department of Immunology and Microbiology, University of Colorado, Anschutz Medical Campus, 12800 E. 19th Ave, Mail Stop 8333, Aurora, CO, 80045, USA
| | - Katherine Gowan
- Department of Biochemistry and Molecular Genetics, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Sonia M Leach
- Department of Biomedical Research, National Jewish Health, Denver, CO, 80206, USA.,Integrated Center for Genes, Environment and Health, National Jewish Health, Denver, CO, 80206, USA
| | - Michael Rice
- Department of Immunology and Microbiology, University of Colorado, Anschutz Medical Campus, 12800 E. 19th Ave, Mail Stop 8333, Aurora, CO, 80045, USA
| | - Maxwell D Eder
- Department of Immunology and Microbiology, University of Colorado, Anschutz Medical Campus, 12800 E. 19th Ave, Mail Stop 8333, Aurora, CO, 80045, USA
| | - Kenneth Jones
- Department of Biochemistry and Molecular Genetics, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Jing H Wang
- Department of Immunology and Microbiology, University of Colorado, Anschutz Medical Campus, 12800 E. 19th Ave, Mail Stop 8333, Aurora, CO, 80045, USA. .,Department of Biomedical Research, National Jewish Health, Denver, CO, 80206, USA.
| |
Collapse
|
76
|
Abstract
The balance between DNA damage, especially double strand breaks, and DNA damage repair is a critical determinant of chromosomal translocation frequency. The non-homologous end-joining repair (NHEJ) pathways seem to play the major role in the generation of chromosomal translocations. The "landscape" of chromosomal translocation identified in malignancies is largely due to selection processes which operate on the growth advantages conveyed to the cells by the functional consequences of chromosomal translocations (i.e., oncogenic fusion proteins and overexpression of oncogenes, both compromising tumor suppressor gene functions). Newer studies have shown that there is an abundance of local rearrangements in many tumors, like small deletions and inversions. A better understanding of the interplay between DNA repair mechanisms and the generation of tumorigenic translocations will, among many other things, depend on an improved understanding of DNA repair mechanisms and their interplay with chromatin and the 3D organization of the interphase nucleus.
Collapse
|
77
|
Bregenhorn S, Kallenberger L, Artola-Borán M, Peña-Diaz J, Jiricny J. Non-canonical uracil processing in DNA gives rise to double-strand breaks and deletions: relevance to class switch recombination. Nucleic Acids Res 2016; 44:2691-705. [PMID: 26743004 PMCID: PMC4824095 DOI: 10.1093/nar/gkv1535] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 12/23/2015] [Indexed: 12/24/2022] Open
Abstract
During class switch recombination (CSR), antigen-stimulated B-cells rearrange their immunoglobulin constant heavy chain (CH) loci to generate antibodies with different effector functions. CSR is initiated by activation-induced deaminase (AID), which converts cytosines in switch (S) regions, repetitive sequences flanking the CH loci, to uracils. Although U/G mispairs arising in this way are generally efficiently repaired to C/Gs by uracil DNA glycosylase (UNG)-initiated base excision repair (BER), uracil processing in S-regions of activated B-cells occasionally gives rise to double strand breaks (DSBs), which trigger CSR. Surprisingly, genetic experiments revealed that CSR is dependent not only on AID and UNG, but also on mismatch repair (MMR). To elucidate the role of MMR in CSR, we studied the processing of uracil-containing DNA substrates in extracts of MMR-proficient and –deficient human cells, as well as in a system reconstituted from recombinant BER and MMR proteins. Here, we show that the interplay of these repair systems gives rise to DSBs in vitro and to genomic deletions and mutations in vivo, particularly in an S-region sequence. Our findings further suggest that MMR affects pathway choice in DSB repair. Given its amenability to manipulation, our system represents a powerful tool for the molecular dissection of CSR.
Collapse
Affiliation(s)
- Stephanie Bregenhorn
- Institute of Molecular Cancer Research, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland Department of Biology, Swiss Federal Institute of Technology (ETH) Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Lia Kallenberger
- Institute of Molecular Cancer Research, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Mariela Artola-Borán
- Institute of Molecular Cancer Research, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Javier Peña-Diaz
- Institute of Molecular Cancer Research, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland University of Copenhagen, Faculty of Health Sciences Center for Healthy Aging, Department of Neuroscience and Pharmacology, Blegdamsvej 3b, DK-2200 Copenhagen N, Denmark
| | - Josef Jiricny
- Institute of Molecular Cancer Research, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland Department of Biology, Swiss Federal Institute of Technology (ETH) Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| |
Collapse
|
78
|
HROMAS ROBERT, WILLIAMSON ELIZABETH, LEE SUKHEE, NICKOLOFF JAC. PREVENTING THE CHROMOSOMAL TRANSLOCATIONS THAT CAUSE CANCER. TRANSACTIONS OF THE AMERICAN CLINICAL AND CLIMATOLOGICAL ASSOCIATION 2016; 127:176-195. [PMID: 28066052 PMCID: PMC5216476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Approximately half of all cancers harbor chromosomal translocations that can either contribute to their origin or govern their subsequent behavior. Chromosomal translocations by definition can only occur when there are two DNA double-strand breaks (DSBs) on distinct chromosomes that are repaired heterologously. Thus, chromosomal translocations are by their very nature problems of DNA DSB repair. Such DNA DSBs can be from internal or external sources. Internal sources of DNA DSBs that can lead to translocations can occur are inappropriate immune receptor gene maturation during V(D)J recombination or heavy-chain switching. Other internal DNA DSBs can come from aberrant DNA structures, or are generated at collapsed and reversed replication forks. External sources of DNA DSBs that can generate chromosomal translocations are ionizing radiation and cancer chemotherapy. There are several known nuclear and chromatin properties that enhance translocations over homologous chromosome DSB repair. The proximity of the region of the heterologous chromosomes to each other increases translocation rates. Histone methylation events at the DSB also influence translocation frequencies. There are four DNA DSB repair pathways, but it appears that only one, alternative non-homologous end-joining (a-NHEJ) can mediate chromosomal translocations. The rate-limiting, initial step of a-NHEJ is the binding of poly-adenosine diphosphate ribose polymerase 1 (PARP1) to the DSB. In our investigation of methods for preventing oncogenic translocations, we discovered that PARP1 was required for translocations. Significantly, the clinically approved PARP1 inhibitors can block the formation of chromosomal translocations, raising the possibility for the first time that secondary oncogenic translocations can be reduced in high risk patients.
