51
|
Nyati S, Chaudhry N, Chatur A, Gregg BS, Kimmel L, Khare D, Basrur V, Ray D, Rehemtulla A. A novel reporter for real-time, quantitative imaging of AKT-directed K63-poly-ubiquitination in living cells. Oncotarget 2018. [PMID: 29541398 PMCID: PMC5834254 DOI: 10.18632/oncotarget.24323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Post-translational K63-linked poly-ubiquitination of AKT is required for its membrane recruitment and phosphorylation dependent activation in response to growth-factor stimulation. Current assays for target specific poly-ubiquitination involve cumbersome enzymatic preparations and semi-quantitative readouts. We have engineered a reporter that can quantitatively and in a target specific manner report on AKT-directed K63-polyubiquitination (K63UbR) in live cells. The reporter constitutes the AKT-derived poly-ubiquitination substrate peptide, a K63 poly-ubiquitin binding domain (UBD) as well as the split luciferase protein complementation domains. In cells, wherein signaling events upstream of AKT are activated (e.g. either EGFR or IGFR), poly-ubiquitination of the reporter leads to a stearic constraint that prevents luciferase complementation. However, upon inhibition of growth factor receptor signaling, loss of AKT poly-ubiquitination results in a decrease in interaction between the target peptide and the UBD, allowing for reconstitution of the split luciferase domains and therefore increased bioluminescence in a quantitative and dynamic manner. The K63UbR was confirmed to be suitable for high throughput screen (HTS), thus providing an excellent tool for small molecule or siRNA based HTS to discover new inhibitors or identify novel regulators of this key signaling node. Furthermore, the K63UbR platform could be adapted for non-invasive monitoring of additional target specific K63-polyubiquitination events in live cells.
Collapse
Affiliation(s)
- Shyam Nyati
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI-48109, USA
| | - Nauman Chaudhry
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI-48109, USA
| | - Areeb Chatur
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI-48109, USA
| | - Brandon S Gregg
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI-48109, USA
| | - Lauren Kimmel
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI-48109, USA
| | - Dheeraj Khare
- Life Sciences Institute, University of Michigan, Ann Arbor, MI-48109, USA
| | - Venkatesha Basrur
- UMCCC Proteomics Shared Resource, University of Michigan, Ann Arbor, MI-48109, USA.,Department of Pathology, University of Michigan, Ann Arbor, MI-48109, USA
| | - Dipankar Ray
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI-48109, USA
| | - Alnawaz Rehemtulla
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI-48109, USA
| |
Collapse
|
52
|
Li F, Xu D, Wang Y, Zhou Z, Liu J, Hu S, Gong Y, Yuan J, Pan L. Structural insights into the ubiquitin recognition by OPTN (optineurin) and its regulation by TBK1-mediated phosphorylation. Autophagy 2018; 14:66-79. [PMID: 29394115 DOI: 10.1080/15548627.2017.1391970] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
OPTN (optineurin), a ubiquitin-binding scaffold protein, functions as an important macroautophagy/autophagy receptor in selective autophagy processes. Mutations in OPTN have been linked with human neurodegenerative diseases including ALS and glaucoma. However, the mechanistic basis underlying the recognition of ubiquitin by OPTN and its regulation by TBK1-mediated phosphorylation are still elusive. Here, we demonstrate that the UBAN domain of OPTN preferentially recognizes linear ubiquitin chain and forms an asymmetric 2:1 stoichiometry complex with the linear diubiquitin. In addition, our results provide new mechanistic insights into how phosphorylation of UBAN would regulate the ubiquitin-binding ability of OPTN and how disease-associated mutations in the OPTN UBAN domain disrupt its interaction with ubiquitin. Finally, we show that defects in ubiquitin-binding may affect the recruitment of OPTN to linear ubiquitin-decorated mutant Huntington protein aggregates. Taken together, our findings clarify the interaction mode between UBAN and linear ubiquitin chain in general, and expand our knowledge of the molecular mechanism of ubiquitin-decorated substrates recognition by OPTN as well as the pathogenesis of neurodegenerative diseases caused by OPTN mutations.
Collapse
Affiliation(s)
- Faxiang Li
- a State Key Laboratory of Bioorganic and Natural Products Chemistry , Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences , Shanghai , China.,b Interdisciplinary Research Center on Biology and Chemistry , Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences , Shanghai , China
| | - Daichao Xu
- b Interdisciplinary Research Center on Biology and Chemistry , Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences , Shanghai , China
| | - Yingli Wang
- a State Key Laboratory of Bioorganic and Natural Products Chemistry , Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences , Shanghai , China
| | - Zixuan Zhou
- a State Key Laboratory of Bioorganic and Natural Products Chemistry , Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences , Shanghai , China
| | - Jianping Liu
- a State Key Laboratory of Bioorganic and Natural Products Chemistry , Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences , Shanghai , China
| | - Shichen Hu
- a State Key Laboratory of Bioorganic and Natural Products Chemistry , Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences , Shanghai , China
| | - Yukang Gong
- a State Key Laboratory of Bioorganic and Natural Products Chemistry , Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences , Shanghai , China
| | - Junying Yuan
- b Interdisciplinary Research Center on Biology and Chemistry , Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences , Shanghai , China.,d Department of Cell Biology , Harvard Medical School , Boston , MA , USA
| | - Lifeng Pan
- a State Key Laboratory of Bioorganic and Natural Products Chemistry , Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences , Shanghai , China.,c Collaborative Innovation Center of Chemistry for Life Sciences , Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences , Shanghai , China
| |
Collapse
|
53
|
Romero-Barrios N, Vert G. Proteasome-independent functions of lysine-63 polyubiquitination in plants. THE NEW PHYTOLOGIST 2018; 217:995-1011. [PMID: 29194634 DOI: 10.1111/nph.14915] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 10/12/2017] [Indexed: 05/21/2023]
Abstract
Contents Summary 995 I. Introduction 995 II. The plant Ub machinery 996 III. From Ub to Ub linkage types in plants 997 IV. Increasing analytical resolution for K63 polyUb in plants 998 V. How to build K63 polyUb chains? 998 VI. Cellular roles of K63 polyUb in plants 999 VII. Physiological roles of K63 polyUb in plants 1004 VIII. Future perspectives: towards the next level of the Ub code 1006 Acknowledgements 1006 References 1007 SUMMARY: Ubiquitination is a post-translational modification essential for the regulation of eukaryotic proteins, having an impact on protein fate, function, localization or activity. What originally appeared to be a simple system to regulate protein turnover by the 26S proteasome is now known to be the most intricate regulatory process cells have evolved. Ubiquitin can be arranged in countless chain assemblies, triggering various cellular outcomes. Polyubiquitin chains using lysine-63 from ubiquitin represent the second most abundant type of ubiquitin modification. Recent studies have exposed their common function in proteasome-independent functions in non-plant model organisms. The existence of lysine-63 polyubiquitination in plants is, however, only just emerging. In this review, we discuss the recent advances on the characterization of ubiquitin chains and the molecular mechanisms driving the formation of lysine-63-linked ubiquitin modifications. We provide an overview of the roles associated with lysine-63 polyubiquitination in plant cells in the light of what is known in non-plant models. Finally, we review the crucial roles of lysine-63 polyubiquitin-dependent processes in plant growth, development and responses to environmental conditions.
Collapse
Affiliation(s)
- Natali Romero-Barrios
- Institute for Integrative Biology of the Cell (I2BC), CNRS/CEA/Univ. Paris Sud, Université Paris-Saclay, Gif-sur-Yvette, 91198, France
| | - Grégory Vert
- Institute for Integrative Biology of the Cell (I2BC), CNRS/CEA/Univ. Paris Sud, Université Paris-Saclay, Gif-sur-Yvette, 91198, France
| |
Collapse
|
54
|
Nibe Y, Oshima S, Kobayashi M, Maeyashiki C, Matsuzawa Y, Otsubo K, Matsuda H, Aonuma E, Nemoto Y, Nagaishi T, Okamoto R, Tsuchiya K, Nakamura T, Nakada S, Watanabe M. Novel polyubiquitin imaging system, PolyUb-FC, reveals that K33-linked polyubiquitin is recruited by SQSTM1/p62. Autophagy 2018; 14:347-358. [PMID: 29164995 DOI: 10.1080/15548627.2017.1407889] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Ubiquitin chains are formed with 8 structurally and functionally distinct polymers. However, the functions of each polyubiquitin remain poorly understood. We developed a polyubiquitin-mediated fluorescence complementation (PolyUb-FC) assay using Kusabira Green (KG) as a split fluorescent protein. The PolyUb-FC assay has the advantage that monoubiquitination is nonfluorescent and chain-specific polyubiquitination can be directly visualized in living cells without using antibodies. We applied the PolyUb-FC assay to examine K33-linked polyubiquitin. We demonstrated that SQSTM1/p62 puncta colocalized with K33-linked polyubiquitin and this interaction was modulated by the ZRANB1/TRABID-K29 and -K33 linkage-specific deubiquitinase (DUB). We further showed that the colocalization of K33-linked polyubiquitin and MAP1LC3/LC3 (microtubule associated protein 1 light chain 3) puncta was impaired by SQSTM1/p62 deficiency. Taken together, these findings provide novel insights into how atypical polyubiquitin is recruited by SQSTM1/p62. Finally, we developed an inducible-PolyUb-FC system for visualizing chain-specific polyubiquitin. The PolyUb-FC will be a useful tool for analyzing the dynamics of atypical polyubiquitin chain generation.
Collapse
Affiliation(s)
- Yoichi Nibe
- a Department of Gastroenterology and Hepatology , Graduate School , Tokyo Medical and Dental University (TMDU) , Tokyo , Japan
| | - Shigeru Oshima
- a Department of Gastroenterology and Hepatology , Graduate School , Tokyo Medical and Dental University (TMDU) , Tokyo , Japan
| | - Masanori Kobayashi
- a Department of Gastroenterology and Hepatology , Graduate School , Tokyo Medical and Dental University (TMDU) , Tokyo , Japan
| | - Chiaki Maeyashiki
- a Department of Gastroenterology and Hepatology , Graduate School , Tokyo Medical and Dental University (TMDU) , Tokyo , Japan
| | - Yu Matsuzawa
- a Department of Gastroenterology and Hepatology , Graduate School , Tokyo Medical and Dental University (TMDU) , Tokyo , Japan
| | - Kana Otsubo
- a Department of Gastroenterology and Hepatology , Graduate School , Tokyo Medical and Dental University (TMDU) , Tokyo , Japan
| | - Hiroki Matsuda
- a Department of Gastroenterology and Hepatology , Graduate School , Tokyo Medical and Dental University (TMDU) , Tokyo , Japan
| | - Emi Aonuma
- a Department of Gastroenterology and Hepatology , Graduate School , Tokyo Medical and Dental University (TMDU) , Tokyo , Japan
| | - Yasuhiro Nemoto
- a Department of Gastroenterology and Hepatology , Graduate School , Tokyo Medical and Dental University (TMDU) , Tokyo , Japan
| | - Takashi Nagaishi
- a Department of Gastroenterology and Hepatology , Graduate School , Tokyo Medical and Dental University (TMDU) , Tokyo , Japan
| | - Ryuichi Okamoto
- a Department of Gastroenterology and Hepatology , Graduate School , Tokyo Medical and Dental University (TMDU) , Tokyo , Japan.,b Center for Stem Cell and Regenerative Medicine , Tokyo Medical and Dental University (TMDU) , Tokyo , Japan
| | - Kiichiro Tsuchiya
- a Department of Gastroenterology and Hepatology , Graduate School , Tokyo Medical and Dental University (TMDU) , Tokyo , Japan
| | - Tetsuya Nakamura
- a Department of Gastroenterology and Hepatology , Graduate School , Tokyo Medical and Dental University (TMDU) , Tokyo , Japan.,c Department of Advanced Therapeutics for GI Diseases , Tokyo Medical and Dental University (TMDU) , Tokyo , Japan
| | - Shinichiro Nakada
- d Department of Bioregulation and Cellular Response, Graduate School of Medicine , Osaka University , Osaka , Japan
| | - Mamoru Watanabe
- a Department of Gastroenterology and Hepatology , Graduate School , Tokyo Medical and Dental University (TMDU) , Tokyo , Japan
| |
Collapse
|
55
|
Host-pathogen interactions and subversion of autophagy. Essays Biochem 2017; 61:687-697. [PMID: 29233878 PMCID: PMC5869863 DOI: 10.1042/ebc20170058] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 10/26/2017] [Accepted: 11/01/2017] [Indexed: 12/17/2022]
Abstract
Macroautophagy (‘autophagy’), is the process by which cells can form a double-membraned vesicle that encapsulates material to be degraded by the lysosome. This can include complex structures such as damaged mitochondria, peroxisomes, protein aggregates and large swathes of cytoplasm that can not be processed efficiently by other means of degradation. Recycling of amino acids and lipids through autophagy allows the cell to form intracellular pools that aid survival during periods of stress, including growth factor deprivation, amino acid starvation or a depleted oxygen supply. One of the major functions of autophagy that has emerged over the last decade is its importance as a safeguard against infection. The ability of autophagy to selectively target intracellular pathogens for destruction is now regarded as a key aspect of the innate immune response. However, pathogens have evolved mechanisms to either evade or reconfigure the autophagy pathway for their own survival. Understanding how pathogens interact with and manipulate the host autophagy pathway will hopefully provide a basis for combating infection and increase our understanding of the role and regulation of autophagy. Herein, we will discuss how the host cell can identify and target invading pathogens and how pathogens have adapted in order to evade destruction by the host cell. In particular, we will focus on interactions between the mammalian autophagy gene 8 (ATG8) proteins and the host and pathogen effector proteins.
