51
|
Goetzman ES, Vockley J. Lysine acylation causes collateral damage in inborn errors of metabolism. Sci Transl Med 2022; 14:eabq4863. [PMID: 35613282 PMCID: PMC9797055 DOI: 10.1126/scitranslmed.abq4863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Posttranslational modifications contribute to the pathology of methylmalonic acidemia and may be targetable via an acylation-resistant sirtuin (Head et al., this issue).
Collapse
Affiliation(s)
- Eric S. Goetzman
- University of Pittsburgh School of Medicine and UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Jerry Vockley
- University of Pittsburgh School of Medicine and UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
| |
Collapse
|
52
|
Head PE, Myung S, Chen Y, Schneller JL, Wang C, Duncan N, Hoffman P, Chang D, Gebremariam A, Gucek M, Manoli I, Venditti CP. Aberrant methylmalonylation underlies methylmalonic acidemia and is attenuated by an engineered sirtuin. Sci Transl Med 2022; 14:eabn4772. [PMID: 35613279 PMCID: PMC10468269 DOI: 10.1126/scitranslmed.abn4772] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Organic acidemias such as methylmalonic acidemia (MMA) are a group of inborn errors of metabolism that typically arise from defects in the catabolism of amino and fatty acids. Accretion of acyl-CoA species is postulated to underlie disease pathophysiology, but the mechanism(s) remain unknown. Here, we surveyed hepatic explants from patients with MMA and unaffected donors, in parallel with samples from various mouse models of methylmalonyl-CoA mutase deficiency. We found a widespread posttranslational modification, methylmalonylation, that inhibited enzymes in the urea cycle and glycine cleavage pathway in MMA. Biochemical studies and mouse genetics established that sirtuin 5 (SIRT5) controlled the metabolism of MMA-related posttranslational modifications. SIRT5 was engineered to resist acylation-driven inhibition via lysine to arginine mutagenesis. The modified SIRT5 was used to create an adeno-associated viral 8 (AAV8) vector and systemically delivered to mutant and control mice. Gene therapy ameliorated hyperammonemia and reduced global methylmalonylation in the MMA mice.
Collapse
Affiliation(s)
- PamelaSara E. Head
- National Institute of General Medical Sciences, NIH, 45 Center Drive MSC 6200 Bethesda, MD, 20892-6200 USA
- National Human Genome Research Institute, NIH, Bethesda, MD, 10 Center Drive Building 10, Room 7S257 Bethesda, MD 20892, USA
| | - Sangho Myung
- National Human Genome Research Institute, NIH, Bethesda, MD, 10 Center Drive Building 10, Room 7S257 Bethesda, MD 20892, USA
| | - Yong Chen
- National Heart Lung and Blood Institute, NIH, Building 31, 31 Center Drive Bethesda, MD 20892, USA
| | - Jessica L. Schneller
- National Human Genome Research Institute, NIH, Bethesda, MD, 10 Center Drive Building 10, Room 7S257 Bethesda, MD 20892, USA
| | - Cindy Wang
- National Human Genome Research Institute, NIH, Bethesda, MD, 10 Center Drive Building 10, Room 7S257 Bethesda, MD 20892, USA
| | - Nicholas Duncan
- National Human Genome Research Institute, NIH, Bethesda, MD, 10 Center Drive Building 10, Room 7S257 Bethesda, MD 20892, USA
| | - Pauline Hoffman
- National Human Genome Research Institute, NIH, Bethesda, MD, 10 Center Drive Building 10, Room 7S257 Bethesda, MD 20892, USA
| | - David Chang
- National Human Genome Research Institute, NIH, Bethesda, MD, 10 Center Drive Building 10, Room 7S257 Bethesda, MD 20892, USA
| | - Abigael Gebremariam
- National Human Genome Research Institute, NIH, Bethesda, MD, 10 Center Drive Building 10, Room 7S257 Bethesda, MD 20892, USA
| | - Marjan Gucek
- National Heart Lung and Blood Institute, NIH, Building 31, 31 Center Drive Bethesda, MD 20892, USA
| | - Irini Manoli
- National Human Genome Research Institute, NIH, Bethesda, MD, 10 Center Drive Building 10, Room 7S257 Bethesda, MD 20892, USA
| | - Charles P. Venditti
- National Human Genome Research Institute, NIH, Bethesda, MD, 10 Center Drive Building 10, Room 7S257 Bethesda, MD 20892, USA
| |
Collapse
|
53
|
Metabolic and molecular signatures of improved growth in Atlantic salmon ( Salmo salar) fed surplus levels of methionine, folic acid, vitamin B 6 and B 12 throughout smoltification. Br J Nutr 2022; 127:1289-1302. [PMID: 34176547 DOI: 10.1017/s0007114521002336] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A moderate surplus of the one carbon (1C) nutrients methionine, folic acid, vitamin B6 and B12 above dietary recommendations for Atlantic salmon has shown to improve growth and reduce hepatosomatic index in the on-growing saltwater period when fed throughout smoltification. Metabolic properties and molecular mechanisms determining the improved growth are unexplored. Here, we investigate metabolic and transcriptional signatures in skeletal muscle taken before and after smoltification to acquire deeper insight into pathways and possible nutrient–gene interactions. A control feed (Ctrl) or 1C nutrient surplus feed (1C+) were fed to Atlantic salmon 6 weeks prior to smoltification until 3 months after saltwater transfer. Both metabolic and gene expression signatures revealed significant 1C nutrient-dependent changes already at pre-smolt, but differences intensified when analysing post-smolt muscle. Transcriptional differences revealed lower expression of genes related to translation, growth and amino acid metabolisation in post-smolt muscle when fed additional 1C nutrients. The 1C+ group showed less free amino acid and putrescine levels, and higher methionine and glutathione amounts in muscle. For Ctrl muscle, the overall metabolic profile suggests a lower amino acid utilisation for protein synthesis, and increased methionine metabolisation in polyamine and redox homoeostasis, whereas transcription changes are indicative of compensatory growth regulation at local tissue level. These findings point to fine-tuned nutrient–gene interactions fundamental for improved growth capacity through better amino acid utilisation for protein accretion when salmon was fed additional 1C nutrients throughout smoltification. It also highlights potential nutritional programming strategies on improved post-smolt growth through 1C+ supplementation before and throughout smoltification.
Collapse
|
54
|
Zheng W. The Zinc-Dependent HDACs: Non-Histone Substrates and Catalytic Deacylation Beyond Deacetylation. Mini Rev Med Chem 2022; 22:2478-2485. [PMID: 35362374 DOI: 10.2174/1389557522666220330144151] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/24/2021] [Accepted: 02/16/2022] [Indexed: 11/22/2022]
Abstract
Protein lysine side chain Nε-acylation and -deacylation play an important regulatory role in both epigenetic and non-epigenetic processes via a structural and functional regulation of histone and non-histone proteins. The enzymes catalyzing deacylation were traditionally termed as the histone deacetylases (HDACs) since histone proteins were the first substrates identified and the deacetylation was the first type of deacylation identified. However, it has now been known that, besides the seven sirtuins (i.e. SIRT1-7, theβ-nicotinamide adenine dinucleotide (β-NAD+)-dependent class III HDACs), several of the other eleven members of the mammalian HDAC family (i.e. HDAC1-11, the zinc-dependent classes I, II, and IV HDACs) have been found to also accept non-histone proteins as native substrates and to also catalyze the removal of the acyl groups other than acetyl, such as formyl, crotonyl, and myristoyl. In this mini-review, I will first integrate the current literature coverage on the non-histone substrates and the catalytic deacylation (beyond deacetylation) of the zinc-dependent HDACs, which will be followed by an address on the functional interrogation and pharmacological exploitation (inhibitor design) of the zinc-dependent HDAC-catalyzed deacylation (beyond deacetylation).
Collapse
Affiliation(s)
- Weiping Zheng
- School of Pharmacy, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu Province, P. R. China
| |
Collapse
|
55
|
Lavin KM, Coen PM, Baptista LC, Bell MB, Drummer D, Harper SA, Lixandrão ME, McAdam JS, O’Bryan SM, Ramos S, Roberts LM, Vega RB, Goodpaster BH, Bamman MM, Buford TW. State of Knowledge on Molecular Adaptations to Exercise in Humans: Historical Perspectives and Future Directions. Compr Physiol 2022; 12:3193-3279. [PMID: 35578962 PMCID: PMC9186317 DOI: 10.1002/cphy.c200033] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
For centuries, regular exercise has been acknowledged as a potent stimulus to promote, maintain, and restore healthy functioning of nearly every physiological system of the human body. With advancing understanding of the complexity of human physiology, continually evolving methodological possibilities, and an increasingly dire public health situation, the study of exercise as a preventative or therapeutic treatment has never been more interdisciplinary, or more impactful. During the early stages of the NIH Common Fund Molecular Transducers of Physical Activity Consortium (MoTrPAC) Initiative, the field is well-positioned to build substantially upon the existing understanding of the mechanisms underlying benefits associated with exercise. Thus, we present a comprehensive body of the knowledge detailing the current literature basis surrounding the molecular adaptations to exercise in humans to provide a view of the state of the field at this critical juncture, as well as a resource for scientists bringing external expertise to the field of exercise physiology. In reviewing current literature related to molecular and cellular processes underlying exercise-induced benefits and adaptations, we also draw attention to existing knowledge gaps warranting continued research effort. © 2021 American Physiological Society. Compr Physiol 12:3193-3279, 2022.
Collapse
Affiliation(s)
- Kaleen M. Lavin
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Center for Human Health, Resilience, and Performance, Institute for Human and Machine Cognition, Pensacola, Florida, USA
| | - Paul M. Coen
- Translational Research Institute for Metabolism and Diabetes, Advent Health, Orlando, Florida, USA
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, USA
| | - Liliana C. Baptista
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Medicine, Division of Gerontology, Geriatrics and Palliative Care, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Margaret B. Bell
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Devin Drummer
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Sara A. Harper
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Medicine, Division of Gerontology, Geriatrics and Palliative Care, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Manoel E. Lixandrão
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jeremy S. McAdam
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Samia M. O’Bryan
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Sofhia Ramos
- Translational Research Institute for Metabolism and Diabetes, Advent Health, Orlando, Florida, USA
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, USA
| | - Lisa M. Roberts
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Medicine, Division of Gerontology, Geriatrics and Palliative Care, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Rick B. Vega
- Translational Research Institute for Metabolism and Diabetes, Advent Health, Orlando, Florida, USA
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, USA
| | - Bret H. Goodpaster
- Translational Research Institute for Metabolism and Diabetes, Advent Health, Orlando, Florida, USA
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, USA
| | - Marcas M. Bamman
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Center for Human Health, Resilience, and Performance, Institute for Human and Machine Cognition, Pensacola, Florida, USA
| | - Thomas W. Buford
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Medicine, Division of Gerontology, Geriatrics and Palliative Care, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
56
|
Trejo-Zambrano MI, Gómez-Bañuelos E, Andrade F. Redox-Mediated Carbamylation As a Hapten Model Applied to the Origin of Antibodies to Modified Proteins in Rheumatoid Arthritis. Antioxid Redox Signal 2022; 36:389-409. [PMID: 33906423 PMCID: PMC8982126 DOI: 10.1089/ars.2021.0064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 04/16/2021] [Indexed: 12/23/2022]
Abstract
Significance: The production of antibodies to posttranslationally modified antigens is a hallmark in rheumatoid arthritis (RA). In particular, the presence of citrullination-associated antibodies, targeting both citrullinating enzymes (the peptidylarginine deiminases [PADs]) and citrullinated antigens (anticitrullinated protein antibodies [ACPAs]), has suggested that dysregulated citrullination is relevant for disease pathogenesis. Antibodies to other protein modifications with physicochemical similarities to citrulline, such as carbamylated-lysine and acetylated-lysine, have also gained interest in RA, but their mechanistic relation to ACPAs remains unclear. Recent Advances: Recent studies using RA-derived monoclonal antibodies have found that ACPAs are cross-reactive to carbamylated and acetylated peptides, challenging our understanding of the implications of such cross-reactivity. Critical Issues: Analogous to the classic antibody response to chemically modified proteins, we examine the possibility that antibodies to modified proteins in RA are more likely to resemble antihapten antibodies rather than autoantibodies. This potential shift in the autoantibody paradigm in RA offers the opportunity to explore new mechanisms involved in the origin and cross-reactivity of pathogenic antibodies in RA. In contrast to citrullination, carbamylation is a chemical modification associated with oxidative stress, it is highly immunogenic, and is considered in the group of posttranslational modification-derived products. We discuss the possibility that carbamylated proteins are antigenic drivers of cross-reacting antihapten antibodies that further create the ACPA response, and that ACPAs may direct the production of antibodies to PAD enzymes. Future Directions: Understanding the complexity of autoantibodies in RA is critical to develop tools to clearly define their origin, identify drivers of disease propagation, and develop novel therapeutics. Antioxid. Redox Signal. 36, 389-409.
Collapse
Affiliation(s)
| | - Eduardo Gómez-Bañuelos
- Division of Rheumatology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Felipe Andrade
- Division of Rheumatology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
57
|
Nolan KP, Font J, Sresutharsan A, Gotsbacher MP, Brown CJM, Ryan RM, Codd R. Acetyl-CoA-Mediated Post-Biosynthetic Modification of Desferrioxamine B Generates N- and N- O-Acetylated Isomers Controlled by a pH Switch. ACS Chem Biol 2022; 17:426-437. [PMID: 35015506 DOI: 10.1021/acschembio.1c00879] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Biosynthesis of the hydroxamic acid siderophore desferrioxamine D1 (DFOD1, 6), which is the N-acetylated analogue of desferrioxamine B (DFOB, 5), has been delineated. Enzyme-independent Ac-CoA-mediated N-acetylation of 5 produced 6, in addition to three constitutional isomers containing an N-O-acetyl group installed at either one of the three hydroxamic acid groups of 5. The formation of N-Ac-DFOB (DFOD1, 6) and the composite of N-O-acetylated isomers N-O-Ac-DFOB[001] (6a), N-O-Ac-DFOB[010] (6b), and N-O-Ac-DFOB[100] (6c) (defined as the N-O-Ac motif positioned within the terminal amine, internal, or N-acetylated region of 5, respectively), was pH-dependent, with 6a-6c dominant at pH < 8.5 and 6 dominant at pH > 8.5. The trend in the pH dependence was consistent with the pKa values of the NH3+ (pKa ∼ 10) and N-OH (pKa ∼ 8.5-9) groups in 5. The N- and N-O-acetyl motifs can be conceived as a post-biosynthetic modification (PBM) of a nonproteinaceous secondary metabolite, akin to a post-translational modification (PTM) of a protein. The pH-labile N-O-acetyl group could act as a reversible switch to modulate the properties and functions of secondary metabolites, including hydroxamic acid siderophores. An alternative (most likely minor) biosynthetic pathway for 6 showed that the nonribosomal peptide synthetase-independent siderophore synthetase DesD was competent in condensing N'-acetyl-N-succinyl-N-hydroxy-1,5-diaminopentane (N'-Ac-SHDP, 7) with the dimeric hydroxamic acid precursor (AHDP-SHDP, 4) native to 5 biosynthesis to generate 6. The strategy of diversifying protein structure and function using PTMs could be paralleled in secondary metabolites with the use of PBMs.
