51
|
Karasmanis EP, Phan CT, Angelis D, Kesisova IA, Hoogenraad CC, McKenney RJ, Spiliotis ET. Polarity of Neuronal Membrane Traffic Requires Sorting of Kinesin Motor Cargo during Entry into Dendrites by a Microtubule-Associated Septin. Dev Cell 2018; 46:204-218.e7. [PMID: 30016622 DOI: 10.1016/j.devcel.2018.06.013] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 05/04/2018] [Accepted: 06/15/2018] [Indexed: 01/22/2023]
Abstract
Neuronal function requires axon-dendrite membrane polarity, which depends on sorting of membrane traffic during entry into axons. Due to a microtubule network of mixed polarity, dendrites receive vesicles from the cell body without apparent capacity for directional sorting. We found that, during entry into dendrites, axonally destined cargos move with a retrograde bias toward the cell body, while dendritically destined cargos are biased in the anterograde direction. A microtubule-associated septin (SEPT9), which localizes specifically in dendrites, impedes axonal cargo of kinesin-1/KIF5 and boosts kinesin-3/KIF1 motor cargo further into dendrites. In neurons and in vitro single-molecule motility assays, SEPT9 suppresses kinesin-1/KIF5 and enhances kinesin-3/KIF1 in a manner that depends on a lysine-rich loop of the kinesin motor domain. This differential regulation impacts partitioning of neuronal membrane proteins into axons-dendrites. Thus, polarized membrane traffic requires sorting during entry into dendrites by a septin-mediated mechanism that bestows directional bias on microtubules of mixed orientation.
Collapse
Affiliation(s)
- Eva P Karasmanis
- Department of Biology, Drexel University, Philadelphia, PA 19104, USA
| | - Cat-Thi Phan
- Department of Biology, Drexel University, Philadelphia, PA 19104, USA
| | - Dimitrios Angelis
- Department of Biology, Drexel University, Philadelphia, PA 19104, USA
| | - Ilona A Kesisova
- Department of Biology, Drexel University, Philadelphia, PA 19104, USA
| | - Casper C Hoogenraad
- Cell Biology, Department of Biology, Utrecht University, Utrecht 3584 CH, the Netherlands
| | - Richard J McKenney
- Department of Molecular and Cellular Biology, University of California Davis, Davis, CA 95616, USA
| | - Elias T Spiliotis
- Department of Biology, Drexel University, Philadelphia, PA 19104, USA.
| |
Collapse
|
52
|
Rufer AC, Kusznir E, Burger D, Stihle M, Ruf A, Rudolph MG. Domain swap in the C-terminal ubiquitin-like domain of human doublecortin. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2018; 74:450-462. [PMID: 29717716 DOI: 10.1107/s2059798318004813] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 03/23/2018] [Indexed: 11/10/2022]
Abstract
Doublecortin, a microtubule-associated protein that is only produced during neurogenesis, cooperatively binds to microtubules and stimulates microtubule polymerization and cross-linking by unknown mechanisms. A domain swap is observed in the crystal structure of the C-terminal domain of doublecortin. As determined by analytical ultracentrifugation, an open conformation is also present in solution. At higher concentrations, higher-order oligomers of the domain are formed. The domain swap and additional interfaces observed in the crystal lattice can explain the formation of doublecortin tetramers or multimers, in line with the analytical ultracentrifugation data. Taken together, the domain swap offers a mechanism for the observed cooperative binding of doublecortin to microtubules. Doublecortin-induced cross-linking of microtubules can be explained by the same mechanism. The effect of several mutations leading to lissencephaly and double-cortex syndrome can be traced to the domain swap and the proposed self-association of doublecortin.
Collapse
Affiliation(s)
- Arne C Rufer
- pRED, Therapeutic Modalities, F. Hoffmann-La Roche, 4070 Basel, Switzerland
| | - Eric Kusznir
- pRED, Therapeutic Modalities, F. Hoffmann-La Roche, 4070 Basel, Switzerland
| | - Dominique Burger
- pRED, Therapeutic Modalities, F. Hoffmann-La Roche, 4070 Basel, Switzerland
| | - Martine Stihle
- pRED, Therapeutic Modalities, F. Hoffmann-La Roche, 4070 Basel, Switzerland
| | - Armin Ruf
- pRED, Therapeutic Modalities, F. Hoffmann-La Roche, 4070 Basel, Switzerland
| | - Markus G Rudolph
- pRED, Therapeutic Modalities, F. Hoffmann-La Roche, 4070 Basel, Switzerland
| |
Collapse
|
53
|
Curiel J, Rodríguez Bey G, Takanohashi A, Bugiani M, Fu X, Wolf NI, Nmezi B, Schiffmann R, Bugaighis M, Pierson T, Helman G, Simons C, van der Knaap MS, Liu J, Padiath Q, Vanderver A. TUBB4A mutations result in specific neuronal and oligodendrocytic defects that closely match clinically distinct phenotypes. Hum Mol Genet 2018; 26:4506-4518. [PMID: 28973395 DOI: 10.1093/hmg/ddx338] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 08/24/2017] [Indexed: 12/16/2022] Open
Abstract
Hypomyelinating leukodystrophies are heritable disorders defined by lack of development of brain myelin, but the cellular mechanisms of hypomyelination are often poorly understood. Mutations in TUBB4A, encoding the tubulin isoform tubulin beta class IVA (Tubb4a), result in the symptom complex of hypomyelination with atrophy of basal ganglia and cerebellum (H-ABC). Additionally, TUBB4A mutations are known to result in a broad phenotypic spectrum, ranging from primary dystonia (DYT4), isolated hypomyelination with spastic quadriplegia, and an infantile onset encephalopathy, suggesting multiple cell types may be involved. We present a study of the cellular effects of TUBB4A mutations responsible for H-ABC (p.Asp249Asn), DYT4 (p.Arg2Gly), a severe combined phenotype with hypomyelination and encephalopathy (p.Asn414Lys), as well as milder phenotypes causing isolated hypomyelination (p.Val255Ile and p.Arg282Pro). We used a combination of histopathological, biochemical and cellular approaches to determine how these different mutations may have variable cellular effects in neurons and/or oligodendrocytes. Our results demonstrate that specific mutations lead to either purely neuronal, combined neuronal and oligodendrocytic or purely oligodendrocytic defects that closely match their respective clinical phenotypes. Thus, the DYT4 mutation that leads to phenotypes attributable to neuronal dysfunction results in altered neuronal morphology, but with unchanged tubulin quantity and polymerization, with normal oligodendrocyte morphology and myelin gene expression. Conversely, mutations associated with isolated hypomyelination (p.Val255Ile and p.Arg282Pro) and the severe combined phenotype (p.Asn414Lys) resulted in normal neuronal morphology but were associated with altered oligodendrocyte morphology, myelin gene expression, and microtubule dysfunction. The H-ABC mutation (p.Asp249Asn) that exhibits a combined neuronal and myelin phenotype had overlapping cellular defects involving both neuronal and oligodendrocyte cell types in vitro. Only mutations causing hypomyelination phenotypes showed altered microtubule dynamics and acted through a dominant toxic gain of function mechanism. The DYT4 mutation had no impact on microtubule dynamics suggesting a distinct mechanism of action. In summary, the different clinical phenotypes associated with TUBB4A reflect the selective and specific cellular effects of the causative mutations. Cellular specificity of disease pathogenesis is relevant to developing targeted treatments for this disabling condition.
Collapse
Affiliation(s)
- Julian Curiel
- Center for Neuroscience Research, Children's National Health System, Children's Research Institute, Washington, DC 20010, USA
| | | | - Asako Takanohashi
- Center for Genetic Medicine Research, Children's National Health System, Children's Research Institute, Washington, DC 20010, USA.,Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | | | - Xiaoqin Fu
- Center for Neuroscience Research, Children's National Health System, Children's Research Institute, Washington, DC 20010, USA
| | - Nicole I Wolf
- VU University Medical Center, Amsterdam, The Netherlands
| | - Bruce Nmezi
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Raphael Schiffmann
- Institute of Metabolic Disease, Baylor Scott & White Research Institute, Dallas, TX 75204, USA
| | - Mona Bugaighis
- Center for Neuroscience Research, Children's National Health System, Children's Research Institute, Washington, DC 20010, USA
| | - Tyler Pierson
- Departments of Pediatrics and Neurology, Cedar Sinai Medical Center, Board of Governors Regenerative Medicine Institute, Los Angeles, CA 90048, USA
| | - Guy Helman
- Center for Genetic Medicine Research, Children's National Health System, Children's Research Institute, Washington, DC 20010, USA.,Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia.,Department of Neurology, Children's National Health System, Washington, DC 20010, USA
| | - Cas Simons
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | | | - Judy Liu
- Center for Neuroscience Research, Children's National Health System, Children's Research Institute, Washington, DC 20010, USA
| | - Quasar Padiath
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Adeline Vanderver
- Center for Genetic Medicine Research, Children's National Health System, Children's Research Institute, Washington, DC 20010, USA.,Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.,Department of Neurology, Children's National Health System, Washington, DC 20010, USA.,Perlman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
54
|
Bertipaglia C, Gonçalves JC, Vallee RB. Nuclear migration in mammalian brain development. Semin Cell Dev Biol 2017; 82:57-66. [PMID: 29208348 DOI: 10.1016/j.semcdb.2017.11.033] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 11/22/2017] [Accepted: 11/23/2017] [Indexed: 01/05/2023]
Abstract
During development of the mammalian brain, neural stem cells divide and give rise to adult stem cells, glia and neurons, which migrate to their final locations. Nuclear migration is an important feature of neural stem cell (radial glia progenitor) proliferation and subsequent postmitotic neuronal migration. Defects in nuclear migration contribute to severe neurodevelopmental disorders such as microcephaly and lissencephaly. In this review, we address the cellular and molecular mechanisms responsible for nuclear migration during the radial glia cell cycle and postmitotic neuronal migration, with a particular focus on the role of molecular motors and cytoskeleton dynamics in regulating nuclear behavior.
Collapse
Affiliation(s)
- Chiara Bertipaglia
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, United States
| | - João Carlos Gonçalves
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, United States; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, 4710-057, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Richard Bert Vallee
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, United States.
| |
Collapse
|
55
|
Ramkumar A, Jong BY, Ori-McKenney KM. ReMAPping the microtubule landscape: How phosphorylation dictates the activities of microtubule-associated proteins. Dev Dyn 2017; 247:138-155. [PMID: 28980356 DOI: 10.1002/dvdy.24599] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 09/11/2017] [Accepted: 09/19/2017] [Indexed: 12/12/2022] Open
Abstract
Classical microtubule-associated proteins (MAPs) were originally identified based on their co-purification with microtubules assembled from mammalian brain lysate. They have since been found to perform a range of functions involved in regulating the dynamics of the microtubule cytoskeleton. Most of these MAPs play integral roles in microtubule organization during neuronal development, microtubule remodeling during neuronal activity, and microtubule stabilization during neuronal maintenance. As a result, mutations in MAPs contribute to neurodevelopmental disorders, psychiatric conditions, and neurodegenerative diseases. MAPs are post-translationally regulated by phosphorylation depending on developmental time point and cellular context. Phosphorylation can affect the microtubule affinity, cellular localization, or overall function of a particular MAP and can thus have profound implications for neuronal health. Here we review MAP1, MAP2, MAP4, MAP6, MAP7, MAP9, tau, and DCX, and how each is regulated by phosphorylation in neuronal physiology and disease. Developmental Dynamics 247:138-155, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Amrita Ramkumar
- Department of Molecular and Cellular Biology, University of California, Davis, CA
| | - Brigette Y Jong
- Department of Molecular and Cellular Biology, University of California, Davis, CA
| | | |
Collapse
|
56
|
Khalaf-Nazzal R, Stouffer MA, Olaso R, Muresan L, Roumegous A, Lavilla V, Carpentier W, Moutkine I, Dumont S, Albaud B, Cagnard N, Roest Crollius H, Francis F. Early born neurons are abnormally positioned in the doublecortin knockout hippocampus. Hum Mol Genet 2017; 26:90-108. [PMID: 28007902 DOI: 10.1093/hmg/ddw370] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 10/24/2016] [Indexed: 01/29/2023] Open
Abstract
Human doublecortin (DCX) mutations are associated with severe brain malformations leading to aberrant neuron positioning (heterotopia), intellectual disability and epilepsy. The Dcx protein plays a key role in neuronal migration, and hippocampal pyramidal neurons in Dcx knockout (KO) mice are disorganized. The single CA3 pyramidal cell layer observed in wild type (WT) is present as two abnormal layers in the KO, and CA3 KO pyramidal neurons are more excitable than WT. Dcx KO mice also exhibit spontaneous epileptic activity originating in the hippocampus. It is unknown, however, how hyperexcitability arises and why two CA3 layers are observed.Transcriptome analyses were performed to search for perturbed postnatal gene expression, comparing Dcx KO CA3 pyramidal cell layers with WT. Gene expression changes common to both KO layers indicated mitochondria and Golgi apparatus anomalies, as well as increased cell stress. Intriguingly, gene expression analyses also suggested that the KO layers differ significantly from each other, particularly in terms of maturity. Layer-specific molecular markers and BrdU birthdating to mark the final positions of neurons born at distinct timepoints revealed inverted layering of the CA3 region in Dcx KO animals. Notably, many early-born 'outer boundary' neurons are located in an inner position in the Dcx KO CA3, superficial to other pyramidal neurons. This abnormal positioning likely affects cell morphology and connectivity, influencing network function. Dissecting this Dcx KO phenotype sheds light on coordinated developmental mechanisms of neuronal subpopulations, as well as gene expression patterns contributing to a bi-layered malformation associated with epilepsy.
