51
|
Mascanzoni F, Iannitti R, Colanzi A. Functional Coordination among the Golgi Complex, the Centrosome and the Microtubule Cytoskeleton during the Cell Cycle. Cells 2022; 11:cells11030354. [PMID: 35159164 PMCID: PMC8834581 DOI: 10.3390/cells11030354] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 12/11/2022] Open
Abstract
The Golgi complex of mammalian cells is organized in a ribbon-like structure often closely associated with the centrosome during interphase. Conversely, the Golgi complex assumes a fragmented and dispersed configuration away from the centrosome during mitosis. The structure of the Golgi complex and the relative position to the centrosome are dynamically regulated by microtubules. Many pieces of evidence reveal that this microtubule-mediated dynamic association between the Golgi complex and centrosome is of functional significance in cell polarization and division. Here, we summarize findings indicating how the Golgi complex and the centrosome cooperate in organizing the microtubule network for the directional protein transport and centrosome positioning required for cell polarization and regulating fundamental cell division processes.
Collapse
|
52
|
Li Y, Wang H, Zhang Z, Tang C, Zhou X, Mohan C, Wu T. Identification of polo-like kinase 1 as a therapeutic target in murine lupus. Clin Transl Immunology 2022; 11:e1362. [PMID: 35024139 PMCID: PMC8733964 DOI: 10.1002/cti2.1362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 09/21/2021] [Accepted: 11/29/2021] [Indexed: 11/18/2022] Open
Abstract
Introduction The signalling cascades that contribute to lupus pathogenesis are incompletely understood. We address this by using an unbiased activity‐based kinome screen of murine lupus. Methods An unbiased activity‐based kinome screen (ABKS) of 196 kinases was applied to two genetically different murine lupus strains. Systemic and renal lupus were evaluated following in vivo PLK1blockade. The upstream regulators and downstream targets of PLK1 were also interrogated. Results Multiple signalling cascades were noted to be more active in murine lupus spleens, including PLK1. In vivo administration of a PLK1‐specific inhibitor ameliorated splenomegaly, anti‐dsDNA antibody production, proteinuria, BUN and renal pathology in MRL.lpr mice (P < 0.05). Serum IL‐6, IL‐17 and kidney injury molecule 1 (KIM‐1) were significantly decreased after PLK1 inhibition. PLK1 inhibition reduced germinal centre and marginal zone B cells in the spleen, but changes in T cells were not significant. In vitro, splenocytes were treated with anti‐mouse CD40 Ab or F(ab’)2 fragment anti‐mouse IgM. After 24‐h stimulation, IL‐6 secretion was significantly reduced upon PLK1 blockade, whereas IL‐10 production was significantly increased. The phosphorylation of mTOR was assessed in splenocyte subsets, which revealed a significant change in myeloid cells. PLK1 blockade reduced phosphorylation associated with mTOR signalling, while Aurora‐A emerged as a potential upstream regulator of PLK1. Conclusion The Aurora‐A → PLK1 → mTOR signalling axis may be central in lupus pathogenesis, and emerges as a potential therapeutic target.
Collapse
Affiliation(s)
- Yaxi Li
- Department of Biomedical Engineering University of Houston Houston TX USA
| | - Hongting Wang
- Department of Biomedical Engineering University of Houston Houston TX USA
| | - Zijing Zhang
- Department of Biomedical Engineering University of Houston Houston TX USA.,Institute of Animal Husbandry and Veterinary Science Henan Academy of Agricultural Sciences Zhengzhou Henan China
| | - Chenling Tang
- Department of Biomedical Engineering University of Houston Houston TX USA
| | - Xinjin Zhou
- Department of Pathology Baylor University Medical Center at Dallas Dallas TX USA
| | - Chandra Mohan
- Department of Biomedical Engineering University of Houston Houston TX USA
| | - Tianfu Wu
- Department of Biomedical Engineering University of Houston Houston TX USA
| |
Collapse
|
53
|
Raab M, Matthess Y, Raab CA, Gutfreund N, Dötsch V, Becker S, Sanhaji M, Strebhardt K. A dimerization-dependent mechanism regulates enzymatic activation and nuclear entry of PLK1. Oncogene 2022; 41:372-386. [PMID: 34759346 PMCID: PMC8755526 DOI: 10.1038/s41388-021-02094-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 10/18/2021] [Accepted: 10/22/2021] [Indexed: 12/29/2022]
Abstract
Polo-like kinase 1 (PLK1) is a crucial regulator of cell cycle progression. It is established that the activation of PLK1 depends on the coordinated action of Aurora-A and Bora. Nevertheless, very little is known about the spatiotemporal regulation of PLK1 during G2, specifically, the mechanisms that keep cytoplasmic PLK1 inactive until shortly before mitosis onset. Here, we describe PLK1 dimerization as a new mechanism that controls PLK1 activation. During the early G2 phase, Bora supports transient PLK1 dimerization, thus fine-tuning the timely regulated activation of PLK1 and modulating its nuclear entry. At late G2, the phosphorylation of T210 by Aurora-A triggers dimer dissociation and generates active PLK1 monomers that support entry into mitosis. Interfering with this critical PLK1 dimer/monomer switch prevents the association of PLK1 with importins, limiting its nuclear shuttling, and causes nuclear PLK1 mislocalization during the G2-M transition. Our results suggest a novel conformational space for the design of a new generation of PLK1 inhibitors.
Collapse
Affiliation(s)
- Monika Raab
- Department of Gynecology, Medical School, Goethe University, Frankfurt, Germany
| | - Yves Matthess
- Department of Gynecology, Medical School, Goethe University, Frankfurt, Germany
| | - Christopher A Raab
- Department of Gynecology, Medical School, Goethe University, Frankfurt, Germany
| | - Niklas Gutfreund
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Max-von-Laue Str. 9, 60438, Frankfurt am Main, Germany
| | - Volker Dötsch
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Max-von-Laue Str. 9, 60438, Frankfurt am Main, Germany
| | - Sven Becker
- Department of Gynecology, Medical School, Goethe University, Frankfurt, Germany
| | - Mourad Sanhaji
- Department of Gynecology, Medical School, Goethe University, Frankfurt, Germany.
| | - Klaus Strebhardt
- Department of Gynecology, Medical School, Goethe University, Frankfurt, Germany.
- German Cancer Consortium (DKTK) / German Cancer Research Center, Heidelberg, Germany.
| |
Collapse
|
54
|
Roles of RACK1 in centrosome regulation and carcinogenesis. Cell Signal 2021; 90:110207. [PMID: 34843916 DOI: 10.1016/j.cellsig.2021.110207] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 11/22/2022]
Abstract
Receptor for activated C kinase 1 (RACK1) regulates various cellular functions and signaling pathways by interacting with different proteins. Recently, we showed that RACK1 interacts with breast cancer gene 1 (BRCA1), which regulates centrosome duplication. RACK1 localizes to centrosomes and spindle poles and is involved in the proper centrosomal localization of BRCA1. The interaction between RACK1 and BRCA1 is critical for the regulation of centrosome number. In addition, RACK1 contributes to centriole duplication by regulating polo-like kinase 1 (PLK1) activity in S phase. RACK1 binds directly to PLK1 and Aurora A, promoting the phosphorylation of PLK1 and activating the Aurora A/PLK1 signaling axis. Overexpression of RACK1 causes centrosome amplification, especially in mammary gland epithelial cells, inducing overactivation of PLK1 followed by premature centriole disengagement and centriole re-duplication. Other proteins, including hypoxia-inducible factor α, von Hippel-Lindau protein, heat-shock protein 90, β-catenin, and glycogen synthase kinase-3β, interact with RACK1 and play roles in centrosome regulation. In this review, we focus on the roles and underlying molecular mechanisms of RACK1 in centrosome regulation mediated by its interaction with different proteins and the modulation of their functions.
Collapse
|
55
|
Lester WC, Johnson T, Hale B, Serra N, Elgart B, Wang R, Geyer CB, Sperry AO. Aurora a kinase (AURKA) is required for male germline maintenance and regulates sperm motility in the mouse. Biol Reprod 2021; 105:1603-1616. [PMID: 34518881 DOI: 10.1093/biolre/ioab168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 03/12/2021] [Accepted: 09/02/2021] [Indexed: 11/13/2022] Open
Abstract
Aurora A kinase (AURKA) is an important regulator of cell division and is required for assembly of the mitotic spindle. We recently reported the unusual finding that this mitotic kinase is also found on the sperm flagellum. To determine its requirement in spermatogenesis, we generated conditional knockout animals with deletion of the Aurka gene in either spermatogonia or spermatocytes to assess its role in mitotic and postmitotic cells, respectively. Deletion of Aurka in spermatogonia resulted in disappearance of all developing germ cells in the testis, as expected given its vital role in mitotic cell division. Deletion of Aurka in spermatocytes reduced testis size, sperm count, and fertility, indicating disruption of meiosis or an effect on spermiogenesis in developing mice. Interestingly, deletion of Aurka in spermatocytes increased apoptosis in spermatocytes along with an increase in the percentage of sperm with abnormal morphology. Despite the increase in abnormal sperm, sperm from spermatocyte Aurka knockout mice displayed increased progressive motility. In addition, sperm lysate prepared from Aurka knockout animals had decreased protein phosphatase 1 (PP1) activity. Together, our results show that AURKA plays multiple roles in spermatogenesis, from mitotic divisions of spermatogonia to sperm morphology and motility.
Collapse
Affiliation(s)
- William C Lester
- Department of Anatomy and Cell Biology at the Brody School of Medicine
| | - Taylor Johnson
- Department of Anatomy and Cell Biology at the Brody School of Medicine.,East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville NC, USA 27834
| | - Ben Hale
- Department of Anatomy and Cell Biology at the Brody School of Medicine.,East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville NC, USA 27834
| | - Nicholas Serra
- Department of Anatomy and Cell Biology at the Brody School of Medicine.,East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville NC, USA 27834
| | - Brian Elgart
- Department of Anatomy and Cell Biology at the Brody School of Medicine
| | - Rong Wang
- Department of Anatomy and Cell Biology at the Brody School of Medicine
| | - Christopher B Geyer
- Department of Anatomy and Cell Biology at the Brody School of Medicine.,East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville NC, USA 27834
| | - Ann O Sperry
- Department of Anatomy and Cell Biology at the Brody School of Medicine
| |
Collapse
|
56
|
Pitzen V, Sander S, Baumann O, Gräf R, Meyer I. Cep192, a Novel Missing Link between the Centrosomal Core and Corona in Dictyostelium Amoebae. Cells 2021; 10:cells10092384. [PMID: 34572033 PMCID: PMC8467581 DOI: 10.3390/cells10092384] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/07/2021] [Accepted: 09/07/2021] [Indexed: 12/27/2022] Open
Abstract
The Dictyostelium centrosome is a nucleus-associated body with a diameter of approx. 500 nm. It contains no centrioles but consists of a cylindrical layered core structure surrounded by a microtubule-nucleating corona. At the onset of mitosis, the corona disassembles and the core structure duplicates through growth, splitting, and reorganization of the outer core layers. During the last decades our research group has characterized the majority of the 42 known centrosomal proteins. In this work we focus on the conserved, previously uncharacterized Cep192 protein. We use superresolution expansion microscopy (ExM) to show that Cep192 is a component of the outer core layers. Furthermore, ExM with centrosomal marker proteins nicely mirrored all ultrastructurally known centrosomal substructures. Furthermore, we improved the proximity-dependent biotin identification assay (BioID) by adapting the biotinylase BioID2 for expression in Dictyostelium and applying a knock-in strategy for the expression of BioID2-tagged centrosomal fusion proteins. Thus, we were able to identify various centrosomal Cep192 interaction partners, including CDK5RAP2, which was previously allocated to the inner corona structure, and several core components. Studies employing overexpression of GFP-Cep192 as well as depletion of endogenous Cep192 revealed that Cep192 is a key protein for the recruitment of corona components during centrosome biogenesis and is required to maintain a stable corona structure.
Collapse
Affiliation(s)
- Valentin Pitzen
- Department of Cell Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam-Golm, Germany; (V.P.); (S.S.); (R.G.)
| | - Sophia Sander
- Department of Cell Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam-Golm, Germany; (V.P.); (S.S.); (R.G.)
| | - Otto Baumann
- Department of Animal Physiology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam-Golm, Germany;
| | - Ralph Gräf
- Department of Cell Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam-Golm, Germany; (V.P.); (S.S.); (R.G.)
| | - Irene Meyer
- Department of Cell Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam-Golm, Germany; (V.P.); (S.S.); (R.G.)