Collapse
Affiliation(s)
- ROBERT HROMAS
- Correspondence and reprint requests: Robert Hromas, MD, FACP,
Department of Medicine, University of Florida College of Medicine, 1600 SW Archer Rd, Gainesville, FL 32610352-265-0655352-265-1107
| | | | | | | |
Collapse
|
79
|
Zan H, Casali P. Epigenetics of Peripheral B-Cell Differentiation and the Antibody Response. Front Immunol 2015; 6:631. [PMID: 26697022 PMCID: PMC4677338 DOI: 10.3389/fimmu.2015.00631] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 11/30/2015] [Indexed: 12/13/2022] Open
Abstract
Epigenetic modifications, such as histone post-translational modifications, DNA methylation, and alteration of gene expression by non-coding RNAs, including microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), are heritable changes that are independent from the genomic DNA sequence. These regulate gene activities and, therefore, cellular functions. Epigenetic modifications act in concert with transcription factors and play critical roles in B cell development and differentiation, thereby modulating antibody responses to foreign- and self-antigens. Upon antigen encounter by mature B cells in the periphery, alterations of these lymphocytes epigenetic landscape are induced by the same stimuli that drive the antibody response. Such alterations instruct B cells to undergo immunoglobulin (Ig) class switch DNA recombination (CSR) and somatic hypermutation (SHM), as well as differentiation to memory B cells or long-lived plasma cells for the immune memory. Inducible histone modifications, together with DNA methylation and miRNAs modulate the transcriptome, particularly the expression of activation-induced cytidine deaminase, which is essential for CSR and SHM, and factors central to plasma cell differentiation, such as B lymphocyte-induced maturation protein-1. These inducible B cell-intrinsic epigenetic marks guide the maturation of antibody responses. Combinatorial histone modifications also function as histone codes to target CSR and, possibly, SHM machinery to the Ig loci by recruiting specific adaptors that can stabilize CSR/SHM factors. In addition, lncRNAs, such as recently reported lncRNA-CSR and an lncRNA generated through transcription of the S region that form G-quadruplex structures, are also important for CSR targeting. Epigenetic dysregulation in B cells, including the aberrant expression of non-coding RNAs and alterations of histone modifications and DNA methylation, can result in aberrant antibody responses to foreign antigens, such as those on microbial pathogens, and generation of pathogenic autoantibodies, IgE in allergic reactions, as well as B cell neoplasia. Epigenetic marks would be attractive targets for new therapeutics for autoimmune and allergic diseases, and B cell malignancies.
Collapse
Affiliation(s)
- Hong Zan
- Department of Microbiology and Immunology, University of Texas School of Medicine, UT Health Science Center , San Antonio, TX , USA
| | - Paolo Casali
- Department of Microbiology and Immunology, University of Texas School of Medicine, UT Health Science Center , San Antonio, TX , USA
| |
Collapse
|
80
|
Microenvironment and HIV-related lymphomagenesis. Semin Cancer Biol 2015; 34:52-7. [DOI: 10.1016/j.semcancer.2015.06.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 06/16/2015] [Indexed: 12/18/2022]
|
81
|
ATM deficiency promotes development of murine B-cell lymphomas that resemble diffuse large B-cell lymphoma in humans. Blood 2015; 126:2291-301. [PMID: 26400962 DOI: 10.1182/blood-2015-06-654749] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Accepted: 09/19/2015] [Indexed: 12/17/2022] Open
Abstract
The serine-threonine kinase ataxia-telangiectasia mutated (ATM) plays a central role in maintaining genomic integrity. In mice, ATM deficiency is exclusively associated with T-cell lymphoma development, whereas B-cell tumors predominate in human ataxia-telangiectasia patients. We demonstrate in this study that when T cells are removed as targets for lymphomagenesis and as mediators of immune surveillance, ATM-deficient mice exclusively develop early-onset immunoglobulin M(+) B-cell lymphomas that do not transplant to immunocompetent mice and that histologically and genetically resemble the activated B cell-like (ABC) subset of human diffuse large B-cell lymphoma (DLBCL). These B-cell lymphomas show considerable chromosomal instability and a recurrent genomic amplification of a 4.48-Mb region on chromosome 18 that contains Malt1 and is orthologous to a region similarly amplified in human ABC DLBCL. Of importance, amplification of Malt1 in these lymphomas correlates with their dependence on nuclear factor (NF)-κB, MALT1, and B-cell receptor (BCR) signaling for survival, paralleling human ABC DLBCL. Further, like some human ABC DLBCLs, these mouse B-cell lymphomas also exhibit constitutive BCR-dependent NF-κB activation. This study reveals that ATM protects against development of B-cell lymphomas that model human ABC DLBCL and identifies a potential role for T cells in preventing the emergence of these tumors.
Collapse
|
82
|
AID-associated DNA repair pathways regulate malignant transformation in a murine model of BCL6-driven diffuse large B-cell lymphoma. Blood 2015; 127:102-12. [PMID: 26385350 DOI: 10.1182/blood-2015-02-628164] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 09/08/2015] [Indexed: 12/27/2022] Open
Abstract
Somatic hypermutation and class-switch recombination of the immunoglobulin (Ig) genes occur in germinal center (GC) B cells and are initiated through deamination of cytidine to uracil by activation-induced cytidine deaminase (AID). Resulting uracil-guanine mismatches are processed by uracil DNA glycosylase (UNG)-mediated base-excision repair and MSH2-mediated mismatch repair (MMR) to yield mutations and DNA strand lesions. Although off-target AID activity also contributes to oncogenic point mutations and chromosome translocations associated with GC and post-GC B-cell lymphomas, the role of downstream AID-associated DNA repair pathways in the pathogenesis of lymphoma is unknown. Here, we show that simultaneous deficiency of UNG and MSH2 or MSH2 alone causes genomic instability and a shorter latency to the development of BCL6-driven diffuse large B-cell lymphoma (DLBCL) in a murine model. The additional development of several BCL6-independent malignancies in these mice underscores the critical role of MMR in maintaining general genomic stability. In contrast, absence of UNG alone is highly protective and prevents the development of BCL6-driven DLBCL. We further demonstrate that clonal and nonclonal mutations arise within non-Ig AID target genes in the combined absence of UNG and MSH2 and that DNA strand lesions arise in an UNG-dependent manner but are offset by MSH2. These findings lend insight into a complex interplay whereby potentially deleterious UNG activity and general genomic instability are opposed by the protective influence of MSH2, producing a net protective effect that promotes immune diversification while simultaneously attenuating malignant transformation of GC B cells.