Collapse
Affiliation(s)
- Reham Khalaf-Nazzal
- INSERM UMR-S 839, Paris.,Sorbonne Universités, Université Pierre et Marie Curie, Paris.,Institut du Fer à Moulin, Paris, France
| | - Melissa A Stouffer
- INSERM UMR-S 839, Paris.,Sorbonne Universités, Université Pierre et Marie Curie, Paris.,Institut du Fer à Moulin, Paris, France
| | - Robert Olaso
- Plateforme de Transcriptomique, Laboratoire de Recherche Translationnelle, CEA/DSV/IG-Centre National de Genotypage, 2 rue Gaston Crémieux, Evry, France
| | - Leila Muresan
- Ecole Normale Supérieure, Institut de Biologie de l'ENS, IBENS, Paris, France.,INSERM, U1024, Paris, France.,CNRS, UMR 8197, Paris, France
| | - Audrey Roumegous
- INSERM UMR-S 839, Paris.,Sorbonne Universités, Université Pierre et Marie Curie, Paris.,Institut du Fer à Moulin, Paris, France
| | - Virginie Lavilla
- Plateforme de Transcriptomique, Laboratoire de Recherche Translationnelle, CEA/DSV/IG-Centre National de Genotypage, 2 rue Gaston Crémieux, Evry, France
| | - Wassila Carpentier
- Plateforme post-génomique de la Pitié-Salpêtrière, Faculty of Medicine, Paris
| | - Imane Moutkine
- INSERM UMR-S 839, Paris.,Sorbonne Universités, Université Pierre et Marie Curie, Paris.,Institut du Fer à Moulin, Paris, France
| | - Sylvie Dumont
- Sorbonne Universités, UPMC Paris 06, UMS30 LUMIC, plateforme d'histomorphologie, St Antoine, Paris
| | - Benoit Albaud
- Plateforme Affymetrix, Institut Curie, Hospital St Louis, Paris
| | - Nicolas Cagnard
- Plateforme Bio-informatique Paris Descartes, Faculté de Necker, 156 rue de Vaugirard, Paris
| | - Hugues Roest Crollius
- Ecole Normale Supérieure, Institut de Biologie de l'ENS, IBENS, Paris, France.,INSERM, U1024, Paris, France.,CNRS, UMR 8197, Paris, France
| | - Fiona Francis
- INSERM UMR-S 839, Paris.,Sorbonne Universités, Université Pierre et Marie Curie, Paris.,Institut du Fer à Moulin, Paris, France
| |
Collapse
|
57
|
Byrnes AE, Slep KC. TOG-tubulin binding specificity promotes microtubule dynamics and mitotic spindle formation. J Cell Biol 2017; 216:1641-1657. [PMID: 28512144 PMCID: PMC5461023 DOI: 10.1083/jcb.201610090] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 03/02/2017] [Accepted: 04/26/2017] [Indexed: 11/24/2022] Open
Abstract
XMAP215, CLASP, and Crescerin use arrayed tubulin-binding tumor overexpressed gene (TOG) domains to modulate microtubule dynamics. We hypothesized that TOGs have distinct architectures and tubulin-binding properties that underlie each family's ability to promote microtubule polymerization or pause. As a model, we investigated the pentameric TOG array of a Drosophila melanogaster XMAP215 member, Msps. We found that Msps TOGs have distinct architectures that bind either free or polymerized tubulin, and that a polarized array drives microtubule polymerization. An engineered TOG1-2-5 array fully supported Msps-dependent microtubule polymerase activity. Requisite for this activity was a TOG5-specific N-terminal HEAT repeat that engaged microtubule lattice-incorporated tubulin. TOG5-microtubule binding maintained mitotic spindle formation as deleting or mutating TOG5 compromised spindle architecture and increased the mitotic index. Mad2 knockdown released the spindle assembly checkpoint triggered when TOG5-microtubule binding was compromised, indicating that TOG5 is essential for spindle function. Our results reveal a TOG5-specific role in mitotic fidelity and support our hypothesis that architecturally distinct TOGs arranged in a sequence-specific order underlie TOG array microtubule regulator activity.
Collapse
Affiliation(s)
- Amy E Byrnes
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599
- Program in Molecular and Cellular Biophysics, University of North Carolina, Chapel Hill, NC 27599
| | - Kevin C Slep
- Program in Molecular and Cellular Biophysics, University of North Carolina, Chapel Hill, NC 27599
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599
| |
Collapse
|
58
|
Plaud C, Joshi V, Marinello M, Pastré D, Galli T, Curmi PA, Burgo A. Spastin regulates VAMP7-containing vesicles trafficking in cortical neurons. Biochim Biophys Acta Mol Basis Dis 2017; 1863:1666-1677. [PMID: 28392418 DOI: 10.1016/j.bbadis.2017.04.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 04/04/2017] [Accepted: 04/06/2017] [Indexed: 01/03/2023]
Abstract
Alteration of axonal transport has emerged as a common precipitating factor in several neurodegenerative disorders including Human Spastic Paraplegia (HSP). Mutations of the SPAST (SPG4) gene coding for the spastin protein account for 40% of all autosomal dominant uncomplicated HSP. By cleaving microtubules, spastin regulates several cellular processes depending on microtubule dynamics including intracellular membrane trafficking. Axonal transport is fundamental for the viability of motor neurons which often have very long axons and thus require efficient communication between the cell body and its periphery. Here we found that the anterograde velocity of VAMP7 vesicles, but not that of VAMP2, two vesicular-SNARE proteins implicated in neuronal development, is enhanced in SPG4-KO neurons. We showed that this effect is associated with a slight increase of the level of acetylated tubulin in SPG4-KO neurons and correlates with an enhanced activity of kinesin-1 motors. Interestingly, we demonstrated that an artificial increase of acetylated tubulin by drugs reproduces the effect of Spastin KO on VAMP7 axonal dynamics but also increased its retrograde velocity. Finally, we investigated the effect of microtubule targeting agents which rescue axonal swellings, on VAMP7 and microtubule dynamics. Our results suggest that microtubule stabilizing agents, such as taxol, may prevent the morphological defects observed in SPG4-KO neurons not simply by restoring the altered anterograde transport to basal levels but rather by increasing the retrograde velocity of axonal cargoes.
Collapse
Affiliation(s)
- C Plaud
- Structure and Activity of Normal and Pathological Biomolecules, INSERM U1204, Université Paris-Saclay, Université d' Evry, France
| | - V Joshi
- Structure and Activity of Normal and Pathological Biomolecules, INSERM U1204, Université Paris-Saclay, Université d' Evry, France
| | - M Marinello
- Structure and Activity of Normal and Pathological Biomolecules, INSERM U1204, Université Paris-Saclay, Université d' Evry, France
| | - D Pastré
- Structure and Activity of Normal and Pathological Biomolecules, INSERM U1204, Université Paris-Saclay, Université d' Evry, France
| | - T Galli
- Inserm URL U950, Institut Jacques Monod, France
| | - P A Curmi
- Structure and Activity of Normal and Pathological Biomolecules, INSERM U1204, Université Paris-Saclay, Université d' Evry, France
| | - A Burgo
- Structure and Activity of Normal and Pathological Biomolecules, INSERM U1204, Université Paris-Saclay, Université d' Evry, France.
| |
Collapse
|
59
|
Koizumi H, Fujioka H, Togashi K, Thompson J, Yates JR, Gleeson JG, Emoto K. DCLK1 phosphorylates the microtubule-associated protein MAP7D1 to promote axon elongation in cortical neurons. Dev Neurobiol 2017; 77:493-510. [PMID: 27503845 DOI: 10.1002/dneu.22428] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 08/03/2016] [Accepted: 08/05/2016] [Indexed: 12/14/2022]
Abstract
Doublecortin-like kinase 1 (DCLK1) is a member of the neuronal microtubule-associated doublecortin (DCX) family and functions in multiple stages of neural development including radial migration and axon growth of cortical neurons. DCLK1 is suggested to play the roles in part through its protein kinase activity, yet the kinase substrates of DCLK1 remain largely unknown. Here we have identified MAP7D1 (microtubule-associated protein 7 domain containing 1) as a novel substrate of DCLK1 by using proteomic analysis. MAP7D1 is expressed in developing cortical neurons, and knockdown of MAP7D1 in layer 2/3 cortical neurons results in a significant impairment of callosal axon elongation, but not of radial migration, in corticogenesis. We have further defined the serine 315 (Ser 315) of MAP7D1 as a DCLK1-induced phosphorylation site and shown that overexpression of a phosphomimetic MAP7D1 mutant in which Ser 315 is substituted with glutamic acid (MAP7D1 S315E), but not wild-type MAP7D1, fully rescues the axon elongation defects in Dclk1 knockdown neurons. These data demonstrate that DCLK1 phosphorylates MAP7D1 on Ser 315 to facilitate axon elongation of cortical neurons. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 419-437, 2017.
Collapse
Affiliation(s)
- Hiroyuki Koizumi
- Department of Biological Sciences, School of Science, The University of Tokyo, Tokyo, 113-0033, Japan
- Department of Cell Biology, Osaka Bioscience Institute, Osaka, 565-0874, Japan
| | - Hiromi Fujioka
- Department of Cell Biology, Osaka Bioscience Institute, Osaka, 565-0874, Japan
- Department of Bioscience, Nara Institute of Science and Technology, Nara, 630-0192, Japan
| | - Kazuya Togashi
- Department of Biological Sciences, School of Science, The University of Tokyo, Tokyo, 113-0033, Japan
- Department of Cell Biology, Osaka Bioscience Institute, Osaka, 565-0874, Japan
| | - James Thompson
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California, 92037
| | - John R Yates
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California, 92037
| | - Joseph G Gleeson
- Laboratory of Pediatric Brain Diseases, Howard Hughes Medical Institute, The Rockefeller University, New York, New York, 10021-6399
| | - Kazuo Emoto
- Department of Biological Sciences, School of Science, The University of Tokyo, Tokyo, 113-0033, Japan
- Department of Cell Biology, Osaka Bioscience Institute, Osaka, 565-0874, Japan
- Department of Bioscience, Nara Institute of Science and Technology, Nara, 630-0192, Japan
| |
Collapse
|
60
|
Yap CC, Digilio L, McMahon L, Roszkowska M, Bott CJ, Kruczek K, Winckler B. Different Doublecortin (DCX) Patient Alleles Show Distinct Phenotypes in Cultured Neurons: EVIDENCE FOR DIVERGENT LOSS-OF-FUNCTION AND "OFF-PATHWAY" CELLULAR MECHANISMS. J Biol Chem 2016; 291:26613-26626. [PMID: 27799303 DOI: 10.1074/jbc.m116.760777] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 10/28/2016] [Indexed: 11/06/2022] Open
Abstract
Doublecortin on the X-chromosome (DCX) is a neuronal microtubule-binding protein with a multitude of roles in neurodevelopment. In humans, DCX is a major genetic locus for X-linked lissencephaly. The best studied defects are in neuronal migration during corticogenesis and in the hippocampus, as well as axon and dendrite growth defects. Much effort has been directed at understanding the molecular and cellular bases of DCX-linked lissencephaly. The focus has been in particular on defects in microtubule assembly and bundling, using knock-out mice and expression of WT and mutant Dcx in non-neuronal cells. Dcx also binds other proteins besides microtubules, such as spinophilin (abbreviated spn; gene name Ppp1r9b protein phosphatase 1 regulatory subunit 9b) and the clathrin adaptors AP-1 and AP-2. Even though many non-sense and missense mutations of Dcx are known, their molecular and cellular defects are still only incompletely understood. It is also largely unknown how neurons are affected by expression of DCX patient alleles. We have now characterized several patient DCX alleles (DCX-R89G, DCX-R59H, DCX-246X, DCX-272X, and DCX-303X) using a gain-of-function dendrite growth assay in cultured rat neurons in combination with the determination of molecular binding activities and subcellular localization in non-neuronal and neuronal cells. First, we find that several mutants (Dcx-R89G and Dcx-272X) were loss-of-function alleles (as had been postulated) but surprisingly acted via different cellular mechanisms. Second, one allele (Dcx-R59H) formed cytoplasmic aggregates, which contained Hspa1B (heat shock protein 1B hsp70) and ubiquitinated proteins, trapped other cytoskeletal proteins, including spinophilin, and led to increased autophagy. This allele could thus be categorized as "off-pathway"/possibly neomorph. Our findings thus suggested that distinct DCX alleles caused dysfunction by different mechanisms.
Collapse
Affiliation(s)
- Chan Choo Yap
- From the Department of Cell Biology, University of Virginia, Charlottesville, Virginia 22908
| | - Laura Digilio
- From the Department of Cell Biology, University of Virginia, Charlottesville, Virginia 22908
| | - Lloyd McMahon
- From the Department of Cell Biology, University of Virginia, Charlottesville, Virginia 22908
| | - Matylda Roszkowska
- From the Department of Cell Biology, University of Virginia, Charlottesville, Virginia 22908
| | - Christopher J Bott
- From the Department of Cell Biology, University of Virginia, Charlottesville, Virginia 22908
| | - Kamil Kruczek
- From the Department of Cell Biology, University of Virginia, Charlottesville, Virginia 22908
| | - Bettina Winckler
- From the Department of Cell Biology, University of Virginia, Charlottesville, Virginia 22908
| |
Collapse
|
61
|
McVicker DP, Awe AM, Richters KE, Wilson RL, Cowdrey DA, Hu X, Chapman ER, Dent EW. Transport of a kinesin-cargo pair along microtubules into dendritic spines undergoing synaptic plasticity. Nat Commun 2016; 7:12741. [PMID: 27658622 PMCID: PMC5411814 DOI: 10.1038/ncomms12741] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 07/28/2016] [Indexed: 12/13/2022] Open
Abstract
Synaptic plasticity often involves changes in the structure and composition of dendritic spines. Vesicular cargos and organelles enter spines either by exocytosing in the dendrite shaft and diffusing into spines or through a kinesin to myosin hand-off at the base of spines. Here we present evidence for microtubule (MT)-based targeting of a specific motor/cargo pair directly into hippocampal dendritic spines. During transient MT polymerization into spines, the kinesin KIF1A and an associated cargo, synaptotagmin-IV (syt-IV), are trafficked in unison along MTs into spines. This trafficking into selected spines is activity-dependent and results in exocytosis of syt-IV-containing vesicles in the spine head. Surprisingly, knockdown of KIF1A causes frequent fusion of syt-IV-containing vesicles throughout the dendritic shaft and diffusion into spines. Taken together, these findings suggest a mechanism for targeting dendritic cargo directly into spines during synaptic plasticity and indicate that MT-bound kinesins prevent unregulated fusion by sequestering vesicular cargo to MTs. Transport of cargo into dendritic spines is required for synaptic plasticity. McVicker et al. describe a method of activity-dependent transport of a kinesin KIF1A and its cargo synaptotagmin-IV along microtubules that are transiently polymerized into dendritic spines.