Collapse
Affiliation(s)
- Kate P. Nolan
- School of Medical Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Josep Font
- School of Medical Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Athavan Sresutharsan
- School of Medical Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Michael P. Gotsbacher
- School of Medical Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Christopher J. M. Brown
- School of Medical Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Renae M. Ryan
- School of Medical Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Rachel Codd
- School of Medical Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
58
|
Teodoro JS, Da Silva RT, Machado IF, Panisello-Roselló A, Roselló-Catafau J, Rolo AP, Palmeira CM. Shaping of Hepatic Ischemia/Reperfusion Events: The Crucial Role of Mitochondria. Cells 2022; 11:688. [PMID: 35203337 PMCID: PMC8870414 DOI: 10.3390/cells11040688] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/09/2022] [Accepted: 02/11/2022] [Indexed: 12/10/2022] Open
Abstract
Hepatic ischemia reperfusion injury (HIRI) is a major hurdle in many clinical scenarios, including liver resection and transplantation. Various studies and countless surgical events have led to the observation of a strong correlation between HIRI induced by liver transplantation and early allograft-dysfunction development. The detrimental impact of HIRI has driven the pursuit of new ways to alleviate its adverse effects. At the core of HIRI lies mitochondrial dysfunction. Various studies, from both animal models and in clinical settings, have clearly shown that mitochondrial function is severely hampered by HIRI and that its preservation or restoration is a key indicator of successful organ recovery. Several strategies have been thus implemented throughout the years, targeting mitochondrial function. This work briefly discusses some the most utilized approaches, ranging from surgical practices to pharmacological interventions and highlights how novel strategies can be investigated and implemented by intricately discussing the way mitochondrial function is affected by HIRI.
Collapse
Affiliation(s)
- João S. Teodoro
- MitoLab, Department of Life Sciences, University of Coimbra, 3000 Coimbra, Portugal; (J.S.T.); (A.P.R.)
- MitoLab, Mitochondria, Metabolism and Disease Group, Center for Neurosciences and Cell Biology, Faculdade de Medicina, University of Coimbra, 3000 Coimbra, Portugal; (R.T.D.S.); (I.F.M.)
- IIIUC–Institute of Interdisciplinary Research, University of Coimbra, Pólo II da Universidade de Coimbra, 3000 Coimbra, Portugal
| | - Rui T. Da Silva
- MitoLab, Mitochondria, Metabolism and Disease Group, Center for Neurosciences and Cell Biology, Faculdade de Medicina, University of Coimbra, 3000 Coimbra, Portugal; (R.T.D.S.); (I.F.M.)
- Experimental Pathology Department, Institute of Biomedical Research of Barcelona (IIBB), CSIC-IDIBAPS, 08036 Barcelona, Spain; (A.P.-R.); (J.R.-C.)
| | - Ivo F. Machado
- MitoLab, Mitochondria, Metabolism and Disease Group, Center for Neurosciences and Cell Biology, Faculdade de Medicina, University of Coimbra, 3000 Coimbra, Portugal; (R.T.D.S.); (I.F.M.)
- IIIUC–Institute of Interdisciplinary Research, University of Coimbra, Pólo II da Universidade de Coimbra, 3000 Coimbra, Portugal
| | - Arnau Panisello-Roselló
- Experimental Pathology Department, Institute of Biomedical Research of Barcelona (IIBB), CSIC-IDIBAPS, 08036 Barcelona, Spain; (A.P.-R.); (J.R.-C.)
| | - Joan Roselló-Catafau
- Experimental Pathology Department, Institute of Biomedical Research of Barcelona (IIBB), CSIC-IDIBAPS, 08036 Barcelona, Spain; (A.P.-R.); (J.R.-C.)
| | - Anabela P. Rolo
- MitoLab, Department of Life Sciences, University of Coimbra, 3000 Coimbra, Portugal; (J.S.T.); (A.P.R.)
- MitoLab, Mitochondria, Metabolism and Disease Group, Center for Neurosciences and Cell Biology, Faculdade de Medicina, University of Coimbra, 3000 Coimbra, Portugal; (R.T.D.S.); (I.F.M.)
| | - Carlos M. Palmeira
- MitoLab, Department of Life Sciences, University of Coimbra, 3000 Coimbra, Portugal; (J.S.T.); (A.P.R.)
- MitoLab, Mitochondria, Metabolism and Disease Group, Center for Neurosciences and Cell Biology, Faculdade de Medicina, University of Coimbra, 3000 Coimbra, Portugal; (R.T.D.S.); (I.F.M.)
| |
Collapse
|
59
|
Suppressive GLI2 fragment enhances liver metastasis in colorectal cancer. Oncotarget 2022; 13:122-135. [PMID: 35047127 PMCID: PMC8763325 DOI: 10.18632/oncotarget.28170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 12/20/2021] [Indexed: 01/05/2023] Open
Abstract
Linoleic acid (LA) has been shown to cause inflammation and promote development of colorectal cancer (CRC). Moreover, many literatures show that LA is associated with cancer metastasis. Metastatic cancer cells have high stemness, suggesting that LA might affect the stemness of cancer cells. In this study, we examined the effect of LA on the hedgehog system, which affects cancer stemness. In CT26 cells, LA treatment induced the expression of sonic hedgehog (Shh); the signal transduction factor, and glioma-associated oncogene homolog (Gli)2, whereas the expression of SRY-box transcription factor (Sox)17 was suppressed. Furthermore, LA reduced GLI2 ubiquitination, resulting in an increase in the N-terminal fragment of GLI2, known as suppressive GLI2, produced by cleavage of GLI2. LA-induced cleaved GLI2 was also detected in Colo320 and HT29 human CRC cells. Knocking down Gli2 abrogated the LA-mediated suppression of Sox17 expression. These results suggest that LA promotes tumor cell stemness by increasing of suppressive GLI2 fragments via GLI2 modification. In mouse liver metastasis models, LA enhanced metastasis with production of the suppressive GLI2 fragments in CT26 and HT29 cells, whereas knockdown of GLI2 abrogated LA-induced metastatic activity. In human CRCs, the cases with liver metastasis showed the suppressive GLI2 fragments. This study provides mechanistic insights into LA-induced stemness in colon cancer cells. This finding suggests that dietary intake of LA might increase the stemness of cancer cells and enhance metastatic activity of the cancer.
Collapse
|
60
|
Ma Q, Zhang Q, Chen Y, Yu S, Huang J, Liu Y, Gong T, Li Y, Zou J. Post-translational Modifications in Oral Bacteria and Their Functional Impact. Front Microbiol 2021; 12:784923. [PMID: 34925293 PMCID: PMC8674579 DOI: 10.3389/fmicb.2021.784923] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/02/2021] [Indexed: 02/05/2023] Open
Abstract
Oral bacteria colonize the oral cavity, surrounding complex and variable environments. Post-translational modifications (PTMs) are an efficient biochemical mechanism across all domains of life. Oral bacteria could depend on PTMs to quickly regulate their metabolic processes in the face of external stimuli. In recent years, thanks to advances in enrichment strategies, the number and variety of PTMs that have been identified and characterized in oral bacteria have increased. PTMs, covalently modified by diverse enzymes, occur in amino acid residues of the target substrate, altering the functions of proteins involved in different biological processes. For example, Ptk1 reciprocally phosphorylates Php1 on tyrosine residues 159 and 161, required for Porphyromonas gingivalis EPS production and community development with the antecedent oral biofilm constituent Streptococcus gordonii, and in turn Php1 dephosphorylates Ptk1 and rapidly causes the conversion of Ptk1 to a state of low tyrosine phosphorylation. Protein acetylation is also widespread in oral bacteria. In the acetylome of Streptococcus mutans, 973 acetylation sites were identified in 445 proteins, accounting for 22.7% of overall proteins involving virulence factors and pathogenic processes. Other PTMs in oral bacteria include serine or threonine glycosylation in Cnm involving intracerebral hemorrhage, arginine citrullination in peptidylarginine deiminases (PADs), leading to inflammation, lysine succinylation in P. gingivalis virulence factors (gingipains, fimbriae, RagB, and PorR), and cysteine glutathionylation in thioredoxin-like protein (Tlp) in response to oxidative stress in S. mutans. Here we review oral bacterial PTMs, focusing on acetylation, phosphorylation, glycosylation, citrullination, succinylation, and glutathionylation, and corresponding modifying enzymes. We describe different PTMs in association with some examples, discussing their potential role and function in oral bacteria physiological processes and regulatory networks. Identification and characterization of PTMs not only contribute to understanding their role in oral bacterial virulence, adaption, and resistance but will open new avenues to treat oral infectious diseases.
Collapse
Affiliation(s)
- Qizhao Ma
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qiong Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yang Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shuxing Yu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jun Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yaqi Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Tao Gong
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuqing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jing Zou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
61
|
Moreno-Sánchez R, Gallardo-Pérez JC, Pacheco-Velazquez SC, Robledo-Cadena DX, Rodríguez-Enríquez S, Encalada R, Saavedra E, Marín-Hernández Á. Regulatory role of acetylation on enzyme activity and fluxes of energy metabolism pathways. Biochim Biophys Acta Gen Subj 2021; 1865:130021. [PMID: 34597724 DOI: 10.1016/j.bbagen.2021.130021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/20/2021] [Accepted: 09/26/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND Most of the enzymes involved in the central carbon metabolism are acetylated in Lys residues. It has been claimed that this covalent modification represents a novel regulatory mechanism by which both enzyme/transporter activities and pathway fluxes can be modulated. METHODS To establish which enzymes are regulated by acetylation, a systematic experimental analysis of activities and acetylation profile for several energy metabolism enzymes and pathway fluxes was undertaken in cells and mitochondria. RESULTS The majority of the glycolytic and neighbor enzymes as well as mitochondrial enzymes indeed showed Lys-acetylation, with GLUT1, HPI, CS, ATP synthase displaying comparatively lower acetylation patterns. The incubation of cytosolic and mitochondrial fractions with recombinant Sirt-3 produced lower acetylation signals, whereas incubation with acetyl-CoA promoted protein acetylation. Significant changes in acetylation levels of MDH and IDH-2 from rat liver mitochondria revealed no change in their activities. Similar observations were attained for the cytosolic enzymes from AS-30D and HeLa cells. A minor but significant (23%) increase in the AAT-MDH complex activity induced by acetylation was observed. To examine this question further, AS-30D and HeLa cells were treated with nicotinamide and valproic acid. These compounds promoted changes in the acetylation patterns of glycolytic proteins, although their activities and the glycolytic flux (as well as the OxPhos flux) revealed no clear correlation with acetylation. CONCLUSION Acetylation seems to play no predominant role in the control of energy metabolism enzyme activities and pathway fluxes. GENERAL SIGNIFICANCE The physiological function of protein acetylation on energy metabolism pathways remains to be elucidated.
Collapse
Affiliation(s)
- Rafael Moreno-Sánchez
- Departamento de Bioquímica, Instituto Nacional de Cardiología, Mexico City 14080, Mexico
| | | | | | | | | | - Rusely Encalada
- Departamento de Bioquímica, Instituto Nacional de Cardiología, Mexico City 14080, Mexico
| | - Emma Saavedra
- Departamento de Bioquímica, Instituto Nacional de Cardiología, Mexico City 14080, Mexico
| | - Álvaro Marín-Hernández
- Departamento de Bioquímica, Instituto Nacional de Cardiología, Mexico City 14080, Mexico.
| |
Collapse
|
62
|
Moriel-Carretero M. The Many Faces of Lipids in Genome Stability (and How to Unmask Them). Int J Mol Sci 2021; 22:12930. [PMID: 34884734 PMCID: PMC8657548 DOI: 10.3390/ijms222312930] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/12/2021] [Accepted: 11/26/2021] [Indexed: 12/15/2022] Open
Abstract
Deep efforts have been devoted to studying the fundamental mechanisms ruling genome integrity preservation. A strong focus relies on our comprehension of nucleic acid and protein interactions. Comparatively, our exploration of whether lipids contribute to genome homeostasis and, if they do, how, is severely underdeveloped. This disequilibrium may be understood in historical terms, but also relates to the difficulty of applying classical lipid-related techniques to a territory such as a nucleus. The limited research in this domain translates into scarce and rarely gathered information, which with time further discourages new initiatives. In this review, the ways lipids have been demonstrated to, or very likely do, impact nuclear transactions, in general, and genome homeostasis, in particular, are explored. Moreover, a succinct yet exhaustive battery of available techniques is proposed to tackle the study of this topic while keeping in mind the feasibility and habits of "nucleus-centered" researchers.
Collapse
Affiliation(s)
- María Moriel-Carretero
- Centre de Recherche en Biologie Cellulaire de Montpellier (CRBM), Université de Montpellier, Centre National de la Recherche Scientifique, CEDEX 5, 34293 Montpellier, France
| |
Collapse
|
63
|
Wang Z, Wang D, Jiang K, Guo Y, Li Z, Jiang R, Han R, Li G, Tian Y, Li H, Kang X, Liu X. A Comprehensive Proteome and Acetyl-Proteome Atlas Reveals Molecular Mechanisms Adapting to the Physiological Changes From Pre-laying to Peak-Laying Stage in Liver of Hens ( Gallus gallus). Front Vet Sci 2021; 8:700669. [PMID: 34746273 PMCID: PMC8566343 DOI: 10.3389/fvets.2021.700669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 09/15/2021] [Indexed: 01/12/2023] Open
Abstract
Along with sexual maturity, the liver undergoes numerous metabolic processes to adapt the physiological changes associated with egg-laying in hens. However, mechanisms regulating the processes were unclear. In this study, comparative hepatic proteome and acetyl-proteome between pre- and peak-laying hens were performed. The results showed that the upregulated proteins were mainly related to lipid and protein biosynthesis, while the downregulated proteins were mainly involved in pyruvate metabolism and were capable of inhibiting gluconeogenesis and lactate synthesis in peak-laying hens compared with that in pre-laying hens. With unchanged expression level, the significant acetylated proteins were largely functioned on activation of polyunsaturated fatty acid oxidation in peroxisome, while the significant deacetylated proteins were principally used to elevate medium and short fatty acid oxidation in mitochondria and oxidative phosphorylation. Most of the proteins which involved in gluconeogenesis, lipid transport, and detoxification were influenced by both protein expression and acetylation. Taken overall, a novel mechanism wherein an alternate source of acetyl coenzyme A was produced by activation of FA oxidation and pyruvate metabolism to meet the increased energy demand and lipid synthesis in liver of laying hens was uncovered. This study provides new insights into molecular mechanism of adaptation to physiological changes in liver of laying hens.
