51
|
Wang S, Li H, Lian Z, Deng S. The Role of RNA Modification in HIV-1 Infection. Int J Mol Sci 2022; 23:7571. [PMID: 35886919 PMCID: PMC9317671 DOI: 10.3390/ijms23147571] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/02/2022] [Accepted: 07/05/2022] [Indexed: 01/25/2023] Open
Abstract
RNA plays an important role in biology, and more than 170 RNA modifications have been identified so far. Post-transcriptional modification of RNA in cells plays a crucial role in the regulation of its stability, transport, processing, and gene expression. So far, the research on RNA modification and the exact role of its enzymes is becoming more and more comprehensive. Human immunodeficiency virus 1 (HIV-1) is an RNA virus and the causative agent of acquired immunodeficiency syndrome (AIDS), which is one of the most devastating viral pandemics in history. More and more studies have shown that HIV has RNA modifications and regulation of its gene expression during infection and replication. This review focuses on several RNA modifications and their regulatory roles as well as the roles that different RNA modifications play during HIV-1 infection, in order to find new approaches for the development of anti-HIV-1 therapeutics.
Collapse
Affiliation(s)
- Shuqi Wang
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (S.W.); (H.L.)
| | - Huanxiang Li
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (S.W.); (H.L.)
| | - Zhengxing Lian
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (S.W.); (H.L.)
| | - Shoulong Deng
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing 100021, China
| |
Collapse
|
52
|
Rocchi C, Gouet P, Parissi V, Fiorini F. The C-Terminal Domain of HIV-1 Integrase: A Swiss Army Knife for the Virus? Viruses 2022; 14:v14071397. [PMID: 35891378 PMCID: PMC9316232 DOI: 10.3390/v14071397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/22/2022] [Accepted: 06/22/2022] [Indexed: 12/31/2022] Open
Abstract
Retroviral integrase is a multimeric enzyme that catalyzes the integration of reverse-transcribed viral DNA into the cellular genome. Beyond integration, the Human immunodeficiency virus type 1 (HIV-1) integrase is also involved in many other steps of the viral life cycle, such as reverse transcription, nuclear import, virion morphogenesis and proviral transcription. All these additional functions seem to depend on the action of the integrase C-terminal domain (CTD) that works as a molecular hub, interacting with many different viral and cellular partners. In this review, we discuss structural issues concerning the CTD, with particular attention paid to its interaction with nucleic acids. We also provide a detailed map of post-translational modifications and interaction with molecular partners.
Collapse
Affiliation(s)
- Cecilia Rocchi
- Molecular Microbiology and Structural Biochemistry (MMSB), CNRS, University of Lyon 1, UMR 5086, 69367 Lyon, France; (C.R.); (P.G.)
- Viral DNA Integration and Chromatin Dynamics Network (DyNAVir), 33076 Bordeaux, France;
| | - Patrice Gouet
- Molecular Microbiology and Structural Biochemistry (MMSB), CNRS, University of Lyon 1, UMR 5086, 69367 Lyon, France; (C.R.); (P.G.)
- Viral DNA Integration and Chromatin Dynamics Network (DyNAVir), 33076 Bordeaux, France;
| | - Vincent Parissi
- Viral DNA Integration and Chromatin Dynamics Network (DyNAVir), 33076 Bordeaux, France;
- Fundamental Microbiology and Pathogenicity (MFP), CNRS, University of Bordeaux, UMR5234, 33405 Bordeaux, France
| | - Francesca Fiorini
- Molecular Microbiology and Structural Biochemistry (MMSB), CNRS, University of Lyon 1, UMR 5086, 69367 Lyon, France; (C.R.); (P.G.)
- Viral DNA Integration and Chromatin Dynamics Network (DyNAVir), 33076 Bordeaux, France;
- Correspondence: ; Tel.: +33-4-72722624; Fax: +33-4-72722616
| |
Collapse
|
53
|
Liu C, Li X, Xiong F, Wang L, Chen K, Wu P, Hua L, Zhang Z. Down-regulation of MLLT1 super elongation complex subunit impairs the anti-tumor activity of natural killer cells in esophageal cancer. Immunobiology 2022; 227:152238. [PMID: 35763909 DOI: 10.1016/j.imbio.2022.152238] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/09/2022] [Accepted: 06/14/2022] [Indexed: 11/05/2022]
Abstract
Natural killer (NK) cells actively participate in anti-tumor immunity and are thus regarded as a promising tool in immunotherapy against esophageal cancer (EC). However, the mechanisms regulating NK cell activation and exhaustion have not been completely elucidated. In this study, we characterized the expression and function of MLLT1 super elongation complex subunit (MLLT1) in esophageal NK cells in a mouse EC model. MLLT1 was down-regulated in esophageal NK cells, especially NK cells expressing both T cell immunoglobulin and mucin-domain containing-3 (TIM-3) and lymphocyte activation gene3(LAG-3). In vitro knockdown of MLLT1 in NK cells resulted in significant decreases in the expression of IFN-γ and perforin, as well as impaired NK cell cytotoxicity on tumor cells. Adoptive transfer of MLLT-deficient NK cells into EC-bearing mice showed consistent impairment of NK cell anti-tumor activity, as evidenced by decreases in IFN-γ and perforin but not granzyme B. Furthermore, EC tissue cells, which were enriched from the esophagus of EC-bearing mice, induced down-regulation of MLLT1 in splenic NK cells. This down-regulation was partially restored by a TIM-3 blocking antibody. Therefore, this study indicated that TIM-3 signaling down-regulated MLLT1 in esophageal NK cells, and MLLT1 down-regulation undermined the tumoricidal function of NK cells in EC. Our study unveils a novel mechanism underlying NK cell exhaustion/dysfunction in the EC microenvironment. MLLT1 could be a potential target in future NK cell-mediated immunotherapy against EC.
Collapse
Affiliation(s)
- Chong Liu
- The Department of Thoracic Surgery, Tongren Hospital of Wuhan University, 241 Pengliuyang Road, Wuchang District, Wuhan, Hubei Province 430060, China
| | - Xueman Li
- The Department of Thoracic Surgery, Tongren Hospital of Wuhan University, 241 Pengliuyang Road, Wuchang District, Wuhan, Hubei Province 430060, China
| | - Fei Xiong
- The Department of Thoracic Surgery, Tongren Hospital of Wuhan University, 241 Pengliuyang Road, Wuchang District, Wuhan, Hubei Province 430060, China
| | - Lingying Wang
- The Department of Thoracic Surgery, Tongren Hospital of Wuhan University, 241 Pengliuyang Road, Wuchang District, Wuhan, Hubei Province 430060, China
| | - Kang Chen
- The Department of Thoracic Surgery, Tongren Hospital of Wuhan University, 241 Pengliuyang Road, Wuchang District, Wuhan, Hubei Province 430060, China
| | - Pingshang Wu
- The Department of Thoracic Surgery, Tongren Hospital of Wuhan University, 241 Pengliuyang Road, Wuchang District, Wuhan, Hubei Province 430060, China
| | - Li Hua
- The Department of Thoracic Surgery, Tongren Hospital of Wuhan University, 241 Pengliuyang Road, Wuchang District, Wuhan, Hubei Province 430060, China
| | - Zhuo Zhang
- The Department of Thoracic Surgery, Tongren Hospital of Wuhan University, 241 Pengliuyang Road, Wuchang District, Wuhan, Hubei Province 430060, China.
| |
Collapse
|
54
|
Eigenhuis KN, Somsen HB, van den Berg DLC. Transcription Pause and Escape in Neurodevelopmental Disorders. Front Neurosci 2022; 16:846272. [PMID: 35615272 PMCID: PMC9125161 DOI: 10.3389/fnins.2022.846272] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 04/11/2022] [Indexed: 11/17/2022] Open
Abstract
Transcription pause-release is an important, highly regulated step in the control of gene expression. Modulated by various factors, it enables signal integration and fine-tuning of transcriptional responses. Mutations in regulators of pause-release have been identified in a range of neurodevelopmental disorders that have several common features affecting multiple organ systems. This review summarizes current knowledge on this novel subclass of disorders, including an overview of clinical features, mechanistic details, and insight into the relevant neurodevelopmental processes.
Collapse
|
55
|
A functional map of HIV-host interactions in primary human T cells. Nat Commun 2022; 13:1752. [PMID: 35365639 PMCID: PMC8976027 DOI: 10.1038/s41467-022-29346-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/08/2022] [Indexed: 02/07/2023] Open
Abstract
Human Immunodeficiency Virus (HIV) relies on host molecular machinery for replication. Systematic attempts to genetically or biochemically define these host factors have yielded hundreds of candidates, but few have been functionally validated in primary cells. Here, we target 426 genes previously implicated in the HIV lifecycle through protein interaction studies for CRISPR-Cas9-mediated knock-out in primary human CD4+ T cells in order to systematically assess their functional roles in HIV replication. We achieve efficient knockout (>50% of alleles) in 364 of the targeted genes and identify 86 candidate host factors that alter HIV infection. 47 of these factors validate by multiplex gene editing in independent donors, including 23 factors with restrictive activity. Both gene editing efficiencies and HIV-1 phenotypes are highly concordant among independent donors. Importantly, over half of these factors have not been previously described to play a functional role in HIV replication, providing numerous novel avenues for understanding HIV biology. These data further suggest that host-pathogen protein-protein interaction datasets offer an enriched source of candidates for functional host factor discovery and provide an improved understanding of the mechanics of HIV replication in primary T cells.
Collapse
|
56
|
Polyphenol Extracts from Grape Seeds and Apple Can Reactivate Latent HIV-1 Transcription through Promoting P-TEFb Release from 7SK snRNP. DISEASE MARKERS 2022; 2022:6055347. [PMID: 35178129 PMCID: PMC8843978 DOI: 10.1155/2022/6055347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/06/2022] [Indexed: 11/22/2022]
Abstract
The principal barrier for the eradication of HIV/AIDS is the virus latency. One of the effective strategies so called “shock and kill” is to use latency-reversing agents (LRAs) to activate the latent HIV reservoirs and then combine them with the highly active antiretroviral therapy (HAART) to eradicate the virus. However, most of the current LRAs are too toxic; therefore, they have not been used clinically. Our preliminary data indicated that polyphenols from grape seeds can activate HIV in latently infected Jurkat T cells. Owing to a lot of food containing polyphenols and based on a reasoning whether all of these kinds of polyphenols contain the latency-reversing function, in this study, we screened 22 fruits/vegetables to see whether polyphenols from these can reactivate latent HIV-1 transcription. We finally proved that the polyphenols from grape seeds, apple, pomegranate, and bilberry can reactivate latent HIV-1 transcription. The activation of which can be detected on the level of protein and mRNA. The activation of which is in a dose- and time-dependent manner, while the activated polyphenol extracts have the effects to stimulate Tat-independent HIV-1 transcription. The mechanism shows that polyphenol extracts from grape seeds and apple can stimulate P-TEFb's release from 7SK snRNP to induce HIV gene transcription. These results indicate that using a few food of high-content polyphenols as latent activators and combining HARRT may be of great use for the treatment of HIV/AIDS in the future.
Collapse
|
57
|
Zhou K, Zhuang S, Liu F, Chen Y, Li Y, Wang S, Li Y, Wen H, Lin X, Wang J, Huang Y, He C, Xu N, Li Z, Xu L, Zhang Z, Chen LF, Chen R, Liu M. Disrupting the Cdk9/Cyclin T1 heterodimer of 7SK snRNP for the Brd4 and AFF1/4 guided reconstitution of active P-TEFb. Nucleic Acids Res 2021; 50:750-762. [PMID: 34935961 PMCID: PMC8789079 DOI: 10.1093/nar/gkab1228] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/23/2021] [Accepted: 12/10/2021] [Indexed: 01/16/2023] Open
Abstract
P-TEFb modulates RNA polymerase II elongation through alternative interaction with negative and positive regulation factors. While inactive P-TEFbs are mainly sequestered in the 7SK snRNP complex in a chromatin-free state, most of its active forms are in complex with its recruitment factors, Brd4 and SEC, in a chromatin-associated state. Thus, switching from inactive 7SK snRNP to active P-TEFb (Brd4/P-TEFb or SEC/P-TEFb) is essential for global gene expression. Although it has been shown that cellular signaling stimulates the disruption of 7SK snRNP, releasing dephosphorylated and catalytically inactive P-TEFb, little is known about how the inactive released P-TEFb is reactivated. Here, we show that the Cdk9/CycT1 heterodimer released from 7SK snRNP is completely dissociated into monomers in response to stress. Brd4 or SEC then recruits monomerized Cdk9 and CycT1 to reassemble the core P-TEFb. Meanwhile, the binding of monomeric dephosphorylated Cdk9 to either Brd4 or SEC induces the autophosphorylation of T186 of Cdk9. Finally, the same mechanism is employed during nocodazole released entry into early G1 phase of cell cycle. Therefore, our studies demonstrate a novel mechanism by which Cdk9 and CycT1 monomers are reassembled on chromatin to form active P-TEFb by its interaction with Brd4 or SEC to regulate transcription.