Collapse
Affiliation(s)
- Derrick P McVicker
- Department of Neuroscience, University of Wisconsin, School of Medicine and Public Health, 1111 Highland Avenue, Madison, Wisconsin 53705, USA
| | - Adam M Awe
- Department of Neuroscience, University of Wisconsin, School of Medicine and Public Health, 1111 Highland Avenue, Madison, Wisconsin 53705, USA
| | - Karl E Richters
- Department of Neuroscience, University of Wisconsin, School of Medicine and Public Health, 1111 Highland Avenue, Madison, Wisconsin 53705, USA
| | - Rebecca L Wilson
- Department of Neuroscience, University of Wisconsin, School of Medicine and Public Health, 1111 Highland Avenue, Madison, Wisconsin 53705, USA
| | - Diana A Cowdrey
- Department of Neuroscience, University of Wisconsin, School of Medicine and Public Health, 1111 Highland Avenue, Madison, Wisconsin 53705, USA
| | - Xindao Hu
- Department of Neuroscience, University of Wisconsin, School of Medicine and Public Health, 1111 Highland Avenue, Madison, Wisconsin 53705, USA
| | - Edwin R Chapman
- Department of Neuroscience, University of Wisconsin, School of Medicine and Public Health, 1111 Highland Avenue, Madison, Wisconsin 53705, USA.,Howard Hughes Medical Institute, University of Wisconsin, School of Medicine and Public Health, 1111 Highland Avenue, Madison, Wisconsin 53705, USA
| | - Erik W Dent
- Department of Neuroscience, University of Wisconsin, School of Medicine and Public Health, 1111 Highland Avenue, Madison, Wisconsin 53705, USA
| |
Collapse
|
62
|
Clark JA, Yeaman EJ, Blizzard CA, Chuckowree JA, Dickson TC. A Case for Microtubule Vulnerability in Amyotrophic Lateral Sclerosis: Altered Dynamics During Disease. Front Cell Neurosci 2016; 10:204. [PMID: 27679561 PMCID: PMC5020100 DOI: 10.3389/fncel.2016.00204] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 08/15/2016] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is an aggressive multifactorial disease converging on a common pathology: the degeneration of motor neurons (MNs), their axons and neuromuscular synapses. This vulnerability and dysfunction of MNs highlights the dependency of these large cells on their intracellular machinery. Neuronal microtubules (MTs) are intracellular structures that facilitate a myriad of vital neuronal functions, including activity dependent axonal transport. In ALS, it is becoming increasingly apparent that MTs are likely to be a critical component of this disease. Not only are disruptions in this intracellular machinery present in the vast majority of seemingly sporadic cases, recent research has revealed that mutation to a microtubule protein, the tubulin isoform TUBA4A, is sufficient to cause a familial, albeit rare, form of disease. In both sporadic and familial disease, studies have provided evidence that microtubule mediated deficits in axonal transport are the tipping point for MN survivability. Axonal transport deficits would lead to abnormal mitochondrial recycling, decreased vesicle and mRNA transport and limited signaling of key survival factors from the neurons peripheral synapses, causing the characteristic peripheral "die back". This disruption to microtubule dependant transport in ALS has been shown to result from alterations in the phenomenon of microtubule dynamic instability: the rapid growth and shrinkage of microtubule polymers. This is accomplished primarily due to aberrant alterations to microtubule associated proteins (MAPs) that regulate microtubule stability. Indeed, the current literature would argue that microtubule stability, particularly alterations in their dynamics, may be the initial driving force behind many familial and sporadic insults in ALS. Pharmacological stabilization of the microtubule network offers an attractive therapeutic strategy in ALS; indeed it has shown promise in many neurological disorders, ALS included. However, the pathophysiological involvement of MTs and their functions is still poorly understood in ALS. Future investigations will hopefully uncover further therapeutic targets that may aid in combating this awful disease.
Collapse
Affiliation(s)
- Jayden A Clark
- Menzies Institute for Medical Research, University of Tasmania Hobart, TAS, Australia
| | - Elise J Yeaman
- Menzies Institute for Medical Research, University of Tasmania Hobart, TAS, Australia
| | - Catherine A Blizzard
- Menzies Institute for Medical Research, University of Tasmania Hobart, TAS, Australia
| | - Jyoti A Chuckowree
- Menzies Institute for Medical Research, University of Tasmania Hobart, TAS, Australia
| | - Tracey C Dickson
- Menzies Institute for Medical Research, University of Tasmania Hobart, TAS, Australia
| |
Collapse
|
63
|
Patel O, Dai W, Mentzel M, Griffin MDW, Serindoux J, Gay Y, Fischer S, Sterle S, Kropp A, Burns CJ, Ernst M, Buchert M, Lucet IS. Biochemical and Structural Insights into Doublecortin-like Kinase Domain 1. Structure 2016; 24:1550-61. [PMID: 27545623 DOI: 10.1016/j.str.2016.07.008] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 06/21/2016] [Accepted: 07/11/2016] [Indexed: 01/28/2023]
Abstract
Doublecortin-like kinase 1 (DCLK1) is a serine/threonine kinase that belongs to the family of microtubule-associated proteins. Originally identified for its role in neurogenesis, DCLK1 has recently been shown to regulate biological processes outside of the CNS. DCLK1 is among the 15 most common putative driver genes for gastric cancers and is highly mutated across various other human cancers. However, our present understanding of how DCLK1 dysfunction leads to tumorigenesis is limited. Here, we provide evidence that DCLK1 kinase activity negatively regulates microtubule polymerization. We present the crystal structure of the DCLK1 kinase domain at 1.7 Å resolution, providing detailed insight into the ATP-binding site that will serve as a framework for future drug design. This structure also allowed for the mapping of cancer-causing mutations within the kinase domain, suggesting that a loss of kinase function may contribute to tumorigenesis.
Collapse
Affiliation(s)
- Onisha Patel
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia.
| | - Weiwen Dai
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Mareike Mentzel
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Michael D W Griffin
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3052, Australia
| | - Juliette Serindoux
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Yoann Gay
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Stefanie Fischer
- Olivia Newton-John Cancer Research Institute, School of Cancer Medicine, La Trobe University, Heidelberg, VIC 3084, Australia
| | - Shoukat Sterle
- Olivia Newton-John Cancer Research Institute, School of Cancer Medicine, La Trobe University, Heidelberg, VIC 3084, Australia
| | - Ashleigh Kropp
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Christopher J Burns
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Matthias Ernst
- Olivia Newton-John Cancer Research Institute, School of Cancer Medicine, La Trobe University, Heidelberg, VIC 3084, Australia
| | - Michael Buchert
- Olivia Newton-John Cancer Research Institute, School of Cancer Medicine, La Trobe University, Heidelberg, VIC 3084, Australia
| | - Isabelle S Lucet
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia.
| |
Collapse
|
64
|
van Beuningen SFB, Hoogenraad CC. Neuronal polarity: remodeling microtubule organization. Curr Opin Neurobiol 2016; 39:1-7. [DOI: 10.1016/j.conb.2016.02.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 02/12/2016] [Indexed: 01/16/2023]
|
65
|
Jiang X, Nardelli J. Cellular and molecular introduction to brain development. Neurobiol Dis 2016; 92:3-17. [PMID: 26184894 PMCID: PMC4720585 DOI: 10.1016/j.nbd.2015.07.007] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Revised: 07/07/2015] [Accepted: 07/09/2015] [Indexed: 12/13/2022] Open
Abstract
Advances in the study of brain development over the last decades, especially recent findings regarding the evolutionary expansion of the human neocortex, and large-scale analyses of the proteome/transcriptome in the human brain, have offered novel insights into the molecular mechanisms guiding neural maturation, and the pathophysiology of multiple forms of neurological disorders. As a preamble to reviews of this issue, we provide an overview of the cellular, molecular and genetic bases of brain development with an emphasis on the major mechanisms associated with landmarks of normal neural development in the embryonic stage and early postnatal life, including neural stem/progenitor cell proliferation, cortical neuronal migration, evolution and folding of the cerebral cortex, synaptogenesis and neural circuit development, gliogenesis and myelination. We will only briefly depict developmental disorders that result from perturbations of these cellular or molecular mechanisms, and the most common perinatal brain injuries that could disturb normal brain development.
Collapse
Affiliation(s)
- Xiangning Jiang
- Department of Pediatrics, University of California, San Francisco, CA 94158, USA
| | - Jeannette Nardelli
- Inserm, U1141, Paris 75019, France; Université Paris Diderot, Sorbonne Paris Cité, UMRS 1141, Paris 75019, France.
| |
Collapse
|
66
|
Burger D, Stihle M, Sharma A, Di Lello P, Benz J, D'Arcy B, Debulpaep M, Fry D, Huber W, Kremer T, Laeremans T, Matile H, Ross A, Rufer AC, Schoch G, Steinmetz MO, Steyaert J, Rudolph MG, Thoma R, Ruf A. Crystal Structures of the Human Doublecortin C- and N-terminal Domains in Complex with Specific Antibodies. J Biol Chem 2016; 291:16292-306. [PMID: 27226599 DOI: 10.1074/jbc.m116.726547] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Indexed: 11/06/2022] Open
Abstract
Doublecortin is a microtubule-associated protein produced during neurogenesis. The protein stabilizes microtubules and stimulates their polymerization, which allows migration of immature neurons to their designated location in the brain. Mutations in the gene that impair doublecortin function and cause severe brain formation disorders are located on a tandem repeat of two doublecortin domains. The molecular mechanism of action of doublecortin is only incompletely understood. Anti-doublecortin antibodies, such as the rabbit polyclonal Abcam 18732, are widely used as neurogenesis markers. Here, we report the generation and characterization of antibodies that bind to single doublecortin domains. The antibodies were used as tools to obtain structures of both domains. Four independent crystal structures of the N-terminal domain reveal several distinct open and closed conformations of the peptide linking N- and C-terminal domains, which can be related to doublecortin function. An NMR assignment and a crystal structure in complex with a camelid antibody fragment show that the doublecortin C-terminal domain adopts the same well defined ubiquitin-like fold as the N-terminal domain, despite its reported aggregation and molten globule-like properties. The antibodies' unique domain specificity also renders them ideal research tools to better understand the role of individual domains in doublecortin function. A single chain camelid antibody fragment specific for the C-terminal doublecortin domain affected microtubule binding, whereas a monoclonal mouse antibody specific for the N-terminal domain did not. Together with steric considerations, this suggests that the microtubule-interacting doublecortin domain observed in cryo-electron micrographs is the C-terminal domain rather than the N-terminal one.
Collapse
Affiliation(s)
- Dominique Burger
- From the pRED Pharma Research and Early Development, Therapeutic Modalities, and
| | - Martine Stihle
- From the pRED Pharma Research and Early Development, Therapeutic Modalities, and
| | - Ashwani Sharma
- the Laboratory of Biomolecular Research, Department of Biology and Chemistry, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
| | - Paola Di Lello
- pRED Pharma Research and Early Development, Small Molecule Research, Discovery Technologies, Roche, Nutley, New Jersey 07110
| | - Jörg Benz
- From the pRED Pharma Research and Early Development, Therapeutic Modalities, and
| | - Brigitte D'Arcy
- From the pRED Pharma Research and Early Development, Therapeutic Modalities, and
| | - Maja Debulpaep
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium, and the Structural Biology Research Center, VIB, Pleinlaan 2, 1050 Brussels, Belgium
| | - David Fry
- pRED Pharma Research and Early Development, Small Molecule Research, Discovery Technologies, Roche, Nutley, New Jersey 07110
| | - Walter Huber
- From the pRED Pharma Research and Early Development, Therapeutic Modalities, and
| | - Thomas Kremer
- Roche Pharmaceutical Research and Early Development, NORD Discovery and Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Toon Laeremans
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium, and the Structural Biology Research Center, VIB, Pleinlaan 2, 1050 Brussels, Belgium
| | - Hugues Matile
- From the pRED Pharma Research and Early Development, Therapeutic Modalities, and
| | - Alfred Ross
- From the pRED Pharma Research and Early Development, Therapeutic Modalities, and
| | - Arne C Rufer
- From the pRED Pharma Research and Early Development, Therapeutic Modalities, and
| | - Guillaume Schoch
- Roche Pharmaceutical Research and Early Development, NORD Discovery and Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Michel O Steinmetz
- the Laboratory of Biomolecular Research, Department of Biology and Chemistry, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
| | - Jan Steyaert
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium, and the Structural Biology Research Center, VIB, Pleinlaan 2, 1050 Brussels, Belgium
| | - Markus G Rudolph
- From the pRED Pharma Research and Early Development, Therapeutic Modalities, and
| | - Ralf Thoma
- From the pRED Pharma Research and Early Development, Therapeutic Modalities, and
| | - Armin Ruf
- From the pRED Pharma Research and Early Development, Therapeutic Modalities, and
| |
Collapse
|
67
|
Dantas TJ, Carabalona A, Hu DJK, Vallee RB. Emerging roles for motor proteins in progenitor cell behavior and neuronal migration during brain development. Cytoskeleton (Hoboken) 2016; 73:566-576. [PMID: 26994401 DOI: 10.1002/cm.21293] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 03/11/2016] [Accepted: 03/13/2016] [Indexed: 12/21/2022]
Abstract
Over the past two decades, substantial progress has been made in visualizing and understanding neuronal cell migration and morphogenesis during brain development. Distinct mechanisms have evolved to support migration of the various cell types that compose the developing neocortex. A specific subset of molecular motors, so far consisting of cytoplasmic dynein 1, Kif1a and myosin II, are responsible for cytoskeletal and nuclear transport in these cells. This review focuses on the emerging roles for each of these motor proteins in the migratory mechanisms of neocortical cell types. We discuss how migration can be cell cycle regulated and how coordination of motor activity is required to ensure migratory direction. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Tiago J Dantas
- Department of Pathology and Cell Biology, Columbia University, New York, NY.
| | - Aurelie Carabalona
- Department of Pathology and Cell Biology, Columbia University, New York, NY
| | - Daniel Jun Kit Hu
- Department of Pathology and Cell Biology, Columbia University, New York, NY
| | - Richard B Vallee
- Department of Pathology and Cell Biology, Columbia University, New York, NY.
| |
Collapse
|
68
|
Britt DJ, Farías GG, Guardia CM, Bonifacino JS. Mechanisms of Polarized Organelle Distribution in Neurons. Front Cell Neurosci 2016; 10:88. [PMID: 27065809 PMCID: PMC4814528 DOI: 10.3389/fncel.2016.00088] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 03/21/2016] [Indexed: 01/10/2023] Open
Abstract
Neurons are highly polarized cells exhibiting axonal and somatodendritic domains with distinct complements of cytoplasmic organelles. Although some organelles are widely distributed throughout the neuronal cytoplasm, others are segregated to either the axonal or somatodendritic domains. Recent findings show that organelle segregation is largely established at a pre-axonal exclusion zone (PAEZ) within the axon hillock. Polarized sorting of cytoplasmic organelles at the PAEZ is proposed to depend mainly on their selective association with different microtubule motors and, in turn, with distinct microtubule arrays. Somatodendritic organelles that escape sorting at the PAEZ can be subsequently retrieved at the axon initial segment (AIS) by a microtubule- and/or actin-based mechanism. Dynamic sorting along the PAEZ-AIS continuum can thus explain the polarized distribution of cytoplasmic organelles between the axonal and somatodendritic domains.