- Correspondence:
| |
Collapse
|
57
|
Pereira SG, Dias Louro MA, Bettencourt-Dias M. Biophysical and Quantitative Principles of Centrosome Biogenesis and Structure. Annu Rev Cell Dev Biol 2021; 37:43-63. [PMID: 34314592 DOI: 10.1146/annurev-cellbio-120219-051400] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The centrosome is a main orchestrator of the animal cellular microtubule cytoskeleton. Dissecting its structure and assembly mechanisms has been a goal of cell biologists for over a century. In the last two decades, a good understanding of the molecular constituents of centrosomes has been achieved. Moreover, recent breakthroughs in electron and light microscopy techniques have enabled the inspection of the centrosome and the mapping of its components with unprecedented detail. However, we now need a profound and dynamic understanding of how these constituents interact in space and time. Here, we review the latest findings on the structural and molecular architecture of the centrosome and how its biogenesis is regulated, highlighting how biophysical techniques and principles as well as quantitative modeling are changing our understanding of this enigmatic cellular organelle. Expected final online publication date for the Annual Review of Cell and Developmental Biology, Volume 37 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
|
58
|
Jiang X, Ho DBT, Mahe K, Mia J, Sepulveda G, Antkowiak M, Jiang L, Yamada S, Jao LE. Condensation of pericentrin proteins in human cells illuminates phase separation in centrosome assembly. J Cell Sci 2021; 134:jcs258897. [PMID: 34308971 PMCID: PMC8349556 DOI: 10.1242/jcs.258897] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 06/08/2021] [Indexed: 11/24/2022] Open
Abstract
At the onset of mitosis, centrosomes expand the pericentriolar material (PCM) to maximize their microtubule-organizing activity. This step, termed centrosome maturation, ensures proper spindle organization and faithful chromosome segregation. However, as the centrosome expands, how PCM proteins are recruited and held together without membrane enclosure remains elusive. We found that endogenously expressed pericentrin (PCNT), a conserved PCM scaffold protein, condenses into dynamic granules during late G2/early mitosis before incorporating into mitotic centrosomes. Furthermore, the N-terminal portion of PCNT, enriched with conserved coiled-coils (CCs) and low-complexity regions (LCRs), phase separates into dynamic condensates that selectively recruit PCM proteins and nucleate microtubules in cells. We propose that CCs and LCRs, two prevalent sequence features in the centrosomal proteome, are preserved under evolutionary pressure in part to mediate liquid-liquid phase separation, a process that bestows upon the centrosome distinct properties critical for its assembly and functions.
Collapse
Affiliation(s)
- Xueer Jiang
- Department of Cell Biology and Human Anatomy, University of California, Davis, School of Medicine, Davis, CA 95616, USA
| | - Dac Bang Tam Ho
- Department of Cell Biology and Human Anatomy, University of California, Davis, School of Medicine, Davis, CA 95616, USA
| | - Karan Mahe
- Department of Cell Biology and Human Anatomy, University of California, Davis, School of Medicine, Davis, CA 95616, USA
| | - Jennielee Mia
- Department of Cell Biology and Human Anatomy, University of California, Davis, School of Medicine, Davis, CA 95616, USA
| | - Guadalupe Sepulveda
- Department of Cell Biology and Human Anatomy, University of California, Davis, School of Medicine, Davis, CA 95616, USA
| | - Mark Antkowiak
- Department of Cell Biology and Human Anatomy, University of California, Davis, School of Medicine, Davis, CA 95616, USA
| | - Linhao Jiang
- Department of Cell Biology and Human Anatomy, University of California, Davis, School of Medicine, Davis, CA 95616, USA
| | - Soichiro Yamada
- Department of Biomedical Engineering, University of California, Davis, Davis, CA 95616, USA
| | - Li-En Jao
- Department of Cell Biology and Human Anatomy, University of California, Davis, School of Medicine, Davis, CA 95616, USA
| |
Collapse
|
59
|
Wang X, Baumann C, De La Fuente R, Viveiros MM. Loss of acentriolar MTOCs disrupts spindle pole Aurora A and assembly of the liquid-like meiotic spindle domain in oocytes. J Cell Sci 2021; 134:jcs256297. [PMID: 34152366 PMCID: PMC8325960 DOI: 10.1242/jcs.256297] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 06/14/2021] [Indexed: 11/20/2022] Open
Abstract
Oocyte-specific knockdown of pericentrin (PCNT) in transgenic (Tg) mice disrupts acentriolar microtubule-organizing center (aMTOC) formation, leading to spindle instability and error-prone meiotic division. Here, we show that PCNT-depleted oocytes lack phosphorylated Aurora A (pAURKA) at spindle poles, while overall levels are unaltered. To test aMTOC-associated AURKA function, metaphase II (MII) control (WT) and Tg oocytes were briefly exposed to a specific AURKA inhibitor (MLN8237). Similar defects were observed in Tg and MLN8237-treated WT oocytes, including altered spindle structure, increased chromosome misalignment and impaired microtubule regrowth. Yet, AURKA inhibition had a limited effect on Tg oocytes, revealing a critical role for aMTOC-associated AURKA in regulating spindle stability. Notably, spindle instability was associated with disrupted γ-tubulin and lack of the liquid-like meiotic spindle domain (LISD) in Tg oocytes. Analysis of this Tg model provides the first evidence that LISD assembly depends expressly on aMTOC-associated AURKA, and that Ran-mediated spindle formation ensues without the LISD. These data support that loss of aMTOC-associated AURKA and failure of LISD assembly contribute to error-prone meiotic division in PCNT-depleted oocytes, underscoring the essential role of aMTOCs for spindle stability.
Collapse
Affiliation(s)
- Xiaotian Wang
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia,Athens, GA 30602, USA
| | - Claudia Baumann
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia,Athens, GA 30602, USA
| | - Rabindranath De La Fuente
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia,Athens, GA 30602, USA
- Regenerative Biosciences Center (RBC), University of Georgia,Athens, GA 30602, USA
| | - Maria M. Viveiros
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia,Athens, GA 30602, USA
- Regenerative Biosciences Center (RBC), University of Georgia,Athens, GA 30602, USA
| |
Collapse
|
60
|
Alvarez-Rodrigo I, Wainman A, Saurya S, Raff JW. Ana1 helps recruit Polo to centrioles to promote mitotic PCM assembly and centriole elongation. J Cell Sci 2021; 134:jcs258987. [PMID: 34156068 PMCID: PMC8325959 DOI: 10.1242/jcs.258987] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 06/08/2021] [Indexed: 01/12/2023] Open
Abstract
Polo kinase (PLK1 in mammals) is a master cell cycle regulator that is recruited to various subcellular structures, often by its polo-box domain (PBD), which binds to phosphorylated S-pS/pT motifs. Polo/PLK1 kinases have multiple functions at centrioles and centrosomes, and we have previously shown that in Drosophila phosphorylated Sas-4 initiates Polo recruitment to newly formed centrioles, while phosphorylated Spd-2 recruits Polo to the pericentriolar material (PCM) that assembles around mother centrioles in mitosis. Here, we show that Ana1 (Cep295 in humans) also helps to recruit Polo to mother centrioles in Drosophila. If Ana1-dependent Polo recruitment is impaired, mother centrioles can still duplicate, disengage from their daughters and form functional cilia, but they can no longer efficiently assemble mitotic PCM or elongate during G2. We conclude that Ana1 helps recruit Polo to mother centrioles to specifically promote mitotic centrosome assembly and centriole elongation in G2, but not centriole duplication, centriole disengagement or cilia assembly. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
| | | | | | - Jordan W. Raff
- The Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| |
Collapse
|
61
|
Xu L, Ali M, Duan W, Yuan X, Garba F, Mullen M, Sun B, Poser I, Duan H, Lu J, Tian R, Ge Y, Chu L, Pan W, Wang D, Hyman A, Green H, Li L, Dou Z, Liu D, Liu X, Yao X. Feedback control of PLK1 by Apolo1 ensures accurate chromosome segregation. Cell Rep 2021; 36:109343. [PMID: 34260926 PMCID: PMC8358895 DOI: 10.1016/j.celrep.2021.109343] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 04/01/2020] [Accepted: 06/15/2021] [Indexed: 12/12/2022] Open
Abstract
Stable transmission of genetic material during cell division requires accurate chromosome segregation. PLK1 dynamics at kinetochores control establishment of correct kinetochore-microtubule attachments and subsequent silencing of the spindle checkpoint. However, the regulatory mechanism responsible for PLK1 activity in prometaphase has not yet been affirmatively identified. Here we identify Apolo1, which tunes PLK1 activity for accurate kinetochore-microtubule attachments. Apolo1 localizes to kinetochores during early mitosis, and suppression of Apolo1 results in misaligned chromosomes. Using the fluorescence resonance energy transfer (FRET)-based PLK1 activity reporter, we found that Apolo1 sustains PLK1 kinase activity at kinetochores for accurate attachment during prometaphase. Apolo1 is a cognate substrate of PLK1, and the phosphorylation enables PP1γ to inactivate PLK1 by dephosphorylation. Mechanistically, Apolo1 constitutes a bridge between kinase and phosphatase, which governs PLK1 activity in prometaphase. These findings define a previously uncharacterized feedback loop by which Apolo1 provides fine-tuning for PLK1 to guide chromosome segregation in mitosis.
Collapse
Affiliation(s)
- Leilei Xu
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science & Technology of China, Hefei 230027, China; Keck Center for Molecular Imaging, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Mahboob Ali
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science & Technology of China, Hefei 230027, China
| | - Wenxiu Duan
- Anhui Key Laboratory for Chemical Biology, Hefei National Center for Physical Sciences at Microscale, Hefei 230027, China
| | - Xiao Yuan
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science & Technology of China, Hefei 230027, China; Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Fatima Garba
- Keck Center for Molecular Imaging, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - McKay Mullen
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science & Technology of China, Hefei 230027, China; Keck Center for Molecular Imaging, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Binwen Sun
- National Chromatographic Research and Analysis Center, Dalian 116023, China
| | - Ina Poser
- Max Planck Institute for Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Hequan Duan
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science & Technology of China, Hefei 230027, China; Keck Center for Molecular Imaging, Morehouse School of Medicine, Atlanta, GA 30310, USA; Anhui Key Laboratory for Chemical Biology, Hefei National Center for Physical Sciences at Microscale, Hefei 230027, China
| | - Jianlin Lu
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science & Technology of China, Hefei 230027, China
| | - Ruijun Tian
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yushu Ge
- Anhui Key Laboratory for Chemical Biology, Hefei National Center for Physical Sciences at Microscale, Hefei 230027, China
| | - Lingluo Chu
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science & Technology of China, Hefei 230027, China; Keck Center for Molecular Imaging, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Weijun Pan
- Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Dongmei Wang
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science & Technology of China, Hefei 230027, China
| | - Anthony Hyman
- Max Planck Institute for Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Hadiyah Green
- Keck Center for Molecular Imaging, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Lin Li
- Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhen Dou
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science & Technology of China, Hefei 230027, China; Anhui Key Laboratory for Chemical Biology, Hefei National Center for Physical Sciences at Microscale, Hefei 230027, China.
| | - Dan Liu
- Anhui Key Laboratory for Chemical Biology, Hefei National Center for Physical Sciences at Microscale, Hefei 230027, China.
| | - Xing Liu
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science & Technology of China, Hefei 230027, China; Keck Center for Molecular Imaging, Morehouse School of Medicine, Atlanta, GA 30310, USA.
| | - Xuebiao Yao
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science & Technology of China, Hefei 230027, China; Keck Center for Molecular Imaging, Morehouse School of Medicine, Atlanta, GA 30310, USA.
| |
Collapse
|
62
|
Wang R, Ascanelli C, Abdelbaki A, Fung A, Rasmusson T, Michaelides I, Roberts K, Lindon C. Selective targeting of non-centrosomal AURKA functions through use of a targeted protein degradation tool. Commun Biol 2021; 4:640. [PMID: 34050235 PMCID: PMC8163823 DOI: 10.1038/s42003-021-02158-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 04/29/2021] [Indexed: 12/22/2022] Open
Abstract
Targeted protein degradation tools are becoming a new therapeutic modality, allowing small molecule ligands to be reformulated as heterobifunctional molecules (PROteolysis Targeting Chimeras, PROTACs) that recruit ubiquitin ligases to targets of interest, leading to ubiquitination and destruction of the targets. Several PROTACs against targets of clinical interest have been described, but detailed descriptions of the cell biology modulated by PROTACs are missing from the literature. Here we describe the functional characterization of a PROTAC derived from AURKA inhibitor MLN8237 (alisertib). We demonstrate efficient and specific destruction of both endogenous and overexpressed AURKA by Cereblon-directed PROTACs. At the subcellular level, we find differential targeting of AURKA on the mitotic spindle compared to centrosomes. The phenotypic consequences of PROTAC treatment are therefore distinct from those mediated by alisertib, and in mitotic cells differentially regulate centrosome- and chromatin- based microtubule spindle assembly pathways. In interphase cells PROTAC-mediated clearance of non-centrosomal AURKA modulates the cytoplasmic role played by AURKA in mitochondrial dynamics, whilst the centrosomal pool is refractory to PROTAC-mediated clearance. Our results point to differential sensitivity of subcellular pools of substrate, governed by substrate conformation or localization-dependent accessibility to PROTAC action, a phenomenon not previously described for this new class of degrader compounds. Wang et al develop tools to target the mitotic regulator AURKA by synthesising PROTACs based on the inhibitor MLN8237. They find that the new PROTAC compound efficiently clears cytoplasmic and mitotic spindle-associated AURKA but does not eliminate AURKA activity from centrosomes, demonstrating the possibility of targeting subpopulations.