Collapse
Affiliation(s)
- Kai Zhou
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005, Fujian, China
| | - Songkuan Zhuang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005, Fujian, China
| | - Fulong Liu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005, Fujian, China
| | - Yanheng Chen
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - You Li
- Biomolecular Interaction Centre, University of Canterbury, Christchurch 8140, New Zealand
| | - Shihui Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005, Fujian, China
| | - Yuxuan Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005, Fujian, China
| | - Huixin Wen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005, Fujian, China
| | - Xiaohua Lin
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005, Fujian, China
| | - Jie Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005, Fujian, China
| | - Yue Huang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005, Fujian, China
| | - Cailing He
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005, Fujian, China
| | - Nan Xu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005, Fujian, China
| | - Zongshu Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005, Fujian, China
| | - Lang Xu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005, Fujian, China
| | - Zixuan Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005, Fujian, China
| | - Lin-Feng Chen
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Ruichuan Chen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005, Fujian, China
| | - Min Liu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005, Fujian, China
| |
Collapse
|
58
|
Characterizing the Interaction between the HTLV-1 Transactivator Tax-1 with Transcription Elongation Factor ELL2 and Its Impact on Viral Transactivation. Int J Mol Sci 2021; 22:ijms222413597. [PMID: 34948391 PMCID: PMC8705299 DOI: 10.3390/ijms222413597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/12/2021] [Accepted: 12/15/2021] [Indexed: 11/16/2022] Open
Abstract
The human T-cell leukemia virus type 1 (HTLV-1)-encoded transactivator and oncoprotein Tax-1 is essential for HTLV-1 replication. We recently found that Tax-1 interacts with transcription elongation factor for RNA polymerase II 2, ELL2, which enhances Tax-1-mediated transactivation of the HTLV-1 promotor. Here, we characterize the Tax-1:ELL2 interaction and its impact on viral transactivation by confocal imaging, co-immunoprecipitation, and luciferase assays. We found that Tax-1 and ELL2 not only co-precipitate, but also co-localize in dot-like structures in the nucleus. Tax-1:ELL2 complex formation occurred independently of Tax-1 point mutations, which are crucial for post translational modifications (PTMs) of Tax-1, suggesting that these PTMs are irrelevant for Tax-1:ELL2 interaction. In contrast, Tax-1 deletion mutants lacking either N-terminal (aa 1-37) or C-terminal regions (aa 150-353) of Tax-1 were impaired in interacting with ELL2. Contrary to Tax-1, the related, non-oncogenic Tax-2B from HTLV-2B did not interact with ELL2. Finally, we found that ELL2-R1 (aa 1-353), which carries an RNA polymerase II binding domain, and ELL2-R3 (aa 515-640) are sufficient to interact with Tax-1; however, only ELL2-truncations expressing R1 could enhance Tax-1-mediated transactivation of the HTLV-1 promoter. Together, this study identifies domains in Tax-1 and ELL2 being required for Tax-1:ELL2 complex formation and for viral transactivation.
Collapse
|
59
|
Ning S, Zeng C, Zeng C, Zhao Y. The TAR binding dynamics and its implication in Tat degradation mechanism. Biophys J 2021; 120:5158-5168. [PMID: 34762866 PMCID: PMC8715215 DOI: 10.1016/j.bpj.2021.11.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/25/2021] [Accepted: 11/03/2021] [Indexed: 10/19/2022] Open
Abstract
Human immunodeficiency virus (HIV) is a retrovirus that progressively attacks the human immune system. It is known that the HIV viral protein Tat recruits the host elongation factor, positive transcription elongation factor b (P-TEFb), onto the nascent HIV viral transactivation response element (TAR) RNA to overcome the elongation pause for active transcription of the entire viral genome. Interestingly, there exists an amplifying feedback loop between Tat and TAR-a reduction in Tat increases the elongation pause, resulting in more TAR RNA fragments instead of the entire viral genome transcript, and the TAR fragments as a scaffold for PRC2 complex in turn promote Tat ubiquitination and degradation. In this study, the structural ensembles and binding dynamics of various interfaces in the Tat/TAR/P-TEFb complex are probed by all-atom accelerated sampling molecular dynamics simulations. The results show that a protein-binding inhibitor F07#13 targeting the Tat/P-TEFb interface initiates the above feedback loop and shuts down the active transcription. Another RNA binding inhibitor, JB181, targeting the Tat/TAR interface, can prevent TAR from pulling down the Tat from P-TEFb protein and further reducing Tat degradation. The detailed mechanism of the complex dynamics helps elucidate how Tat and TAR coordinate the regulation between HIV genome transcription versus possible HIV latency.
Collapse
Affiliation(s)
- Shangbo Ning
- Institute of Biophysics and Department of Physics, Central China Normal University, Wuhan, China
| | - Chengwei Zeng
- Institute of Biophysics and Department of Physics, Central China Normal University, Wuhan, China
| | - Chen Zeng
- Department of Physics, The George Washington University, Washington, DC
| | - Yunjie Zhao
- Institute of Biophysics and Department of Physics, Central China Normal University, Wuhan, China.
| |
Collapse
|
60
|
Acchioni C, Palermo E, Sandini S, Acchioni M, Hiscott J, Sgarbanti M. Fighting HIV-1 Persistence: At the Crossroads of "Shoc-K and B-Lock". Pathogens 2021; 10:pathogens10111517. [PMID: 34832672 PMCID: PMC8622007 DOI: 10.3390/pathogens10111517] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/10/2021] [Accepted: 11/17/2021] [Indexed: 12/12/2022] Open
Abstract
Despite the success of highly active antiretroviral therapy (HAART), integrated HIV-1 proviral DNA cannot be eradicated from an infected individual. HAART is not able to eliminate latently infected cells that remain invisible to the immune system. Viral sanctuaries in specific tissues and immune-privileged sites may cause residual viral replication that contributes to HIV-1 persistence. The “Shock or Kick, and Kill” approach uses latency reversing agents (LRAs) in the presence of HAART, followed by cell-killing due to viral cytopathic effects and immune-mediated clearance. Different LRAs may be required for the in vivo reactivation of HIV-1 in different CD4+ T cell reservoirs, leading to the activation of cellular transcription factors acting on the integrated proviral HIV-1 LTR. An important requirement for LRA drugs is the reactivation of viral transcription and replication without causing a generalized immune activation. Toll-like receptors, RIG-I like receptors, and STING agonists have emerged recently as a new class of LRAs that augment selective apoptosis in reactivated T lymphocytes. The challenge is to extend in vitro observations to HIV-1 positive patients. Further studies are also needed to overcome the mechanisms that protect latently infected cells from reactivation and/or elimination by the immune system. The Block and Lock alternative strategy aims at using latency promoting/inducing agents (LPAs/LIAs) to block the ability of latent proviruses to reactivate transcription in order to achieve a long term lock down of potential residual virus replication. The Shock and Kill and the Block and Lock approaches may not be only alternative to each other, but, if combined together (one after the other), or given all at once [namely “Shoc-K(kill) and B(block)-Lock”], they may represent a better approach to a functional cure.
Collapse
Affiliation(s)
- Chiara Acchioni
- Department of Infectious Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (C.A.); (S.S.); (M.A.)
| | - Enrico Palermo
- Istituto Pasteur Italia—Cenci Bolognetti Foundation, Viale Regina Elena 291, 00161 Rome, Italy; (E.P.); (J.H.)
| | - Silvia Sandini
- Department of Infectious Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (C.A.); (S.S.); (M.A.)
| | - Marta Acchioni
- Department of Infectious Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (C.A.); (S.S.); (M.A.)
| | - John Hiscott
- Istituto Pasteur Italia—Cenci Bolognetti Foundation, Viale Regina Elena 291, 00161 Rome, Italy; (E.P.); (J.H.)
| | - Marco Sgarbanti
- Department of Infectious Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (C.A.); (S.S.); (M.A.)
- Correspondence: ; Tel.: +39-06-4990-3266
| |
Collapse
|
61
|
Human FKBP5 negatively regulates transcription through inhibition of P-TEFb complex formation. Mol Cell Biol 2021; 42:e0034421. [PMID: 34780285 DOI: 10.1128/mcb.00344-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Although large number of recent studies indicate strong association of FKBP5 (aka FKBP51) functions with various stress-related psychiatric disorder, the overall mechanisms are poorly understood. Beyond a few studies indicating its functions in regulating glucocorticoid receptor-, and AKT-signalling pathways, other functional roles (if any) are unclear. In this study, we report an anti-proliferative role of human FKBP5 through negative regulation of expression of proliferation-related genes. Mechanistically, we show that, owing to same region of interaction on CDK9, human FKBP5 directly competes with CyclinT1 for functional P-TEFb complex formation. In vitro biochemical coupled with cell-based assays, showed strong negative effect of FKBP5 on P-TEFb-mediated phosphorylation of diverse substrates. Consistently, FKBP5 knockdown showed enhanced P-TEFb complex formation leading to increased global RNA polymerase II CTD phosphorylation and expression of proliferation-related genes and subsequent proliferation. Thus, our results show an important role of FKBP5 in negative regulation of P-TEFb functions within mammalian cells.
Collapse
|
62
|
Chavali SS, Mali SM, Bonn R, Saseendran A, Bennett RP, Smith HC, Fasan R, Wedekind JE. Cyclic peptides with a distinct arginine-fork motif recognize the HIV trans-activation response RNA in vitro and in cells. J Biol Chem 2021; 297:101390. [PMID: 34767799 DOI: 10.1016/j.jbc.2021.101390] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/02/2021] [Accepted: 11/04/2021] [Indexed: 12/21/2022] Open
Abstract
RNA represents a potential target for new antiviral therapies, which are urgently needed to address public health threats such as the human immunodeficiency virus (HIV). We showed previously that the interaction between the viral Tat protein and the HIV-1 trans-activation response (TAR) RNA was blocked by the cyclic peptide TB-CP-6.9a. This peptide was derived from a TAR-binding loop that emerged during lab-evolution of a TAR-binding protein (TBP) family. Here we synthesized and characterized a next-generation, cyclic-peptide library based on the TBP scaffold. We sought to identify conserved RNA-binding interactions, and the influence of cyclization linkers on RNA binding and antiviral activity. A diverse group of cyclization linkers, encompassing disulfide bonds to bicyclic aromatic staples, was used to restrain the cyclic peptide geometry. Thermodynamic profiling revealed specific arginine-rich sequences with low to sub-micromolar affinity driven by enthalpic and entropic contributions. The best compounds exhibited no appreciable off-target binding to related molecules, such as BIV TAR and human 7SK RNAs. A specific arginine-to-lysine change in the highest affinity cyclic peptide reduced TAR binding by 10-fold, suggesting that TBP-derived cyclic peptides use an arginine-fork motif to recognize the TAR major-groove while differentiating the mode of binding from other TAR-targeting molecules. Finally, we showed that HIV infectivity in cell culture was reduced in the presence of cyclic peptides constrained by methylene or naphthalene-based linkers. Our findings provide insight into the molecular determinants required for HIV-1 TAR recognition and antiviral activity. These findings are broadly relevant to the development of antivirals that target RNA molecules.
Collapse
Affiliation(s)
- Sai Shashank Chavali
- Department of Biochemistry & Biophysics and Center for RNA Biology, University of Rochester School of Medicine & Dentistry, Rochester NY 14642, USA
| | - Sachitanand M Mali
- Department of Chemistry, University of Rochester, Rochester NY 14627, USA
| | - Rachel Bonn
- Department of Biochemistry & Biophysics and Center for RNA Biology, University of Rochester School of Medicine & Dentistry, Rochester NY 14642, USA
| | | | | | - Harold C Smith
- Department of Biochemistry & Biophysics and Center for RNA Biology, University of Rochester School of Medicine & Dentistry, Rochester NY 14642, USA; OyaGen, Inc., Rochester NY 14623, USA
| | - Rudi Fasan
- Department of Chemistry, University of Rochester, Rochester NY 14627, USA
| | - Joseph E Wedekind
- Department of Biochemistry & Biophysics and Center for RNA Biology, University of Rochester School of Medicine & Dentistry, Rochester NY 14642, USA.
| |
Collapse
|
63
|
Colbran LL, Johnson MR, Mathieson I, Capra JA. Tracing the Evolution of Human Gene Regulation and Its Association with Shifts in Environment. Genome Biol Evol 2021; 13:evab237. [PMID: 34718543 PMCID: PMC8576593 DOI: 10.1093/gbe/evab237] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2021] [Indexed: 12/16/2022] Open
Abstract
As humans populated the world, they adapted to many varying environmental factors, including climate, diet, and pathogens. Because many of these adaptations were mediated by multiple noncoding variants with small effects on gene regulation, it has been difficult to link genomic signals of selection to specific genes, and to describe the regulatory response to selection. To overcome this challenge, we adapted PrediXcan, a machine learning method for imputing gene regulation from genotype data, to analyze low-coverage ancient human DNA (aDNA). First, we used simulated genomes to benchmark strategies for adapting PrediXcan to increase robustness to incomplete data. Applying the resulting models to 490 ancient Eurasians, we found that genes with the strongest divergent regulation among ancient populations with hunter-gatherer, pastoralist, and agricultural lifestyles are enriched for metabolic and immune functions. Next, we explored the contribution of divergent gene regulation to two traits with strong evidence of recent adaptation: dietary metabolism and skin pigmentation. We found enrichment for divergent regulation among genes proposed to be involved in diet-related local adaptation, and the predicted effects on regulation often suggest explanations for known signals of selection, for example, at FADS1, GPX1, and LEPR. In contrast, skin pigmentation genes show little regulatory change over a 38,000-year time series of 2,999 ancient Europeans, suggesting that adaptation mainly involved large-effect coding variants. This work demonstrates that combining aDNA with present-day genomes is informative about the biological differences among ancient populations, the role of gene regulation in adaptation, and the relationship between genetic diversity and complex traits.
Collapse
Affiliation(s)
- Laura L Colbran
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, USA
| | - Maya R Johnson
- School for Science and Math at Vanderbilt, Vanderbilt University, USA
- Department of Computer Science, Bryn Mawr College, Pennsylvania, USA
| | - Iain Mathieson
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, USA
| | - John A Capra
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, USA
- Department of Biological Sciences, Vanderbilt University, USA
- Department of Biomedical Informatics, Vanderbilt University, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, USA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, USA
| |
Collapse
|
64
|
Magro G, Calistri A, Parolin C. Targeting and Understanding HIV Latency: The CRISPR System against the Provirus. Pathogens 2021; 10:pathogens10101257. [PMID: 34684206 PMCID: PMC8539363 DOI: 10.3390/pathogens10101257] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 09/24/2021] [Accepted: 09/25/2021] [Indexed: 11/16/2022] Open
Abstract
The presence of latently infected cells and reservoirs in HIV-1 infected patients constitutes a significant obstacle to achieve a definitive cure. Despite the efforts dedicated to solve these issues, the mechanisms underlying viral latency are still under study. Thus, on the one hand, new strategies are needed to elucidate which factors are involved in latency establishment and maintenance. On the other hand, innovative therapeutic approaches aimed at eradicating HIV infection are explored. In this context, advances of the versatile CRISPR-Cas gene editing technology are extremely promising, by providing, among other advantages, the possibility to target the HIV-1 genome once integrated into cellular DNA (provirus) and/or host-specific genes involved in virus infection/latency. This system, up to now, has been employed with success in numerous in vitro and in vivo studies, highlighting its increasing significance in the field. In this review, we focus on the progresses made in the use of different CRISPR-Cas strategies to target the HIV-1 provirus, and we then discuss recent advancements in the use of CRISPR screens to elucidate the role of host-specific factors in viral latency.
