51
|
Quintas A, Pérez-Núñez D, Sánchez EG, Nogal ML, Hentze MW, Castelló A, Revilla Y. Characterization of the African Swine Fever Virus Decapping Enzyme during Infection. J Virol 2017; 91:e00990-17. [PMID: 29021398 PMCID: PMC5709586 DOI: 10.1128/jvi.00990-17] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 10/03/2017] [Indexed: 01/13/2023] Open
Abstract
African swine fever virus (ASFV) infection is characterized by a progressive decrease in cellular protein synthesis with a concomitant increase in viral protein synthesis, though the mechanism by which the virus achieves this is still unknown. Decrease of cellular mRNA is observed during ASFV infection, suggesting that inhibition of cellular proteins is due to an active mRNA degradation process. ASFV carries a gene (Ba71V D250R/Malawi g5R) that encodes a decapping protein (ASFV-DP) that has a Nudix hydrolase motif and decapping activity in vitro Here, we show that ASFV-DP was expressed from early times and accumulated throughout the infection with a subcellular localization typical of the endoplasmic reticulum, colocalizing with the cap structure and interacting with the ribosomal protein L23a. ASFV-DP was capable of interaction with poly(A) RNA in cultured cells, primarily mediated by the N-terminal region of the protein. ASFV-DP also interacted with viral and cellular RNAs in the context of infection, and its overexpression in infected cells resulted in decreased levels of both types of transcripts. This study points to ASFV-DP as a viral decapping enzyme involved in both the degradation of cellular mRNA and the regulation of viral transcripts.IMPORTANCE Virulent ASFV strains cause a highly infectious and lethal disease in domestic pigs for which there is no vaccine. Since 2007, an outbreak in the Caucasus region has spread to Russia, jeopardizing the European pig population and making it essential to deepen knowledge about the virus. Here, we demonstrate that ASFV-DP is a novel RNA-binding protein implicated in the regulation of mRNA metabolism during infection, making it a good target for vaccine development.
Collapse
Affiliation(s)
- Ana Quintas
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Universidad Autónoma de Madrid, Madrid, Spain
| | - Daniel Pérez-Núñez
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Universidad Autónoma de Madrid, Madrid, Spain
| | - Elena G Sánchez
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Universidad Autónoma de Madrid, Madrid, Spain
| | - Maria L Nogal
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Universidad Autónoma de Madrid, Madrid, Spain
| | | | - Alfredo Castelló
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Yolanda Revilla
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
52
|
Domashevskiy AV, Rodriguez DJ, Gunawardana D, Goss DJ. Preparation of Functional, Fluorescently Labeled mRNA Capped with Anthraniloyl-m(7)GpppG. Methods Mol Biol 2017; 1428:61-75. [PMID: 27236792 DOI: 10.1007/978-1-4939-3625-0_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Fluorescent mRNA molecules offer a wide range of applications for studying capping/decapping reactions, translation, and other biophysical studies. Furthermore, fluorescent tags prove invaluable for tracking RNA molecules in cells. Here, we describe an efficient synthesis of a fluorescent cap analog, anthranioyl-GTP, its purification, and in vitro cap labeling of transcribed mRNA catalyzed by the recombinant vaccinia capping enzyme to produce anthranioyl-m(7)GpppG-capped RNA.
Collapse
Affiliation(s)
- Artem V Domashevskiy
- Department of Sciences, John Jay College of Criminal Justice, City University of New York, New York, NY, USA.
| | - David J Rodriguez
- Department of Sciences, John Jay College of Criminal Justice, City University of New York, New York, NY, USA
| | - Dilantha Gunawardana
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia.,Department of Botany, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - Dixie J Goss
- Department of Chemistry, Hunter College, City University of New York, New York, NY, USA
| |
Collapse
|
53
|
Trotman JB, Giltmier AJ, Mukherjee C, Schoenberg DR. RNA guanine-7 methyltransferase catalyzes the methylation of cytoplasmically recapped RNAs. Nucleic Acids Res 2017; 45:10726-10739. [PMID: 28981715 PMCID: PMC5737702 DOI: 10.1093/nar/gkx801] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 08/30/2017] [Indexed: 12/31/2022] Open
Abstract
Cap homeostasis is a cyclical process of decapping and recapping that impacts a portion of the mRNA transcriptome. The metastable uncapped forms of recapping targets redistribute from polysomes to non-translating mRNPs, and recapping is all that is needed for their return to the translating pool. Previous work identified a cytoplasmic capping metabolon consisting of capping enzyme (CE) and a 5′-monophosphate kinase bound to adjacent domains of Nck1. The current study identifies the canonical cap methyltransferase (RNMT) as the enzyme responsible for guanine-N7 methylation of recapped mRNAs. RNMT binds directly to CE, and its presence in the cytoplasmic capping complex was demonstrated by pulldown assays, gel filtration and proximity-dependent biotinylation. The latter also identified the RNMT cofactor RAM, whose presence is required for cytoplasmic cap methyltransferase activity. These findings guided development of an inhibitor of cytoplasmic cap methylation whose action resulted in a selective decrease in levels of recapped mRNAs.
Collapse
Affiliation(s)
- Jackson B Trotman
- Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA.,Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA.,Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA
| | - Andrew J Giltmier
- Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA.,Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA
| | - Chandrama Mukherjee
- Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA.,Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA
| | - Daniel R Schoenberg
- Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA.,Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
54
|
Sharma S, Poetz F, Bruer M, Ly-Hartig TBN, Schott J, Séraphin B, Stoecklin G. Acetylation-Dependent Control of Global Poly(A) RNA Degradation by CBP/p300 and HDAC1/2. Mol Cell 2017; 63:927-38. [PMID: 27635759 DOI: 10.1016/j.molcel.2016.08.030] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 05/09/2016] [Accepted: 08/24/2016] [Indexed: 12/31/2022]
Abstract
Acetylation of histones and transcription-related factors is known to exert epigenetic and transcriptional control of gene expression. Here we report that histone acetyltransferases (HATs) and histone deacetylases (HDACs) also regulate gene expression at the posttranscriptional level by controlling poly(A) RNA stability. Inhibition of HDAC1 and HDAC2 induces massive and widespread degradation of normally stable poly(A) RNA in mammalian and Drosophila cells. Acetylation-induced RNA decay depends on the HATs p300 and CBP, which acetylate the exoribonuclease CAF1a, a catalytic subunit of the CCR4-CAF1-NOT deadenlyase complex and thereby contribute to accelerating poly(A) RNA degradation. Taking adipocyte differentiation as a model, we observe global stabilization of poly(A) RNA during differentiation, concomitant with loss of CBP/p300 expression. Our study uncovers reversible acetylation as a fundamental switch by which HATs and HDACs control the overall turnover of poly(A) RNA.
Collapse
Affiliation(s)
- Sahil Sharma
- Division of Biochemistry, Center for Biomedicine and Medical Technology Mannheim (CBTM), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; Center for Molecular Biology of Heidelberg University (ZMBH), 69120 Heidelberg, Germany; German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Fabian Poetz
- Division of Biochemistry, Center for Biomedicine and Medical Technology Mannheim (CBTM), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; Center for Molecular Biology of Heidelberg University (ZMBH), 69120 Heidelberg, Germany; German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Marius Bruer
- Division of Biochemistry, Center for Biomedicine and Medical Technology Mannheim (CBTM), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; Center for Molecular Biology of Heidelberg University (ZMBH), 69120 Heidelberg, Germany; German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Thi Bach Nga Ly-Hartig
- Division of Biochemistry, Center for Biomedicine and Medical Technology Mannheim (CBTM), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; Center for Molecular Biology of Heidelberg University (ZMBH), 69120 Heidelberg, Germany; German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Johanna Schott
- Division of Biochemistry, Center for Biomedicine and Medical Technology Mannheim (CBTM), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; Center for Molecular Biology of Heidelberg University (ZMBH), 69120 Heidelberg, Germany; German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Bertrand Séraphin
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67404 Illkirch, France; Centre National de Recherche Scientifique (CNRS) UMR 7104, 67404 Illkirch, France; INSERM U964, 67404 Illkirch, France; Université de Strasbourg, 67404 Illkirch, France
| | - Georg Stoecklin
- Division of Biochemistry, Center for Biomedicine and Medical Technology Mannheim (CBTM), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; Center for Molecular Biology of Heidelberg University (ZMBH), 69120 Heidelberg, Germany; German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany.
| |
Collapse
|
55
|
Balagopal V, Beemon KL. Rous Sarcoma Virus RNA Stability Element Inhibits Deadenylation of mRNAs with Long 3'UTRs. Viruses 2017; 9:v9080204. [PMID: 28763028 PMCID: PMC5580461 DOI: 10.3390/v9080204] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 07/14/2017] [Accepted: 07/26/2017] [Indexed: 12/15/2022] Open
Abstract
All retroviruses use their full-length primary transcript as the major mRNA for Group-specific antigen (Gag) capsid proteins. This results in a long 3′ untranslated region (UTR) downstream of the termination codon. In the case of Rous sarcoma virus (RSV), there is a 7 kb 3′UTR downstream of the gag terminator, containing the pol, env, and src genes. mRNAs containing long 3′UTRs, like those with premature termination codons, are frequently recognized by the cellular nonsense-mediated mRNA decay (NMD) machinery and targeted for degradation. To prevent this, RSV has evolved an RNA stability element (RSE) in the RNA immediately downstream of the gag termination codon. This 400-nt RNA sequence stabilizes premature termination codons (PTCs) in gag. It also stabilizes globin mRNAs with long 3′UTRs, when placed downstream of the termination codon. It is not clear how the RSE stabilizes the mRNA and prevents decay. We show here that the presence of RSE inhibits deadenylation severely. In addition, the RSE also impairs decapping (DCP2) and 5′-3′ exonucleolytic (XRN1) function in knockdown experiments in human cells.