Collapse
Affiliation(s)
- Richard Wang
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | | | - Ahmed Abdelbaki
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - Alex Fung
- Department of Pharmacology, University of Cambridge, Cambridge, UK.,University of Cambridge School of Clinical Medicine, Addenbrooke's Hospital, Cambridge, UK
| | - Tim Rasmusson
- Discovery Sciences, R&D, AstraZeneca, Cambridge, UK.,Bristol Myers Squibb, Cambridge, MA, USA
| | | | | | - Catherine Lindon
- Department of Pharmacology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
63
|
Chi W, Wang G, Xin G, Jiang Q, Zhang C. PLK4-phosphorylated NEDD1 facilitates cartwheel assembly and centriole biogenesis initiations. J Cell Biol 2021; 220:211633. [PMID: 33351100 PMCID: PMC7759300 DOI: 10.1083/jcb.202002151] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 09/11/2020] [Accepted: 10/23/2020] [Indexed: 12/11/2022] Open
Abstract
Centrosome duplication occurs under strict spatiotemporal regulation once per cell cycle, and it begins with cartwheel assembly and daughter centriole biogenesis at the lateral sites of the mother centrioles. However, although much of this process is understood, how centrosome duplication is initiated remains unclear. Here, we show that cartwheel assembly followed by daughter centriole biogenesis is initiated on the NEDD1-containing layer of the pericentriolar material (PCM) by the recruitment of SAS-6 to the mother centriole under the regulation of PLK4. We found that PLK4-mediated phosphorylation of NEDD1 at its S325 amino acid residue directly promotes both NEDD1 binding to SAS-6 and recruiting SAS-6 to the centrosome. Overexpression of phosphomimicking NEDD1 mutant S325E promoted cartwheel assembly and daughter centriole biogenesis initiations, whereas overexpression of nonphosphorylatable NEDD1 mutant S325A abolished the initiations. Collectively, our results demonstrate that PLK4-regulated NEDD1 facilitates initiation of the cartwheel assembly and of daughter centriole biogenesis in mammals.
Collapse
Affiliation(s)
- Wangfei Chi
- The Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, China
| | - Gang Wang
- The Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, China
| | - Guangwei Xin
- The Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, China
| | - Qing Jiang
- The Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, China
| | - Chuanmao Zhang
- The Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, China
| |
Collapse
|
64
|
Yoshino Y, Fang Z, Qi H, Kobayashi A, Chiba N. Dysregulation of the centrosome induced by BRCA1 deficiency contributes to tissue-specific carcinogenesis. Cancer Sci 2021; 112:1679-1687. [PMID: 33606355 PMCID: PMC8088922 DOI: 10.1111/cas.14859] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/11/2021] [Accepted: 02/16/2021] [Indexed: 12/12/2022] Open
Abstract
Alterations in breast cancer gene 1 (BRCA1), a tumor suppressor gene, increase the risk of breast and ovarian cancers. BRCA1 forms a heterodimer with BRCA1-associated RING domain protein 1 (BARD1) and functions in multiple cellular processes, including DNA repair and centrosome regulation. BRCA1 acts as a tumor suppressor by promoting homologous recombination (HR) repair, and alterations in BRCA1 cause HR deficiency, not only in breast and ovarian tissues but also in other tissues. The molecular mechanisms underlying BRCA1 alteration-induced carcinogenesis remain unclear. Centrosomes are the major microtubule-organizing centers and function in bipolar spindle formation. The regulation of centrosome number is critical for chromosome segregation in mitosis, which maintains genomic stability. BRCA1/BARD1 function in centrosome regulation together with Obg-like ATPase (OLA1) and receptor for activating protein C kinase 1 (RACK1). Cancer-derived variants of BRCA1, BARD1, OLA1, and RACK1 do not interact, and aberrant expression of these proteins results in abnormal centrosome duplication in mammary-derived cells, and rarely in other cell types. RACK1 is involved in centriole duplication in the S phase by promoting polo-like kinase 1 activation by Aurora A, which is critical for centrosome duplication. Centriole number is higher in cells derived from mammary tissues compared with in those derived from other tissues, suggesting that tissue-specific centrosome characterization may shed light on the tissue specificity of BRCA1-associated carcinogenesis. Here, we explored the role of the BRCA1-containing complex in centrosome regulation and the effect of its deficiency on tissue-specific carcinogenesis.
Collapse
Affiliation(s)
- Yuki Yoshino
- Department of Cancer BiologyInstitute of Aging, Development, and CancerTohoku UniversitySendaiJapan
- Laboratory of Cancer BiologyGraduate School of Life SciencesTohoku UniversitySendaiJapan
- Department of Cancer BiologyTohoku University Graduate School of MedicineSendaiJapan
| | - Zhenzhou Fang
- Department of Cancer BiologyInstitute of Aging, Development, and CancerTohoku UniversitySendaiJapan
- Department of Cancer BiologyTohoku University Graduate School of MedicineSendaiJapan
| | - Huicheng Qi
- Department of Cancer BiologyInstitute of Aging, Development, and CancerTohoku UniversitySendaiJapan
- Department of Cancer BiologyTohoku University Graduate School of MedicineSendaiJapan
| | - Akihiro Kobayashi
- Department of Cancer BiologyInstitute of Aging, Development, and CancerTohoku UniversitySendaiJapan
- Department of Cancer BiologyTohoku University Graduate School of MedicineSendaiJapan
| | - Natsuko Chiba
- Department of Cancer BiologyInstitute of Aging, Development, and CancerTohoku UniversitySendaiJapan
- Laboratory of Cancer BiologyGraduate School of Life SciencesTohoku UniversitySendaiJapan
- Department of Cancer BiologyTohoku University Graduate School of MedicineSendaiJapan
| |
Collapse
|
65
|
Alfaro E, López‐Jiménez P, González‐Martínez J, Malumbres M, Suja JA, Gómez R. PLK1 regulates centrosome migration and spindle dynamics in male mouse meiosis. EMBO Rep 2021; 22:e51030. [PMID: 33615693 PMCID: PMC8025030 DOI: 10.15252/embr.202051030] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 01/14/2021] [Accepted: 01/21/2021] [Indexed: 12/20/2022] Open
Abstract
Cell division requires the regulation of karyokinesis and cytokinesis, which includes an essential role of the achromatic spindle. Although the functions of centrosomes are well characterised in somatic cells, their role during vertebrate spermatogenesis remains elusive. We have studied the dynamics of the meiotic centrosomes in male mouse during both meiotic divisions. Results show that meiotic centrosomes duplicate twice: first duplication occurs in the leptotene/zygotene transition, while the second occurs in interkinesis. The maturation of duplicated centrosomes during the early stages of prophase I and II are followed by their separation and migration to opposite poles to form bipolar spindles I and II. The study of the genetic mouse model Plk1(Δ/Δ) indicates a central role of Polo-like kinase 1 in pericentriolar matrix assembly, in centrosome maturation and migration, and in the formation of the bipolar spindles during spermatogenesis. In addition, in vitro inhibition of Polo-like kinase 1 and Aurora A in organotypic cultures of seminiferous tubules points out to a prominent role of both kinases in the regulation of the formation of meiotic bipolar spindles.
Collapse
Affiliation(s)
- Enrique Alfaro
- Departamento de BiologíaFacultad de CienciasUnidad de Biología CelularUniversidad Autónoma de MadridMadridSpain
| | - Pablo López‐Jiménez
- Departamento de BiologíaFacultad de CienciasUnidad de Biología CelularUniversidad Autónoma de MadridMadridSpain
| | | | - Marcos Malumbres
- Cell Division and Cancer GroupSpanish National Cancer Research Centre (CNIO)MadridSpain
| | - José A Suja
- Departamento de BiologíaFacultad de CienciasUnidad de Biología CelularUniversidad Autónoma de MadridMadridSpain
| | - Rocío Gómez
- Departamento de BiologíaFacultad de CienciasUnidad de Biología CelularUniversidad Autónoma de MadridMadridSpain
| |
Collapse
|
66
|
Wellard SR, Zhang Y, Shults C, Zhao X, McKay M, Murray SA, Jordan PW. Overlapping roles for PLK1 and Aurora A during meiotic centrosome biogenesis in mouse spermatocytes. EMBO Rep 2021; 22:e51023. [PMID: 33615678 PMCID: PMC8024899 DOI: 10.15252/embr.202051023] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 12/29/2020] [Accepted: 01/21/2021] [Indexed: 01/09/2023] Open
Abstract
The establishment of bipolar spindles during meiotic divisions ensures faithful chromosome segregation to prevent gamete aneuploidy. We analyzed centriole duplication, as well as centrosome maturation and separation during meiosis I and II using mouse spermatocytes. The first round of centriole duplication occurs during early prophase I, and then, centrosomes mature and begin to separate by the end of prophase I to prime formation of bipolar metaphase I spindles. The second round of centriole duplication occurs at late anaphase I, and subsequently, centrosome separation coordinates bipolar segregation of sister chromatids during meiosis II. Using a germ cell-specific conditional knockout strategy, we show that Polo-like kinase 1 and Aurora A kinase are required for centrosome maturation and separation prior to metaphase I, leading to the formation of bipolar metaphase I spindles. Furthermore, we show that PLK1 is required to block the second round of centriole duplication and maturation until anaphase I. Our findings emphasize the importance of maintaining strict spatiotemporal control of cell cycle kinases during meiosis to ensure proficient centrosome biogenesis and, thus, accurate chromosome segregation during spermatogenesis.
Collapse
Affiliation(s)
- Stephen R Wellard
- Biochemistry and Molecular Biology DepartmentJohns Hopkins University Bloomberg School of Public HealthBaltimoreMDUSA
| | - Yujiao Zhang
- Biochemistry and Molecular Biology DepartmentJohns Hopkins University Bloomberg School of Public HealthBaltimoreMDUSA
| | - Chris Shults
- Biochemistry and Molecular Biology DepartmentJohns Hopkins University Bloomberg School of Public HealthBaltimoreMDUSA
| | - Xueqi Zhao
- Biochemistry and Molecular Biology DepartmentJohns Hopkins University Bloomberg School of Public HealthBaltimoreMDUSA
| | | | | | - Philip W Jordan
- Biochemistry and Molecular Biology DepartmentJohns Hopkins University Bloomberg School of Public HealthBaltimoreMDUSA
| |
Collapse
|
67
|
Vasquez-Limeta A, Loncarek J. Human centrosome organization and function in interphase and mitosis. Semin Cell Dev Biol 2021; 117:30-41. [PMID: 33836946 DOI: 10.1016/j.semcdb.2021.03.020] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/26/2021] [Accepted: 03/28/2021] [Indexed: 01/15/2023]
Abstract
Centrosomes were first described by Edouard Van Beneden and named and linked to chromosome segregation by Theodor Boveri around 1870. In the 1960-1980s, electron microscopy studies have revealed the remarkable ultrastructure of a centriole -- a nine-fold symmetrical microtubular assembly that resides within a centrosome and organizes it. Less than two decades ago, proteomics and genomic screens conducted in multiple species identified hundreds of centriole and centrosome core proteins and revealed the evolutionarily conserved nature of the centriole assembly pathway. And now, super resolution microscopy approaches and improvements in cryo-tomography are bringing an unparalleled nanoscale-detailed picture of the centriole and centrosome architecture. In this chapter, we summarize the current knowledge about the architecture of human centrioles. We discuss the structured organization of centrosome components in interphase, focusing on localization/function relationship. We discuss the process of centrosome maturation and mitotic spindle pole assembly in centriolar and acentriolar cells, emphasizing recent literature.