Collapse
|
56
|
Heath RJ, Goel G, Baxt LA, Rush JS, Mohanan V, Paulus GLC, Jani V, Lassen KG, Xavier RJ. RNF166 Determines Recruitment of Adaptor Proteins during Antibacterial Autophagy. Cell Rep 2017; 17:2183-2194. [PMID: 27880896 DOI: 10.1016/j.celrep.2016.11.005] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 09/13/2016] [Accepted: 10/26/2016] [Indexed: 02/08/2023] Open
Abstract
Xenophagy is a form of selective autophagy that involves the targeting and elimination of intracellular pathogens through several recognition, recruitment, and ubiquitination events. E3 ubiquitin ligases control substrate selectivity in the ubiquitination cascade; however, systematic approaches to map the role of E3 ligases in antibacterial autophagy have been lacking. We screened more than 600 putative human E3 ligases, identifying E3 ligases that are required for adaptor protein recruitment and LC3-bacteria colocalization, critical steps in antibacterial autophagy. An unbiased informatics approach pinpointed RNF166 as a key gene that interacts with the autophagy network and controls the recruitment of ubiquitin as well as the autophagy adaptors p62 and NDP52 to bacteria. Mechanistic studies demonstrated that RNF166 catalyzes K29- and K33-linked polyubiquitination of p62 at residues K91 and K189. Thus, our study expands the catalog of E3 ligases that mediate antibacterial autophagy and identifies a critical role for RNF166 in this process.
Collapse
Affiliation(s)
- Robert J Heath
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Center for Computational and Integrative Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Gautam Goel
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Center for Computational and Integrative Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Leigh A Baxt
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Center for Computational and Integrative Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jason S Rush
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Vishnu Mohanan
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Center for Computational and Integrative Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Geraldine L C Paulus
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Center for Computational and Integrative Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Vijay Jani
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Center for Computational and Integrative Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Kara G Lassen
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Center for Computational and Integrative Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Ramnik J Xavier
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Center for Computational and Integrative Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
57
|
Morris JR, Garvin AJ. SUMO in the DNA Double-Stranded Break Response: Similarities, Differences, and Cooperation with Ubiquitin. J Mol Biol 2017; 429:3376-3387. [PMID: 28527786 DOI: 10.1016/j.jmb.2017.05.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 05/12/2017] [Accepted: 05/12/2017] [Indexed: 10/19/2022]
Abstract
In recent years, our knowledge of the varied role that ubiquitination plays in promoting signal amplification, novel protein interactions, and protein turnover has progressed rapidly. This is particularly remarkable in the examination of how DNA double-stranded breaks (DSBs) are repaired, with many components of the ubiquitin (Ub) conjugation, de-conjugation, and recognition machinery now identified as key factors in DSB repair. In addition, a member of the Ub-like family, small Ub-like modifier (SUMO), has also been recognised as integral for efficient repair. Here, we summarise our emerging understanding of SUMOylation both as a distinct modification and as a cooperative modification with Ub, using the cellular response to DNA DSBs as the primary setting to compare these modifications.
Collapse
Affiliation(s)
- Joanna R Morris
- Birmingham Centre for Genome Biology and Institute of Cancer and Genomics, Medical and Dental School, University of Birmingham, Edgbaston, B15 2TT, UK.
| | - Alexander J Garvin
- Birmingham Centre for Genome Biology and Institute of Cancer and Genomics, Medical and Dental School, University of Birmingham, Edgbaston, B15 2TT, UK
| |
Collapse
|
58
|
Herhaus L, Dikic I. Regulation of Salmonella-host cell interactions via the ubiquitin system. Int J Med Microbiol 2017; 308:176-184. [PMID: 29126744 DOI: 10.1016/j.ijmm.2017.11.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 11/01/2017] [Accepted: 11/05/2017] [Indexed: 01/29/2023] Open
Abstract
Salmonella infections cause acute intestinal inflammatory responses through the action of bacterial effector proteins secreted into the host cytosol. These proteins promote Salmonella survival, amongst others, by deregulating the host innate immune system and interfering with host cell ubiquitylation signaling. This review describes the recent findings of dynamic changes of the host ubiquitinome during pathogen infection, how bacterial effector proteins modulate the host ubiquitin system and how the host innate immune system counteracts Salmonella invasion by using these pathogens as signaling platforms to initiate immune responses.
Collapse
Affiliation(s)
- Lina Herhaus
- Institute of Biochemistry II, Goethe University Frankfurt - Medical Faculty, University Hospital, 60590 Frankfurt am Main, Germany
| | - Ivan Dikic
- Institute of Biochemistry II, Goethe University Frankfurt - Medical Faculty, University Hospital, 60590 Frankfurt am Main, Germany; Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Riedberg Campus, 60438 Frankfurt am Main, Germany.
| |
Collapse
|
59
|
Hu L, Xu J, Xie X, Zhou Y, Tao P, Li H, Han X, Wang C, Liu J, Xu P, Neculai D, Xia Z. Oligomerization-primed coiled-coil domain interaction with Ubc13 confers processivity to TRAF6 ubiquitin ligase activity. Nat Commun 2017; 8:814. [PMID: 28993672 PMCID: PMC5634496 DOI: 10.1038/s41467-017-01290-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Accepted: 09/06/2017] [Indexed: 11/30/2022] Open
Abstract
Ubiquitin ligase TRAF6, together with ubiquitin-conjugating enzyme Ubc13/Uev1, catalyzes processive assembly of unanchored K63-linked polyubiquitin chains for TAK1 activation in the IL-1R/TLR pathways. However, what domain and how it functions to enable TRAF6’s processivity are largely uncharacterized. Here, we find TRAF6 coiled-coil (CC) domain is crucial to enable its processivity. The CC domain mediates TRAF6 oligomerization to ensure efficient long polyubiquitin chain assembly. Mutating or deleting the CC domain impairs TRAF6 oligomerization and processive polyubiquitin chain assembly. Fusion of the CC domain to the E3 ubiquitin ligase CHIP/STUB1 renders the latter capable of NF-κB activation. Moreover, the CC domain, after oligomerization, interacts with Ubc13/Ub~Ubc13, which further contributes to TRAF6 processivity. Point mutations within the CC domain that weaken TRAF6 interaction with Ubc13/Ub~Ubc13 diminish TRAF6 processivity. Our results reveal that the CC oligomerization primes its interaction with Ubc13/Ub~Ubc13 to confer processivity to TRAF6 ubiquitin ligase activity. Ubiquitin ligase TRAF6 catalyzes assembly of free polyubiquitin chains for TAK1 activation in the IL-1R/TLR pathways, but the mechanism underlying its processivity is unclear. Here, the authors show that TRAF6 coiled-coil oligomerization domain primes its interaction with Ubc13/Ub~Ubc13 to confer processivity.
Collapse
Affiliation(s)
- Lin Hu
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Jiafeng Xu
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Xiaomei Xie
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Yiwen Zhou
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Panfeng Tao
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Haidong Li
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Xu Han
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Chong Wang
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Jian Liu
- Department of Surgical Oncology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Pinglong Xu
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Dante Neculai
- College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Zongping Xia
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang, 310027, China.
| |
Collapse
|
60
|
Polajnar M, Dietz MS, Heilemann M, Behrends C. Expanding the host cell ubiquitylation machinery targeting cytosolic Salmonella. EMBO Rep 2017; 18:1572-1585. [PMID: 28784601 DOI: 10.15252/embr.201643851] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 06/26/2017] [Accepted: 06/30/2017] [Indexed: 12/16/2022] Open
Abstract
Ubiquitylation is one of the cardinal post-translational modifications in the cell, balancing several distinct biological processes and acting as a pathogen recognition receptor during bacterial pathogen invasion. A dense layer of polyubiquitin chains marks invading bacteria that gain access to the host cytosol for their selective clearance via xenophagy. However, the enzymes that mediate recognition of cytosolic bacteria and generate this ubiquitin (Ub) coat remain largely elusive. To address this, we employed an image-based RNAi screening approach to monitor the loss of Ub on Salmonella upon depletion of human Ub E3 ligases in cells. Using this approach, we identified ARIH1 as one of the ligases involved in the formation of Ub coat on cytosolic bacteria. In addition, we provide evidence that the RING-between-RING ligase ARIH1, together with LRSAM1 and HOIP, forms part of a network of ligases that orchestrates recognition of intracellular Salmonella and participates in the activation of the host cell immune response.
Collapse
Affiliation(s)
- Mira Polajnar
- Institute of Biochemistry II, Goethe University School of Medicine, Frankfurt am Main, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Munich Cluster for Systems Neurology (SyNergy), Medical Faculty, Ludwig-Maximilians-University München, München, Germany
| | - Marina S Dietz
- Institute of Physical and Theoretical Chemistry, Goethe University, Frankfurt am Main, Germany
| | - Mike Heilemann
- Institute of Physical and Theoretical Chemistry, Goethe University, Frankfurt am Main, Germany
| | - Christian Behrends
- Institute of Biochemistry II, Goethe University School of Medicine, Frankfurt am Main, Germany .,Munich Cluster for Systems Neurology (SyNergy), Medical Faculty, Ludwig-Maximilians-University München, München, Germany
| |
Collapse
|
61
|
Ebner P, Versteeg GA, Ikeda F. Ubiquitin enzymes in the regulation of immune responses. Crit Rev Biochem Mol Biol 2017; 52:425-460. [PMID: 28524749 PMCID: PMC5490640 DOI: 10.1080/10409238.2017.1325829] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 04/06/2017] [Accepted: 04/28/2017] [Indexed: 12/25/2022]
Abstract
Ubiquitination plays a central role in the regulation of various biological functions including immune responses. Ubiquitination is induced by a cascade of enzymatic reactions by E1 ubiquitin activating enzyme, E2 ubiquitin conjugating enzyme, and E3 ubiquitin ligase, and reversed by deubiquitinases. Depending on the enzymes, specific linkage types of ubiquitin chains are generated or hydrolyzed. Because different linkage types of ubiquitin chains control the fate of the substrate, understanding the regulatory mechanisms of ubiquitin enzymes is central. In this review, we highlight the most recent knowledge of ubiquitination in the immune signaling cascades including the T cell and B cell signaling cascades as well as the TNF signaling cascade regulated by various ubiquitin enzymes. Furthermore, we highlight the TRIM ubiquitin ligase family as one of the examples of critical E3 ubiquitin ligases in the regulation of immune responses.