Collapse
Affiliation(s)
- Dylan J Britt
- Cell Biology and Neurobiology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health Bethesda, MD, USA
| | - Ginny G Farías
- Cell Biology and Neurobiology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health Bethesda, MD, USA
| | - Carlos M Guardia
- Cell Biology and Neurobiology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health Bethesda, MD, USA
| | - Juan S Bonifacino
- Cell Biology and Neurobiology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health Bethesda, MD, USA
| |
Collapse
|
69
|
Thompson RF, Walker M, Siebert CA, Muench SP, Ranson NA. An introduction to sample preparation and imaging by cryo-electron microscopy for structural biology. Methods 2016; 100:3-15. [PMID: 26931652 PMCID: PMC4854231 DOI: 10.1016/j.ymeth.2016.02.017] [Citation(s) in RCA: 161] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 02/11/2016] [Accepted: 02/25/2016] [Indexed: 11/22/2022] Open
Abstract
Transmission electron microscopy (EM) is a versatile technique that can be used to image biological specimens ranging from intact eukaryotic cells to individual proteins >150 kDa. There are several strategies for preparing samples for imaging by EM, including negative staining and cryogenic freezing. In the last few years, cryo-EM has undergone a ‘resolution revolution’, owing to both advances in imaging hardware, image processing software, and improvements in sample preparation, leading to growing number of researchers using cryo-EM as a research tool. However, cryo-EM is still a rapidly growing field, with unique challenges. Here, we summarise considerations for imaging of a range of specimens from macromolecular complexes to cells using EM.
Collapse
Affiliation(s)
- Rebecca F Thompson
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom.
| | - Matt Walker
- MLW Consulting, 11 Race Hill, Launceston, Cornwall PL15 9BB, United Kingdom
| | - C Alistair Siebert
- Electron Bio-Imaging Centre, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - Stephen P Muench
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Neil A Ranson
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom.
| |
Collapse
|
70
|
Abstract
UNLABELLED Synapses depend on trafficking of key membrane proteins by lateral diffusion from surface populations and by exocytosis from intracellular pools. The cell adhesion molecule neurexin (Nrxn) plays essential roles in synapses, but the dynamics and regulation of its trafficking are unknown. Here, we performed single-particle tracking and live imaging of transfected, epitope-tagged Nrxn variants in cultured rat and mouse wild-type or knock-out neurons. We observed that structurally larger αNrxn molecules are more mobile in the plasma membrane than smaller βNrxns because αNrxns displayed higher diffusion coefficients in extrasynaptic regions and excitatory or inhibitory terminals. We found that well characterized interactions with extracellular binding partners regulate the surface mobility of Nrxns. Binding to neurexophilin-1 (Nxph1) reduced the surface diffusion of αNrxns when both molecules were coexpressed. Conversely, impeding other interactions by insertion of splice sequence #4 or removal of extracellular Ca(2+) augmented the mobility of αNrxns and βNrxns. We also determined that fast axonal transport delivers Nrxns to the neuronal surface because Nrxns comigrate as cargo on synaptic vesicle protein transport vesicles (STVs). Unlike surface mobility, intracellular transport of βNrxn(+) STVs was faster than that of αNrxns, but both depended on the microtubule motor protein KIF1A and neuronal activity regulated the velocity. Large spontaneous fusion of Nrxn(+) STVs occurred simultaneously with synaptophysin on axonal membranes mostly outside of active presynaptic terminals. Surface Nrxns enriched at synaptic terminals where αNrxns and Nxph1/αNrxns recruited GABAAR subunits. Therefore, our results identify regulated dynamic trafficking as an important property of Nrxns that corroborates their function at synapses. SIGNIFICANCE STATEMENT Synapses mediate most functions in our brains and depend on the precise and timely delivery of key molecules throughout life. Neurexins (Nrxns) are essential synaptic cell adhesion molecules that are involved in synaptic transmission and differentiation of synaptic contacts. In addition, Nrxns have been linked to neuropsychiatric diseases such as autism. Because little is known about the dynamic aspects of trafficking of neurexins to synapses, we investigated this important question using single-molecule tracking and time-lapse imaging. We identify distinct differences between major Nrxn variants both in surface mobility and during intracellular transport. Because their dynamic behavior is highly regulated, for example, by different binding activities, these processes have immediate consequences for the function of Nrxns at synapses.
Collapse
|
71
|
Lipka J, Kapitein LC, Jaworski J, Hoogenraad CC. Microtubule-binding protein doublecortin-like kinase 1 (DCLK1) guides kinesin-3-mediated cargo transport to dendrites. EMBO J 2016; 35:302-18. [PMID: 26758546 DOI: 10.15252/embj.201592929] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 12/08/2015] [Indexed: 01/02/2023] Open
Abstract
In neurons, the polarized distribution of vesicles and other cellular materials is established through molecular motors that steer selective transport between axons and dendrites. It is currently unclear whether interactions between kinesin motors and microtubule-binding proteins can steer polarized transport. By screening all 45 kinesin family members, we systematically addressed which kinesin motors can translocate cargo in living cells and drive polarized transport in hippocampal neurons. While the majority of kinesin motors transport cargo selectively into axons, we identified five members of the kinesin-3 (KIF1) and kinesin-4 (KIF21) subfamily that can also target dendrites. We found that microtubule-binding protein doublecortin-like kinase 1 (DCLK1) labels a subset of dendritic microtubules and is required for KIF1-dependent dense-core vesicles (DCVs) trafficking into dendrites and dendrite development. Our study demonstrates that microtubule-binding proteins can provide local signals for specific kinesin motors to drive polarized cargo transport.
Collapse
Affiliation(s)
- Joanna Lipka
- Cell Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands Laboratory of Molecular and Cellular Neurobiology, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Lukas C Kapitein
- Cell Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Jacek Jaworski
- Laboratory of Molecular and Cellular Neurobiology, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Casper C Hoogenraad
- Cell Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
72
|
Carabalona A, Hu DJK, Vallee RB. KIF1A inhibition immortalizes brain stem cells but blocks BDNF-mediated neuronal migration. Nat Neurosci 2016; 19:253-62. [PMID: 26752160 PMCID: PMC4731285 DOI: 10.1038/nn.4213] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 12/01/2015] [Indexed: 12/19/2022]
Abstract
Brain neural stem cells (RGPs) undergo a mysterious form of cell cycle-entrained “interkinetic” nuclear migration (INM), driven apically by cytoplasmic dynein and basally by the kinesin KIF1A, which has recently been implicated in human brain developmental disease. To understand the consequences of altered basal INM and the roles of KIF1A in disease, we performed constitutive and conditional RNAi and expressed mutant KIF1A in E16-P7 rat RGPs and neurons. RGPs inhibited in basal INM still showed normal cell cycle progression, though neurogenic divisions were severely reduced. Postmitotic neuronal migration was independently disrupted at the multipolar stage, accompanied by premature ectopic expression of neuronal differentiation markers. Similar effects were unexpectedly observed throughout the layer of surrounding control cells, mimicked by Bdnf or Dcx RNAi, and rescued by BDNF application. These results identify novel, sequential, and independent roles for KIF1A and provide an important new approach for reversing the effects of human disease.
Collapse
Affiliation(s)
- Aurelie Carabalona
- Department of Pathology and Cell Biology, Columbia University, New York, New York, USA
| | - Daniel Jun-Kit Hu
- Department of Pathology and Cell Biology, Columbia University, New York, New York, USA
| | - Richard B Vallee
- Department of Pathology and Cell Biology, Columbia University, New York, New York, USA
| |
Collapse
|
73
|
Amyloid-Beta Induced Changes in Vesicular Transport of BDNF in Hippocampal Neurons. Neural Plast 2016; 2016:4145708. [PMID: 26881108 PMCID: PMC4736975 DOI: 10.1155/2016/4145708] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 11/26/2015] [Accepted: 11/29/2015] [Indexed: 12/15/2022] Open
Abstract
The neurotrophin brain derived neurotrophic factor (BDNF) is an important growth factor in the CNS. Deficits in transport of this secretory protein could underlie neurodegenerative diseases. Investigation of disease-related changes in BDNF transport might provide insights into the cellular mechanism underlying, for example, Alzheimer's disease (AD). To analyze the role of BDNF transport in AD, live cell imaging of fluorescently labeled BDNF was performed in hippocampal neurons of different AD model systems. BDNF and APP colocalized with low incidence in vesicular structures. Anterograde as well as retrograde transport of BDNF vesicles was reduced and these effects were mediated by factors released from hippocampal neurons into the extracellular medium. Transport of BDNF was altered at a very early time point after onset of human APP expression or after acute amyloid-beta(1-42) treatment, while the activity-dependent release of BDNF remained unaffected. Taken together, extracellular cleavage products of APP induced rapid changes in anterograde and retrograde transport of BDNF-containing vesicles while release of BDNF was unaffected by transgenic expression of mutated APP. These early transport deficits might lead to permanently impaired brain functions in the adult brain.
Collapse
|
74
|
|
75
|
Nawabi H, Belin S, Cartoni R, Williams PR, Wang C, Latremolière A, Wang X, Zhu J, Taub DG, Fu X, Yu B, Gu X, Woolf CJ, Liu JS, Gabel CV, Steen JA, He Z. Doublecortin-Like Kinases Promote Neuronal Survival and Induce Growth Cone Reformation via Distinct Mechanisms. Neuron 2015; 88:704-19. [PMID: 26526391 PMCID: PMC10069300 DOI: 10.1016/j.neuron.2015.10.005] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 06/04/2015] [Accepted: 09/30/2015] [Indexed: 01/15/2023]
Abstract
After axotomy, neuronal survival and growth cone re-formation are required for axon regeneration. We discovered that doublecortin-like kinases (DCLKs), members of the doublecortin (DCX) family expressed in adult retinal ganglion cells (RGCs), play critical roles in both processes, through distinct mechanisms. Overexpression of DCLK2 accelerated growth cone re-formation in vitro and enhanced the initiation and elongation of axon re-growth after optic nerve injury. These effects depended on both the microtubule (MT)-binding domain and the serine-proline-rich (S/P-rich) region of DCXs in-cis in the same molecules. While the MT-binding domain is known to stabilize MT structures, we show that the S/P-rich region prevents F-actin destabilization in injured axon stumps. Additionally, while DCXs synergize with mTOR to stimulate axon regeneration, alone they can promote neuronal survival possibly by regulating the retrograde propagation of injury signals. Multifunctional DCXs thus represent potential targets for promoting both survival and regeneration of injured neurons.
Collapse
Affiliation(s)
- Homaira Nawabi
- F.M. Kirby Neurobiology Center, Children's Hospital, and Department of Neurology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Stephane Belin
- F.M. Kirby Neurobiology Center, Children's Hospital, and Department of Neurology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Romain Cartoni
- F.M. Kirby Neurobiology Center, Children's Hospital, and Department of Neurology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Philip R Williams
- F.M. Kirby Neurobiology Center, Children's Hospital, and Department of Neurology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Chen Wang
- F.M. Kirby Neurobiology Center, Children's Hospital, and Department of Neurology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Alban Latremolière
- F.M. Kirby Neurobiology Center, Children's Hospital, and Department of Neurology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Xuhua Wang
- F.M. Kirby Neurobiology Center, Children's Hospital, and Department of Neurology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Junjie Zhu
- F.M. Kirby Neurobiology Center, Children's Hospital, and Department of Neurology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA; Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Daniel G Taub
- Departments of Physiology and Biophysics, Boston University School of Medicine, Boston, MA 02118, USA
| | - Xiaoqin Fu
- Center for Neuroscience Research, Children's National Medical Center, Washington, DC 20010, USA
| | - Bin Yu
- F.M. Kirby Neurobiology Center, Children's Hospital, and Department of Neurology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA; Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Xiaosong Gu
- Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Clifford J Woolf
- F.M. Kirby Neurobiology Center, Children's Hospital, and Department of Neurology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Judy S Liu
- Center for Neuroscience Research, Children's National Medical Center, Washington, DC 20010, USA
| | - Christopher V Gabel
- Departments of Physiology and Biophysics, Boston University School of Medicine, Boston, MA 02118, USA
| | - Judith A Steen
- F.M. Kirby Neurobiology Center, Children's Hospital, and Department of Neurology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA.
| | - Zhigang He
- F.M. Kirby Neurobiology Center, Children's Hospital, and Department of Neurology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
76
|
Zhang R, Nogales E. A new protocol to accurately determine microtubule lattice seam location. J Struct Biol 2015; 192:245-54. [PMID: 26424086 DOI: 10.1016/j.jsb.2015.09.015] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Revised: 09/18/2015] [Accepted: 09/25/2015] [Indexed: 01/27/2023]
Abstract
Microtubules (MTs) are cylindrical polymers of αβ-tubulin that display pseudo-helical symmetry due to the presence of a lattice seam of heterologous lateral contacts. The structural similarity between α- and β-tubulin makes it difficult to computationally distinguish them in the noisy cryo-EM images, unless a marker protein for the tubulin dimer, such as kinesin motor domain, is present. We have developed a new data processing protocol that can accurately determine αβ-tubulin register and seam location for MT segments. Our strategy can deal with difficult situations, where the marker protein is relatively small or the decoration of marker protein is sparse. Using this new seam-search protocol, combined with movie processing for data from a direct electron detection camera, we were able to determine the cryo-EM structures of MT at 3.5 Å resolution in different functional states. The successful distinction of α- and β-tubulin allowed us to visualize the nucleotide state at the E-site and the configuration of lateral contacts at the seam.