Collapse
Affiliation(s)
| | - Jadranka Loncarek
- Laboratory of Protein Dynamics and Signaling, NIH/NCI, Frederick 21702, MD, USA.
| |
Collapse
|
68
|
Chinen T, Yamazaki K, Hashimoto K, Fujii K, Watanabe K, Takeda Y, Yamamoto S, Nozaki Y, Tsuchiya Y, Takao D, Kitagawa D. Centriole and PCM cooperatively recruit CEP192 to spindle poles to promote bipolar spindle assembly. J Cell Biol 2021; 220:e202006085. [PMID: 33443571 PMCID: PMC7812875 DOI: 10.1083/jcb.202006085] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 10/12/2020] [Accepted: 12/15/2020] [Indexed: 12/21/2022] Open
Abstract
The pericentriolar material (PCM) that accumulates around the centriole expands during mitosis and nucleates microtubules. Here, we show the cooperative roles of the centriole and PCM scaffold proteins, pericentrin and CDK5RAP2, in the recruitment of CEP192 to spindle poles during mitosis. Systematic depletion of PCM proteins revealed that CEP192, but not pericentrin and/or CDK5RAP2, was crucial for bipolar spindle assembly in HeLa, RPE1, and A549 cells with centrioles. Upon double depletion of pericentrin and CDK5RAP2, CEP192 that remained at centriole walls was sufficient for bipolar spindle formation. In contrast, through centriole removal, we found that pericentrin and CDK5RAP2 recruited CEP192 at the acentriolar spindle pole and facilitated bipolar spindle formation in mitotic cells with one centrosome. Furthermore, the perturbation of PLK1, a critical kinase for PCM assembly, efficiently suppressed bipolar spindle formation in mitotic cells with one centrosome. Overall, these data suggest that the centriole and PCM scaffold proteins cooperatively recruit CEP192 to spindle poles and facilitate bipolar spindle formation.
Collapse
Affiliation(s)
- Takumi Chinen
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Science, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Kaho Yamazaki
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Science, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Kaho Hashimoto
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Science, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Ken Fujii
- Department of Molecular Genetics, Division of Centrosome Biology, National Institute of Genetics, Mishima, Shizuoka, Japan
- Department of Genetics, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Mishima, Shizuoka, Japan
| | - Koki Watanabe
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Science, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Yutaka Takeda
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Science, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Shohei Yamamoto
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Science, The University of Tokyo, Bunkyo, Tokyo, Japan
- Graduate Program in Bioscience, Graduate School of Science, University of Tokyo, Hongo, Tokyo, Japan
| | - Yuka Nozaki
- Department of Molecular Genetics, Division of Centrosome Biology, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Yuki Tsuchiya
- Department of Molecular Genetics, Division of Centrosome Biology, National Institute of Genetics, Mishima, Shizuoka, Japan
- Department of Genetics, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Mishima, Shizuoka, Japan
| | - Daisuke Takao
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Science, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Daiju Kitagawa
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Science, The University of Tokyo, Bunkyo, Tokyo, Japan
- Department of Molecular Genetics, Division of Centrosome Biology, National Institute of Genetics, Mishima, Shizuoka, Japan
- Department of Genetics, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Mishima, Shizuoka, Japan
| |
Collapse
|
69
|
Jaiswal S, Kasera H, Jain S, Khandelwal S, Singh P. Centrosome: A Microtubule Nucleating Cellular Machinery. J Indian Inst Sci 2021. [DOI: 10.1007/s41745-020-00213-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
70
|
Ohta M, Zhao Z, Wu D, Wang S, Harrison JL, Gómez-Cavazos JS, Desai A, Oegema KF. Polo-like kinase 1 independently controls microtubule-nucleating capacity and size of the centrosome. J Cell Biol 2021; 220:211652. [PMID: 33399854 PMCID: PMC7788462 DOI: 10.1083/jcb.202009083] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/14/2020] [Accepted: 11/20/2020] [Indexed: 12/18/2022] Open
Abstract
Centrosomes are composed of a centriolar core surrounded by a pericentriolar material (PCM) matrix that docks microtubule-nucleating γ-tubulin complexes. During mitotic entry, the PCM matrix increases in size and nucleating capacity in a process called centrosome maturation. Polo-like kinase 1 (PLK1) is recruited to centrosomes and phosphorylates PCM matrix proteins to drive their self-assembly, which leads to PCM expansion. Here, we show that in addition to controlling PCM expansion, PLK1 independently controls the generation of binding sites for γ-tubulin complexes on the PCM matrix. Selectively preventing the generation of PLK1-dependent γ-tubulin docking sites led to spindle defects and impaired chromosome segregation without affecting PCM expansion, highlighting the importance of phospho-regulated centrosomal γ-tubulin docking sites in spindle assembly. Inhibiting both γ-tubulin docking and PCM expansion by mutating substrate target sites recapitulated the effects of loss of centrosomal PLK1 on the ability of centrosomes to catalyze spindle assembly.
Collapse
Affiliation(s)
- Midori Ohta
- Ludwig Institute for Cancer Research, La Jolla, CA,Midori Ohta:
| | - Zhiling Zhao
- Ludwig Institute for Cancer Research, La Jolla, CA
| | - Di Wu
- Ludwig Institute for Cancer Research, La Jolla, CA
| | - Shaohe Wang
- Ludwig Institute for Cancer Research, La Jolla, CA
| | - Jennifer L. Harrison
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA
| | - J. Sebastián Gómez-Cavazos
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA
| | - Arshad Desai
- Ludwig Institute for Cancer Research, La Jolla, CA,Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA,Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA
| | - Karen F. Oegema
- Ludwig Institute for Cancer Research, La Jolla, CA,Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA,Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA,Correspondence to Karen Oegema:
| |
Collapse
|
71
|
Kuriyama R, Fisher CR. A novel mitosis-specific Cep215 domain interacts with Cep192 and phosphorylated Aurora A for organization of spindle poles. J Cell Sci 2020; 133:133/24/jcs240267. [PMID: 33376154 DOI: 10.1242/jcs.240267] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 10/29/2020] [Indexed: 11/20/2022] Open
Abstract
The centrosome, which consists of centrioles and pericentriolar material (PCM), becomes mature and assembles mitotic spindles by increasing the number of microtubules (MTs) emanating from the PCM. Among the molecules involved in centrosome maturation, Cep192 and Aurora A (AurA, also known as AURKA) are primarily responsible for recruitment of γ-tubulin and MT nucleators, whereas pericentrin (PCNT) is required for PCM organization. However, the role of Cep215 (also known as CDK5RAP2) in centrosome maturation remains elusive. Cep215 possesses binding domains for γ-tubulin, PCNT and MT motors that transport acentrosomal MTs towards the centrosome. We identify a mitosis-specific centrosome-targeting domain of Cep215 (215N) that interacts with Cep192 and phosphorylated AurA (pAurA). Cep192 is essential for targeting 215N to centrosomes, and centrosomal localization of 215N and pAurA is mutually dependent. Cep215 has a relatively minor role in γ-tubulin recruitment to the mitotic centrosome. However, it has been shown previously that this protein is important for connecting mitotic centrosomes to spindle poles. Based on the results of rescue experiments using versions of Cep215 with different domain deletions, we conclude that Cep215 plays a role in maintaining the structural integrity of the spindle pole by providing a platform for the molecules involved in centrosome maturation.
Collapse
Affiliation(s)
- Ryoko Kuriyama
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Cody R Fisher
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
72
|
Mittasch M, Tran VM, Rios MU, Fritsch AW, Enos SJ, Ferreira Gomes B, Bond A, Kreysing M, Woodruff JB. Regulated changes in material properties underlie centrosome disassembly during mitotic exit. J Cell Biol 2020; 219:133724. [PMID: 32050025 PMCID: PMC7147112 DOI: 10.1083/jcb.201912036] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/06/2020] [Accepted: 01/14/2020] [Indexed: 12/25/2022] Open
Abstract
Centrosomes must resist microtubule-mediated forces for mitotic chromosome segregation. During mitotic exit, however, centrosomes are deformed and fractured by those same forces, which is a key step in centrosome disassembly. How the functional material properties of centrosomes change throughout the cell cycle, and how they are molecularly tuned, remain unknown. Here, we used optically induced flow perturbations to determine the molecular basis of centrosome strength and ductility in C. elegans embryos. We found that both properties declined sharply at anaphase onset, long before natural disassembly. This mechanical transition required PP2A phosphatase and correlated with inactivation of PLK-1 (Polo kinase) and SPD-2 (Cep192). In vitro, PLK-1 and SPD-2 directly protected centrosome scaffolds from force-induced disassembly. Our results suggest that, before anaphase, PLK-1 and SPD-2 respectively confer strength and ductility to the centrosome scaffold so that it can resist microtubule-pulling forces. In anaphase, centrosomes lose PLK-1 and SPD-2 and transition to a weak, brittle state that enables force-mediated centrosome disassembly.
Collapse
Affiliation(s)
- Matthäus Mittasch
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Vanna M Tran
- Departments of Cell Biology and Biophysics, University of Texas Southwestern Medical Center, Dallas, TX
| | - Manolo U Rios
- Departments of Cell Biology and Biophysics, University of Texas Southwestern Medical Center, Dallas, TX
| | - Anatol W Fritsch
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Stephen J Enos
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | | | - Alec Bond
- Departments of Cell Biology and Biophysics, University of Texas Southwestern Medical Center, Dallas, TX
| | - Moritz Kreysing
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Jeffrey B Woodruff
- Departments of Cell Biology and Biophysics, University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
73
|
Xie G, Zhou Y, Tu X, Ye X, Xu L, Xiao Z, Wang Q, Wang X, Du M, Chen Z, Chi X, Zhang X, Xia J, Zhang X, Zhou Y, Li Z, Xie C, Sheng L, Zeng Z, Zhou H, Yin Z, Su Y, Xu Y, Zhang XK. Centrosomal Localization of RXRα Promotes PLK1 Activation and Mitotic Progression and Constitutes a Tumor Vulnerability. Dev Cell 2020; 55:707-722.e9. [PMID: 33321102 DOI: 10.1016/j.devcel.2020.11.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/15/2020] [Accepted: 11/09/2020] [Indexed: 02/06/2023]
Abstract
Retinoid X receptor alpha (RXRα), a nuclear receptor of transcription factor, controls various physiological and pathological pathways including cellular growth, proliferation, differentiation, and apoptosis. Here, we report that RXRα is phosphorylated at its N-terminal A/B domain by cyclin-dependent kinase 1 (Cdk1) at the onset of mitosis, triggering its translocation to the centrosome, where phosphorylated-RXRα (p-RXRα) interacts with polo-like kinase 1 (PLK1) through its N-terminal A/B domain by a unique mechanism. The interaction promotes PLK1 activation, centrosome maturation, and mitotic progression. Levels of p-RXRα are abnormally elevated in cancer cell lines, during carcinogenesis in animals, and in clinical tumor tissues. An RXRα ligand XS060, which specifically inhibits p-RXRα/PLK1 interaction but not RXRα heterodimerization, promotes mitotic arrest and catastrophe in a tumor-specific manner. These findings unravel a transcription-independent action of RXRα at the centrosome during mitosis and identify p-RXRα as a tumor-specific vulnerability for developing mitotic drugs with improved therapeutic index.
Collapse
Affiliation(s)
- Guobin Xie
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, Fujian, China
| | - Yuqi Zhou
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, Fujian, China; NucMito Pharmaceuticals Co. Ltd., Xiamen 361101, Fujian, China
| | - Xuhuang Tu
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, Fujian, China
| | - Xiaohong Ye
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, Fujian, China
| | - Lin Xu
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, Fujian, China
| | - Zhijian Xiao
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, Fujian, China
| | - Qiqiang Wang
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, Fujian, China
| | - Xin Wang
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, Fujian, China
| | - Mingxuan Du
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, Fujian, China
| | - Ziwen Chen
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, Fujian, China; NucMito Pharmaceuticals Co. Ltd., Xiamen 361101, Fujian, China
| | - Xiaoqin Chi
- Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Zhongshan Hospital Xiamen University, Xiamen 361004, Fujian, China
| | - Xiaoli Zhang
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, Fujian, China
| | - Ji Xia
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, Fujian, China
| | - Xiaowei Zhang
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, Fujian, China
| | - Yunxia Zhou
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, Fujian, China
| | - Zongxi Li
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, Fujian, China
| | - Chengrong Xie
- Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Zhongshan Hospital Xiamen University, Xiamen 361004, Fujian, China
| | - Luoyan Sheng
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, Fujian, China
| | - Zhiping Zeng
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, Fujian, China
| | - Hu Zhou
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, Fujian, China
| | - Zhenyu Yin
- Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Zhongshan Hospital Xiamen University, Xiamen 361004, Fujian, China
| | - Ying Su
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, Fujian, China; NucMito Pharmaceuticals Co. Ltd., Xiamen 361101, Fujian, China
| | - Yang Xu
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, Fujian, China
| | - Xiao-Kun Zhang
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361102, Fujian, China.
| |
Collapse
|
74
|
Ong JY, Bradley MC, Torres JZ. Phospho-regulation of mitotic spindle assembly. Cytoskeleton (Hoboken) 2020; 77:558-578. [PMID: 33280275 PMCID: PMC7898546 DOI: 10.1002/cm.21649] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/08/2020] [Accepted: 12/02/2020] [Indexed: 12/23/2022]
Abstract
The assembly of the bipolar mitotic spindle requires the careful orchestration of a myriad of enzyme activities like protein posttranslational modifications. Among these, phosphorylation has arisen as the principle mode for spatially and temporally activating the proteins involved in early mitotic spindle assembly processes. Here, we review key kinases, phosphatases, and phosphorylation events that regulate critical aspects of these processes. We highlight key phosphorylation substrates that are important for ensuring the fidelity of centriole duplication, centrosome maturation, and the establishment of the bipolar spindle. We also highlight techniques used to understand kinase-substrate relationships and to study phosphorylation events. We conclude with perspectives on the field of posttranslational modifications in early mitotic spindle assembly.
