51
|
Mu A, Cao Z, Huang D, Hosokawa H, Maegawa S, Takata M. Effects of the major formaldehyde catalyzer ADH5 on phenotypes of fanconi anemia zebrafish model. Mol Biol Rep 2023; 50:8385-8395. [PMID: 37615925 DOI: 10.1007/s11033-023-08696-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 07/18/2023] [Indexed: 08/25/2023]
Abstract
BACKGROUND Fanconi anemia (FA) is a devastating hereditary disorder for which we desperately need a novel therapeutic strategy. It is caused by mutations in one of at least 22 genes in the FA pathway and is characterized by developmental abnormalities, bone marrow failure, and cancer predisposition. The FA pathway is required for the efficient repair of damaged DNA, including interstrand cross-links (ICL). Recent studies indicate formaldehyde as an ultimate endogenous cause of DNA damage in FA pathophysiology. Formaldehyde can form DNA adducts as well as ICLs by inducing covalent linkages between opposite strands of double-stranded DNA. METHODS AND RESULTS In this study, we generated a disease model of FA in zebrafish by disrupting the ube2t or fancd2 gene, which resulted in a striking phenotype of female-to-male sex reversal. Since formaldehyde is detoxified from the body by alcohol dehydrogenase 5 (ADH5), we generated fancd2-/-/adh5-/- zebrafish. We observed a body size reduction and a lower number of mature spermatozoa than wild-type or single knockout zebrafish. To evaluate if increased activity in ADH5 can affect the FA phenotype, we overexpressed human ADH5 in fancd2-/- zebrafish. The progress of spermatogenesis seemed to be partially recovered due to ADH5 overexpression. CONCLUSIONS Our results suggest potential utility of an ADH5 enzyme activator as a therapeutic measure for the clearance of formaldehyde and treatment of FA.
Collapse
Affiliation(s)
- Anfeng Mu
- Laboratory of DNA Damage Signaling, Department of Late Effects Studies, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto, Japan.
- Multilayer Network Research Unit, Research Coordination Alliance, Kyoto University, Kyoto, Japan.
| | - Zimu Cao
- Laboratory of DNA Damage Signaling, Department of Late Effects Studies, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Denggao Huang
- Laboratory of DNA Damage Signaling, Department of Late Effects Studies, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- Department of Central Laboratory, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, Hainan, China
| | - Hiroshi Hosokawa
- Department of Intelligence Science and Technology, Graduate School of Informatics, Kyoto University, Kyoto, Japan
| | - Shingo Maegawa
- Department of Intelligence Science and Technology, Graduate School of Informatics, Kyoto University, Kyoto, Japan
| | - Minoru Takata
- Laboratory of DNA Damage Signaling, Department of Late Effects Studies, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto, Japan.
- Multilayer Network Research Unit, Research Coordination Alliance, Kyoto University, Kyoto, Japan.
| |
Collapse
|
52
|
Zhou Z, Yang H, Liang X, Zhou T, Zhang T, Yang Y, Wang J, Wang W. C1orf112 teams up with FIGNL1 to facilitate RAD51 filament disassembly and DNA interstrand cross-link repair. Cell Rep 2023; 42:112907. [PMID: 37515771 DOI: 10.1016/j.celrep.2023.112907] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/19/2023] [Accepted: 07/14/2023] [Indexed: 07/31/2023] Open
Abstract
The recombinase RAD51 plays a core role in DNA repair by homologous recombination (HR). The assembly and disassembly of RAD51 filament need to be orderly regulated by mediators such as BRCA2 and anti-recombinases. To screen for potential regulators of RAD51, we perform RAD51 proximity proteomics and identify factor C1orf112. We further find that C1orf112 complexed with FIGNL1 facilitates RAD51 filament disassembly in the HR step of Fanconi anemia (FA) pathway. Specifically, C1orf112 physically interacts with FIGNL1 and enhances its protein stability. Meanwhile, the RAD51 filament disassembly activity of FIGNL1 is directly stimulated by C1orf112. BRCA2 directly interacts with C1orf112-FIGNL1 complex and functions upstream of this complex to protect RAD51 filament from premature disassembly. C1orf112- and FIGNL1-deficient cells are primarily sensitive to DNA interstrand cross-link (ICL) agents. Thus, these findings suggest an important function of C1orf112 in RAD51 regulation in the HR step of ICL repair by FA pathway.
Collapse
Affiliation(s)
- Zenan Zhou
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Han Yang
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Xinxin Liang
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Tao Zhou
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Tao Zhang
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Yang Yang
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Jiadong Wang
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China.
| | - Weibin Wang
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China.
| |
Collapse
|
53
|
Kasamatsu S, Nishimura A, Alam MM, Morita M, Shimoda K, Matsunaga T, Jung M, Ogata S, Barayeu U, Ida T, Nishida M, Nishimura A, Motohashi H, Akaike T. Supersulfide catalysis for nitric oxide and aldehyde metabolism. SCIENCE ADVANCES 2023; 9:eadg8631. [PMID: 37595031 PMCID: PMC10438454 DOI: 10.1126/sciadv.adg8631] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 07/19/2023] [Indexed: 08/20/2023]
Abstract
Abundant formation of endogenous supersulfides, which include reactive persulfide species and sulfur catenated residues in thiols and proteins (supersulfidation), has been observed. We found here that supersulfides catalyze S-nitrosoglutathione (GSNO) metabolism via glutathione-dependent electron transfer from aldehydes by exploiting alcohol dehydrogenase 5 (ADH5). ADH5 is a highly conserved bifunctional enzyme serving as GSNO reductase (GSNOR) that down-regulates NO signaling and formaldehyde dehydrogenase (FDH) that detoxifies formaldehyde in the form of glutathione hemithioacetal. C174S mutation significantly reduced the supersulfidation of ADH5 and almost abolished GSNOR activity but spared FDH activity. Notably, Adh5C174S/C174S mice manifested improved cardiac functions possibly because of GSNOR elimination and consequent increased NO bioavailability. Therefore, we successfully separated dual functions (GSNOR and FDH) of ADH5 (mediated by the supersulfide catalysis) through the biochemical analysis for supersulfides in vitro and characterizing in vivo phenotypes of the GSNOR-deficient organisms that we established herein. Supersulfides in ADH5 thus constitute a substantial catalytic center for GSNO metabolism mediating electron transfer from aldehydes.
Collapse
Affiliation(s)
- Shingo Kasamatsu
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
- Department of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, Osaka 599-8531, Japan
| | - Akira Nishimura
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara 630-0192, Japan
| | - Md. Morshedul Alam
- Department of Gene Expression Regulation, IDAC, Tohoku University, Sendai 980-8575, Japan
- Department of Genetic Engineering and Biotechnology, Bangabandhu Sheikh Mujibur Rahman Maritime University, Mirpur 12, Dhaka 1216, Bangladesh
| | - Masanobu Morita
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Kakeru Shimoda
- Division of Cardiocirculatory Signaling, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki 444-8787, Japan
- Cardiocirculatory Dynamism Research Group, Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki 444-8787, Japan
| | - Tetsuro Matsunaga
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Minkyung Jung
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Seiryo Ogata
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Uladzimir Barayeu
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Tomoaki Ida
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Motohiro Nishida
- Division of Cardiocirculatory Signaling, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki 444-8787, Japan
- Cardiocirculatory Dynamism Research Group, Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki 444-8787, Japan
- Department of Physiology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Akiyuki Nishimura
- Division of Cardiocirculatory Signaling, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki 444-8787, Japan
- Cardiocirculatory Dynamism Research Group, Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki 444-8787, Japan
| | - Hozumi Motohashi
- Department of Gene Expression Regulation, IDAC, Tohoku University, Sendai 980-8575, Japan
| | - Takaaki Akaike
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| |
Collapse
|
54
|
Zhao G, Zhang H, Zhang Y, Zhao N, Mao J, Shang P, Gao K, Meng Y, Tao Y, Wang A, Chen Z, Guo C. Oncoprotein SET dynamically regulates cellular stress response through nucleocytoplasmic transport in breast cancer. Cell Biol Toxicol 2023; 39:1795-1814. [PMID: 36534342 DOI: 10.1007/s10565-022-09784-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022]
Abstract
SETβ is the predominant isoform of oncoprotein SE translocation (SET) in various breast cancer cell lines. Interactome-transcriptome analysis has shown that SETβ is intimately associated with cellular stress response. Among various exogenous stimuli, formaldehyde (FA) causes distinct biological effects in a dose-dependent manner. In response to FA at different concentrations, SET dynamically shuttles between the nucleus and cytoplasm, performing diverse biofunctions to restore homeostasis. At a low concentration, FA acts as an epidermal growth factor (EGF) and activates the HER2 receptor and downstream signaling pathways in HER2+ breast cancer cells, resulting in enhanced cell proliferation. Nucleocytoplasmic transport of SETβ is controlled by the PI3K/PKCα/CK2α axis and depletion or blockade of the transport of SETβ suppresses EGF-induced activation of AKT and ERK. SETβ also inhibits not only stress-induced activation of p38 MAPK signaling pathway, but also assembly of stress granules by hindering formation of the G3BP1-RNA complex. Our findings suggest that SET functions as an important regulator which modulates cellular stress signaling pathways dynamically.