Collapse
Affiliation(s)
- Rui Zhang
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA.
| | - Eva Nogales
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
77
|
Jeruschke S, Jeruschke K, DiStasio A, Karaterzi S, Büscher AK, Nalbant P, Klein-Hitpass L, Hoyer PF, Weiss J, Stottmann RW, Weber S. Everolimus Stabilizes Podocyte Microtubules via Enhancing TUBB2B and DCDC2 Expression. PLoS One 2015; 10:e0137043. [PMID: 26331477 PMCID: PMC4557973 DOI: 10.1371/journal.pone.0137043] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 08/12/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Glomerular podocytes are highly differentiated cells that are key components of the kidney filtration units. The podocyte cytoskeleton builds the basis for the dynamic podocyte cytoarchitecture and plays a central role for proper podocyte function. Recent studies implicate that immunosuppressive agents including the mTOR-inhibitor everolimus have a protective role directly on the stability of the podocyte actin cytoskeleton. In contrast, a potential stabilization of microtubules by everolimus has not been studied so far. METHODS To elucidate mechanisms underlying mTOR-inhibitor mediated cytoskeletal rearrangements, we carried out microarray gene expression studies to identify target genes and corresponding pathways in response to everolimus. We analyzed the effect of everolimus in a puromycin aminonucleoside experimental in vitro model of podocyte injury. RESULTS Upon treatment with puromycin aminonucleoside, microarray analysis revealed gene clusters involved in cytoskeletal reorganization, cell adhesion, migration and extracellular matrix composition to be affected. Everolimus was capable of protecting podocytes from injury, both on transcriptional and protein level. Rescued genes included tubulin beta 2B class IIb (TUBB2B) and doublecortin domain containing 2 (DCDC2), both involved in microtubule structure formation in neuronal cells but not identified in podocytes so far. Validating gene expression data, Western-blot analysis in cultured podocytes demonstrated an increase of TUBB2B and DCDC2 protein after everolimus treatment, and immunohistochemistry in healthy control kidneys confirmed a podocyte-specific expression. Interestingly, Tubb2bbrdp/brdp mice revealed a delay in glomerular podocyte development as showed by podocyte-specific markers Wilm's tumour 1, Podocin, Nephrin and Synaptopodin. CONCLUSIONS Taken together, our study suggests that off-target, non-immune mediated effects of the mTOR-inhibitor everolimus on the podocyte cytoskeleton might involve regulation of microtubules, revealing a potential novel role of TUBB2B and DCDC2 in glomerular podocyte development.
Collapse
Affiliation(s)
- Stefanie Jeruschke
- Pediatric Nephrology, Pediatrics II, University Hospital Essen, Essen, Germany
- * E-mail:
| | - Kay Jeruschke
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Duesseldorf, Germany
| | - Andrew DiStasio
- Divisions of Human Genetics and Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Sinem Karaterzi
- Pediatric Nephrology, Pediatrics II, University Hospital Essen, Essen, Germany
| | - Anja K. Büscher
- Pediatric Nephrology, Pediatrics II, University Hospital Essen, Essen, Germany
| | - Perihan Nalbant
- Center for Medical Biotechnology, Molecular Cell Biology, University of Duisburg-Essen, Essen, Germany
| | | | - Peter F. Hoyer
- Pediatric Nephrology, Pediatrics II, University Hospital Essen, Essen, Germany
| | - Jürgen Weiss
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Duesseldorf, Germany
| | - Rolf W. Stottmann
- Divisions of Human Genetics and Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Stefanie Weber
- Pediatric Nephrology, Pediatrics II, University Hospital Essen, Essen, Germany
| |
Collapse
|
78
|
Stouffer MA, Golden JA, Francis F. Neuronal migration disorders: Focus on the cytoskeleton and epilepsy. Neurobiol Dis 2015; 92:18-45. [PMID: 26299390 DOI: 10.1016/j.nbd.2015.08.003] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 08/05/2015] [Accepted: 08/12/2015] [Indexed: 01/28/2023] Open
Abstract
A wide spectrum of focal, regional, or diffuse structural brain abnormalities, collectively known as malformations of cortical development (MCDs), frequently manifest with intellectual disability (ID), epilepsy, and/or autistic spectrum disorder (ASD). As the acronym suggests, MCDs are perturbations of the normal architecture of the cerebral cortex and hippocampus. The pathogenesis of these disorders remains incompletely understood; however, one area that has provided important insights has been the study of neuronal migration. The amalgamation of human genetics and experimental studies in animal models has led to the recognition that common genetic causes of neurodevelopmental disorders, including many severe epilepsy syndromes, are due to mutations in genes regulating the migration of newly born post-mitotic neurons. Neuronal migration genes often, though not exclusively, code for proteins involved in the function of the cytoskeleton. Other cellular processes, such as cell division and axon/dendrite formation, which similarly depend on cytoskeletal functions, may also be affected. We focus here on how the susceptibility of the highly organized neocortex and hippocampus may be due to their laminar organization, which involves the tight regulation, both temporally and spatially, of gene expression, specialized progenitor cells, the migration of neurons over large distances and a birthdate-specific layering of neurons. Perturbations in neuronal migration result in abnormal lamination, neuronal differentiation defects, abnormal cellular morphology and circuit formation. Ultimately this results in disorganized excitatory and inhibitory activity leading to the symptoms observed in individuals with these disorders.
Collapse
Affiliation(s)
- Melissa A Stouffer
- INSERM UMRS 839, Paris, France; Sorbonne Universités, Université Pierre et Marie Curie, Paris, France; Institut du Fer à Moulin, Paris, France
| | - Jeffrey A Golden
- Department of Pathology, Brigham & Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | - Fiona Francis
- INSERM UMRS 839, Paris, France; Sorbonne Universités, Université Pierre et Marie Curie, Paris, France; Institut du Fer à Moulin, Paris, France.
| |
Collapse
|
79
|
|
80
|
A critical and previously unsuspected role for doublecortin at the neuromuscular junction in mouse and human. Neuromuscul Disord 2015; 25:461-73. [DOI: 10.1016/j.nmd.2015.01.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 01/28/2015] [Indexed: 11/19/2022]
|
81
|
Yap CC, Winckler B. Adapting for endocytosis: roles for endocytic sorting adaptors in directing neural development. Front Cell Neurosci 2015; 9:119. [PMID: 25904845 PMCID: PMC4389405 DOI: 10.3389/fncel.2015.00119] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2015] [Accepted: 03/16/2015] [Indexed: 01/01/2023] Open
Abstract
Proper cortical development depends on the orchestrated actions of a multitude of guidance receptors and adhesion molecules and their downstream signaling. The levels of these receptors on the surface and their precise locations can greatly affect guidance outcomes. Trafficking of receptors to a particular surface locale and removal by endocytosis thus feed crucially into the final guidance outcomes. In addition, endocytosis of receptors can affect downstream signaling (both quantitatively and qualitatively) and regulated endocytosis of guidance receptors is thus an important component of ensuring proper neural development. We will discuss the cell biology of regulated endocytosis and the impact on neural development. We focus our discussion on endocytic accessory proteins (EAPs) (such as numb and disabled) and how they regulate endocytosis and subsequent post-endocytic trafficking of their cognate receptors (such as Notch, TrkB, β-APP, VLDLR, and ApoER2).
Collapse
Affiliation(s)
- Chan Choo Yap
- Department of Neuroscience, University of Virginia Charlottesville, VA, USA
| | - Bettina Winckler
- Department of Neuroscience, University of Virginia Charlottesville, VA, USA
| |
Collapse
|
82
|
Greenman R, Gorelik A, Sapir T, Baumgart J, Zamor V, Segal-Salto M, Levin-Zaidman S, Aidinis V, Aoki J, Nitsch R, Vogt J, Reiner O. Non-cell autonomous and non-catalytic activities of ATX in the developing brain. Front Neurosci 2015; 9:53. [PMID: 25788872 PMCID: PMC4349085 DOI: 10.3389/fnins.2015.00053] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 02/06/2015] [Indexed: 12/20/2022] Open
Abstract
The intricate formation of the cerebral cortex requires a well-coordinated series of events, which are regulated at the level of cell-autonomous and non-cell autonomous mechanisms. Whereas cell-autonomous mechanisms that regulate cortical development are well-studied, the non-cell autonomous mechanisms remain poorly understood. A non-biased screen allowed us to identify Autotaxin (ATX) as a non-cell autonomous regulator of neural stem cells. ATX (also known as ENPP2) is best known to catalyze lysophosphatidic acid (LPA) production. Our results demonstrate that ATX affects the localization and adhesion of neuronal progenitors in a cell autonomous and non-cell autonomous manner, and strikingly, this activity is independent from its catalytic activity in producing LPA.
Collapse
Affiliation(s)
- Raanan Greenman
- Department of Molecular Genetics, Weizmann Institute of Science Rehovot, Israel
| | - Anna Gorelik
- Department of Molecular Genetics, Weizmann Institute of Science Rehovot, Israel
| | - Tamar Sapir
- Department of Molecular Genetics, Weizmann Institute of Science Rehovot, Israel
| | - Jan Baumgart
- University Medical Center, Institute for Microscopic Anatomy and Neurobiology, Johannes Gutenberg-University Mainz Mainz, Germany ; Central Laboratory Animal Facility, University Medical Center, Johannes Gutenberg-University Mainz Mainz, Germany
| | - Vanessa Zamor
- Department of Molecular Genetics, Weizmann Institute of Science Rehovot, Israel
| | - Michal Segal-Salto
- Department of Molecular Genetics, Weizmann Institute of Science Rehovot, Israel
| | - Smadar Levin-Zaidman
- Department of Chemical Research Support, Weizmann Institute of Science Rehovot, Israel
| | - Vassilis Aidinis
- Division of Immunology, Biomedical Sciences Research Center 'Alexander Fleming' Athens, Greece
| | - Junken Aoki
- Graduate School of Pharmaceutical Sciences, Tohoku University Miyagi, Japan
| | - Robert Nitsch
- University Medical Center, Institute for Microscopic Anatomy and Neurobiology, Johannes Gutenberg-University Mainz Mainz, Germany
| | - Johannes Vogt
- University Medical Center, Institute for Microscopic Anatomy and Neurobiology, Johannes Gutenberg-University Mainz Mainz, Germany
| | - Orly Reiner
- Department of Molecular Genetics, Weizmann Institute of Science Rehovot, Israel
| |
Collapse
|
83
|
Hirokawa N, Tanaka Y. Kinesin superfamily proteins (KIFs): Various functions and their relevance for important phenomena in life and diseases. Exp Cell Res 2015; 334:16-25. [PMID: 25724902 DOI: 10.1016/j.yexcr.2015.02.016] [Citation(s) in RCA: 170] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 02/14/2015] [Indexed: 02/01/2023]
Abstract
Kinesin superfamily proteins (KIFs) largely serve as molecular motors on the microtubule system and transport various cellular proteins, macromolecules, and organelles. These transports are fundamental to cellular logistics, and at times, they directly modulate signal transduction by altering the semantics of informational molecules. In this review, we will summarize recent approaches to the regulation of the transport destinations and to the physiological relevance of the role of these proteins in neuroscience, ciliary functions, and metabolic diseases. Understanding these burning questions will be essential in establishing a new paradigm of cellular functions and disease pathogenesis.
Collapse
Affiliation(s)
- Nobutaka Hirokawa
- Department of Cell Biology and Anatomy, Graduate School of Medicine, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; Center of Excellence in Genome Medicine Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Yosuke Tanaka
- Department of Cell Biology and Anatomy, Graduate School of Medicine, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
84
|
Abstract
Microtubules are dynamic polymers of αβ-tubulin that form diverse cellular structures, such as the mitotic spindle for cell division, the backbone of neurons, and axonemes. To control the architecture of microtubule networks, microtubule-associated proteins (MAPs) and motor proteins regulate microtubule growth, shrinkage, and the transitions between these states. Recent evidence shows that many MAPs exert their effects by selectively binding to distinct conformations of polymerized or unpolymerized αβ-tubulin. The ability of αβ-tubulin to adopt distinct conformations contributes to the intrinsic polymerization dynamics of microtubules. αβ-Tubulin conformation is a fundamental property that MAPs monitor and control to build proper microtubule networks.
Collapse
Affiliation(s)
- Gary J Brouhard
- Department of Biology, McGill University, Montréal, Quebec, Canada H3A1B1
| | - Luke M Rice
- Department of Biophysics and Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390 Department of Biophysics and Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390
| |
Collapse
|
85
|
Efimova N, Grimaldi A, Bachmann A, Frye K, Zhu X, Feoktistov A, Straube A, Kaverina I. Podosome-regulating kinesin KIF1C translocates to the cell periphery in a CLASP-dependent manner. J Cell Sci 2014; 127:5179-88. [PMID: 25344256 DOI: 10.1242/jcs.149633] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The kinesin KIF1C is known to regulate podosomes, actin-rich adhesion structures that remodel the extracellular matrix during physiological processes. Here, we show that KIF1C is a player in the podosome-inducing signaling cascade. Upon induction of podosome formation by protein kinase C (PKC), KIF1C translocation to the cell periphery intensifies and KIF1C accumulates both in the proximity of peripheral microtubules that show enrichment for the plus-tip-associated proteins CLASPs and around podosomes. Importantly, without CLASPs, both KIF1C trafficking and podosome formation are suppressed. Moreover, chimeric mitochondrially targeted CLASP2 recruits KIF1C, suggesting a transient CLASP-KIF1C association. We propose that CLASPs create preferred microtubule tracks for KIF1C to promote podosome induction downstream of PKC.