Collapse
Affiliation(s)
- Zhang Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Dandan Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Keren Jiang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Yulong Guo
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Zhuanjian Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China.,Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, China.,International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou, China
| | - Ruirui Jiang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China.,Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, China.,International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou, China
| | - Ruili Han
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China.,Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, China.,International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou, China
| | - Guoxi Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China.,Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, China.,International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou, China
| | - Yadong Tian
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China.,Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, China.,International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou, China
| | - Hong Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China.,Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, China.,International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou, China
| | - Xiangtao Kang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China.,Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, China.,International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou, China
| | - Xiaojun Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China.,Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, China.,International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou, China
| |
Collapse
|
64
|
Lammers M. Post-translational Lysine Ac(et)ylation in Bacteria: A Biochemical, Structural, and Synthetic Biological Perspective. Front Microbiol 2021; 12:757179. [PMID: 34721364 PMCID: PMC8556138 DOI: 10.3389/fmicb.2021.757179] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 09/10/2021] [Indexed: 12/21/2022] Open
Abstract
Ac(et)ylation is a post-translational modification present in all domains of life. First identified in mammals in histones to regulate RNA synthesis, today it is known that is regulates fundamental cellular processes also in bacteria: transcription, translation, metabolism, cell motility. Ac(et)ylation can occur at the ε-amino group of lysine side chains or at the α-amino group of a protein. Furthermore small molecules such as polyamines and antibiotics can be acetylated and deacetylated enzymatically at amino groups. While much research focused on N-(ε)-ac(et)ylation of lysine side chains, much less is known about the occurrence, the regulation and the physiological roles on N-(α)-ac(et)ylation of protein amino termini in bacteria. Lysine ac(et)ylation was shown to affect protein function by various mechanisms ranging from quenching of the positive charge, increasing the lysine side chains’ size affecting the protein surface complementarity, increasing the hydrophobicity and by interfering with other post-translational modifications. While N-(ε)-lysine ac(et)ylation was shown to be reversible, dynamically regulated by lysine acetyltransferases and lysine deacetylases, for N-(α)-ac(et)ylation only N-terminal acetyltransferases were identified and so far no deacetylases were discovered neither in bacteria nor in mammals. To this end, N-terminal ac(et)ylation is regarded as being irreversible. Besides enzymatic ac(et)ylation, recent data showed that ac(et)ylation of lysine side chains and of the proteins N-termini can also occur non-enzymatically by the high-energy molecules acetyl-coenzyme A and acetyl-phosphate. Acetyl-phosphate is supposed to be the key molecule that drives non-enzymatic ac(et)ylation in bacteria. Non-enzymatic ac(et)ylation can occur site-specifically with both, the protein primary sequence and the three dimensional structure affecting its efficiency. Ac(et)ylation is tightly controlled by the cellular metabolic state as acetyltransferases use ac(et)yl-CoA as donor molecule for the ac(et)ylation and sirtuin deacetylases use NAD+ as co-substrate for the deac(et)ylation. Moreover, the accumulation of ac(et)yl-CoA and acetyl-phosphate is dependent on the cellular metabolic state. This constitutes a feedback control mechanism as activities of many metabolic enzymes were shown to be regulated by lysine ac(et)ylation. Our knowledge on lysine ac(et)ylation significantly increased in the last decade predominantly due to the huge methodological advances that were made in fields such as mass-spectrometry, structural biology and synthetic biology. This also includes the identification of additional acylations occurring on lysine side chains with supposedly different regulatory potential. This review highlights recent advances in the research field. Our knowledge on enzymatic regulation of lysine ac(et)ylation will be summarized with a special focus on structural and mechanistic characterization of the enzymes, the mechanisms underlying non-enzymatic/chemical ac(et)ylation are explained, recent technological progress in the field are presented and selected examples highlighting the important physiological roles of lysine ac(et)ylation are summarized.
Collapse
Affiliation(s)
- Michael Lammers
- Synthetic and Structural Biochemistry, Institute for Biochemistry, University of Greifswald, Greifswald, Germany
| |
Collapse
|
65
|
Subba P, Prasad TSK. Protein Crotonylation Expert Review: A New Lens to Take Post-Translational Modifications and Cell Biology to New Heights. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2021; 25:617-625. [PMID: 34582706 DOI: 10.1089/omi.2021.0132] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Genome regulation, temporal and spatial variations in cell function, continues to puzzle and interest life scientists who aim to unravel the molecular basis of human health and disease, not to mention plant biology and ecosystem diversity. Despite important advances in epigenomics and protein post-translational modifications over the past decade, there is a need for new conceptual lenses to understand biological mechanisms that can help unravel the fundamental regulatory questions in genomes and the cell. To these ends, lys crotonylation (Kcr) is a reversible protein modification catalyzed by protein crotonyl transferases and decrotonylases. First identified on histones, Kcr regulates cellular processes at the chromatin level. Research thus far has revealed that Kcr marks promoter sites of active genes and potential enhancers. Eventually, Kcr on a number of nonhistone proteins was reported. The abundance of Kcr on ribosomal and myofilament proteins indicates its functional roles in protein synthesis and muscle contraction. Kcr has also been associated with pluripotency, spermiogenesis, and DNA repair. In plants, large-scale mass spectrometry-based experiments validated the roles of Kcr in photosynthesis. In this expert review, we present the latest thinking and findings on lys crotonylation with an eye to regulation of cell biology. We discuss the enrichment techniques, putative biological functions, and challenges associated with studying this protein modification with vast biological implications. Finally, we reflect on the future outlook about the broader relevance of Kcr in animals, microbes, and plant species.
Collapse
Affiliation(s)
- Pratigya Subba
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | | |
Collapse
|
66
|
Cutolo G, Shankar SN, Pratt MR. Your mother was right, washing matters: An alkyne-analog of ibuprofen reveals unwanted reactivity of aromatic compounds with proteins during copper-catalyzed click chemistry. Bioorg Med Chem Lett 2021; 48:128260. [PMID: 34265422 DOI: 10.1016/j.bmcl.2021.128260] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/06/2021] [Accepted: 07/08/2021] [Indexed: 10/20/2022]
Abstract
Bioorthogonal chemistry, in particular the copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC), has enabled the robust identification of covalent protein targets of probes and drugs. Ibuprofen is commonly used pain and fever reducer and is sold as an enantiomeric racemate. Interestingly, the stereoisomers can be enzymatically converted through an ibuprofen-CoA thioester intermediate, which might non-specifically react with protein nucleophiles. Here, we use an alkyne-analog of ibuprofen to make two discoveries. First, we find that ibuprofen likely does not result in notable chemical labeling of proteins. However, we secondly find that aromatic compounds can react with proteins during the CuAAC reaction unless they are appropriately washed out of the mixture. This second discovery of false positive labeling has important technical implications for the application of this approach.
Collapse
Affiliation(s)
- Giuliano Cutolo
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, United States
| | - Sahiti N Shankar
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, United States
| | - Matthew R Pratt
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, United States; Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, United States.
| |
Collapse
|
67
|
Hu X, Wang D, Sun L, Gao Y, Zhou D, Tong X, Li J, Lin H, Qing Y, Du S, Yang X, Jiang J, Yan G, Wei Z, Wang Q, Zhang J, He L, Wan C. Disturbed mitochondrial acetylation in accordance with the availability of acetyl groups in hepatocellular carcinoma. Mitochondrion 2021; 60:150-159. [PMID: 34375734 DOI: 10.1016/j.mito.2021.08.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 07/06/2021] [Accepted: 08/05/2021] [Indexed: 12/29/2022]
Abstract
As an essential post-translational modification, acetylation participates in various cellular processes and shows aberrances during tumorigenesis. Owing to its modification substrate, acetyl-CoA, acetylation is postulated as a depot for acetyl groups and evolve to build a connection between epigenetics and metabolism. Here we depict a distinct acetylome atlas of hepatocellular carcinoma from the perspectives of both protein acetylation and acetyl-CoA metabolism. We found that tumor acetylome demonstrated a compartment-dependent alteration that the acetylation level of mitochondrial proteins tended to be decreased while nuclear proteins were highly acetylated. In addition, elevated expression of ATP-citrate synthase (ACLY) was observed in tumors, which would facilitate histone acetylation by transporting mitochondrial acetyl coenzyme A to the nucleus. A hypothetical model of the oncogenic acetylome was proposed that growing demands for histone acetylation in tumor cells would drive the relocalization of acetyl-CoA to the nucleus, which may contribute to the global deacetylation of mitochondrial proteins to support the nuclear acetyl-CoA pool in an ACLY-dependent manner. Our findings are thought-provoking on the potential linkage between epigenetics and metabolism in the progression of tumorigenesis.
Collapse
Affiliation(s)
- Xiaowen Hu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, China
| | - Dandan Wang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, China
| | - Liya Sun
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, China
| | - Yan Gao
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, China
| | - Daizhan Zhou
- Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai 200135, China; Institute of Medical Genetics, Tongji University, Shanghai 200331, China
| | - Xuemei Tong
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jing Li
- Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hui Lin
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, China
| | - Ying Qing
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, China
| | - Shujiao Du
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, China
| | - Xuhan Yang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, China
| | - Jie Jiang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, China
| | - Guoquan Yan
- Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Zhiyun Wei
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, China; Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, HMS Initiative for RNA Medicine, Boston, MA 02115, USA
| | - Qingyu Wang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, China
| | - Juan Zhang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, China
| | - Lin He
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, China
| | - Chunling Wan
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, China.
| |
Collapse
|
68
|
Somemura S, Kumai T, Yatabe K, Sasaki C, Fujiya H, Niki H, Yudoh K. Physiologic Mechanical Stress Directly Induces Bone Formation by Activating Glucose Transporter 1 (Glut 1) in Osteoblasts, Inducing Signaling via NAD+-Dependent Deacetylase (Sirtuin 1) and Runt-Related Transcription Factor 2 (Runx2). Int J Mol Sci 2021; 22:9070. [PMID: 34445787 PMCID: PMC8396442 DOI: 10.3390/ijms22169070] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 12/23/2022] Open
Abstract
Mechanical stress is an important factor affecting bone tissue homeostasis. We focused on the interactions among mechanical stress, glucose uptake via glucose transporter 1 (Glut1), and the cellular energy sensor sirtuin 1 (SIRT1) in osteoblast energy metabolism, since it has been recognized that SIRT1, an NAD+-dependent deacetylase, may function as a master regulator of the mechanical stress response as well as of cellular energy metabolism (glucose metabolism). In addition, it has already been demonstrated that SIRT1 regulates the activity of the osteogenic transcription factor runt-related transcription factor 2 (Runx2). The effects of mechanical loading on cellular activities and the expressions of Glut1, SIRT1, and Runx2 were evaluated in osteoblasts and chondrocytes in a 3D cell-collagen sponge construct. Compressive mechanical loading increased osteoblast activity. Mechanical loading also significantly increased the expression of Glut1, significantly decreased the expression of SIRT1, and significantly increased the expression of Runx2 in osteoblasts in comparison with non-loaded osteoblasts. Incubation with a Glut1 inhibitor blocked mechanical stress-induced changes in SIRT1 and Runx2 in osteoblasts. In contrast with osteoblasts, the expressions of Glut1, SIRT1, and Runx2 in chondrocytes were not affected by loading. Our present study indicated that mechanical stress induced the upregulation of Glut1 following the downregulation of SIRT1 and the upregulation of Runx2 in osteoblasts but not in chondrocytes. Since SIRT1 is known to negatively regulate Runx2 activity, a mechanical stress-induced downregulation of SIRT1 may lead to the upregulation of Runx2, resulting in osteoblast differentiation. Incubation with a Glut1 inhibitor the blocked mechanical stress-induced downregulation of SIRT1 following the upregulation of Runx2, suggesting that Glut1 is necessary to mediate the responses of SIRT1 and Runx2 to mechanical loading in osteoblasts.
Collapse
Affiliation(s)
- Shu Somemura
- Department of Sports Medicine, St. Marianna University School of Medicine, Sugao 2-16-1, Miyamae-ku, Kawasaki 216-8511, Japan; (S.S.); (K.Y.); (H.F.)