Collapse
Affiliation(s)
- Guomeng Zhao
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Hongying Zhang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Yanchao Zhang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Na Zhao
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Jinlei Mao
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Pengzhao Shang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Kun Gao
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Yao Meng
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Yuhang Tao
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Anlei Wang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Ziyi Chen
- Hepatobiliary/Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China.
| | - Changying Guo
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, People's Republic of China.
| |
Collapse
|
55
|
Haseba T, Maruyama M, Akimoto T, Yamamoto I, Katsuyama M, Okuda T. Class III Alcohol Dehydrogenase Plays a Key Role in the Onset of Alcohol-Related/-Associated Liver Disease as an S-Nitrosoglutathione Reductase in Mice. Int J Mol Sci 2023; 24:12102. [PMID: 37569481 PMCID: PMC10419236 DOI: 10.3390/ijms241512102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/24/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
Lipid accumulation in the liver due to chronic alcohol consumption (CAC) is crucial in the development of alcohol liver disease (ALD). It is promoted by the NADH/NAD ratio increase via alcohol dehydrogenase (ADH)-dependent alcohol metabolism and lipogenesis increase via peroxisome proliferator-activated receptor γ (PPARγ) in the liver. The transcriptional activity of PPARγ on lipogenic genes is inhibited by S-nitrosylation but activated by denitrosylation via S-nitrosoglutathione reductase (GSNOR), an enzyme identical to ADH3. Besides ADH1, ADH3 also participates in alcohol metabolism. Therefore, we investigated the specific contribution of ADH3 to ALD onset. ADH3-knockout (Adh3-/-) and wild-type (WT) mice were administered a 10% ethanol solution for 12 months. Adh3-/- exhibited no significant pathological changes in the liver, whereas WT exhibited marked hepatic lipid accumulation (p < 0.005) with increased serum transaminase levels. Adh3-/- exhibited no death during CAC, whereas WT exhibited a 40% death. Liver ADH3 mRNA levels were elevated by CAC in WT (p < 0.01). The alcohol elimination rate measured after injecting 4 g/kg ethanol was not significantly different between two strains, although the rate was increased in both strains by CAC. Thus, ADH3 plays a key role in the ALD onset, likely by acting as GSNOR.
Collapse
Affiliation(s)
- Takeshi Haseba
- Department of Legal Medicine, Kanagawa Dental University, 82 Inaokacho, Yokosuka 238-8580, Japan;
- Department of Legal Medicine, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8602, Japan
| | - Motoyo Maruyama
- Division of Laboratory Animal Science, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8602, Japan; (M.M.); (T.A.)
| | - Toshio Akimoto
- Division of Laboratory Animal Science, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8602, Japan; (M.M.); (T.A.)
| | - Isao Yamamoto
- Department of Legal Medicine, Kanagawa Dental University, 82 Inaokacho, Yokosuka 238-8580, Japan;
| | - Midori Katsuyama
- Department of Legal Medicine, Kagoshima University Graduate School of Medicine and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan;
| | - Takahisa Okuda
- Department of Legal Medicine, Nihon University School of Medicine, 30-1 Oyaguchi-Kamicho, Itabashi-ku, Tokyo 173-8610, Japan;
| |
Collapse
|
56
|
Wang M, Brandt LTL, Wang X, Russell H, Mitchell E, Kamimae-Lanning AN, Brown JM, Dingler FA, Garaycoechea JI, Isobe T, Kinston SJ, Gu M, Vassiliou GS, Wilson NK, Göttgens B, Patel KJ. Genotoxic aldehyde stress prematurely ages hematopoietic stem cells in a p53-driven manner. Mol Cell 2023; 83:2417-2433.e7. [PMID: 37348497 PMCID: PMC7614878 DOI: 10.1016/j.molcel.2023.05.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 04/18/2023] [Accepted: 05/25/2023] [Indexed: 06/24/2023]
Abstract
Aged hematopoietic stem cells (HSCs) display diminished self-renewal and a myeloid differentiation bias. However, the drivers and mechanisms that underpin this fundamental switch are not understood. HSCs produce genotoxic formaldehyde that requires protection by the detoxification enzymes ALDH2 and ADH5 and the Fanconi anemia (FA) DNA repair pathway. We find that the HSCs in young Aldh2-/-Fancd2-/- mice harbor a transcriptomic signature equivalent to aged wild-type HSCs, along with increased epigenetic age, telomere attrition, and myeloid-biased differentiation quantified by single HSC transplantation. In addition, the p53 response is vigorously activated in Aldh2-/-Fancd2-/- HSCs, while p53 deletion rescued this aged HSC phenotype. To further define the origins of the myeloid differentiation bias, we use a GFP genetic reporter to find a striking enrichment of Vwf+ myeloid and megakaryocyte-lineage-biased HSCs. These results indicate that metabolism-derived formaldehyde-DNA damage stimulates the p53 response in HSCs to drive accelerated aging.
Collapse
Affiliation(s)
- Meng Wang
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA; Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK; MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, UK.
| | - Laura T L Brandt
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, UK
| | - Xiaonan Wang
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK; School of Public Health, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Holly Russell
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Emily Mitchell
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK; Wellcome Sanger Institute, Hinxton, UK
| | - Ashley N Kamimae-Lanning
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Jill M Brown
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Felix A Dingler
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Juan I Garaycoechea
- Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences) and University Medical Center, Utrecht, the Netherlands
| | - Tomoya Isobe
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Sarah J Kinston
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Muxin Gu
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - George S Vassiliou
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Nicola K Wilson
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Berthold Göttgens
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Ketan J Patel
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK.
| |
Collapse
|
57
|
Mao Z, Yuan R, Wang X, Xie K, Xu B. Serum Concentrations of Benzaldehyde, Isopentanaldehyde and Sex Hormones: Evidence from the National Health and Nutrition Examination Survey. TOXICS 2023; 11:573. [PMID: 37505538 PMCID: PMC10383974 DOI: 10.3390/toxics11070573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/13/2023] [Accepted: 06/26/2023] [Indexed: 07/29/2023]
Abstract
Exposure to environmental chemicals could disturb the balance of sex hormones. However, the studies on Benzaldehyde, Isopentanaldehyde exposure and sex hormones are still limited. Based on the data of 1064 participants in the National Health and Nutrition Examination Survey (NHANES), we used the linear regression model and restricted cubic spline (RCS) model to evaluate the associations of Benzaldehyde/Isopentanaldehyde exposure with testosterone (TT), estradiol (E2), sex hormone binding globulin (SHBG), free androgen index (FAI) and the ratio of TT to E2 (TT/E2). A ln-unit increase in Benzaldehyde was associated with lower TT (β = -0.048, P = 0.030) and E2 (β = -0.094, P = 0.046) in all participants. After further adjustment for menopausal status, Benzaldehyde was negatively associated with E2 (β = -0.174, P = 0.045) in females. The interaction between Benzaldehyde and gender was significant (Pinter = 0.031). However, Isopentanaldehyde showed a positive association with SHBG and TT/E2 in all participants (all P < 0.05). The positive associations of Isopentanaldehyde with TT, SHBG and TT/E2 were found in males but not in females. RCS plots illustrated the linear associations of Benzaldehyde with E2 (Pnon-linear = 0.05) in females and Isopentanaldehyde with TT (Pnon-linear = 0.07) and TT/E2 (Pnon-linear = 0.350) in males. The non-linear relationships were identified between Isopentanaldehyde and SHBG in males (Pnon-linear = 0.035). Our findings indicated the effects of Benzaldehyde and Isopentanaldehyde exposure on sex hormones, and the effects had the gender specificity. Cohort studies and high-quality in vitro and in vivo experiments are needed to confirm the specific effects and uncover the underlying mechanisms.