Collapse
|
83
|
Dominguez PM, Teater M, Chambwe N, Kormaksson M, Redmond D, Ishii J, Vuong B, Chaudhuri J, Melnick A, Vasanthakumar A, Godley LA, Papavasiliou FN, Elemento O, Shaknovich R. DNA Methylation Dynamics of Germinal Center B Cells Are Mediated by AID. Cell Rep 2015; 12:2086-98. [PMID: 26365193 DOI: 10.1016/j.celrep.2015.08.036] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 06/10/2015] [Accepted: 08/11/2015] [Indexed: 12/31/2022] Open
Abstract
Changes in DNA methylation are required for the formation of germinal centers (GCs), but the mechanisms of such changes are poorly understood. Activation-induced cytidine deaminase (AID) has been recently implicated in DNA demethylation through its deaminase activity coupled with DNA repair. We investigated the epigenetic function of AID in vivo in germinal center B cells (GCBs) isolated from wild-type (WT) and AID-deficient (Aicda(-/-)) mice. We determined that the transit of B cells through the GC is associated with marked locus-specific loss of methylation and increased methylation diversity, both of which are lost in Aicda(-/-) animals. Differentially methylated cytosines (DMCs) between GCBs and naive B cells (NBs) are enriched in genes that are targeted for somatic hypermutation (SHM) by AID, and these genes form networks required for B cell development and proliferation. Finally, we observed significant conservation of AID-dependent epigenetic reprogramming between mouse and human B cells.
Collapse
Affiliation(s)
- Pilar M Dominguez
- Division of Hematology and Oncology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Matt Teater
- Division of Hematology and Oncology, Weill Cornell Medical College, New York, NY 10065, USA; Institute for Computational Biomedicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Nyasha Chambwe
- Institute for Computational Biomedicine, Weill Cornell Medical College, New York, NY 10065, USA; Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY 10065, USA
| | | | - David Redmond
- Institute for Computational Biomedicine, Weill Cornell Medical College, New York, NY 10065, USA; Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY 10065, USA
| | - Jennifer Ishii
- Epigenomics Core Facility, Weill Cornell Medical College, New York, NY 10065, USA
| | - Bao Vuong
- Immunology Program, Memorial Sloan-Kettering Cancer Center, Gerstner Sloan-Kettering Graduate School, New York, NY 10065, USA
| | - Jayanta Chaudhuri
- Immunology Program, Memorial Sloan-Kettering Cancer Center, Gerstner Sloan-Kettering Graduate School, New York, NY 10065, USA
| | - Ari Melnick
- Division of Hematology and Oncology, Weill Cornell Medical College, New York, NY 10065, USA
| | | | - Lucy A Godley
- Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - F Nina Papavasiliou
- Laboratories of Lymphocyte Biology and Molecular Parasitology, The Rockefeller University, New York, NY 10065, USA
| | - Olivier Elemento
- Institute for Computational Biomedicine, Weill Cornell Medical College, New York, NY 10065, USA; Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY 10065, USA
| | - Rita Shaknovich
- Division of Hematology and Oncology, Weill Cornell Medical College, New York, NY 10065, USA; Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY 10065, USA.
| |
Collapse
|
84
|
Robbiani DF, Deroubaix S, Feldhahn N, Oliveira TY, Callen E, Wang Q, Jankovic M, Silva IT, Rommel PC, Bosque D, Eisenreich T, Nussenzweig A, Nussenzweig MC. Plasmodium Infection Promotes Genomic Instability and AID-Dependent B Cell Lymphoma. Cell 2015; 162:727-37. [PMID: 26276629 PMCID: PMC4538708 DOI: 10.1016/j.cell.2015.07.019] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Revised: 04/20/2015] [Accepted: 06/02/2015] [Indexed: 02/06/2023]
Abstract
Chronic infection with Plasmodium falciparum was epidemiologically associated with endemic Burkitt's lymphoma, a mature B cell cancer characterized by chromosome translocation between the c-myc oncogene and Igh, over 50 years ago. Whether infection promotes B cell lymphoma, and if so by which mechanism, remains unknown. To investigate the relationship between parasitic disease and lymphomagenesis, we used Plasmodium chabaudi (Pc) to produce chronic malaria infection in mice. Pc induces prolonged expansion of germinal centers (GCs), unique compartments in which B cells undergo rapid clonal expansion and express activation-induced cytidine deaminase (AID), a DNA mutator. GC B cells elicited during Pc infection suffer widespread DNA damage, leading to chromosome translocations. Although infection does not change the overall rate, it modifies lymphomagenesis to favor mature B cell lymphomas that are AID dependent and show chromosome translocations. Thus, malaria infection favors mature B cell cancers by eliciting protracted AID expression in GC B cells. PAPERCLIP.
Collapse
Affiliation(s)
- Davide F Robbiani
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA.
| | - Stephanie Deroubaix
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Niklas Feldhahn
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Thiago Y Oliveira
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Elsa Callen
- Laboratory of Genome Integrity, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Qiao Wang
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Mila Jankovic
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Israel T Silva
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Philipp C Rommel
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - David Bosque
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Tom Eisenreich
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - André Nussenzweig
- Laboratory of Genome Integrity, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michel C Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA; Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
85
|
Chandra V, Bortnick A, Murre C. AID targeting: old mysteries and new challenges. Trends Immunol 2015; 36:527-35. [PMID: 26254147 DOI: 10.1016/j.it.2015.07.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 07/14/2015] [Accepted: 07/14/2015] [Indexed: 01/09/2023]
Abstract
Activation-induced cytidine deaminase (AID) mediates cytosine deamination and underlies two central processes in antibody diversification: somatic hypermutation and class-switch recombination. AID deamination is not exclusive to immunoglobulin loci; it can instigate DNA lesions in non-immunoglobulin genes and thus stringent checks are in place to constrain and restrict its activity. Recent findings have provided new insights into the mechanisms that target AID activity to specific genomic regions, revealing an involvement for noncoding RNAs associated with polymerase pausing and with enhancer transcription as well as genomic architecture. We review these findings and integrate them into a model for multilevel regulation of AID expression and targeting in immunoglobulin and non-immunoglobulin loci. Within this framework we discuss gaps in understanding, and outline important areas of further research.