- Department of Orthopaedic Surgery, St. Marianna University School of Medicine, Sugao 2-16-1, Miyamae-ku, Kawasaki 216-8512, Japan; (T.K.); (H.N.)
| | - Takanori Kumai
- Department of Orthopaedic Surgery, St. Marianna University School of Medicine, Sugao 2-16-1, Miyamae-ku, Kawasaki 216-8512, Japan; (T.K.); (H.N.)
| | - Kanaka Yatabe
- Department of Sports Medicine, St. Marianna University School of Medicine, Sugao 2-16-1, Miyamae-ku, Kawasaki 216-8511, Japan; (S.S.); (K.Y.); (H.F.)
| | - Chizuko Sasaki
- Institute for Ultrastructural Morphology, St. Marianna University Graduate School of Medicine, Sugao 2-16-1, Miyamae-ku, Kawasaki 216-8512, Japan;
| | - Hiroto Fujiya
- Department of Sports Medicine, St. Marianna University School of Medicine, Sugao 2-16-1, Miyamae-ku, Kawasaki 216-8511, Japan; (S.S.); (K.Y.); (H.F.)
| | - Hisateru Niki
- Department of Orthopaedic Surgery, St. Marianna University School of Medicine, Sugao 2-16-1, Miyamae-ku, Kawasaki 216-8512, Japan; (T.K.); (H.N.)
| | - Kazuo Yudoh
- Department of Frontier Medicine, Institute of Medical Science, St. Marianna University School of Medicine, Sugao 2-16-1, Miyamae-ku, Kawasaki 216-8512, Japan
| |
Collapse
|
69
|
Blasl AT, Schulze S, Qin C, Graf LG, Vogt R, Lammers M. Post-translational lysine ac(et)ylation in health, ageing and disease. Biol Chem 2021; 403:151-194. [PMID: 34433238 DOI: 10.1515/hsz-2021-0139] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 06/18/2021] [Indexed: 12/13/2022]
Abstract
The acetylation/acylation (ac(et)ylation) of lysine side chains is a dynamic post-translational modification (PTM) regulating fundamental cellular processes with implications on the organisms' ageing process: metabolism, transcription, translation, cell proliferation, regulation of the cytoskeleton and DNA damage repair. First identified to occur on histones, later studies revealed the presence of lysine ac(et)ylation in organisms of all kingdoms of life, in proteins covering all essential cellular processes. A remarkable finding showed that the NAD+-dependent sirtuin deacetylase Sir2 has an impact on replicative lifespan in Saccharomyces cerevisiae suggesting that lysine acetylation has a direct role in the ageing process. Later studies identified sirtuins as mediators for beneficial effects of caloric/dietary restriction on the organisms' health- or lifespan. However, the molecular mechanisms underlying these effects are only incompletely understood. Progress in mass-spectrometry, structural biology, synthetic and semi-synthetic biology deepened our understanding of this PTM. This review summarizes recent developments in the research field. It shows how lysine ac(et)ylation regulates protein function, how it is regulated enzymatically and non-enzymatically, how a dysfunction in this post-translational machinery contributes to disease development. A focus is set on sirtuins and lysine acyltransferases as these are direct sensors and mediators of the cellular metabolic state. Finally, this review highlights technological advances to study lysine ac(et)ylation.
Collapse
Affiliation(s)
- Anna-Theresa Blasl
- Department Synthetic and Structural Biochemistry, Institute for Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, D-17487Greifswald, Germany
| | - Sabrina Schulze
- Department Synthetic and Structural Biochemistry, Institute for Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, D-17487Greifswald, Germany
| | - Chuan Qin
- Department Synthetic and Structural Biochemistry, Institute for Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, D-17487Greifswald, Germany
| | - Leonie G Graf
- Department Synthetic and Structural Biochemistry, Institute for Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, D-17487Greifswald, Germany
| | - Robert Vogt
- Department Synthetic and Structural Biochemistry, Institute for Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, D-17487Greifswald, Germany
| | - Michael Lammers
- Department Synthetic and Structural Biochemistry, Institute for Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, D-17487Greifswald, Germany
| |
Collapse
|
70
|
Ketema EB, Lopaschuk GD. Post-translational Acetylation Control of Cardiac Energy Metabolism. Front Cardiovasc Med 2021; 8:723996. [PMID: 34409084 PMCID: PMC8365027 DOI: 10.3389/fcvm.2021.723996] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 06/30/2021] [Indexed: 12/17/2022] Open
Abstract
Perturbations in myocardial energy substrate metabolism are key contributors to the pathogenesis of heart diseases. However, the underlying causes of these metabolic alterations remain poorly understood. Recently, post-translational acetylation-mediated modification of metabolic enzymes has emerged as one of the important regulatory mechanisms for these metabolic changes. Nevertheless, despite the growing reports of a large number of acetylated cardiac mitochondrial proteins involved in energy metabolism, the functional consequences of these acetylation changes and how they correlate to metabolic alterations and myocardial dysfunction are not clearly defined. This review summarizes the evidence for a role of cardiac mitochondrial protein acetylation in altering the function of major metabolic enzymes and myocardial energy metabolism in various cardiovascular disease conditions.
Collapse
Affiliation(s)
- Ezra B Ketema
- Department of Pediatrics, Cardiovascular Research Centre, University of Alberta, Edmonton, AB, Canada
| | - Gary D Lopaschuk
- Department of Pediatrics, Cardiovascular Research Centre, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
71
|
Koronowski KB, Greco CM, Huang H, Kim JK, Fribourgh JL, Crosby P, Mathur L, Ren X, Partch CL, Jang C, Qiao F, Zhao Y, Sassone-Corsi P. Ketogenesis impact on liver metabolism revealed by proteomics of lysine β-hydroxybutyrylation. Cell Rep 2021; 36:109487. [PMID: 34348140 PMCID: PMC8372761 DOI: 10.1016/j.celrep.2021.109487] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/03/2021] [Accepted: 07/14/2021] [Indexed: 01/20/2023] Open
Abstract
Ketone bodies are bioactive metabolites that function as energy substrates, signaling molecules, and regulators of histone modifications. β-hydroxybutyrate (β-OHB) is utilized in lysine β-hydroxybutyrylation (Kbhb) of histones, and associates with starvation-responsive genes, effectively coupling ketogenic metabolism with gene expression. The emerging diversity of the lysine acylation landscape prompted us to investigate the full proteomic impact of Kbhb. Global protein Kbhb is induced in a tissue-specific manner by a variety of interventions that evoke β-OHB. Mass spectrometry analysis of the β-hydroxybutyrylome in mouse liver revealed 891 sites of Kbhb within 267 proteins enriched for fatty acid, amino acid, detoxification, and one-carbon metabolic pathways. Kbhb inhibits S-adenosyl-L-homocysteine hydrolase (AHCY), a rate-limiting enzyme of the methionine cycle, in parallel with altered metabolite levels. Our results illuminate the role of Kbhb in hepatic metabolism under ketogenic conditions and demonstrate a functional consequence of this modification on a central metabolic enzyme.
Collapse
Affiliation(s)
- Kevin B Koronowski
- Center for Epigenetics and Metabolism, U1233 INSERM, Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA.
| | - Carolina M Greco
- Center for Epigenetics and Metabolism, U1233 INSERM, Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA.
| | - He Huang
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA; Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jin-Kwang Kim
- Department of Biological Chemistry, University of California, Irvine School of Medicine, Irvine, CA 92697, USA
| | - Jennifer L Fribourgh
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, CA 95064, USA; Center for Circadian Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Priya Crosby
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, CA 95064, USA; Center for Circadian Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Lavina Mathur
- Center for Epigenetics and Metabolism, U1233 INSERM, Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Xuelian Ren
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Carrie L Partch
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, CA 95064, USA; Center for Circadian Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Cholsoon Jang
- Center for Epigenetics and Metabolism, U1233 INSERM, Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Feng Qiao
- Department of Biological Chemistry, University of California, Irvine School of Medicine, Irvine, CA 92697, USA
| | - Yingming Zhao
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA
| | - Paolo Sassone-Corsi
- Center for Epigenetics and Metabolism, U1233 INSERM, Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| |
Collapse
|
72
|
Chuang K, Wang S, Hsu S, Wang L. Impact of bromodomain-containing protein 4 (BRD4) and intestine-specific homeobox (ISX) expression on the prognosis of patients with hepatocellular carcinoma' for better clarity. Cancer Med 2021; 10:5545-5556. [PMID: 34173348 PMCID: PMC8366091 DOI: 10.1002/cam4.4094] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/26/2021] [Accepted: 06/05/2021] [Indexed: 12/18/2022] Open
Abstract
Epigenetic regulation is important for cancer tumor metastasis and progression, including lung and liver cancer. However, the mechanism of epigenetic regulation in liver cancer leaves much to be discussed. According to a previous study, p300/CBP-associated factor (PCAF) mediated epithelial-mesenchymal transition (EMT) and promotes cancer metastasis by recruiting intestine-specific homeobox (ISX) and bromodomain-containing protein 4 (BRD4) in lung cancer. To figure out whether the three genes are also expressed in patients with hepatocellular carcinoma (HCC) or not, and their correlation with patients' outcome, BRD4, PCAF, and ISX messenger RNA (mRNA) expression levels in 377 patients with HCC were investigated using quantitative polymerase chain reaction and confocal fluorescence imaging. The correlation of the gene expression (PCAF, ISX, and BRD4) in liver cancer is also being investigated. Here, we show that the mRNA expression of PCAF, BRD4, and ISX in 377 paired specimens from patients with HCC, and the adjacent normal tissues exhibited a tumor-specific expression pattern, highly correlated with disease pathogenesis, patient survival time, progression stage, and poor prognosis. The results show that ISX and BRD4 can potentially be a target for improving the survival rate.
Collapse
Affiliation(s)
- Kai‐Ting Chuang
- Graduate Institute of MedicineCollege of MedicineKaohsiung Medical UniversityKaohsiungTaiwan
- School of Medicine, College of MedicineKaohsiung Medical UniversityKaohsiungTaiwan
| | - Shen‐Nien Wang
- Graduate Institute of MedicineCollege of MedicineKaohsiung Medical UniversityKaohsiungTaiwan
- Division of General and Digestive SurgeryDepartment of SurgeryKaohsiung Medical University HospitalKaohsiungTaiwan
- Department of SurgeryCollege of MedicineKaohsiung Medical University HospitalKaohsiungTaiwan
- School of Medicine, College of MedicineKaohsiung Medical UniversityKaohsiungTaiwan
| | - Shih‐Hsien Hsu
- Graduate Institute of MedicineCollege of MedicineKaohsiung Medical UniversityKaohsiungTaiwan
- Department of Medical ResearchKaohsiung Medical University HospitalKaohsiung Medical UniversityKaohsiungTaiwan
| | - Li‐Ting Wang
- Department of Life ScienceNational Taiwan Normal UniversityTaipeiTaiwan
- Center of Applied GenomicsKaohsiung Medical UniversityKaohsiungTaiwan
| |
Collapse
|
73
|
Peoples JN, Ghazal N, Duong DM, Hardin KR, Manning JR, Seyfried NT, Faundez V, Kwong JQ. Loss of the mitochondrial phosphate carrier SLC25A3 induces remodeling of the cardiac mitochondrial protein acylome. Am J Physiol Cell Physiol 2021; 321:C519-C534. [PMID: 34319827 DOI: 10.1152/ajpcell.00156.2021] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mitochondria are recognized as signaling organelles because, under stress, mitochondria can trigger various signaling pathways to coordinate the cell's response. The specific pathway(s) engaged by mitochondria in response to mitochondrial energy defects in vivo and in high-energy tissues like the heart are not fully understood. Here, we investigated cardiac pathways activated in response to mitochondrial energy dysfunction by studying mice with cardiomyocyte-specific loss of the mitochondrial phosphate carrier (SLC25A3), an established model that develops cardiomyopathy as a result of defective mitochondrial ATP synthesis. Mitochondrial energy dysfunction induced a striking pattern of acylome remodeling, with significantly increased post-translational acetylation and malonylation. Mass spectrometry-based proteomics further revealed that energy dysfunction-induced remodeling of the acetylome and malonylome preferentially impacts mitochondrial proteins. Acetylation and malonylation modified a highly interconnected interactome of mitochondrial proteins, and both modifications were present on the enzyme isocitrate dehydrogenase 2 (IDH2). Intriguingly, IDH2 activity was enhanced in SLC25A3-deleted mitochondria, and further study of IDH2 sites targeted by both acetylation and malonylation revealed that these modifications can have site-specific and distinct functional effects. Finally, we uncovered a novel crosstalk between the two modifications, whereby mitochondrial energy dysfunction-induced acetylation of sirtuin 5 (SIRT5), inhibited its function. Because SIRT5 is a mitochondrial deacylase with demalonylase activity, this finding suggests that acetylation can modulate the malonylome. Together, our results position acylations as an arm of the mitochondrial response to energy dysfunction and suggest a mechanism by which focal disruption to the energy production machinery can have an expanded impact on global mitochondrial function.
Collapse
Affiliation(s)
- Jessica N Peoples
- Division of Pediatric Cardiology, Department of Pediatrics, Emory University School of Medicine, and Children's Healthcare of Atlanta, Atlanta, GA, United States
| | - Nasab Ghazal
- Division of Pediatric Cardiology, Department of Pediatrics, Emory University School of Medicine, and Children's Healthcare of Atlanta, Atlanta, GA, United States
| | - Duc M Duong
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, United States
| | - Katherine R Hardin
- Graduate Program in Biochemistry, Cell and Developmental Biology, Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA, United States
| | - Janet R Manning
- Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Nicholas T Seyfried
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, United States
| | - Victor Faundez
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
| | - Jennifer Q Kwong
- Division of Pediatric Cardiology, Department of Pediatrics, Emory University School of Medicine, and Children's Healthcare of Atlanta, Atlanta, GA, United States.,Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
74
|
Aldosary M, Baselm S, Abdulrahim M, Almass R, Alsagob M, AlMasseri Z, Huma R, AlQuait L, Al‐Shidi T, Al‐Obeid E, AlBakheet A, Alahideb B, Alahaidib L, Qari A, Taylor RW, Colak D, AlSayed MD, Kaya N. SLC25A42-associated mitochondrial encephalomyopathy: Report of additional founder cases and functional characterization of a novel deletion. JIMD Rep 2021; 60:75-87. [PMID: 34258143 PMCID: PMC8260478 DOI: 10.1002/jmd2.12218] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 03/09/2021] [Accepted: 03/26/2021] [Indexed: 12/12/2022] Open
Abstract
SLC25A42 is the main transporter of coenzyme A (CoA) into mitochondria. To date, 15 individuals have been reported to have one of two bi-allelic homozygous missense variants in the SLC25A42 as the cause of mitochondrial encephalomyopathy, of which 14 of them were of Saudi origin and share the same founder variant, c.871A > G:p.Asn291Asp. The other subject was of German origin with a variant at canonical splice site, c.380 + 2 T > A. Here, we describe the clinical manifestations and the disease course in additional six Saudi patients from four unrelated consanguineous families. While five patients have the Saudi founder p.Asn291Asp variant, one subject has a novel deletion. Functional analyses on fibroblasts obtained from this patient revealed that the deletion causes significant decrease in mitochondrial oxygen consumption and ATP production compared to healthy individuals. Moreover, extracellular acidification rate revealed significantly reduced glycolysis, glycolytic capacity, and glycolytic reserve as compared to control individuals. There were no changes in the mitochondrial DNA (mtDNA) content of patient fibroblasts. Immunoblotting experiments revealed significantly diminished protein expression due to the deletion. In conclusion, we report additional patients with SLC25A42-associated mitochondrial encephalomyopathy. Our study expands the molecular spectrum of this condition and provides further evidence of mitochondrial dysfunction as a central cause of pathology. We therefore propose that this disorder should be included in the differential diagnosis of any patient with an unexplained motor and speech delay, recurrent encephalopathy with metabolic acidosis, intermittent or persistent dystonia, lactic acidosis, basal ganglia lesions and, especially, of Arab ethnicity. Finally, deep brain stimulation should be considered in the management of patients with life altering dystonia.