Collapse
Affiliation(s)
- Zhilei Mao
- Changzhou Maternal and Child Healthcare Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou 213000, China
| | - Rui Yuan
- Department of Endocrinology, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Xu Wang
- Department of Endocrinology, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Kaipeng Xie
- Department of Public Health, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing 210004, China
| | - Bo Xu
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
58
|
Vijayraghavan S, Saini N. Aldehyde-Associated Mutagenesis─Current State of Knowledge. Chem Res Toxicol 2023. [PMID: 37363863 DOI: 10.1021/acs.chemrestox.3c00045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Aldehydes are widespread in the environment, with multiple sources such as food and beverages, industrial effluents, cigarette smoke, and additives. The toxic effects of exposure to several aldehydes have been observed in numerous studies. At the molecular level, aldehydes damage DNA, cross-link DNA and proteins, lead to lipid peroxidation, and are associated with increased disease risk including cancer. People genetically predisposed to aldehyde sensitivity exhibit severe health outcomes. In various diseases such as Fanconi's anemia and Cockayne syndrome, loss of aldehyde-metabolizing pathways in conjunction with defects in DNA repair leads to widespread DNA damage. Importantly, aldehyde-associated mutagenicity is being explored in a growing number of studies, which could offer key insights into how they potentially contribute to tumorigenesis. Here, we review the genotoxic effects of various aldehydes, focusing particularly on the DNA adducts underlying the mutagenicity of environmentally derived aldehydes. We summarize the chemical structures of the aldehydes and their predominant DNA adducts, discuss various methodologies, in vitro and in vivo, commonly used in measuring aldehyde-associated mutagenesis, and highlight some recent studies looking at aldehyde-associated mutation signatures and spectra. We conclude the Review with a discussion on the challenges and future perspectives of investigating aldehyde-associated mutagenesis.
Collapse
Affiliation(s)
- Sriram Vijayraghavan
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| | - Natalie Saini
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| |
Collapse
|
59
|
Li B, Liu C, Zhang W, Ren J, Song B, Yuan J. Ratiometric Lysosome-targeting Luminescent Probe Based on a Coumarin-Ruthenium(II) Complex for Formaldehyde Detection and Imaging in Living Cells and Mouse Brain Tissues. Methods 2023:S1046-2023(23)00100-7. [PMID: 37348825 DOI: 10.1016/j.ymeth.2023.06.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 06/24/2023] Open
Abstract
Ratiometric luminescence probes have attracted widespread attention because of their self-calibration capability. However, some defects, such as small emission shift, severe spectral overlap and poor water solubility, limit their application in the field of biological imaging. In this study, a unique luminescence probe, Ru-COU, has been developed by combining tris(bipyridine)ruthenium(II) complex with coumarin derivative through a formaldehyde-responsive linker. The probe exhibited a large emission shift (Δλ>100 nm) and good water solubility, achieving ratiometric emission responses at 505 nm and 610 nm toward formaldehyde under acidic conditions. Besides, ratiometric luminescence imaging of formaldehyde in living cells and Alzheimer disease mouse's brain slices demonstrates the potential value of Ru-COU for the diagnosis and treatment of formaldehyde related diseases.
Collapse
Affiliation(s)
- Bingyi Li
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Chaolong Liu
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Wenzhu Zhang
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, China.
| | - Junyu Ren
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Bo Song
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Jingli Yuan
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
60
|
Wit N, Gogola E, West JA, Vornbäumen T, Seear RV, Bailey PS, Burgos-Barragan G, Wang M, Krawczyk P, Huberts DH, Gergely F, Matheson NJ, Kaser A, Nathan JA, Patel KJ. A histone deacetylase 3 and mitochondrial complex I axis regulates toxic formaldehyde production. SCIENCE ADVANCES 2023; 9:eadg2235. [PMID: 37196082 PMCID: PMC10191432 DOI: 10.1126/sciadv.adg2235] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 04/11/2023] [Indexed: 05/19/2023]
Abstract
Cells produce considerable genotoxic formaldehyde from an unknown source. We carry out a genome-wide CRISPR-Cas9 genetic screen in metabolically engineered HAP1 cells that are auxotrophic for formaldehyde to find this cellular source. We identify histone deacetylase 3 (HDAC3) as a regulator of cellular formaldehyde production. HDAC3 regulation requires deacetylase activity, and a secondary genetic screen identifies several components of mitochondrial complex I as mediators of this regulation. Metabolic profiling indicates that this unexpected mitochondrial requirement for formaldehyde detoxification is separate from energy generation. HDAC3 and complex I therefore control the abundance of a ubiquitous genotoxic metabolite.
Collapse
Affiliation(s)
- Niek Wit
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Department of Medicine, University of Cambridge, Cambridge CB2 0AW, UK
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Ewa Gogola
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - James A. West
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Department of Medicine, University of Cambridge, Cambridge CB2 0AW, UK
| | - Tristan Vornbäumen
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Department of Medicine, University of Cambridge, Cambridge CB2 0AW, UK
| | - Rachel V. Seear
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Department of Medicine, University of Cambridge, Cambridge CB2 0AW, UK
| | - Peter S. J. Bailey
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Department of Medicine, University of Cambridge, Cambridge CB2 0AW, UK
| | - Guillermo Burgos-Barragan
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Meng Wang
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Patrycja Krawczyk
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Daphne H. E. W. Huberts
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, UK
| | - Fanni Gergely
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, UK
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Nicholas J. Matheson
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Department of Medicine, University of Cambridge, Cambridge CB2 0AW, UK
- NHS Blood and Transplant, Cambridge, UK
| | - Arthur Kaser
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Department of Medicine, University of Cambridge, Cambridge CB2 0AW, UK
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Cambridge, Cambridge, UK
| | - James A. Nathan
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Department of Medicine, University of Cambridge, Cambridge CB2 0AW, UK
| | - Ketan J. Patel
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| |
Collapse
|
61
|
Vekariya U, Toma M, Nieborowska-Skorska M, Le BV, Caron MC, Kukuyan AM, Sullivan-Reed K, Podszywalow-Bartnicka P, Chitrala KN, Atkins J, Drzewiecka M, Feng W, Chan J, Chatla S, Golovine K, Jelinek J, Sliwinski T, Ghosh J, Matlawska-Wasowska K, Chandramouly G, Nejati R, Wasik M, Sykes SM, Piwocka K, Hadzijusufovic E, Valent P, Pomerantz RT, Morton G, Childers W, Zhao H, Paietta EM, Levine RL, Tallman MS, Fernandez HF, Litzow MR, Gupta GP, Masson JY, Skorski T. DNA polymerase θ protects leukemia cells from metabolically induced DNA damage. Blood 2023; 141:2372-2389. [PMID: 36580665 PMCID: PMC10273171 DOI: 10.1182/blood.2022018428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/16/2022] [Accepted: 12/16/2022] [Indexed: 12/30/2022] Open
Abstract
Leukemia cells accumulate DNA damage, but altered DNA repair mechanisms protect them from apoptosis. We showed here that formaldehyde generated by serine/1-carbon cycle metabolism contributed to the accumulation of toxic DNA-protein crosslinks (DPCs) in leukemia cells, especially in driver clones harboring oncogenic tyrosine kinases (OTKs: FLT3(internal tandem duplication [ITD]), JAK2(V617F), BCR-ABL1). To counteract this effect, OTKs enhanced the expression of DNA polymerase theta (POLθ) via ERK1/2 serine/threonine kinase-dependent inhibition of c-CBL E3 ligase-mediated ubiquitination of POLθ and its proteasomal degradation. Overexpression of POLθ in OTK-positive cells resulted in the efficient repair of DPC-containing DNA double-strand breaks by POLθ-mediated end-joining. The transforming activities of OTKs and other leukemia-inducing oncogenes, especially of those causing the inhibition of BRCA1/2-mediated homologous recombination with and without concomitant inhibition of DNA-PK-dependent nonhomologous end-joining, was abrogated in Polq-/- murine bone marrow cells. Genetic and pharmacological targeting of POLθ polymerase and helicase activities revealed that both activities are promising targets in leukemia cells. Moreover, OTK inhibitors or DPC-inducing drug etoposide enhanced the antileukemia effect of POLθ inhibitor in vitro and in vivo. In conclusion, we demonstrated that POLθ plays an essential role in protecting leukemia cells from metabolically induced toxic DNA lesions triggered by formaldehyde, and it can be targeted to achieve a therapeutic effect.