Collapse
|
62
|
Ji CH, Kwon YT. Crosstalk and Interplay between the Ubiquitin-Proteasome System and Autophagy. Mol Cells 2017; 40:441-449. [PMID: 28743182 PMCID: PMC5547213 DOI: 10.14348/molcells.2017.0115] [Citation(s) in RCA: 150] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 07/12/2017] [Indexed: 12/21/2022] Open
Abstract
Proteolysis in eukaryotic cells is mainly mediated by the ubiquitin (Ub)-proteasome system (UPS) and the autophagylysosome system (hereafter autophagy). The UPS is a selective proteolytic system in which substrates are recognized and tagged with ubiquitin for processive degradation by the proteasome. Autophagy is a bulk degradative system that uses lysosomal hydrolases to degrade proteins as well as various other cellular constituents. Since the inception of their discoveries, the UPS and autophagy were thought to be independent of each other in components, action mechanisms, and substrate selectivity. Recent studies suggest that cells operate a single proteolytic network comprising of the UPS and autophagy that share notable similarity in many aspects and functionally cooperate with each other to maintain proteostasis. In this review, we discuss the mechanisms underlying the crosstalk and interplay between the UPS and autophagy, with an emphasis on substrate selectivity and compensatory regulation under cellular stresses.
Collapse
Affiliation(s)
- Chang Hoon Ji
- Protein Metabolism Medical Research Center and Department of Biomedical Sciences, Seoul National University, Seoul 03080,
Korea
| | - Yong Tae Kwon
- Protein Metabolism Medical Research Center and Department of Biomedical Sciences, Seoul National University, Seoul 03080,
Korea
- Ischemic/Hypoxic Disease Institute, College of Medicine, Seoul National University, Seoul 03080,
Korea
| |
Collapse
|
63
|
Affiliation(s)
- Tycho E.T. Mevissen
- Medical Research Council, Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - David Komander
- Medical Research Council, Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| |
Collapse
|
64
|
Lv K, Jiang J, Donaghy R, Riling CR, Cheng Y, Chandra V, Rozenova K, An W, Mohapatra BC, Goetz BT, Pillai V, Han X, Todd EA, Jeschke GR, Langdon WY, Kumar S, Hexner EO, Band H, Tong W. CBL family E3 ubiquitin ligases control JAK2 ubiquitination and stability in hematopoietic stem cells and myeloid malignancies. Genes Dev 2017; 31:1007-1023. [PMID: 28611190 PMCID: PMC5495118 DOI: 10.1101/gad.297135.117] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Accepted: 05/23/2017] [Indexed: 01/08/2023]
Abstract
Here, Lv et al. report that the CBL family E3 ubiquitin ligases down-regulate JAK2 stability and signaling via the adaptor protein LNK/SH2B3. Their results reveal a novel signaling axis that regulates JAK2 in normal and malignant HSPCs and suggest new therapeutic strategies for treating CBLmut myeloid malignancies. Janus kinase 2 (JAK2) is a central kinase in hematopoietic stem/progenitor cells (HSPCs), and its uncontrolled activation is a prominent oncogenic driver of hematopoietic neoplasms. However, molecular mechanisms underlying the regulation of JAK2 have remained elusive. Here we report that the Casitas B-cell lymphoma (CBL) family E3 ubiquitin ligases down-regulate JAK2 stability and signaling via the adaptor protein LNK/SH2B3. We demonstrated that depletion of CBL/CBL-B or LNK abrogated JAK2 ubiquitination, extended JAK2 half-life, and enhanced JAK2 signaling and cell growth in human cell lines as well as primary murine HSPCs. Built on these findings, we showed that JAK inhibitor (JAKi) significantly reduced aberrant HSPCs and mitigated leukemia development in a mouse model of aggressive myeloid leukemia driven by loss of Cbl and Cbl-b. Importantly, primary human CBL mutated (CBLmut) leukemias exhibited increased JAK2 protein levels and signaling and were hypersensitive to JAKi. Loss-of-function mutations in CBL E3 ubiquitin ligases are found in a wide range of myeloid malignancies, which are diseases without effective treatment options. Hence, our studies reveal a novel signaling axis that regulates JAK2 in normal and malignant HSPCs and suggest new therapeutic strategies for treating CBLmut myeloid malignancies.
Collapse
Affiliation(s)
- Kaosheng Lv
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA.,Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Jing Jiang
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA.,Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Ryan Donaghy
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA.,Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | - Ying Cheng
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA.,Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Vemika Chandra
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA.,Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Krasimira Rozenova
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA.,Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Wei An
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska 6819, USA.,Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska 6819, USA
| | - Bhopal C Mohapatra
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska 6819, USA.,Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska 6819, USA
| | - Benjamin T Goetz
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska 6819, USA.,Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska 6819, USA
| | - Vinodh Pillai
- Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | - Xu Han
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA.,Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Emily A Todd
- Progenra, Inc., Malvern, Pennsylvania 19355, USA
| | - Grace R Jeschke
- Division of Hematology and Oncology, Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Wallace Y Langdon
- School of Pathology and Laboratory Medicine, University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Suresh Kumar
- Progenra, Inc., Malvern, Pennsylvania 19355, USA
| | - Elizabeth O Hexner
- Division of Hematology and Oncology, Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Hamid Band
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska 6819, USA.,Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska 6819, USA
| | - Wei Tong
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA.,Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
65
|
Abstract
Ubiquitylation is essential for signal transduction as well as cell division and differentiation in all eukaryotes. Substrate modifications range from a single ubiquitin molecule to complex polymeric chains, with different types of ubiquitylation often eliciting distinct outcomes. The recent identification of novel chain topologies has improved our understanding of how ubiquitylation establishes precise communication within cells. Here, we discuss how the increasing complexity of ubiquitylation is employed to ensure robust and faithful signal transduction in eukaryotic cells.
Collapse
|
66
|
LUBAC-synthesized linear ubiquitin chains restrict cytosol-invading bacteria by activating autophagy and NF-κB. Nat Microbiol 2017; 2:17063. [PMID: 28481331 DOI: 10.1038/nmicrobiol.2017.63] [Citation(s) in RCA: 177] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Accepted: 03/23/2017] [Indexed: 12/25/2022]
Abstract
Cell-autonomous immunity relies on the ubiquitin coat surrounding cytosol-invading bacteria functioning as an 'eat-me' signal for xenophagy. The origin, composition and precise mode of action of the ubiquitin coat remain incompletely understood. Here, by studying Salmonella Typhimurium, we show that the E3 ligase LUBAC generates linear (M1-linked) polyubiquitin patches in the ubiquitin coat, which serve as antibacterial and pro-inflammatory signalling platforms. LUBAC is recruited via its subunit HOIP to bacterial surfaces that are no longer shielded by host membranes and are already displaying ubiquitin, suggesting that LUBAC amplifies and refashions the ubiquitin coat. LUBAC-synthesized polyubiquitin recruits Optineurin and Nemo for xenophagy and local activation of NF-κB, respectively, which independently restrict bacterial proliferation. In contrast, the professional cytosol-dwelling Shigella flexneri escapes from LUBAC-mediated restriction through the antagonizing effects of the effector E3 ligase IpaH1.4 on deposition of M1-linked polyubiquitin and subsequent recruitment of Nemo and Optineurin. We conclude that LUBAC-synthesized M1-linked ubiquitin transforms bacterial surfaces into signalling platforms for antibacterial immunity reminiscent of antiviral assemblies on mitochondria.
Collapse
|
67
|
Linear ubiquitination of cytosolic Salmonella Typhimurium activates NF-κB and restricts bacterial proliferation. Nat Microbiol 2017; 2:17066. [DOI: 10.1038/nmicrobiol.2017.66] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 03/28/2017] [Indexed: 12/11/2022]
|
68
|
In Vivo Ubiquitin Linkage-type Analysis Reveals that the Cdc48-Rad23/Dsk2 Axis Contributes to K48-Linked Chain Specificity of the Proteasome. Mol Cell 2017; 66:488-502.e7. [DOI: 10.1016/j.molcel.2017.04.024] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 03/07/2017] [Accepted: 04/27/2017] [Indexed: 12/28/2022]
|
69
|
Peng H, Yang J, Li G, You Q, Han W, Li T, Gao D, Xie X, Lee BH, Du J, Hou J, Zhang T, Rao H, Huang Y, Li Q, Zeng R, Hui L, Wang H, Xia Q, Zhang X, He Y, Komatsu M, Dikic I, Finley D, Hu R. Ubiquitylation of p62/sequestosome1 activates its autophagy receptor function and controls selective autophagy upon ubiquitin stress. Cell Res 2017; 27:657-674. [PMID: 28322253 PMCID: PMC5520855 DOI: 10.1038/cr.2017.40] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 12/06/2016] [Accepted: 01/22/2017] [Indexed: 12/16/2022] Open
Abstract
Alterations in cellular ubiquitin (Ub) homeostasis, known as Ub stress, feature and affect cellular responses in multiple conditions, yet the underlying mechanisms are incompletely understood. Here we report that autophagy receptor p62/sequestosome-1 interacts with E2 Ub conjugating enzymes, UBE2D2 and UBE2D3. Endogenous p62 undergoes E2-dependent ubiquitylation during upregulation of Ub homeostasis, a condition termed as Ub+ stress, that is intrinsic to Ub overexpression, heat shock or prolonged proteasomal inhibition by bortezomib, a chemotherapeutic drug. Ubiquitylation of p62 disrupts dimerization of the UBA domain of p62, liberating its ability to recognize polyubiquitylated cargoes for selective autophagy. We further demonstrate that this mechanism might be critical for autophagy activation upon Ub+ stress conditions. Delineation of the mechanism and regulatory roles of p62 in sensing Ub stress and controlling selective autophagy could help to understand and modulate cellular responses to a variety of endogenous and environmental challenges, potentially opening a new avenue for the development of therapeutic strategies against autophagy-related maladies.
Collapse
Affiliation(s)
- Hong Peng
- Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Shanghai 200031, China
- Graduate School, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
- Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Jiao Yang
- Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Shanghai 200031, China
- Graduate School, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
- Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Guangyi Li
- Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Shanghai 200031, China
- Graduate School, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Qing You
- Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Shanghai 200031, China
- Graduate School, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Wen Han
- Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Shanghai 200031, China
| | - Tianrang Li
- Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Shanghai 200031, China
| | - Daming Gao
- Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Shanghai 200031, China
| | - Xiaoduo Xie
- Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Shanghai 200031, China
| | - Byung-Hoon Lee
- Department of Cell Biology, Harvard Medical School, 240 Longwood Ave, Boston, MA 02115, USA
| | - Juan Du
- Department of Hematology, Changzheng Hospital, The Second Military Medical University, 415 Fengyang Road, Shanghai 200003, China
| | - Jian Hou
- Department of Hematology, Changzheng Hospital, The Second Military Medical University, 415 Fengyang Road, Shanghai 200003, China
| | - Tao Zhang
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, 12 Central Urumqi Road, Shanghai 200040, China
| | - Hai Rao
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA
| | - Ying Huang
- Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Qinrun Li
- Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Shanghai 200031, China
| | - Rong Zeng
- Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Shanghai 200031, China
| | - Lijian Hui
- Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Hongyan Wang
- Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Shanghai 200031, China
| | - Qin Xia
- State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Institute of Basic Medical Sciences, Beijing 100850, China
| | - Xuemin Zhang
- State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Institute of Basic Medical Sciences, Beijing 100850, China
| | - Yongning He
- Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Masaaki Komatsu
- Department of Biochemistry, School of Medicine Niigata University, 757, Ichibancho, Asahimachidori, Chuo-ku, Niigata 951-8510, Japan
| | - Ivan Dikic
- Molecular Signaling, Institute of Biochemistry II, Goethe University School of Medicine, 60590 Frankfurt am Main, Germany
| | - Daniel Finley
- Department of Cell Biology, Harvard Medical School, 240 Longwood Ave, Boston, MA 02115, USA
| | - Ronggui Hu
- Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Shanghai 200031, China
| |
Collapse
|
70
|
Stolz A, Putyrski M, Kutle I, Huber J, Wang C, Major V, Sidhu SS, Youle RJ, Rogov VV, Dötsch V, Ernst A, Dikic I. Fluorescence-based ATG8 sensors monitor localization and function of LC3/GABARAP proteins. EMBO J 2016; 36:549-564. [PMID: 28028054 DOI: 10.15252/embj.201695063] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 11/23/2016] [Accepted: 11/27/2016] [Indexed: 12/25/2022] Open
Abstract
Autophagy is a cellular surveillance pathway that balances metabolic and energy resources and transports specific cargos, including damaged mitochondria, other broken organelles, or pathogens for degradation to the lysosome. Central components of autophagosomal biogenesis are six members of the LC3 and GABARAP family of ubiquitin-like proteins (mATG8s). We used phage display to isolate peptides that possess bona fide LIR (LC3-interacting region) properties and are selective for individual mATG8 isoforms. Sensitivity of the developed sensors was optimized by multiplication, charge distribution, and fusion with a membrane recruitment (FYVE) or an oligomerization (PB1) domain. We demonstrate the use of the engineered peptides as intracellular sensors that recognize specifically GABARAP, GABL1, GABL2, and LC3C, as well as a bispecific sensor for LC3A and LC3B. By using an LC3C-specific sensor, we were able to monitor recruitment of endogenous LC3C to Salmonella during xenophagy, as well as to mitochondria during mitophagy. The sensors are general tools to monitor the fate of mATG8s and will be valuable in decoding the biological functions of the individual LC3/GABARAPs.