Collapse
Affiliation(s)
- Mazhor Aldosary
- Department of GeneticsKing Faisal Specialist Hospital and Research CenterRiyadhSaudi Arabia
- Translational Genomics Department, Center for Genomic Medicine (CGM)King Faisal Specialist Hospital and Research CenterRiyadhSaudi Arabia
| | - Shahad Baselm
- Department of GeneticsKing Faisal Specialist Hospital and Research CenterRiyadhSaudi Arabia
| | - Maha Abdulrahim
- Department of GeneticsKing Faisal Specialist Hospital and Research CenterRiyadhSaudi Arabia
| | - Rawan Almass
- Department of GeneticsKing Faisal Specialist Hospital and Research CenterRiyadhSaudi Arabia
- Translational Genomics Department, Center for Genomic Medicine (CGM)King Faisal Specialist Hospital and Research CenterRiyadhSaudi Arabia
- Department of Medical GeneticsKing Faisal Specialist Hospital and Research CenterRiyadhSaudi Arabia
| | - Maysoon Alsagob
- Department of GeneticsKing Faisal Specialist Hospital and Research CenterRiyadhSaudi Arabia
- Translational Genomics Department, Center for Genomic Medicine (CGM)King Faisal Specialist Hospital and Research CenterRiyadhSaudi Arabia
- King Abdulaziz City for Science and TechnologyRiyadhSaudi Arabia
| | - Zainab AlMasseri
- Department of Medical GeneticsKing Faisal Specialist Hospital and Research CenterRiyadhSaudi Arabia
| | - Rozeena Huma
- Department of Medical GeneticsKing Faisal Specialist Hospital and Research CenterRiyadhSaudi Arabia
| | - Laila AlQuait
- Department of GeneticsKing Faisal Specialist Hospital and Research CenterRiyadhSaudi Arabia
- Translational Genomics Department, Center for Genomic Medicine (CGM)King Faisal Specialist Hospital and Research CenterRiyadhSaudi Arabia
| | - Tarfa Al‐Shidi
- Department of GeneticsKing Faisal Specialist Hospital and Research CenterRiyadhSaudi Arabia
- Translational Genomics Department, Center for Genomic Medicine (CGM)King Faisal Specialist Hospital and Research CenterRiyadhSaudi Arabia
| | - Eman Al‐Obeid
- Department of GeneticsKing Faisal Specialist Hospital and Research CenterRiyadhSaudi Arabia
| | - Albandary AlBakheet
- Department of GeneticsKing Faisal Specialist Hospital and Research CenterRiyadhSaudi Arabia
- Translational Genomics Department, Center for Genomic Medicine (CGM)King Faisal Specialist Hospital and Research CenterRiyadhSaudi Arabia
| | - Basma Alahideb
- Department of GeneticsKing Faisal Specialist Hospital and Research CenterRiyadhSaudi Arabia
| | - Lujane Alahaidib
- Department of GeneticsKing Faisal Specialist Hospital and Research CenterRiyadhSaudi Arabia
| | - Alya Qari
- Department of Medical GeneticsKing Faisal Specialist Hospital and Research CenterRiyadhSaudi Arabia
| | - Robert W. Taylor
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle UniversityNewcastle upon TyneUK
- NHS Highly Specialised Mitochondrial Diagnostic LaboratoryNewcastle upon Tyne Hospitals NHS Foundation TrustNewcastle upon TyneUK
| | - Dilek Colak
- Department of Biostatistics, Epidemiology, and Scientific ComputingKing Faisal Specialist Hospital and Research CenterRiyadhSaudi Arabia
| | - Moeenaldeen D. AlSayed
- Department of Medical GeneticsKing Faisal Specialist Hospital and Research CenterRiyadhSaudi Arabia
- College of MedicineAlfaisal UniversityRiyadhSaudi Arabia
| | - Namik Kaya
- Department of GeneticsKing Faisal Specialist Hospital and Research CenterRiyadhSaudi Arabia
- Translational Genomics Department, Center for Genomic Medicine (CGM)King Faisal Specialist Hospital and Research CenterRiyadhSaudi Arabia
| |
Collapse
|
75
|
The Mystery of Extramitochondrial Proteins Lysine Succinylation. Int J Mol Sci 2021; 22:ijms22116085. [PMID: 34199982 PMCID: PMC8200203 DOI: 10.3390/ijms22116085] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 12/19/2022] Open
Abstract
Lysine succinylation is a post-translational modification which alters protein function in both physiological and pathological processes. Mindful that it requires succinyl-CoA, a metabolite formed within the mitochondrial matrix that cannot permeate the inner mitochondrial membrane, the question arises as to how there can be succinylation of proteins outside mitochondria. The present mini-review examines pathways participating in peroxisomal fatty acid oxidation that lead to succinyl-CoA production, potentially supporting succinylation of extramitochondrial proteins. Furthermore, the influence of the mitochondrial status on cytosolic NAD+ availability affecting the activity of cytosolic SIRT5 iso1 and iso4—in turn regulating cytosolic protein lysine succinylations—is presented. Finally, the discovery that glia in the adult human brain lack subunits of both alpha-ketoglutarate dehydrogenase complex and succinate-CoA ligase—thus being unable to produce succinyl-CoA in the matrix—and yet exhibit robust pancellular lysine succinylation, is highlighted.
Collapse
|
76
|
Fedotcheva N, Olenin A, Beloborodova N. Influence of Microbial Metabolites on the Nonspecific Permeability of Mitochondrial Membranes under Conditions of Acidosis and Loading with Calcium and Iron Ions. Biomedicines 2021; 9:biomedicines9050558. [PMID: 34067718 PMCID: PMC8156683 DOI: 10.3390/biomedicines9050558] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 12/26/2022] Open
Abstract
Mitochondrial dysfunction is currently considered one of the main causes of multiple organ failure in chronic inflammation and sepsis. The participation of microbial metabolites in disorders of bioenergetic processes in mitochondria has been revealed, but their influence on the mitochondrial membrane permeability has not yet been studied. We tested the influence of various groups of microbial metabolites, including indolic and phenolic acids, trimethylamine-N-oxide (TMAO) and acetyl phosphate (AcP), on the nonspecific permeability of mitochondrial membranes under conditions of acidosis, imbalance of calcium ions and excess free iron, which are inherent in sepsis. Changes in the parameters of the calcium-induced opening of the mitochondrial permeability transition pore (MPTP) and iron-activated swelling of rat liver mitochondria were evaluated. The most active metabolites were indole-3-carboxylic acid (ICA) and benzoic acid (BA), which activated MPTP opening and swelling under all conditions. AcP showed the opposite effect on the induction of MPTP opening, increasing the threshold concentration of calcium by 1.5 times, while TMAO activated swelling only under acidification. All the redox-dependent effects of metabolites were suppressed by the lipid radical scavenger butyl-hydroxytoluene (BHT), which indicates the participation of these microbial metabolites in the activation of membrane lipid peroxidation. Thus, microbial metabolites can directly affect the nonspecific permeability of mitochondrial membranes, if conditions of acidosis, an imbalance of calcium ions and an excess of free iron are created in the pathological state.
Collapse
Affiliation(s)
- Nadezhda Fedotcheva
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya Street 3, 142290 Pushchino, Russia
- Correspondence:
| | - Andrei Olenin
- V.I. Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences, 19 Kosygin Street, 119991 Moscow, Russia;
| | - Natalia Beloborodova
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 25-2 Petrovka Street, 107031 Moscow, Russia;
| |
Collapse
|
77
|
Tseng JH, Ajit A, Tabassum Z, Patel N, Tian X, Chen Y, Prevatte AW, Ling K, Rigo F, Meeker RB, Herring LE, Cohen TJ. Tau seeds are subject to aberrant modifications resulting in distinct signatures. Cell Rep 2021; 35:109037. [PMID: 33910013 DOI: 10.1016/j.celrep.2021.109037] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 01/05/2021] [Accepted: 04/05/2021] [Indexed: 01/15/2023] Open
Abstract
The prion-like spread of tau pathology could underlie a spectrum of clinical syndromes including Alzheimer's disease (AD). Although evidence indicates that tau is transmissible, it is unclear how pathogenic tau seeds are processed in neurons. Here, we analyze fibrillar wild-type and disease-associated P301L tau seeds by using in vitro and neuronal assays. We show that P301L seeds are uniquely modified by post-translational modifications (PTMs) within the microtubule-binding region (MTBR). Although these modifications do not alter tau seed trafficking or localization, acetylated tau variants show accelerated tau aggregation, enhanced tau PTM priming, and prion-like templating. To explain the enhanced tau seed acetylation, we demonstrate that P301L seeds undergo auto-acetylation. Moreover, tau acts generally to inhibit HDAC6 deacetylase activity by preventing HDAC6 phosphorylation, leading to increased substrate acetylation. Our study highlights complex post-translational regulation of transmissible tau seeds and provides insight into the biological properties of tau strains in AD and other tauopathies.
Collapse
Affiliation(s)
- Jui-Heng Tseng
- Department of Neurology and the UNC Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Aditi Ajit
- Department of Neurology and the UNC Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Zarin Tabassum
- Department of Neurology and the UNC Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Niyati Patel
- Department of Neurology and the UNC Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Xu Tian
- Department of Neurology and the UNC Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Youjun Chen
- Department of Neurology and the UNC Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Alex W Prevatte
- UNC Proteomics Core Facility, Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Karen Ling
- Ionis Pharmaceuticals, Carlsbad, CA 92008, USA
| | - Frank Rigo
- Ionis Pharmaceuticals, Carlsbad, CA 92008, USA
| | - Rick B Meeker
- Department of Neurology and the UNC Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Laura E Herring
- UNC Proteomics Core Facility, Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Todd J Cohen
- Department of Neurology and the UNC Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
78
|
Tannous C, Booz GW, Altara R, Muhieddine DH, Mericskay M, Refaat MM, Zouein FA. Nicotinamide adenine dinucleotide: Biosynthesis, consumption and therapeutic role in cardiac diseases. Acta Physiol (Oxf) 2021; 231:e13551. [PMID: 32853469 DOI: 10.1111/apha.13551] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/05/2020] [Accepted: 08/07/2020] [Indexed: 12/14/2022]
Abstract
Nicotinamide adenine dinucleotide (NAD) is an abundant cofactor that plays crucial roles in several cellular processes. NAD can be synthesized de novo starting with tryptophan, or from salvage pathways starting with NAD precursors like nicotinic acid (NA), nicotinamide (NAM) or nicotinamide riboside (NR), referred to as niacin/B3 vitamins, arising from dietary supply or from cellular NAD catabolism. Given the interconversion between its oxidized (NAD+ ) and reduced form (NADH), NAD participates in a wide range of reactions: regulation of cellular redox status, energy metabolism and mitochondrial biogenesis. Plus, NAD acts as a signalling molecule, being a cosubstrate for several enzymes such as sirtuins, poly-ADP-ribose-polymerases (PARPs) and some ectoenzymes like CD38, regulating critical biological processes like gene expression, DNA repair, calcium signalling and circadian rhythms. Given the large number of mitochondria present in cardiac tissue, the heart has the highest NAD levels and is one of the most metabolically demanding organs. In several models of heart failure, myocardial NAD levels are depressed and this depression is caused by mitochondrial dysfunction, metabolic remodelling and inflammation. Emerging evidence suggests that regulating NAD homeostasis by NAD precursor supplementation has therapeutic efficiency in improving myocardial bioenergetics and function. This review provides an overview of the latest understanding of the different NAD biosynthesis pathways, as well as its role as a signalling molecule particularly in cardiac tissue. We highlight the significance of preserving NAD equilibrium in various models of heart diseases and shed light on the potential pharmacological interventions aiming to use NAD boosters as therapeutic agents.
Collapse
Affiliation(s)
- Cynthia Tannous
- Department of Pharmacology and Toxicology Faculty of Medicine American University of Beirut Medical Center Beirut Lebanon
| | - George W. Booz
- Department of Pharmacology and Toxicology University of Mississippi Medical Center Jackson MS USA
| | - Raffaele Altara
- Department of Pathology School of Medicine University of Mississippi Medical Center Jackson MS USA
- Institute for Experimental Medical Research Oslo University Hospital and University of Oslo Oslo Norway
- KG Jebsen Center for Cardiac Research University of Oslo Oslo Norway
| | - Dina H. Muhieddine
- Department of Pharmacology and Toxicology Faculty of Medicine American University of Beirut Medical Center Beirut Lebanon
| | - Mathias Mericskay
- INSERM Department of Signalling and Cardiovascular Pathophysiology UMR‐S 1180 Université Paris‐Saclay Châtenay‐Malabry France
| | - Marwan M. Refaat
- Department of Internal Medicine Faculty of Medicine American University of Beirut Medical Center Beirut Lebanon
- Department of Biochemistry and Molecular Genetics Faculty of Medicine American University of Beirut Medical Center Beirut Lebanon
| | - Fouad A. Zouein
- Department of Pharmacology and Toxicology Faculty of Medicine American University of Beirut Medical Center Beirut Lebanon
| |
Collapse
|
79
|
Arima Y, Nakagawa Y, Takeo T, Ishida T, Yamada T, Hino S, Nakao M, Hanada S, Umemoto T, Suda T, Sakuma T, Yamamoto T, Watanabe T, Nagaoka K, Tanaka Y, Kawamura YK, Tonami K, Kurihara H, Sato Y, Yamagata K, Nakamura T, Araki S, Yamamoto E, Izumiya Y, Sakamoto K, Kaikita K, Matsushita K, Nishiyama K, Nakagata N, Tsujita K. Murine neonatal ketogenesis preserves mitochondrial energetics by preventing protein hyperacetylation. Nat Metab 2021; 3:196-210. [PMID: 33619377 DOI: 10.1038/s42255-021-00342-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 01/07/2021] [Indexed: 01/31/2023]
Abstract
Ketone bodies are generated in the liver and allow for the maintenance of systemic caloric and energy homeostasis during fasting and caloric restriction. It has previously been demonstrated that neonatal ketogenesis is activated independently of starvation. However, the role of ketogenesis during the perinatal period remains unclear. Here, we show that neonatal ketogenesis plays a protective role in mitochondrial function. We generated a mouse model of insufficient ketogenesis by disrupting the rate-limiting hydroxymethylglutaryl-CoA synthase 2 enzyme gene (Hmgcs2). Hmgcs2 knockout (KO) neonates develop microvesicular steatosis within a few days of birth. Electron microscopic analysis and metabolite profiling indicate a restricted energy production capacity and accumulation of acetyl-CoA in Hmgcs2 KO mice. Furthermore, acetylome analysis of Hmgcs2 KO cells revealed enhanced acetylation of mitochondrial proteins. These findings suggest that neonatal ketogenesis protects the energy-producing capacity of mitochondria by preventing the hyperacetylation of mitochondrial proteins.