Collapse
Affiliation(s)
- Umeshkumar Vekariya
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Monika Toma
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Margaret Nieborowska-Skorska
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Bac Viet Le
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Marie-Christine Caron
- CHU de Québec Research Centre (Oncology Division) and Laval University Cancer Research Center, Québec City, QC, Canada
| | - Anna-Mariya Kukuyan
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Katherine Sullivan-Reed
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | | | - Kumaraswamy N. Chitrala
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Jessica Atkins
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Malgorzata Drzewiecka
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Wanjuan Feng
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Joe Chan
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Srinivas Chatla
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Konstantin Golovine
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | | | - Tomasz Sliwinski
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Jayashri Ghosh
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | | | - Gurushankar Chandramouly
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA
| | - Reza Nejati
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, PA
| | - Mariusz Wasik
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, PA
| | - Stephen M. Sykes
- Division of Hematology/Oncology, Department of Pediatrics, Washington University at St. Louis, St. Louis, MO
| | - Katarzyna Piwocka
- Laboratory of Cytometry, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Emir Hadzijusufovic
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria
- Division of Hematology and Hemostaseology, Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria
- Department for Companion Animals & Horses, Clinic for Internal Medicine and Infectious Diseases, University of Veterinary Medicine Vienna, Austria
| | - Peter Valent
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria
- Division of Hematology and Hemostaseology, Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria
| | - Richard T. Pomerantz
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA
| | - George Morton
- Moulder Center for Drug Discovery, Temple University School of Pharmacy, Philadelphia, PA
| | - Wayne Childers
- Moulder Center for Drug Discovery, Temple University School of Pharmacy, Philadelphia, PA
| | - Huaqing Zhao
- Department of Clinical Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Elisabeth M. Paietta
- Department of Oncology, Albert Einstein College of Medicine-Montefiore Medical Center, Bronx, NY
| | - Ross L. Levine
- Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Martin S. Tallman
- Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Hugo F. Fernandez
- Moffitt Malignant Hematology & Cellular Therapy at Memorial Healthcare System, Pembroke Pines, FL
| | - Mark R. Litzow
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN
| | - Gaorav P. Gupta
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Jean-Yves Masson
- CHU de Québec Research Centre (Oncology Division) and Laval University Cancer Research Center, Québec City, QC, Canada
| | - Tomasz Skorski
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| |
Collapse
|
62
|
He Y, Wang H, Fang X, Zhang W, Zhang J, Qian J. Semicarbazide-based fluorescent probe for detection of Cu 2+ and formaldehyde in different channels. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 299:122818. [PMID: 37167742 DOI: 10.1016/j.saa.2023.122818] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 04/19/2023] [Accepted: 05/02/2023] [Indexed: 05/13/2023]
Abstract
Two fluorescent sensors with the receptor semicarbazide respectively at 7- (CAA) and 3-position (CAB) of coumarin were designed and synthesized. CAA exhibits fluorescence turn-on response to Cu2+ by triggering the intramolecular charge transfer (ICT) process via Cu2+-catalyzed hydrolysis, and can detect formaldehyde (FA) at different channel by inhibiting the photo-induced electron transfer (PET). However, CAB displays quite different responses: the photophysical properties hardly changed in the presence of FA; while a three-stage fluorescence response of fast quenching, steady increasing and slowly decreasing was found upon addition of Cu2+. The high selectivity enabled CAA a good candidate for quantification of Cu2+ and formaldehyde as well as bioimaging Cu2+ in living cells. Good linear relationships between the fluorescence intensity and analyte concentration were observed in the range of 0.1-30 μM for Cu2+ and 1.0-50 μM for FA, and their detection limits (LOD) were calculated to be 0.43 μM and 1.92 μM (3δ/k), respectively.
Collapse
Affiliation(s)
- Yuting He
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Hao Wang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xinhang Fang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Weibing Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jingyuan Zhang
- Department of Chemistry, Faculty of Science, University of Alberta, Edmonton, Alberta t6g2r3, Canada
| | - Junhong Qian
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
63
|
Marcano-Gómez EC, de Souza ABF, Machado-Junior PA, Rodríguez-Herrera AJ, Castro TDF, da Silva SPG, Vieira RG, Talvani A, Nogueira KDOPC, de Oliveira LAM, Bezerra FS. N-acetylcysteine modulates redox imbalance and inflammation in macrophages and mice exposed to formaldehyde. Free Radic Res 2023; 57:444-459. [PMID: 37987619 DOI: 10.1080/10715762.2023.2284636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/04/2023] [Indexed: 11/22/2023]
Abstract
This study aimed to evaluate the protective role of N-acetylcysteine (NAC) in cells and mice exposed to formaldehyde. For the in vitro study, J774A.1 macrophages cells were incubated for 8, 16 and 24 h with formaldehyde or NAC to assess cell viability and reactive oxygen species (ROS). In the in vivo study, C57BL/6 mice (n = 48) were divided into 6 groups: control (CG), vehicle (VG) that received saline by orogastric gavage, a group exposed to formaldehyde 1% (FG) and formaldehyde exposed groups that received NAC at doses of 100, 150 and 200 mg/Kg (FN100, FN150 and FN200) for a period of 5 days. In vitro, formaldehyde promoted a decrease in cell viability and increased ROS, while NAC reduced formaldehyde-induced ROS production. Animals exposed to formaldehyde presented higher leukocyte counts in the blood and in the bronchoalveolar lavage fluid, and promoted secretion of inflammatory markers IL-6, IL-15, and IL-10. The exposure to formaldehyde also promoted redox imbalance and oxidative damage characterized by increased activities of superoxide dismutase, catalase, decreased GSH/GSSG ratio, as well as it increased levels of protein carbonyls and lipid peroxidation. NAC administration after formaldehyde exposure attenuated oxidative stress markers, secretion of inflammatory mediators and lung inflammation. In conclusion, both in in vitro and in vivo models, NAC administration exerted protective effects, which modulated the inflammatory response and redox imbalance, thus preventing the development airway injury induced by formaldehyde exposure.