Collapse
Affiliation(s)
- Nadia Efimova
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville 37232, TN, USA
| | - Ashley Grimaldi
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville 37232, TN, USA
| | - Alice Bachmann
- Centre for Mechanochemical Cell Biology, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Keyada Frye
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville 37232, TN, USA
| | - Xiaodong Zhu
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville 37232, TN, USA
| | - Alexander Feoktistov
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville 37232, TN, USA
| | - Anne Straube
- Centre for Mechanochemical Cell Biology, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Irina Kaverina
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville 37232, TN, USA
| |
Collapse
|
86
|
Smith BN, Ticozzi N, Fallini C, Gkazi AS, Topp S, Kenna KP, Scotter EL, Kost J, Keagle P, Miller JW, Calini D, Vance C, Danielson EW, Troakes C, Tiloca C, Al-Sarraj S, Lewis EA, King A, Colombrita C, Pensato V, Castellotti B, de Belleroche J, Baas F, ten Asbroek ALMA, Sapp PC, McKenna-Yasek D, McLaughlin RL, Polak M, Asress S, Esteban-Pérez J, Muñoz-Blanco JL, Simpson M, van Rheenen W, Diekstra FP, Lauria G, Duga S, Corti S, Cereda C, Corrado L, Sorarù G, Morrison KE, Williams KL, Nicholson GA, Blair IP, Dion PA, Leblond CS, Rouleau GA, Hardiman O, Veldink JH, van den Berg LH, Al-Chalabi A, Pall H, Shaw PJ, Turner MR, Talbot K, Taroni F, García-Redondo A, Wu Z, Glass JD, Gellera C, Ratti A, Brown RH, Silani V, Shaw CE, Landers JE. Exome-wide rare variant analysis identifies TUBA4A mutations associated with familial ALS. Neuron 2014; 84:324-31. [PMID: 25374358 DOI: 10.1016/j.neuron.2014.09.027] [Citation(s) in RCA: 281] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2014] [Indexed: 12/11/2022]
Abstract
Exome sequencing is an effective strategy for identifying human disease genes. However, this methodology is difficult in late-onset diseases where limited availability of DNA from informative family members prohibits comprehensive segregation analysis. To overcome this limitation, we performed an exome-wide rare variant burden analysis of 363 index cases with familial ALS (FALS). The results revealed an excess of patient variants within TUBA4A, the gene encoding the Tubulin, Alpha 4A protein. Analysis of a further 272 FALS cases and 5,510 internal controls confirmed the overrepresentation as statistically significant and replicable. Functional analyses revealed that TUBA4A mutants destabilize the microtubule network, diminishing its repolymerization capability. These results further emphasize the role of cytoskeletal defects in ALS and demonstrate the power of gene-based rare variant analyses in situations where causal genes cannot be identified through traditional segregation analysis.
Collapse
Affiliation(s)
- Bradley N Smith
- Centre for Neurodegeneration Research, King's College London, Department of Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, London, SE5 8AF, UK
| | - Nicola Ticozzi
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, 20149 Milan, Italy; Department of Pathophysiology and Transplantation, 'Dino Ferrari' Center - Università degli Studi di Milano, 20122 Milan, Italy
| | - Claudia Fallini
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Athina Soragia Gkazi
- Centre for Neurodegeneration Research, King's College London, Department of Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, London, SE5 8AF, UK
| | - Simon Topp
- Centre for Neurodegeneration Research, King's College London, Department of Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, London, SE5 8AF, UK
| | - Kevin P Kenna
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01605, USA; Academic Unit of Neurology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Republic of Ireland
| | - Emma L Scotter
- Centre for Neurodegeneration Research, King's College London, Department of Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, London, SE5 8AF, UK
| | - Jason Kost
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01605, USA; Department of Bioinformatics and Computational Biology, Worcester Polytechnic Institute, Worcester, MA 01609, USA
| | - Pamela Keagle
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Jack W Miller
- Centre for Neurodegeneration Research, King's College London, Department of Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, London, SE5 8AF, UK
| | - Daniela Calini
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, 20149 Milan, Italy; Department of Pathophysiology and Transplantation, 'Dino Ferrari' Center - Università degli Studi di Milano, 20122 Milan, Italy
| | - Caroline Vance
- Centre for Neurodegeneration Research, King's College London, Department of Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, London, SE5 8AF, UK
| | - Eric W Danielson
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Claire Troakes
- Centre for Neurodegeneration Research, King's College London, Department of Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, London, SE5 8AF, UK
| | - Cinzia Tiloca
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, 20149 Milan, Italy
| | - Safa Al-Sarraj
- Centre for Neurodegeneration Research, King's College London, Department of Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, London, SE5 8AF, UK
| | - Elizabeth A Lewis
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Andrew King
- Centre for Neurodegeneration Research, King's College London, Department of Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, London, SE5 8AF, UK
| | - Claudia Colombrita
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, 20149 Milan, Italy; Department of Pathophysiology and Transplantation, 'Dino Ferrari' Center - Università degli Studi di Milano, 20122 Milan, Italy
| | - Viviana Pensato
- Unit of Genetics of Neurodegenerative and Metabolic Diseases, Fondazione IRCCS Istituto Neurologico 'Carlo Besta', 20133 Milan, Italy
| | - Barbara Castellotti
- Unit of Genetics of Neurodegenerative and Metabolic Diseases, Fondazione IRCCS Istituto Neurologico 'Carlo Besta', 20133 Milan, Italy
| | - Jacqueline de Belleroche
- Neurogenetics Group, Division of Brain Sciences, Imperial College London, Hammersmith Hospital Campus, Burlington Danes Building, Du Cane Road, London, W12 0NN, UK
| | - Frank Baas
- Department of Genome analysis and Neurogenetics, Academic Medical Centre, Amsterdam, The Netherlands
| | | | - Peter C Sapp
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Diane McKenna-Yasek
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Russell L McLaughlin
- Academic Unit of Neurology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Republic of Ireland
| | - Meraida Polak
- Department of Neurology, Emory University, Atlanta, GA 30322, USA
| | - Seneshaw Asress
- Department of Neurology, Emory University, Atlanta, GA 30322, USA
| | - Jesús Esteban-Pérez
- Unidad de ELA, Instituto de Investigación Hospital 12 de Octubre de Madrid, SERMAS, and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER U-723), 28041 Madrid, Spain
| | - José Luis Muñoz-Blanco
- Unidad de ELA, Instituto de Investigación Hospital Gregorio Marañón de Madrid, SERMAS, 28007 Madrid, Spain
| | - Michael Simpson
- Department of Genetics and Molecular Medicine, King's College London, Tower Wing, Guy's Hospital, London, SE1 7EH, UK
| | | | - Wouter van Rheenen
- Department of Neurology, Brain Center Rudolf Magnus Institute of Neuroscience, University Medical Centre Utrecht, 3508 GA Utrecht, the Netherlands
| | - Frank P Diekstra
- Department of Neurology, Brain Center Rudolf Magnus Institute of Neuroscience, University Medical Centre Utrecht, 3508 GA Utrecht, the Netherlands
| | - Giuseppe Lauria
- 3rd Neurology Unit, Fondazione IRCCS Istituto Neurologico 'Carlo Besta', 20133 Milan, Italy
| | - Stefano Duga
- Department of Medical Biotechnology and Translational Medicine - Università degli Studi di Milano, 20133 Milan, Italy
| | - Stefania Corti
- Department of Pathophysiology and Transplantation, 'Dino Ferrari' Center - Università degli Studi di Milano, 20122 Milan, Italy; Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Cristina Cereda
- Experimental Neurobiology Laboratory, IRCCS 'C. Mondino' National Neurological Institute, 27100 Pavia, Italy
| | - Lucia Corrado
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), "A. Avogadro" University, 28100 Novara, Italy
| | - Gianni Sorarù
- Department of Neurosciences, University of Padova, 35122 Padova, Italy
| | - Karen E Morrison
- School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK; Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, B15 2WB, UK
| | - Kelly L Williams
- Australian School of Advanced Medicine, Macquarie University, Sydney, NSW 2109, Australia
| | - Garth A Nicholson
- Australian School of Advanced Medicine, Macquarie University, Sydney, NSW 2109, Australia; Northcott Neuroscience Laboratory, University of Sydney, ANZAC Research Institute, Sydney, NSW 2139, Australia
| | - Ian P Blair
- Australian School of Advanced Medicine, Macquarie University, Sydney, NSW 2109, Australia
| | - Patrick A Dion
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, 3801 Montreal, QC H3A 2B4, Canada
| | - Claire S Leblond
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, 3801 Montreal, QC H3A 2B4, Canada
| | - Guy A Rouleau
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, 3801 Montreal, QC H3A 2B4, Canada
| | - Orla Hardiman
- Academic Unit of Neurology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Republic of Ireland
| | - Jan H Veldink
- Department of Neurology, Brain Center Rudolf Magnus Institute of Neuroscience, University Medical Centre Utrecht, 3508 GA Utrecht, the Netherlands
| | - Leonard H van den Berg
- Department of Neurology, Brain Center Rudolf Magnus Institute of Neuroscience, University Medical Centre Utrecht, 3508 GA Utrecht, the Netherlands
| | - Ammar Al-Chalabi
- Department of Clinical Neuroscience, Medical Research Council Centre for Neurodegeneration Research, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, WC2R 2LS, UK
| | - Hardev Pall
- School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Pamela J Shaw
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, S10 2HQ, UK
| | - Martin R Turner
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU, UK
| | - Kevin Talbot
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU, UK
| | - Franco Taroni
- Unit of Genetics of Neurodegenerative and Metabolic Diseases, Fondazione IRCCS Istituto Neurologico 'Carlo Besta', 20133 Milan, Italy
| | - Alberto García-Redondo
- Unidad de ELA, Instituto de Investigación Hospital 12 de Octubre de Madrid, SERMAS, and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER U-723), 28041 Madrid, Spain
| | - Zheyang Wu
- Department of Bioinformatics and Computational Biology, Worcester Polytechnic Institute, Worcester, MA 01609, USA
| | - Jonathan D Glass
- Department of Neurology, Emory University, Atlanta, GA 30322, USA
| | - Cinzia Gellera
- Unit of Genetics of Neurodegenerative and Metabolic Diseases, Fondazione IRCCS Istituto Neurologico 'Carlo Besta', 20133 Milan, Italy
| | - Antonia Ratti
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, 20149 Milan, Italy; Department of Pathophysiology and Transplantation, 'Dino Ferrari' Center - Università degli Studi di Milano, 20122 Milan, Italy
| | - Robert H Brown
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Vincenzo Silani
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, 20149 Milan, Italy; Department of Pathophysiology and Transplantation, 'Dino Ferrari' Center - Università degli Studi di Milano, 20122 Milan, Italy
| | - Christopher E Shaw
- Centre for Neurodegeneration Research, King's College London, Department of Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, London, SE5 8AF, UK
| | - John E Landers
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
87
|
Zheng Q, Ahlawat S, Schaefer A, Mahoney T, Koushika SP, Nonet ML. The vesicle protein SAM-4 regulates the processivity of synaptic vesicle transport. PLoS Genet 2014; 10:e1004644. [PMID: 25329901 PMCID: PMC4199485 DOI: 10.1371/journal.pgen.1004644] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Accepted: 08/02/2014] [Indexed: 12/31/2022] Open
Abstract
Axonal transport of synaptic vesicles (SVs) is a KIF1A/UNC-104 mediated process critical for synapse development and maintenance yet little is known of how SV transport is regulated. Using C. elegans as an in vivo model, we identified SAM-4 as a novel conserved vesicular component regulating SV transport. Processivity, but not velocity, of SV transport was reduced in sam-4 mutants. sam-4 displayed strong genetic interactions with mutations in the cargo binding but not the motor domain of unc-104. Gain-of-function mutations in the unc-104 motor domain, identified in this study, suppress the sam-4 defects by increasing processivity of the SV transport. Genetic analyses suggest that SAM-4, SYD-2/liprin-α and the KIF1A/UNC-104 motor function in the same pathway to regulate SV transport. Our data support a model in which the SV protein SAM-4 regulates the processivity of SV transport. Most cellular components of neurons are synthesized in the cell body and must be transported great distances to form synapses at the ends of axons and dendrites. Neurons use a specialized axonal transport system consisting of microtubule cytoskeletal tracks and numerous molecular motors to shuttle specific cargo to specific destinations in the cell. Disruption of this transport system has severe consequences to human health. Disruption of specific neuronal motors are linked to hereditary neurodegenerative conditions including forms of Charcot Marie Tooth disease, several types of hereditary spastic paraplegia, and certain forms of amyotrophic lateral sclerosis motor neuron disease. Despite recent progress in defining the cargo of many of kinesin family motors in neurons, little is known about how the activity of these transport systems is regulated. Here, using a simple invertebrate model we identify and characterize a novel protein that regulates the efficacy of the KIF1A motor that mediates transport of synaptic vesicles. These studies define a new pathway regulating SV transport with potential links to human neurological disease.