Collapse
Affiliation(s)
- Vidya Balagopal
- Biology Department, Johns Hopkins University, Baltimore, MD 21218, USA.
| | - Karen L Beemon
- Biology Department, Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
56
|
Abstract
5’-3’ decay is the major mRNA decay pathway in many eukaryotes, including trypanosomes. After deadenylation, mRNAs are decapped by the nudix hydrolase DCP2 of the decapping complex and finally degraded by the 5’-3’ exoribonuclease. Uniquely, trypanosomes lack homologues to all subunits of the decapping complex, while deadenylation and 5’-3’ degradation are conserved. Here, I show that the parasites use an ApaH-like phosphatase (ALPH1) as their major mRNA decapping enzyme. The protein was recently identified as a novel trypanosome stress granule protein and as involved in mRNA binding. A fraction of ALPH1 co-localises exclusively with the trypanosome 5’-3’ exoribonuclease XRNA to a special granule at the posterior pole of the cell, indicating a connection between the two enzymes. RNAi depletion of ALPH1 is lethal and causes a massive increase in total mRNAs that are deadenylated, but have not yet started 5’-3’ decay. These data suggest that ALPH1 acts downstream of deadenylation and upstream of mRNA degradation, consistent with a function in mRNA decapping. In vitro experiments show that recombinant, N-terminally truncated ALHP1 protein, but not a catalytically inactive mutant, sensitises the capped trypanosome spliced leader RNA to yeast Xrn1, but only if an RNA 5’ polyphosphatase is included. This indicates that the decapping mechanism of ALPH1 differs from the decapping mechanism of Dcp2 by leaving more than one phosphate group at the mRNA’s 5’ end. This is the first reported function of a eukaryotic ApaH-like phosphatase, a bacterial-derived class of enzymes present in all phylogenetic super-groups of the eukaryotic kingdom. The substrates of eukaryotic ApaH-like phosphatases are unknown. However, the substrate of the related bacterial enzyme ApaH, diadenosine tetraphosphate, is highly reminiscent of a eukaryotic mRNA cap. Eukaryotic mRNAs are stabilised by a 5’ cap and one important step in mRNA decay is the removal of this cap by the nudix domain protein Dcp2 of the decapping complex. The decapping complex is highly conserved throughout eukaryotes, with the exception of trypanosomes that lack the entire complex. Here, I show that trypanosomes have evolved to use an ApaH-like phosphatase instead of a nudix domain protein as their major decapping enzyme. This work closes an important gap in the knowledge of trypanosome mRNA metabolism. Moreover, this is the first reported function of an ApaH-like phosphatase, a bacterial derived class of enzymes that are widespread throughout eukaryotes.
Collapse
Affiliation(s)
- Susanne Kramer
- Biocenter, University of Würzburg, Am Hubland, Würzburg, Germany
- * E-mail:
| |
Collapse
|
57
|
Mishima Y, Tomari Y. Pervasive yet nonuniform contributions of Dcp2 and Cnot7 to maternal mRNA clearance in zebrafish. Genes Cells 2017; 22:670-678. [PMID: 28557307 DOI: 10.1111/gtc.12504] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 04/27/2017] [Indexed: 12/31/2022]
Abstract
mRNA degradation is a fundamental biological process that erases transcribed genetic information from cells. During maternal-to-zygotic transition of animal development, thousands of maternal mRNAs are degraded by multiple mechanisms including microRNAs and codon-mediated decay. Enzymatic requirements for maternal mRNA clearance, however, are not fully understood. Here, we analyzed a contribution of the decapping enzyme Dcp2 to maternal mRNA clearance in zebrafish by over-expressing catalytically inactive Dcp2 and performing RNA-seq analysis. As expected, Dcp2 had a widespread role in maternal mRNA clearance. Interestingly, each mRNA showed differential dependency on Dcp2-mediated decapping and Cnot7-mediated deadenylation for degradation. Correlation analysis identified several mRNA features that were associated with the observed differential dependency. Our results show pervasive yet nonuniform contributions of the decapping enzyme Dcp2 and the deadenylase Cnot7 to maternal mRNA clearance.
Collapse
Affiliation(s)
- Yuichiro Mishima
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan.,Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Yukihide Tomari
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan.,Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| |
Collapse
|
58
|
Abstract
Constitutive and regulated turnover of RNAs is necessary to eliminate aberrant RNA molecules and control the level of specific mRNAs to maintain homeostasis or to respond to signals in living cells. Modifications of nucleosides in specific RNAs are important in modulating the functions of these transcripts, but they can also dramatically impact their fate and turnover. This chapter will review how RNA modifications impact the activities of ribonucleases that target these RNAs for degradation or cleavage, focusing more particularly on tRNAs and mRNAs in eukaryotic cells. Many nucleoside modifications are important to promote proper folding of tRNAs, and the absence of specific modifications makes them susceptible to degradation by quality control pathways that eliminate improperly folded species. Modifications in tRNAs can also modulate their cleavage during stress or by fungal toxins that target modified nucleosides. Modifications of the cap structure found at the 5'-end of eukaryotic mRNAs are essential to control the degradation of these mRNAs. In addition, internal modifications of eukaryotic mRNAs can change their secondary structures or provide binding sites for reader proteins, which can dramatically impact their stability. Recent examples show that mRNA modifications play important roles in regulating mRNA stability during development, cellular differentiation and physiological responses. Finally, many modifications can impact microRNA- and siRNA-mediated gene regulation by direct or indirect effects. With the growing number of genomic techniques able to identify modifications genome wide, it is anticipated that novel chemical modifications or new modification sites will be identified, which will play additional regulatory functions for RNA turnover.
Collapse
|
59
|
Srouji JR, Xu A, Park A, Kirsch JF, Brenner SE. The evolution of function within the Nudix homology clan. Proteins 2017; 85:775-811. [PMID: 27936487 PMCID: PMC5389931 DOI: 10.1002/prot.25223] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 10/15/2016] [Accepted: 11/28/2016] [Indexed: 01/01/2023]
Abstract
The Nudix homology clan encompasses over 80,000 protein domains from all three domains of life, defined by homology to each other. Proteins with a domain from this clan fall into four general functional classes: pyrophosphohydrolases, isopentenyl diphosphate isomerases (IDIs), adenine/guanine mismatch-specific adenine glycosylases (A/G-specific adenine glycosylases), and nonenzymatic activities such as protein/protein interaction and transcriptional regulation. The largest group, pyrophosphohydrolases, encompasses more than 100 distinct hydrolase specificities. To understand the evolution of this vast number of activities, we assembled and analyzed experimental and structural data for 205 Nudix proteins collected from the literature. We corrected erroneous functions or provided more appropriate descriptions for 53 annotations described in the Gene Ontology Annotation database in this family, and propose 275 new experimentally-based annotations. We manually constructed a structure-guided sequence alignment of 78 Nudix proteins. Using the structural alignment as a seed, we then made an alignment of 347 "select" Nudix homology domains, curated from structurally determined, functionally characterized, or phylogenetically important Nudix domains. Based on our review of Nudix pyrophosphohydrolase structures and specificities, we further analyzed a loop region downstream of the Nudix hydrolase motif previously shown to contact the substrate molecule and possess known functional motifs. This loop region provides a potential structural basis for the functional radiation and evolution of substrate specificity within the hydrolase family. Finally, phylogenetic analyses of the 347 select protein domains and of the complete Nudix homology clan revealed general monophyly with regard to function and a few instances of probable homoplasy. Proteins 2017; 85:775-811. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- John R. Srouji
- Plant and Microbial Biology DepartmentUniversity of CaliforniaBerkeleyCalifornia94720
- Molecular and Cell Biology DepartmentUniversity of CaliforniaBerkeleyCalifornia94720
- Present address: Molecular and Cellular Biology DepartmentHarvard UniversityCambridgeMassachusetts02138
| | - Anting Xu
- Graduate Study in Comparative Biochemistry, University of CaliforniaBerkeleyCalifornia94720
| | - Annsea Park
- Molecular and Cell Biology DepartmentUniversity of CaliforniaBerkeleyCalifornia94720
| | - Jack F. Kirsch
- Molecular and Cell Biology DepartmentUniversity of CaliforniaBerkeleyCalifornia94720
- Graduate Study in Comparative Biochemistry, University of CaliforniaBerkeleyCalifornia94720
| | - Steven E. Brenner
- Plant and Microbial Biology DepartmentUniversity of CaliforniaBerkeleyCalifornia94720
- Molecular and Cell Biology DepartmentUniversity of CaliforniaBerkeleyCalifornia94720
- Graduate Study in Comparative Biochemistry, University of CaliforniaBerkeleyCalifornia94720
| |
Collapse
|
60
|
Li J, Wang W, He Y, Li Y, Yan EZ, Zhang K, Irvine DJ, Hammond PT. Structurally Programmed Assembly of Translation Initiation Nanoplex for Superior mRNA Delivery. ACS NANO 2017; 11:2531-2544. [PMID: 28157292 PMCID: PMC5629916 DOI: 10.1021/acsnano.6b08447] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Messenger RNA (mRNA) represents a promising class of nucleic-acid-based therapeutics. While numerous nanocarriers have been developed for mRNA delivery, the inherent labile nature of mRNA results in a very low transfection efficiency and poor expression of desired protein. Here we preassemble the mRNA translation initiation structure through an inherent molecular recognition between 7-methylguanosine (m7G)-capped mRNA and eukaryotic initiation factor 4E (eIF4E) protein to form ribonucleoproteins (RNPs), thereby mimicking the first step of protein synthesis inside cells. Subsequent electrostatic stabilization of RNPs with structurally tunable cationic carriers leads to nanosized complexes (nanoplexes), which elicit high levels of mRNA transfection in different cell types by enhancing intracellular mRNA stability and protein synthesis. By investigating a family of synthetic polypeptides bearing different side group arrangements of cationic charge, we find that the molecular structure modulates the nanoscale distance between the mRNA strand and the eIF4E protein inside the nanoplex, which directly impacts the enhancement of mRNA transfection. To demonstrate the biomedical potential of this approach, we use this approach to introduce mRNA/eIF4E nanoplexes to murine dendritic cells, resulting in increased activation of cytotoxic CD8 T cells ex vivo. More importantly, eIF4E enhances gene expression in lungs following a systemic delivery of luciferase mRNA/eIF4E in mice. Collectively, this bioinspired molecular assembly method could lead to a new paradigm of gene delivery.