Collapse
Affiliation(s)
- Elena Cecilia Marcano-Gómez
- Laboratory of Experimental Pathophysiology, Department of Biological Sciences and Center of Research in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, Brazil
| | - Ana Beatriz Farias de Souza
- Laboratory of Experimental Pathophysiology, Department of Biological Sciences and Center of Research in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, Brazil
| | - Pedro Alves Machado-Junior
- Laboratory of Experimental Pathophysiology, Department of Biological Sciences and Center of Research in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, Brazil
| | - Andrea Jazel Rodríguez-Herrera
- Laboratory of Experimental Pathophysiology, Department of Biological Sciences and Center of Research in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, Brazil
| | - Thalles de Freitas Castro
- Laboratory of Experimental Pathophysiology, Department of Biological Sciences and Center of Research in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, Brazil
| | - Sirlaine Pio Gomes da Silva
- Laboratory of Immunobiology of Inflammation, Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, Brazil
| | - Ramony Gonzaga Vieira
- Laboratory of Neurobiology and Biomaterials, Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, Brazil
| | - André Talvani
- Laboratory of Immunobiology of Inflammation, Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, Brazil
| | - Katiane de Oliveira Pinto Coelho Nogueira
- Laboratory of Neurobiology and Biomaterials, Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, Brazil
| | - Laser Antônio Machado de Oliveira
- Laboratory of Neurobiology and Biomaterials, Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, Brazil
| | - Frank Silva Bezerra
- Laboratory of Experimental Pathophysiology, Department of Biological Sciences and Center of Research in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, Brazil
| |
Collapse
|
64
|
Blaize JL, Noori BM, Hunter KP, Henrikson KA, Atoyan JA, Ardito AA, Donovan FX, Chandrasekharappa SC, Schindler D, Howlett NG. Differential Regulation of Retinoic Acid Metabolism in Fanconi Anemia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.06.535759. [PMID: 37066159 PMCID: PMC10104110 DOI: 10.1101/2023.04.06.535759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Fanconi anemia (FA) is a rare genetic disease characterized by heterogeneous congenital abnormalities and increased risk for bone marrow failure and cancer. FA is caused by mutation of any one of 23 genes, the protein products of which function primarily in the maintenance of genome stability. An important role for the FA proteins in the repair of DNA interstrand crosslinks (ICLs) has been established in vitro . While the endogenous sources of ICLs relevant to the pathophysiology of FA have yet to be clearly determined, a role for the FA proteins in a two-tier system for the detoxification of reactive metabolic aldehydes has been established. To discover new metabolic pathways linked to FA, we performed RNA-seq analysis on non-transformed FA-D2 ( FANCD2 -/- ) and FANCD2-complemented patient cells. Multiple genes associated with retinoic acid metabolism and signaling were differentially expressed in FA-D2 ( FANCD2 -/- ) patient cells, including ALDH1A1 and RDH10 , which encode for retinaldehyde and retinol dehydrogenases, respectively. Increased levels of the ALDH1A1 and RDH10 proteins was confirmed by immunoblotting. FA-D2 ( FANCD2 -/- ) patient cells displayed increased aldehyde dehydrogenase activity compared to the FANCD2-complemented cells. Upon exposure to retinaldehyde, FA-D2 ( FANCD2 -/- ) cells exhibited increased DNA double-strand breaks and checkpoint activation indicative of a defect in the repair of retinaldehyde-induced DNA damage. Our findings describe a novel link between retinoic acid metabolism and FA and identify retinaldehyde as an additional reactive metabolic aldehyde relevant to the pathophysiology of FA.
Collapse
|
65
|
La Torre G, Vitello T, Cocchiara RA, Della Rocca C. Relationship between formaldehyde exposure, respiratory irritant effects and cancers: a review of reviews. Public Health 2023; 218:186-196. [PMID: 37060739 DOI: 10.1016/j.puhe.2023.03.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/20/2023] [Accepted: 03/10/2023] [Indexed: 04/17/2023]
Abstract
OBJECTIVES Formaldehyde is an organic compound used in the production of resins, paper, wood plywood, solvents and cleaning products. Formaldehyde is also present when tobacco is smoked. Formaldehyde has been defined as an irritant and is classified as a human carcinogen by the International Agency for Research on Cancer. The purpose of this study was to demonstrate the following two distinct correlations: (1) the association between formaldehyde exposure and development of irritant diseases affecting the respiratory tract, mainly asthma; and (2) the association between formaldehyde exposure and development of neoplastic diseases. STUDY DESIGN This was an umbrella review. METHODS A search was conducted in the three main electronic databases of scientific literature: PubMed, Scopus and Web of Science. The search included systematic reviews and meta-analyses published in the previous 10 years. Initially, titles and abstracts of retrieved articles were evaluated, then full-text assessments of selected articles took place. Data extraction and quality assessment were performed according to Assessing the Methodological Quality of Systematic Reviews (AMSTAR) score. RESULTS A total of 630 articles were initially collected. Nine articles concerning the association between formaldehyde exposure and asthma were included in the present review, and the majority of these reported good association. In addition, 27 articles investigating the association between formaldehyde exposure and neoplastic diseases were included in the review. These studies showed that nasopharyngeal cancer and leukaemia were the most represented neoplastic diseases; however, only a weak association was reported between formaldehyde exposure and cancer. CONCLUSIONS Although the studies included in this review did not show a strong association between exposure to formaldehyde and irritant or neoplastic diseases, the World Health Organisation recommends that levels of formaldehyde do not exceed the threshold value of 0.1 mg/m3 (0.08 ppm) for a period of 30 min. It is recommended that preventive measures, such as ventilation in workplaces with high exposure to formaldehyde and environmental monitoring of formaldehyde concentrations, are implemented.
Collapse
Affiliation(s)
- G La Torre
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy.
| | - T Vitello
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - R A Cocchiara
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - C Della Rocca
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
66
|
Airik M, Arbore H, Childs E, Huynh AB, Phua YL, Chen CW, Aird K, Bharathi S, Zhang B, Conlon P, Kmoch S, Kidd K, Bleyer AJ, Vockley J, Goetzman E, Wipf P, Airik R. Mitochondrial ROS Triggers KIN Pathogenesis in FAN1-Deficient Kidneys. Antioxidants (Basel) 2023; 12:900. [PMID: 37107275 PMCID: PMC10135478 DOI: 10.3390/antiox12040900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/02/2023] [Accepted: 04/03/2023] [Indexed: 04/29/2023] Open
Abstract
Karyomegalic interstitial nephritis (KIN) is a genetic adult-onset chronic kidney disease (CKD) characterized by genomic instability and mitotic abnormalities in the tubular epithelial cells. KIN is caused by recessive mutations in the FAN1 DNA repair enzyme. However, the endogenous source of DNA damage in FAN1/KIN kidneys has not been identified. Here we show, using FAN1-deficient human renal tubular epithelial cells (hRTECs) and FAN1-null mice as a model of KIN, that FAN1 kidney pathophysiology is triggered by hypersensitivity to endogenous reactive oxygen species (ROS), which cause chronic oxidative and double-strand DNA damage in the kidney tubular epithelial cells, accompanied by an intrinsic failure to repair DNA damage. Furthermore, persistent oxidative stress in FAN1-deficient RTECs and FAN1 kidneys caused mitochondrial deficiencies in oxidative phosphorylation and fatty acid oxidation. The administration of subclinical, low-dose cisplatin increased oxidative stress and aggravated mitochondrial dysfunction in FAN1-deficient kidneys, thereby exacerbating KIN pathophysiology. In contrast, treatment of FAN1 mice with a mitochondria-targeted ROS scavenger, JP4-039, attenuated oxidative stress and accumulation of DNA damage, mitigated tubular injury, and preserved kidney function in cisplatin-treated FAN1-null mice, demonstrating that endogenous oxygen stress is an important source of DNA damage in FAN1-deficient kidneys and a driver of KIN pathogenesis. Our findings indicate that therapeutic modulation of kidney oxidative stress may be a promising avenue to mitigate FAN1/KIN kidney pathophysiology and disease progression in patients.