Collapse
Affiliation(s)
- Alexandra Stolz
- Institute of Biochemistry II Goethe University, Frankfurt am Main, Germany
| | - Mateusz Putyrski
- Institute of Biochemistry II Goethe University, Frankfurt am Main, Germany.,Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Project Group Translational Medicine and Pharmacology TMP, Frankfurt am Main, Germany
| | - Ivana Kutle
- Buchmann Institute for Molecular Life Sciences, Frankfurt am Main, Germany
| | - Jessica Huber
- Institute of Biophysical Chemistry, Goethe University, Frankfurt am Main, Germany
| | - Chunxin Wang
- Biochemistry Section, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Viktória Major
- Institute of Biochemistry II Goethe University, Frankfurt am Main, Germany
| | - Sachdev S Sidhu
- Banting and Best Department of Medical Research, The Donnelly Centre, University of Toronto, Toronto, ON, Canada.,Department of Molecular Genetics, The Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - Richard J Youle
- Biochemistry Section, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Vladimir V Rogov
- Institute of Biophysical Chemistry, Goethe University, Frankfurt am Main, Germany
| | - Volker Dötsch
- Institute of Biophysical Chemistry, Goethe University, Frankfurt am Main, Germany
| | - Andreas Ernst
- Institute of Biochemistry II Goethe University, Frankfurt am Main, Germany .,Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Project Group Translational Medicine and Pharmacology TMP, Frankfurt am Main, Germany
| | - Ivan Dikic
- Institute of Biochemistry II Goethe University, Frankfurt am Main, Germany .,Buchmann Institute for Molecular Life Sciences, Frankfurt am Main, Germany
| |
Collapse
|
71
|
Wilfinger N, Austin S, Scheiber-Mojdehkar B, Berger W, Reipert S, Praschberger M, Paur J, Trondl R, Keppler BK, Zielinski CC, Nowikovsky K. Novel p53-dependent anticancer strategy by targeting iron signaling and BNIP3L-induced mitophagy. Oncotarget 2016; 7:1242-61. [PMID: 26517689 PMCID: PMC4811457 DOI: 10.18632/oncotarget.6233] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 09/26/2015] [Indexed: 12/11/2022] Open
Abstract
This study identifies BNIP3L as the key regulator of p53-dependent cell death mechanism in colon cancer cells targeted by the novel gallium based anticancer drug, KP46. KP46 specifically accumulated into mitochondria where it caused p53-dependent morphological and functional damage impairing mitochondrial dynamics and bioenergetics. Furthermore, competing with iron for cellular uptake, KP46 lowered the intracellular labile iron pools and intracellular heme. Accordingly, p53 accumulated in the nucleus where it activated its transcriptional target BNIP3L, a BH3 only domain protein with functions in apoptosis and mitophagy. Upregulated BNIP3L sensitized the mitochondrial permeability transition and strongly induced PARKIN-mediated mitochondrial clearance and cellular vacuolization. Downregulation of BNIP3L entirely rescued cell viability caused by exposure of KP46 for 24 hours, confirming that early induced cell death was regulated by BNIP3L. Altogether, targeting BNIP3L in wild-type p53 colon cancer cells is a novel anticancer strategy activating iron depletion signaling and the mitophagy-related cell death pathway.
Collapse
Affiliation(s)
- Nastasia Wilfinger
- Department of Internal Medicine I, Medical University Vienna, Vienna, Austria.,Comprehensive Cancer Center, Medical University Vienna, Vienna, Austria
| | - Shane Austin
- Department of Internal Medicine I, Medical University Vienna, Vienna, Austria.,Comprehensive Cancer Center, Medical University Vienna, Vienna, Austria
| | | | - Walter Berger
- Department of Internal Medicine I, Medical University Vienna, Vienna, Austria.,Comprehensive Cancer Center, Medical University Vienna, Vienna, Austria
| | - Siegfried Reipert
- Cell Imaging and Ultrastructure Research, University of Vienna, Vienna, Austria
| | - Monika Praschberger
- Department of Medical Chemistry, Medical University of Vienna, Vienna, Austria
| | - Jakob Paur
- Department of Internal Medicine I, Medical University Vienna, Vienna, Austria.,Comprehensive Cancer Center, Medical University Vienna, Vienna, Austria
| | - Robert Trondl
- Institute of Inorganic Chemistry, University of Vienna, Vienna, Austria
| | | | - Christoph C Zielinski
- Department of Internal Medicine I, Medical University Vienna, Vienna, Austria.,Comprehensive Cancer Center, Medical University Vienna, Vienna, Austria
| | - Karin Nowikovsky
- Department of Internal Medicine I, Medical University Vienna, Vienna, Austria.,Comprehensive Cancer Center, Medical University Vienna, Vienna, Austria
| |
Collapse
|
72
|
Scheidel J, Amstein L, Ackermann J, Dikic I, Koch I. In Silico Knockout Studies of Xenophagic Capturing of Salmonella. PLoS Comput Biol 2016; 12:e1005200. [PMID: 27906974 PMCID: PMC5131900 DOI: 10.1371/journal.pcbi.1005200] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 10/16/2016] [Indexed: 11/19/2022] Open
Abstract
The degradation of cytosol-invading pathogens by autophagy, a process known as xenophagy, is an important mechanism of the innate immune system. Inside the host, Salmonella Typhimurium invades epithelial cells and resides within a specialized intracellular compartment, the Salmonella-containing vacuole. A fraction of these bacteria does not persist inside the vacuole and enters the host cytosol. Salmonella Typhimurium that invades the host cytosol becomes a target of the autophagy machinery for degradation. The xenophagy pathway has recently been discovered, and the exact molecular processes are not entirely characterized. Complete kinetic data for each molecular process is not available, so far. We developed a mathematical model of the xenophagy pathway to investigate this key defense mechanism. In this paper, we present a Petri net model of Salmonella xenophagy in epithelial cells. The model is based on functional information derived from literature data. It comprises the molecular mechanism of galectin-8-dependent and ubiquitin-dependent autophagy, including regulatory processes, like nutrient-dependent regulation of autophagy and TBK1-dependent activation of the autophagy receptor, OPTN. To model the activation of TBK1, we proposed a new mechanism of TBK1 activation, suggesting a spatial and temporal regulation of this process. Using standard Petri net analysis techniques, we found basic functional modules, which describe different pathways of the autophagic capture of Salmonella and reflect the basic dynamics of the system. To verify the model, we performed in silico knockout experiments. We introduced a new concept of knockout analysis to systematically compute and visualize the results, using an in silico knockout matrix. The results of the in silico knockout analyses were consistent with published experimental results and provide a basis for future investigations of the Salmonella xenophagy pathway.
Collapse
Affiliation(s)
- Jennifer Scheidel
- Molecular Bioinformatics, Institute of Computer Science, Johann Wolfgang Goethe-University Frankfurt am Main, Frankfurt am Main, Germany
| | - Leonie Amstein
- Molecular Bioinformatics, Institute of Computer Science, Johann Wolfgang Goethe-University Frankfurt am Main, Frankfurt am Main, Germany
| | - Jörg Ackermann
- Molecular Bioinformatics, Institute of Computer Science, Johann Wolfgang Goethe-University Frankfurt am Main, Frankfurt am Main, Germany
| | - Ivan Dikic
- Institute of Biochemistry II, Johann Wolfgang Goethe-University Hospital Frankfurt am Main, Frankfurt am Main, Germany
- Buchmann Institute for Molecular Life Sciences, Frankfurt am Main, Germany
| | - Ina Koch
- Molecular Bioinformatics, Institute of Computer Science, Johann Wolfgang Goethe-University Frankfurt am Main, Frankfurt am Main, Germany
| |
Collapse
|
73
|
Papadopoulos C, Kirchner P, Bug M, Grum D, Koerver L, Schulze N, Poehler R, Dressler A, Fengler S, Arhzaouy K, Lux V, Ehrmann M, Weihl CC, Meyer H. VCP/p97 cooperates with YOD1, UBXD1 and PLAA to drive clearance of ruptured lysosomes by autophagy. EMBO J 2016; 36:135-150. [PMID: 27753622 DOI: 10.15252/embj.201695148] [Citation(s) in RCA: 258] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 09/15/2016] [Accepted: 09/17/2016] [Indexed: 01/05/2023] Open
Abstract
Rupture of endosomes and lysosomes is a major cellular stress condition leading to cell death and degeneration. Here, we identified an essential role for the ubiquitin-directed AAA-ATPase, p97, in the clearance of damaged lysosomes by autophagy. Upon damage, p97 translocates to lysosomes and there cooperates with a distinct set of cofactors including UBXD1, PLAA, and the deubiquitinating enzyme YOD1, which we term ELDR components for Endo-Lysosomal Damage Response. Together, they act downstream of K63-linked ubiquitination and p62 recruitment, and selectively remove K48-linked ubiquitin conjugates from a subpopulation of damaged lysosomes to promote autophagosome formation. Lysosomal clearance is also compromised in MEFs harboring a p97 mutation that causes inclusion body myopathy and neurodegeneration, and damaged lysosomes accumulate in affected patient tissue carrying the mutation. Moreover, we show that p97 helps clear late endosomes/lysosomes ruptured by endocytosed tau fibrils. Thus, our data reveal an important mechanism of how p97 maintains lysosomal homeostasis, and implicate the pathway as a modulator of degenerative diseases.