Collapse
Affiliation(s)
- Joseph Y Ong
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, USA
| | - Michelle C Bradley
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, USA
| | - Jorge Z Torres
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, USA.,Molecular Biology Institute, University of California, Los Angeles, California, USA.,Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California, USA
| |
Collapse
|
75
|
Watanabe S, Meitinger F, Shiau AK, Oegema K, Desai A. Centriole-independent mitotic spindle assembly relies on the PCNT-CDK5RAP2 pericentriolar matrix. J Cell Biol 2020; 219:e202006010. [PMID: 33170211 PMCID: PMC7658699 DOI: 10.1083/jcb.202006010] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 09/27/2020] [Accepted: 10/06/2020] [Indexed: 01/04/2023] Open
Abstract
Centrosomes, composed of centrioles that recruit a pericentriolar material (PCM) matrix assembled from PCNT and CDK5RAP2, catalyze mitotic spindle assembly. Here, we inhibit centriole formation and/or remove PCNT-CDK5RAP2 in RPE1 cells to address their relative contributions to spindle formation. While CDK5RAP2 and PCNT are normally dispensable for spindle formation, they become essential when centrioles are absent. Acentriolar spindle assembly is accompanied by the formation of foci containing PCNT and CDK5RAP2 via a microtubule and Polo-like kinase 1-dependent process. Foci formation and spindle assembly require PCNT-CDK5RAP2-dependent matrix assembly and the ability of CDK5RAP2 to recruit γ-tubulin complexes. Thus, the PCM matrix can self-organize independently of centrioles to generate microtubules for spindle assembly; conversely, an alternative centriole-anchored mechanism supports spindle assembly when the PCM matrix is absent. Extension to three cancer cell lines revealed similar results in HeLa cells, whereas DLD1 and U2OS cells could assemble spindles in the absence of centrioles and PCNT-CDK5RAP2, suggesting cell type variation in spindle assembly mechanisms.
Collapse
Affiliation(s)
- Sadanori Watanabe
- Ludwig Institute for Cancer Research, La Jolla, CA
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Franz Meitinger
- Ludwig Institute for Cancer Research, La Jolla, CA
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA
| | - Andrew K. Shiau
- Ludwig Institute for Cancer Research, La Jolla, CA
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA
- Small Molecule Discovery Program, Ludwig Institute for Cancer Research, La Jolla, CA
| | - Karen Oegema
- Ludwig Institute for Cancer Research, La Jolla, CA
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA
| | - Arshad Desai
- Ludwig Institute for Cancer Research, La Jolla, CA
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA
| |
Collapse
|
76
|
Hoffmann I. Centrosomes in mitotic spindle assembly and orientation. Curr Opin Struct Biol 2020; 66:193-198. [PMID: 33296732 DOI: 10.1016/j.sbi.2020.11.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/30/2020] [Accepted: 11/02/2020] [Indexed: 12/24/2022]
Abstract
The centrosome is present in most animal cells and functions as the major microtubule-organizing center to ensure faithful chromosome segregation during cell division. As cells transition from interphase to mitosis, the duplicated centrosomes separate and move to opposite sides of the cell where the spindle assembles. Centrosomes not only nucleate but also organize microtubules of the mitotic spindle. The mitotic spindle is anchored to the cell cortex by the astral microtubules emanating from the centrosomes. Proper orientation of the mitotic spindle is essential for correct cell division. Centrosome-localized polo-like kinase Plk1 has been linked to regulation of proper spindle orientation. A number of proteins including MISP and NuMA have been implicated in the Plk1-mediated spindle orientation pathway.
Collapse
Affiliation(s)
- Ingrid Hoffmann
- Cell Cycle Control and Carcinogenesis, German Cancer Research Center, F045, Im Neuenheimer Feld 242, 69120 Heidelberg, Germany.
| |
Collapse
|
77
|
Lee KS, Park JE, Ahn JI, Zeng Y. Constructing PCM with architecturally distinct higher-order assemblies. Curr Opin Struct Biol 2020; 66:66-73. [PMID: 33176265 DOI: 10.1016/j.sbi.2020.09.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 09/23/2020] [Accepted: 09/28/2020] [Indexed: 02/02/2023]
Abstract
Pericentriolar material (PCM) present around a pair of centrioles functions as a platform for various cellular processes, including microtubule (MT) assembly. While PCM is known to be an electron-dense proteinaceous matrix made of long coiled-coil proteins and their client molecules, the molecular mechanism underlying PCM organization remains largely elusive. A growing body of evidence suggests that PCM is constructed in part by an interphase cylindrical self-assembly and the mitotic mesh-like architectures surrounding it. In this review, we will discuss how these higher-order structures are constructed to achieve the functional proficiency of the centrosome.
Collapse
Affiliation(s)
- Kyung S Lee
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Jung-Eun Park
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jong Il Ahn
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yan Zeng
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
78
|
Vishnoi N, Dhanasekeran K, Chalfant M, Surovstev I, Khokha MK, Lusk CP. Differential turnover of Nup188 controls its levels at centrosomes and role in centriole duplication. J Cell Biol 2020; 219:133835. [PMID: 32211895 PMCID: PMC7055002 DOI: 10.1083/jcb.201906031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 11/18/2019] [Accepted: 01/09/2020] [Indexed: 02/07/2023] Open
Abstract
NUP188 encodes a scaffold component of the nuclear pore complex (NPC) and has been implicated as a congenital heart disease gene through an ill-defined function at centrioles. Here, we explore the mechanisms that physically and functionally segregate Nup188 between the pericentriolar material (PCM) and NPCs. Pulse-chase fluorescent labeling indicates that Nup188 populates centrosomes with newly synthesized protein that does not exchange with NPCs even after mitotic NPC breakdown. In addition, the steady-state levels of Nup188 are controlled by the sensitivity of the PCM pool, but not the NPC pool, to proteasomal degradation. Proximity-labeling and super-resolution microscopy show that Nup188 is vicinal to the inner core of the interphase centrosome. Consistent with this, we demonstrate direct binding between Nup188 and Cep152. We further show that Nup188 functions in centriole duplication at or upstream of Sas6 loading. Together, our data establish Nup188 as a component of PCM needed to duplicate the centriole with implications for congenital heart disease mechanisms.
Collapse
Affiliation(s)
- Nidhi Vishnoi
- Department of Cell Biology, Yale School of Medicine, New Haven, CT
| | | | | | - Ivan Surovstev
- Department of Cell Biology, Yale School of Medicine, New Haven, CT
| | - Mustafa K Khokha
- Pediatric Genomics Discovery Program, Departments of Pediatrics and Genetics, Yale School of Medicine, New Haven, CT
| | - C Patrick Lusk
- Department of Cell Biology, Yale School of Medicine, New Haven, CT
| |
Collapse
|
79
|
Takeda Y, Yamazaki K, Hashimoto K, Watanabe K, Chinen T, Kitagawa D. The centriole protein CEP76 negatively regulates PLK1 activity in the cytoplasm for proper mitotic progression. J Cell Sci 2020; 133:jcs241281. [PMID: 32878946 DOI: 10.1242/jcs.241281] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 08/24/2020] [Indexed: 08/31/2023] Open
Abstract
Polo-like kinase 1 (PLK1) dynamically changes its localization and plays important roles in proper mitotic progression. In particular, strict control of cytoplasmic PLK1 is needed to prevent mitotic defects. However, the regulation of cytoplasmic PLK1 is not fully understood. In this study, we show that CEP76, a centriolar protein, physically interacts with PLK1 and tightly controls the activation of cytoplasmic PLK1 during mitosis in human cells. We found that removal of centrosomes induced ectopic aggregation of PLK1, which is highly phosphorylated, in the cytoplasm during mitosis. Importantly, a targeted RNAi screen revealed that depletion of CEP76 resulted in a similar phenotype. In addition, depletion of CEP76 caused defective spindle orientation and mitotic delay. Moreover, the formation of ectopic PLK1 aggregates and defective spindle orientation were significantly suppressed by the inhibition of PLK1 kinase activity. Overall, these results demonstrate that CEP76 suppresses the aberrant activation of cytoplasmic PLK1 for proper mitotic progression.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Yutaka Takeda
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Science, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan
| | - Kaho Yamazaki
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Science, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan
| | - Kaho Hashimoto
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Science, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan
| | - Koki Watanabe
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Science, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan
| | - Takumi Chinen
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Science, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan
| | - Daiju Kitagawa
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Science, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan
| |
Collapse
|
80
|
Yoshino Y, Kobayashi A, Qi H, Endo S, Fang Z, Shindo K, Kanazawa R, Chiba N. RACK1 regulates centriole duplication through promoting the activation of polo-like kinase 1 by Aurora A. J Cell Sci 2020; 133:jcs238931. [PMID: 32788231 DOI: 10.1242/jcs.238931] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 07/29/2020] [Indexed: 01/08/2023] Open
Abstract
Breast cancer gene 1 (BRCA1) contributes to the regulation of centrosome number. We previously identified receptor for activated C kinase 1 (RACK1) as a BRCA1-interacting partner. RACK1, a scaffold protein that interacts with multiple proteins through its seven WD40 domains, directly binds to BRCA1 and localizes to centrosomes. RACK1 knockdown suppresses centriole duplication, whereas RACK1 overexpression causes centriole overduplication in a subset of mammary gland-derived cells. In this study, we showed that RACK1 binds directly to polo-like kinase 1 (PLK1) and Aurora A, and promotes the Aurora A-PLK1 interaction. RACK1 knockdown decreased phosphorylated PLK1 (p-PLK1) levels and the centrosomal localization of Aurora A and p-PLK1 in S phase, whereas RACK1 overexpression increased p-PLK1 level and the centrosomal localization of Aurora A and p-PLK1 in interphase, resulting in an increase of cells with abnormal centriole disengagement. Overexpression of cancer-derived RACK1 variants failed to enhance the Aurora A-PLK1 interaction, PLK1 phosphorylation and the centrosomal localization of p-PLK1. These results suggest that RACK1 functions as a scaffold protein that promotes the activation of PLK1 by Aurora A in order to promote centriole duplication.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Yuki Yoshino
- Department of Cancer Biology, Institute of Aging, Development, and Cancer, Tohoku University, 4-1 Seiryomachi, Aoba-ku, Sendai 980-8575, Japan
- Department of Cancer Biology, Tohoku University Graduate School of Medicine, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan
- Laboratory of Cancer Biology, Graduate School of Life Sciences, Tohoku University, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan
| | - Akihiro Kobayashi
- Department of Cancer Biology, Institute of Aging, Development, and Cancer, Tohoku University, 4-1 Seiryomachi, Aoba-ku, Sendai 980-8575, Japan
- Department of Cancer Biology, Tohoku University Graduate School of Medicine, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan
| | - Huicheng Qi
- Department of Cancer Biology, Institute of Aging, Development, and Cancer, Tohoku University, 4-1 Seiryomachi, Aoba-ku, Sendai 980-8575, Japan
- Department of Cancer Biology, Tohoku University Graduate School of Medicine, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan
| | - Shino Endo
- Department of Cancer Biology, Institute of Aging, Development, and Cancer, Tohoku University, 4-1 Seiryomachi, Aoba-ku, Sendai 980-8575, Japan
- Department of Cancer Biology, Tohoku University Graduate School of Medicine, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan
| | - Zhenzhou Fang
- Department of Cancer Biology, Institute of Aging, Development, and Cancer, Tohoku University, 4-1 Seiryomachi, Aoba-ku, Sendai 980-8575, Japan
- Department of Cancer Biology, Tohoku University Graduate School of Medicine, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan
| | - Kazuha Shindo
- Department of Cancer Biology, Institute of Aging, Development, and Cancer, Tohoku University, 4-1 Seiryomachi, Aoba-ku, Sendai 980-8575, Japan
- Laboratory of Cancer Biology, Graduate School of Life Sciences, Tohoku University, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan
| | - Ryo Kanazawa
- Department of Cancer Biology, Institute of Aging, Development, and Cancer, Tohoku University, 4-1 Seiryomachi, Aoba-ku, Sendai 980-8575, Japan
- Laboratory of Cancer Biology, Graduate School of Life Sciences, Tohoku University, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan
| | - Natsuko Chiba
- Department of Cancer Biology, Institute of Aging, Development, and Cancer, Tohoku University, 4-1 Seiryomachi, Aoba-ku, Sendai 980-8575, Japan
- Department of Cancer Biology, Tohoku University Graduate School of Medicine, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan
- Laboratory of Cancer Biology, Graduate School of Life Sciences, Tohoku University, 4-1 Seiryomachi Aoba-ku, Sendai 980-8575, Japan
| |
Collapse
|
81
|
Lim DC, Joukov V, Rettenmaier TJ, Kumagai A, Dunphy WG, Wells JA, Yaffe MB. Redox priming promotes Aurora A activation during mitosis. Sci Signal 2020; 13:eabb6707. [PMID: 32694171 PMCID: PMC8514121 DOI: 10.1126/scisignal.abb6707] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Cell cycle-dependent redox changes can mediate transient covalent modifications of cysteine thiols to modulate the activities of regulatory kinases and phosphatases. Our previously reported finding that protein cysteine oxidation is increased during mitosis relative to other cell cycle phases suggests that redox modifications could play prominent roles in regulating mitotic processes. The Aurora family of kinases and their downstream targets are key components of the cellular machinery that ensures the proper execution of mitosis and the accurate segregation of chromosomes to daughter cells. In this study, x-ray crystal structures of the Aurora A kinase domain delineate redox-sensitive cysteine residues that, upon covalent modification, can allosterically regulate kinase activity and oligomerization state. We showed in both Xenopus laevis egg extracts and mammalian cells that a conserved cysteine residue within the Aurora A activation loop is crucial for Aurora A activation by autophosphorylation. We further showed that covalent disulfide adducts of this residue promote autophosphorylation of the Aurora A kinase domain. These findings reveal a potential mechanistic link between Aurora A activation and changes in the intracellular redox state during mitosis and provide insights into how novel small-molecule inhibitors may be developed to target specific subpopulations of Aurora A.