Collapse
Affiliation(s)
- Vivek Chandra
- Department of Molecular Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093-0377, USA
| | - Alexandra Bortnick
- Department of Molecular Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093-0377, USA
| | - Cornelis Murre
- Department of Molecular Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093-0377, USA.
| |
Collapse
|
86
|
Montamat-Sicotte D, Liztler LC, Abreu C, Safavi S, Zahn A, Orthwein A, Muschen M, Oppezzo P, Muñoz DP, Di Noia JM. HSP90 inhibitors decrease AID levels and activity in mice and in human cells. Eur J Immunol 2015; 45:2365-76. [PMID: 25912253 PMCID: PMC4536124 DOI: 10.1002/eji.201545462] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 03/26/2015] [Accepted: 04/25/2015] [Indexed: 01/25/2023]
Abstract
Activation induced deaminase (AID) initiates somatic hypermutation and class switch recombination of the Ig genes in antigen-activated B cells, underpinning antibody affinity maturation and isotype switching. AID can also be pathogenic by contributing to autoimmune diseases and oncogenic mutations. Moreover, AID can exert noncanonical functions when aberrantly expressed in epithelial cells. The lack of specific inhibitors prevents therapeutic applications to modulate AID functions. Here, we have exploited our previous finding that the HSP90 molecular chaperoning pathway stabilizes AID in B cells, to test whether HSP90 inhibitors could target AID in vivo. We demonstrate that chronic administration of HSP90 inhibitors decreases AID protein levels and isotype switching in immunized mice. HSP90 inhibitors also reduce disease severity in a mouse model of acute B-cell lymphoblastic leukemia in which AID accelerates disease progression. We further show that human AID protein levels are sensitive to HSP90 inhibition in normal and leukemic B cells, and that HSP90 inhibition prevents AID-dependent epithelial to mesenchymal transition in a human breast cancer cell line in vitro. Thus, we provide proof-of-concept that HSP90 inhibitors indirectly target AID in vivo and that endogenous human AID is widely sensitive to them, which could have therapeutic applications.
Collapse
Affiliation(s)
| | - Ludivine C Liztler
- Institut de Recherches Cliniques de Montréal, Montréal, Canada
- Department of Biochemistry, Université de Montréal, Montréal, QC, Canada
| | - Cecilia Abreu
- Research Laboratory on Chronic Lymphocytic Leukemia, Instituto Pasteur de Montevideo, Montevideo, Uruguay
| | - Shiva Safavi
- Institut de Recherches Cliniques de Montréal, Montréal, Canada
- Department of Medicine, McGill University, Montréal, QC, Canada
| | - Astrid Zahn
- Institut de Recherches Cliniques de Montréal, Montréal, Canada
| | | | - Markus Muschen
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco,USA
| | - Pablo Oppezzo
- Research Laboratory on Chronic Lymphocytic Leukemia, Instituto Pasteur de Montevideo, Montevideo, Uruguay
| | - Denise P Muñoz
- UCSF Benioff Children’s Hospital and Research Institute at Oakland, Oakland, USA
| | - Javier M Di Noia
- Institut de Recherches Cliniques de Montréal, Montréal, Canada
- Department of Biochemistry, Université de Montréal, Montréal, QC, Canada
- Department of Medicine, McGill University, Montréal, QC, Canada
- Department of Medicine, Université de Montréal, Montréal, Canada
| |
Collapse
|
87
|
|
88
|
Sun Y, Oravecz-Wilson K, Mathewson N, Wang Y, McEachin R, Liu C, Toubai T, Wu J, Rossi C, Braun T, Saunders T, Reddy P. Mature T cell responses are controlled by microRNA-142. J Clin Invest 2015; 125:2825-40. [PMID: 26098216 DOI: 10.1172/jci78753] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 05/14/2015] [Indexed: 12/16/2022] Open
Abstract
T cell proliferation is critical for immune responses; however, the molecular mechanisms that mediate the proliferative response are poorly understood. MicroRNAs (miRs) regulate various molecular processes, including development and function of the immune system. Here, utilizing multiple complementary genetic and molecular approaches, we investigated the contribution of a hematopoietic-specific miR, miR-142, in regulating T cell responses. T cell development was not affected in animals with a targeted deletion of Mir142; however, T cell proliferation was markedly reduced following stimulation both in vitro and in multiple murine models of graft-versus-host disease (GVHD). miR-142-deficient T cells demonstrated substantial cell-cycling defects, and microarray and bioinformatics analyses revealed upregulation of genes involved in cell cycling. Moreover, 2 predicted miR-142 target genes, the atypical E2F transcription factors E2f7 and E2f8, were most highly upregulated in miR-142-deficient cells. Clustered regularly interspaced short palindromic repeat interference-mediated (CRISPRi-mediated) silencing of E2F7 and E2F8 in miR-142-deficient T cells ameliorated cell-cycling defects and reduced GVHD, and overexpression of these factors in WT T cells inhibited the proliferative response. Together, these results identify a link between hematopoietic-specific miR-142 and atypical E2F transcription factors in the regulation of mature T cell cycling and suggest that targeting this interaction may be relevant for mitigating GVHD.