Collapse
Affiliation(s)
- Chrisovalantis Papadopoulos
- Molecular Biology I, Faculty of Biology, Centre for Medical Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Philipp Kirchner
- Molecular Biology I, Faculty of Biology, Centre for Medical Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Monika Bug
- Molecular Biology I, Faculty of Biology, Centre for Medical Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Daniel Grum
- Molecular Biology I, Faculty of Biology, Centre for Medical Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Lisa Koerver
- Molecular Biology I, Faculty of Biology, Centre for Medical Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Nina Schulze
- Imaging Center Campus Essen, Faculty of Biology, Centre for Medical Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Robert Poehler
- Molecular Biology I, Faculty of Biology, Centre for Medical Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Alina Dressler
- Molecular Biology I, Faculty of Biology, Centre for Medical Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Sven Fengler
- Molecular Biology I, Faculty of Biology, Centre for Medical Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Khalid Arhzaouy
- Department of Neurology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Vanda Lux
- Microbiology, Faculty of Biology, Centre for Medical Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Michael Ehrmann
- Microbiology, Faculty of Biology, Centre for Medical Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Conrad C Weihl
- Department of Neurology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Hemmo Meyer
- Molecular Biology I, Faculty of Biology, Centre for Medical Biotechnology, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
74
|
Structure of ubiquitylated-Rpn10 provides insight into its autoregulation mechanism. Nat Commun 2016; 7:12960. [PMID: 27698474 PMCID: PMC5059453 DOI: 10.1038/ncomms12960] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 08/19/2016] [Indexed: 01/01/2023] Open
Abstract
Ubiquitin receptors decode ubiquitin signals into many cellular responses. Ubiquitin receptors also undergo coupled monoubiquitylation, and rapid deubiquitylation has hampered the characterization of the ubiquitylated state. Using bacteria that express a ubiquitylation apparatus, we purified and determined the crystal structure of the proteasomal ubiquitin-receptor Rpn10 in its ubiquitylated state. The structure shows a novel ubiquitin-binding patch that directs K84 ubiquitylation. Superimposition of ubiquitylated-Rpn10 onto electron-microscopy models of proteasomes indicates that the Rpn10-conjugated ubiquitin clashes with Rpn9, suggesting that ubiquitylation might be involved in releasing Rpn10 from the proteasome. Indeed, ubiquitylation on immobilized proteasomes dissociates the modified Rpn10 from the complex, while unmodified Rpn10 mainly remains associated. In vivo experiments indicate that contrary to wild type, Rpn10-K84R is stably associated with the proteasomal subunit Rpn9. Similarly Rpn10, but not ubiquitylated-Rpn10, binds Rpn9 in vitro. Thus we suggest that ubiquitylation functions to dissociate modified ubiquitin receptors from their targets, a function that promotes cyclic activity of ubiquitin receptors. Ubiquitin (Ub) receptors are responsible for the recognition of ubiquitylated proteins. Here the authors describe the crystal structure of the ubiquitylated form of the Ub-receptor Rpn10, which suggest that ubiquitylation of Rpn10 promotes its dissociation from the proteasome.
Collapse
|
75
|
Xie X, Li F, Wang Y, Wang Y, Lin Z, Cheng X, Liu J, Chen C, Pan L. Molecular basis of ubiquitin recognition by the autophagy receptor CALCOCO2. Autophagy 2016; 11:1775-89. [PMID: 26506893 DOI: 10.1080/15548627.2015.1082025] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The autophagy receptor CALCOCO2/NDP52 functions as a bridging adaptor and plays an essential role in the selective autophagic degradation of invading pathogens by specifically recognizing ubiquitin-coated intracellular pathogens and subsequently targeting them to the autophagic machinery; thereby it is required for innate immune defense against a range of infectious pathogens in mammals. However, the mechanistic basis underlying CALCOCO2-mediated specific recognition of ubiqutinated pathogens is still unknown. Here, using biochemical and structural analyses, we demonstrated that the cargo-binding region of CALCOCO2 contains a dynamic unconventional zinc finger as well as a C2H2-type zinc-finger, and only the C2H2-type zinc finger specifically recognizes mono-ubiquitin or poly-ubiquitin chains. In addition to elucidating the specific ubiquitin recognition mechanism of CALCOCO2, the structure of the CALCOCO2 C2H2-type zinc finger in complex with mono-ubiquitin also uncovers a unique zinc finger-binding mode for ubiquitin. Our findings provide mechanistic insight into how CALCOCO2 targets ubiquitin-decorated pathogens for autophagic degradations.
Collapse
Affiliation(s)
- Xingqiao Xie
- a State Key Laboratory of Bioorganic and Natural Products Chemistry
| | - Faxiang Li
- a State Key Laboratory of Bioorganic and Natural Products Chemistry.,b Interdisciplinary Research Center on Biology and Chemistry
| | - Yuanyuan Wang
- d Unit of Pathogenic Fungal Infection and Host Immunity; Institut Pasteur of Shanghai; Chinese Academy of Science ; Shanghai , China
| | - Yingli Wang
- a State Key Laboratory of Bioorganic and Natural Products Chemistry
| | - Zhijie Lin
- e Division of Life Science, State Key Laboratory of Molecular Neuroscience; Hong Kong University of Science and Technology ; Kowloon , Hong Kong , China
| | - Xiaofang Cheng
- a State Key Laboratory of Bioorganic and Natural Products Chemistry.,b Interdisciplinary Research Center on Biology and Chemistry
| | - Jianping Liu
- a State Key Laboratory of Bioorganic and Natural Products Chemistry
| | - Changbin Chen
- d Unit of Pathogenic Fungal Infection and Host Immunity; Institut Pasteur of Shanghai; Chinese Academy of Science ; Shanghai , China
| | - Lifeng Pan
- a State Key Laboratory of Bioorganic and Natural Products Chemistry.,c Collaborative Innovation Center of Chemistry for Life Sciences; Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences ; Shanghai , China
| |
Collapse
|
76
|
Scott D, Garner TP, Long J, Strachan J, Mistry SC, Bottrill AR, Tooth DJ, Searle MS, Oldham NJ, Layfield R. Mass spectrometry insights into a tandem ubiquitin-binding domain hybrid engineered for the selective recognition of unanchored polyubiquitin. Proteomics 2016; 16:1961-9. [DOI: 10.1002/pmic.201600067] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 03/18/2016] [Accepted: 03/29/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Daniel Scott
- School of Life Sciences; Queen's Medical Centre; University of Nottingham; Nottingham UK
- School of Chemistry; University Park; University of Nottingham; Nottingham UK
| | - Tom P Garner
- Department of Biochemistry; Albert Einstein College of Medicine of Yeshiva University; Bronx NY USA
| | - Jed Long
- School of Chemistry; University Park; University of Nottingham; Nottingham UK
- Centre for Biomolecular Sciences; University Park; University of Nottingham; Nottingham UK
| | - Jo Strachan
- Institute of Cell Biology; University of Edinburgh; Edinburgh UK
| | - Sharad C. Mistry
- Protein & Nucleic Acid Chemistry Laboratory; University of Leicester; Leicester UK
| | - Andrew R. Bottrill
- Protein & Nucleic Acid Chemistry Laboratory; University of Leicester; Leicester UK
| | - David J. Tooth
- School of Life Sciences; Queen's Medical Centre; University of Nottingham; Nottingham UK
| | - Mark S. Searle
- School of Chemistry; University Park; University of Nottingham; Nottingham UK
- Centre for Biomolecular Sciences; University Park; University of Nottingham; Nottingham UK
| | - Neil J. Oldham
- School of Chemistry; University Park; University of Nottingham; Nottingham UK
| | - Rob Layfield
- School of Life Sciences; Queen's Medical Centre; University of Nottingham; Nottingham UK
| |
Collapse
|
77
|
Thurston TL, Boyle KB, Allen M, Ravenhill BJ, Karpiyevich M, Bloor S, Kaul A, Noad J, Foeglein A, Matthews SA, Komander D, Bycroft M, Randow F. Recruitment of TBK1 to cytosol-invading Salmonella induces WIPI2-dependent antibacterial autophagy. EMBO J 2016; 35:1779-92. [PMID: 27370208 PMCID: PMC5010046 DOI: 10.15252/embj.201694491] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 05/24/2016] [Indexed: 01/01/2023] Open
Abstract
Mammalian cells deploy autophagy to defend their cytosol against bacterial invaders. Anti‐bacterial autophagy relies on the core autophagy machinery, cargo receptors, and “eat‐me” signals such as galectin‐8 and ubiquitin that label bacteria as autophagy cargo. Anti‐bacterial autophagy also requires the kinase TBK1, whose role in autophagy has remained enigmatic. Here we show that recruitment of WIPI2, itself essential for anti‐bacterial autophagy, is dependent on the localization of catalytically active TBK1 to the vicinity of cytosolic bacteria. Experimental manipulation of TBK1 recruitment revealed that engagement of TBK1 with any of a variety of Salmonella‐associated “eat‐me” signals, including host‐derived glycans and K48‐ and K63‐linked ubiquitin chains, suffices to restrict bacterial proliferation. Promiscuity in recruiting TBK1 via independent signals may buffer TBK1 functionality from potential bacterial antagonism and thus be of evolutionary advantage to the host.
Collapse
Affiliation(s)
- Teresa Lm Thurston
- Division of Protein and Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Cambridge, UK MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | - Keith B Boyle
- Division of Protein and Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Mark Allen
- Division of Structural Studies, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Benjamin J Ravenhill
- Division of Protein and Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Maryia Karpiyevich
- Division of Protein and Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Stuart Bloor
- Division of Protein and Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Annie Kaul
- Division of Protein and Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Jessica Noad
- Division of Protein and Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Agnes Foeglein
- Division of Protein and Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Sophie A Matthews
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | - David Komander
- Division of Protein and Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Mark Bycroft
- Division of Structural Studies, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Felix Randow
- Division of Protein and Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Cambridge, UK Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| |
Collapse
|
78
|
Johnson A, Vert G. Unraveling K63 Polyubiquitination Networks by Sensor-Based Proteomics. PLANT PHYSIOLOGY 2016; 171:1808-20. [PMID: 27208306 PMCID: PMC4936586 DOI: 10.1104/pp.16.00619] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 05/06/2016] [Indexed: 05/03/2023]
Abstract
The polybiquitination of proteins can take on different topologies depending on the residue from ubiquitin involved in the chain formation. Although the role of lysine-48 (K48) polyubiquitination in proteasome-mediated degradation is fairly well characterized, much less is understood about the other types of ubiquitin chains and proteasome-independent functions. To overcome this, we developed a K63 polyubiquitin-specific sensor-based approach to track and isolate K63 polyubiquitinated proteins in plants. Proteins carrying K63 polyubiquitin chains were found to be enriched in diverse membrane compartments as well as in nuclear foci. Using liquid chromatography-tandem mass spectrometry, we identified over 100 proteins from Arabidopsis (Arabidopsis thaliana) that are modified with K63 polyubiquitin chains. The K63 ubiquitinome contains critical factors involved in a wide variety of biological processes, including transport, metabolism, protein trafficking, and protein translation. Comparison of the proteins found in this study with previously published nonresolutive ubiquitinomes identified about 70 proteins as ubiquitinated and specifically modified with K63-linked chains. To extend our knowledge about K63 polyubiquitination, we compared the K63 ubiquitinome with K63 ubiquitination networks based on the Arabidopsis interactome. Altogether, this work increases our resolution of the cellular and biological roles associated with this poorly characterized posttranslational modification and provides a unique insight into the networks of K63 polyubiquitination in plants.
Collapse
Affiliation(s)
- Alexander Johnson
- Institute for Integrative Biology of the Cell (I2BC), CNRS/CEA/Univ. Paris Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Grégory Vert
- Institute for Integrative Biology of the Cell (I2BC), CNRS/CEA/Univ. Paris Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| |
Collapse
|
79
|
Abstract
Protein ubiquitination is a dynamic multifaceted post-translational modification involved in nearly all aspects of eukaryotic biology. Once attached to a substrate, the 76-amino acid protein ubiquitin is subjected to further modifications, creating a multitude of distinct signals with distinct cellular outcomes, referred to as the 'ubiquitin code'. Ubiquitin can be ubiquitinated on seven lysine (Lys) residues or on the N-terminus, leading to polyubiquitin chains that can encompass complex topologies. Alternatively or in addition, ubiquitin Lys residues can be modified by ubiquitin-like molecules (such as SUMO or NEDD8). Finally, ubiquitin can also be acetylated on Lys, or phosphorylated on Ser, Thr or Tyr residues, and each modification has the potential to dramatically alter the signaling outcome. While the number of distinctly modified ubiquitin species in cells is mind-boggling, much progress has been made to characterize the roles of distinct ubiquitin modifications, and many enzymes and receptors have been identified that create, recognize or remove these ubiquitin modifications. We here provide an overview of the various ubiquitin modifications present in cells, and highlight recent progress on ubiquitin chain biology. We then discuss the recent findings in the field of ubiquitin acetylation and phosphorylation, with a focus on Ser65-phosphorylation and its role in mitophagy and Parkin activation.