Collapse
Affiliation(s)
- Yuichiro Arima
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.
- International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan.
| | - Yoshiko Nakagawa
- Division of Reproductive Engineering, Center for Animal Resources and Development (CARD), Kumamoto University, Kumamoto, Japan
| | - Toru Takeo
- Division of Reproductive Engineering, Center for Animal Resources and Development (CARD), Kumamoto University, Kumamoto, Japan
| | - Toshifumi Ishida
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Toshihiro Yamada
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Shinjiro Hino
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Mitsuyoshi Nakao
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Sanshiro Hanada
- International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
| | - Terumasa Umemoto
- International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
| | - Toshio Suda
- International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
| | - Tetsushi Sakuma
- Division of Integrated Sciences for Life, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Takashi Yamamoto
- Division of Integrated Sciences for Life, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Takehisa Watanabe
- Department of Gastroenterology and Hepatology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Katsuya Nagaoka
- Department of Gastroenterology and Hepatology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yasuhito Tanaka
- Department of Gastroenterology and Hepatology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yumiko K Kawamura
- Department of Physiological Chemistry and Metabolism, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Kazuo Tonami
- Department of Physiological Chemistry and Metabolism, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroki Kurihara
- Department of Physiological Chemistry and Metabolism, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yoshifumi Sato
- Department of Medical Biochemistry, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Kazuya Yamagata
- Department of Medical Biochemistry, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
- Center for Metabolic Regulation of Healthy Aging (CMHA), Kumamoto University, Kumamoto, Japan
| | - Taishi Nakamura
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
- Department of Medical Information Science and Administration Planning, Kumamoto University Hospital, Kumamoto, Japan
| | - Satoshi Araki
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Eiichiro Yamamoto
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yasuhiro Izumiya
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
- Department of Cardiovascular Medicine, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Kenji Sakamoto
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Koichi Kaikita
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Kenichi Matsushita
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Koichi Nishiyama
- International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
| | - Naomi Nakagata
- Division of Reproductive Engineering, Center for Animal Resources and Development (CARD), Kumamoto University, Kumamoto, Japan
| | - Kenichi Tsujita
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
- Center for Metabolic Regulation of Healthy Aging (CMHA), Kumamoto University, Kumamoto, Japan
| |
Collapse
|
80
|
Abril YLN, Fernandez IR, Hong JY, Chiang YL, Kutateladze DA, Zhao Q, Yang M, Hu J, Sadhukhan S, Li B, He B, Remick B, Bai JJ, Mullmann J, Wang F, Maymi V, Dhawan R, Auwerx J, Southard T, Cerione RA, Lin H, Weiss RS. Pharmacological and genetic perturbation establish SIRT5 as a promising target in breast cancer. Oncogene 2021; 40:1644-1658. [PMID: 33479498 PMCID: PMC7935767 DOI: 10.1038/s41388-020-01637-w] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 12/12/2020] [Accepted: 12/18/2020] [Indexed: 12/14/2022]
Abstract
SIRT5 is a member of the sirtuin family of NAD+-dependent protein lysine deacylases implicated in a variety of physiological processes. SIRT5 removes negatively charged malonyl, succinyl, and glutaryl groups from lysine residues and thereby regulates multiple enzymes involved in cellular metabolism and other biological processes. SIRT5 is overexpressed in human breast cancers and other malignancies, but little is known about the therapeutic potential of SIRT5 inhibition for treating cancer. Here we report that genetic SIRT5 disruption in breast cancer cell lines and mouse models caused increased succinylation of IDH2 and other metabolic enzymes, increased oxidative stress, and impaired transformation and tumorigenesis. We therefore developed potent, selective, and cell permeable small molecule SIRT5 inhibitors. SIRT5 inhibition suppressed the transformed properties of cultured breast cancer cells and significantly reduced mammary tumor growth in vivo, in both genetically engineered and xenotransplant mouse models. Considering that Sirt5 knockout mice are generally normal, with only mild phenotypes observed, these data establish SIRT5 as a promising target for treating breast cancer. The new SIRT5 inhibitors provide useful probes for future investigations of SIRT5 and an avenue for targeting SIRT5 as a therapeutic strategy.
Collapse
Affiliation(s)
| | - Irma R Fernandez
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, 14853, USA.,Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Jun Young Hong
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Ying-Ling Chiang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Dennis A Kutateladze
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Qingjie Zhao
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Min Yang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Jing Hu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Sushabhan Sadhukhan
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Bo Li
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA.,Department of Molecular Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Bin He
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA.,School of Pharmacy, Guizhou Medical University, Guiyang, 550004, China
| | - Brenna Remick
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, 14853, USA
| | - Jessica Jingyi Bai
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - James Mullmann
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, 14853, USA.,Department of Molecular Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Fangyu Wang
- Department of Molecular Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Viviana Maymi
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, 14853, USA
| | - Ravi Dhawan
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, 14853, USA
| | - Johan Auwerx
- Laboratory for Integrative Systems Physiology, Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Teresa Southard
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, 14853, USA
| | - Richard A Cerione
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA.,Department of Molecular Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Hening Lin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA. .,Howard Hughes Medical Institute; Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA.
| | - Robert S Weiss
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
81
|
Latorre-Muro P, Baeza J, Hurtado-Guerrero R, Hicks T, Delso I, Hernández-Ruiz C, Velázquez-Campoy A, Lawton AJ, Angulo J, Denu JM, Carrodeguas JA. Self-acetylation at the active site of phosphoenolpyruvate carboxykinase (PCK1) controls enzyme activity. J Biol Chem 2021; 296:100205. [PMID: 33334880 PMCID: PMC7948413 DOI: 10.1074/jbc.ra120.015103] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 12/12/2020] [Accepted: 12/17/2020] [Indexed: 12/13/2022] Open
Abstract
Acetylation is known to regulate the activity of cytosolic phosphoenolpyruvate carboxykinase (PCK1), a key enzyme in gluconeogenesis, by promoting the reverse reaction of the enzyme (converting phosphoenolpyruvate to oxaloacetate). It is also known that the histone acetyltransferase p300 can induce PCK1 acetylation in cells, but whether that is a direct or indirect function was not known. Here we initially set out to determine whether p300 can acetylate directly PCK1 in vitro. We report that p300 weakly acetylates PCK1, but surprisingly, using several techniques including protein crystallization, mass spectrometry, isothermal titration calorimetry, saturation-transfer difference nuclear magnetic resonance and molecular docking, we found that PCK1 is also able to acetylate itself using acetyl-CoA independently of p300. This reaction yielded an acetylated recombinant PCK1 with a 3-fold decrease in kcat without changes in Km for all substrates. Acetylation stoichiometry was determined for 14 residues, including residues lining the active site. Structural and kinetic analyses determined that site-directed acetylation of K244, located inside the active site, altered this site and rendered the enzyme inactive. In addition, we found that acetyl-CoA binding to the active site is specific and metal dependent. Our findings provide direct evidence for acetyl-CoA binding and chemical reaction with the active site of PCK1 and suggest a newly discovered regulatory mechanism of PCK1 during metabolic stress.
Collapse
Affiliation(s)
- Pedro Latorre-Muro
- Institute of Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, Zaragoza, Spain.
| | - Josue Baeza
- Wisconsin Institute for Discovery and Department of Biomolecular Chemistry, School of Medicine and Public Health-Madison, Madison, Wisconsin, USA
| | - Ramon Hurtado-Guerrero
- Institute of Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, Zaragoza, Spain; Department of Cellular and Molecular Medicine, Copenhagen Center for Glycomics, University of Copenhagen, Copenhagen, Denmark; Laboratorio de Microscopías Avanzadas (LMA), University of Zaragoza, Zaragoza, Spain; Fundación ARAID, Zaragoza, Spain
| | - Thomas Hicks
- School of Pharmacy, University of East Anglia, Norwich, UK
| | - Ignacio Delso
- Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), Universidad de Zaragoza, CSIC, Zaragoza, Spain
| | - Cristina Hernández-Ruiz
- Institute of Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, Zaragoza, Spain
| | - Adrian Velázquez-Campoy
- Institute of Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, Zaragoza, Spain; Fundación ARAID, Zaragoza, Spain; Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain; Biomedical Research Network Center in Hepatic and Digestive Diseases (CIBERehd), Madrid, Spain; IIS Aragón, Zaragoza, Spain
| | - Alexis J Lawton
- Wisconsin Institute for Discovery and Department of Biomolecular Chemistry, School of Medicine and Public Health-Madison, Madison, Wisconsin, USA
| | - Jesús Angulo
- School of Pharmacy, University of East Anglia, Norwich, UK; Departamento de Química Orgánica, Universidad de Sevilla, Sevilla, Spain; Instituto de Investigaciones Químicas (CSIC-Universidad de Sevilla), Sevilla, Spain
| | - John M Denu
- Wisconsin Institute for Discovery and Department of Biomolecular Chemistry, School of Medicine and Public Health-Madison, Madison, Wisconsin, USA
| | - José A Carrodeguas
- Institute of Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, Zaragoza, Spain; Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain; IIS Aragón, Zaragoza, Spain.
| |
Collapse
|
82
|
Li Y, Mi P, Chen X, Wu J, Qin W, Shen Y, Zhang P, Tang Y, Cheng CY, Sun F. Dynamic Profiles and Transcriptional Preferences of Histone Modifications During Spermiogenesis. Endocrinology 2021; 162:5974117. [PMID: 33175103 DOI: 10.1210/endocr/bqaa210] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Indexed: 02/07/2023]
Abstract
During spermiogenesis, extensive histone modifications take place in developing haploid spermatids besides morphological alterations of the genetic material to form compact nuclei. Better understanding on the overall transcriptional dynamics and preferences of histones and enzymes involved in histone modifications may provide valuable information to dissect the epigenetic characteristics and unique chromatin status during spermiogenesis. Using single-cell RNA-Sequencing, the expression dynamics of histone variants, writers, erasers, and readers of histone acetylation and methylation, as well as histone phosphorylation, ubiquitination, and chaperones were assessed through transcriptome profiling during spermiogenesis. This approach provided an unprecedented panoramic perspective of the involving genes in epigenetic modifier/histone variant expression during spermiogenesis. Results reported here revealed the transcriptional ranks of histones, histone modifications, and their readers during spermiogenesis, emphasizing the unique preferences of epigenetic regulation in spermatids. These findings also highlighted the impact of spermatid metabolic preferences on epigenetic modifications. Despite the observed rising trend on transcription levels of all encoding genes and histone variants, the transcriptome profile of genes in histone modifications and their readers displayed a downward expression trend, suggesting that spermatid nuclei condensation is a progressive process that occurred in tandem with a gradual decrease in overall epigenetic activity during spermiogenesis.
Collapse
Affiliation(s)
- Yinchuan Li
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Panpan Mi
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Xue Chen
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Jiabao Wu
- NHC Key Laboratory of Male Reproduction and Genetics, Family Planning Research Institute of Guangdong Province, Guangzhou, China
| | - Weibing Qin
- NHC Key Laboratory of Male Reproduction and Genetics, Family Planning Research Institute of Guangdong Province, Guangzhou, China
| | - Yiqi Shen
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Pingbao Zhang
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Yunge Tang
- NHC Key Laboratory of Male Reproduction and Genetics, Family Planning Research Institute of Guangdong Province, Guangzhou, China
| | - C Yan Cheng
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, NY, USA
| | - Fei Sun
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
83
|
Marin W, Marin D, Ao X, Liu Y. Mitochondria as a therapeutic target for cardiac ischemia‑reperfusion injury (Review). Int J Mol Med 2020; 47:485-499. [PMID: 33416090 PMCID: PMC7797474 DOI: 10.3892/ijmm.2020.4823] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 11/18/2020] [Indexed: 02/07/2023] Open
Abstract
Acute myocardial infarction is the leading cause of cardiovascular-related mortality and chronic heart failure worldwide. As regards treatment, the reperfusion of ischemic tissue generates irreversible damage to the myocardium, which is termed 'cardiac ischemia-reperfusion (IR) injury'. Due to the large number of mitochondria in cardiomyocytes, an increasing number of studies have focused on the roles of mitochondria in IR injury. The primary causes of IR injury are reduced oxidative phosphorylation during hypoxia and the increased production of reactive oxygen species (ROS), together with the insufficient elimination of these oxidative species following reperfusion. IR injury includes the oxidation of DNA, incorrect modifications of proteins, the disruption of the mitochondrial membrane and respiratory chain, the loss of mitochondrial membrane potential (∆Ψm), Ca2+ over-load, mitochondrial permeability transition pore formation, swelling of the mitochondria, and ultimately, cardiomyocyte necrosis. The present review article discusses the molecular mechanisms of IR injury, and summarizes the metabolic and dynamic changes occurring in the mitochondria in response to IR stress. The mitochondria are strongly recommended as a target for the development of therapeutic agents; however, the appropriate use of agents remains a challenge.
Collapse
Affiliation(s)
- Wenwen Marin
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Dennis Marin
- Qingdao University of Science and Technology, Qingdao, Shandong 266061, P.R. China
| | - Xiang Ao
- School of Basic Medical Sciences, College of Medicine, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Ying Liu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, Shandong 266071, P.R. China
| |
Collapse
|
84
|
Sarkar N, Das B, Bishayee A, Sinha D. Arsenal of Phytochemicals to Combat Against Arsenic-Induced Mitochondrial Stress and Cancer. Antioxid Redox Signal 2020; 33:1230-1256. [PMID: 31813247 DOI: 10.1089/ars.2019.7950] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Significance: Phytochemicals are important dietary constituents with antioxidant properties. They affect various signaling pathways involved in the overall maintenance of interior milieu of the cell. Arsenic, an environmental toxicant, is well known for its deleterious consequences, such as various diseases, including cancers in humans. Mitochondria are the cell's powerhouse that fuel all metabolic energy requirements. Dysfunctional mitochondria due to stressors may lead to abnormal functioning of the organelle, hampering the crucial cellular cross talks and ultimately leading to cancer. Application of phytochemicals against arsenic-induced mitochondrial disorders may be a preventive measure to counteract the ruinous impacts of the metalloid. Recent Advances: In recent years, extensive research on the role of mitochondria in cancer gives a better understanding of the areas the organelle covers in maintaining a healthy cell or in inducing carcinogenicity. Detailed knowledge of the mitochondrial governances would enable researchers to administer numerous phytochemicals to ameliorate altered oxidative phosphorylation, mitochondrial membrane potential (MMP), mitochondrial oxidative stress, unfolded protein response, glycolysis, or even apoptosis. Critical Issues: In this review, we have addressed how various phytochemicals belonging to diverse classes combat against arsenic-induced mitochondrial oxidative stress, depletion of MMP, cell cycle abrogation, apoptosis, glycolytic damages, oncogenic regulations, chaperones, mitochondrial complexes, and mitochondrial membrane pore formation in both in vitro and in vivo models. Future Directions: Insightful application of mitoprotective phytochemicals against arsenic-induced mitochondrial oxidative stress and carcinogenesis may guide researchers to develop preclinical chemopreventive agents to fight arsenic toxicity in humans.