Collapse
Affiliation(s)
| | - Arianna Calistri
- Correspondence: (A.C.); (C.P.); Tel.: +39-049-827-2341 (A.C.); +39-049-827-2365 (C.P.)
| | - Cristina Parolin
- Correspondence: (A.C.); (C.P.); Tel.: +39-049-827-2341 (A.C.); +39-049-827-2365 (C.P.)
| |
Collapse
|
65
|
Mbonye U, Leskov K, Shukla M, Valadkhan S, Karn J. Biogenesis of P-TEFb in CD4+ T cells to reverse HIV latency is mediated by protein kinase C (PKC)-independent signaling pathways. PLoS Pathog 2021; 17:e1009581. [PMID: 34529720 PMCID: PMC8478230 DOI: 10.1371/journal.ppat.1009581] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 09/28/2021] [Accepted: 09/04/2021] [Indexed: 01/09/2023] Open
Abstract
The switch between HIV latency and productive transcription is regulated by an auto-feedback mechanism initiated by the viral trans-activator Tat, which functions to recruit the host transcription elongation factor P-TEFb to proviral HIV. A heterodimeric complex of CDK9 and one of three cyclin T subunits, P-TEFb is expressed at vanishingly low levels in resting memory CD4+ T cells and cellular mechanisms controlling its availability are central to regulation of the emergence of HIV from latency. Using a well-characterized primary T-cell model of HIV latency alongside healthy donor memory CD4+ T cells, we characterized specific T-cell receptor (TCR) signaling pathways that regulate the generation of transcriptionally active P-TEFb, defined as the coordinate expression of cyclin T1 and phospho-Ser175 CDK9. Protein kinase C (PKC) agonists, such as ingenol and prostratin, stimulated active P-TEFb expression and reactivated latent HIV with minimal cytotoxicity, even in the absence of intracellular calcium mobilization with an ionophore. Unexpectedly, inhibition-based experiments demonstrated that PKC agonists and TCR-mobilized diacylglycerol signal through MAP kinases ERK1/2 rather than through PKC to effect the reactivation of both P-TEFb and latent HIV. Single-cell and bulk RNA-seq analyses revealed that of the four known isoforms of the Ras guanine nucleotide exchange factor RasGRP, RasGRP1 is by far the predominantly expressed diacylglycerol-dependent isoform in CD4+ T cells. RasGRP1 should therefore mediate the activation of ERK1/2 via Ras-Raf signaling upon TCR co-stimulation or PKC agonist challenge. Combined inhibition of the PI3K-mTORC2-AKT-mTORC1 pathway and the ERK1/2 activator MEK prior to TCR co-stimulation abrogated active P-TEFb expression and substantially suppressed latent HIV reactivation. Therefore, contrary to prevailing models, the coordinate reactivation of P-TEFb and latent HIV in primary T cells following either TCR co-stimulation or PKC agonist challenge is independent of PKC but rather involves two complementary signaling arms of the TCR cascade, namely, RasGRP1-Ras-Raf-MEK-ERK1/2 and PI3K-mTORC2-AKT-mTORC1.
Collapse
Affiliation(s)
- Uri Mbonye
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
- * E-mail: (UM); (JK)
| | - Konstantin Leskov
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Meenakshi Shukla
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Saba Valadkhan
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Jonathan Karn
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
- * E-mail: (UM); (JK)
| |
Collapse
|
66
|
Rouchka EC, Chariker JH, Alejandro B, Adcock RS, Singhal R, Ramirez J, Palmer KE, Lasnik AB, Carrico R, Arnold FW, Furmanek S, Zhang M, Wolf LA, Waigel S, Zacharias W, Bordon J, Chung D. Induction of interferon response by high viral loads at early stage infection may protect against severe outcomes in COVID-19 patients. Sci Rep 2021; 11:15715. [PMID: 34344959 PMCID: PMC8333042 DOI: 10.1038/s41598-021-95197-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 07/21/2021] [Indexed: 12/13/2022] Open
Abstract
Key elements for viral pathogenesis include viral strains, viral load, co-infection, and host responses. Several studies analyzing these factors in the function of disease severity of have been published; however, no studies have shown how all of these factors interplay within a defined cohort. To address this important question, we sought to understand how these four key components interplay in a cohort of COVID-19 patients. We determined the viral loads and gene expression using high throughput sequencing and various virological methods. We found that viral loads in the upper respiratory tract in COVID-19 patients at an early phase of infection vary widely. While the majority of nasopharyngeal (NP) samples have a viral load lower than the limit of detection of infectious viruses, there are samples with an extraordinary amount of SARS-CoV-2 RNA and a high viral titer. No specific viral factors were identified that are associated with high viral loads. Host gene expression analysis showed that viral loads were strongly correlated with cellular antiviral responses. Interestingly, however, COVID-19 patients who experience mild symptoms have a higher viral load than those with severe complications, indicating that naso-pharyngeal viral load may not be a key factor of the clinical outcomes of COVID-19. The metagenomics analysis revealed that the microflora in the upper respiratory tract of COVID-19 patients with high viral loads were dominated by SARS-CoV-2, with a high degree of dysbiosis. Finally, we found a strong inverse correlation between upregulation of interferon responses and disease severity. Overall our study suggests that a high viral load in the upper respiratory tract may not be a critical factor for severe symptoms; rather, dampened antiviral responses may be a critical factor for a severe outcome from the infection.
Collapse
Affiliation(s)
- Eric C Rouchka
- Department of Computer Science and Engineering, University of Louisville, Louisville, KY, USA
- Kentucky IDeA Network of Biomedical Research Excellence (KY-INBRE) Bioinformatics Core, Louisville, KY, USA
| | - Julia H Chariker
- Kentucky IDeA Network of Biomedical Research Excellence (KY-INBRE) Bioinformatics Core, Louisville, KY, USA
- Department of Neuroscience Training, University of Louisville, Louisville, KY, USA
| | - Brian Alejandro
- Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, KY, USA
| | - Robert S Adcock
- Center for Predictive Medicine, University of Louisville School of Medicine, Louisville, KY, USA
| | - Richa Singhal
- Kentucky IDeA Network of Biomedical Research Excellence (KY-INBRE) Bioinformatics Core, Louisville, KY, USA
- Department of Medicine, University of Louisville, Louisville, KY, USA
| | - Julio Ramirez
- Department of Medicine, University of Louisville, Louisville, KY, USA
- Division of Infectious Diseases, University of Louisville, Louisville, KY, USA
| | - Kenneth E Palmer
- Center for Predictive Medicine, University of Louisville School of Medicine, Louisville, KY, USA
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Amanda B Lasnik
- Center for Predictive Medicine, University of Louisville School of Medicine, Louisville, KY, USA
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Ruth Carrico
- Department of Medicine, University of Louisville, Louisville, KY, USA
- Division of Infectious Diseases, University of Louisville, Louisville, KY, USA
| | - Forest W Arnold
- Department of Medicine, University of Louisville, Louisville, KY, USA
- Division of Infectious Diseases, University of Louisville, Louisville, KY, USA
| | - Stephen Furmanek
- Department of Medicine, University of Louisville, Louisville, KY, USA
- Division of Infectious Diseases, University of Louisville, Louisville, KY, USA
| | - Mei Zhang
- Department of Medicine, University of Louisville, Louisville, KY, USA
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA
- Genomics Core Facility, University of Louisville, Louisville, KY, USA
| | - Leslie A Wolf
- Division of Infectious Diseases, University of Louisville, Louisville, KY, USA
| | - Sabine Waigel
- Department of Medicine, University of Louisville, Louisville, KY, USA
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
- Genomics Core Facility, University of Louisville, Louisville, KY, USA
| | - Wolfgang Zacharias
- Department of Medicine, University of Louisville, Louisville, KY, USA
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
- Genomics Core Facility, University of Louisville, Louisville, KY, USA
| | - Jose Bordon
- Washington Health Institute, George Washington University School of Medicine, Washington, D.C, USA
- Department of Medicine, George Washington University School of Medicine, Washington, D.C, USA
| | - Donghoon Chung
- Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, KY, USA.
- Center for Predictive Medicine, University of Louisville School of Medicine, Louisville, KY, USA.
| |
Collapse
|
67
|
Tantale K, Garcia-Oliver E, Robert MC, L'Hostis A, Yang Y, Tsanov N, Topno R, Gostan T, Kozulic-Pirher A, Basu-Shrivastava M, Mukherjee K, Slaninova V, Andrau JC, Mueller F, Basyuk E, Radulescu O, Bertrand E. Stochastic pausing at latent HIV-1 promoters generates transcriptional bursting. Nat Commun 2021; 12:4503. [PMID: 34301927 PMCID: PMC8302722 DOI: 10.1038/s41467-021-24462-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 06/17/2021] [Indexed: 02/06/2023] Open
Abstract
Promoter-proximal pausing of RNA polymerase II is a key process regulating gene expression. In latent HIV-1 cells, it prevents viral transcription and is essential for latency maintenance, while in acutely infected cells the viral factor Tat releases paused polymerase to induce viral expression. Pausing is fundamental for HIV-1, but how it contributes to bursting and stochastic viral reactivation is unclear. Here, we performed single molecule imaging of HIV-1 transcription. We developed a quantitative analysis method that manages multiple time scales from seconds to days and that rapidly fits many models of promoter dynamics. We found that RNA polymerases enter a long-lived pause at latent HIV-1 promoters (>20 minutes), thereby effectively limiting viral transcription. Surprisingly and in contrast to current models, pausing appears stochastic and not obligatory, with only a small fraction of the polymerases undergoing long-lived pausing in absence of Tat. One consequence of stochastic pausing is that HIV-1 transcription occurs in bursts in latent cells, thereby facilitating latency exit and providing a rationale for the stochasticity of viral rebounds.
Collapse
Affiliation(s)
- Katjana Tantale
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
- Equipe labélisée Ligue Nationale Contre le Cancer, University of Montpellier, CNRS, Montpellier, France
| | - Encar Garcia-Oliver
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Marie-Cécile Robert
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
- Equipe labélisée Ligue Nationale Contre le Cancer, University of Montpellier, CNRS, Montpellier, France
- Institut de Génétique Humaine, University of Montpellier, CNRS, Montpellier, France
| | - Adèle L'Hostis
- LPHI, UMR CNRS 5235, University of Montpellier, Montpellier, France
| | - Yueyuxiao Yang
- LPHI, UMR CNRS 5235, University of Montpellier, Montpellier, France
| | - Nikolay Tsanov
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
- Equipe labélisée Ligue Nationale Contre le Cancer, University of Montpellier, CNRS, Montpellier, France
| | - Rachel Topno
- Equipe labélisée Ligue Nationale Contre le Cancer, University of Montpellier, CNRS, Montpellier, France
- Institut de Génétique Humaine, University of Montpellier, CNRS, Montpellier, France
- LPHI, UMR CNRS 5235, University of Montpellier, Montpellier, France
| | - Thierry Gostan
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Alja Kozulic-Pirher
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
- Equipe labélisée Ligue Nationale Contre le Cancer, University of Montpellier, CNRS, Montpellier, France
| | - Meenakshi Basu-Shrivastava
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
- Equipe labélisée Ligue Nationale Contre le Cancer, University of Montpellier, CNRS, Montpellier, France
| | - Kamalika Mukherjee
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
- Equipe labélisée Ligue Nationale Contre le Cancer, University of Montpellier, CNRS, Montpellier, France
| | - Vera Slaninova
- Equipe labélisée Ligue Nationale Contre le Cancer, University of Montpellier, CNRS, Montpellier, France
- Institut de Génétique Humaine, University of Montpellier, CNRS, Montpellier, France
| | - Jean-Christophe Andrau
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Florian Mueller
- Unité Imagerie et Modélisation, Institut Pasteur and CNRS UMR 3691, Paris, France
| | - Eugenia Basyuk
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France.
- Equipe labélisée Ligue Nationale Contre le Cancer, University of Montpellier, CNRS, Montpellier, France.
- Microbiology Fundamental and Pathogenicity CNRS UMR 5234, University of Bordeaux, Bordeaux, France.
| | - Ovidiu Radulescu
- LPHI, UMR CNRS 5235, University of Montpellier, Montpellier, France.
| | - Edouard Bertrand
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France.
- Equipe labélisée Ligue Nationale Contre le Cancer, University of Montpellier, CNRS, Montpellier, France.
- Institut de Génétique Humaine, University of Montpellier, CNRS, Montpellier, France.
| |
Collapse
|
68
|
Campbell GR, Spector SA. Induction of Autophagy to Achieve a Human Immunodeficiency Virus Type 1 Cure. Cells 2021; 10:cells10071798. [PMID: 34359967 PMCID: PMC8307643 DOI: 10.3390/cells10071798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/13/2021] [Accepted: 07/13/2021] [Indexed: 02/06/2023] Open
Abstract
Effective antiretroviral therapy has led to significant human immunodeficiency virus type 1 (HIV-1) suppression and improvement in immune function. However, the persistence of integrated proviral DNA in latently infected reservoir cells, which drive viral rebound post-interruption of antiretroviral therapy, remains the major roadblock to a cure. Therefore, the targeted elimination or permanent silencing of this latently infected reservoir is a major focus of HIV-1 research. The most studied approach in the development of a cure is the activation of HIV-1 expression to expose latently infected cells for immune clearance while inducing HIV-1 cytotoxicity—the “kick and kill” approach. However, the complex and highly heterogeneous nature of the latent reservoir, combined with the failure of clinical trials to reduce the reservoir size casts doubt on the feasibility of this approach. This concern that total elimination of HIV-1 from the body may not be possible has led to increased emphasis on a “functional cure” where the virus remains but is unable to reactivate which presents the challenge of permanently silencing transcription of HIV-1 for prolonged drug-free remission—a “block and lock” approach. In this review, we discuss the interaction of HIV-1 and autophagy, and the exploitation of autophagy to kill selectively HIV-1 latently infected cells as part of a cure strategy. The cure strategy proposed has the advantage of significantly decreasing the size of the HIV-1 reservoir that can contribute to a functional cure and when optimised has the potential to eradicate completely HIV-1.