Collapse
Affiliation(s)
- Merlin Airik
- Division of Nephrology, Department of Pediatrics, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Haley Arbore
- Division of Nephrology, Department of Pediatrics, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Elizabeth Childs
- Division of Nephrology, Department of Pediatrics, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Amy B. Huynh
- Division of Nephrology, Department of Pediatrics, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Yu Leng Phua
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Chi Wei Chen
- Department of Pharmacology & Chemical Biology and UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Katherine Aird
- Department of Pharmacology & Chemical Biology and UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Sivakama Bharathi
- Division of Genetic and Genomic Medicine, Department of Pediatrics, University of Pittsburgh School of Medicine and UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Bob Zhang
- Division of Genetic and Genomic Medicine, Department of Pediatrics, University of Pittsburgh School of Medicine and UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Peter Conlon
- Nephrology Department, Beaumont Hospital, D09 V2N0 Dublin, Ireland
| | - Stanislav Kmoch
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University, 128 08 Prague, Czech Republic
| | - Kendrah Kidd
- Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | | | - Jerry Vockley
- Division of Genetic and Genomic Medicine, Department of Pediatrics, University of Pittsburgh School of Medicine and UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Eric Goetzman
- Division of Genetic and Genomic Medicine, Department of Pediatrics, University of Pittsburgh School of Medicine and UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Peter Wipf
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Rannar Airik
- Division of Nephrology, Department of Pediatrics, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA 15224, USA
| |
Collapse
|
67
|
Garaycoechea JI, Quinlan C, Luijsterburg MS. Pathological consequences of DNA damage in the kidney. Nat Rev Nephrol 2023; 19:229-243. [PMID: 36702905 DOI: 10.1038/s41581-022-00671-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2022] [Indexed: 01/27/2023]
Abstract
DNA lesions that evade repair can lead to mutations that drive the development of cancer, and cellular responses to DNA damage can trigger senescence and cell death, which are associated with ageing. In the kidney, DNA damage has been implicated in both acute and chronic kidney injury, and in renal cell carcinoma. The susceptibility of the kidney to chemotherapeutic agents that damage DNA is well established, but an unexpected link between kidney ciliopathies and the DNA damage response has also been reported. In addition, human genetic deficiencies in DNA repair have highlighted DNA crosslinks, DNA breaks and transcription-blocking damage as lesions that are particularly toxic to the kidney. Genetic tools in mice, as well as advances in kidney organoid and single-cell RNA sequencing technologies, have provided important insights into how specific kidney cell types respond to DNA damage. The emerging view is that in the kidney, DNA damage affects the local microenvironment by triggering a damage response and cell proliferation to replenish injured cells, as well as inducing systemic responses aimed at reducing exposure to genotoxic stress. The pathological consequences of DNA damage are therefore key to the nephrotoxicity of DNA-damaging agents and the kidney phenotypes observed in human DNA repair-deficiency disorders.
Collapse
Affiliation(s)
- Juan I Garaycoechea
- Hubrecht Institute-KNAW, University Medical Center Utrecht, Utrecht, The Netherlands.
| | - Catherine Quinlan
- Department of Paediatrics, University of Melbourne, Parkville, Australia
- Department of Nephrology, Royal Children's Hospital, Melbourne, Australia
- Department of Kidney Regeneration, Murdoch Children's Research Institute, Melbourne, Australia
| | - Martijn S Luijsterburg
- Department of Human Genetics, Leiden University Medical Center (LUMC), Leiden, The Netherlands.
| |
Collapse
|
68
|
Liu L, Zhang D, Li M, Shi J, Guo F, Guo J, Wang T. A mitochondria-targeted fluorescent probe for reversible recognition of sulfur dioxide/formaldehyde and its application in cell imaging. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
69
|
Liang ZY, Wei N, Guo XF, Wang H. A new quinoline based probe with large Stokes shift and high sensitivity for formaldehyde and its bioimaging applications. Anal Chim Acta 2023; 1239:340723. [PMID: 36628723 DOI: 10.1016/j.aca.2022.340723] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
As a common reactive metabolite in living organisms, abnormal levels of formaldehyde may cause diseases such as cancer and Alzheimer's disease. Therefore, it is important to develop a sensitive and efficient method to understand the role of formaldehyde in physiology and pathology. Herein, a new fluorescent probe 4-phenyl-2-(trifluoromethyl) quinolin-7-hydrazino (QH-FA) was prepared for the detection of formaldehyde in near-total aqueous media with hydrazine as the reaction site and quinoline derivatives as the fluorophore. After reacting with formaldehyde, the hydrazine group formed methylenehydrazine and the fluorescence was significantly enhanced (223-fold) with large Stokes shift of 140 nm. Furthermore, the response of QH-FA to formaldehyde could be finished with in only 10 min with good selectivity, and can distinguish formaldehyde from other aldehydes. More remarkably, the estimated limit of detection of QH-FA is 8.1 nM, which is superior to those of previously reported formaldehyde fluorescent probes. At the end, we detected formaldehyde in cells and zebrafish using QH-FA in a near-total aqueous system and obtained fluorescence images by confocal microscopy.
Collapse
Affiliation(s)
- Zhi-Yong Liang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Na Wei
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Xiao-Feng Guo
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Hong Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
70
|
Li M, Cai Z, Li M, Chen L, Zeng W, Yuan H, Liu C. The dual detection of formaldehydes and sulfenic acids with a reactivity fluorescent probe in cells and in plants. Anal Chim Acta 2023; 1239:340734. [PMID: 36628774 DOI: 10.1016/j.aca.2022.340734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/09/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
In order to reveal the inter-relationship between protein sulfenic acid (RSOH) and formaldehyde (FA) in different physiological processes, development of tools that are capable of respective and continuous detection for both species is highly valuable. Herein, we reported an "off-on" sensor NA-SF for dual detection of RSOH and FA in cells and plant tissues. Importantly, the highly desirable attribute of the probe NA-SF combined with TCEP, makes it possible to monitor endogenous both RSOH and FA in living cells and plants tissues. NA-SF has been applied successfully in detecting RSOH and FA at physiological concentrations in HeLa, HepG2, A549 cells. Furthermore, the application of NA-SF in evaluating the RSOH and FA level in Arabidopsis thaliana roots of different growth stages are performed. The results show that the level of RSOH and FA in Arabidopsis thaliana roots correlates well with their growth stages, which suggests that both RSOH and FA might play important roles in promoting plant growth and roots elongation. And it also implied a potential application for the biological and pathological research of RSOH and FA, especially in plant physiology. Therefore, we expect NA-SF could provide a convenient and robust tool for better understanding the physiological and pathological roles of RSOH and FA.
Collapse
Affiliation(s)
- Man Li
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, School of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Zhiyi Cai
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, School of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Mengzhao Li
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, School of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Linfeng Chen
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, School of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Weili Zeng
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, School of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Hong Yuan
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, School of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Chunrong Liu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, School of Chemistry, Central China Normal University, Wuhan, 430079, China.