Collapse
|
89
|
Sarkozy C, Salles G, Falandry C. The Biology of Aging and Lymphoma: a Complex Interplay. Curr Oncol Rep 2015; 17:32. [DOI: 10.1007/s11912-015-0457-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
90
|
Parp3 negatively regulates immunoglobulin class switch recombination. PLoS Genet 2015; 11:e1005240. [PMID: 26000965 PMCID: PMC4441492 DOI: 10.1371/journal.pgen.1005240] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 04/26/2015] [Indexed: 12/11/2022] Open
Abstract
To generate highly specific and adapted immune responses, B cells diversify their antibody repertoire through mechanisms involving the generation of programmed DNA damage. Somatic hypermutation (SHM) and class switch recombination (CSR) are initiated by the recruitment of activation-induced cytidine deaminase (AID) to immunoglobulin loci and by the subsequent generation of DNA lesions, which are differentially processed to mutations during SHM or to double-stranded DNA break intermediates during CSR. The latter activate the DNA damage response and mobilize multiple DNA repair factors, including Parp1 and Parp2, to promote DNA repair and long-range recombination. We examined the contribution of Parp3 in CSR and SHM. We find that deficiency in Parp3 results in enhanced CSR, while SHM remains unaffected. Mechanistically, this is due to increased occupancy of AID at the donor (Sμ) switch region. We also find evidence of increased levels of DNA damage at switch region junctions and a bias towards alternative end joining in the absence of Parp3. We propose that Parp3 plays a CSR-specific role by controlling AID levels at switch regions during CSR. During infections, B cells diversify the antibodies they produce by two mechanisms: somatic hypermutation (SHM) and class switch recombination (CSR). SHM mutates the regions encoding the antigen-binding site, generating high-affinity antibodies. CSR allows B cells to switch the class of antibody they produce (from IgM to IgA, IgG or IgE), providing novel effector functions. Together, SHM and CSR establish highly specific and pathogen-adapted antibody responses. SHM and CSR are initiated by the recruitment of the activation-induced cytidine deaminase (AID) enzyme to antibody genes. Once recruited, AID induces DNA lesions that are processed into mutations during SHM or chromosomal DNA breaks during CSR. These breaks activate multiple DNA repair proteins and are resolved by replacing the IgM gene segments by those encoding IgA, IgG or IgE. AID carries a significant oncogenic potential that needs to be controlled to preserve genome integrity. Nevertheless, the underlying mechanisms remain poorly understood. Here we show that Poly(ADP)ribose polymerase 3 (Parp3), an enzyme recently implicated in DNA repair, contributes to antibody diversification by negatively regulating CSR without affecting SHM. We show that Parp3 facilitates the repair of AID-induced DNA damage and controls AID levels on chromatin. We propose that Parp3 protects antibody genes from sustained AID-dependent DNA damage.
Collapse
|
91
|
Abstract
The immunoglobulin diversification processes of somatic hypermutation and class switch recombination critically rely on transcription-coupled targeting of activation-induced cytidine deaminase (AID) to Ig loci in activated B lymphocytes. AID catalyzes deamination of cytidine deoxynucleotides on exposed single-stranded DNA. In addition to driving immunoglobulin diversity, promiscuous targeting of AID mutagenic activity poses a deleterious threat to genomic stability. Recent genome-wide studies have uncovered pervasive AID activity throughout the B cell genome. It is increasingly apparent that AID activity is frequently targeted to genomic loci undergoing early transcription termination where RNA exosome promotes the resolution of stalled transcription complexes via cotranscriptional RNA degradation mechanisms. Here, we review aspects and consequences of eukaryotic transcription that lead to early termination, RNA exosome recruitment, and ultimately targeting of AID mutagenic activity.
Collapse
Affiliation(s)
- Evangelos Pefanis
- Department of Microbiology & Immunology, College of Physicians and Surgeons, Columbia University, New York, USA.
| | - Uttiya Basu
- Department of Microbiology & Immunology, College of Physicians and Surgeons, Columbia University, New York, USA.
| |
Collapse
|
92
|
DiLillo DJ, Ravetch JV. Differential Fc-Receptor Engagement Drives an Anti-tumor Vaccinal Effect. Cell 2015; 161:1035-1045. [PMID: 25976835 DOI: 10.1016/j.cell.2015.04.016] [Citation(s) in RCA: 217] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 02/04/2015] [Accepted: 03/22/2015] [Indexed: 01/21/2023]
Abstract
Passively administered anti-tumor monoclonal antibodies (mAbs) rapidly kill tumor targets via FcγR-mediated cytotoxicity (ADCC), a short-term process. However, anti-tumor mAb treatment can also induce a vaccinal effect, in which mAb-mediated tumor death induces a long-term anti-tumor cellular immune response. To determine how such responses are generated, we utilized a murine model of an anti-tumor vaccinal effect against a model neoantigen. We demonstrate that FcγR expression by CD11c(+) antigen-presenting cells is required to generate anti-tumor T cell responses upon ADCC-mediated tumor clearance. Using FcγR-humanized mice, we demonstrate that anti-tumor human (h)IgG1 must engage hFcγRIIIA on macrophages to mediate ADCC, but also engage hFcγRIIA, the sole hFcγR expressed by human dendritic cells (DCs), to generate a potent vaccinal effect. Thus, while next-generation anti-tumor antibodies with enhanced binding to only hFcγRIIIA are now in clinical use, ideal anti-tumor antibodies must be optimized for both cytotoxic effects as well as hFcγRIIA engagement on DCs to stimulate long-term anti-tumor cellular immunity.
Collapse
Affiliation(s)
- David J DiLillo
- Laboratory of Molecular Genetics and Immunology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Jeffrey V Ravetch
- Laboratory of Molecular Genetics and Immunology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
93
|
Zong D, Callén E, Pegoraro G, Lukas C, Lukas J, Nussenzweig A. Ectopic expression of RNF168 and 53BP1 increases mutagenic but not physiological non-homologous end joining. Nucleic Acids Res 2015; 43:4950-61. [PMID: 25916843 PMCID: PMC4446425 DOI: 10.1093/nar/gkv336] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 04/01/2015] [Indexed: 11/13/2022] Open
Abstract
DNA double strand breaks (DSBs) formed during S phase are preferentially repaired by homologous recombination (HR), whereas G1 DSBs, such as those occurring during immunoglobulin class switch recombination (CSR), are repaired by non-homologous end joining (NHEJ). The DNA damage response proteins 53BP1 and BRCA1 regulate the balance between NHEJ and HR. 53BP1 promotes CSR in part by mediating synapsis of distal DNA ends, and in addition, inhibits 5’ end resection. BRCA1 antagonizes 53BP1 dependent DNA end-blocking activity during S phase, which would otherwise promote mutagenic NHEJ and genome instability. Recently, it was shown that supra-physiological levels of the E3 ubiquitin ligase RNF168 results in the hyper-accumulation of 53BP1/BRCA1 which accelerates DSB repair. Here, we ask whether increased expression of RNF168 or 53BP1 impacts physiological versus mutagenic NHEJ. We find that the anti-resection activities of 53BP1 are rate-limiting for mutagenic NHEJ but not for physiological CSR. As heterogeneity in the expression of RNF168 and 53BP1 is found in human tumors, our results suggest that deregulation of the RNF168/53BP1 pathway could alter the chemosensitivity of BRCA1 deficient tumors.