Collapse
Affiliation(s)
- Grant R. Campbell
- Division of Infectious Diseases, Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA;
- Correspondence: ; Tel.: +1-858-534-7477
| | - Stephen A. Spector
- Division of Infectious Diseases, Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA;
- Rady Children’s Hospital, San Diego, CA 92123, USA
| |
Collapse
|
69
|
Yokoyama A. Leukemogenesis via aberrant self-renewal by the MLL/AEP-mediated transcriptional activation system. Cancer Sci 2021; 112:3935-3944. [PMID: 34251718 PMCID: PMC8486200 DOI: 10.1111/cas.15054] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 07/04/2021] [Accepted: 07/09/2021] [Indexed: 12/17/2022] Open
Abstract
Homeostasis of the hematopoietic system is achieved in a hierarchy, with hematopoietic stem cells at the pinnacle. Because only hematopoietic stem cells (HSCs) can self-renew, the size of the hematopoietic system is strictly controlled. In hematopoietic reconstitution experiments, 1 HSC can reconstitute the entire hematopoietic system, whereas 50 multipotent progenitors cannot. This indicates that only HSCs self-renew, whereas non-HSC hematopoietic progenitors are programmed to differentiate or senesce. Oncogenic mutations of the mixed lineage leukemia gene (MLL) overcome this "programmed differentiation" by conferring the self-renewing ability to non-HSC hematopoietic progenitors. In leukemia, mutated MLL proteins constitutively activate a broad range of previously transcribed CpG-rich promoters by an MLL-mediated transcriptional activation system. This system promotes self-renewal by replicating an expression profile similar to that of the mother cell in its daughter cells. In this transcriptional activation system, MLL binds to unmethylated CpG-rich promoters and recruits RNA polymerase II. MLL recruits p300/CBP through its transcriptional activation domain, which acetylates histone H3 at lysines 9, 18, and 27. The AF4 family/ENL family/P-TEFb complex (AEP) binds to acetylated H3K9/18/27 to activate transcription. Gene rearrangements of MLL with AEP- or CBP/p300-complex components generate constitutively active transcriptional machinery of this transcriptional activation system, which causes aberrant self-renewal of leukemia stem cells. Inhibitors of the components of this system effectively decrease their leukemogenic potential.
Collapse
Affiliation(s)
- Akihiko Yokoyama
- Tsuruoka Metabolomics Laboratory, National Cancer Center, Tsuruoka, Japan.,National Cancer Center Research Institute, Tokyo, Japan
| |
Collapse
|
70
|
Chen Y, Vos SM, Dienemann C, Ninov M, Urlaub H, Cramer P. Allosteric transcription stimulation by RNA polymerase II super elongation complex. Mol Cell 2021; 81:3386-3399.e10. [PMID: 34265249 DOI: 10.1016/j.molcel.2021.06.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 05/19/2021] [Accepted: 06/17/2021] [Indexed: 01/11/2023]
Abstract
The super elongation complex (SEC) contains the positive transcription elongation factor b (P-TEFb) and the subcomplex ELL2-EAF1, which stimulates RNA polymerase II (RNA Pol II) elongation. Here, we report the cryoelectron microscopy (cryo-EM) structure of ELL2-EAF1 bound to a RNA Pol II elongation complex at 2.8 Å resolution. The ELL2-EAF1 dimerization module directly binds the RNA Pol II lobe domain, explaining how SEC delivers P-TEFb to RNA Pol II. The same site on the lobe also binds the initiation factor TFIIF, consistent with SEC binding only after the transition from transcription initiation to elongation. Structure-guided functional analysis shows that the stimulation of RNA elongation requires the dimerization module and the ELL2 linker that tethers the module to the RNA Pol II protrusion. Our results show that SEC stimulates elongation allosterically and indicate that this stimulation involves stabilization of a closed conformation of the RNA Pol II active center cleft.
Collapse
Affiliation(s)
- Ying Chen
- Max Planck Institute for Biophysical Chemistry, Department of Molecular Biology, Am Fassberg 11, 37077 Göttingen, Germany
| | - Seychelle M Vos
- Max Planck Institute for Biophysical Chemistry, Department of Molecular Biology, Am Fassberg 11, 37077 Göttingen, Germany
| | - Christian Dienemann
- Max Planck Institute for Biophysical Chemistry, Department of Molecular Biology, Am Fassberg 11, 37077 Göttingen, Germany
| | - Momchil Ninov
- Max Planck Institute for Biophysical Chemistry, Bioanalytical Mass Spectrometry, Am Fassberg 11, 37077 Göttingen, Germany; University Medical Center Göttingen, Institute of Clinical Chemistry, Bioanalytics Group, Robert-Koch-Straße 40, 37075 Göttingen, Germany
| | - Henning Urlaub
- Max Planck Institute for Biophysical Chemistry, Bioanalytical Mass Spectrometry, Am Fassberg 11, 37077 Göttingen, Germany; University Medical Center Göttingen, Institute of Clinical Chemistry, Bioanalytics Group, Robert-Koch-Straße 40, 37075 Göttingen, Germany
| | - Patrick Cramer
- Max Planck Institute for Biophysical Chemistry, Department of Molecular Biology, Am Fassberg 11, 37077 Göttingen, Germany.
| |
Collapse
|
71
|
Yamayoshi A, Fukumoto H, Hayashi R, Kishimoto K, Kobori A, Koyanagi Y, Komano JA, Murakami A. Development of 7SK snRNA Mimics That Inhibit HIV Transcription. ChemMedChem 2021; 16:3181-3184. [PMID: 34233081 DOI: 10.1002/cmdc.202100422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Indexed: 11/11/2022]
Abstract
The 332-nucleotide small nuclear RNA (snRNA) 7SK is a highly conserved non-coding RNA that regulates transcriptional elongation. By binding with positive transcriptional elongation factor b (P-TEFb) via HEXIM1, 7SK snRNA decreases the kinase activity of P-TEFb and inhibits transcriptional elongation. Additionally, it is reported that 7SK inhibition results in the stimulation of human immunodeficiency virus (HIV)-specific transcription. These reports suggest that 7SK is a naturally occurring functional molecule as negative regulator of P-TEFb and HIV transcription. In this study, we developed functional oligonucleotides that mimic the function of 7SK (7SK mimics) as novel inhibitors of HIV replication. We defined the essential region of 7SK regarding its suppressive effects on transcriptional downregulation using an antisense strategy. Based on the results, we designed 7SK mimics containing the defined region. The inhibitory effects of 7SK mimics on HIV-1 long terminal repeat promoter specific transcription was drastic compared with those of the control mimic molecule. Notably, these effects were found to be more enhanced by co-transfection with Tat-expressing plasmids. From these results, it is indicated that 7SK mimics may have great therapeutic potential for HIV/AIDS treatment.
Collapse
Affiliation(s)
- Asako Yamayoshi
- Chemistry of Functional Molecules, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi Nagasaki-shi, Nagasaki, 852-8521, Japan
| | - Hiroyuki Fukumoto
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Matsugasaki Sakyo-ku, Kyoto, 606-8585, (Japan)
| | - Rie Hayashi
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Matsugasaki Sakyo-ku, Kyoto, 606-8585, (Japan)
| | - Kyosuke Kishimoto
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Matsugasaki Sakyo-ku, Kyoto, 606-8585, (Japan)
| | - Akio Kobori
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Matsugasaki Sakyo-ku, Kyoto, 606-8585, (Japan)
| | - Yoshio Koyanagi
- Laboratory of Systems Virology, Institute for Frontier Life and Medical Sciences, Kyoto University, Shogoin-kawaramachi 53 Sakyo-ku, Kyoto, 606-8507, Japan
| | - Jun A Komano
- Department of Microbiology and Infection Control, Faculty and Graduate School of Pharmaceutical Sciences, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1041, (Japan)
| | - Akira Murakami
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Matsugasaki Sakyo-ku, Kyoto, 606-8585, (Japan)
| |
Collapse
|
72
|
CDK9 keeps RNA polymerase II on track. Cell Mol Life Sci 2021; 78:5543-5567. [PMID: 34146121 PMCID: PMC8257543 DOI: 10.1007/s00018-021-03878-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 05/26/2021] [Accepted: 06/08/2021] [Indexed: 12/30/2022]
Abstract
Cyclin-dependent kinase 9 (CDK9), the kinase component of positive transcription elongation factor b (P-TEFb), is essential for transcription of most protein-coding genes by RNA polymerase II (RNAPII). By releasing promoter-proximally paused RNAPII into gene bodies, CDK9 controls the entry of RNAPII into productive elongation and is, therefore, critical for efficient synthesis of full-length messenger (m)RNAs. In recent years, new players involved in P-TEFb-dependent processes have been identified and an important function of CDK9 in coordinating elongation with transcription initiation and termination has been unveiled. As the regulatory functions of CDK9 in gene expression continue to expand, a number of human pathologies, including cancers, have been associated with aberrant CDK9 activity, underscoring the need to properly regulate CDK9. Here, I provide an overview of CDK9 function and regulation, with an emphasis on CDK9 dysregulation in human diseases.
Collapse
|
73
|
Schnell AP, Kohrt S, Thoma-Kress AK. Latency Reversing Agents: Kick and Kill of HTLV-1? Int J Mol Sci 2021; 22:ijms22115545. [PMID: 34073995 PMCID: PMC8197370 DOI: 10.3390/ijms22115545] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 12/14/2022] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1), the cause of adult T-cell leukemia/lymphoma (ATLL), is a retrovirus, which integrates into the host genome and persistently infects CD4+ T-cells. Virus propagation is stimulated by (1) clonal expansion of infected cells and (2) de novo infection. Viral gene expression is induced by the transactivator protein Tax, which recruits host factors like positive transcription elongation factor b (P-TEFb) to the viral promoter. Since HTLV-1 gene expression is repressed in vivo by viral, cellular, and epigenetic mechanisms in late phases of infection, HTLV-1 avoids an efficient CD8+ cytotoxic T-cell (CTL) response directed against the immunodominant viral Tax antigen. Hence, therapeutic strategies using latency reversing agents (LRAs) sought to transiently activate viral gene expression and antigen presentation of Tax to enhance CTL responses towards HTLV-1, and thus, to expose the latent HTLV-1 reservoir to immune destruction. Here, we review strategies that aimed at enhancing Tax expression and Tax-specific CTL responses to interfere with HTLV-1 latency. Further, we provide an overview of LRAs including (1) histone deacetylase inhibitors (HDACi) and (2) activators of P-TEFb, that have mainly been studied in context of human immunodeficiency virus (HIV), but which may also be powerful in the context of HTLV-1.
Collapse
|
74
|
Anshabo AT, Milne R, Wang S, Albrecht H. CDK9: A Comprehensive Review of Its Biology, and Its Role as a Potential Target for Anti-Cancer Agents. Front Oncol 2021; 11:678559. [PMID: 34041038 PMCID: PMC8143439 DOI: 10.3389/fonc.2021.678559] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 04/16/2021] [Indexed: 12/25/2022] Open
Abstract
Cyclin-dependent kinases (CDKs) are proteins pivotal to a wide range of cellular functions, most importantly cell division and transcription, and their dysregulations have been implicated as prominent drivers of tumorigenesis. Besides the well-established role of cell cycle CDKs in cancer, the involvement of transcriptional CDKs has been confirmed more recently. Most cancers overtly employ CDKs that serve as key regulators of transcription (e.g., CDK9) for a continuous production of short-lived gene products that maintain their survival. As such, dysregulation of the CDK9 pathway has been observed in various hematological and solid malignancies, making it a valuable anticancer target. This therapeutic potential has been utilized for the discovery of CDK9 inhibitors, some of which have entered human clinical trials. This review provides a comprehensive discussion on the structure and biology of CDK9, its role in solid and hematological cancers, and an updated review of the available inhibitors currently being investigated in preclinical and clinical settings.
Collapse
Affiliation(s)
- Abel Tesfaye Anshabo
- Drug Discovery and Development, Centre for Cancer Diagnostics and Therapeutics, Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Robert Milne
- Drug Discovery and Development, Centre for Cancer Diagnostics and Therapeutics, Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Shudong Wang
- Drug Discovery and Development, Centre for Cancer Diagnostics and Therapeutics, Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Hugo Albrecht
- Drug Discovery and Development, Centre for Cancer Diagnostics and Therapeutics, Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| |
Collapse
|
75
|
The 7SK/P-TEFb snRNP controls ultraviolet radiation-induced transcriptional reprogramming. Cell Rep 2021; 35:108965. [PMID: 33852864 DOI: 10.1016/j.celrep.2021.108965] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 01/27/2021] [Accepted: 03/17/2021] [Indexed: 01/08/2023] Open
Abstract
Conversion of promoter-proximally paused RNA polymerase II (RNAPII) into elongating polymerase by the positive transcription elongation factor b (P-TEFb) is a central regulatory step of mRNA synthesis. The activity of P-TEFb is controlled mainly by the 7SK small nuclear ribonucleoprotein (snRNP), which sequesters active P-TEFb into inactive 7SK/P-TEFb snRNP. Here we demonstrate that under normal culture conditions, the lack of 7SK snRNP has only minor impacts on global RNAPII transcription without detectable consequences on cell proliferation. However, upon ultraviolet (UV)-light-induced DNA damage, cells lacking 7SK have a defective transcriptional response and reduced viability. Both UV-induced release of "lesion-scanning" polymerases and activation of key early-responsive genes are compromised in the absence of 7SK. Proper induction of 7SK-dependent UV-responsive genes requires P-TEFb activity directly mobilized from the nucleoplasmic 7SK/P-TEFb snRNP. Our data demonstrate that the primary function of the 7SK/P-TEFb snRNP is to orchestrate the proper transcriptional response to stress.