Collapse
Affiliation(s)
- Qun Zheng
- Department of Anatomy and Neurobiology, Washington University Medical School, St. Louis, Missouri, United States of America
| | - Shikha Ahlawat
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | - Anneliese Schaefer
- Department of Anatomy and Neurobiology, Washington University Medical School, St. Louis, Missouri, United States of America
- Department of Neurology, Washington University Medical School, St. Louis, Missouri, United States of America
| | - Tim Mahoney
- Department of Anatomy and Neurobiology, Washington University Medical School, St. Louis, Missouri, United States of America
- Huffington Center On Aging, Baylor College of Medicine, Houston, Texas, United States of America
| | - Sandhya P. Koushika
- Department of Biological Sciences, Tata Institute of Fundamental Research, Colaba, Mumbai, India
| | - Michael L. Nonet
- Department of Anatomy and Neurobiology, Washington University Medical School, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
88
|
A diagnostic approach for cerebral palsy in the genomic era. Neuromolecular Med 2014; 16:821-44. [PMID: 25280894 DOI: 10.1007/s12017-014-8331-9] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 09/24/2014] [Indexed: 12/12/2022]
Abstract
An ongoing challenge in children presenting with motor delay/impairment early in life is to identify neurogenetic disorders with a clinical phenotype, which can be misdiagnosed as cerebral palsy (CP). To help distinguish patients in these two groups, conventional magnetic resonance imaging of the brain has been of great benefit in "unmasking" many of these genetic etiologies and has provided important clues to differential diagnosis in others. Recent advances in molecular genetics such as chromosomal microarray and next-generation sequencing have further revolutionized the understanding of etiology by more precisely classifying these disorders with a molecular cause. In this paper, we present a review of neurogenetic disorders masquerading as cerebral palsy evaluated at one institution. We have included representative case examples children presenting with dyskinetic, spastic, and ataxic phenotypes, with the intent to highlight the time-honored approach of using clinical tools of history and examination to focus the subsequent etiologic search with advanced neuroimaging modalities and molecular genetic tools. A precise diagnosis of these masqueraders and their differentiation from CP is important in terms of therapy, prognosis, and family counseling. In summary, this review serves as a continued call to remain vigilant for current and other to-be-discovered neurogenetic masqueraders of cerebral palsy, thereby optimizing care for patients and their families.
Collapse
|
89
|
Atherton J, Farabella I, Yu IM, Rosenfeld SS, Houdusse A, Topf M, Moores CA. Conserved mechanisms of microtubule-stimulated ADP release, ATP binding, and force generation in transport kinesins. eLife 2014; 3:e03680. [PMID: 25209998 PMCID: PMC4358365 DOI: 10.7554/elife.03680] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 09/08/2014] [Indexed: 01/21/2023] Open
Abstract
Kinesins are a superfamily of microtubule-based ATP-powered motors, important for multiple, essential cellular functions. How microtubule binding stimulates their ATPase and controls force generation is not understood. To address this fundamental question, we visualized microtubule-bound kinesin-1 and kinesin-3 motor domains at multiple steps in their ATPase cycles—including their nucleotide-free states—at ∼7 Å resolution using cryo-electron microscopy. In both motors, microtubule binding promotes ordered conformations of conserved loops that stimulate ADP release, enhance microtubule affinity and prime the catalytic site for ATP binding. ATP binding causes only small shifts of these nucleotide-coordinating loops but induces large conformational changes elsewhere that allow force generation and neck linker docking towards the microtubule plus end. Family-specific differences across the kinesin–microtubule interface account for the distinctive properties of each motor. Our data thus provide evidence for a conserved ATP-driven mechanism for kinesins and reveal the critical mechanistic contribution of the microtubule interface. DOI:http://dx.doi.org/10.7554/eLife.03680.001 The interior of a cell is a hive of activity, filled with proteins and other items moving from one location to another. A network of filaments called microtubules forms tracks along which so-called motor proteins carry these items. Kinesins are one group of motor proteins, and a typical kinesin protein has one end (called the ‘motor domain’) that can attach itself to the microtubules. The other end links to the cargo being carried, and a ‘neck’ connects the two. When two of these proteins work together, flexible regions of the neck allow the two motor domains to move past one another, which enable the kinesin to essentially walk along a microtubule in a stepwise manner. To take these steps along microtubules, each kinesin motor domain in the pair must undergo alternating cycles of tight association and release from their tracks. This cycle is coordinated by binding and breaking down a molecule called ATP, which also provides the energy needed to take the next step. How the cycle of loose and tight microtubule attachment is coordinated with the release of the breakdown products of ATP, and how the energy from the ATP molecule is converted into the force that moves the motor along the microtubule, has been unclear. Atherton et al. use a technique called cryo-electron microscopy to study—in more detail than previously seen—the structure of the motor domains of two types of kinesin called kinesin-1 and kinesin-3. Images were taken at different stages of the cycle used by the motor domains to extract the energy from ATP molecules. Although the two kinesins have been thought to move along the microtubule tracks in different ways, Atherton et al. find that the core mechanism used by their motor domains is the same. When a motor domain binds to the microtubule, its shape changes, first stimulating release of the breakdown products of ATP from the previous cycle. This release makes room for a new ATP molecule to bind. The structural changes caused by ATP binding are relatively small but produce larger changes in the flexible neck region that enable individual motor domains within a kinesin pair to co-ordinate their movement and move in a consistent direction. This mechanism involves tight coupling between track binding and fuel usage and makes kinesins highly efficient motors. The structures uncovered by Atherton et al. reveal a mechanism that links microtubule binding, the energy supplied to the motor domain and the force that moves the kinesin along a microtubule. Future work will clarify whether the key features observed in the motor domains of kinesin-1 and kinesin-3 are also found in other types of kinesin motors. DOI:http://dx.doi.org/10.7554/eLife.03680.002
Collapse
Affiliation(s)
- Joseph Atherton
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck College, University of London, London, United Kingdom
| | - Irene Farabella
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck College, University of London, London, United Kingdom
| | - I-Mei Yu
- Structural Motility, Institut Curie, Centre National de la Recherche Scientifique, Paris, France
| | - Steven S Rosenfeld
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, United States
| | - Anne Houdusse
- Structural Motility, Institut Curie, Centre National de la Recherche Scientifique, Paris, France
| | - Maya Topf
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck College, University of London, London, United Kingdom
| | - Carolyn A Moores
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck College, University of London, London, United Kingdom
| |
Collapse
|
90
|
Semenova I, Ikeda K, Resaul K, Kraikivski P, Aguiar M, Gygi S, Zaliapin I, Cowan A, Rodionov V. Regulation of microtubule-based transport by MAP4. Mol Biol Cell 2014; 25:3119-32. [PMID: 25143402 PMCID: PMC4196864 DOI: 10.1091/mbc.e14-01-0022] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Microtubule (MT)-based transport of organelles driven by the opposing MT motors kinesins and dynein is tightly regulated in cells, but the underlying molecular mechanisms remain largely unknown. Here we tested the regulation of MT transport by the ubiquitous protein MAP4 using Xenopus melanophores as an experimental system. In these cells, pigment granules (melanosomes) move along MTs to the cell center (aggregation) or to the periphery (dispersion) by means of cytoplasmic dynein and kinesin-2, respectively. We found that aggregation signals induced phosphorylation of threonine residues in the MT-binding domain of the Xenopus MAP4 (XMAP4), thus decreasing binding of this protein to MTs. Overexpression of XMAP4 inhibited pigment aggregation by shortening dynein-dependent MT runs of melanosomes, whereas removal of XMAP4 from MTs reduced the length of kinesin-2-dependent runs and suppressed pigment dispersion. We hypothesize that binding of XMAP4 to MTs negatively regulates dynein-dependent movement of melanosomes and positively regulates kinesin-2-based movement. Phosphorylation during pigment aggregation reduces binding of XMAP4 to MTs, thus increasing dynein-dependent and decreasing kinesin-2-dependent motility of melanosomes, which stimulates their accumulation in the cell center, whereas dephosphorylation of XMAP4 during dispersion has an opposite effect.
Collapse
Affiliation(s)
- Irina Semenova
- R.D. Berlin Center for Cell Analysis and Modeling and Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06030
| | - Kazuho Ikeda
- R.D. Berlin Center for Cell Analysis and Modeling and Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06030 Quantitative Biology Center, RIKEN, Osaka 565-0874, Japan
| | - Karim Resaul
- R.D. Berlin Center for Cell Analysis and Modeling and Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06030
| | - Pavel Kraikivski
- R.D. Berlin Center for Cell Analysis and Modeling and Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06030 Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061
| | - Mike Aguiar
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115
| | - Steven Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115
| | - Ilya Zaliapin
- Department of Mathematics and Statistics, University of Nevada-Reno, Reno, NV 89557
| | - Ann Cowan
- R.D. Berlin Center for Cell Analysis and Modeling and Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06030
| | - Vladimir Rodionov
- R.D. Berlin Center for Cell Analysis and Modeling and Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06030
| |
Collapse
|
91
|
Volvert ML, Prévot PP, Close P, Laguesse S, Pirotte S, Hemphill J, Rogister F, Kruzy N, Sacheli R, Moonen G, Deiters A, Merkenschlager M, Chariot A, Malgrange B, Godin JD, Nguyen L. MicroRNA targeting of CoREST controls polarization of migrating cortical neurons. Cell Rep 2014; 7:1168-83. [PMID: 24794437 DOI: 10.1016/j.celrep.2014.03.075] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 10/08/2013] [Accepted: 03/31/2014] [Indexed: 12/13/2022] Open
Abstract
The migration of cortical projection neurons is a multistep process characterized by dynamic cell shape remodeling. The molecular basis of these changes remains elusive, and the present work describes how microRNAs (miRNAs) control neuronal polarization during radial migration. We show that miR-22 and miR-124 are expressed in the cortical wall where they target components of the CoREST/REST transcriptional repressor complex, thereby regulating doublecortin transcription in migrating neurons. This molecular pathway underlies radial migration by promoting dynamic multipolar-bipolar cell conversion at early phases of migration, and later stabilization of cell polarity to support locomotion on radial glia fibers. Thus, our work emphasizes key roles of some miRNAs that control radial migration during cerebral corticogenesis.
Collapse
Affiliation(s)
- Marie-Laure Volvert
- GIGA-Neurosciences, University of Liège, C.H.U. Sart Tilman, Liège 4000, Belgium; Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, C.H.U. Sart Tilman, Liège 4000, Belgium
| | - Pierre-Paul Prévot
- GIGA-Neurosciences, University of Liège, C.H.U. Sart Tilman, Liège 4000, Belgium; Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, C.H.U. Sart Tilman, Liège 4000, Belgium
| | - Pierre Close
- GIGA-Signal Transduction, University of Liège, C.H.U. Sart Tilman, Liège 4000, Belgium; Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, C.H.U. Sart Tilman, Liège 4000, Belgium
| | - Sophie Laguesse
- GIGA-Neurosciences, University of Liège, C.H.U. Sart Tilman, Liège 4000, Belgium; Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, C.H.U. Sart Tilman, Liège 4000, Belgium
| | - Sophie Pirotte
- GIGA-Neurosciences, University of Liège, C.H.U. Sart Tilman, Liège 4000, Belgium; Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, C.H.U. Sart Tilman, Liège 4000, Belgium
| | - James Hemphill
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, USA; Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Florence Rogister
- GIGA-Neurosciences, University of Liège, C.H.U. Sart Tilman, Liège 4000, Belgium; Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, C.H.U. Sart Tilman, Liège 4000, Belgium
| | - Nathalie Kruzy
- GIGA-Neurosciences, University of Liège, C.H.U. Sart Tilman, Liège 4000, Belgium; Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, C.H.U. Sart Tilman, Liège 4000, Belgium
| | - Rosalie Sacheli
- GIGA-Neurosciences, University of Liège, C.H.U. Sart Tilman, Liège 4000, Belgium; Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, C.H.U. Sart Tilman, Liège 4000, Belgium
| | - Gustave Moonen
- GIGA-Neurosciences, University of Liège, C.H.U. Sart Tilman, Liège 4000, Belgium; Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, C.H.U. Sart Tilman, Liège 4000, Belgium
| | - Alexander Deiters
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, USA; Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Matthias Merkenschlager
- Lymphocyte Development Group, MRC Clinical Sciences Centre, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Alain Chariot
- GIGA-Signal Transduction, University of Liège, C.H.U. Sart Tilman, Liège 4000, Belgium; Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, C.H.U. Sart Tilman, Liège 4000, Belgium; Walloon Excellence in Lifesciences and Biotechnology (WELBIO), University of Liège, C.H.U. Sart Tilman, Liège 4000, Belgium
| | - Brigitte Malgrange
- GIGA-Neurosciences, University of Liège, C.H.U. Sart Tilman, Liège 4000, Belgium; Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, C.H.U. Sart Tilman, Liège 4000, Belgium
| | - Juliette D Godin
- GIGA-Neurosciences, University of Liège, C.H.U. Sart Tilman, Liège 4000, Belgium; Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, C.H.U. Sart Tilman, Liège 4000, Belgium
| | - Laurent Nguyen
- GIGA-Neurosciences, University of Liège, C.H.U. Sart Tilman, Liège 4000, Belgium; Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, C.H.U. Sart Tilman, Liège 4000, Belgium; Walloon Excellence in Lifesciences and Biotechnology (WELBIO), University of Liège, C.H.U. Sart Tilman, Liège 4000, Belgium.
| |
Collapse
|
92
|
Kantara C, O'Connell M, Sarkar S, Moya S, Ullrich R, Singh P. Curcumin promotes autophagic survival of a subset of colon cancer stem cells, which are ablated by DCLK1-siRNA. Cancer Res 2014; 74:2487-98. [PMID: 24626093 DOI: 10.1158/0008-5472.can-13-3536] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Curcumin is known to induce apoptosis of cancer cells by different mechanisms, but its effects on cancer stem cells (CSC) have been less investigated. Here, we report that curcumin promotes the survival of DCLK1-positive colon CSCs, potentially confounding application of its anticancer properties. At optimal concentrations, curcumin greatly reduced expression levels of stem cell markers (DCLK1/CD44/ALDHA1/Lgr5/Nanog) in three-dimensional spheroid cultures and tumor xenografts derived from colon cancer cells. However, curcumin unexpectedly induced proliferation and autophagic survival of a subset of DCLK1-positive CSCs. Spheroid cultures were disintegrated by curcumin in vitro but regrew within 30 to 40 days of treatment, suggesting a survival benefit from autophagy, permitting long-term persistence of colorectal cancer. Notably, RNA interference-mediated silencing of DCLK1 triggered apoptotic cell death of colon cancer cells in vitro and in vivo, and abolished colorectal cancer survival in response to curcumin; combination of DCLK1-siRNA and curcumin dramatically reversed CSC phenotype, contributing to attenuation of the growth of spheroid cultures and tumor xenografts. Taken together, our findings confirm a role of DCLK1 in colon CSCs and highlight DCLK1 as a target to enhance antitumor properties of curcumin.