Collapse
Affiliation(s)
- Dali Zong
- Laboratory of Genome Integrity; National Cancer Institute; National Institutes of Health; Bethesda, MD 20892, USA
| | - Elsa Callén
- Laboratory of Genome Integrity; National Cancer Institute; National Institutes of Health; Bethesda, MD 20892, USA
| | - Gianluca Pegoraro
- Center for Cancer Research, National Cancer Institute; National Institute of Health, Bethesda, MD 20892, USA
| | - Claudia Lukas
- The Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Faculty of Health and Medical Sciences, Blegdamsvej 3, 2200, Copenhagen, Denmark
| | - Jiri Lukas
- The Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Faculty of Health and Medical Sciences, Blegdamsvej 3, 2200, Copenhagen, Denmark
| | - André Nussenzweig
- Laboratory of Genome Integrity; National Cancer Institute; National Institutes of Health; Bethesda, MD 20892, USA
| |
Collapse
|
94
|
Methot SP, Litzler LC, Trajtenberg F, Zahn A, Robert F, Pelletier J, Buschiazzo A, Magor BG, Di Noia JM. Consecutive interactions with HSP90 and eEF1A underlie a functional maturation and storage pathway of AID in the cytoplasm. ACTA ACUST UNITED AC 2015; 212:581-96. [PMID: 25824822 PMCID: PMC4387293 DOI: 10.1084/jem.20141157] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 03/03/2015] [Indexed: 11/13/2022]
Abstract
Methot et al. identify a mechanism for cytoplasmic retention of activation-induced deaminase (AID) in cells. Interactions of AID with Hsp90 and eEF1A proteins, both of which stabilize AID, promote sequential folding and retention of functional AID in the cytoplasm. Inhibition of the translation elongation factor eEF1A blocks its interaction with AID, which then accumulates in the nucleus, increasing class switch recombination and the generation of chromosomal translocation byproducts. Activation-induced deaminase (AID) initiates mutagenic pathways to diversify the antibody genes during immune responses. The access of AID to the nucleus is limited by CRM1-mediated nuclear export and by an uncharacterized mechanism of cytoplasmic retention. Here, we define a conformational motif in AID that dictates its cytoplasmic retention and demonstrate that the translation elongation factor eukaryotic elongation factor 1 α (eEF1A) is necessary for AID cytoplasmic sequestering. The mechanism is independent of protein synthesis but dependent on a tRNA-free form of eEF1A. Inhibiting eEF1A prevents the interaction with AID, which accumulates in the nucleus and increases class switch recombination as well as chromosomal translocation byproducts. Most AID is associated to unspecified cytoplasmic complexes. We find that the interactions of AID with eEF1A and heat-shock protein 90 kD (HSP90) are inversely correlated. Despite both interactions stabilizing AID, the nature of the AID fractions associated with HSP90 or eEF1A are different, defining two complexes that sequentially produce and store functional AID in the cytoplasm. In addition, nuclear export and cytoplasmic retention cooperate to exclude AID from the nucleus but might not be functionally equivalent. Our results elucidate the molecular basis of AID cytoplasmic retention, define its functional relevance and distinguish it from other mechanisms regulating AID.
Collapse
Affiliation(s)
- Stephen P Methot
- Institut de Recherches Cliniques de Montréal, Montréal, Québec H2W 1R7, Canada Department of Medicine, Department of Biochemistry, The Rosalind and Morris Goodman Cancer Research Center, and Department of Oncology, McGill University, Montréal, Québec H3A 0G4, Canada
| | - Ludivine C Litzler
- Institut de Recherches Cliniques de Montréal, Montréal, Québec H2W 1R7, Canada Department of Biochemistry and Department of Medicine, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| | - Felipe Trajtenberg
- Unit of Protein Crystallography, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay
| | - Astrid Zahn
- Institut de Recherches Cliniques de Montréal, Montréal, Québec H2W 1R7, Canada
| | - Francis Robert
- Department of Medicine, Department of Biochemistry, The Rosalind and Morris Goodman Cancer Research Center, and Department of Oncology, McGill University, Montréal, Québec H3A 0G4, Canada
| | - Jerry Pelletier
- Department of Medicine, Department of Biochemistry, The Rosalind and Morris Goodman Cancer Research Center, and Department of Oncology, McGill University, Montréal, Québec H3A 0G4, Canada Department of Medicine, Department of Biochemistry, The Rosalind and Morris Goodman Cancer Research Center, and Department of Oncology, McGill University, Montréal, Québec H3A 0G4, Canada Department of Medicine, Department of Biochemistry, The Rosalind and Morris Goodman Cancer Research Center, and Department of Oncology, McGill University, Montréal, Québec H3A 0G4, Canada
| | - Alejandro Buschiazzo
- Unit of Protein Crystallography, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay Department of Structural Biology and Chemistry, Institut Pasteur, 75015 Paris, France
| | - Brad G Magor
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Javier M Di Noia
- Institut de Recherches Cliniques de Montréal, Montréal, Québec H2W 1R7, Canada Department of Medicine, Department of Biochemistry, The Rosalind and Morris Goodman Cancer Research Center, and Department of Oncology, McGill University, Montréal, Québec H3A 0G4, Canada Department of Biochemistry and Department of Medicine, Université de Montréal, Montréal, Québec H3T 1J4, Canada Department of Biochemistry and Department of Medicine, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| |
Collapse
|
95
|
Dominguez PM, Shaknovich R. Epigenetic function of activation-induced cytidine deaminase and its link to lymphomagenesis. Front Immunol 2014; 5:642. [PMID: 25566255 PMCID: PMC4270259 DOI: 10.3389/fimmu.2014.00642] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 12/02/2014] [Indexed: 01/16/2023] Open
Abstract
Activation-induced cytidine deaminase (AID) is essential for somatic hypermutation and class switch recombination of immunoglobulin (Ig) genes during B cell maturation and immune response. Expression of AID is tightly regulated due to its mutagenic and recombinogenic potential, which is known to target not only Ig genes, but also non-Ig genes, contributing to lymphomagenesis. In recent years, a new epigenetic function of AID and its link to DNA demethylation came to light in several developmental systems. In this review, we summarize existing evidence linking deamination of unmodified and modified cytidine by AID to base-excision repair and mismatch repair machinery resulting in passive or active removal of DNA methylation mark, with the focus on B cell biology. We also discuss potential contribution of AID-dependent DNA hypomethylation to lymphomagenesis.