Collapse
Affiliation(s)
- Daniel C Lim
- MIT Center for Precision Cancer Medicine, Koch Institute for Integrative Cancer Research, and Departments of Biological Engineering and Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Vladimir Joukov
- N. N. Petrov National Medical Research Center of Oncology, Saint Petersburg 197758, Russian Federation
| | - T Justin Rettenmaier
- Jnana Therapeutics, Boston, MA 02210, USA
- Departments of Pharmaceutical Chemistry and Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Akiko Kumagai
- The Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - William G Dunphy
- The Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - James A Wells
- Departments of Pharmaceutical Chemistry and Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Michael B Yaffe
- MIT Center for Precision Cancer Medicine, Koch Institute for Integrative Cancer Research, and Departments of Biological Engineering and Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
- Divisions of Acute Care Surgery, Trauma, and Surgical Critical Care, and Surgical Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
82
|
Sullenberger C, Vasquez-Limeta A, Kong D, Loncarek J. With Age Comes Maturity: Biochemical and Structural Transformation of a Human Centriole in the Making. Cells 2020; 9:cells9061429. [PMID: 32526902 PMCID: PMC7349492 DOI: 10.3390/cells9061429] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 05/29/2020] [Accepted: 06/04/2020] [Indexed: 12/14/2022] Open
Abstract
Centrioles are microtubule-based cellular structures present in most human cells that build centrosomes and cilia. Proliferating cells have only two centrosomes and this number is stringently maintained through the temporally and spatially controlled processes of centriole assembly and segregation. The assembly of new centrioles begins in early S phase and ends in the third G1 phase from their initiation. This lengthy process of centriole assembly from their initiation to their maturation is characterized by numerous structural and still poorly understood biochemical changes, which occur in synchrony with the progression of cells through three consecutive cell cycles. As a result, proliferating cells contain three structurally, biochemically, and functionally distinct types of centrioles: procentrioles, daughter centrioles, and mother centrioles. This age difference is critical for proper centrosome and cilia function. Here we discuss the centriole assembly process as it occurs in somatic cycling human cells with a focus on the structural, biochemical, and functional characteristics of centrioles of different ages.
Collapse
|
83
|
Microtubule Organization in Striated Muscle Cells. Cells 2020; 9:cells9061395. [PMID: 32503326 PMCID: PMC7349303 DOI: 10.3390/cells9061395] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/25/2020] [Accepted: 05/28/2020] [Indexed: 12/13/2022] Open
Abstract
Distinctly organized microtubule networks contribute to the function of differentiated cell types such as neurons, epithelial cells, skeletal myotubes, and cardiomyocytes. In striated (i.e., skeletal and cardiac) muscle cells, the nuclear envelope acts as the dominant microtubule-organizing center (MTOC) and the function of the centrosome—the canonical MTOC of mammalian cells—is attenuated, a common feature of differentiated cell types. We summarize the mechanisms known to underlie MTOC formation at the nuclear envelope, discuss the significance of the nuclear envelope MTOC for muscle function and cell cycle progression, and outline potential mechanisms of centrosome attenuation.
Collapse
|
84
|
Rincón AM, Monje-Casas F. A guiding torch at the poles: the multiple roles of spindle microtubule-organizing centers during cell division. Cell Cycle 2020; 19:1405-1421. [PMID: 32401610 DOI: 10.1080/15384101.2020.1754586] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
The spindle constitutes the cellular machinery that enables the segregation of the chromosomes during eukaryotic cell division. The microtubules that form this fascinating and complex genome distribution system emanate from specialized structures located at both its poles and known as microtubule-organizing centers (MTOCs). Beyond their structural function, the spindle MTOCs play fundamental roles in cell cycle control, the activation and functionality of the mitotic checkpoints and during cellular aging. This review highlights the pivotal importance of spindle-associated MTOCs in multiple cellular processes and their central role as key regulatory hubs where diverse intracellular signals are integrated and coordinated to ensure the successful completion of cell division and the maintenance of the replicative lifespan.
Collapse
Affiliation(s)
- Ana M Rincón
- Centro Andaluz de Biología Molecular Y Medicina Regenerativa (CABIMER) / CSIC - Universidad de Sevilla - Universidad Pablo de Olavide , Sevilla, Spain.,Dpto. de Genética / Universidad de Sevilla , Sevilla, Spain
| | - Fernando Monje-Casas
- Centro Andaluz de Biología Molecular Y Medicina Regenerativa (CABIMER) / CSIC - Universidad de Sevilla - Universidad Pablo de Olavide , Sevilla, Spain.,Consejo Superior de Investigaciones Científicas (CSIC) , Sevilla, Spain
| |
Collapse
|
85
|
Au FK, Hau BK, Qi RZ. Nek2-mediated GAS2L1 phosphorylation and centrosome-linker disassembly induce centrosome disjunction. J Cell Biol 2020; 219:e201909094. [PMID: 32289147 PMCID: PMC7199859 DOI: 10.1083/jcb.201909094] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 01/16/2020] [Accepted: 02/28/2020] [Indexed: 12/13/2022] Open
Abstract
Centrosome disjunction occurs in late G2 to facilitate bipolar spindle formation and is mediated by the NIMA-related kinase Nek2. Here, we show that GAS2L1, a microtubule- and F-actin-binding protein required for centrosome disjunction, undergoes Nek2-mediated phosphorylation at Ser352 in G2/M. The phosphorylation is essential for centrosome disjunction in late G2 and for proper spindle assembly and faithful chromosome segregation in mitosis. GAS2L1 contains a calponin-homology (CH) domain and a GAS2-related (GAR) domain, which bind to F-actin and microtubules, respectively. Notably, the CH and GAR domains bind to each other to inhibit the functions of both domains, and Ser352 phosphorylation disrupts the interaction between the two domains and relieves the autoinhibition. We dissected the roles of the GAS2L1 phosphorylation and of centrosome-linker disassembly, which is another Nek2-mediated event, and found that these events together trigger centrosome disjunction. Therefore, our findings demonstrate the concerted Nek2 actions that split the centrosomes in late G2.
Collapse
Affiliation(s)
- Franco K.C. Au
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Shenzhen, China
| | - Bill K.T. Hau
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Shenzhen, China
| | - Robert Z. Qi
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, HKUST Shenzhen Research Institute, Shenzhen, China
| |
Collapse
|
86
|
The Golgi ribbon: mechanisms of maintenance and disassembly during the cell cycle. Biochem Soc Trans 2020; 48:245-256. [PMID: 32010930 DOI: 10.1042/bst20190646] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/01/2020] [Accepted: 01/06/2020] [Indexed: 12/18/2022]
Abstract
The Golgi complex (GC) has an essential role in the processing and sorting of proteins and lipids. The GC of mammalian cells is composed of stacks of cisternae connected by membranous tubules to create a continuous network, the Golgi ribbon, whose maintenance requires several core and accessory proteins. Despite this complex structural organization, the Golgi apparatus is highly dynamic, and this property becomes particularly evident during mitosis, when the ribbon undergoes a multistep disassembly process that allows its correct partitioning and inheritance by the daughter cells. Importantly, alterations of the Golgi structure are associated with a variety of physiological and pathological conditions. Here, we review the core mechanisms and signaling pathways involved in both the maintenance and disassembly of the Golgi ribbon, and we also report on the signaling pathways that connect the disassembly of the Golgi ribbon to mitotic entry and progression.
Collapse
|
87
|
Fulcher LJ, Sapkota GP. Mitotic kinase anchoring proteins: the navigators of cell division. Cell Cycle 2020; 19:505-524. [PMID: 32048898 PMCID: PMC7100989 DOI: 10.1080/15384101.2020.1728014] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/14/2020] [Accepted: 02/06/2020] [Indexed: 02/07/2023] Open
Abstract
The coordinated activities of many protein kinases, acting on multiple protein substrates, ensures the error-free progression through mitosis of eukaryotic cells. Enormous research effort has thus been devoted to studying the roles and regulation of these mitotic kinases, and to the identification of their physiological substrates. Central for the timely deployment of specific protein kinases to their appropriate substrates during the cell division cycle are the many anchoring proteins, which serve critical regulatory roles. Through direct association, anchoring proteins are capable of modulating the catalytic activity and/or sub-cellular distribution of the mitotic kinases they associate with. The key roles of some anchoring proteins in cell division are well-established, whilst others are still being unearthed. Here, we review the current knowledge on anchoring proteins for some mitotic kinases, and highlight how targeting anchoring proteins for inhibition, instead of the mitotic kinases themselves, could be advantageous for disrupting the cell division cycle.
Collapse
Affiliation(s)
- Luke J Fulcher
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, Scotland, UK
| | - Gopal P Sapkota
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, Scotland, UK
| |
Collapse
|
88
|
Naso FD, Sterbini V, Crecca E, Asteriti IA, Russo AD, Giubettini M, Cundari E, Lindon C, Rosa A, Guarguaglini G. Excess TPX2 Interferes with Microtubule Disassembly and Nuclei Reformation at Mitotic Exit. Cells 2020; 9:E374. [PMID: 32041138 PMCID: PMC7072206 DOI: 10.3390/cells9020374] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/24/2020] [Accepted: 01/29/2020] [Indexed: 12/15/2022] Open
Abstract
The microtubule-associated protein TPX2 is a key mitotic regulator that contributes through distinct pathways to spindle assembly. A well-characterised function of TPX2 is the activation, stabilisation and spindle localisation of the Aurora-A kinase. High levels of TPX2 are reported in tumours and the effects of its overexpression have been investigated in cancer cell lines, while little is known in non-transformed cells. Here we studied TPX2 overexpression in hTERT RPE-1 cells, using either the full length TPX2 or a truncated form unable to bind Aurora-A, to identify effects that are dependent-or independent-on its interaction with the kinase. We observe significant defects in mitotic spindle assembly and progression through mitosis that are more severe when overexpressed TPX2 is able to interact with Aurora-A. Furthermore, we describe a peculiar, and Aurora-A-interaction-independent, phenotype in telophase cells, with aberrantly stable microtubules interfering with nuclear reconstitution and the assembly of a continuous lamin B1 network, resulting in daughter cells displaying doughnut-shaped nuclei. Our results using non-transformed cells thus reveal a previously uncharacterised consequence of abnormally high TPX2 levels on the correct microtubule cytoskeleton remodelling and G1 nuclei reformation, at the mitosis-to-interphase transition.