Collapse
Affiliation(s)
- Jiahe Li
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Wade Wang
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Yanpu He
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Yingzhong Li
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Emily Z. Yan
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Ketian Zhang
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Darrell J. Irvine
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
- Howard Hughes Medical Institute, Chevy Chase, MD 20815
| | - Paula T. Hammond
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
- Correspondence: David H. Koch Professor in Engineering, Bayer Chair Professor of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States.
| |
Collapse
|
61
|
Anadón C, van Tetering G, Ferreira HJ, Moutinho C, Martínez-Cardús A, Villanueva A, Soler M, Heyn H, Moran S, Castro de Moura M, Setien F, Vidal A, Genescà E, Ribera JM, Nomdedeu JF, Guil S, Esteller M. Epigenetic loss of the RNA decapping enzyme NUDT16 mediates C-MYC activation in T-cell acute lymphoblastic leukemia. Leukemia 2017; 31:1622-1625. [PMID: 28344317 PMCID: PMC5501321 DOI: 10.1038/leu.2017.99] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- C Anadón
- Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet, Barcelona, Spain
| | - G van Tetering
- Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet, Barcelona, Spain
| | - H J Ferreira
- Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet, Barcelona, Spain
| | - C Moutinho
- Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet, Barcelona, Spain
| | - A Martínez-Cardús
- Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet, Barcelona, Spain
| | - A Villanueva
- Translational Research Laboratory, Catalan Institute of Oncology, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet, Barcelona, Spain
| | - M Soler
- Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet, Barcelona, Spain
| | - H Heyn
- Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet, Barcelona, Spain
| | - S Moran
- Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet, Barcelona, Spain
| | - M Castro de Moura
- Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet, Barcelona, Spain
| | - F Setien
- Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet, Barcelona, Spain
| | - A Vidal
- Department of Pathological Anatomy, Bellvitge University Hospital, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet, Barcelona, Spain
| | - E Genescà
- Hematology Department, Catalan Institute of Oncology, Hospital Germans Trias i Pujol, Josep Carreras Leukaemia Research Institute (IJC), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - J M Ribera
- Hematology Department, Catalan Institute of Oncology, Hospital Germans Trias i Pujol, Josep Carreras Leukaemia Research Institute (IJC), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - J F Nomdedeu
- Department of Haematology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - S Guil
- Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet, Barcelona, Spain
| | - M Esteller
- Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet, Barcelona, Spain.,Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), Barcelona, Spain.,Institucio Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
62
|
Tsuzuki M, Motomura K, Kumakura N, Takeda A. Interconnections between mRNA degradation and RDR-dependent siRNA production in mRNA turnover in plants. JOURNAL OF PLANT RESEARCH 2017; 130:211-226. [PMID: 28197782 DOI: 10.1007/s10265-017-0906-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Accepted: 12/08/2016] [Indexed: 06/06/2023]
Abstract
Accumulation of an mRNA species is determined by the balance between the synthesis and the degradation of the mRNA. Individual mRNA molecules are selectively and actively degraded through RNA degradation pathways, which include 5'-3' mRNA degradation pathway, 3'-5' mRNA degradation pathway, and RNA-dependent RNA polymerase-mediated mRNA degradation pathway. Recent studies have revealed that these RNA degradation pathways compete with each other in mRNA turnover in plants and that plants have a hidden layer of non-coding small-interfering RNA production from a set of mRNAs. In this review, we summarize the current information about plant mRNA degradation pathways in mRNA turnover and discuss the potential roles of a novel class of the endogenous siRNAs derived from plant mRNAs.
Collapse
Affiliation(s)
- Masayuki Tsuzuki
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, 153-8902, Japan
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Kazuki Motomura
- Institute of Transformative Bio-Molecules, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8601, Japan
| | - Naoyoshi Kumakura
- Center for Sustainable Resource Science, RIKEN, Suehiro-cho 1-7-22, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Atsushi Takeda
- Department of Biotechnology, Graduate School of Life Sciences, Ritsumeikan University, Shiga, 525-8577, Japan.
| |
Collapse
|
63
|
Warminski M, Sikorski PJ, Kowalska J, Jemielity J. Applications of Phosphate Modification and Labeling to Study (m)RNA Caps. Top Curr Chem (Cham) 2017; 375:16. [PMID: 28116583 PMCID: PMC5396385 DOI: 10.1007/s41061-017-0106-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 01/10/2017] [Indexed: 02/07/2023]
Abstract
The cap is a natural modification present at the 5' ends of eukaryotic messenger RNA (mRNA), which because of its unique structural features, mediates essential biological functions during the process of gene expression. The core structural feature of the mRNA cap is an N7-methylguanosine moiety linked by a 5'-5' triphosphate chain to the first transcribed nucleotide. Interestingly, other RNA 5' end modifications structurally and functionally resembling the m7G cap have been discovered in different RNA types and in different organisms. All these structures contain the 'inverted' 5'-5' oligophosphate bridge, which is necessary for interaction with specific proteins and also serves as a cleavage site for phosphohydrolases regulating RNA turnover. Therefore, cap analogs containing oligophosphate chain modifications or carrying spectroscopic labels attached to phosphate moieties serve as attractive molecular tools for studies on RNA metabolism and modification of natural RNA properties. Here, we review chemical, enzymatic, and chemoenzymatic approaches that enable preparation of modified cap structures and RNAs carrying such structures, with emphasis on phosphate-modified mRNA cap analogs and their potential applications.
Collapse
Affiliation(s)
- Marcin Warminski
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Zwirki i Wigury 93, 02-089, Warsaw, Poland
| | - Pawel J Sikorski
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097, Warsaw, Poland
| | - Joanna Kowalska
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Zwirki i Wigury 93, 02-089, Warsaw, Poland.
| | - Jacek Jemielity
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097, Warsaw, Poland.
| |
Collapse
|
64
|
Łabno A, Tomecki R, Dziembowski A. Cytoplasmic RNA decay pathways - Enzymes and mechanisms. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:3125-3147. [PMID: 27713097 DOI: 10.1016/j.bbamcr.2016.09.023] [Citation(s) in RCA: 143] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 09/29/2016] [Accepted: 09/30/2016] [Indexed: 12/14/2022]
Abstract
RNA decay plays a crucial role in post-transcriptional regulation of gene expression. Work conducted over the last decades has defined the major mRNA decay pathways, as well as enzymes and their cofactors responsible for these processes. In contrast, our knowledge of the mechanisms of degradation of non-protein coding RNA species is more fragmentary. This review is focused on the cytoplasmic pathways of mRNA and ncRNA degradation in eukaryotes. The major 3' to 5' and 5' to 3' mRNA decay pathways are described with emphasis on the mechanisms of their activation by the deprotection of RNA ends. More recently discovered 3'-end modifications such as uridylation, and their relevance to cytoplasmic mRNA decay in various model organisms, are also discussed. Finally, we provide up-to-date findings concerning various pathways of non-coding RNA decay in the cytoplasm.
Collapse
Affiliation(s)
- Anna Łabno
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106 Warsaw, Poland; Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5A, 02-106 Warsaw, Poland
| | - Rafał Tomecki
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106 Warsaw, Poland; Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5A, 02-106 Warsaw, Poland.
| | - Andrzej Dziembowski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106 Warsaw, Poland; Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5A, 02-106 Warsaw, Poland.
| |
Collapse
|
65
|
Affiliation(s)
- Suomeng Dong
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Yuanchao Wang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| |
Collapse
|
66
|
Grudzien-Nogalska E, Kiledjian M. New insights into decapping enzymes and selective mRNA decay. WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 8. [PMID: 27425147 DOI: 10.1002/wrna.1379] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 06/23/2016] [Accepted: 06/27/2016] [Indexed: 01/04/2023]
Abstract
Removal of the 5' end cap is a critical determinant controlling mRNA stability and efficient gene expression. Removal of the cap is exquisitely controlled by multiple direct and indirect regulators that influence association with the cap and the catalytic step. A subset of these factors directly stimulate activity of the decapping enzyme, while others influence remodeling of factors bound to mRNA and indirectly stimulate decapping. Furthermore, the components of the general decapping machinery can also be recruited by mRNA-specific regulatory proteins to activate decapping. The Nudix hydrolase, Dcp2, identified as a first decapping enzyme, cleaves capped mRNA and initiates 5'-3' degradation. Extensive studies on Dcp2 led to broad understanding of its activity and the regulation of transcript specific decapping and decay. Interestingly, seven additional Nudix proteins possess intrinsic decapping activity in vitro and at least two, Nudt16 and Nudt3, are decapping enzymes that regulate mRNA stability in cells. Furthermore, a new class of decapping proteins within the DXO family preferentially function on incompletely capped mRNAs. Importantly, it is now evident that each of the characterized decapping enzymes predominantly modulates only a subset of mRNAs, suggesting the existence of multiple decapping enzymes functioning in distinct cellular pathways. WIREs RNA 2017, 8:e1379. doi: 10.1002/wrna.1379 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Ewa Grudzien-Nogalska
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, USA
| | - Megerditch Kiledjian
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, USA
| |
Collapse
|
67
|
Shukla S, Parker R. Hypo- and Hyper-Assembly Diseases of RNA-Protein Complexes. Trends Mol Med 2016; 22:615-628. [PMID: 27263464 DOI: 10.1016/j.molmed.2016.05.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 05/11/2016] [Accepted: 05/13/2016] [Indexed: 12/14/2022]
Abstract
A key aspect of cellular function is the proper assembly and utilization of ribonucleoproteins (RNPs). Recent studies have shown that hyper- or hypo-assembly of various RNPs can lead to human diseases. Defects in the formation of RNPs lead to 'RNP hypo-assembly diseases', which can be caused by RNA degradation outcompeting RNP assembly. By contrast, excess RNP assembly, either in higher order RNP granules, or due to the expression of repeat-containing RNAs, can lead to 'RNP hyper-assembly diseases'. Here, we discuss the most recent advances in understanding the cause of disease onset, as well as potential therapies from the aspect of modulating RNP assembly in the cell, which presents a novel route to the treatment of these diseases.
Collapse
Affiliation(s)
- Siddharth Shukla
- Department of Chemistry and Biochemistry, University of Colorado Boulder, Boulder, CO, USA
| | - Roy Parker
- Department of Chemistry and Biochemistry, University of Colorado Boulder, Boulder, CO, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
68
|
Marriott AS, Vasieva O, Fang Y, Copeland NA, McLennan AG, Jones NJ. NUDT2 Disruption Elevates Diadenosine Tetraphosphate (Ap4A) and Down-Regulates Immune Response and Cancer Promotion Genes. PLoS One 2016; 11:e0154674. [PMID: 27144453 PMCID: PMC4856261 DOI: 10.1371/journal.pone.0154674] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 04/18/2016] [Indexed: 01/04/2023] Open
Abstract
Regulation of gene expression is one of several roles proposed for the stress-induced nucleotide diadenosine tetraphosphate (Ap4A). We have examined this directly by a comparative RNA-Seq analysis of KBM-7 chronic myelogenous leukemia cells and KBM-7 cells in which the NUDT2 Ap4A hydrolase gene had been disrupted (NuKO cells), causing a 175-fold increase in intracellular Ap4A. 6,288 differentially expressed genes were identified with P < 0.05. Of these, 980 were up-regulated and 705 down-regulated in NuKO cells with a fold-change ≥ 2. Ingenuity® Pathway Analysis (IPA®) was used to assign these genes to known canonical pathways and functional networks. Pathways associated with interferon responses, pattern recognition receptors and inflammation scored highly in the down-regulated set of genes while functions associated with MHC class II antigens were prominent among the up-regulated genes, which otherwise showed little organization into major functional gene sets. Tryptophan catabolism was also strongly down-regulated as were numerous genes known to be involved in tumor promotion in other systems, with roles in the epithelial-mesenchymal transition, proliferation, invasion and metastasis. Conversely, some pro-apoptotic genes were up-regulated. Major upstream factors predicted by IPA® for gene down-regulation included NFκB, STAT1/2, IRF3/4 and SP1 but no major factors controlling gene up-regulation were identified. Potential mechanisms for gene regulation mediated by Ap4A and/or NUDT2 disruption include binding of Ap4A to the HINT1 co-repressor, autocrine activation of purinoceptors by Ap4A, chromatin remodeling, effects of NUDT2 loss on transcript stability, and inhibition of ATP-dependent regulatory factors such as protein kinases by Ap4A. Existing evidence favors the last of these as the most probable mechanism. Regardless, our results suggest that the NUDT2 protein could be a novel cancer chemotherapeutic target, with its inhibition potentially exerting strong anti-tumor effects via multiple pathways involving metastasis, invasion, immunosuppression and apoptosis.