Collapse
Affiliation(s)
- Nivedita Sarkar
- Receptor Biology and Tumor Metastasis, Chittaranjan National Cancer Institute, Kolkata, India
| | - Bornita Das
- Receptor Biology and Tumor Metastasis, Chittaranjan National Cancer Institute, Kolkata, India
| | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| | - Dona Sinha
- Receptor Biology and Tumor Metastasis, Chittaranjan National Cancer Institute, Kolkata, India
| |
Collapse
|
85
|
Rehman S, Aatif M, Rafi Z, Khan MY, Shahab U, Ahmad S, Farhan M. Effect of non-enzymatic glycosylation in the epigenetics of cancer. Semin Cancer Biol 2020; 83:543-555. [DOI: 10.1016/j.semcancer.2020.11.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 02/09/2023]
|
86
|
SUCLA2 mutations cause global protein succinylation contributing to the pathomechanism of a hereditary mitochondrial disease. Nat Commun 2020; 11:5927. [PMID: 33230181 PMCID: PMC7684291 DOI: 10.1038/s41467-020-19743-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 10/26/2020] [Indexed: 12/18/2022] Open
Abstract
Mitochondrial acyl-coenzyme A species are emerging as important sources of protein modification and damage. Succinyl-CoA ligase (SCL) deficiency causes a mitochondrial encephalomyopathy of unknown pathomechanism. Here, we show that succinyl-CoA accumulates in cells derived from patients with recessive mutations in the tricarboxylic acid cycle (TCA) gene succinyl-CoA ligase subunit-β (SUCLA2), causing global protein hyper-succinylation. Using mass spectrometry, we quantify nearly 1,000 protein succinylation sites on 366 proteins from patient-derived fibroblasts and myotubes. Interestingly, hyper-succinylated proteins are distributed across cellular compartments, and many are known targets of the (NAD+)-dependent desuccinylase SIRT5. To test the contribution of hyper-succinylation to disease progression, we develop a zebrafish model of the SCL deficiency and find that SIRT5 gain-of-function reduces global protein succinylation and improves survival. Thus, increased succinyl-CoA levels contribute to the pathology of SCL deficiency through post-translational modifications. The pathomechanism of succinyl-CoA ligase (SCL) deficiency, a hereditary mitochondrial disease, is not fully understood. Here, the authors show that increased succinyl-CoA levels contribute to SCL pathology by causing global protein hyper-succinylation.
Collapse
|
87
|
Yu Y, Le HH, Curtis BJ, Wrobel CJJ, Zhang B, Maxwell DN, Pan JY, Schroeder FC. An Untargeted Approach for Revealing Electrophilic Metabolites. ACS Chem Biol 2020; 15:3030-3037. [PMID: 33074644 DOI: 10.1021/acschembio.0c00706] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Reactive electrophilic intermediates such as coenzyme A esters play central roles in metabolism but are difficult to detect with conventional strategies. Here, we introduce hydroxylamine-based stable isotope labeling to convert reactive electrophilic intermediates into stable derivatives that are easily detectable via LC-MS. In the model system Caenorhabditis elegans, parallel treatment with 14NH2OH and 15NH2OH revealed >1000 labeled metabolites, e.g., derived from peptide, fatty acid, and ascaroside pheromone biosyntheses. Results from NH2OH treatment of a pheromone biosynthesis mutant, acox-1.1, suggested upregulation of thioesterase activity, which was confirmed by gene expression analysis. The upregulated thioesterase contributes to the biosynthesis of a specific subset of ascarosides, determining the balance of dispersal and attractive signals. These results demonstrate the utility of NH2OH labeling for investigating complex biosynthetic networks. Initial results with Aspergillus and human cell lines indicate applicability toward uncovering reactive metabolomes in diverse living systems.
Collapse
Affiliation(s)
- Yan Yu
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Henry H. Le
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Brian J. Curtis
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Chester J. J. Wrobel
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Bingsen Zhang
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Danielle N. Maxwell
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Judy Y. Pan
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Frank C. Schroeder
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
88
|
Nucleotide-binding sites can enhance N-acylation of nearby protein lysine residues. Sci Rep 2020; 10:20254. [PMID: 33219268 PMCID: PMC7680127 DOI: 10.1038/s41598-020-77261-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 11/04/2020] [Indexed: 11/22/2022] Open
Abstract
Acyl-CoAs are reactive metabolites that can non-enzymatically S-acylate and N-acylate protein cysteine and lysine residues, respectively. N-acylation is irreversible and enhanced if a nearby cysteine residue undergoes an initial reversible S-acylation, as proximity leads to rapid S → N-transfer of the acyl moiety. We reasoned that protein-bound acyl-CoA could also facilitate S → N-transfer of acyl groups to proximal lysine residues. Furthermore, as CoA contains an ADP backbone this may extend beyond CoA-binding sites and include abundant Rossmann-fold motifs that bind the ADP moiety of NADH, NADPH, FADH and ATP. Here, we show that excess nucleotides decrease protein lysine N-acetylation in vitro. Furthermore, by generating modelled structures of proteins N-acetylated in mouse liver, we show that proximity to a nucleotide-binding site increases the risk of N-acetylation and identify where nucleotide binding could enhance N-acylation in vivo. Finally, using glutamate dehydrogenase as a case study, we observe increased in vitro lysine N-malonylation by malonyl-CoA near nucleotide-binding sites which overlaps with in vivo N-acetylation and N-succinylation. Furthermore, excess NADPH, GTP and ADP greatly diminish N-malonylation near their nucleotide-binding sites, but not at distant lysine residues. Thus, lysine N-acylation by acyl-CoAs is enhanced by nucleotide-binding sites and may contribute to higher stoichiometry protein N-acylation in vivo.
Collapse
|
89
|
Teixeira CSS, Cerqueira NMFSA, Gomes P, Sousa SF. A Molecular Perspective on Sirtuin Activity. Int J Mol Sci 2020; 21:ijms21228609. [PMID: 33203121 PMCID: PMC7696986 DOI: 10.3390/ijms21228609] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/07/2020] [Accepted: 11/13/2020] [Indexed: 12/13/2022] Open
Abstract
The protein acetylation of either the α-amino groups of amino-terminal residues or of internal lysine or cysteine residues is one of the major posttranslational protein modifications that occur in the cell with repercussions at the protein as well as at the metabolome level. The lysine acetylation status is determined by the opposing activities of lysine acetyltransferases (KATs) and lysine deacetylases (KDACs), which add and remove acetyl groups from proteins, respectively. A special group of KDACs, named sirtuins, that require NAD+ as a substrate have received particular attention in recent years. They play critical roles in metabolism, and their abnormal activity has been implicated in several diseases. Conversely, the modulation of their activity has been associated with protection from age-related cardiovascular and metabolic diseases and with increased longevity. The benefits of either activating or inhibiting these enzymes have turned sirtuins into attractive therapeutic targets, and considerable effort has been directed toward developing specific sirtuin modulators. This review summarizes the protein acylation/deacylation processes with a special focus on the current developments in the sirtuin research field.
Collapse
Affiliation(s)
- Carla S. S. Teixeira
- UCIBIO/REQUIMTE, BioSIM - Department of Biomedicine, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal; (C.S.S.T.); (N.M.F.S.A.C.)
| | - Nuno M. F. S. A. Cerqueira
- UCIBIO/REQUIMTE, BioSIM - Department of Biomedicine, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal; (C.S.S.T.); (N.M.F.S.A.C.)
| | - Pedro Gomes
- Department of Biomedicine, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal;
- Center for Health Technology and Services Research (CINTESIS), University of Porto, R. Dr. Plácido da Costa, 4200-450 Porto, Portugal
- Institute of Pharmacology and Experimental Therapeutics, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Azinhaga Santa Comba, Celas, 3000-548 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Azinhaga Santa Comba, Celas, 3000-548 Coimbra, Portugal
| | - Sérgio F. Sousa
- UCIBIO/REQUIMTE, BioSIM - Department of Biomedicine, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal; (C.S.S.T.); (N.M.F.S.A.C.)
- Correspondence: ; Tel.: +351-22-551-3600
| |
Collapse
|
90
|
A M, Latario CJ, Pickrell LE, Higgs HN. Lysine acetylation of cytoskeletal proteins: Emergence of an actin code. J Biophys Biochem Cytol 2020; 219:211455. [PMID: 33044556 PMCID: PMC7555357 DOI: 10.1083/jcb.202006151] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/26/2020] [Accepted: 09/02/2020] [Indexed: 02/06/2023] Open
Abstract
Reversible lysine acetylation of nuclear proteins such as histones is a long-established important regulatory mechanism for chromatin remodeling and transcription. In the cytoplasm, acetylation of a number of cytoskeletal proteins, including tubulin, cortactin, and the formin mDia2, regulates both cytoskeletal assembly and stability. More recently, acetylation of actin itself was revealed to regulate cytoplasmic actin polymerization through the formin INF2, with downstream effects on ER-to-mitochondrial calcium transfer, mitochondrial fission, and vesicle transport. This finding raises the possibility that actin acetylation, along with other post-translational modifications to actin, might constitute an "actin code," similar to the "histone code" or "tubulin code," controlling functional shifts to these central cellular proteins. Given the multiple roles of actin in nuclear functions, its modifications might also have important roles in gene expression.
Collapse
|
91
|
Chen J, Liu Q, Zeng L, Huang X. Protein Acetylation/Deacetylation: A Potential Strategy for Fungal Infection Control. Front Microbiol 2020; 11:574736. [PMID: 33133044 PMCID: PMC7579399 DOI: 10.3389/fmicb.2020.574736] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 09/17/2020] [Indexed: 12/13/2022] Open
Abstract
Protein acetylation is a universal post-translational modification that fine-tunes the major cellular processes of many life forms. Although the mechanisms regulating protein acetylation have not been fully elucidated, this modification is finely tuned by both enzymatic and non-enzymatic mechanisms. Protein deacetylation is the reverse process of acetylation and is mediated by deacetylases. Together, protein acetylation and deacetylation constitute a reversible regulatory protein acetylation network. The recent application of mass spectrometry-based proteomics has led to accumulating evidence indicating that reversible protein acetylation may be related to fungal virulence because a substantial amount of virulence factors are acetylated. Additionally, the relationship between protein acetylation/deacetylation and fungal drug resistance has also been proven and the potential of deacetylase inhibitors as an anti-infective treatment has attracted attention. This review aimed to summarize the research progress in understanding fungal protein acetylation/deacetylation and discuss the mechanism of its mediation in fungal virulence, providing novel targets for the treatment of fungal infection.
Collapse
Affiliation(s)
- Junzhu Chen
- Department of Medical Microbiology, School of Medicine, Nanchang University, Nanchang, China
| | - Qiong Liu
- Department of Medical Microbiology, School of Medicine, Nanchang University, Nanchang, China
| | - Lingbing Zeng
- The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiaotian Huang
- Department of Medical Microbiology, School of Medicine, Nanchang University, Nanchang, China
| |
Collapse
|
92
|
Xia C, Tao Y, Li M, Che T, Qu J. Protein acetylation and deacetylation: An important regulatory modification in gene transcription (Review). Exp Ther Med 2020; 20:2923-2940. [PMID: 32855658 PMCID: PMC7444376 DOI: 10.3892/etm.2020.9073] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 04/24/2020] [Indexed: 12/16/2022] Open
Abstract
Cells primarily rely on proteins to perform the majority of their physiological functions, and the function of proteins is regulated by post-translational modifications (PTMs). The acetylation of proteins is a dynamic and highly specific PTM, which has an important influence on the functions of proteins, such as gene transcription and signal transduction. The acetylation of proteins is primarily dependent on lysine acetyltransferases and lysine deacetylases. In recent years, due to the widespread use of mass spectrometry and the emergence of new technologies, such as protein chips, studies on protein acetylation have been further developed. Compared with histone acetylation, acetylation of non-histone proteins has gradually become the focus of research due to its important regulatory mechanisms and wide range of applications. The discovery of specific protein acetylation sites using bioinformatic tools can greatly aid the understanding of the underlying mechanisms of protein acetylation involved in related physiological and pathological processes.
Collapse
Affiliation(s)
- Can Xia
- Department of Cell Biology, Medical College of Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Yu Tao
- Department of Cell Biology, Medical College of Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Mingshan Li
- Department of Cell Biology, Medical College of Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Tuanjie Che
- Laboratory of Precision Medicine and Translational Medicine, Suzhou Hospital Affiliated to Nanjing Medical University, Suzhou Science and Technology Town Hospital, Suzhou, Jiangsu 215153, P.R. China
| | - Jing Qu
- Department of Cell Biology, Medical College of Soochow University, Suzhou, Jiangsu 215123, P.R. China
| |
Collapse
|
93
|
Affiliation(s)
- Iain Scott
- Cardiology Division, Department of Medicine, University of Pittsburgh, PA (I.S., M.N.S.)
- Cardiovascular Branch, National Heart, Lung and Blood Institute, NIH, Bethesda, MD (I.S., M.N.S.)
| | - Michael N Sack
- Cardiology Division, Department of Medicine, University of Pittsburgh, PA (I.S., M.N.S.)