Collapse
|
76
|
Li X, Song Y. Structure, function and inhibition of critical protein-protein interactions involving mixed lineage leukemia 1 and its fusion oncoproteins. J Hematol Oncol 2021; 14:56. [PMID: 33823889 PMCID: PMC8022399 DOI: 10.1186/s13045-021-01057-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 03/05/2021] [Indexed: 12/13/2022] Open
Abstract
Mixed lineage leukemia 1 (MLL1, also known as MLL or KMT2A) is an important transcription factor and histone-H3 lysine-4 (H3K4) methyltransferase. It is a master regulator for transcription of important genes (e.g., Hox genes) for embryonic development and hematopoiesis. However, it is largely dispensable in matured cells. Dysregulation of MLL1 leads to overexpression of certain Hox genes and eventually leukemia initiation. Chromosome translocations involving MLL1 cause ~ 75% of acute leukemia in infants and 5–10% in children and adults with a poor prognosis. Targeted therapeutics against oncogenic fusion MLL1 (onco-MLL1) are therefore needed. Onco-MLL1 consists of the N-terminal DNA-interacting domains of MLL1 fused with one of > 70 fusion partners, among which transcription cofactors AF4, AF9 and its paralog ENL, and ELL are the most frequent. Wild-type (WT)- and onco-MLL1 involve numerous protein–protein interactions (PPI), which play critical roles in regulating gene expression in normal physiology and leukemia. Moreover, WT-MLL1 has been found to be essential for MLL1-rearranged (MLL1-r) leukemia. Rigorous studies of such PPIs have been performed and much progress has been achieved in understanding their structures, structure–function relationships and the mechanisms for activating gene transcription as well as leukemic transformation. Inhibition of several critical PPIs by peptides, peptidomimetic or small-molecule compounds has been explored as a therapeutic approach for MLL1-r leukemia. This review summarizes the biological functions, biochemistry, structure and inhibition of the critical PPIs involving MLL1 and its fusion partner proteins. In addition, challenges and perspectives of drug discovery targeting these PPIs for the treatment of MLL1-r leukemia are discussed.
Collapse
Affiliation(s)
- Xin Li
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Yongcheng Song
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA. .,Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA.
| |
Collapse
|
77
|
Ganser LR, Chu CC, Bogerd HP, Kelly ML, Cullen BR, Al-Hashimi HM. Probing RNA Conformational Equilibria within the Functional Cellular Context. Cell Rep 2021; 30:2472-2480.e4. [PMID: 32101729 DOI: 10.1016/j.celrep.2020.02.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 12/24/2019] [Accepted: 01/31/2020] [Indexed: 12/17/2022] Open
Abstract
Low-abundance short-lived non-native conformations referred to as excited states (ESs) are increasingly observed in vitro and implicated in the folding and biological activities of regulatory RNAs. We developed an approach for assessing the relative abundance of RNA ESs within the functional cellular context. Nuclear magnetic resonance (NMR) spectroscopy was used to estimate the degree to which substitution mutations bias conformational equilibria toward the inactive ES in vitro. The cellular activity of the ES-stabilizing mutants was used as an indirect measure of the conformational equilibria within the functional cellular context. Compensatory mutations that restore the ground-state conformation were used to control for changes in sequence. Using this approach, we show that the ESs of two regulatory RNAs from HIV-1, the transactivation response element (TAR) and the Rev response element (RRE), likely form in cells with abundances comparable to those measured in vitro, and their targeted stabilization may provide an avenue for developing anti-HIV therapeutics.
Collapse
Affiliation(s)
- Laura R Ganser
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | - Chia-Chieh Chu
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | - Hal P Bogerd
- Department of Molecular Genetics and Microbiology, Center for Virology, Duke University Medical Center, Durham, NC 27710, USA
| | - Megan L Kelly
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | - Bryan R Cullen
- Department of Molecular Genetics and Microbiology, Center for Virology, Duke University Medical Center, Durham, NC 27710, USA.
| | - Hashim M Al-Hashimi
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
78
|
Zhao X, Wang MY, Jiang H, Lwin T, Park PM, Gao J, Meads MB, Ren Y, Li T, Sun J, Fahmi NA, Singh S, Sehgal L, Wang X, Silva AS, Sotomayor EM, Shain KH, Cleveland JL, Wang M, Zhang W, Qi J, Shah BD, Tao J. Transcriptional programming drives Ibrutinib-resistance evolution in mantle cell lymphoma. Cell Rep 2021; 34:108870. [PMID: 33730585 PMCID: PMC8057695 DOI: 10.1016/j.celrep.2021.108870] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 01/21/2021] [Accepted: 02/23/2021] [Indexed: 12/16/2022] Open
Abstract
Ibrutinib, a bruton's tyrosine kinase (BTK) inhibitor, provokes robust clinical responses in aggressive mantle cell lymphoma (MCL), yet many patients relapse with lethal Ibrutinib-resistant (IR) disease. Here, using genomic, chemical proteomic, and drug screen profiling, we report that enhancer remodeling-mediated transcriptional activation and adaptive signaling changes drive the aggressive phenotypes of IR. Accordingly, IR MCL cells are vulnerable to inhibitors of the transcriptional machinery and especially so to inhibitors of cyclin-dependent kinase 9 (CDK9), the catalytic subunit of the positive transcription elongation factor b (P-TEFb) of RNA polymerase II (RNAPII). Further, CDK9 inhibition disables reprogrammed signaling circuits and prevents the emergence of IR in MCL. Finally, and importantly, we find that a robust and facile ex vivo image-based functional drug screening platform can predict clinical therapeutic responses of IR MCL and identify vulnerabilities that can be targeted to disable the evolution of IR.
Collapse
MESH Headings
- Adenine/analogs & derivatives
- Adenine/pharmacology
- Adenine/therapeutic use
- Animals
- Cell Cycle Proteins/antagonists & inhibitors
- Cell Cycle Proteins/metabolism
- Cell Line, Tumor
- Cyclin-Dependent Kinase 9/antagonists & inhibitors
- Cyclin-Dependent Kinase 9/metabolism
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Enhancer Elements, Genetic/genetics
- Humans
- Lymphoma, Mantle-Cell/drug therapy
- Lymphoma, Mantle-Cell/enzymology
- Lymphoma, Mantle-Cell/genetics
- Lymphoma, Mantle-Cell/pathology
- Male
- Mice, Inbred NOD
- Mice, SCID
- Piperidines/pharmacology
- Piperidines/therapeutic use
- Protein Kinases/metabolism
- RNA Polymerase II/metabolism
- Signal Transduction/drug effects
- Transcription Factors/antagonists & inhibitors
- Transcription Factors/metabolism
- Transcription, Genetic/drug effects
- Transcriptome/genetics
- Treatment Outcome
- Mice
Collapse
Affiliation(s)
- Xiaohong Zhao
- Chemical Biology and Molecular Medicine Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Michelle Y Wang
- Chemical Biology and Molecular Medicine Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Huijuan Jiang
- Chemical Biology and Molecular Medicine Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Tint Lwin
- Chemical Biology and Molecular Medicine Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Paul M Park
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA 02215, USA
| | - Jing Gao
- Chemical Biology and Molecular Medicine Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Mark B Meads
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Yuan Ren
- Chemical Biology and Molecular Medicine Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Tao Li
- Chemical Biology and Molecular Medicine Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Jiao Sun
- Department of Computer Science, University of Central Florida, Orlando, FL 32816, USA
| | - Naima Ahmed Fahmi
- Department of Computer Science, University of Central Florida, Orlando, FL 32816, USA
| | - Satishkumar Singh
- Department of Internal Medicine, The Ohio State University, Columbus, OH 32816, USA
| | - Lalit Sehgal
- Department of Internal Medicine, The Ohio State University, Columbus, OH 32816, USA
| | - Xuefeng Wang
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Ariosto S Silva
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Eduardo M Sotomayor
- Department of Hematology and Oncology, George Washington University, Washington, D.C. 20052, USA
| | - Kenneth H Shain
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - John L Cleveland
- Department of Tumor Biology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, 33612, USA
| | - Michael Wang
- Department of Lymphoma/Myeloma, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Wei Zhang
- Department of Computer Science, University of Central Florida, Orlando, FL 32816, USA
| | - Jun Qi
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA 02215, USA
| | - Bijal D Shah
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA.
| | - Jianguo Tao
- Chemical Biology and Molecular Medicine Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA.
| |
Collapse
|
79
|
Abstract
The sudden outbreak of COVID-19 has once again shrouded people in the enormous threat of RNA virus. Extracellular vesicles (EVs), eukaryotic cells-derived small bi-layer vesicles mainly consisting of exosomes and microvesicles, share many properties with RNA viruses including structure, size, generation, and uptake. Emerging evidence has implicated the involvement of EVs in the pathogenesis of infectious diseases induced by RNA viruses. EVs can transfer viral receptors (e.g., ACE2 and CD9) to recipient cells to facilitate viral infection, directly transport infectious viral particles to adjacent cells for virus spreading, and mask viruses with a host structure to escape immune surveillance. Here, we examine the current status of EVs to summarize their roles in mediating RNA virus infection, together with a comprehensive discussion of the underlying mechanisms.
Collapse
|
80
|
Dollinger R, Gilmour DS. Regulation of Promoter Proximal Pausing of RNA Polymerase II in Metazoans. J Mol Biol 2021; 433:166897. [PMID: 33640324 DOI: 10.1016/j.jmb.2021.166897] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/15/2021] [Accepted: 02/19/2021] [Indexed: 12/12/2022]
Abstract
Regulation of transcription is a tightly choreographed process. The establishment of RNA polymerase II promoter proximal pausing soon after transcription initiation and the release of Pol II into productive elongation are key regulatory processes that occur in early elongation. We describe the techniques and tools that have become available for the study of promoter proximal pausing and their utility for future experiments. We then provide an overview of the factors and interactions that govern a multipartite pausing process and address emerging questions surrounding the mechanism of RNA polymerase II's subsequent advancement into the gene body. Finally, we address remaining controversies and future areas of study.
Collapse
Affiliation(s)
- Roberta Dollinger
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, 462 North Frear, University Park, PA 16802, USA.
| | - David S Gilmour
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, 465A North Frear, University Park, PA 16802, USA.
| |
Collapse
|
81
|
Zhu C, Kim SJ, Mooradian A, Wang F, Li Z, Holohan S, Collins PL, Wang K, Guo Z, Hoog J, Ma CX, Oltz EM, Held JM, Shao J. Cancer-associated exportin-6 upregulation inhibits the transcriptionally repressive and anticancer effects of nuclear profilin-1. Cell Rep 2021; 34:108749. [PMID: 33596420 PMCID: PMC8006859 DOI: 10.1016/j.celrep.2021.108749] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 12/29/2020] [Accepted: 01/21/2021] [Indexed: 01/22/2023] Open
Abstract
Aberrant expression of nuclear transporters and deregulated subcellular localization of their cargo proteins are emerging as drivers and therapeutic targets of cancer. Here, we present evidence that the nuclear exporter exportin-6 and its cargo profilin-1 constitute a functionally important and frequently deregulated axis in cancer. Exportin-6 upregulation occurs in numerous cancer types and is associated with poor patient survival. Reducing exportin-6 level in breast cancer cells triggers antitumor effects by accumulating nuclear profilin-1. Mechanistically, nuclear profilin-1 interacts with eleven-nineteen-leukemia protein (ENL) within the super elongation complex (SEC) and inhibits the ability of the SEC to drive transcription of numerous pro-cancer genes including MYC. XPO6 and MYC are positively correlated across diverse cancer types including breast cancer. Therapeutically, exportin-6 loss sensitizes breast cancer cells to the bromodomain and extra-terminal (BET) inhibitor JQ1. Thus, exportin-6 upregulation is a previously unrecognized cancer driver event by spatially inhibiting nuclear profilin-1 as a tumor suppressor.
Collapse
Affiliation(s)
- Cuige Zhu
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Sun-Joong Kim
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Arshag Mooradian
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Faliang Wang
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Surgical Oncology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Ziqian Li
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Sean Holohan
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Patrick L Collins
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, USA
| | - Keren Wang
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Zhanfang Guo
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jeremy Hoog
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Cynthia X Ma
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Eugene M Oltz
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, USA
| | - Jason M Held
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jieya Shao
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
82
|
Rezaie J, Aslan C, Ahmadi M, Zolbanin NM, Kashanchi F, Jafari R. The versatile role of exosomes in human retroviral infections: from immunopathogenesis to clinical application. Cell Biosci 2021; 11:19. [PMID: 33451365 PMCID: PMC7810184 DOI: 10.1186/s13578-021-00537-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 01/09/2021] [Indexed: 02/06/2023] Open
Abstract
Eukaryotic cells produce extracellular vesicles (EVs) mediating intercellular communication. These vesicles encompass many bio-molecules such as proteins, nucleic acids, and lipids that are transported between cells and regulate pathophysiological actions in the recipient cell. Exosomes originate from multivesicular bodies inside cells and microvesicles shed from the plasma membrane and participate in various pathological conditions. Retroviruses such as Human Immunodeficiency Virus -type 1 (HIV-1) and Human T-cell leukemia virus (HTLV)-1 engage exosomes for spreading and infection. Exosomes from virus-infected cells transfer viral components such as miRNAs and proteins that promote infection and inflammation. Additionally, these exosomes deliver virus receptors to target cells that make them susceptible to virus entry. HIV-1 infected cells release exosomes that contribute to the pathogenesis including neurological disorders and malignancy. Exosomes can also potentially carry out as a modern approach for the development of HIV-1 and HTLV-1 vaccines. Furthermore, as exosomes are present in most biological fluids, they hold the supreme capacity for clinical usage in the early diagnosis and prognosis of viral infection and associated diseases. Our current knowledge of exosomes' role from virus-infected cells may provide an avenue for efficient retroviruses associated with disease prevention. However, the exact mechanism involved in retroviruses infection/ inflammation remains elusive and related exosomes research will shed light on the mechanisms of pathogenesis.