Collapse
Affiliation(s)
- Pilar M Dominguez
- Division of Hematology and Oncology, Weill Cornell Medical College , New York, NY , USA
| | - Rita Shaknovich
- Division of Hematology and Oncology, Weill Cornell Medical College , New York, NY , USA ; Department of Pathology and Laboratory Medicine, Weill Cornell Medical College , New York, NY , USA
| |
Collapse
|
96
|
Abstract
Activation-induced cytidine deaminase (AID) initiates class switch recombination (CSR) and somatic hypermutation (SHM) by deaminating cytosine residues in immunoglobulin genes (Igh, Igκ, and Igλ). At a lower frequency, AID also causes collateral DNA damage at non-Ig loci, including genes that are rearranged or mutated in B-cell lymphoma. Precisely how AID is recruited to these off-target sites is not entirely understood. To gain further insight into how AID selects its targets, we compared AID-mediated translocations in two different cell types, B cells and mouse embryonic fibroblasts (MEFs). AID targets a distinct set of hotspots in the two cell types. In both cases, hotspots are concentrated in highly transcribed but stalled genes. However, transcription alone is insufficient to recruit AID activity. Comparison of genes similarly transcribed in B cells and MEFs but targeted in only one of the two cell types reveals a common set of epigenetic features associated with AID recruitment in both cells. AID target genes are enriched in chromatin modifications associated with active enhancers (such as H3K27Ac) and marks of active transcription (such as H3K36me3) in both fibroblasts and B cells, indicating that these features are universal mediators of AID recruitment.
Collapse
|
97
|
Qian J, Wang Q, Dose M, Pruett N, Kieffer-Kwon KR, Resch W, Liang G, Tang Z, Mathé E, Benner C, Dubois W, Nelson S, Vian L, Oliveira TY, Jankovic M, Hakim O, Gazumyan A, Pavri R, Awasthi P, Song B, Liu G, Chen L, Zhu S, Feigenbaum L, Staudt L, Murre C, Ruan Y, Robbiani DF, Pan-Hammarström Q, Nussenzweig MC, Casellas R. B cell super-enhancers and regulatory clusters recruit AID tumorigenic activity. Cell 2014; 159:1524-37. [PMID: 25483777 DOI: 10.1016/j.cell.2014.11.013] [Citation(s) in RCA: 214] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 09/26/2014] [Accepted: 10/30/2014] [Indexed: 02/07/2023]
Abstract
The antibody gene mutator activation-induced cytidine deaminase (AID) promiscuously damages oncogenes, leading to chromosomal translocations and tumorigenesis. Why nonimmunoglobulin loci are susceptible to AID activity is unknown. Here, we study AID-mediated lesions in the context of nuclear architecture and the B cell regulome. We show that AID targets are not randomly distributed across the genome but are predominantly grouped within super-enhancers and regulatory clusters. Unexpectedly, in these domains, AID deaminates active promoters and eRNA(+) enhancers interconnected in some instances over megabases of linear chromatin. Using genome editing, we demonstrate that 3D-linked targets cooperate to recruit AID-mediated breaks. Furthermore, a comparison of hypermutation in mouse B cells, AID-induced kataegis in human lymphomas, and translocations in MEFs reveals that AID damages different genes in different cell types. Yet, in all cases, the targets are predominantly associated with topological complex, highly transcribed super-enhancers, demonstrating that these compartments are key mediators of AID recruitment.
Collapse
Affiliation(s)
- Jason Qian
- Genomics and Immunity, NIAMS, NIH, Bethesda, MD 20892, USA
| | - Qiao Wang
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Marei Dose
- Genomics and Immunity, NIAMS, NIH, Bethesda, MD 20892, USA.
| | | | | | - Wolfgang Resch
- Genomics and Immunity, NIAMS, NIH, Bethesda, MD 20892, USA
| | - Genqing Liang
- Genomics and Immunity, NIAMS, NIH, Bethesda, MD 20892, USA
| | - Zhonghui Tang
- Department of Genetic and Development Biology, Jackson Laboratory for Genomic Medicine, University of Connecticut, 400 Farmington, CT 06030, USA
| | - Ewy Mathé
- Genomics and Immunity, NIAMS, NIH, Bethesda, MD 20892, USA
| | - Christopher Benner
- The Integrative Genomics and Bioinformatics Core, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Wendy Dubois
- Center of Cancer Research, NCI, NIH, Bethesda, MD 20892, USA
| | | | - Laura Vian
- Genomics and Immunity, NIAMS, NIH, Bethesda, MD 20892, USA
| | - Thiago Y Oliveira
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Mila Jankovic
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Ofir Hakim
- Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Anna Gazumyan
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Rushad Pavri
- Institute of Molecular Pathology (IMP), Vienna BioCenter, Doktor Bohr Gasse 7, Vienna 1030, Austria
| | - Parirokh Awasthi
- Science Applications International Corporation/Frederick, NCI-Frederick Cancer Research and Development Center, Frederick, MD 21702, USA
| | - Bin Song
- Beijing Genomics Institute, Shenzhen, Shenzhen 518083, China
| | - Geng Liu
- Beijing Genomics Institute, Shenzhen, Shenzhen 518083, China
| | - Longyun Chen
- Beijing Genomics Institute, Shenzhen, Shenzhen 518083, China
| | - Shida Zhu
- Beijing Genomics Institute, Shenzhen, Shenzhen 518083, China
| | - Lionel Feigenbaum
- Science Applications International Corporation/Frederick, NCI-Frederick Cancer Research and Development Center, Frederick, MD 21702, USA
| | - Louis Staudt
- Metabolism Branch, NCI, NIH, Bethesda, MD 20892, USA
| | - Cornelis Murre
- Division of Biological Sciences, Department of Molecular Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Yijun Ruan
- Department of Genetic and Development Biology, Jackson Laboratory for Genomic Medicine, University of Connecticut, 400 Farmington, CT 06030, USA
| | - Davide F Robbiani
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Qiang Pan-Hammarström
- Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Huddinge, 14186 Stockholm, Sweden
| | - Michel C Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA; HHMI, The Rockefeller University, New York, NY 10065, USA
| | - Rafael Casellas
- Genomics and Immunity, NIAMS, NIH, Bethesda, MD 20892, USA; Center of Cancer Research, NCI, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