Collapse
MESH Headings
- Cell Line, Tumor
- Dinucleoside Phosphates/metabolism
- Down-Regulation
- Gene Expression Profiling
- Gene Knockout Techniques
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/immunology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Phosphoric Monoester Hydrolases/deficiency
- Phosphoric Monoester Hydrolases/genetics
Collapse
Affiliation(s)
- Andrew S. Marriott
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, Merseyside, United Kingdom
| | - Olga Vasieva
- Department of Functional and Comparative Genomics, Institute of Integrative Biology, University of Liverpool, Liverpool, Merseyside, United Kingdom
| | - Yongxiang Fang
- Department of Functional and Comparative Genomics, Institute of Integrative Biology, University of Liverpool, Liverpool, Merseyside, United Kingdom
| | - Nikki A. Copeland
- Division of Biomedical and Life Sciences, University of Lancaster, Lancaster, Lancashire, United Kingdom
| | - Alexander G. McLennan
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, Merseyside, United Kingdom
- * E-mail: (AGM); (NJJ)
| | - Nigel J. Jones
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, Merseyside, United Kingdom
- * E-mail: (AGM); (NJJ)
| |
Collapse
|
69
|
Grudzien-Nogalska E, Jiao X, Song MG, Hart RP, Kiledjian M. Nudt3 is an mRNA decapping enzyme that modulates cell migration. RNA (NEW YORK, N.Y.) 2016; 22:773-781. [PMID: 26932476 PMCID: PMC4836651 DOI: 10.1261/rna.055699.115] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 01/28/2016] [Indexed: 06/05/2023]
Abstract
Removal of the 5'-end 7-methylguanosine cap structure is a critical step in the highly regulated process of mRNA decay. The Nudix hydrolase, Dcp2, was identified as a first decapping enzyme and subsequently shown to preferentially modulate stability of only a subset of mRNAs. This observation led to the hypothesis that mammalian cells possess multiple decapping enzymes that may function in distinct pathways. Here we report Nudt3 is a Nudix protein that possesses mRNA decapping activity in cells and is a modulator of MCF-7 breast cancer cell migration. Reduction of Nudt3 protein levels in MCF-7 cells promotes increased cell migration and corresponding enhanced filopodia extensions. Importantly, this phenotype was reversed by complementation with wild type, but not catalytically inactive Nudt3 protein indicating Nudt3 decapping activity normally functions to control cell migration. Genome-wide analysis of Nudt3 compromised cells identified elevated levels of transcripts involved in cell motility including integrin β6, lipocalin-2, and fibronectin. The observed increase in mRNA abundance was dependent on Nudt3 decapping activity where integrin β6 and lipocalin-2 were modulated directly through mRNA stability, while fibronectin was indirectly controlled. Moreover, increased cell migration observed in Nudt3 knockdown cells was mediated through the extracellular integrin β6 and fibronectin protein nexus. We conclude that Nudt3 is an mRNA decapping enzyme that orchestrates expression of a subset of mRNAs to modulate cell migration and further substantiates the existence of multiple decapping enzymes functioning in distinct cellular pathways in mammals.
Collapse
Affiliation(s)
- Ewa Grudzien-Nogalska
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Xinfu Jiao
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Man-Gen Song
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Ronald P Hart
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Megerditch Kiledjian
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey 08854, USA
| |
Collapse
|
70
|
Ziemniak M, Mugridge JS, Kowalska J, Rhoads RE, Gross JD, Jemielity J. Two-headed tetraphosphate cap analogs are inhibitors of the Dcp1/2 RNA decapping complex. RNA (NEW YORK, N.Y.) 2016; 22:518-29. [PMID: 26826132 PMCID: PMC4793208 DOI: 10.1261/rna.055152.115] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 12/10/2015] [Indexed: 05/08/2023]
Abstract
Dcp1/2 is the major eukaryotic RNA decapping complex, comprised of the enzyme Dcp2 and activator Dcp1, which removes the 5' m(7)G cap from mRNA, committing the transcript to degradation. Dcp1/2 activity is crucial for RNA quality control and turnover, and deregulation of these processes may lead to disease development. The molecular details of Dcp1/2 catalysis remain elusive, in part because both cap substrate (m(7)GpppN) and m(7)GDP product are bound by Dcp1/2 with weak (mM) affinity. In order to find inhibitors to use in elucidating the catalytic mechanism of Dcp2, we screened a small library of synthetic m(7)G nucleotides (cap analogs) bearing modifications in the oligophosphate chain. One of the most potent cap analogs, m(7)GpSpppSm(7)G, inhibited Dcp1/2 20 times more efficiently than m(7)GpppN or m(7)GDP. NMR experiments revealed that the compound interacts with specific surfaces of both regulatory and catalytic domains of Dcp2 with submillimolar affinities. Kinetics analysis revealed that m(7)GpSpppSm(7)G is a mixed inhibitor that competes for the Dcp2 active site with micromolar affinity. m(7)GpSpppSm(7)G-capped RNA undergoes rapid decapping, suggesting that the compound may act as a tightly bound cap mimic. Our identification of the first small molecule inhibitor of Dcp2 should be instrumental in future studies aimed at understanding the structural basis of RNA decapping and may provide insight toward the development of novel therapeutically relevant decapping inhibitors.
Collapse
Affiliation(s)
- Marcin Ziemniak
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-089 Warsaw, Poland
| | - Jeffrey S Mugridge
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California 94158, USA
| | - Joanna Kowalska
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-089 Warsaw, Poland
| | - Robert E Rhoads
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, Louisiana 71130-3932, USA
| | - John D Gross
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California 94158, USA
| | - Jacek Jemielity
- Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
| |
Collapse
|
71
|
Daniels CM, Thirawatananond P, Ong SE, Gabelli SB, Leung AKL. Nudix hydrolases degrade protein-conjugated ADP-ribose. Sci Rep 2015; 5:18271. [PMID: 26669448 PMCID: PMC4680915 DOI: 10.1038/srep18271] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 11/03/2015] [Indexed: 12/25/2022] Open
Abstract
ADP-ribosylation refers to the transfer of the ADP-ribose group from NAD(+) to target proteins post-translationally, either attached singly as mono(ADP-ribose) (MAR) or in polymeric chains as poly(ADP-ribose) (PAR). Though ADP-ribosylation is therapeutically important, investigation of this protein modification has been limited by a lack of proteomic tools for site identification. Recent work has demonstrated the potential of a tag-based pipeline in which MAR/PAR is hydrolyzed down to phosphoribose, leaving a 212 Dalton tag at the modification site. While the pipeline has been proven effective by multiple groups, a barrier to application has become evident: the enzyme used to transform MAR/PAR into phosphoribose must be purified from the rattlesnake Crotalus adamanteus venom, which is contaminated with proteases detrimental for proteomic applications. Here, we outline the steps necessary to purify snake venom phosphodiesterase I (SVP) and describe two alternatives to SVP-the bacterial Nudix hydrolase EcRppH and human HsNudT16. Importantly, expression and purification schemes for these Nudix enzymes have already been proven, with high-quality yields easily attainable. We demonstrate their utility in identifying ADP-ribosylation sites on Poly(ADP-ribose) Polymerase 1 (PARP1) with mass spectrometry and discuss a structure-based rationale for this Nudix subclass in degrading protein-conjugated ADP-ribose, including both MAR and PAR.
Collapse
Affiliation(s)
- Casey M. Daniels
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Puchong Thirawatananond
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Shao-En Ong
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - Sandra B. Gabelli
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Anthony K. L. Leung
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
72
|
Clouet-d’Orval B, Phung DK, Langendijk-Genevaux PS, Quentin Y. Universal RNA-degrading enzymes in Archaea: Prevalence, activities and functions of β-CASP ribonucleases. Biochimie 2015; 118:278-85. [DOI: 10.1016/j.biochi.2015.05.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 05/28/2015] [Indexed: 12/13/2022]
|
73
|
Cytoplasmic mRNA turnover and ageing. Mech Ageing Dev 2015; 152:32-42. [PMID: 26432921 PMCID: PMC4710634 DOI: 10.1016/j.mad.2015.09.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Revised: 09/17/2015] [Accepted: 09/27/2015] [Indexed: 12/12/2022]
Abstract
We address the cytoplasmic mRNA decay processes that determine the mRNAs half-life. We briefly describe the major, evolutionary conserved, ageing pathways and mechanisms. We summarize critical findings that link mRNA turnover and ageing modulators.
Messenger RNA (mRNA) turnover that determines the lifetime of cytoplasmic mRNAs is a means to control gene expression under both normal and stress conditions, whereas its impact on ageing and age-related disorders has just become evident. Gene expression control is achieved at the level of the mRNA clearance as well as mRNA stability and accessibility to other molecules. All these processes are regulated by cis-acting motifs and trans-acting factors that determine the rates of translation and degradation of transcripts. Specific messenger RNA granules that harbor the mRNA decay machinery or various factors, involved in translational repression and transient storage of mRNAs, are also part of the mRNA fate regulation. Their assembly and function can be modulated to promote stress resistance to adverse conditions and over time affect the ageing process and the lifespan of the organism. Here, we provide insights into the complex relationships of ageing modulators and mRNA turnover mechanisms.
Collapse
|
74
|
Siwaszek A, Ukleja M, Dziembowski A. Proteins involved in the degradation of cytoplasmic mRNA in the major eukaryotic model systems. RNA Biol 2015; 11:1122-36. [PMID: 25483043 DOI: 10.4161/rna.34406] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The process of mRNA decay and surveillance is considered to be one of the main posttranscriptional gene expression regulation platforms in eukaryotes. The degradation of stable, protein-coding transcripts is normally initiated by removal of the poly(A) tail followed by 5'-cap hydrolysis and degradation of the remaining mRNA body by Xrn1. Alternatively, the exosome complex degrades mRNA in the 3'>5'direction. The newly discovered uridinylation-dependent pathway, which is present in many different organisms, also seems to play a role in bulk mRNA degradation. Simultaneously, to avoid the synthesis of incorrect proteins, special cellular machinery is responsible for the removal of faulty transcripts via nonsense-mediated, no-go, non-stop or non-functional 18S rRNA decay. This review is focused on the major eukaryotic cytoplasmic mRNA degradation pathways showing many similarities and pointing out main differences between the main model-species: yeast, Drosophila, plants and mammals.