Collapse
Affiliation(s)
- Carla Kantara
- Authors' Affiliations: Departments of Neuroscience and Cell Biology and Sealy Cancer Center, University of Texas Medical Branch Health, Galveston, Texas
| | | | | | | | | | | |
Collapse
|
93
|
Abstract
Advances in genetic tools and sequencing technology in the past few years have vastly expanded our understanding of the genetics of neurodevelopmental disorders. Recent high-throughput sequencing analyses of structural brain malformations, cognitive and neuropsychiatric disorders, and localized cortical dysplasias have uncovered a diverse genetic landscape beyond classic Mendelian patterns of inheritance. The underlying genetic causes of neurodevelopmental disorders implicate numerous cell biological pathways critical for normal brain development.
Collapse
Affiliation(s)
- Wen F Hu
- Division of Genetics and Genomics, Department of Medicine; Manton Center for Orphan Disease Research; and Howard Hughes Medical Institute, Boston Children's Hospital, Boston, Massachusetts 02115; , ,
| | | | | |
Collapse
|
94
|
Chia PH, Li P, Shen K. Cell biology in neuroscience: cellular and molecular mechanisms underlying presynapse formation. ACTA ACUST UNITED AC 2013; 203:11-22. [PMID: 24127213 PMCID: PMC3798257 DOI: 10.1083/jcb.201307020] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Synapse formation is a highly regulated process that requires the coordination of many cell biological events. Decades of research have identified a long list of molecular components involved in assembling a functioning synapse. Yet how the various steps, from transporting synaptic components to adhering synaptic partners and assembling the synaptic structure, are regulated and precisely executed during development and maintenance is still unclear. With the improvement of imaging and molecular tools, recent work in vertebrate and invertebrate systems has provided important insight into various aspects of presynaptic development, maintenance, and trans-synaptic signals, thereby increasing our understanding of how extrinsic organizers and intracellular mechanisms contribute to presynapse formation.
Collapse
Affiliation(s)
- Poh Hui Chia
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305
| | | | | |
Collapse
|
95
|
Atherton J, Houdusse A, Moores C. MAPping out distribution routes for kinesin couriers. Biol Cell 2013; 105:465-87. [PMID: 23796124 DOI: 10.1111/boc.201300012] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 06/17/2013] [Indexed: 12/14/2022]
Abstract
In the crowded environment of eukaryotic cells, diffusion is an inefficient distribution mechanism for cellular components. Long-distance active transport is required and is performed by molecular motors including kinesins. Furthermore, in highly polarised, compartmentalised and plastic cells such as neurons, regulatory mechanisms are required to ensure appropriate spatio-temporal delivery of neuronal components. The kinesin machinery has diversified into a large number of kinesin motor proteins as well as adaptor proteins that are associated with subsets of cargo. However, many mechanisms contribute to the correct delivery of these cargos to their target domains. One mechanism is through motor recognition of sub-domain-specific microtubule (MT) tracks, sign-posted by different tubulin isoforms, tubulin post-translational modifications, tubulin GTPase activity and MT-associated proteins (MAPs). With neurons as a model system, a critical review of these regulatory mechanisms is presented here, with a particular focus on the emerging contribution of compartmentalised MAPs. Overall, we conclude that - especially for axonal cargo - alterations to the MT track can influence transport, although in vivo, it is likely that multiple track-based effects act synergistically to ensure accurate cargo distribution.
Collapse
Affiliation(s)
- Joseph Atherton
- Institute of Structural and Molecular Biology, Birkbeck College, London, WC1E 7HX, UK
| | | | | |
Collapse
|
96
|
Prokop A. The intricate relationship between microtubules and their associated motor proteins during axon growth and maintenance. Neural Dev 2013; 8:17. [PMID: 24010872 PMCID: PMC3846809 DOI: 10.1186/1749-8104-8-17] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 08/14/2013] [Indexed: 12/15/2022] Open
Abstract
The hallmarks of neurons are their slender axons which represent the longest cellular processes of animals and which act as the cables that electrically wire the brain, and the brain to the body. Axons extend along reproducible paths during development and regeneration, and they have to be maintained for the lifetime of an organism. Both axon extension and maintenance essentially depend on the microtubule (MT) cytoskeleton. For this, MTs organize into parallel bundles that are established through extension at the leading axon tips within growth cones, and these bundles then form the architectural backbones, as well as the highways for axonal transport essential for supply and intracellular communication. Axon transport over these enormous distances takes days or even weeks and is a substantial logistical challenge. It is performed by kinesins and dynein/dynactin, which are molecular motors that form close functional links to the MTs they walk along. The intricate machinery which regulates MT dynamics, axonal transport and the motors is essential for nervous system development and function, and its investigation has huge potential to bring urgently required progress in understanding the causes of many developmental and degenerative brain disorders. During the last years new explanations for the highly specific properties of axonal MTs and for their close functional links to motor proteins have emerged, and it has become increasingly clear that motors play active roles also in regulating axonal MT networks. Here, I will provide an overview of these new developments.
Collapse
Affiliation(s)
- Andreas Prokop
- Faculty of Life Sciences, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK.
| |
Collapse
|
97
|
Khalaf-Nazzal R, Bruel-Jungerman E, Rio JP, Bureau J, Irinopoulou T, Sumia I, Roumegous A, Martin E, Olaso R, Parras C, Cifuentes-Diaz C, Francis F. Organelle and cellular abnormalities associated with hippocampal heterotopia in neonatal doublecortin knockout mice. PLoS One 2013; 8:e72622. [PMID: 24023755 PMCID: PMC3759370 DOI: 10.1371/journal.pone.0072622] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 07/11/2013] [Indexed: 11/18/2022] Open
Abstract
Heterotopic or aberrantly positioned cortical neurons are associated with epilepsy and intellectual disability. Various mouse models exist with forms of heterotopia, but the composition and state of cells developing in heterotopic bands has been little studied. Dcx knockout (KO) mice show hippocampal CA3 pyramidal cell lamination abnormalities, appearing from the age of E17.5, and mice suffer from spontaneous epilepsy. The Dcx KO CA3 region is organized in two distinct pyramidal cell layers, resembling a heterotopic situation, and exhibits hyperexcitability. Here, we characterized the abnormally organized cells in postnatal mouse brains. Electron microscopy confirmed that the Dcx KO CA3 layers at postnatal day (P) 0 are distinct and separated by an intermediate layer devoid of neuronal somata. We found that organization and cytoplasm content of pyramidal neurons in each layer were altered compared to wild type (WT) cells. Less regular nuclei and differences in mitochondria and Golgi apparatuses were identified. Each Dcx KO CA3 layer at P0 contained pyramidal neurons but also other closely apposed cells, displaying different morphologies. Quantitative PCR and immunodetections revealed increased numbers of oligodendrocyte precursor cells (OPCs) and interneurons in close proximity to Dcx KO pyramidal cells. Immunohistochemistry experiments also showed that caspase-3 dependent cell death was increased in the CA1 and CA3 regions of Dcx KO hippocampi at P2. Thus, unsuspected ultrastructural abnormalities and cellular heterogeneity may lead to abnormal neuronal function and survival in this model, which together may contribute to the development of hyperexcitability.
Collapse
Affiliation(s)
- Reham Khalaf-Nazzal
- INSERM UMRS 839, Paris, France
- Université Pierre et Marie Curie, Paris, France
- Institut du Fer à Moulin, Paris, France
| | - Elodie Bruel-Jungerman
- INSERM UMRS 839, Paris, France
- Université Pierre et Marie Curie, Paris, France
- Institut du Fer à Moulin, Paris, France
| | - Jean-Paul Rio
- INSERM UMRS 839, Paris, France
- Université Pierre et Marie Curie, Paris, France
- Institut du Fer à Moulin, Paris, France
| | - Jocelyne Bureau
- INSERM UMRS 839, Paris, France
- Université Pierre et Marie Curie, Paris, France
- Institut du Fer à Moulin, Paris, France
| | - Theano Irinopoulou
- INSERM UMRS 839, Paris, France
- Université Pierre et Marie Curie, Paris, France
- Institut du Fer à Moulin, Paris, France
| | - Iffat Sumia
- INSERM UMRS 839, Paris, France
- Université Pierre et Marie Curie, Paris, France
- Institut du Fer à Moulin, Paris, France
| | - Audrey Roumegous
- INSERM UMRS 839, Paris, France
- Université Pierre et Marie Curie, Paris, France
- Institut du Fer à Moulin, Paris, France
| | - Elodie Martin
- Université Pierre et Marie Curie, Paris, France
- Centre de Recherche de l'Institut du Cerveau et de la Moelle épinière, Paris, France
- INSERM UMRS 975, Paris, France
- CNRS UMR 7225, Paris, France
| | - Robert Olaso
- Plateforme de Transcriptomique, Laboratoire de Recherche Translationnelle, CEA/DSV/IG-Centre National de Génotypage, Evry, France
| | - Carlos Parras
- Université Pierre et Marie Curie, Paris, France
- Centre de Recherche de l'Institut du Cerveau et de la Moelle épinière, Paris, France
- INSERM UMRS 975, Paris, France
- CNRS UMR 7225, Paris, France
| | - Carmen Cifuentes-Diaz
- INSERM UMRS 839, Paris, France
- Université Pierre et Marie Curie, Paris, France
- Institut du Fer à Moulin, Paris, France
- * E-mail: (FF); (CCD)
| | - Fiona Francis
- INSERM UMRS 839, Paris, France
- Université Pierre et Marie Curie, Paris, France
- Institut du Fer à Moulin, Paris, France
- * E-mail: (FF); (CCD)
| |
Collapse
|
98
|
Shin E, Kashiwagi Y, Kuriu T, Iwasaki H, Tanaka T, Koizumi H, Gleeson JG, Okabe S. Doublecortin-like kinase enhances dendritic remodelling and negatively regulates synapse maturation. Nat Commun 2013; 4:1440. [PMID: 23385585 PMCID: PMC4017031 DOI: 10.1038/ncomms2443] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Accepted: 01/03/2013] [Indexed: 11/09/2022] Open
Abstract
Dendritic morphogenesis and formation of synapses at appropriate dendritic locations are essential for the establishment of proper neuronal connectivity. Recent imaging studies provide evidence for stabilization of dynamic distal branches of dendrites by the addition of new synapses. However, molecules involved in both dendritic growth and suppression of synapse maturation remain to be identified. Here we report two distinct functions of doublecortin-like kinases, chimeric proteins containing both a microtubule-binding domain and a kinase domain in postmitotic neurons. First, doublecortin-like kinases localize to the distal dendrites and promote their growth by enhancing microtubule bundling. Second, doublecortin-like kinases suppress maturation of synapses through multiple pathways, including reduction of PSD-95 by the kinase domain and suppression of spine structural maturation by the microtubule-binding domain. Thus, doublecortin-like kinases are critical regulators of dendritic development by means of their specific targeting to the distal dendrites, and their local control of dendritic growth and synapse maturation.
Collapse
Affiliation(s)
- Euikyung Shin
- Department of Cellular Neurobiology, University of Tokyo, Tokyo 113-0033, Japan
| | | | | | | | | | | | | | | |
Collapse
|
99
|
Reiner O. LIS1 and DCX: Implications for Brain Development and Human Disease in Relation to Microtubules. SCIENTIFICA 2013; 2013:393975. [PMID: 24278775 PMCID: PMC3820303 DOI: 10.1155/2013/393975] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 02/07/2013] [Indexed: 05/29/2023]
Abstract
Proper lamination of the cerebral cortex requires the orchestrated motility of neurons from their place of birth to their final destination. Improper neuronal migration may result in a wide range of diseases, including brain malformations, such as lissencephaly, mental retardation, schizophrenia, and autism. Ours and other studies have implicated that microtubules and microtubule-associated proteins play an important role in the regulation of neuronal polarization and neuronal migration. Here, we will review normal processes of brain development and neuronal migration, describe neuronal migration diseases, and will focus on the microtubule-associated functions of LIS1 and DCX, which participate in the regulation of neuronal migration and are involved in the human developmental brain disease, lissencephaly.
Collapse
Affiliation(s)
- Orly Reiner
- Department of Molecular Genetics, The Weizmann Institute of Science, 76100 Rehovot, Israel
| |
Collapse
|
100
|
Doublecortin (Dcx) family proteins regulate filamentous actin structure in developing neurons. J Neurosci 2013; 33:709-21. [PMID: 23303949 DOI: 10.1523/jneurosci.4603-12.2013] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Doublecortin (Dcx) is the causative gene for X-linked lissencephaly, which encodes a microtubule-binding protein. Axon tracts are abnormal in both affected individuals and in animal models. To determine the reason for the axon tract defect, we performed a semiquantitative proteomic analysis of the corpus callosum in mice mutant for Dcx. In axons from mice mutant for Dcx, widespread differences are found in actin-associated proteins as compared with wild-type axons. Decreases in actin-binding proteins α-actinin-1 and α-actinin-4 and actin-related protein 2/3 complex subunit 3 (Arp3), are correlated with dysregulation in the distribution of filamentous actin (F-actin) in the mutant neurons with increased F-actin around the cell body and decreased F-actin in the neurites and growth cones. The actin distribution defect can be rescued by full-length Dcx and further enhanced by Dcx S297A, the unphosphorylatable mutant, but not with the truncation mutant of Dcx missing the C-terminal S/P-rich domain. Thus, the C-terminal region of Dcx dynamically regulates formation of F-actin features in developing neurons, likely through interaction with spinophilin, but not through α-actinin-4 or Arp3. We show with that the phenotype of Dcx/Doublecortin-like kinase 1 deficiency is consistent with actin defect, as these axons are selectively deficient in axon guidance, but not elongation.
Collapse
|