Collapse
Affiliation(s)
- Francesco D. Naso
- Institute of Molecular Biology and Pathology, National Research Council of Italy, c/o Sapienza University of Rome, Via degli Apuli 4, 00185 Rome, Italy; (F.D.N.); (V.S.); (E.C.); (I.A.A.); (A.D.R.); (E.C.)
| | - Valentina Sterbini
- Institute of Molecular Biology and Pathology, National Research Council of Italy, c/o Sapienza University of Rome, Via degli Apuli 4, 00185 Rome, Italy; (F.D.N.); (V.S.); (E.C.); (I.A.A.); (A.D.R.); (E.C.)
| | - Elena Crecca
- Institute of Molecular Biology and Pathology, National Research Council of Italy, c/o Sapienza University of Rome, Via degli Apuli 4, 00185 Rome, Italy; (F.D.N.); (V.S.); (E.C.); (I.A.A.); (A.D.R.); (E.C.)
| | - Italia A. Asteriti
- Institute of Molecular Biology and Pathology, National Research Council of Italy, c/o Sapienza University of Rome, Via degli Apuli 4, 00185 Rome, Italy; (F.D.N.); (V.S.); (E.C.); (I.A.A.); (A.D.R.); (E.C.)
| | - Alessandra D. Russo
- Institute of Molecular Biology and Pathology, National Research Council of Italy, c/o Sapienza University of Rome, Via degli Apuli 4, 00185 Rome, Italy; (F.D.N.); (V.S.); (E.C.); (I.A.A.); (A.D.R.); (E.C.)
| | - Maria Giubettini
- CrestOptics S.p.A., Via di Torre Rossa 66, 00165 Rome, Italy;
- Center for Life Nano Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy;
| | - Enrico Cundari
- Institute of Molecular Biology and Pathology, National Research Council of Italy, c/o Sapienza University of Rome, Via degli Apuli 4, 00185 Rome, Italy; (F.D.N.); (V.S.); (E.C.); (I.A.A.); (A.D.R.); (E.C.)
| | - Catherine Lindon
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK;
| | - Alessandro Rosa
- Center for Life Nano Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy;
- Department of Biology and Biotechnology “C. Darwin”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Giulia Guarguaglini
- Institute of Molecular Biology and Pathology, National Research Council of Italy, c/o Sapienza University of Rome, Via degli Apuli 4, 00185 Rome, Italy; (F.D.N.); (V.S.); (E.C.); (I.A.A.); (A.D.R.); (E.C.)
| |
Collapse
|
89
|
Network of Interactions between ZIKA Virus Non-Structural Proteins and Human Host Proteins. Cells 2020; 9:cells9010153. [PMID: 31936331 PMCID: PMC7016862 DOI: 10.3390/cells9010153] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 12/20/2019] [Accepted: 01/01/2020] [Indexed: 12/16/2022] Open
Abstract
The Zika virus (ZIKV) is a mosquito-borne Flavivirus and can be transmitted through an infected mosquito bite or through human-to-human interaction by sexual activity, blood transfusion, breastfeeding, or perinatal exposure. After the 2015-2016 outbreak in Brazil, a strong link between ZIKV infection and microcephaly emerged. ZIKV specifically targets human neural progenitor cells, suggesting that proteins encoded by ZIKV bind and inactivate host cell proteins, leading to microcephaly. Here, we present a systematic annotation of interactions between human proteins and the seven non-structural ZIKV proteins corresponding to a Brazilian isolate. The interaction network was generated by combining tandem-affinity purification followed by mass spectrometry with yeast two-hybrid screens. We identified 150 human proteins, involved in distinct biological processes, as interactors to ZIKV non-structural proteins. Our interacting network is composed of proteins that have been previously associated with microcephaly in human genetic disorders and/or animal models. Further, we show that the protein inhibitor of activated STAT1 (PIAS1) interacts with NS5 and modulates its stability. This study builds on previously published interacting networks of ZIKV and genes related to autosomal recessive primary microcephaly to generate a catalog of human cellular targets of ZIKV proteins implicated in processes related to microcephaly in humans. Collectively, these data can be used as a resource for future characterization of ZIKV infection biology and help create a basis for the discovery of drugs that may disrupt the interaction and reduce the health damage to the fetus.
Collapse
|
90
|
Cai C, Song X, Yu C. Identification of genes in hepatocellular carcinoma induced by non-alcoholic fatty liver disease. Cancer Biomark 2020; 29:69-78. [PMID: 32623384 PMCID: PMC7685598 DOI: 10.3233/cbm-190169] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is the leading cause of mortality worldwide. In recent years, the incidence of HCC induced by NAFLD is growing rapidly. OBJECTIVE To screen for new pathogenic genes and related pathways both in NAFLD and HCC, and to explore the pathogenesis of progression from NAFLD to HCC. METHODS Gene expression microarrays (GSE74656, GSE62232) were used for identifying differentially expressed genes (DEGs). Functional enrichment and pathway enrichment analyses indicated that these DEGs were related to cell cycle and extracellular exosome, which were closely related to NAFLD and HCC development. We then used the Search Tool for the Retrieval of Interacting Genes (STRING) to establish the protein-protein interaction (PPI) network and visualized them in Cytoscape. And the overall survival (OS) analysis and gene expression validation in TCGA of hub genes was performed. RESULTS Seven hub genes, including CDK1, HSP90AA1, MAD2L1, PRKCD, ITGB3BP, CEP192, and RHOB were identified. Finally, we verified the expression level of ITGB3BP and CEP192 by quantitative real-time PCR in vitro. CONCLUSIONS The present study implied possible DEGs, especially the new gene CEP192, in the progression of NAFLD developing to HCC. Further rigorous experiments are required to verify the above results.
Collapse
Affiliation(s)
- Changzhou Cai
- The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xin Song
- The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Chaohui Yu
- The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
91
|
Sharma P, Mahen R, Rossmann M, Stokes JE, Hardwick B, Huggins DJ, Emery A, Kunciw DL, Hyvönen M, Spring DR, McKenzie GJ, Venkitaraman AR. A cryptic hydrophobic pocket in the polo-box domain of the polo-like kinase PLK1 regulates substrate recognition and mitotic chromosome segregation. Sci Rep 2019; 9:15930. [PMID: 31685831 PMCID: PMC6828814 DOI: 10.1038/s41598-019-50702-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 07/26/2019] [Indexed: 11/25/2022] Open
Abstract
The human polo-like kinase PLK1 coordinates mitotic chromosome segregation by phosphorylating multiple chromatin- and kinetochore-binding proteins. How PLK1 activity is directed to specific substrates via phosphopeptide recognition by its carboxyl-terminal polo-box domain (PBD) is poorly understood. Here, we combine molecular, structural and chemical biology to identify a determinant for PLK1 substrate recognition that is essential for proper chromosome segregation. We show that mutations ablating an evolutionarily conserved, Tyr-lined pocket in human PLK1 PBD trigger cellular anomalies in mitotic progression and timing. Tyr pocket mutations selectively impair PLK1 binding to the kinetochore phosphoprotein substrate PBIP1, but not to the centrosomal substrate NEDD1. Through a structure-guided approach, we develop a small-molecule inhibitor, Polotyrin, which occupies the Tyr pocket. Polotyrin recapitulates the mitotic defects caused by mutations in the Tyr pocket, further evidencing its essential function, and exemplifying a new approach for selective PLK1 inhibition. Thus, our findings support a model wherein substrate discrimination via the Tyr pocket in the human PLK1 PBD regulates mitotic chromosome segregation to preserve genome integrity.
Collapse
Affiliation(s)
- Pooja Sharma
- The Medical Research Council Cancer Unit, University of Cambridge, Hills Road, Cambridge, CB2 0XZ, United Kingdom
| | - Robert Mahen
- The Medical Research Council Cancer Unit, University of Cambridge, Hills Road, Cambridge, CB2 0XZ, United Kingdom
| | - Maxim Rossmann
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, United Kingdom
| | - Jamie E Stokes
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
| | - Bryn Hardwick
- The Medical Research Council Cancer Unit, University of Cambridge, Hills Road, Cambridge, CB2 0XZ, United Kingdom
| | - David J Huggins
- Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE, United Kingdom
| | - Amy Emery
- The Medical Research Council Cancer Unit, University of Cambridge, Hills Road, Cambridge, CB2 0XZ, United Kingdom
| | - Dominique L Kunciw
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
| | - Marko Hyvönen
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, United Kingdom
| | - David R Spring
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
| | - Grahame J McKenzie
- The Medical Research Council Cancer Unit, University of Cambridge, Hills Road, Cambridge, CB2 0XZ, United Kingdom
| | - Ashok R Venkitaraman
- The Medical Research Council Cancer Unit, University of Cambridge, Hills Road, Cambridge, CB2 0XZ, United Kingdom.
| |
Collapse
|
92
|
Alvarez-Rodrigo I, Steinacker TL, Saurya S, Conduit PT, Baumbach J, Novak ZA, Aydogan MG, Wainman A, Raff JW. Evidence that a positive feedback loop drives centrosome maturation in fly embryos. eLife 2019; 8:e50130. [PMID: 31498081 PMCID: PMC6733597 DOI: 10.7554/elife.50130] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 08/21/2019] [Indexed: 01/26/2023] Open
Abstract
Centrosomes are formed when mother centrioles recruit pericentriolar material (PCM) around themselves. The PCM expands dramatically as cells prepare to enter mitosis (a process termed centrosome maturation), but it is unclear how this expansion is achieved. In flies, Spd-2 and Cnn are thought to form a scaffold around the mother centriole that recruits other components of the mitotic PCM, and the Polo-dependent phosphorylation of Cnn at the centrosome is crucial for scaffold assembly. Here, we show that, like Cnn, Spd-2 is specifically phosphorylated at centrosomes. This phosphorylation appears to create multiple phosphorylated S-S/T(p) motifs that allow Spd-2 to recruit Polo to the expanding scaffold. If the ability of Spd-2 to recruit Polo is impaired, the scaffold is initially assembled around the mother centriole, but it cannot expand outwards, and centrosome maturation fails. Our findings suggest that interactions between Spd-2, Polo and Cnn form a positive feedback loop that drives the dramatic expansion of the mitotic PCM in fly embryos.
Collapse
Affiliation(s)
- Ines Alvarez-Rodrigo
- The Sir William Dunn School of PathologyUniversity of OxfordOxfordUnited Kingdom
| | - Thomas L Steinacker
- The Sir William Dunn School of PathologyUniversity of OxfordOxfordUnited Kingdom
| | - Saroj Saurya
- The Sir William Dunn School of PathologyUniversity of OxfordOxfordUnited Kingdom
| | - Paul T Conduit
- The Sir William Dunn School of PathologyUniversity of OxfordOxfordUnited Kingdom
| | - Janina Baumbach
- The Sir William Dunn School of PathologyUniversity of OxfordOxfordUnited Kingdom
| | - Zsofia A Novak
- The Sir William Dunn School of PathologyUniversity of OxfordOxfordUnited Kingdom
| | - Mustafa G Aydogan
- The Sir William Dunn School of PathologyUniversity of OxfordOxfordUnited Kingdom
| | - Alan Wainman
- The Sir William Dunn School of PathologyUniversity of OxfordOxfordUnited Kingdom
| | - Jordan W Raff
- The Sir William Dunn School of PathologyUniversity of OxfordOxfordUnited Kingdom
| |
Collapse
|
93
|
Cabral G, Laos T, Dumont J, Dammermann A. Differential Requirements for Centrioles in Mitotic Centrosome Growth and Maintenance. Dev Cell 2019; 50:355-366.e6. [PMID: 31303441 DOI: 10.1016/j.devcel.2019.06.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 03/29/2019] [Accepted: 06/10/2019] [Indexed: 10/26/2022]
Abstract
Centrosomes, the predominant sites of microtubule nucleation and anchorage, coordinate spindle assembly and cell division in animal cells. At the onset of mitosis, centrioles accumulate microtubule-organizing pericentriolar material (PCM) in a process termed centrosome maturation. To what extent centrosome maturation depends on the continued activity of mitotic regulators or the presence of centrioles has hitherto been unclear. Using the C. elegans early embryo, we show that PCM expansion requires the Polo-like kinase PLK-1 and CEP192 (SPD-2 in C. elegans), but not its upstream regulator Aurora A (AIR-1), while maintenance of the PCM polymer depends exclusively on PLK-1. SPD-2 and PLK-1 are highly concentrated at centrioles. Unexpectedly, laser microsurgery reveals that while centrioles are required for PCM recruitment and centrosome structural integrity they are dispensable for PCM maintenance. We propose a model whereby centrioles promote centrosome maturation by recruiting PLK-1, but subsequent maintenance occurs via PLK-1 acting directly within the PCM.