98
|
Wright RL, Slemmons KK, Vaughan ATM. Estradiol induces gene proximity and MLL-MLLT3 fusion in an activation-induced cytidine deaminase-mediated pathway. Leuk Lymphoma 2014; 56:1460-5. [PMID: 25130479 DOI: 10.3109/10428194.2014.954112] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Epidemiological data have linked birth control formulations to an increased risk of infant acute leukemia involving MLL rearrangements. Reverse transcription polymerase chain reaction (RT-PCR) studies showed that 10 nM estradiol enhanced MLL transcription in addition to its common translocation partners, MLLT2 (AF4) and MLLT3 (AF9). The same concentration of estradiol triggered MLL and MLLT3 co-localization without affecting the interaction of genes located on the same chromosomes. Estradiol also stimulated the generation of MLL-MLLT3 fusion transcripts as seen by RT-PCR. RNAi knockdown of activation-induced cytidine deaminase (AICDA) suppressed the induction of MLL-MLLT3 fusion transcript formation observed with estradiol. Additionally, chromatin immunoprecipitation (ChIP) analysis showed estradiol dependent localization of AICDA in MLL intron 11, upstream of a hotspot for both DNA cleavage and rearrangement, but not downstream within intron 12. Combined, these studies show that levels of estradiol consistent with that observed during pregnancy have the potential to initiate MLL fusions through an AICDA-mediated mechanism.
Collapse
Affiliation(s)
- Rebecca L Wright
- Department of Radiation Oncology, University of California at Davis , Sacramento, CA , USA
| | | | | |
Collapse
|
99
|
Moris A, Murray S, Cardinaud S. AID and APOBECs span the gap between innate and adaptive immunity. Front Microbiol 2014; 5:534. [PMID: 25352838 PMCID: PMC4195361 DOI: 10.3389/fmicb.2014.00534] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 09/24/2014] [Indexed: 12/17/2022] Open
Abstract
The activation-induced deaminase (AID)/APOBEC cytidine deaminases participate in a diversity of biological processes from the regulation of protein expression to embryonic development and host defenses. In its classical role, AID mutates germline-encoded sequences of B cell receptors, a key aspect of adaptive immunity, and APOBEC1, mutates apoprotein B pre-mRNA, yielding two isoforms important for cellular function and plasma lipid metabolism. Investigations over the last ten years have uncovered a role of the APOBEC superfamily in intrinsic immunity against viruses and innate immunity against viral infection by deamination and mutation of viral genomes. Further, discovery in the area of human immunodeficiency virus (HIV) infection revealed that the HIV viral infectivity factor protein interacts with APOBEC3G, targeting it for proteosomal degradation, overriding its antiviral function. More recently, our and others' work have uncovered that the AID and APOBEC cytidine deaminase family members have an even more direct link between activity against viral infection and induction and shaping of adaptive immunity than previously thought, including that of antigen processing for cytotoxic T lymphocyte activity and natural killer cell activation. Newly ascribed functions of these cytodine deaminases will be discussed, including their newly identified roles in adaptive immunity, epigenetic regulation, and cell differentiation. Herein this review we discuss AID and APOBEC cytodine deaminases as a link between innate and adaptive immunity uncovered by recent studies.
Collapse
Affiliation(s)
- Arnaud Moris
- Center for Immunology and Microbial Infections, Faculty of Medicine, Université Paris-Sorbonne UPMC Univ Paris 06, Paris, France ; Center for Immunology and Microbial Infections, Institut National de la Santé et de la Recherche Médicale U1135, Paris, France ; Center for Immunology and Microbial Infections, Centre National de la Recherche Scientifique ERL 8255, Paris, France ; Department of Immunology, Hôpital Pitié-Salpêtière Paris, France
| | - Shannon Murray
- Center for Immunology and Microbial Infections, Faculty of Medicine, Université Paris-Sorbonne UPMC Univ Paris 06, Paris, France ; Center for Immunology and Microbial Infections, Institut National de la Santé et de la Recherche Médicale U1135, Paris, France ; Center for Immunology and Microbial Infections, Centre National de la Recherche Scientifique ERL 8255, Paris, France
| | - Sylvain Cardinaud
- Center for Immunology and Microbial Infections, Faculty of Medicine, Université Paris-Sorbonne UPMC Univ Paris 06, Paris, France ; Center for Immunology and Microbial Infections, Institut National de la Santé et de la Recherche Médicale U1135, Paris, France ; Center for Immunology and Microbial Infections, Centre National de la Recherche Scientifique ERL 8255, Paris, France
| |
Collapse
|
100
|
Barlow JH, Nussenzweig A. Replication initiation and genome instability: a crossroads for DNA and RNA synthesis. Cell Mol Life Sci 2014; 71:4545-59. [PMID: 25238783 DOI: 10.1007/s00018-014-1721-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 08/28/2014] [Indexed: 12/16/2022]
Abstract
Nuclear DNA replication requires the concerted action of hundreds of proteins to efficiently unwind and duplicate the entire genome while also retaining epigenetic regulatory information. Initiation of DNA replication is tightly regulated, rapidly firing thousands of origins once the conditions to promote rapid and faithful replication are in place, and defects in replication initiation lead to proliferation defects, genome instability, and a range of developmental abnormalities. Interestingly, DNA replication in metazoans initiates in actively transcribed DNA, meaning that replication initiation occurs in DNA that is co-occupied with tens of thousands of poised and active RNA polymerase complexes. Active transcription can induce genome instability, particularly during DNA replication, as RNA polymerases can induce torsional stress, formation of secondary structures, and act as a physical barrier to other enzymes involved in DNA metabolism. Here we discuss the challenges facing mammalian DNA replication, their impact on genome instability, and the development of cancer.
Collapse
|