Collapse
Affiliation(s)
- Jafar Rezaie
- Solid Tumor Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Shafa St, Ershad Blvd., P.O. Box: 1138, 57147, Urmia, Iran
| | - Cynthia Aslan
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Ahmadi
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Naime Majidi Zolbanin
- Department of Pharmacology and Toxicology, School of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| | - Fatah Kashanchi
- School of Systems Biology, Laboratory of Molecular Virology, George Mason University, Discovery Hall Room 182, 10900 University Blvd., Manassas, VA, 20110, USA.
| | - Reza Jafari
- Solid Tumor Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Shafa St, Ershad Blvd., P.O. Box: 1138, 57147, Urmia, Iran.
| |
Collapse
|
83
|
Zheng B, Aoi Y, Shah AP, Iwanaszko M, Das S, Rendleman EJ, Zha D, Khan N, Smith ER, Shilatifard A. Acute perturbation strategies in interrogating RNA polymerase II elongation factor function in gene expression. Genes Dev 2021; 35:273-285. [PMID: 33446572 PMCID: PMC7849361 DOI: 10.1101/gad.346106.120] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 12/03/2020] [Indexed: 12/20/2022]
Abstract
The regulation of gene expression catalyzed by RNA polymerase II (Pol II) requires a host of accessory factors to ensure cell growth, differentiation, and survival under environmental stress. Here, using the auxin-inducible degradation (AID) system to study transcriptional activities of the bromodomain and extraterminal domain (BET) and super elongation complex (SEC) families, we found that the CDK9-containing BRD4 complex is required for the release of Pol II from promoter-proximal pausing for most genes, while the CDK9-containing SEC is required for activated transcription in the heat shock response. By using both the proteolysis targeting chimera (PROTAC) dBET6 and the AID system, we found that dBET6 treatment results in two major effects: increased pausing due to BRD4 loss, and reduced enhancer activity attributable to BRD2 loss. In the heat shock response, while auxin-mediated depletion of the AFF4 subunit of the SEC has a more severe defect than AFF1 depletion, simultaneous depletion of AFF1 and AFF4 leads to a stronger attenuation of the heat shock response, similar to treatment with the SEC inhibitor KL-1, suggesting a possible redundancy among SEC family members. This study highlights the usefulness of orthogonal acute depletion/inhibition strategies to identify distinct and redundant biological functions among Pol II elongation factor paralogs.
Collapse
Affiliation(s)
- Bin Zheng
- Simpson Querrey Institute for Epigenetics, Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Yuki Aoi
- Simpson Querrey Institute for Epigenetics, Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Avani P Shah
- Simpson Querrey Institute for Epigenetics, Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Marta Iwanaszko
- Simpson Querrey Institute for Epigenetics, Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Siddhartha Das
- Simpson Querrey Institute for Epigenetics, Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Emily J Rendleman
- Simpson Querrey Institute for Epigenetics, Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Didi Zha
- Simpson Querrey Institute for Epigenetics, Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Nabiha Khan
- Simpson Querrey Institute for Epigenetics, Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Edwin R Smith
- Simpson Querrey Institute for Epigenetics, Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Ali Shilatifard
- Simpson Querrey Institute for Epigenetics, Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| |
Collapse
|
84
|
Extracellular Vesicles in Viral Pathogenesis: A Case of Dr. Jekyll and Mr. Hyde. Life (Basel) 2021; 11:life11010045. [PMID: 33450847 PMCID: PMC7828316 DOI: 10.3390/life11010045] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/04/2021] [Accepted: 01/11/2021] [Indexed: 02/06/2023] Open
Abstract
Secretion of extracellular vesicles (EVs) is a fundamental property of living cells. EVs are known to transfer biological signals between cells and thus regulate the functional state of recipient cells. Such vesicles mediate the intercellular transport of many biologically active molecules (proteins, nucleic acids, specific lipids) and participate in regulation of key physiological processes. In addition, EVs are involved in the pathogenesis of multiple diseases: infectious, neurodegenerative, and oncological. The current EV classification into microvesicles, apoptotic bodies, and exosomes is based on their size, pathways of cellular biogenesis, and molecular composition. This review is focused on analysis of the role of EVs (mainly exosomes) in the pathogenesis of viral infection. We briefly characterize the biogenesis and molecular composition of various EV types. Then, we consider EV-mediated pro- and anti-viral mechanisms. EV secretion by infected cells can be an important factor of virus spread in target cell populations, or a protective factor limiting viral invasion. The data discussed in this review, on the effect of EV secretion by infected cells on processes in neighboring cells and on immune cells, are of high significance in the search for new therapeutic approaches and for design of new generations of vaccines.
Collapse
|
85
|
Alamer E, Zhong C, Hajnik R, Soong L, Hu H. Modulation of BRD4 in HIV epigenetic regulation: implications for finding an HIV cure. Retrovirology 2021; 18:3. [PMID: 33413475 PMCID: PMC7792063 DOI: 10.1186/s12977-020-00547-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/30/2020] [Accepted: 12/23/2020] [Indexed: 12/16/2022] Open
Abstract
Following reverse transcription, HIV viral DNA is integrated into host cell genomes and establishes a stable latent infection, which has posed a major obstacle for obtaining a cure for HIV. HIV proviral transcription is regulated in cellular reservoirs by complex host epigenetic and transcriptional machineries. The Bromodomain (BD) and Extra-Terminal Domain (ET) protein, BRD4, is an important epigenetic reader that interacts with acetyl-histones and a variety of chromatin and transcriptional regulators to control gene expression, including HIV. Modulation of BRD4 by a pan BET inhibitor (JQ1) has been shown to activate HIV transcription. Recent studies by my group and others indicate that the function of BRD4 is versatile and its effects on HIV transcription may depend on the partner proteins or pathways engaged by BRD4. Our studies have reported a novel class of small-molecule modulators that are distinct from JQ1 but induce HIV transcriptional suppression through BRD4. Herein, we reviewed recent research on the modulation of BRD4 in HIV epigenetic regulation and discussed their potential implications for finding an HIV cure.
Collapse
Affiliation(s)
- Edrous Alamer
- Department of Microbiology and Immunology, University of Texas Medical Branch (UTMB), MRB 4.142A, 301 University Blvd, Galveston, TX, 77555, USA.,Department of Medical Laboratories Technology, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia.,Medical Research Center, Jazan University, Jazan, 45142, Saudi Arabia
| | - Chaojie Zhong
- Department of Microbiology and Immunology, University of Texas Medical Branch (UTMB), MRB 4.142A, 301 University Blvd, Galveston, TX, 77555, USA
| | - Renee Hajnik
- Department of Microbiology and Immunology, University of Texas Medical Branch (UTMB), MRB 4.142A, 301 University Blvd, Galveston, TX, 77555, USA
| | - Lynn Soong
- Department of Microbiology and Immunology, University of Texas Medical Branch (UTMB), MRB 4.142A, 301 University Blvd, Galveston, TX, 77555, USA.,Institute for Human Infections and Immunity, Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Haitao Hu
- Department of Microbiology and Immunology, University of Texas Medical Branch (UTMB), MRB 4.142A, 301 University Blvd, Galveston, TX, 77555, USA. .,Institute for Human Infections and Immunity, Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, 77555, USA.
| |
Collapse
|
86
|
Li J, Lee YK, Fu W, Whalen AM, Estable MC, Raftery LA, White K, Weiner L, Brissette JL. Modeling by disruption and a selected-for partner for the nude locus. EMBO Rep 2020; 22:e49804. [PMID: 33369874 PMCID: PMC7926259 DOI: 10.15252/embr.201949804] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 11/03/2020] [Accepted: 11/20/2020] [Indexed: 12/25/2022] Open
Abstract
A long‐standing problem in biology is how to dissect traits for which no tractable model exists. Here, we screen for genes like the nude locus (Foxn1)—genes central to mammalian hair and thymus development—using animals that never evolved hair, thymi, or Foxn1. Fruit flies are morphologically disrupted by the FOXN1 transcription factor and rescued by weak reductions in fly gene function, revealing molecules that potently synergize with FOXN1 to effect dramatic, chaotic change. Strong synergy/effectivity in flies is expected to reflect strong selection/functionality (purpose) in mammals; the more disruptive a molecular interaction is in alien contexts (flies), the more beneficial it will be in its natural, formative contexts (mammals). The approach identifies Aff4 as the first nude‐like locus, as murine AFF4 and FOXN1 cooperatively induce similar cutaneous/thymic phenotypes, similar gene expression programs, and the same step of transcription, pre‐initiation complex formation. These AFF4 functions are unexpected, as AFF4 also serves as a scaffold in common transcriptional‐elongation complexes. Most likely, the approach works because an interaction's power to disrupt is the inevitable consequence of its selected‐for power to benefit.
Collapse
Affiliation(s)
- Jian Li
- Department of Cell Biology, State University of New York Downstate Health Sciences University, Brooklyn, NY, USA.,Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Yun-Kyoung Lee
- Department of Cell Biology, State University of New York Downstate Health Sciences University, Brooklyn, NY, USA
| | - Wenyu Fu
- Department of Cell Biology, State University of New York Downstate Health Sciences University, Brooklyn, NY, USA.,Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Anne M Whalen
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Mario C Estable
- Department of Chemistry and Biology, Ryerson University, Toronto, ON, Canada
| | - Laurel A Raftery
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Kristin White
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Lorin Weiner
- Department of Cell Biology, State University of New York Downstate Health Sciences University, Brooklyn, NY, USA.,Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Janice L Brissette
- Department of Cell Biology, State University of New York Downstate Health Sciences University, Brooklyn, NY, USA.,Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|
87
|
Ramdas P, Sahu AK, Mishra T, Bhardwaj V, Chande A. From Entry to Egress: Strategic Exploitation of the Cellular Processes by HIV-1. Front Microbiol 2020; 11:559792. [PMID: 33343516 PMCID: PMC7746852 DOI: 10.3389/fmicb.2020.559792] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 11/05/2020] [Indexed: 01/23/2023] Open
Abstract
HIV-1 employs a rich arsenal of viral factors throughout its life cycle and co-opts intracellular trafficking pathways. This exquisitely coordinated process requires precise manipulation of the host microenvironment, most often within defined subcellular compartments. The virus capitalizes on the host by modulating cell-surface proteins and cleverly exploiting nuclear import pathways for post entry events, among other key processes. Successful virus–cell interactions are indeed crucial in determining the extent of infection. By evolving defenses against host restriction factors, while simultaneously exploiting host dependency factors, the life cycle of HIV-1 presents a fascinating montage of an ongoing host–virus arms race. Herein, we provide an overview of how HIV-1 exploits native functions of the host cell and discuss recent findings that fundamentally change our understanding of the post-entry replication events.
Collapse
Affiliation(s)
- Pavitra Ramdas
- Molecular Virology Laboratory, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, India
| | - Amit Kumar Sahu
- Molecular Virology Laboratory, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, India
| | - Tarun Mishra
- Molecular Virology Laboratory, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, India
| | - Vipin Bhardwaj
- Molecular Virology Laboratory, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, India
| | - Ajit Chande
- Molecular Virology Laboratory, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, India
| |
Collapse
|
88
|
Chavali SS, Mali SM, Jenkins JL, Fasan R, Wedekind JE. Co-crystal structures of HIV TAR RNA bound to lab-evolved proteins show key roles for arginine relevant to the design of cyclic peptide TAR inhibitors. J Biol Chem 2020; 295:16470-16486. [PMID: 33051202 PMCID: PMC7864049 DOI: 10.1074/jbc.ra120.015444] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/24/2020] [Indexed: 01/28/2023] Open
Abstract
RNA-protein interfaces control key replication events during the HIV-1 life cycle. The viral trans-activator of transcription (Tat) protein uses an archetypal arginine-rich motif (ARM) to recruit the host positive transcription elongation factor b (pTEFb) complex onto the viral trans-activation response (TAR) RNA, leading to activation of HIV transcription. Efforts to block this interaction have stimulated production of biologics designed to disrupt this essential RNA-protein interface. Here, we present four co-crystal structures of lab-evolved TAR-binding proteins (TBPs) in complex with HIV-1 TAR. Our results reveal that high-affinity binding requires a distinct sequence and spacing of arginines within a specific β2-β3 hairpin loop that arose during selection. Although loops with as many as five arginines were analyzed, only three arginines could bind simultaneously with major-groove guanines. Amino acids that promote backbone interactions within the β2-β3 loop were also observed to be important for high-affinity interactions. Based on structural and affinity analyses, we designed two cyclic peptide mimics of the TAR-binding β2-β3 loop sequences present in two high-affinity TBPs (KD values of 4.2 ± 0.3 and 3.0 ± 0.3 nm). Our efforts yielded low-molecular weight compounds that bind TAR with low micromolar affinity (KD values ranging from 3.6 to 22 μm). Significantly, one cyclic compound within this series blocked binding of the Tat-ARM peptide to TAR in solution assays, whereas its linear counterpart did not. Overall, this work provides insight into protein-mediated TAR recognition and lays the ground for the development of cyclic peptide inhibitors of a vital HIV-1 RNA-protein interaction.