Collapse
Affiliation(s)
- Kirby N Swatek
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - David Komander
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| |
Collapse
|
80
|
Hrdinka M, Fiil BK, Zucca M, Leske D, Bagola K, Yabal M, Elliott PR, Damgaard RB, Komander D, Jost PJ, Gyrd-Hansen M. CYLD Limits Lys63- and Met1-Linked Ubiquitin at Receptor Complexes to Regulate Innate Immune Signaling. Cell Rep 2016; 14:2846-58. [PMID: 26997266 PMCID: PMC4819907 DOI: 10.1016/j.celrep.2016.02.062] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 01/28/2016] [Accepted: 02/12/2016] [Indexed: 12/23/2022] Open
Abstract
Innate immune signaling relies on the deposition of non-degradative polyubiquitin at receptor-signaling complexes, but how these ubiquitin modifications are regulated by deubiquitinases remains incompletely understood. Met1-linked ubiquitin (Met1-Ub) is assembled by the linear ubiquitin assembly complex (LUBAC), and this is counteracted by the Met1-Ub-specific deubiquitinase OTULIN, which binds to the catalytic LUBAC subunit HOIP. In this study, we report that HOIP also interacts with the deubiquitinase CYLD but that CYLD does not regulate ubiquitination of LUBAC components. Instead, CYLD limits extension of Lys63-Ub and Met1-Ub conjugated to RIPK2 to restrict signaling and cytokine production. Accordingly, Met1-Ub and Lys63-Ub were individually required for productive NOD2 signaling. Our study thus suggests that LUBAC, through its associated deubiquitinases, coordinates the deposition of not only Met1-Ub but also Lys63-Ub to ensure an appropriate response to innate immune receptor activation. CYLD associates with LUBAC via HOIP and limits signaling by NOD2 RIPK2 ubiquitination is regulated by CYLD and OTULIN CYLD trims Lys63 and Met1 linkages conjugated to RIPK2 Productive NOD2 signaling requires Lys63 and Met1 linkages
Collapse
Affiliation(s)
- Matous Hrdinka
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| | - Berthe Katrine Fiil
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| | - Mattia Zucca
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| | - Derek Leske
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| | - Katrin Bagola
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| | - Monica Yabal
- III. Medizinische Klinik, Klinikum rechts der Isar, Technische Universität München, Munich 81675, Germany
| | - Paul R Elliott
- Medical Research Council Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Rune Busk Damgaard
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| | - David Komander
- Medical Research Council Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Philipp J Jost
- III. Medizinische Klinik, Klinikum rechts der Isar, Technische Universität München, Munich 81675, Germany
| | - Mads Gyrd-Hansen
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK.
| |
Collapse
|
81
|
Olazabal-Herrero A, García-Santisteban I, Rodríguez JA. Mutations in the ‘Fingers’ subdomain of the deubiquitinase USP1 modulate its function and activity. FEBS J 2016; 283:929-46. [DOI: 10.1111/febs.13648] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 12/16/2015] [Accepted: 01/08/2016] [Indexed: 11/30/2022]
Affiliation(s)
- Anne Olazabal-Herrero
- Department of Genetics, Physical Anthropology and Animal Physiology; University of the Basque Country (UPV/EHU); Leioa Spain
| | - Iraia García-Santisteban
- Department of Genetics, Physical Anthropology and Animal Physiology; University of the Basque Country (UPV/EHU); Leioa Spain
| | - Jose Antonio Rodríguez
- Department of Genetics, Physical Anthropology and Animal Physiology; University of the Basque Country (UPV/EHU); Leioa Spain
| |
Collapse
|
82
|
A Generic Platform for Cellular Screening Against Ubiquitin Ligases. Sci Rep 2016; 6:18940. [PMID: 26743172 PMCID: PMC4705515 DOI: 10.1038/srep18940] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 12/01/2015] [Indexed: 12/31/2022] Open
Abstract
Ubiquitin signalling regulates most aspects of cellular life, thus deregulation of ubiquitylation has been linked with a number of diseases. E3 ubiquitin ligases provide substrate selectivity in ubiquitylation cascades and are therefore considered to be attractive targets for developing therapeutic molecules. In contrast to established drug target classes, such as protein kinases, GPCRs, hormone receptors and ion channels, ubiquitin drug discovery is in its early stages. This is, in part, due to the complexity of the ubiquitylation pathways and the lack of robust quantitative technologies that allow high-throughput screening of inhibitors. Here we report the development of a Ubiquitin Ligase Profiling system, which is a novel and generic cellular technology designed to facilitate identification of selective inhibitors against RING type E3 ubiquitin ligases. Utilization of this system requires a single co-transfection of cells with assay vectors, thereby enabling readout of E3 ubiquitin ligase catalytic activity within the cellular environment. Therefore, our robust high-throughput screening platform offers novel opportunities for the development of inhibitors against this difficult-to-target E3 ligase enzyme class.
Collapse
|
83
|
Inhibition of Canonical NF-κB Signaling by a Small Molecule Targeting NEMO-Ubiquitin Interaction. Sci Rep 2016; 6:18934. [PMID: 26740240 PMCID: PMC4703965 DOI: 10.1038/srep18934] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 11/30/2015] [Indexed: 12/16/2022] Open
Abstract
The IκB kinase (IKK) complex acts as the gatekeeper of canonical NF-κB signaling, thereby regulating immunity, inflammation and cancer. It consists of the catalytic subunits IKKα and IKKβ and the regulatory subunit NEMO/IKKγ. Here, we show that the ubiquitin binding domain (UBAN) in NEMO is essential for IKK/NF-κB activation in response to TNFα, but not IL-1β stimulation. By screening a natural compound library we identified an anthraquinone derivative that acts as an inhibitor of NEMO-ubiquitin binding (iNUB). Using biochemical and NMR experiments we demonstrate that iNUB binds to NEMOUBAN and competes for interaction with methionine-1-linked linear ubiquitin chains. iNUB inhibited NF-κB activation upon UBAN-dependent TNFα and TCR/CD28, but not UBAN-independent IL-1β stimulation. Moreover, iNUB was selectively killing lymphoma cells that are addicted to chronic B-cell receptor triggered IKK/NF-κB activation. Thus, iNUB disrupts the NEMO-ubiquitin protein-protein interaction interface and thereby inhibits physiological and pathological NF-κB signaling.
Collapse
|
84
|
Fischer A, Rudel T. Subversion of Cell-Autonomous Host Defense by Chlamydia Infection. Curr Top Microbiol Immunol 2016; 412:81-106. [PMID: 27169422 DOI: 10.1007/82_2016_13] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Obligate intracellular bacteria entirely depend on the metabolites of their host cell for survival and generation of progeny. Due to their lifestyle inside a eukaryotic cell and the lack of any extracellular niche, they have to perfectly adapt to compartmentalized intracellular environment of the host cell and counteract the numerous defense strategies intrinsically present in all eukaryotic cells. This so-called cell-autonomous defense is present in all cell types encountering Chlamydia infection and is in addition closely linked to the cellular innate immune defense of the mammalian host. Cell type and chlamydial species-restricted mechanisms point a long-term evolutionary adaptation that builds the basis of the currently observed host and cell-type tropism among different Chlamydia species. This review will summarize the current knowledge on the strategies pathogenic Chlamydia species have developed to subvert and overcome the multiple mechanisms by which eukaryotic cells defend themselves against intracellular pathogens.
Collapse
Affiliation(s)
- Annette Fischer
- Department of Microbiology and Biocenter, University of Würzburg, Am Hubland, 97074, Wuerzburg, Germany
| | - Thomas Rudel
- Department of Microbiology and Biocenter, University of Würzburg, Am Hubland, 97074, Wuerzburg, Germany.
| |
Collapse
|
85
|
Lork M, Delvaeye M, Gonçalves A, Van Hamme E, Beyaert R. Monitoring Ubiquitin-Coated Bacteria via Confocal Microscopy. Methods Mol Biol 2016; 1449:243-250. [PMID: 27613040 DOI: 10.1007/978-1-4939-3756-1_14] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Salmonella is a gram-negative facultative intracellular pathogen that is capable of infecting a variety of hosts. Inside host cells, most Salmonella bacteria reside and replicate within Salmonella-containing vacuoles. They use virulence proteins to manipulate the host cell machinery for their own benefit and hijack the host cytoskeleton to travel toward the perinuclear area. However, a fraction of bacteria escapes into the cytosol where they get decorated with a dense layer of polyubiquitin, which labels the bacteria for clearance by autophagy. More specifically, autophagy receptor proteins recognize the ubiquitinated bacteria and deliver them to autophagosomes, which subsequently fuse to lysosomes. Here, we describe methods used to infect HeLa cells with Salmonella bacteria and to detect their ubiquitination via immunofluorescence and laser scanning confocal microscopy.
Collapse
Affiliation(s)
- Marie Lork
- Unit of Molecular Signal Transduction in Inflammation, Inflammation Research Center, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, Zwijnaarde, Ghent, 9052, Belgium
| | - Mieke Delvaeye
- Unit of Molecular Signal Transduction in Inflammation, Inflammation Research Center, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, Zwijnaarde, Ghent, 9052, Belgium
| | - Amanda Gonçalves
- Bio Imaging Core, Inflammation Research Center, VIB, Ghent, Belgium
| | | | - Rudi Beyaert
- Unit of Molecular Signal Transduction in Inflammation, Inflammation Research Center, VIB, Ghent, Belgium.
- Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, Zwijnaarde, Ghent, 9052, Belgium.
| |
Collapse
|
86
|
Thorslund T, Ripplinger A, Hoffmann S, Wild T, Uckelmann M, Villumsen B, Narita T, Sixma TK, Choudhary C, Bekker-Jensen S, Mailand N. Histone H1 couples initiation and amplification of ubiquitin signalling after DNA damage. Nature 2015; 527:389-93. [DOI: 10.1038/nature15401] [Citation(s) in RCA: 274] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 08/20/2015] [Indexed: 12/22/2022]
|
87
|
Heo JM, Ordureau A, Paulo JA, Rinehart J, Harper JW. The PINK1-PARKIN Mitochondrial Ubiquitylation Pathway Drives a Program of OPTN/NDP52 Recruitment and TBK1 Activation to Promote Mitophagy. Mol Cell 2015; 60:7-20. [PMID: 26365381 DOI: 10.1016/j.molcel.2015.08.016] [Citation(s) in RCA: 661] [Impact Index Per Article: 66.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 08/12/2015] [Accepted: 08/19/2015] [Indexed: 12/22/2022]
Abstract
Damaged mitochondria are detrimental to cellular homeostasis. One mechanism for removal of damaged mitochondria involves the PINK1-PARKIN pathway, which poly-ubiquitylates damaged mitochondria to promote mitophagy. We report that assembly of ubiquitin chains on mitochondria triggers autophagy adaptor recruitment concomitantly with activation of the TBK1 kinase, which physically associates with OPTN, NDP52, and SQSTM1. TBK1 activation in HeLa cells requires OPTN and NDP52 and OPTN ubiquitin chain binding. In addition to the known role of S177 phosphorylation in OPTN on ATG8 recruitment, TBK1-dependent phosphorylation on S473 and S513 promotes ubiquitin chain binding in vitro as well as TBK1 activation, OPTN mitochondrial retention, and efficient mitophagy in vivo. These data reveal a self-reinforcing positive feedback mechanism that coordinates TBK1-dependent autophagy adaptor phosphorylation with the assembly of ubiquitin chains on mitochondria to facilitate efficient mitophagy, and mechanistically links genes mutated in Parkinson's disease and amyotrophic lateral sclerosis in a common selective autophagy pathway.