Collapse
Affiliation(s)
- Aleksandra Siwaszek
- a Institute of Biochemistry and Biophysics ; Polish Academy of Sciences ; Warsaw , Poland
| | | | | |
Collapse
|
75
|
He F, Jacobson A. Control of mRNA decapping by positive and negative regulatory elements in the Dcp2 C-terminal domain. RNA (NEW YORK, N.Y.) 2015; 21:1633-47. [PMID: 26184073 PMCID: PMC4536323 DOI: 10.1261/rna.052449.115] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 06/08/2015] [Indexed: 05/23/2023]
Abstract
Decapping commits an mRNA to complete degradation and promotes general 5' to 3' decay, nonsense-mediated decay (NMD), and transcript-specific degradation. In Saccharomyces cerevisiae, a single decapping enzyme composed of a regulatory subunit (Dcp1) and a catalytic subunit (Dcp2) targets thousands of distinct substrate mRNAs. However, the mechanisms controlling this enzyme's in vivo activity and substrate specificity remain elusive. Here, using a genetic approach, we show that the large C-terminal domain of Dcp2 includes a set of conserved negative and positive regulatory elements. A single negative element inhibits enzymatic activity and controls the downstream functions of several positive elements. The positive elements recruit the specific decapping activators Edc3, Pat1, and Upf1 to form distinct decapping complexes and control the enzyme's substrate specificity and final activation. Our results reveal unforeseen regulatory mechanisms that control decapping enzyme activity and function in vivo, and define roles for several decapping activators in the regulation of mRNA decapping.
Collapse
Affiliation(s)
- Feng He
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA
| | - Allan Jacobson
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA
| |
Collapse
|
76
|
The yin and yang of hepatitis C: synthesis and decay of hepatitis C virus RNA. Nat Rev Microbiol 2015; 13:544-58. [PMID: 26256788 DOI: 10.1038/nrmicro3506] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hepatitis C virus (HCV) is an unusual RNA virus that has a striking capacity to persist for the remaining life of the host in the majority of infected individuals. In order to persist, HCV must balance viral RNA synthesis and decay in infected cells. In this Review, we focus on interactions between the positive-sense RNA genome of HCV and the host RNA-binding proteins and microRNAs, and describe how these interactions influence the competing processes of viral RNA synthesis and decay to achieve stable, long-term persistence of the viral genome. Furthermore, we discuss how these processes affect hepatitis C pathogenesis and therapeutic strategies against HCV.
Collapse
|
77
|
Zhou M, Bail S, Plasterer HL, Rusche J, Kiledjian M. DcpS is a transcript-specific modulator of RNA in mammalian cells. RNA (NEW YORK, N.Y.) 2015; 21:1306-1312. [PMID: 26001796 PMCID: PMC4478349 DOI: 10.1261/rna.051573.115] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 04/09/2015] [Indexed: 06/04/2023]
Abstract
The scavenger decapping enzyme DcpS is a multifunctional protein initially identified by its property to hydrolyze the resulting cap structure following 3' end mRNA decay. In Saccharomyces cerevisiae, the DcpS homolog Dcs1 is an obligate cofactor for the 5'-3' exoribonuclease Xrn1 while the Caenorhabditis elegans homolog Dcs-1, facilitates Xrn1 mediated microRNA turnover. In both cases, this function is independent of the decapping activity. Whether DcpS and its decapping activity can affect mRNA steady state or stability in mammalian cells remains unknown. We sought to determine DcpS target genes in mammalian cells using a cell-permeable DcpS inhibitor compound, RG3039 initially developed for therapeutic treatment of spinal muscular atrophy. Global mRNA levels were examined following DcpS decapping inhibition with RG3039. The steady-state levels of 222 RNAs were altered upon RG3039 treatment. Of a subset selected for validation, two transcripts that appear to be long noncoding RNAs HS370762 and BC011766, were dependent on DcpS and its scavenger decapping catalytic activity and referred to as DcpS-responsive noncoding transcripts (DRNT) 1 and 2, respectively. Interestingly, only the increase in DRNT1 transcript was accompanied with an increase of its RNA stability and this increase was dependent on both DcpS and Xrn1. Importantly, unlike in yeast where the DcpS homolog is an obligate cofactor for Xrn1, stability of additional Xrn1 dependent RNAs were not altered by a reduction in DcpS levels. Collectively, our data demonstrate that DcpS in conjunction with Xrn1 has the potential to regulate RNA stability in a transcript-selective manner in mammalian cells.
Collapse
Affiliation(s)
- Mi Zhou
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Sophie Bail
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey 08854, USA
| | | | - James Rusche
- Repligen Corporation, Waltham, Massachusetts 02453, USA
| | - Megerditch Kiledjian
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey 08854, USA
| |
Collapse
|
78
|
Wang VYF, Jiao X, Kiledjian M, Tong L. Structural and biochemical studies of the distinct activity profiles of Rai1 enzymes. Nucleic Acids Res 2015; 43:6596-606. [PMID: 26101253 PMCID: PMC4513879 DOI: 10.1093/nar/gkv620] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 06/02/2015] [Indexed: 11/14/2022] Open
Abstract
Recent studies showed that Rai1 and its homologs are a crucial component of the mRNA 5'-end capping quality control mechanism. They can possess RNA 5'-end pyrophosphohydrolase (PPH), decapping, and 5'-3' exonuclease (toward 5' monophosphate RNA) activities, which help to degrade mRNAs with incomplete 5'-end capping. A single active site in the enzyme supports these apparently distinct activities. However, each Rai1 protein studied so far has a unique set of activities, and the molecular basis for these differences are not known. Here, we have characterized the highly diverse activity profiles of Rai1 homologs from a collection of fungal organisms and identified a new activity for these enzymes, 5'-end triphosphonucleotide hydrolase (TPH) instead of PPH activity. Crystal structures of two of these enzymes bound to RNA oligonucleotides reveal differences in the RNA binding modes. Structure-based mutations of these enzymes, changing residues that contact the RNA but are poorly conserved, have substantial effects on their activity, providing a framework to begin to understand the molecular basis for the different activity profiles.
Collapse
Affiliation(s)
- Vivien Ya-Fan Wang
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Xinfu Jiao
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Megerditch Kiledjian
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Liang Tong
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| |
Collapse
|
79
|
Piecyk K, Darzynkiewicz ZM, Jankowska-Anyszka M, Ferenc-Mrozek A, Stepinski J, Darzynkiewicz E, Bojarska E. Effect of different N7 substitution of dinucleotide cap analogs on the hydrolytic susceptibility towards scavenger decapping enzymes (DcpS). Biochem Biophys Res Commun 2015; 464:89-93. [PMID: 26049109 DOI: 10.1016/j.bbrc.2015.06.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 06/01/2015] [Indexed: 11/16/2022]
Abstract
Scavenger decapping enzymes (DcpS) are involved in eukaryotic mRNA degradation process. They catalyze the cleavage of residual cap structure m(7)GpppN and/or short capped oligonucleotides resulting from exosom-mediated the 3' to 5' digestion. For the specific cap recognition and efficient degradation by DcpS, the positive charge at N7 position of guanine moiety is required. Here we examine the role the N7 substitution within the cap structure on the interactions with DcpS (human, Caenorhabditis elegans and Ascaris suum) comparing the hydrolysis rates of dinucleotide cap analogs (m(7)GpppG, et(7)GpppG, but(7)GpppG, bn(7)GpppG) and the binding affinities of hydrolysis products (m(7)GMP, et(7)GMP, but(7)GMP, bn(7)GMP). Our results show the conformational flexibility of the region within DcpS cap-binding pocket involved in the interaction with N7 substituted guanine, which enables accommodation of substrates with differently sized N7 substituents.
Collapse
Affiliation(s)
- Karolina Piecyk
- Faculty of Chemistry, University of Warsaw, 1 Pasteura St., 02-093 Warsaw, Poland
| | - Zbigniew M Darzynkiewicz
- Centre of New Technologies, University of Warsaw, 2c Banacha St., 02-097 Warsaw, Poland; Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 93 Zwirki & Wigury St., 02-089 Warsaw, Poland
| | - Marzena Jankowska-Anyszka
- Faculty of Chemistry, University of Warsaw, 1 Pasteura St., 02-093 Warsaw, Poland; Department of Biochemistry, Second Faculty of Medicine, Medical University of Warsaw, 101 Zwirki & Wigury St., 02-089 Warsaw, Poland
| | - Aleksandra Ferenc-Mrozek
- Centre of New Technologies, University of Warsaw, 2c Banacha St., 02-097 Warsaw, Poland; College of Inter-Faculty Individual Studies in Mathematics and Natural Sciences, University of Warsaw, 93 Zwirki & Wigury St., 02-089 Warsaw, Poland
| | - Janusz Stepinski
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 93 Zwirki & Wigury St., 02-089 Warsaw, Poland
| | - Edward Darzynkiewicz
- Centre of New Technologies, University of Warsaw, 2c Banacha St., 02-097 Warsaw, Poland; Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 93 Zwirki & Wigury St., 02-089 Warsaw, Poland
| | - Elzbieta Bojarska
- Centre of New Technologies, University of Warsaw, 2c Banacha St., 02-097 Warsaw, Poland.
| |
Collapse
|
80
|
Virus-induced translational arrest through 4EBP1/2-dependent decay of 5'-TOP mRNAs restricts viral infection. Proc Natl Acad Sci U S A 2015; 112:E2920-9. [PMID: 26038567 DOI: 10.1073/pnas.1418805112] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The mosquito-transmitted bunyavirus, Rift Valley fever virus (RVFV), is a highly successful pathogen for which there are no vaccines or therapeutics. Translational arrest is a common antiviral strategy used by hosts. In response, RVFV inhibits two well-known antiviral pathways that attenuate translation during infection, PKR and type I IFN signaling. Despite this, translational arrest occurs during RVFV infection by unknown mechanisms. Here, we find that RVFV infection triggers the decay of core translation machinery mRNAs that possess a 5'-terminal oligopyrimidine (5'-TOP) motif in their 5'-UTR, including mRNAs encoding ribosomal proteins, which leads to a decrease in overall ribosomal protein levels. We find that the RNA decapping enzyme NUDT16 selectively degrades 5'-TOP mRNAs during RVFV infection and this decay is triggered in response to mTOR attenuation via the translational repressor 4EBP1/2 axis. Translational arrest of 5'-TOPs via 4EBP1/2 restricts RVFV replication, and this increased RNA decay results in the loss of visible RNA granules, including P bodies and stress granules. Because RVFV cap-snatches in RNA granules, the increased level of 5'-TOP mRNAs in this compartment leads to snatching of these targets, which are translationally suppressed during infection. Therefore, translation of RVFV mRNAs is compromised by multiple mechanisms during infection. Together, these data present a previously unknown mechanism for translational shutdown in response to viral infection and identify mTOR attenuation as a potential therapeutic avenue against bunyaviral infection.