| |
Collapse
|
71
|
Pei X, Wang T, Liu C, Liu Z. A Ratiometric Fluorescent Nanoprobe for Ultrafast Detection of Formaldehyde in Wood and Food Samples. ChemistrySelect 2023. [DOI: 10.1002/slct.202203844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Xiaojuan Pei
- College of Materials Science and Engineering Nanjing Forestry University 159 Longpa Road Nanjing 210037 P. R. China
| | - Tianzhu Wang
- College of Materials Science and Engineering Nanjing Forestry University 159 Longpa Road Nanjing 210037 P. R. China
| | - Chaozheng Liu
- College of Materials Science and Engineering Nanjing Forestry University 159 Longpa Road Nanjing 210037 P. R. China
| | - Zhipeng Liu
- College of Materials Science and Engineering Nanjing Forestry University 159 Longpa Road Nanjing 210037 P. R. China
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources Institution Nanjing Forestry University 159 Longpa Road Nanjing 210037 P. R. China
| |
Collapse
|
72
|
Yu MY, Xu LH, Zhang Z, Qiao Z, Su P, Wang P, Xie TZ. An Imidazole-Based Triangular Macrocycle for Visual Detection of Formaldehyde. Inorg Chem 2022; 61:20200-20205. [DOI: 10.1021/acs.inorgchem.2c03118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Min-Ya Yu
- Institute of Environmental Research at Greater Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, People’s Republic of China
| | - Liang-Huan Xu
- Institute of Environmental Research at Greater Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, People’s Republic of China
| | - Zhike Zhang
- Guangzhou Key Laboratory for New Energy and Green Catalysis, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, People’s Republic of China
| | - Zhiwei Qiao
- Guangzhou Key Laboratory for New Energy and Green Catalysis, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, People’s Republic of China
| | - Peiyang Su
- Institute of Environmental Research at Greater Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, People’s Republic of China
| | - Pingshan Wang
- Institute of Environmental Research at Greater Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, People’s Republic of China
| | - Ting-Zheng Xie
- Institute of Environmental Research at Greater Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, People’s Republic of China
| |
Collapse
|
73
|
Webster ALH, Sanders MA, Patel K, Dietrich R, Noonan RJ, Lach FP, White RR, Goldfarb A, Hadi K, Edwards MM, Donovan FX, Hoogenboezem RM, Jung M, Sridhar S, Wiley TF, Fedrigo O, Tian H, Rosiene J, Heineman T, Kennedy JA, Bean L, Rosti RO, Tryon R, Gonzalez AM, Rosenberg A, Luo JD, Carroll TS, Shroff S, Beaumont M, Velleuer E, Rastatter JC, Wells SI, Surrallés J, Bagby G, MacMillan ML, Wagner JE, Cancio M, Boulad F, Scognamiglio T, Vaughan R, Beaumont KG, Koren A, Imielinski M, Chandrasekharappa SC, Auerbach AD, Singh B, Kutler DI, Campbell PJ, Smogorzewska A. Genomic signature of Fanconi anaemia DNA repair pathway deficiency in cancer. Nature 2022; 612:495-502. [PMID: 36450981 PMCID: PMC10202100 DOI: 10.1038/s41586-022-05253-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 08/18/2022] [Indexed: 12/03/2022]
Abstract
Fanconi anaemia (FA), a model syndrome of genome instability, is caused by a deficiency in DNA interstrand crosslink repair resulting in chromosome breakage1-3. The FA repair pathway protects against endogenous and exogenous carcinogenic aldehydes4-7. Individuals with FA are hundreds to thousands fold more likely to develop head and neck (HNSCC), oesophageal and anogenital squamous cell carcinomas8 (SCCs). Molecular studies of SCCs from individuals with FA (FA SCCs) are limited, and it is unclear how FA SCCs relate to sporadic HNSCCs primarily driven by tobacco and alcohol exposure or infection with human papillomavirus9 (HPV). Here, by sequencing genomes and exomes of FA SCCs, we demonstrate that the primary genomic signature of FA repair deficiency is the presence of high numbers of structural variants. Structural variants are enriched for small deletions, unbalanced translocations and fold-back inversions, and are often connected, thereby forming complex rearrangements. They arise in the context of TP53 loss, but not in the context of HPV infection, and lead to somatic copy-number alterations of HNSCC driver genes. We further show that FA pathway deficiency may lead to epithelial-to-mesenchymal transition and enhanced keratinocyte-intrinsic inflammatory signalling, which would contribute to the aggressive nature of FA SCCs. We propose that the genomic instability in sporadic HPV-negative HNSCC may arise as a result of the FA repair pathway being overwhelmed by DNA interstrand crosslink damage caused by alcohol and tobacco-derived aldehydes, making FA SCC a powerful model to study tumorigenesis resulting from DNA-crosslinking damage.
Collapse
Affiliation(s)
- Andrew L H Webster
- Laboratory of Genome Maintenance, Rockefeller University, New York, NY, USA
| | - Mathijs A Sanders
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Hinxton, UK
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Krupa Patel
- Laboratory of Genome Maintenance, Rockefeller University, New York, NY, USA
| | - Ralf Dietrich
- Deutsche Fanconi-Anämie-Hilfe e.V, Unna-Siddinghausen, Germany
| | - Raymond J Noonan
- Laboratory of Genome Maintenance, Rockefeller University, New York, NY, USA
| | - Francis P Lach
- Laboratory of Genome Maintenance, Rockefeller University, New York, NY, USA
| | - Ryan R White
- Laboratory of Genome Maintenance, Rockefeller University, New York, NY, USA
| | - Audrey Goldfarb
- Laboratory of Genome Maintenance, Rockefeller University, New York, NY, USA
| | - Kevin Hadi
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine and New York Genome Center, New York, NY, USA
| | - Matthew M Edwards
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Frank X Donovan
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Remco M Hoogenboezem
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Moonjung Jung
- Laboratory of Genome Maintenance, Rockefeller University, New York, NY, USA
| | - Sunandini Sridhar
- Laboratory of Genome Maintenance, Rockefeller University, New York, NY, USA
| | - Tom F Wiley
- Laboratory of Genome Maintenance, Rockefeller University, New York, NY, USA
| | - Olivier Fedrigo
- Vertebrate Genomes Laboratory, Rockefeller University, New York, NY, USA
| | - Huasong Tian
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine and New York Genome Center, New York, NY, USA
| | - Joel Rosiene
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine and New York Genome Center, New York, NY, USA
| | - Thomas Heineman
- Laboratory of Genome Maintenance, Rockefeller University, New York, NY, USA
| | - Jennifer A Kennedy
- Laboratory of Genome Maintenance, Rockefeller University, New York, NY, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Lorenzo Bean
- Laboratory of Genome Maintenance, Rockefeller University, New York, NY, USA
| | - Rasim O Rosti
- Laboratory of Genome Maintenance, Rockefeller University, New York, NY, USA
| | - Rebecca Tryon
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | | | - Allana Rosenberg
- Laboratory of Genome Maintenance, Rockefeller University, New York, NY, USA
| | - Ji-Dung Luo
- Bioinformatics Resource Center, Rockefeller University, New York, NY, USA
| | - Thomas S Carroll
- Bioinformatics Resource Center, Rockefeller University, New York, NY, USA
| | - Sanjana Shroff
- Department of Genetics and Genomic Sciences. Icahn School of Medicine, Mount Sinai, New York, NY, USA
| | - Michael Beaumont
- Department of Genetics and Genomic Sciences. Icahn School of Medicine, Mount Sinai, New York, NY, USA
| | - Eunike Velleuer
- Institute for Pathology, Department for Cytopathology, University Hospital of Düsseldorf, Düsseldorf, Germany
- Pediatric Cancer Center, Helios Hospital Krefeld, Düsseldorf, Germany
| | - Jeff C Rastatter
- Division of Pediatric Otolaryngology-Head and Neck Surgery, Ann and Robert H. Lurie Children's Hospital of Chicago, Northwestern University, Chicago, IL, USA
- Department of Otolaryngology-Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Susanne I Wells
- Division of Oncology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Jordi Surrallés
- Genomic Instability and DNA Repair Syndromes Group and Joint Research Unit on Genomic Medicine UAB-Sant Pau Biomedical Research Institute (IIB Sant Pau), Institut de Recerca Hospital de la Santa Creu i Sant Pau-IIB Sant Pau, Barcelona, Spain
| | - Grover Bagby
- Departments of Medicine and Molecular and Medical Genetics, Division of Hematology and Medical Oncology, Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
| | | | - John E Wagner
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Maria Cancio
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Farid Boulad
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Roger Vaughan
- Department of Biostatistics, The Rockefeller University, New York, NY, USA
| | - Kristin G Beaumont
- Department of Genetics and Genomic Sciences. Icahn School of Medicine, Mount Sinai, New York, NY, USA
| | - Amnon Koren
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Marcin Imielinski
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine and New York Genome Center, New York, NY, USA
| | - Settara C Chandrasekharappa
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Arleen D Auerbach
- Human Genetics and Hematology Program, The Rockefeller University, New York, NY, USA
| | - Bhuvanesh Singh
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - David I Kutler
- Department of Otolaryngology-Head and Neck Surgery, Weill Cornell Medical College, New York, NY, USA
| | - Peter J Campbell
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Hinxton, UK
| | - Agata Smogorzewska
- Laboratory of Genome Maintenance, Rockefeller University, New York, NY, USA.