Collapse
Affiliation(s)
- Sai Shashank Chavali
- Department of Biochemistry and Biophysics and Center for RNA Biology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Sachitanand M Mali
- Department of Chemistry, University of Rochester, Rochester, New York, USA
| | - Jermaine L Jenkins
- Department of Biochemistry and Biophysics and Center for RNA Biology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Rudi Fasan
- Department of Chemistry, University of Rochester, Rochester, New York, USA
| | - Joseph E Wedekind
- Department of Biochemistry and Biophysics and Center for RNA Biology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA.
| |
Collapse
|
89
|
Depicting HIV-1 Transcriptional Mechanisms: A Summary of What We Know. Viruses 2020; 12:v12121385. [PMID: 33287435 PMCID: PMC7761857 DOI: 10.3390/v12121385] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 11/26/2020] [Accepted: 12/01/2020] [Indexed: 12/19/2022] Open
Abstract
Despite the introduction of combinatory antiretroviral therapy (cART), HIV-1 infection cannot be cured and is still one of the major health issues worldwide. Indeed, as soon as cART is interrupted, a rapid rebound of viremia is observed. The establishment of viral latency and the persistence of the virus in cellular reservoirs constitute the main barrier to HIV eradication. For this reason, new therapeutic approaches have emerged to purge or restrain the HIV-1 reservoirs in order to cure infected patients. However, the viral latency is a multifactorial process that depends on various cellular mechanisms. Since these new therapies mainly target viral transcription, their development requires a detailed and precise understanding of the regulatory mechanism underlying HIV-1 transcription. In this review, we discuss the complex molecular transcriptional network regulating HIV-1 gene expression by focusing on the involvement of host cell factors that could be used as potential drug targets to design new therapeutic strategies and, to a larger extent, to reach an HIV-1 functional cure.
Collapse
|
90
|
Hassanpour M, Rezaie J, Nouri M, Panahi Y. The role of extracellular vesicles in COVID-19 virus infection. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2020; 85:104422. [PMID: 32544615 PMCID: PMC7293471 DOI: 10.1016/j.meegid.2020.104422] [Citation(s) in RCA: 155] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 06/10/2020] [Accepted: 06/11/2020] [Indexed: 12/11/2022]
Abstract
Extracellular vesicles releasing from various types of cells contribute to intercellular communication via delivering bio-molecules like nucleic acids, proteins, and lipids to recipient cells. Exosomes are 30-120 nm extracellular vesicles that participate in several pathological conditions. Virus-infected cells release exosomes that are implicated in infection through transferring viral components such as viral-derived miRNAs and proteins. As well, exosomes contain receptors for viruses that make recipient cells susceptible to virus entry. Since December 2019, SARS-CoV-2 (COVID-19) infection has become a worldwide urgent public health concern. There is currently no vaccine or specific antiviral treatment existing for COVID-19 virus infection. Hence, it is critical to find a safe and effective therapeutic tool to patients with severe COVID-19 virus infection. Extracellular vesicles may contribute to spread this virus as they transfer such receptors as CD9 and ACE2, which make recipient cells susceptible to virus docking. Upon entry, COVID-19 virus may be directed into the exosomal pathway, and its component is packaged into exosomes for secretion. Exosome-based strategies for the treatment of COVID-19 virus infection may include following items: inhibition of exosome biogenesis and uptake, exosome-therapy, exosome-based drug delivery system, and exosome-based vaccine. Mesenchymal stem cells can suppress nonproductive inflammation and improve/repair lung cells including endothelial and alveolar cells, which damaged by COVID-19 virus infection. Understanding molecular mechanisms behind extracellular vesicles related COVID-19 virus infection may provide us with an avenue to identify its entry, replication, spreading, and infection to overcome its adverse effects.
Collapse
Affiliation(s)
- Mehdi Hassanpour
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran,Department of Clinical Biochemistry, Laboratory Medicine, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran,Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jafar Rezaie
- Solid Tumor Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran,Correspondence to: J. Rezaie, Solid Tumor Research Center, Research Institute on Cellular and Molecular Medicine, Urmia University of Medical Sciences, Shafa St, Ershad Blvd., P.O. BoX: 1138, 57147 Urmia, Iran
| | - Mohammad Nouri
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran,Department of Clinical Biochemistry, Laboratory Medicine, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran,Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yunes Panahi
- Pharmacy Department, Faculty of Pharmacy, Baqiyatallah University of Medical Sciences, Tehran, Iran,Correspondence to: Y. Panahi, Clinical Pharmacy Department, Faculty of Pharmacy, Baqiyatallah University of Medical Sciences, Tehran 1435916471, Iran
| |
Collapse
|
91
|
DOT1L-controlled cell-fate determination and transcription elongation are independent of H3K79 methylation. Proc Natl Acad Sci U S A 2020; 117:27365-27373. [PMID: 33077595 DOI: 10.1073/pnas.2001075117] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Actively transcribed genes in mammals are decorated by H3K79 methylation, which is correlated with transcription levels and is catalyzed by the histone methyltransferase DOT1L. DOT1L is required for mammalian development, and the inhibition of its catalytic activity has been extensively studied for cancer therapy; however, the mechanisms underlying DOT1L's functions in normal development and cancer pathogenesis remain elusive. To dissect the relationship between H3K79 methylation, cellular differentiation, and transcription regulation, we systematically examined the role of DOT1L and its catalytic activity in embryonic stem cells (ESCs). DOT1L is dispensable for ESC self-renewal but is required for establishing the proper expression signature of neural progenitor cells, while catalytic inactivation of DOT1L has a lesser effect. Furthermore, DOT1L loss, rather than its catalytic inactivation, causes defects in glial cell specification. Although DOT1L loss by itself has no major defect in transcription elongation, transcription elongation defects seen with the super elongation complex inhibitor KL-2 are exacerbated in DOT1L knockout cells, but not in catalytically dead DOT1L cells, revealing a role of DOT1L in promoting productive transcription elongation that is independent of H3K79 methylation. Taken together, our study reveals a catalytic-independent role of DOT1L in modulating cell-fate determination and in transcriptional elongation control.
Collapse
|
92
|
Urciuoli E, Peruzzi B. Inhibiting Extracellular Vesicle Trafficking as Antiviral Approach to Corona Virus Disease 2019 Infection. Front Pharmacol 2020; 11:580505. [PMID: 33013421 PMCID: PMC7500429 DOI: 10.3389/fphar.2020.580505] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 08/19/2020] [Indexed: 01/22/2023] Open
Affiliation(s)
- Enrica Urciuoli
- Multifactorial and Complex Diseases Research Area, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Barbara Peruzzi
- Multifactorial and Complex Diseases Research Area, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| |
Collapse
|
93
|
Pinto DO, DeMarino C, Vo TT, Cowen M, Kim Y, Pleet ML, Barclay RA, Noren Hooten N, Evans MK, Heredia A, Batrakova EV, Iordanskiy S, Kashanchi F. Low-Level Ionizing Radiation Induces Selective Killing of HIV-1-Infected Cells with Reversal of Cytokine Induction Using mTOR Inhibitors. Viruses 2020; 12:E885. [PMID: 32823598 PMCID: PMC7472203 DOI: 10.3390/v12080885] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/07/2020] [Accepted: 08/10/2020] [Indexed: 12/12/2022] Open
Abstract
HIV-1 infects 39.5 million people worldwide, and cART is effective in preventing viral spread by reducing HIV-1 plasma viral loads to undetectable levels. However, viral reservoirs persist by mechanisms, including the inhibition of autophagy by HIV-1 proteins (i.e., Nef and Tat). HIV-1 reservoirs can be targeted by the "shock and kill" strategy, which utilizes latency-reversing agents (LRAs) to activate latent proviruses and immunotarget the virus-producing cells. Yet, limitations include reduced LRA permeability across anatomical barriers and immune hyper-activation. Ionizing radiation (IR) induces effective viral activation across anatomical barriers. Like other LRAs, IR may cause inflammation and modulate the secretion of extracellular vesicles (EVs). We and others have shown that cells may secrete cytokines and viral proteins in EVs and, therefore, LRAs may contribute to inflammatory EVs. In the present study, we mitigated the effects of IR-induced inflammatory EVs (i.e., TNF-α), through the use of mTOR inhibitors (mTORi; Rapamycin and INK128). Further, mTORi were found to enhance the selective killing of HIV-1-infected myeloid and T-cell reservoirs at the exclusion of uninfected cells, potentially via inhibition of viral transcription/translation and induction of autophagy. Collectively, the proposed regimen using cART, IR, and mTORi presents a novel approach allowing for the targeting of viral reservoirs, prevention of immune hyper-activation, and selectively killing latently infected HIV-1 cells.
Collapse
Affiliation(s)
- Daniel O. Pinto
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA 20110, USA; (D.O.P.); (C.D.); (T.T.V.); (M.C.); (Y.K.); (M.L.P.); (R.A.B.)
| | - Catherine DeMarino
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA 20110, USA; (D.O.P.); (C.D.); (T.T.V.); (M.C.); (Y.K.); (M.L.P.); (R.A.B.)
| | - Thy T. Vo
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA 20110, USA; (D.O.P.); (C.D.); (T.T.V.); (M.C.); (Y.K.); (M.L.P.); (R.A.B.)
| | - Maria Cowen
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA 20110, USA; (D.O.P.); (C.D.); (T.T.V.); (M.C.); (Y.K.); (M.L.P.); (R.A.B.)
| | - Yuriy Kim
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA 20110, USA; (D.O.P.); (C.D.); (T.T.V.); (M.C.); (Y.K.); (M.L.P.); (R.A.B.)
| | - Michelle L. Pleet
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA 20110, USA; (D.O.P.); (C.D.); (T.T.V.); (M.C.); (Y.K.); (M.L.P.); (R.A.B.)
| | - Robert A. Barclay
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA 20110, USA; (D.O.P.); (C.D.); (T.T.V.); (M.C.); (Y.K.); (M.L.P.); (R.A.B.)
| | - Nicole Noren Hooten
- Laboratory of Epidemiology and Population Science, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA; (N.N.H.); (M.K.E.)
| | - Michele K. Evans
- Laboratory of Epidemiology and Population Science, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA; (N.N.H.); (M.K.E.)
| | - Alonso Heredia
- Institute of Human Virology, University of Maryland School of Medicine, University of Maryland, Baltimore, MD 21201, USA;
| | - Elena V. Batrakova
- Department of Medicine, University of North Carolina HIV Cure Center; University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA;
| | - Sergey Iordanskiy
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA;
| | - Fatah Kashanchi
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA 20110, USA; (D.O.P.); (C.D.); (T.T.V.); (M.C.); (Y.K.); (M.L.P.); (R.A.B.)
| |
Collapse
|
94
|
Bouhaddou M, Memon D, Meyer B, White KM, Rezelj VV, Correa Marrero M, Polacco BJ, Melnyk JE, Ulferts S, Kaake RM, Batra J, Richards AL, Stevenson E, Gordon DE, Rojc A, Obernier K, Fabius JM, Soucheray M, Miorin L, Moreno E, Koh C, Tran QD, Hardy A, Robinot R, Vallet T, Nilsson-Payant BE, Hernandez-Armenta C, Dunham A, Weigang S, Knerr J, Modak M, Quintero D, Zhou Y, Dugourd A, Valdeolivas A, Patil T, Li Q, Hüttenhain R, Cakir M, Muralidharan M, Kim M, Jang G, Tutuncuoglu B, Hiatt J, Guo JZ, Xu J, Bouhaddou S, Mathy CJP, Gaulton A, Manners EJ, Félix E, Shi Y, Goff M, Lim JK, McBride T, O'Neal MC, Cai Y, Chang JCJ, Broadhurst DJ, Klippsten S, De Wit E, Leach AR, Kortemme T, Shoichet B, Ott M, Saez-Rodriguez J, tenOever BR, Mullins RD, Fischer ER, Kochs G, Grosse R, García-Sastre A, Vignuzzi M, Johnson JR, Shokat KM, Swaney DL, Beltrao P, Krogan NJ. The Global Phosphorylation Landscape of SARS-CoV-2 Infection. Cell 2020; 182:685-712.e19. [PMID: 32645325 PMCID: PMC7321036 DOI: 10.1016/j.cell.2020.06.034] [Citation(s) in RCA: 772] [Impact Index Per Article: 154.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/09/2020] [Accepted: 06/23/2020] [Indexed: 02/07/2023]
Abstract
The causative agent of the coronavirus disease 2019 (COVID-19) pandemic, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has infected millions and killed hundreds of thousands of people worldwide, highlighting an urgent need to develop antiviral therapies. Here we present a quantitative mass spectrometry-based phosphoproteomics survey of SARS-CoV-2 infection in Vero E6 cells, revealing dramatic rewiring of phosphorylation on host and viral proteins. SARS-CoV-2 infection promoted casein kinase II (CK2) and p38 MAPK activation, production of diverse cytokines, and shutdown of mitotic kinases, resulting in cell cycle arrest. Infection also stimulated a marked induction of CK2-containing filopodial protrusions possessing budding viral particles. Eighty-seven drugs and compounds were identified by mapping global phosphorylation profiles to dysregulated kinases and pathways. We found pharmacologic inhibition of the p38, CK2, CDK, AXL, and PIKFYVE kinases to possess antiviral efficacy, representing potential COVID-19 therapies.