Collapse
|
81
|
Competition between Decapping Complex Formation and Ubiquitin-Mediated Proteasomal Degradation Controls Human Dcp2 Decapping Activity. Mol Cell Biol 2015; 35:2144-53. [PMID: 25870104 DOI: 10.1128/mcb.01517-14] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 04/02/2015] [Indexed: 12/28/2022] Open
Abstract
mRNA decapping is a central step in eukaryotic mRNA decay that simultaneously shuts down translation initiation and activates mRNA degradation. A major complex responsible for decapping consists of the decapping enzyme Dcp2 in association with decapping enhancers. An important question is how the activity and accumulation of Dcp2 are regulated at the cellular level to ensure the specificity and fidelity of the Dcp2 decapping complex. Here, we show that human Dcp2 levels and activity are controlled by a competition between decapping complex assembly and Dcp2 degradation. This is mediated by a regulatory domain in the Dcp2 C terminus, which, on the one hand, promotes Dcp2 activation via decapping complex formation mediated by the decapping enhancer Hedls and, on the other hand, targets Dcp2 for ubiquitin-mediated proteasomal degradation in the absence of Hedls association. This competition between Dcp2 activation and degradation restricts the accumulation and activity of uncomplexed Dcp2, which may be important for preventing uncontrolled decapping or for regulating Dcp2 levels and activity according to cellular needs.
Collapse
|
82
|
Ahmed I, Buchert R, Zhou M, Jiao X, Mittal K, Sheikh TI, Scheller U, Vasli N, Rafiq MA, Brohi MQ, Mikhailov A, Ayaz M, Bhatti A, Sticht H, Nasr T, Carter MT, Uebe S, Reis A, Ayub M, John P, Kiledjian M, Vincent JB, Jamra RA. Mutations in DCPS and EDC3 in autosomal recessive intellectual disability indicate a crucial role for mRNA decapping in neurodevelopment. Hum Mol Genet 2015; 24:3172-80. [PMID: 25701870 DOI: 10.1093/hmg/ddv069] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 02/16/2015] [Indexed: 01/09/2023] Open
Abstract
There are two known mRNA degradation pathways, 3' to 5' and 5' to 3'. We identified likely pathogenic variants in two genes involved in these two pathways in individuals with intellectual disability. In a large family with multiple branches, we identified biallelic variants in DCPS in three affected individuals; a splice site variant (c.636+1G>A) that results in an in-frame insertion of 45 nucleotides and a missense variant (c.947C>T; p.Thr316Met). DCPS decaps the cap structure generated by 3' to 5' exonucleolytic degradation of mRNA. In vitro decapping assays showed an ablation of decapping function for both variants in DCPS. In another family, we identified a homozygous mutation (c.161T>C; p.Phe54Ser) in EDC3 in two affected children. EDC3 stimulates DCP2, which decaps mRNAs at the beginning of the 5' to 3' degradation pathway. In vitro decapping assays showed that altered EDC3 is unable to enhance DCP2 decapping at low concentrations and even inhibits DCP2 decapping at high concentration. We show that individuals with biallelic mutations in these genes of seemingly central functions are viable and that these possibly lead to impairment of neurological functions linking mRNA decapping to normal cognition. Our results further affirm an emerging theme linking aberrant mRNA metabolism to neurological defects.
Collapse
Affiliation(s)
- Iltaf Ahmed
- Molecular Neuropsychiatry and Development Lab, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario, Canada M5T 1R8 Atta-ur-Rehman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
| | | | - Mi Zhou
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Xinfu Jiao
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Kirti Mittal
- Molecular Neuropsychiatry and Development Lab, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario, Canada M5T 1R8
| | - Taimoor I Sheikh
- Molecular Neuropsychiatry and Development Lab, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario, Canada M5T 1R8
| | | | - Nasim Vasli
- Molecular Neuropsychiatry and Development Lab, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario, Canada M5T 1R8
| | - Muhammad Arshad Rafiq
- Molecular Neuropsychiatry and Development Lab, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario, Canada M5T 1R8
| | - M Qasim Brohi
- Sir Cowasji Jehangir Institute of Psychiatry, Hyderabad, Sindh 71000, Pakistan
| | - Anna Mikhailov
- Molecular Neuropsychiatry and Development Lab, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario, Canada M5T 1R8
| | - Muhammad Ayaz
- Lahore Institute of Research and Development, Lahore 51000, Pakistan
| | - Attya Bhatti
- Atta-ur-Rehman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
| | - Heinrich Sticht
- Bioinformatics, Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91054, Germany
| | - Tanveer Nasr
- Department of Psychiatry, Mayo Hospital, Lahore 54000, Pakistan Department of Psychiatry, Chaudhary Hospital, Gujranwala 52250, Pakistan
| | - Melissa T Carter
- Division of Clinical and Metabolic Genetics, Department of Pediatrics, The Hospital for Sick Children, Toronto, Ontario, Canada M5G1X8
| | | | | | - Muhammad Ayub
- Lahore Institute of Research and Development, Lahore 51000, Pakistan Division of Developmental Disabilities, Department of Psychiatry, Queen's University, Kingston, Ontario, Canada K7L 3N6
| | - Peter John
- Atta-ur-Rehman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
| | - Megerditch Kiledjian
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - John B Vincent
- Molecular Neuropsychiatry and Development Lab, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario, Canada M5T 1R8 Department of Psychiatry and Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada M5S 2J7
| | | |
Collapse
|
83
|
Abstract
All eukaryotic mRNAs are capped at their 5' end. Capping of mRNAs takes place co-transcriptionally and involves three steps. The intermediates of the capping process, as well as the uncapped 5' tri-phosphate RNA, are resistant to decapping and degradation by known factors, leading to the assumption that the capping process always proceeds to completion. This view was recently drastically changed. A novel family of enzymes, including the yeast proteins Rai1, Dxo1/Ydr370C, and the mammalian protein DXO/Dom3Z, has been identified. These enzymes catalyze the conversion of the improperly capped mRNAs to 5' mono-phosphate RNA, allowing them to be degraded by 5'-3' exoribonucleases. Several of these enzymes also possess 5'-3' exoribonuclease activities themselves, and can single-handedly clear the improperly capped mRNAs. Studying of these enzymes has led to the realization that mRNA capping does not always proceed to completion, and the identification of an mRNA capping quality control mechanism in eukaryotes. In this paper, we briefly review recent advances in this area.
Collapse
Affiliation(s)
- Li-ting Zhai
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | |
Collapse
|
84
|
Taverniti V, Séraphin B. Elimination of cap structures generated by mRNA decay involves the new scavenger mRNA decapping enzyme Aph1/FHIT together with DcpS. Nucleic Acids Res 2014; 43:482-92. [PMID: 25432955 PMCID: PMC4288156 DOI: 10.1093/nar/gku1251] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Eukaryotic 5' mRNA cap structures participate to the post-transcriptional control of gene expression before being released by the two main mRNA decay pathways. In the 3'-5' pathway, the exosome generates free cap dinucleotides (m7GpppN) or capped oligoribonucleotides that are hydrolyzed by the Scavenger Decapping Enzyme (DcpS) forming m7GMP. In the 5'-3' pathway, the decapping enzyme Dcp2 generates m7GDP. We investigated the fate of m7GDP and m7GpppN produced by RNA decay in extracts and cells. This defined a pathway involving DcpS, NTPs and the nucleoside diphosphate kinase for m7GDP elimination. Interestingly, we identified and characterized in vitro and in vivo a new scavenger decapping enzyme involved in m7GpppN degradation. We show that activities mediating cap elimination identified in yeast are essentially conserved in human. Their alteration may contribute to pathologies, possibly through the interference of cap (di)nucleotide with cellular function.
Collapse
Affiliation(s)
- Valerio Taverniti
- Equipe Labellisée La Ligue, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Centre National de Recherche Scientifique (CNRS) UMR 7104/Institut National de Santé et de Recherche Médicale (INSERM) U964/Université de Strasbourg, 67404 Illkirch, France
| | - Bertrand Séraphin
- Equipe Labellisée La Ligue, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Centre National de Recherche Scientifique (CNRS) UMR 7104/Institut National de Santé et de Recherche Médicale (INSERM) U964/Université de Strasbourg, 67404 Illkirch, France
| |
Collapse
|
85
|
Quality control of assembly-defective U1 snRNAs by decapping and 5'-to-3' exonucleolytic digestion. Proc Natl Acad Sci U S A 2014; 111:E3277-86. [PMID: 25071210 DOI: 10.1073/pnas.1412614111] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The accurate biogenesis of RNA-protein complexes is a key aspect of eukaryotic cells. Defects in Sm protein complex binding to snRNAs are known to reduce levels of snRNAs, suggesting an unknown quality control system for small nuclear ribonucleoprotein (snRNP) assembly. snRNA quality control may also be relevant in spinal muscular atrophy, which is caused by defects in the survival motor neuron (SMN)1 gene, an assembly factor for loading the Sm complex on snRNAs and, when severely reduced, can lead to reduced levels of snRNAs and splicing defects. To determine how assembly-defective snRNAs are degraded, we first demonstrate that yeast U1 Sm-mutant snRNAs are degraded either by Rrp6- or by Dcp2-dependent decapping/5'-to-3' decay. Knockdown of the decapping enzyme DCP2 in mammalian cells also increases the levels of assembly-defective snRNAs and suppresses some splicing defects seen in SMN-deficient cells. These results identify a conserved mechanism of snRNA quality control, and also suggest a general paradigm wherein the phenotype of an "RNP assembly disease" might be suppressed by inhibition of a competing RNA quality control mechanism.
Collapse
|
86
|
Depletion of the Trypanosome Pumilio domain protein PUF2 or of some other essential proteins causes transcriptome changes related to coding region length. EUKARYOTIC CELL 2014; 13:664-74. [PMID: 24681684 DOI: 10.1128/ec.00018-14] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Pumilio domain RNA-binding proteins are known mainly as posttranscriptional repressors of gene expression that reduce mRNA translation and stability. Trypanosoma brucei has 11 PUF proteins. We show here that PUF2 is in the cytosol, with roughly the same number of molecules per cell as there are mRNAs. Although PUF2 exhibits a low level of in vivo RNA binding, it is not associated with polysomes. PUF2 also decreased reporter mRNA levels in a tethering assay, consistent with a repressive role. Depletion of PUF2 inhibited growth of bloodstream-form trypanosomes, causing selective loss of mRNAs with long open reading frames and increases in mRNAs with shorter open reading frames. Reexamination of published RNASeq data revealed the same trend in cells depleted of some other proteins. We speculate that these length effects could be caused by inhibition of the elongation phase of transcription or by an influence of translation status or polysomal conformation on mRNA decay.