Collapse
Affiliation(s)
- Jin-Mi Heo
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Alban Ordureau
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Jesse Rinehart
- Department of Cellular & Molecular Physiology, Systems Biology Institute, Yale University School of Medicine, New Haven, CT 06520, USA
| | - J Wade Harper
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
88
|
Greenfeld H, Takasaki K, Walsh MJ, Ersing I, Bernhardt K, Ma Y, Fu B, Ashbaugh CW, Cabo J, Mollo SB, Zhou H, Li S, Gewurz BE. TRAF1 Coordinates Polyubiquitin Signaling to Enhance Epstein-Barr Virus LMP1-Mediated Growth and Survival Pathway Activation. PLoS Pathog 2015; 11:e1004890. [PMID: 25996949 PMCID: PMC4440769 DOI: 10.1371/journal.ppat.1004890] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 04/17/2015] [Indexed: 11/25/2022] Open
Abstract
The Epstein-Barr virus (EBV) encoded oncoprotein Latent Membrane Protein 1 (LMP1) signals through two C-terminal tail domains to drive cell growth, survival and transformation. The LMP1 membrane-proximal TES1/CTAR1 domain recruits TRAFs to activate MAP kinase, non-canonical and canonical NF-kB pathways, and is critical for EBV-mediated B-cell transformation. TRAF1 is amongst the most highly TES1-induced target genes and is abundantly expressed in EBV-associated lymphoproliferative disorders. We found that TRAF1 expression enhanced LMP1 TES1 domain-mediated activation of the p38, JNK, ERK and canonical NF-kB pathways, but not non-canonical NF-kB pathway activity. To gain insights into how TRAF1 amplifies LMP1 TES1 MAP kinase and canonical NF-kB pathways, we performed proteomic analysis of TRAF1 complexes immuno-purified from cells uninduced or induced for LMP1 TES1 signaling. Unexpectedly, we found that LMP1 TES1 domain signaling induced an association between TRAF1 and the linear ubiquitin chain assembly complex (LUBAC), and stimulated linear (M1)-linked polyubiquitin chain attachment to TRAF1 complexes. LMP1 or TRAF1 complexes isolated from EBV-transformed lymphoblastoid B cell lines (LCLs) were highly modified by M1-linked polyubiqutin chains. The M1-ubiquitin binding proteins IKK-gamma/NEMO, A20 and ABIN1 each associate with TRAF1 in cells that express LMP1. TRAF2, but not the cIAP1 or cIAP2 ubiquitin ligases, plays a key role in LUBAC recruitment and M1-chain attachment to TRAF1 complexes, implicating the TRAF1:TRAF2 heterotrimer in LMP1 TES1-dependent LUBAC activation. Depletion of either TRAF1, or the LUBAC ubiquitin E3 ligase subunit HOIP, markedly impaired LCL growth. Likewise, LMP1 or TRAF1 complexes purified from LCLs were decorated by lysine 63 (K63)-linked polyubiqutin chains. LMP1 TES1 signaling induced K63-polyubiquitin chain attachment to TRAF1 complexes, and TRAF2 was identified as K63-Ub chain target. Co-localization of M1- and K63-linked polyubiquitin chains on LMP1 complexes may facilitate downstream canonical NF-kB pathway activation. Our results highlight LUBAC as a novel potential therapeutic target in EBV-associated lymphoproliferative disorders. The linear ubiquitin assembly complex (LUBAC) plays crucial roles in immune receptor-mediated NF-kB and MAP kinase pathway activation. Comparatively little is known about the extent to which microbial pathogens use LUBAC to activate downstream pathways. We demonstrate that TRAF1 enhances EBV oncoprotein LMP1 TES1/CTAR1 domain mediated MAP kinase and canonical NF-kB activation. LMP1 TES1 signaling induces association between TRAF1 and LUBAC, and triggers M1-polyubiquitin chain attachment to TRAF1 complexes. TRAF1 and LMP1 complexes are decorated by M1-polyubiquitin chains in LCL extracts. TRAF2 plays a key role in LMP1-induced LUBAC recruitment and M1-chain attachment to TRAF1 complexes. TRAF1 and LMP1 complexes are modified by lysine 63-linked polyubiquitin chains in LCL extracts, and TRAF2 is a target of LMP1-induced K63-ubiquitin chain attachment. Thus, the TRAF1:TRAF2 heterotrimer may coordinate ubiquitin signaling downstream of TES1. Depletion of TRAF1 or the LUBAC subunit HOIP impairs LCL growth and survival. Thus, although TRAF1 is the only TRAF without a RING finger ubiquitin ligase domain, TRAF1 nonetheless has important roles in ubiqutin-mediated signal transduction downstream of LMP1. Our work suggests that LUBAC is important for EBV-driven B-cell proliferation, and suggests that LUBAC may be a novel therapeutic target in EBV-associated lymphoproliferative disorders.
Collapse
Affiliation(s)
- Hannah Greenfeld
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
| | - Kaoru Takasaki
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
| | - Michael J. Walsh
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
| | - Ina Ersing
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
| | - Katharina Bernhardt
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
| | - Yijie Ma
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
| | - Bishi Fu
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Camille W. Ashbaugh
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
| | - Jackson Cabo
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
| | - Sarah B. Mollo
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
| | - Hufeng Zhou
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
| | - Shitao Li
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Benjamin E. Gewurz
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
89
|
Defining roles of PARKIN and ubiquitin phosphorylation by PINK1 in mitochondrial quality control using a ubiquitin replacement strategy. Proc Natl Acad Sci U S A 2015; 112:6637-42. [PMID: 25969509 DOI: 10.1073/pnas.1506593112] [Citation(s) in RCA: 243] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The PTEN-induced putative kinase protein 1 (PINK1) and ubiquitin (UB) ligase PARKIN direct damaged mitochondria for mitophagy. PINK1 promotes PARKIN recruitment to the mitochondrial outer membrane (MOM) for ubiquitylation of MOM proteins with canonical and noncanonical UB chains. PINK1 phosphorylates both Ser65 (S65) in the UB-like domain of PARKIN and the conserved Ser in UB itself, but the temporal sequence and relative importance of these events during PARKIN activation and mitochondria quality control remain poorly understood. Using "UB(S65A)-replacement," we find that PARKIN phosphorylation and activation, and ubiquitylation of Lys residues on a cohort of MOM proteins, occur similarly irrespective of the ability of the UB-replacement to be phosphorylated on S65. In contrast, polyubiquitin (poly-UB) chain synthesis, PARKIN retention on the MOM, and mitophagy are reduced in UB(S65A)-replacement cells. Analogous experiments examining roles of individual UB chain linkage types revealed the importance of K6 and K63 chain linkages in mitophagy, but phosphorylation of K63 chains by PINK1 did not enhance binding to candidate mitophagy receptors optineurin (OPTN), sequestosome-1 (p62), and nuclear dot protein 52 (NDP52) in vitro. Parallel reaction monitoring proteomics of total mitochondria revealed the absence of p-S65-UB when PARKIN cannot build UB chains, and <0.16% of the monomeric UB pool underwent S65 phosphorylation upon mitochondrial damage. Combining p-S65-UB and p-S65-PARKIN in vitro showed accelerated transfer of nonphosphorylated UB to PARKIN itself, its substrate mitochondrial Rho GTPase (MIRO), and UB. Our data further define a feed-forward mitochondrial ubiquitylation pathway involving PARKIN activation upon phosphorylation, UB chain synthesis on the MOM, UB chain phosphorylation, and further PARKIN recruitment and enzymatic amplification via binding to phosphorylated UB chains.
Collapse
|
90
|
Abstract
The post-translational modification of proteins with ubiquitin represents a complex signalling system that co-ordinates essential cellular functions, including proteolysis, DNA repair, receptor signalling and cell communication. DUBs (deubiquitinases), the enzymes that disassemble ubiquitin chains and remove ubiquitin from proteins, are central to this system. Reflecting the complexity and versatility of ubiquitin signalling, DUB activity is controlled in multiple ways. Although several lines of evidence indicate that aberrant DUB function may promote human disease, the underlying molecular mechanisms are often unclear. Notwithstanding, considerable interest in DUBs as potential drug targets has emerged over the past years. The future success of DUB-based therapy development will require connecting the basic science of DUB function and enzymology with drug discovery. In the present review, we discuss new insights into DUB activity regulation and their links to disease, focusing on the role of DUBs as regulators of cell identity and differentiation, and discuss their potential as emerging drug targets.
Collapse
|
91
|
Okatsu K, Koyano F, Kimura M, Kosako H, Saeki Y, Tanaka K, Matsuda N. Phosphorylated ubiquitin chain is the genuine Parkin receptor. ACTA ACUST UNITED AC 2015; 209:111-28. [PMID: 25847540 PMCID: PMC4395490 DOI: 10.1083/jcb.201410050] [Citation(s) in RCA: 220] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 02/25/2015] [Indexed: 11/22/2022]
Abstract
PINK1-phosphorylated ubiquitin chain is the genuine Parkin receptor that recruits Parkin to depolarized mitochondria. PINK1 selectively recruits Parkin to depolarized mitochondria for quarantine and removal of damaged mitochondria via ubiquitylation. Dysfunction of this process predisposes development of familial recessive Parkinson’s disease. Although various models for the recruitment process have been proposed, none of them adequately explain the accumulated data, and thus the molecular basis for PINK1 recruitment of Parkin remains to be fully elucidated. In this study, we show that a linear ubiquitin chain of phosphomimetic tetra-ubiquitin(S65D) recruits Parkin to energized mitochondria in the absence of PINK1, whereas a wild-type tetra-ubiquitin chain does not. Under more physiologically relevant conditions, a lysosomal phosphorylated polyubiquitin chain recruited phosphomimetic Parkin to the lysosome. A cellular ubiquitin replacement system confirmed that ubiquitin phosphorylation is indeed essential for Parkin translocation. Furthermore, physical interactions between phosphomimetic Parkin and phosphorylated polyubiquitin chain were detected by immunoprecipitation from cells and in vitro reconstitution using recombinant proteins. We thus propose that the phosphorylated ubiquitin chain functions as the genuine Parkin receptor for recruitment to depolarized mitochondria.
Collapse
Affiliation(s)
- Kei Okatsu
- Protein Metabolism Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Fumika Koyano
- Protein Metabolism Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Mayumi Kimura
- Protein Metabolism Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan Laboratory of Protein Metabolism, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Hidetaka Kosako
- Division of Cell Signaling, Fujii Memorial Institute of Medical Sciences, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Yasushi Saeki
- Laboratory of Protein Metabolism, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Keiji Tanaka
- Laboratory of Protein Metabolism, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Noriyuki Matsuda
- Protein Metabolism Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan Laboratory of Protein Metabolism, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan Japan Science and Technology Agency, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
92
|
Pickrell AM, Youle RJ. The roles of PINK1, parkin, and mitochondrial fidelity in Parkinson's disease. Neuron 2015; 85:257-73. [PMID: 25611507 DOI: 10.1016/j.neuron.2014.12.007] [Citation(s) in RCA: 1605] [Impact Index Per Article: 160.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Understanding the function of genes mutated in hereditary forms of Parkinson's disease yields insight into disease etiology and reveals new pathways in cell biology. Although mutations or variants in many genes increase the susceptibility to Parkinson's disease, only a handful of monogenic causes of parkinsonism have been identified. Biochemical and genetic studies reveal that the products of two genes that are mutated in autosomal recessive parkinsonism, PINK1 and Parkin, normally work together in the same pathway to govern mitochondrial quality control, bolstering previous evidence that mitochondrial damage is involved in Parkinson's disease. PINK1 accumulates on the outer membrane of damaged mitochondria, activates Parkin's E3 ubiquitin ligase activity, and recruits Parkin to the dysfunctional mitochondrion. Then, Parkin ubiquitinates outer mitochondrial membrane proteins to trigger selective autophagy. This review covers the normal functions that PINK1 and Parkin play within cells, their molecular mechanisms of action, and the pathophysiological consequences of their loss.