Collapse
Affiliation(s)
- Mehdi Bouhaddou
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Danish Memon
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Bjoern Meyer
- Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Institut Pasteur, 75724 Paris, Cedex 15, France
| | - Kris M White
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Veronica V Rezelj
- Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Institut Pasteur, 75724 Paris, Cedex 15, France
| | - Miguel Correa Marrero
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Benjamin J Polacco
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - James E Melnyk
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute
| | - Svenja Ulferts
- Institute for Clinical and Experimental Pharmacology and Toxicology, University of Freiburg, Freiburg 79104, Germany
| | - Robyn M Kaake
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jyoti Batra
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Alicia L Richards
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Erica Stevenson
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - David E Gordon
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Ajda Rojc
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Kirsten Obernier
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jacqueline M Fabius
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Margaret Soucheray
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Lisa Miorin
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Elena Moreno
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Cassandra Koh
- Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Institut Pasteur, 75724 Paris, Cedex 15, France
| | - Quang Dinh Tran
- Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Institut Pasteur, 75724 Paris, Cedex 15, France
| | - Alexandra Hardy
- Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Institut Pasteur, 75724 Paris, Cedex 15, France
| | - Rémy Robinot
- Virus & Immunity Unit, Department of Virology, CNRS UMR 3569, Institut Pasteur, 75724 Paris, Cedex 15, France; Vaccine Research Institute, 94000 Creteil, France
| | - Thomas Vallet
- Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Institut Pasteur, 75724 Paris, Cedex 15, France
| | | | - Claudia Hernandez-Armenta
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Alistair Dunham
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Sebastian Weigang
- Institute of Virology, Medical Center - University of Freiburg, Freiburg 79104, Germany
| | - Julian Knerr
- Institute for Clinical and Experimental Pharmacology and Toxicology, University of Freiburg, Freiburg 79104, Germany
| | - Maya Modak
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Diego Quintero
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Yuan Zhou
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Aurelien Dugourd
- Institute for Computational Biomedicine, Bioquant, Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Heidelberg 69120, Germany
| | - Alberto Valdeolivas
- Institute for Computational Biomedicine, Bioquant, Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Heidelberg 69120, Germany
| | - Trupti Patil
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Qiongyu Li
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Ruth Hüttenhain
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Merve Cakir
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Monita Muralidharan
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Minkyu Kim
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Gwendolyn Jang
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Beril Tutuncuoglu
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Joseph Hiatt
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jeffrey Z Guo
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jiewei Xu
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Sophia Bouhaddou
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA
| | - Christopher J P Mathy
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; Department of Bioengineering & Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Anna Gaulton
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Emma J Manners
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Eloy Félix
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Ying Shi
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute
| | - Marisa Goff
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jean K Lim
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | | | | | | | | | | | - Emmie De Wit
- NIH/NIAID/Rocky Mountain Laboratories, Hamilton, MT 59840, USA
| | - Andrew R Leach
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Tanja Kortemme
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; Department of Bioengineering & Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Brian Shoichet
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA
| | - Melanie Ott
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
| | - Julio Saez-Rodriguez
- Institute for Computational Biomedicine, Bioquant, Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Heidelberg 69120, Germany
| | - Benjamin R tenOever
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - R Dyche Mullins
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute
| | | | - Georg Kochs
- Institute of Virology, Medical Center - University of Freiburg, Freiburg 79104, Germany; Faculty of Medicine, University of Freiburg, Freiburg 79008, Germany
| | - Robert Grosse
- Institute for Clinical and Experimental Pharmacology and Toxicology, University of Freiburg, Freiburg 79104, Germany; Faculty of Medicine, University of Freiburg, Freiburg 79008, Germany; Centre for Integrative Biological Signalling Studies (CIBSS), Freiburg 79104, Germany.
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA; The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| | - Marco Vignuzzi
- Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Institut Pasteur, 75724 Paris, Cedex 15, France.
| | - Jeffery R Johnson
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Kevan M Shokat
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute.
| | - Danielle L Swaney
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA.
| | - Pedro Beltrao
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK.
| | - Nevan J Krogan
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
95
|
Shao H, Zhu Q, Lu H, Chang A, Gao C, Zhou Q, Luo K. HEXIM1 controls P-TEFb processing and regulates drug sensitivity in triple-negative breast cancer. Mol Biol Cell 2020; 31:1867-1878. [PMID: 32520633 PMCID: PMC7525814 DOI: 10.1091/mbc.e19-12-0704] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 05/28/2020] [Accepted: 06/02/2020] [Indexed: 11/16/2022] Open
Abstract
The positive transcription elongation factor b (P-TEFb), composed of CDK9 and cyclin T, stimulates transcriptional elongation by RNA polymerase (Pol) II and regulates cell growth and differentiation. Recently, we demonstrated that P-TEFb also controls the expression of EMT regulators to promote breast cancer progression. In the nucleus, more than half of P-TEFb are sequestered in the inactive-state 7SK snRNP complex. Here, we show that the assembly of the 7SK snRNP is preceded by an intermediate complex between HEXIM1 and P-TEFb that allows transfer of the kinase active P-TEFb from Hsp90 to 7SK snRNP for its suppression. Down-regulation of HEXIM1 locks P-TEFb in the Hsp90 complex, keeping it in the active state to enhance breast cancer progression, but also rendering the cells highly sensitive to Hsp90 inhibition. Because HEXIM1 is often down-regulated in human triple-negative breast cancer (TNBC), these cells are particularly sensitive to Hsp90 inhibition. Our study provides a mechanistic explanation for the increased sensitivity of TNBC to Hsp90 inhibition.
Collapse
Affiliation(s)
- Hengyi Shao
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| | - Qingwei Zhu
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| | - Huasong Lu
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| | - Amanda Chang
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| | - Carol Gao
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| | - Qiang Zhou
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| | - Kunxin Luo
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| |
Collapse
|
96
|
Wu J, Xue Y, Gao X, Zhou Q. Host cell factors stimulate HIV-1 transcription by antagonizing substrate-binding function of Siah1 ubiquitin ligase to stabilize transcription elongation factor ELL2. Nucleic Acids Res 2020; 48:7321-7332. [PMID: 32479599 PMCID: PMC7367184 DOI: 10.1093/nar/gkaa461] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 05/12/2020] [Accepted: 05/19/2020] [Indexed: 12/16/2022] Open
Abstract
The Siah1 and Siah2 ubiquitin ligases are implicated in diverse biological processes ranging from cellular stress responses, signaling to transcriptional regulation. A key substrate of Siah1 is ELL2, which undergoes proteolysis upon polyubiquitination. ELL2 stimulates transcriptional elongation and is a subunit of the Super Elongation Complex (SEC) essential for HIV-1 transactivation. Previously, multiple transcriptional and post-translational mechanisms are reported to control Siah's expression and activity. Here we show that the activity of Siah1/2 can also be suppressed by host cell factor 1 (HCF1), and the hitherto poorly characterized HCF2, which themselves are not degraded but can bind and block the substrate-binding domain (SBD) of Siah1/2 to prevent their autoubiquitination and trans-ubiquitination of downstream targets including ELL2. This effect stabilizes ELL2 and enhances the ELL2-SEC formation for robust HIV-1 transactivation. Thus, our study not only identifies HCF1/2 as novel activators of HIV-1 transcription through inhibiting Siah1 to stabilize ELL2, but also reveals the SBD of Siah1/2 as a previously unrecognized new target for HCF1/2 to exert this inhibition.
Collapse
Affiliation(s)
- Jun Wu
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Yuhua Xue
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian 361005, China
| | - Xiang Gao
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian 361005, China
| | - Qiang Zhou
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
97
|
Inhibition of the Super Elongation Complex Suppresses Herpes Simplex Virus Immediate Early Gene Expression, Lytic Infection, and Reactivation from Latency. mBio 2020; 11:mBio.01216-20. [PMID: 32518191 PMCID: PMC7373197 DOI: 10.1128/mbio.01216-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
HSV infections can cause pathologies ranging from recurrent lesions to significant ocular disease. Initiation of lytic infection and reactivation from latency in sensory neurons are dependent on the induced expression of the viral immediate early genes. Transcription of these genes is controlled at multiple levels, including modulation of the chromatin state of the viral genome and appropriate recruitment of transcription factors and coactivators. Following initiation of transcription, IE genes are subject to a key regulatory stage in which transcriptional elongation rates are controlled by the activity of the super elongation complex. Inhibition of the SEC blocks both lytic infection and reactivation from latency in sensory neurons. In addition to providing insights into the mechanisms controlling viral infection and reactivation, inhibitors of critical components such as the SEC may represent novel antivirals. Induction of herpes simplex virus (HSV) immediate early (IE) gene transcription promotes the initiation of lytic infection and reactivation from latency in sensory neurons. IE genes are transcribed by the cellular RNA polymerase II (RNAPII) and regulated by multiple transcription factors and coactivators. The HCF-1 cellular coactivator plays a central role in driving IE expression at multiple stages through interactions with transcription factors, chromatin modulation complexes, and transcription elongation components, including the active super elongation complex/P-TEFb (SEC-P-TEFb). Here, we demonstrate that the SEC occupies the promoters of HSV IE genes during the initiation of lytic infection and during reactivation from latency. Specific inhibitors of the SEC suppress viral IE expression and block the spread of HSV infection. Significantly, these inhibitors also block the initiation of viral reactivation from latency in sensory ganglia. The potent suppression of IE gene expression by SEC inhibitors indicates that transcriptional elongation represents a determining rate-limiting stage in HSV IE gene transcription and that the SEC plays a critical role in driving productive elongation during both phases of the viral life cycle. Most importantly, this supports the model that signal-mediated induction of SEC-P-TEFb levels can promote reactivation of a population of poised latent genomes.
Collapse
|
98
|
Shukla A, Ramirez NGP, D’Orso I. HIV-1 Proviral Transcription and Latency in the New Era. Viruses 2020; 12:v12050555. [PMID: 32443452 PMCID: PMC7291205 DOI: 10.3390/v12050555] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/06/2020] [Accepted: 05/12/2020] [Indexed: 12/11/2022] Open
Abstract
Three decades of extensive work in the HIV field have revealed key viral and host cell factors controlling proviral transcription. Various models of transcriptional regulation have emerged based on the collective information from in vitro assays and work in both immortalized and primary cell-based models. Here, we provide a recount of the past and current literature, highlight key regulatory aspects, and further describe potential limitations of previous studies. We particularly delve into critical steps of HIV gene expression including the role of the integration site, nucleosome positioning and epigenomics, and the transition from initiation to pausing and pause release. We also discuss open questions in the field concerning the generality of previous regulatory models to the control of HIV transcription in patients under suppressive therapy, including the role of the heterogeneous integration landscape, clonal expansion, and bottlenecks to eradicate viral persistence. Finally, we propose that building upon previous discoveries and improved or yet-to-be discovered technologies will unravel molecular mechanisms of latency establishment and reactivation in a “new era”.
Collapse
|
99
|
Gao R, Bao J, Yan H, Xie L, Qin W, Ning H, Huang S, Cheng J, Zhi R, Li Z, Tucker B, Chen Y, Zhang K, Wu X, Liu Z, Gao X, Hu D. Competition between PAF1 and MLL1/COMPASS confers the opposing function of LEDGF/p75 in HIV latency and proviral reactivation. SCIENCE ADVANCES 2020; 6:eaaz8411. [PMID: 32426500 PMCID: PMC7220354 DOI: 10.1126/sciadv.aaz8411] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 03/02/2020] [Indexed: 05/19/2023]
Abstract
Transcriptional status determines the HIV replicative state in infected patients. However, the transcriptional mechanisms for proviral replication control remain unclear. In this study, we show that, apart from its function in HIV integration, LEDGF/p75 differentially regulates HIV transcription in latency and proviral reactivation. During latency, LEDGF/p75 suppresses proviral transcription via promoter-proximal pausing of RNA polymerase II (Pol II) by recruiting PAF1 complex to the provirus. Following latency reversal, MLL1 complex competitively displaces PAF1 from the provirus through casein kinase II (CKII)-dependent association with LEDGF/p75. Depleting or pharmacologically inhibiting CKII prevents PAF1 dissociation and abrogates the recruitment of both MLL1 and Super Elongation Complex (SEC) to the provirus, thereby impairing transcriptional reactivation for latency reversal. These findings, therefore, provide a mechanistic understanding of how LEDGF/p75 coordinates its distinct regulatory functions at different stages of the post-integrated HIV life cycles. Targeting these mechanisms may have a therapeutic potential to eradicate HIV infection.
Collapse
Affiliation(s)
- Ru Gao
- State Key Laboratory of Experimental Hematology, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases, Department of Cell Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Jiaqian Bao
- State Key Laboratory of Experimental Hematology, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases, Department of Cell Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Han Yan
- State Key Laboratory of Experimental Hematology, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases, Department of Cell Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Liya Xie
- State Key Laboratory of Experimental Hematology, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases, Department of Cell Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Wanchang Qin
- State Key Laboratory of Experimental Hematology, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases, Department of Cell Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Hanhan Ning
- State Key Laboratory of Experimental Hematology, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases, Department of Cell Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Shuqi Huang
- State Key Laboratory of Experimental Hematology, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases, Department of Cell Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Jun Cheng
- State Key Laboratory of Experimental Hematology, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases, Department of Cell Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Renyong Zhi
- Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Cancer Institute and Hospital of Tianjin Medical University, Tianjin 300060, China
| | - Zexing Li
- Department of Cell Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Bronwyn Tucker
- School of Medical English and Health Communication, Tianjin Medical University, Tianjin 300070, China
| | - Yupeng Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Kai Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Xudong Wu
- Department of Cell Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Zhe Liu
- Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Xin Gao
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
- Corresponding author. (D.H.); (X.G.)
| | - Deqing Hu
- State Key Laboratory of Experimental Hematology, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases, Department of Cell Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Cancer Institute and Hospital of Tianjin Medical University, Tianjin 300060, China
- Corresponding author. (D.H.); (X.G.)
| |
Collapse
|
100
|
Basu S, Nandy A, Biswas D. Keeping RNA polymerase II on the run: Functions of MLL fusion partners in transcriptional regulation. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1863:194563. [PMID: 32348849 DOI: 10.1016/j.bbagrm.2020.194563] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 01/13/2020] [Accepted: 04/13/2020] [Indexed: 12/21/2022]
Abstract
Since the identification of key MLL fusion partners as transcription elongation factors regulating expression of HOX cluster genes during hematopoiesis, extensive work from the last decade has resulted in significant progress in our overall mechanistic understanding of role of MLL fusion partner proteins in transcriptional regulation of diverse set of genes beyond just the HOX cluster. In this review, we are going to detail overall understanding of role of MLL fusion partner proteins in transcriptional regulation and thus provide mechanistic insights into possible MLL fusion protein-mediated transcriptional misregulation leading to aberrant hematopoiesis and leukemogenesis.
Collapse
Affiliation(s)
- Subham Basu
- Laboratory of Transcription Biology, Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 32, India
| | - Arijit Nandy
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Debabrata Biswas
- Laboratory of Transcription Biology, Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 32, India.
| |
Collapse
|