Collapse
|
87
|
Jurado AR, Tan D, Jiao X, Kiledjian M, Tong L. Structure and function of pre-mRNA 5'-end capping quality control and 3'-end processing. Biochemistry 2014; 53:1882-98. [PMID: 24617759 PMCID: PMC3977584 DOI: 10.1021/bi401715v] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Messenger RNA precursors (pre-mRNAs)
are produced as the nascent
transcripts of RNA polymerase II (Pol II) in eukaryotes and must undergo
extensive maturational processing, including 5′-end capping,
splicing, and 3′-end cleavage and polyadenylation. This review
will summarize the structural and functional information reported
over the past few years on the large machinery required for the 3′-end
processing of most pre-mRNAs, as well as the distinct machinery for
the 3′-end processing of replication-dependent histone pre-mRNAs,
which have provided great insights into the proteins and their subcomplexes
in these machineries. Structural and biochemical studies have also
led to the identification of a new class of enzymes (the DXO family
enzymes) with activity toward intermediates of the 5′-end capping
pathway. Functional studies demonstrate that these enzymes are part
of a novel quality surveillance mechanism for pre-mRNA 5′-end
capping. Incompletely capped pre-mRNAs are produced in yeast and human
cells, in contrast to the general belief in the field that capping
always proceeds to completion, and incomplete capping leads to defects
in splicing and 3′-end cleavage in human cells. The DXO family
enzymes are required for the detection and degradation of these defective
RNAs.
Collapse
Affiliation(s)
- Ashley R Jurado
- Department of Biological Sciences, Columbia University , New York, New York 10027, United States
| | | | | | | | | |
Collapse
|
88
|
Contreras X, Benkirane M, Kiernan R. Premature termination of transcription by RNAP II: the beginning of the end. Transcription 2013; 4:72-6. [PMID: 23714697 DOI: 10.4161/trns.24148] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Transcription elongation is now recognized as an important mechanism of gene regulation in eukaryotes. A large number of genes undergo an early step in transcription that is rate limiting for expression. Genome-wide studies showing that RNA polymerase II accumulates to high densities near the promoters of many genes has led to the idea that promoter-proximal pausing of transcription is a widespread, rate-limiting step in early elongation. Recent evidence suggests that much of this paused RNA polymerase II is competent for transcription elongation. Here, we discuss recent studies suggesting that RNA polymerase II that accumulates nearby the promoter of a subset of genes is undergoing premature termination of transcription.
Collapse
Affiliation(s)
- Xavier Contreras
- Institut de Génétique Humaine; CNRS UPR1142, Laboratoire de Régulation des Gènes, Montpellier, France
| | | | | |
Collapse
|
89
|
Abstract
Cap analogs are chemically modified derivatives of the unique cap structure present at the 5´ end of all eukaryotic mRNAs and several non-coding RNAs. Until recently, cap analogs have served primarily as tools in the study of RNA metabolism. Continuing advances in our understanding of cap biological functions (including RNA stabilization, pre-mRNA splicing, initiation of mRNA translation, as well as cellular transport of mRNAs and snRNAs) and the consequences of the disruption of these processes - resulting in serious medical disorders - have opened new possibilities for pharmaceutical applications of these compounds. In this review, the medicinal potential of cap analogs in areas, such as cancer treatment (including eIF4E targeting and mRNA-based immunotherapy), spinal muscular atrophy treatment, antiviral therapy and the improvement of the localization of nucleus-targeting drugs, are highlighted. Advances achieved to date, challenges, plausible solutions and prospects for the future development of cap analog-based drug design are described.
Collapse
|
90
|
The D10 decapping enzyme of vaccinia virus contributes to decay of cellular and viral mRNAs and to virulence in mice. J Virol 2013; 88:202-11. [PMID: 24155373 DOI: 10.1128/jvi.02426-13] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Posttranscriptional mechanisms are important for regulation of cellular and viral gene expression. The presence of the 5' cap structure m(7)G(5')ppp(5')Nm is a general feature of mRNAs that provides protection from exoribonuclease digestion and enhances translation. Vaccinia virus and other poxviruses encode enzymes for both cap synthesis and decapping. Decapping is mediated by two related enzymes, D9 and D10, which are synthesized before and after viral DNA replication, respectively. The timing of D10 synthesis correlates better with the shutdown of host gene expression, and deletion of this gene has been shown to cause persistence of host and viral mRNAs in infected cells. Here, we constructed specific mutant viruses in which translation of D10 was prevented by stop codons or activity of D10 was abrogated by catalytic site mutations, without other genomic alterations. Both mutants formed plaques of normal size and replicated to similar extents as the parental virus in monkey epithelial cells and mouse embryonic fibroblasts. The synthesis of viral proteins was slightly delayed, and cellular and viral mRNAs persisted longer in cells infected with the mutants compared to either the parental virus or clonal revertant. Despite the mild effects in vitro, both mutants were more attenuated than the revertants in intranasal and intraperitoneal mouse models, and less infectious virus was recovered from organs. In addition, there was less lung histopathology following intranasal infection with mutant viruses. These data suggest that the D10 decapping enzyme may help restrict antiviral responses by accelerating host mRNA degradation during poxvirus infection.
Collapse
|
91
|
Hopkins KC, McLane LM, Maqbool T, Panda D, Gordesky-Gold B, Cherry S. A genome-wide RNAi screen reveals that mRNA decapping restricts bunyaviral replication by limiting the pools of Dcp2-accessible targets for cap-snatching. Genes Dev 2013; 27:1511-25. [PMID: 23824541 DOI: 10.1101/gad.215384.113] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Bunyaviruses are an emerging group of medically important viruses, many of which are transmitted from insects to mammals. To identify host factors that impact infection, we performed a genome-wide RNAi screen in Drosophila and identified 131 genes that impacted infection of the mosquito-transmitted bunyavirus Rift Valley fever virus (RVFV). Dcp2, the catalytic component of the mRNA decapping machinery, and two decapping activators, DDX6 and LSM7, were antiviral against disparate bunyaviruses in both insect cells and adult flies. Bunyaviruses 5' cap their mRNAs by "cap-snatching" the 5' ends of poorly defined host mRNAs. We found that RVFV cap-snatches the 5' ends of Dcp2 targeted mRNAs, including cell cycle-related genes. Loss of Dcp2 allows increased viral transcription without impacting viral mRNA stability, while ectopic expression of Dcp2 impedes viral transcription. Furthermore, arresting cells in late S/early G2 led to increased Dcp2 mRNA targets and increased RVFV replication. Therefore, RVFV competes for the Dcp2-accessible mRNA pool, which is dynamically regulated and can present a bottleneck for viral replication.
Collapse
|
92
|
Aglietti RA, Floor SN, McClendon CL, Jacobson MP, Gross JD. Active site conformational dynamics are coupled to catalysis in the mRNA decapping enzyme Dcp2. Structure 2013; 21:1571-80. [PMID: 23911090 DOI: 10.1016/j.str.2013.06.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 06/22/2013] [Accepted: 06/25/2013] [Indexed: 11/16/2022]
Abstract
Removal of the 5' cap structure by Dcp2 is a major step in several 5'-3' mRNA decay pathways. The activity of Dcp2 is enhanced by Dcp1 and bound coactivators, yet the details of how these interactions are linked to chemistry are poorly understood. Here, we report three crystal structures of the catalytic Nudix hydrolase domain of Dcp2 that demonstrate binding of a catalytically essential metal ion, and enzyme kinetics are used to identify several key active site residues involved in acid/base chemistry of decapping. Using nuclear magnetic resonance and molecular dynamics, we find that a conserved metal binding loop on the catalytic domain undergoes conformational changes during the catalytic cycle. These findings describe key events during the chemical step of decapping, suggest local active site conformational changes are important for activity, and provide a framework to explain stimulation of catalysis by the regulatory domain of Dcp2 and associated coactivators.
Collapse
Affiliation(s)
- Robin A Aglietti
- Program in Chemistry and Chemical Biology, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | | | | | | | | |
Collapse
|
93
|
Golisz A, Sikorski PJ, Kruszka K, Kufel J. Arabidopsis thaliana LSM proteins function in mRNA splicing and degradation. Nucleic Acids Res 2013; 41:6232-49. [PMID: 23620288 PMCID: PMC3695525 DOI: 10.1093/nar/gkt296] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Sm-like (Lsm) proteins have been identified in all organisms and are related to RNA metabolism. Here, we report that Arabidopsis nuclear AtLSM8 protein, as well as AtLSM5, which localizes to both the cytoplasm and nucleus, function in pre-mRNA splicing, while AtLSM5 and the exclusively cytoplasmic AtLSM1 contribute to 5'-3' mRNA decay. In lsm8 and sad1/lsm5 mutants, U6 small nuclear RNA (snRNA) was reduced and unspliced mRNA precursors accumulated, whereas mRNA stability was mainly affected in plants lacking AtLSM1 and AtLSM5. Some of the mRNAs affected in lsm1a lsm1b and sad1/lsm5 plants were also substrates of the cytoplasmic 5'-3' exonuclease AtXRN4 and of the decapping enzyme AtDCP2. Surprisingly, a subset of substrates was also stabilized in the mutant lacking AtLSM8, which supports the notion that plant mRNAs are actively degraded in the nucleus. Localization of LSM components, purification of LSM-interacting proteins as well as functional analyses strongly suggest that at least two LSM complexes with conserved activities in RNA metabolism, AtLSM1-7 and AtLSM2-8, exist also in plants.
Collapse
Affiliation(s)
- Anna Golisz
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106 Warsaw, Poland
| | | | | | | |
Collapse
|
94
|
A mammalian pre-mRNA 5' end capping quality control mechanism and an unexpected link of capping to pre-mRNA processing. Mol Cell 2013; 50:104-15. [PMID: 23523372 DOI: 10.1016/j.molcel.2013.02.017] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 01/24/2013] [Accepted: 02/14/2013] [Indexed: 12/27/2022]
Abstract
Recently, we reported that two homologous yeast proteins, Rai1 and Dxo1, function in a quality control mechanism to clear cells of incompletely 5' end-capped messenger RNAs (mRNAs). Here, we report that their mammalian homolog, Dom3Z (referred to as DXO), possesses pyrophosphohydrolase, decapping, and 5'-to-3' exoribonuclease activities. Surprisingly, we found that DXO preferentially degrades defectively capped pre-mRNAs in cells. Additional studies show that incompletely capped pre-mRNAs are inefficiently spliced at all introns, a fact that contrasts with current understanding, and are also poorly cleaved for polyadenylation. Crystal structures of DXO in complex with substrate mimic and products at a resolution of up to 1.5Å provide elegant insights into the catalytic mechanism and molecular basis for their three apparently distinct activities. Our data reveal a pre-mRNA 5' end capping quality control mechanism in mammalian cells, indicating DXO as the central player for this mechanism, and demonstrate an unexpected intimate link between proper 5' end capping and subsequent pre-mRNA processing.