- Cardiovascular Branch, National Heart, Lung and Blood Institute, NIH, Bethesda, MD (I.S., M.N.S.)
| |
Collapse
|
94
|
The evolving metabolic landscape of chromatin biology and epigenetics. Nat Rev Genet 2020; 21:737-753. [PMID: 32908249 DOI: 10.1038/s41576-020-0270-8] [Citation(s) in RCA: 295] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2020] [Indexed: 12/12/2022]
Abstract
Molecular inputs to chromatin via cellular metabolism are modifiers of the epigenome. These inputs - which include both nutrient availability as a result of diet and growth factor signalling - are implicated in linking the environment to the maintenance of cellular homeostasis and cell identity. Recent studies have demonstrated that these inputs are much broader than had previously been known, encompassing metabolism from a wide variety of sources, including alcohol and microbiotal metabolism. These factors modify DNA and histones and exert specific effects on cell biology, systemic physiology and pathology. In this Review, we discuss the nature of these molecular networks, highlight their role in mediating cellular responses and explore their modifiability through dietary and pharmacological interventions.
Collapse
|
95
|
Espinola-Lopez JM, Tan S. The Ada2/Ada3/Gcn5/Sgf29 histone acetyltransferase module. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1864:194629. [PMID: 32890768 DOI: 10.1016/j.bbagrm.2020.194629] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 01/14/2023]
Abstract
Histone post-translational modifications are essential for the regulation of gene expression in eukaryotes. Gcn5 (KAT2A) is a histone acetyltransferase that catalyzes the post-translational modification at multiple positions of histone H3 through the transfer of acetyl groups to the free amino group of lysine residues. Gcn5 catalyzes histone acetylation in the context of a HAT module containing the Ada2, Ada3 and Sgf29 subunits of the parent megadalton SAGA transcriptional coactivator complex. Biochemical and structural studies have elucidated mechanisms for Gcn5's acetyl- and other acyltransferase activities on histone substrates, for histone H3 phosphorylation and histone H3 methylation crosstalks with histone H3 acetylation, and for how Ada2 increases Gcn5's histone acetyltransferase activity. Other studies have identified Ada2 isoforms in SAGA-related complexes and characterized variant Gcn5 HAT modules containing these Ada2 isoforms. In this review, we highlight biochemical and structural studies of Gcn5 and its functional interactions with Ada2, Ada3 and Sgf29.
Collapse
Affiliation(s)
- Jose M Espinola-Lopez
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Song Tan
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
96
|
Catalysis by protein acetyltransferase Gcn5. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1864:194627. [PMID: 32841743 DOI: 10.1016/j.bbagrm.2020.194627] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/19/2020] [Accepted: 08/19/2020] [Indexed: 02/04/2023]
Abstract
Gcn5 serves as the defining member of the Gcn5-related N-acetyltransferase (GNAT) superfamily of proteins that display a common structural fold and catalytic mechanism involving the transfer of the acyl-group, primarily acetyl-, from CoA to an acceptor nucleophile. In the case of Gcn5, the target is the ε-amino group of lysine primarily on histones. Over the years, studies on Gcn5 structure-function have often formed the basis by which we understand the complex activities and regulation of the entire protein acetyltransferase family. It is now appreciated that protein acetylation occurs on thousands of proteins and can reversibly regulate the function of many cellular processes. In this review, we provide an overview of our fundamental understanding of catalysis, regulation of activity and substrate selection, and inhibitor development for this archetypal acetyltransferase.
Collapse
|
97
|
Bonds AC, Yuan T, Werman JM, Jang J, Lu R, Nesbitt NM, Garcia-Diaz M, Sampson NS. Post-translational Succinylation of Mycobacterium tuberculosis Enoyl-CoA Hydratase EchA19 Slows Catalytic Hydration of Cholesterol Catabolite 3-Oxo-chol-4,22-diene-24-oyl-CoA. ACS Infect Dis 2020; 6:2214-2224. [PMID: 32649175 DOI: 10.1021/acsinfecdis.0c00329] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cholesterol is a major carbon source for Mycobacterium tuberculosis (Mtb) during infection, and cholesterol utilization plays a significant role in persistence and virulence within host macrophages. Elucidating the mechanism by which cholesterol is degraded may permit the identification of new therapeutic targets. Here, we characterized EchA19 (Rv3516), an enoyl-CoA hydratase involved in cholesterol side-chain catabolism. Steady-state kinetics assays demonstrated that EchA19 preferentially hydrates cholesterol enoyl-CoA metabolite 3-oxo-chol-4,22-diene-24-oyl-CoA, an intermediate of side-chain β-oxidation. In addition, succinyl-CoA, a downstream catabolite of propionyl-CoA that forms during cholesterol degradation, covalently modifies targeted mycobacterial proteins, including EchA19. Inspection of a 1.9 Å resolution X-ray crystallography structure of Mtb EchA19 suggests that succinylation of Lys132 and Lys139 may perturb enzymatic activity by modifying the entrance to the substrate binding site. Treatment of EchA19 with succinyl-CoA revealed that these two residues are hotspots for succinylation. Replacement of these specific lysine residues with negatively charged glutamate reduced the rate of catalytic hydration of 3-oxo-chol-4,22-diene-24-oyl-CoA by EchA19, as does succinylation of EchA19. Our findings suggest that succinylation is a negative feedback regulator of cholesterol metabolism, thereby adding another layer of complexity to Mtb physiology in the host. These regulatory pathways are potential noncatabolic targets for antimicrobial drugs.
Collapse
Affiliation(s)
- Amber C. Bonds
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York 11794-8651
| | - Tianao Yuan
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400
| | - Joshua M. Werman
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400
| | - Jungwon Jang
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400
| | - Rui Lu
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400
| | - Natasha M. Nesbitt
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400
| | - Miguel Garcia-Diaz
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York 11794-8651
| | - Nicole S. Sampson
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400
| |
Collapse
|
98
|
Marcus K, Lelong C, Rabilloud T. What Room for Two-Dimensional Gel-Based Proteomics in a Shotgun Proteomics World? Proteomes 2020; 8:proteomes8030017. [PMID: 32781532 PMCID: PMC7563651 DOI: 10.3390/proteomes8030017] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 08/02/2020] [Accepted: 08/04/2020] [Indexed: 02/07/2023] Open
Abstract
Two-dimensional gel electrophoresis was instrumental in the birth of proteomics in the late 1980s. However, it is now often considered as an outdated technique for proteomics—a thing of the past. Although this opinion may be true for some biological questions, e.g., when analysis depth is of critical importance, for many others, two-dimensional gel electrophoresis-based proteomics still has a lot to offer. This is because of its robustness, its ability to separate proteoforms, and its easy interface with many powerful biochemistry techniques (including western blotting). This paper reviews where and why two-dimensional gel electrophoresis-based proteomics can still be profitably used. It emerges that, rather than being a thing of the past, two-dimensional gel electrophoresis-based proteomics is still highly valuable for many studies. Thus, its use cannot be dismissed on simple fashion arguments and, as usual, in science, the tree is to be judged by the fruit.
Collapse
Affiliation(s)
- Katrin Marcus
- Medizinisches Proteom-Center, Medical Faculty & Medical Proteome Analysis, Center for Proteindiagnostics (PRODI) Ruhr-University Bochum Gesundheitscampus, 4 44801 Bochum, Germany;
| | - Cécile Lelong
- CBM UMR CNRS5249, Université Grenoble Alpes, CEA, CNRS, 17 rue des Martyrs, CEDEX 9, 38054 Grenoble, France;
| | - Thierry Rabilloud
- Laboratory of Chemistry and Biology of Metals, UMR 5249, Université Grenoble Alpes, CNRS, 38054 Grenoble, France
- Correspondence: ; Tel.: +33-438-783-212
| |
Collapse
|
99
|
Oginuma M, Harima Y, Tarazona OA, Diaz-Cuadros M, Michaut A, Ishitani T, Xiong F, Pourquié O. Intracellular pH controls WNT downstream of glycolysis in amniote embryos. Nature 2020; 584:98-101. [PMID: 32581357 PMCID: PMC8278564 DOI: 10.1038/s41586-020-2428-0] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 04/02/2020] [Indexed: 02/04/2023]
Abstract
Formation of the body of vertebrate embryos proceeds sequentially by posterior addition of tissues from the tail bud. Cells of the tail bud and the posterior presomitic mesoderm, which control posterior elongation1, exhibit a high level of aerobic glycolysis that is reminiscent of the metabolic status of cancer cells experiencing the Warburg effect2,3. Glycolytic activity downstream of fibroblast growth factor controls WNT signalling in the tail bud3. In the neuromesodermal precursors of the tail bud4, WNT signalling promotes the mesodermal fate that is required for sustained axial elongation, at the expense of the neural fate3,5. How glycolysis regulates WNT signalling in the tail bud is currently unknown. Here we used chicken embryos and human tail bud-like cells differentiated in vitro from induced pluripotent stem cells to show that these cells exhibit an inverted pH gradient, with the extracellular pH lower than the intracellular pH, as observed in cancer cells6. Our data suggest that glycolysis increases extrusion of lactate coupled to protons via the monocarboxylate symporters. This contributes to elevating the intracellular pH in these cells, which creates a favourable chemical environment for non-enzymatic β-catenin acetylation downstream of WNT signalling. As acetylated β-catenin promotes mesodermal rather than neural fate7, this ultimately leads to activation of mesodermal transcriptional WNT targets and specification of the paraxial mesoderm in tail bud precursors. Our work supports the notion that some tumour cells reactivate a developmental metabolic programme.
Collapse
Affiliation(s)
- Masayuki Oginuma
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
- IMCR, Gunma University, Gunma, Japan
| | - Yukiko Harima
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Oscar A Tarazona
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Margarete Diaz-Cuadros
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Arthur Michaut
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Tohru Ishitani
- IMCR, Gunma University, Gunma, Japan
- RIMD, Osaka University, Osaka, Japan
| | - Fengzhu Xiong
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Olivier Pourquié
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA.
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
100
|
Liu X, Zhu C, Zha H, Tang J, Rong F, Chen X, Fan S, Xu C, Du J, Zhu J, Wang J, Ouyang G, Yu G, Cai X, Chen Z, Xiao W. SIRT5 impairs aggregation and activation of the signaling adaptor MAVS through catalyzing lysine desuccinylation. EMBO J 2020; 39:e103285. [PMID: 32301534 PMCID: PMC7265249 DOI: 10.15252/embj.2019103285] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 02/29/2020] [Accepted: 03/09/2020] [Indexed: 12/12/2022] Open
Abstract
RLR-mediated type I IFN production plays a pivotal role in innate antiviral immune responses, where the signaling adaptor MAVS is a critical determinant. Here, we show that MAVS is a physiological substrate of SIRT5. Moreover, MAVS is succinylated upon viral challenge, and SIRT5 catalyzes desuccinylation of MAVS. Mass spectrometric analysis indicated that Lysine 7 of MAVS is succinylated. SIRT5-catalyzed desuccinylation of MAVS at Lysine 7 diminishes the formation of MAVS aggregation after viral infection, resulting in the inhibition of MAVS activation and leading to the impairment of type I IFN production and antiviral gene expression. However, the enzyme-deficient mutant of SIRT5 (SIRT5-H158Y) loses its suppressive role on MAVS activation. Furthermore, we show that Sirt5-deficient mice are resistant to viral infection. Our study reveals the critical role of SIRT5 in limiting RLR signaling through desuccinylating MAVS.
Collapse
Affiliation(s)
- Xing Liu
- State Key Laboratory of Freshwater Ecology and BiotechnologyInstitute of HydrobiologyChinese Academy of SciencesWuhanChina
| | - Chunchun Zhu
- State Key Laboratory of Freshwater Ecology and BiotechnologyInstitute of HydrobiologyChinese Academy of SciencesWuhanChina
- University of Chinese Academy of SciencesBeijingChina
| | - Huangyuan Zha
- State Key Laboratory of Freshwater Ecology and BiotechnologyInstitute of HydrobiologyChinese Academy of SciencesWuhanChina
| | - Jinhua Tang
- State Key Laboratory of Freshwater Ecology and BiotechnologyInstitute of HydrobiologyChinese Academy of SciencesWuhanChina
- University of Chinese Academy of SciencesBeijingChina
| | - Fangjing Rong
- State Key Laboratory of Freshwater Ecology and BiotechnologyInstitute of HydrobiologyChinese Academy of SciencesWuhanChina
- University of Chinese Academy of SciencesBeijingChina
| | - Xiaoyun Chen
- State Key Laboratory of Freshwater Ecology and BiotechnologyInstitute of HydrobiologyChinese Academy of SciencesWuhanChina
- University of Chinese Academy of SciencesBeijingChina
| | - Sijia Fan
- State Key Laboratory of Freshwater Ecology and BiotechnologyInstitute of HydrobiologyChinese Academy of SciencesWuhanChina
- University of Chinese Academy of SciencesBeijingChina
| | - Chenxi Xu
- State Key Laboratory of Freshwater Ecology and BiotechnologyInstitute of HydrobiologyChinese Academy of SciencesWuhanChina
| | - Juan Du
- State Key Laboratory of Freshwater Ecology and BiotechnologyInstitute of HydrobiologyChinese Academy of SciencesWuhanChina
| | - Junji Zhu
- State Key Laboratory of Freshwater Ecology and BiotechnologyInstitute of HydrobiologyChinese Academy of SciencesWuhanChina
- University of Chinese Academy of SciencesBeijingChina
| | - Jing Wang
- State Key Laboratory of Freshwater Ecology and BiotechnologyInstitute of HydrobiologyChinese Academy of SciencesWuhanChina
| | - Gang Ouyang
- State Key Laboratory of Freshwater Ecology and BiotechnologyInstitute of HydrobiologyChinese Academy of SciencesWuhanChina
| | - Guangqing Yu
- State Key Laboratory of Freshwater Ecology and BiotechnologyInstitute of HydrobiologyChinese Academy of SciencesWuhanChina
- University of Chinese Academy of SciencesBeijingChina
| | - Xiaolian Cai
- State Key Laboratory of Freshwater Ecology and BiotechnologyInstitute of HydrobiologyChinese Academy of SciencesWuhanChina
| | - Zhu Chen
- State Key Laboratory of Freshwater Ecology and BiotechnologyInstitute of HydrobiologyChinese Academy of SciencesWuhanChina
| | - Wuhan Xiao
- State Key Laboratory of Freshwater Ecology and BiotechnologyInstitute of HydrobiologyChinese Academy of SciencesWuhanChina
- University of Chinese Academy of SciencesBeijingChina
- The Key Laboratory of Aquaculture Disease ControlMinistry of AgricultureWuhanChina
- The Key Laboratory of Aquatic Biodiversity and ConservationInstitute of HydrobiologyChinese Academy of SciencesWuhanChina
- The Innovation Academy of Seed DesignChinese Academy of SciencesWuhanChina
| |
Collapse
|