Collapse
Affiliation(s)
- Alicia M Pickrell
- Biochemistry Section, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke (NINDS), NIH, Bethesda, MD 20892, USA
| | - Richard J Youle
- Biochemistry Section, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke (NINDS), NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
93
|
Kristariyanto YA, Abdul Rehman SA, Campbell DG, Morrice NA, Johnson C, Toth R, Kulathu Y. K29-selective ubiquitin binding domain reveals structural basis of specificity and heterotypic nature of k29 polyubiquitin. Mol Cell 2015; 58:83-94. [PMID: 25752573 PMCID: PMC4386640 DOI: 10.1016/j.molcel.2015.01.041] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 12/02/2014] [Accepted: 01/27/2015] [Indexed: 11/30/2022]
Abstract
Polyubiquitin chains regulate diverse cellular processes through the ability of ubiquitin to form chains of eight different linkage types. Although detected in yeast and mammals, little is known about K29-linked polyubiquitin. Here we report the generation of K29 chains in vitro using a ubiquitin chain-editing complex consisting of the HECT E3 ligase UBE3C and the deubiquitinase vOTU. We determined the crystal structure of K29-linked diubiquitin, which adopts an extended conformation with the hydrophobic patches on both ubiquitin moieties exposed and available for binding. Indeed, the crystal structure of the NZF1 domain of TRABID in complex with K29 chains reveals a binding mode that involves the hydrophobic patch on only one of the ubiquitin moieties and exploits the flexibility of K29 chains to achieve linkage selective binding. Further, we establish methods to study K29-linked polyubiquitin and find that K29 linkages exist in cells within mixed or branched chains containing other linkages. Large-scale enzymatic assembly and purification of K29-linked polyubiquitin chains K29 diubiquitin adopts extended conformation in crystal structure Crystal structure of K29 diubiquitin in complex with selective binding domain Presence of K29 chains within mixed/branched chains containing other linkages
Collapse
Affiliation(s)
- Yosua Adi Kristariyanto
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Syed Arif Abdul Rehman
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - David G Campbell
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Nicholas A Morrice
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Clare Johnson
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Rachel Toth
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Yogesh Kulathu
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK.
| |
Collapse
|
94
|
Michel MA, Elliott PR, Swatek KN, Simicek M, Pruneda JN, Wagstaff JL, Freund SMV, Komander D. Assembly and specific recognition of k29- and k33-linked polyubiquitin. Mol Cell 2015; 58:95-109. [PMID: 25752577 PMCID: PMC4386031 DOI: 10.1016/j.molcel.2015.01.042] [Citation(s) in RCA: 160] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 12/17/2014] [Accepted: 01/27/2015] [Indexed: 11/24/2022]
Abstract
Protein ubiquitination regulates many cellular processes via attachment of structurally and functionally distinct ubiquitin (Ub) chains. Several atypical chain types have remained poorly characterized because the enzymes mediating their assembly and receptors with specific binding properties have been elusive. We found that the human HECT E3 ligases UBE3C and AREL1 assemble K48/K29- and K11/K33-linked Ub chains, respectively, and can be used in combination with DUBs to generate K29- and K33-linked chains for biochemical and structural analyses. Solution studies indicate that both chains adopt open and dynamic conformations. We further show that the N-terminal Npl4-like zinc finger (NZF1) domain of the K29/K33-specific deubiquitinase TRABID specifically binds K29/K33-linked diUb, and a crystal structure of this complex explains TRABID specificity and suggests a model for chain binding by TRABID. Our work uncovers linkage-specific components in the Ub system for atypical K29- and K33-linked Ub chains, providing tools to further understand these unstudied posttranslational modifications. The HECT E3 ligases UBE3C and AREL1 assemble K29- and K33-linked polyubiquitin, respectively K29- and K33-linked chains adopt open conformations in solution The N-terminal NZF1 domain of TRABID specifically recognizes K29/K33-diubiquitin A structure of a K33 filament bound to NZF1 domains explains TRABID specificity
Collapse
Affiliation(s)
- Martin A Michel
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Paul R Elliott
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Kirby N Swatek
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Michal Simicek
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Jonathan N Pruneda
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Jane L Wagstaff
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Stefan M V Freund
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - David Komander
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| |
Collapse
|
95
|
Deubiquitinase-based analysis of ubiquitin chain architecture using Ubiquitin Chain Restriction (UbiCRest). Nat Protoc 2015; 10:349-361. [PMID: 25633630 DOI: 10.1038/nprot.2015.018] [Citation(s) in RCA: 165] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Protein ubiquitination is a versatile protein modification that regulates virtually all cellular processes. This versatility originates from polyubiquitin chains, which can be linked in eight distinct ways. The combinatorial complexity of eight linkage types in homotypic (one chain type per polymer) and heterotypic (multiple linkage types per polymer) chains poses significant problems for biochemical analysis. Here we describe UbiCRest, in which substrates (ubiquitinated proteins or polyubiquitin chains) are treated with a panel of linkage-specific deubiquitinating enzymes (DUBs) in parallel reactions, followed by gel-based analysis. UbiCRest can be used to show that a protein is ubiquitinated, to identify which linkage type(s) are present on polyubiquitinated proteins and to assess the architecture of heterotypic polyubiquitin chains. DUBs used in UbiCRest can be obtained commercially; however, we include details for generating a toolkit of purified DUBs and for profiling their linkage preferences in vitro. UbiCRest is a qualitative method that yields insights into ubiquitin chain linkage types and architecture within hours, and it can be performed on western blotting quantities of endogenously ubiquitinated proteins.
Collapse
|
96
|
Randow F, Youle RJ. Self and nonself: how autophagy targets mitochondria and bacteria. Cell Host Microbe 2015; 15:403-11. [PMID: 24721569 DOI: 10.1016/j.chom.2014.03.012] [Citation(s) in RCA: 218] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Autophagy is an evolutionarily conserved pathway that transports cytoplasmic components for degradation into lysosomes. Selective autophagy can capture physically large objects, including cell-invading pathogens and damaged or superfluous organelles. Selectivity is achieved by cargo receptors that detect substrate-associated "eat-me" signals. In this Review, we discuss basic principles of selective autophagy and compare the "eat-me" signals and cargo receptors that mediate autophagy of bacteria and bacteria-derived endosymbionts-i.e., mitochondria.
Collapse
Affiliation(s)
- Felix Randow
- MRC Laboratory of Molecular Biology, Division of Protein and Nucleic Acid Chemistry, Francis Crick Avenue, Cambridge CB2 0QH, UK; University of Cambridge, Department of Medicine, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK.
| | - Richard J Youle
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health Bethesda, MD 20892, USA.
| |
Collapse
|
97
|
Yi YJ, Sutovsky M, Song WH, Sutovsky P. Protein deubiquitination during oocyte maturation influences sperm function during fertilisation, antipolyspermy defense and embryo development. Reprod Fertil Dev 2015; 27:1154-67. [DOI: 10.1071/rd14012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 04/08/2014] [Indexed: 01/08/2023] Open
Abstract
Ubiquitination is a covalent post-translational modification of proteins by the chaperone protein ubiquitin. Upon docking to the 26S proteasome, ubiquitin is released from the substrate protein by deubiquitinating enzymes (DUBs). We hypothesised that specific inhibitors of two closely related oocyte DUBs, namely inhibitors of the ubiquitin C-terminal hydrolases (UCH) UCHL1 (L1 inhibitor) and UCHL3 (L3 inhibitor), would alter porcine oocyte maturation and influence sperm function and embryo development. Aberrant cortical granule (CG) migration and meiotic spindle defects were observed in oocytes matured with the L1 or L3 inhibitor. Embryo development was delayed or blocked in oocytes matured with the general DUB inhibitor PR-619. Aggresomes, the cellular stress-inducible aggregates of ubiquitinated proteins, formed in oocytes matured with L1 inhibitor or PR-619, a likely consequence of impaired protein turnover. Proteomic analysis identified the major vault protein (MVP) as the most prominent protein accumulated in oocytes matured with PR-619, suggesting that the inhibition of deubiquitination altered the turnover of MVP. The mitophagy/autophagy of sperm-contributed mitochondria inside the fertilised oocytes was hindered by DUB inhibitors. It is concluded that DUB inhibitors alter porcine oocyte maturation, fertilisation and preimplantation embryo development. By regulating the turnover of oocyte proteins and mono-ubiquitin regeneration, the DUBs may promote the acquisition of developmental competence during oocyte maturation.
Collapse
|
98
|
Scott D, Oldham NJ, Strachan J, Searle MS, Layfield R. Ubiquitin-binding domains: mechanisms of ubiquitin recognition and use as tools to investigate ubiquitin-modified proteomes. Proteomics 2014; 15:844-61. [PMID: 25327553 DOI: 10.1002/pmic.201400341] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 09/05/2014] [Accepted: 10/13/2014] [Indexed: 12/17/2022]
Abstract
Ubiquitin-binding domains (UBDs) are modular units found within ubiquitin-binding proteins that mediate the non-covalent recognition of (poly)ubiquitin modifications. A variety of mechanisms are employed in vivo to achieve polyubiquitin linkage and chain length selectivity by UBDs, the structural basis of which have in some instances been determined. Here, we review current knowledge related to ubiquitin recognition mechanisms at the molecular level and explore how such information has been exploited in the design and application of UBDs in isolation or artificially arranged in tandem as tools to investigate ubiquitin-modified proteomes. Specifically, we focus on the use of UBDs to directly purify or detect (poly)ubiquitin-modified proteins and more broadly for the targeted manipulation of ubiquitin-mediated processes, highlighting insights into ubiquitin signalling that have been provided.
Collapse
Affiliation(s)
- Daniel Scott
- School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, UK
| | | | | | | | | |
Collapse
|
99
|
Wauer T, Swatek KN, Wagstaff JL, Gladkova C, Pruneda JN, Michel MA, Gersch M, Johnson CM, Freund SMV, Komander D. Ubiquitin Ser65 phosphorylation affects ubiquitin structure, chain assembly and hydrolysis. EMBO J 2014; 34:307-25. [PMID: 25527291 PMCID: PMC4339119 DOI: 10.15252/embj.201489847] [Citation(s) in RCA: 237] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The protein kinase PINK1 was recently shown to phosphorylate ubiquitin (Ub) on Ser65, and phosphoUb activates the E3 ligase Parkin allosterically. Here, we show that PINK1 can phosphorylate every Ub in Ub chains. Moreover, Ser65 phosphorylation alters Ub structure, generating two conformations in solution. A crystal structure of the major conformation resembles Ub but has altered surface properties. NMR reveals a second phosphoUb conformation in which β5-strand slippage retracts the C-terminal tail by two residues into the Ub core. We further show that phosphoUb has no effect on E1-mediated E2 charging but can affect discharging of E2 enzymes to form polyUb chains. Notably, UBE2R1- (CDC34), UBE2N/UBE2V1- (UBC13/UEV1A), TRAF6- and HOIP-mediated chain assembly is inhibited by phosphoUb. While Lys63-linked poly-phosphoUb is recognized by the TAB2 NZF Ub binding domain (UBD), 10 out of 12 deubiquitinases (DUBs), including USP8, USP15 and USP30, are impaired in hydrolyzing phosphoUb chains. Hence, Ub phosphorylation has repercussions for ubiquitination and deubiquitination cascades beyond Parkin activation and may provide an independent layer of regulation in the Ub system.
Collapse
Affiliation(s)
- Tobias Wauer
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Kirby N Swatek
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Jane L Wagstaff
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | | | | | - Martin A Michel
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Malte Gersch
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | | | - Stefan M V Freund
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - David Komander
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| |
Collapse
|
100
|
Sorbara MT, Girardin SE. Emerging themes in bacterial autophagy. Curr Opin Microbiol 2014; 23:163-70. [PMID: 25497773 DOI: 10.1016/j.mib.2014.11.020] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 11/25/2014] [Accepted: 11/26/2014] [Indexed: 10/24/2022]
Abstract
The role of autophagy in the control of intracellular bacterial pathogens, also known as xenophagy, is well documented. Here, we highlight recent advances in the field of xenophagy. We review the importance of bacterial targeting by ubiquitination, diacylglycerol (DAG) or proteins such as Nod1, Nod2, NDP52, p62, NBR1, optineurin, LRSAM1 and parkin in the process of xenophagy. The importance of metabolic sensors, such as mTOR and AMPK, in xenophagy induction is also discussed. We also review the in vitro and in vivo evidence that demonstrate a global role for xenophagy in the control of bacterial growth. Finally, the mechanisms evolved by bacteria to escape xenophagy are presented.
Collapse
Affiliation(s)
- Matthew T Sorbara
- Department of Immunology, University of Toronto, Toronto M5S 1A8, Canada
| | - Stephen E Girardin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto M5S 1A8, Canada.
| |
Collapse
|