Collapse
|
95
|
Song MG, Bail S, Kiledjian M. Multiple Nudix family proteins possess mRNA decapping activity. RNA (NEW YORK, N.Y.) 2013; 19:390-9. [PMID: 23353937 PMCID: PMC3677249 DOI: 10.1261/rna.037309.112] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 12/20/2012] [Indexed: 05/23/2023]
Abstract
RNA decapping is an important contributor to gene expression and is a critical determinant of mRNA decay. The recent demonstration that mammalian cells harbor at least two distinct decapping enzymes that preferentially modulate a subset of mRNAs raises the intriguing possibility of whether additional decapping enzymes exist. Because both known decapping proteins, Dcp2 and Nudt16, are members of the Nudix hydrolase family, we set out to determine whether other members of this family of proteins also contain intrinsic RNA decapping activity. Here we demonstrate that six additional mouse Nudix proteins--Nudt2, Nudt3, Nudt12, Nudt15, Nudt17, and Nudt19--have varying degrees of decapping activity in vitro on both monomethylated and unmethylated capped RNAs. The decapping products from Nudt17 and Nudt19 were analogous to Dcp2 and predominantly generated m⁷GDP, while cleavage by Nudt2, Nudt3, Nudt12, and Nudt15 was more pleiotropic and generated both m⁷GMP and m⁷GDP. Interestingly, all six Nudix proteins as well as both Dcp2 and Nudt16 could hydrolyze the cap of an unmethylated capped RNA, indicating that decapping enzymes may be less constrained for the presence of the methyl moiety. Investigation of Saccharomyces cerevisiae Nudix proteins revealed that the yeast homolog of Nudt3, Ddp1p, also possesses decapping activity in vitro. Moreover, the bacterial Nudix pyrophosphohydrolase RppH displayed RNA decapping activity and released m⁷GDP product comparable to Dcp2, indicating that decapping is an evolutionarily conserved activity that preceded mammalian cap formation. These findings demonstrate that multiple Nudix family hydrolases may function in mRNA decapping and mRNA stability.
Collapse
Affiliation(s)
| | | | - Megerditch Kiledjian
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey 08854-8082, USA
| |
Collapse
|
96
|
Dominski Z, Carpousis AJ, Clouet-d'Orval B. Emergence of the β-CASP ribonucleases: highly conserved and ubiquitous metallo-enzymes involved in messenger RNA maturation and degradation. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:532-51. [PMID: 23403287 DOI: 10.1016/j.bbagrm.2013.01.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 01/18/2013] [Accepted: 01/22/2013] [Indexed: 01/05/2023]
Abstract
The β-CASP ribonucleases, which are found in the three domains of life, have in common a core of 460 residues containing seven conserved sequence motifs involved in the tight binding of two catalytic zinc ions. A hallmark of these enzymes is their ability to catalyze both endo- and exo-ribonucleolytic degradation. Exo-ribonucleolytic degradation proceeds in the 5' to 3' direction and is sensitive to the phosphorylation state of the 5' end of a transcript. Recent phylogenomic analyses have shown that the β-CASP ribonucleases can be partitioned into two major subdivisions that correspond to orthologs of eukaryal CPSF73 and bacterial RNase J. We discuss the known functions of the CPSF73 and RNase J orthologs, their association into complexes, and their structure as it relates to mechanism of action. Eukaryal CPSF73 is part of a large multiprotein complex that is involved in the maturation of the 3' end of RNA Polymerase II transcripts and the polyadenylation of messenger RNA. RNase J1 and J2 are paralogs in Bacillus subtilis that are involved in the degradation of messenger RNA and the maturation of non-coding RNA. RNase J1 and J2 co-purify as a heteromeric complex and there is recent evidence that they interact with other enzymes to form a bacterial RNA degradosome. Finally, we speculate on the evolutionary origin of β-CASP ribonucleases and on their functions in Archaea. Orthologs of CPSF73 with endo- and exo-ribonuclease activity are strictly conserved throughout the archaea suggesting a role for these enzymes in the maturation and/or degradation of messenger RNA. This article is part of a Special Issue entitled: RNA Decay mechanisms.
Collapse
Affiliation(s)
- Zbigniew Dominski
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC, USA
| | | | | |
Collapse
|
97
|
McLennan AG. Substrate ambiguity among the nudix hydrolases: biologically significant, evolutionary remnant, or both? Cell Mol Life Sci 2013; 70:373-85. [PMID: 23184251 PMCID: PMC11113851 DOI: 10.1007/s00018-012-1210-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 11/01/2012] [Accepted: 11/05/2012] [Indexed: 12/20/2022]
Abstract
Many members of the nudix hydrolase family exhibit considerable substrate multispecificity and ambiguity, which raises significant issues when assessing their functions in vivo and gives rise to errors in database annotation. Several display low antimutator activity when expressed in bacterial tester strains as well as some degree of activity in vitro towards mutagenic, oxidized nucleotides such as 8-oxo-dGTP. However, many of these show greater activity towards other nucleotides such as ADP-ribose or diadenosine tetraphosphate (Ap(4)A). The antimutator activities have tended to gain prominence in the literature, whereas they may in fact represent the residual activity of an ancestral antimutator enzyme that has become secondary to the more recently evolved major activity after gene duplication. Whether any meaningful antimutagenic function has also been retained in vivo requires very careful assessment. Then again, other examples of substrate ambiguity may indicate as yet unexplored regulatory systems. For example, bacterial Ap(4)A hydrolases also efficiently remove pyrophosphate from the 5' termini of mRNAs, suggesting a potential role for Ap(4)A in the control of bacterial mRNA turnover, while the ability of some eukaryotic mRNA decapping enzymes to degrade IDP and dIDP or diphosphoinositol polyphosphates (DIPs) may also be indicative of new regulatory networks in RNA metabolism. DIP phosphohydrolases also degrade diadenosine polyphosphates and inorganic polyphosphates, suggesting further avenues for investigation. This article uses these and other examples to highlight the need for a greater awareness of the possible significance of substrate ambiguity among the nudix hydrolases as well as the need to exert caution when interpreting incomplete analyses.
Collapse
Affiliation(s)
- Alexander G McLennan
- Institute of Integrative Biology, University of Liverpool, Biosciences Building, Crown St., Liverpool, L69 7ZB, UK.
| |
Collapse
|
98
|
Arribas-Layton M, Wu D, Lykke-Andersen J, Song H. Structural and functional control of the eukaryotic mRNA decapping machinery. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1829:580-9. [PMID: 23287066 DOI: 10.1016/j.bbagrm.2012.12.006] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 12/15/2012] [Accepted: 12/17/2012] [Indexed: 01/12/2023]
Abstract
The regulation of mRNA degradation is critical for proper gene expression. Many major pathways for mRNA decay involve the removal of the 5' 7-methyl guanosine (m(7)G) cap in the cytoplasm to allow for 5'-to-3' exonucleolytic decay. The most well studied and conserved eukaryotic decapping enzyme is Dcp2, and its function is aided by co-factors and decapping enhancers. A subset of these factors can act to enhance the catalytic activity of Dcp2, while others might stimulate the remodeling of proteins bound to the mRNA substrate that may otherwise inhibit decapping. Structural studies have provided major insights into the mechanisms by which Dcp2 and decapping co-factors activate decapping. Additional mRNA decay factors can function by recruiting components of the decapping machinery to target mRNAs. mRNA decay factors, decapping factors, and mRNA substrates can be found in cytoplasmic foci named P bodies that are conserved in eukaryotes, though their function remains unknown. In addition to Dcp2, other decapping enzymes have been identified, which may serve to supplement the function of Dcp2 or act in independent decay or quality control pathways. This article is part of a Special Issue entitled: RNA Decay mechanisms.
Collapse
|
99
|
Narayanan K, Makino S. Interplay between viruses and host mRNA degradation. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1829:732-41. [PMID: 23274304 PMCID: PMC3632658 DOI: 10.1016/j.bbagrm.2012.12.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 12/13/2012] [Accepted: 12/16/2012] [Indexed: 12/17/2022]
Abstract
Messenger RNA degradation is a fundamental cellular process that plays a critical role in regulating gene expression by controlling both the quality and the abundance of mRNAs in cells. Naturally, viruses must successfully interface with the robust cellular RNA degradation machinery to achieve an optimal balance between viral and cellular gene expression and establish a productive infection in the host. In the past several years, studies have discovered many elegant strategies that viruses have evolved to circumvent the cellular RNA degradation machinery, ranging from disarming the RNA decay pathways and co-opting the factors governing cellular mRNA stability to promoting host mRNA degradation that facilitates selective viral gene expression and alters the dynamics of host–pathogen interaction. This review summarizes the current knowledge of the multifaceted interaction between viruses and cellular mRNA degradation machinery to provide an insight into the regulatory mechanisms that influence gene expression in viral infections. This article is part of a Special Issue entitled: RNA Decay mechanisms.
Collapse
Affiliation(s)
- Krishna Narayanan
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, TX 77555-1019, USA.
| | | |
Collapse
|
100
|
Ren J, Sun J, Zhang Y, Liu T, Ren Q, Li Y, Guo A. Down-regulation of Decapping Protein 2 mediates chronic nicotine exposure-induced locomotor hyperactivity in Drosophila. PLoS One 2012; 7:e52521. [PMID: 23300696 PMCID: PMC3530533 DOI: 10.1371/journal.pone.0052521] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 11/14/2012] [Indexed: 12/05/2022] Open
Abstract
Long-term tobacco use causes nicotine dependence via the regulation of a wide range of genes and is accompanied by various health problems. Studies in mammalian systems have revealed some key factors involved in the effects of nicotine, including nicotinic acetylcholine receptors (nAChRs), dopamine and other neurotransmitters. Nevertheless, the signaling pathways that link nicotine-induced molecular and behavioral modifications remain elusive. Utilizing a chronic nicotine administration paradigm, we found that adult male fruit flies exhibited locomotor hyperactivity after three consecutive days of nicotine exposure, while nicotine-naive flies did not. Strikingly, this chronic nicotine-induced locomotor hyperactivity (cNILH) was abolished in Decapping Protein 2 or 1 (Dcp2 or Dcp1) -deficient flies, while only Dcp2-deficient flies exhibited higher basal levels of locomotor activity than controls. These results indicate that Dcp2 plays a critical role in the response to chronic nicotine exposure. Moreover, the messenger RNA (mRNA) level of Dcp2 in the fly head was suppressed by chronic nicotine treatment, and up-regulation of Dcp2 expression in the nervous system blocked cNILH. These results indicate that down-regulation of Dcp2 mediates chronic nicotine-exposure-induced locomotor hyperactivity in Drosophila. The decapping proteins play a major role in mRNA degradation; however, their function in the nervous system has rarely been investigated. Our findings reveal a significant role for the mRNA decapping pathway in developing locomotor hyperactivity in response to chronic nicotine exposure and identify Dcp2 as a potential candidate for future research on nicotine dependence.
Collapse
Affiliation(s)
- Jing Ren
- State Key Laboratory of Neuroscience, Institute of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jinghan Sun
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yunpeng Zhang
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Tong Liu
- State Key Laboratory of Neuroscience, Institute of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Qingzhong Ren
- State Key Laboratory of Neuroscience, Institute of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yan Li
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- * E-mail: (AG); (YL)
| | - Aike Guo
- State Key Laboratory of Neuroscience, Institute of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- * E-mail: (AG); (YL)
| |
Collapse
|