Collapse
Affiliation(s)
- Gabriela Cabral
- Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), Dr. Bohr-Gasse 9, A-1030 Vienna, Austria
| | - Triin Laos
- Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), Dr. Bohr-Gasse 9, A-1030 Vienna, Austria
| | - Julien Dumont
- Institut Jacques Monod, CNRS, UMR 7592, University Paris Diderot, Sorbonne Paris Cité, 75205 Paris, France
| | - Alexander Dammermann
- Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), Dr. Bohr-Gasse 9, A-1030 Vienna, Austria.
| |
Collapse
|
94
|
Mascanzoni F, Ayala I, Colanzi A. Organelle Inheritance Control of Mitotic Entry and Progression: Implications for Tissue Homeostasis and Disease. Front Cell Dev Biol 2019; 7:133. [PMID: 31396510 PMCID: PMC6664238 DOI: 10.3389/fcell.2019.00133] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 07/04/2019] [Indexed: 12/12/2022] Open
Abstract
The Golgi complex (GC), in addition to its well-known role in membrane traffic, is also actively involved in the regulation of mitotic entry and progression. In particular, during the G2 phase of the cell cycle, the Golgi ribbon is unlinked into isolated stacks. Importantly, this ribbon cleavage is required for G2/M transition, indicating that a "Golgi mitotic checkpoint" controls the correct segregation of this organelle. Then, during mitosis, the isolated Golgi stacks are disassembled, and this process is required for spindle formation. Moreover, recent evidence indicates that also proper mitotic segregation of other organelles, such as mitochondria, endosomes, and peroxisomes, is required for correct mitotic progression and/or spindle formation. Collectively, these observations imply that in addition to the control of chromosomes segregation, which is required to preserve the genetic information, the cells actively monitor the disassembly and redistribution of subcellular organelles in mitosis. Here, we provide an overview of the major structural reorganization of the GC and other organelles during G2/M transition and of their regulatory mechanisms, focusing on novel findings that have shed light on the basic processes that link organelle inheritance to mitotic progression and spindle formation, and discussing their implications for tissue homeostasis and diseases.
Collapse
Affiliation(s)
| | | | - Antonino Colanzi
- Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| |
Collapse
|
95
|
Joukov V, De Nicolo A. The Centrosome and the Primary Cilium: The Yin and Yang of a Hybrid Organelle. Cells 2019; 8:E701. [PMID: 31295970 PMCID: PMC6678760 DOI: 10.3390/cells8070701] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/04/2019] [Accepted: 07/06/2019] [Indexed: 12/27/2022] Open
Abstract
Centrosomes and primary cilia are usually considered as distinct organelles, although both are assembled with the same evolutionary conserved, microtubule-based templates, the centrioles. Centrosomes serve as major microtubule- and actin cytoskeleton-organizing centers and are involved in a variety of intracellular processes, whereas primary cilia receive and transduce environmental signals to elicit cellular and organismal responses. Understanding the functional relationship between centrosomes and primary cilia is important because defects in both structures have been implicated in various diseases, including cancer. Here, we discuss evidence that the animal centrosome evolved, with the transition to complex multicellularity, as a hybrid organelle comprised of the two distinct, but intertwined, structural-functional modules: the centriole/primary cilium module and the pericentriolar material/centrosome module. The evolution of the former module may have been caused by the expanding cellular diversification and intercommunication, whereas that of the latter module may have been driven by the increasing complexity of mitosis and the requirement for maintaining cell polarity, individuation, and adhesion. Through its unique ability to serve both as a plasma membrane-associated primary cilium organizer and a juxtanuclear microtubule-organizing center, the animal centrosome has become an ideal integrator of extracellular and intracellular signals with the cytoskeleton and a switch between the non-cell autonomous and the cell-autonomous signaling modes. In light of this hypothesis, we discuss centrosome dynamics during cell proliferation, migration, and differentiation and propose a model of centrosome-driven microtubule assembly in mitotic and interphase cells. In addition, we outline the evolutionary benefits of the animal centrosome and highlight the hierarchy and modularity of the centrosome biogenesis networks.
Collapse
Affiliation(s)
- Vladimir Joukov
- N.N. Petrov National Medical Research Center of Oncology, 197758 Saint-Petersburg, Russia.
| | | |
Collapse
|
96
|
Namgoong S, Kim NH. Meiotic spindle formation in mammalian oocytes: implications for human infertility. Biol Reprod 2019; 98:153-161. [PMID: 29342242 DOI: 10.1093/biolre/iox145] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 12/27/2017] [Indexed: 12/12/2022] Open
Abstract
In the final stage of oogenesis, mammalian oocytes generate a meiotic spindle and undergo chromosome segregation to yield an egg that is ready for fertilization. Herein, we describe the recent advances in understanding the mechanisms controlling formation of the meiotic spindle in metaphase I (MI) and metaphase II (MII) in mammalian oocytes, and focus on the differences between mouse and human oocytes. Unlike mitotic cells, mammalian oocytes lack typical centrosomes that consist of two centrioles and the surrounding pericentriolar matrix proteins, which serve as microtubule-organizing centers (MTOCs) in most somatic cells. Instead, oocytes rely on different mechanisms for the formation of microtubules in MI spindles. Two different mechanisms have been described for MI spindle formation in mammalian oocytes. Chromosome-mediated microtubule formation, including RAN-mediated spindle formation and chromosomal passenger complex-mediated spindle elongation, controls the growth of microtubules from chromatin, while acentriolar MTOC-mediated microtubule formation contributes to spindle formation. Mouse oocytes utilize both chromatin- and MTOC-mediated pathways for microtubule formation. The existence of both pathways may provide a fail-safe mechanism to ensure high fidelity of chromosome segregation during meiosis. Unlike mouse oocytes, human oocytes considered unsuitable for clinical in vitro fertilization procedures, lack MTOCs; this may explain why meiosis in human oocytes is often error-prone. Understanding the mechanisms of MI/MII spindle formation, spindle assembly checkpoint, and chromosome segregation, in mammalian oocytes, will provide valuable insights into the molecular mechanisms of human infertility.
Collapse
Affiliation(s)
| | - Nam-Hyung Kim
- Department of Animal Science, Chungbuk National University, Cheong-Ju, Chungbuk, Republic of Korea
| |
Collapse
|
97
|
Kim Y, Lee I, Jo Y, Kim N, Namgoong S. Acentriolar microtubule organization centers and Ran‐mediated microtubule formation pathways are both required in porcine oocytes. Mol Reprod Dev 2019; 86:972-983. [DOI: 10.1002/mrd.23172] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 04/01/2019] [Accepted: 04/29/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Yong‐Han Kim
- Department of Animal SciencesChungbuk National University Cheong‐Ju Chungcheongbuk‐do Republic of Korea
| | - In‐Won Lee
- Department of Animal SciencesChungbuk National University Cheong‐Ju Chungcheongbuk‐do Republic of Korea
| | - Yu‐Jin Jo
- Department of Animal SciencesChungbuk National University Cheong‐Ju Chungcheongbuk‐do Republic of Korea
| | - Nam‐Hyung Kim
- Department of Animal SciencesChungbuk National University Cheong‐Ju Chungcheongbuk‐do Republic of Korea
| | - Suk Namgoong
- Department of Animal SciencesChungbuk National University Cheong‐Ju Chungcheongbuk‐do Republic of Korea
| |
Collapse
|
98
|
Rezey AC, Gerlach BD, Wang R, Liao G, Tang DD. Plk1 Mediates Paxillin Phosphorylation (Ser-272), Centrosome Maturation, and Airway Smooth Muscle Layer Thickening in Allergic Asthma. Sci Rep 2019; 9:7555. [PMID: 31101859 PMCID: PMC6525254 DOI: 10.1038/s41598-019-43927-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 05/01/2019] [Indexed: 01/09/2023] Open
Abstract
Allergic asthma is characterized by airway smooth muscle layer thickening, which is largely attributed to cell division that requires the formation of centrosomes. Centrosomes play a pivotal role in regulating bipolar spindle formation and cell division. Before mitosis, centrosomes undergo maturation characterized by expansion of pericentriolar material proteins, which facilitates spindle formation and mitotic efficiency of many cell types. Although polo-like kinase 1 (Plk1) has been implicated in centrosome maturation, the mechanisms by which Plk1 regulates the cellular process are incompletely elucidated. Here, we identified paxillin as a new Plk1-interacting protein in human airway smooth muscle cells. We unexpectedly found that phosphorylated paxillin (Ser-272) was localized in centrosomes of human smooth muscle cells, which regulated centrosome maturation and spindle assembly. Plk1 knockdown inhibited paxillin Ser-272 phosphorylation, centrosome maturation, and cell division. Furthermore, exposure to allergens enhanced airway smooth muscle layer and paxillin phosphorylation at this residue in mice, which was reduced by smooth muscle conditional knockout of Plk1. These findings suggest that Plk1 regulates centrosome maturation and cell division in part by modulating paxillin phosphorylation on Ser-272. Furthermore, Plk1 contributes to the pathogenesis of allergen-induced thickening of the airway smooth muscle layer by affecting paxillin phosphorylation at this position.
Collapse
Affiliation(s)
- Alyssa C Rezey
- Department of Molecular and Cellular Physiology, Albany Medical College, 47 New Scotland Avenue, MC-8, Albany, New York, USA
| | - Brennan D Gerlach
- Department of Molecular and Cellular Physiology, Albany Medical College, 47 New Scotland Avenue, MC-8, Albany, New York, USA
| | - Ruping Wang
- Department of Molecular and Cellular Physiology, Albany Medical College, 47 New Scotland Avenue, MC-8, Albany, New York, USA
| | - Guoning Liao
- Department of Molecular and Cellular Physiology, Albany Medical College, 47 New Scotland Avenue, MC-8, Albany, New York, USA
| | - Dale D Tang
- Department of Molecular and Cellular Physiology, Albany Medical College, 47 New Scotland Avenue, MC-8, Albany, New York, USA.
| |
Collapse
|
99
|
Raff JW. Phase Separation and the Centrosome: A Fait Accompli? Trends Cell Biol 2019; 29:612-622. [PMID: 31076235 DOI: 10.1016/j.tcb.2019.04.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/08/2019] [Accepted: 04/08/2019] [Indexed: 12/28/2022]
Abstract
There is currently intense interest in the idea that many membraneless organelles might assemble through phase separation of their constituent molecules into biomolecular 'condensates' that have liquid-like properties. This idea is intuitively appealing, especially for complex organelles such as centrosomes, where a liquid-like structure would allow the many constituent molecules to diffuse and interact with one another efficiently. I discuss here recent studies that either support the concept of a liquid-like centrosome or suggest that centrosomes are assembled upon a more solid, stable scaffold. I suggest that it may be difficult to distinguish between these possibilities. I argue that the concept of biomolecular condensates is an important advance in cell biology, with potentially wide-ranging implications, but it seems premature to conclude that centrosomes, and perhaps other membraneless organelles, are necessarily best described as liquid-like phase-separated condensates.
Collapse
Affiliation(s)
- Jordan W Raff
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK.
| |
Collapse
|
100
|
Jiao AL, Perales R, Umbreit NT, Haswell JR, Piper ME, Adams BD, Pellman D, Kennedy S, Slack FJ. Human nuclear RNAi-defective 2 (NRDE2) is an essential RNA splicing factor. RNA (NEW YORK, N.Y.) 2019; 25:352-363. [PMID: 30538148 PMCID: PMC6380277 DOI: 10.1261/rna.069773.118] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 12/20/2018] [Indexed: 05/05/2023]
Abstract
The accurate inheritance of genetic material is a basic necessity in all domains of life and an unexpectedly large number of RNA processing factors are required for mitotic progression and genome stability. NRDE2 (nuclear RNAi defective-2) is an evolutionarily conserved protein originally discovered for its role in nuclear RNA interference (RNAi) and heritable gene silencing in Caenorhabditis elegans (C. elegans). The function of the human NRDE2 gene remains poorly understood. Here we show that human NRDE2 is an essential protein required for suppressing intron retention in a subset of pre-mRNAs containing short, GC-rich introns with relatively weak 5' and 3' splice sites. NRDE2 preferentially interacts with components of the U5 small nuclear ribonucleoprotein (snRNP), the exon junction complex, and the RNA exosome. Interestingly, NRDE2-depleted cells exhibit greatly increased levels of genomic instability and DNA damage, as well as defects in centrosome maturation and mitotic progression. We identify the essential centriolar satellite protein, CEP131, as a direct NRDE2-regulated target. NRDE2 specifically binds to and promotes the efficient splicing of CEP131 pre-mRNA, and depleting NRDE2 dramatically reduces CEP131 protein expression, contributing to impaired recruitment of critical centrosomal proteins (e.g., γ-tubulin and Aurora Kinase A) to the spindle poles during mitosis. Our work establishes a conserved role for human NRDE2 in RNA splicing, characterizes the severe genomic instability phenotypes observed upon loss of NRDE2, and highlights the direct regulation of CEP131 splicing as one of multiple mechanisms through which such phenotypes might be explained.
Collapse
Affiliation(s)
- Alan L Jiao
- HMS Initiative for RNA Medicine, Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06511, USA
| | - Roberto Perales
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Neil T Umbreit
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Jeffrey R Haswell
- HMS Initiative for RNA Medicine, Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
- Department of Biological and Biomedical Sciences, Harvard University, Boston, Massachusetts 02115, USA
| | - Mary E Piper
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, USA
| | - Brian D Adams
- HMS Initiative for RNA Medicine, Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - David Pellman
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Pediatric Hematology/Oncology, Boston Children's Hospital, Boston, Massachusetts 02215, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA
| | - Scott Kennedy
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Frank J Slack
- HMS Initiative for RNA Medicine, Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| |
Collapse
|