| |
Collapse
|
74
|
Alhassan SO, Abdulrazaq Y, Odeh EO, Atawodi SEO. Crassocephalum rubens (Juss Ex Jacq) leaf diets ameliorate systemic oxidative stress and tissue damage in a Wistar rat model. J Food Biochem 2022; 46:e14491. [PMID: 36309952 DOI: 10.1111/jfbc.14491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/11/2022] [Accepted: 10/17/2022] [Indexed: 01/14/2023]
Abstract
The capacity of Crassocephalum rubens (Juss Ex Jacq) leaf to protect against systemic oxidative stress was evaluated in N-methyl-N-nitrosourea (MNU) - intoxicated rats fed at various inclusion rates for a period of twelve (12) weeks. Major organs and tissues were then assessed for indices of lipid peroxidation and oxidative stress. Crassocephalum rubens leaf significantly (p < .05) sustained the activities of superoxide dismutase and catalase with significant decrease in lipid peroxidation in MNU-intoxicated animals, particularly at 5% and 10% inlusion rates. The dietary inclusion also prevented significant changes in hematological parameters such as neutrophil and lymphocyte counts. It also reduced the severity of histologic damages such as necrosis, epithelial degeneration, inflammatory cell infiltration and other pathological changes to major organs. These results indicate that regular consumption of C. rubens leaf, prevents the deleterious biologic effects of the damaging reactive oxidative species (ROS). PRACTICAL APPLICATIONS: Crassocephalum rubens leaf has potential for development into a nutraceutical or functional food for chemoprevention and management of neurodegenerative diseases and other diseases associated with systemic oxidative stress, This is because its inclusion in the diet has attenuated lipid peroxidation, sustained the activity of antioxidant enzymes and mitigated deleterious changes in blood composition and tissue architecture resulting from exposure to a chemical carcinogen.
Collapse
|
75
|
Rodríguez A, Epperly M, Filiatrault J, Velázquez M, Yang C, McQueen K, Sambel LA, Nguyen H, Iyer DR, Juárez U, Ayala-Zambrano C, Martignetti DB, Frías S, Fisher R, Parmar K, Greenberger JS, D’Andrea AD. TGFβ pathway is required for viable gestation of Fanconi anemia embryos. PLoS Genet 2022; 18:e1010459. [PMID: 36441774 PMCID: PMC9731498 DOI: 10.1371/journal.pgen.1010459] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 12/08/2022] [Accepted: 09/30/2022] [Indexed: 11/29/2022] Open
Abstract
Overexpression of the TGFβ pathway impairs the proliferation of the hematopoietic stem and progenitor cells (HSPCs) pool in Fanconi anemia (FA). TGFβ promotes the expression of NHEJ genes, known to function in a low-fidelity DNA repair pathway, and pharmacological inhibition of TGFβ signaling rescues FA HSPCs. Here, we demonstrate that genetic disruption of Smad3, a transducer of the canonical TGFβ pathway, modifies the phenotype of FA mouse models deficient for Fancd2. We observed that the TGFβ and NHEJ pathway genes are overexpressed during the embryogenesis of Fancd2-/- mice and that the Fancd2-/-Smad3-/- double knockout (DKO) mice undergo high levels of embryonic lethality due to loss of the TGFβ-NHEJ axis. Fancd2-deficient embryos acquire extensive genomic instability during gestation which is not reversed by Smad3 inactivation. Strikingly, the few DKO survivors have activated the non-canonical TGFβ-ERK pathway, ensuring expression of NHEJ genes during embryogenesis and improved survival. Activation of the TGFβ-NHEJ axis was critical for the survival of the few Fancd2-/-Smad3-/- DKO newborn mice but had detrimental consequences for these surviving mice, such as enhanced genomic instability and ineffective hematopoiesis.
Collapse
Affiliation(s)
- Alfredo Rodríguez
- Department of Radiation Oncology, Dana Farber Cancer Institute, Boston, Massachusetts, United States of America
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, México, México
- Instituto Nacional de Pediatría, Mexico City, Mexico
| | - Michael Epperly
- University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States of America
| | - Jessica Filiatrault
- Department of Radiation Oncology, Dana Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Martha Velázquez
- Department of Radiation Oncology, Dana Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Chunyu Yang
- Department of Radiation Oncology, Dana Farber Cancer Institute, Boston, Massachusetts, United States of America
- Center for DNA Damage and DNA Repair, Dana Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Kelsey McQueen
- Department of Radiation Oncology, Dana Farber Cancer Institute, Boston, Massachusetts, United States of America
- Center for DNA Damage and DNA Repair, Dana Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Larissa A. Sambel
- Department of Radiation Oncology, Dana Farber Cancer Institute, Boston, Massachusetts, United States of America
- Center for DNA Damage and DNA Repair, Dana Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Huy Nguyen
- Department of Radiation Oncology, Dana Farber Cancer Institute, Boston, Massachusetts, United States of America
- Center for DNA Damage and DNA Repair, Dana Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Divya Ramalingam Iyer
- Department of Radiation Oncology, Dana Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Ulises Juárez
- Instituto Nacional de Pediatría, Mexico City, Mexico
| | - Cecilia Ayala-Zambrano
- Department of Radiation Oncology, Dana Farber Cancer Institute, Boston, Massachusetts, United States of America
- Instituto Nacional de Pediatría, Mexico City, Mexico
- Posgrado en Ciencias Biológicas, UNAM, Ciudad Universitaria, México, México
| | - David B. Martignetti
- Department of Radiation Oncology, Dana Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Sara Frías
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, México, México
- Instituto Nacional de Pediatría, Mexico City, Mexico
| | - Renee Fisher
- University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States of America
| | - Kalindi Parmar
- Department of Radiation Oncology, Dana Farber Cancer Institute, Boston, Massachusetts, United States of America
- Center for DNA Damage and DNA Repair, Dana Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Joel S. Greenberger
- University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States of America
| | - Alan D. D’Andrea
- Department of Radiation Oncology, Dana Farber Cancer Institute, Boston, Massachusetts, United States of America
- Center for DNA Damage and DNA Repair, Dana Farber Cancer Institute, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
76
|
Li N, Xu Y, Chen H, Chen L, Zhang Y, Yu T, Yao R, Chen J, Fu Q, Zhou J, Wang J. NEIL3 contributes to the Fanconi anemia/BRCA pathway by promoting the downstream double-strand break repair step. Cell Rep 2022; 41:111600. [PMID: 36351389 DOI: 10.1016/j.celrep.2022.111600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/30/2022] [Accepted: 10/13/2022] [Indexed: 11/09/2022] Open
Abstract
Interstrand crosslinks (ICLs) repair by the canonical Fanconi anemia (FA) pathway generates double-strand breaks (DSBs), which are subsequently repaired by the homologous recombination (HR) pathway. Recent studies show that the NEIL3 DNA glycosylase repairs psoralen-ICLs by direct unhooking. However, whether and how NEIL3 regulates MMC and cisplatin-ICL repair remains unclear. Here we show that NEIL3 participates in DSB repair step of ICL repair by promoting HR pathway. Mechanistically, NEIL3 is recruited to the DSB sites through its GRF zinc finger motifs. NEIL3 interacts with the DSB resection machinery, including CtIP, the MRE11-RAD50-NBS1 (MRN) complex, and DNA2, which is mediated by the GRF zinc finger motifs. In addition, NEIL3 is necessary for the chromatin recruitment of the resection machinery, and depletion of NEIL3 decreases end resection and compromises HR. Taken together, our results show that NEIL3 plays an important role in MMC/cisplatin-ICL repair by promoting the HR step in FA/BRCA pathway.
Collapse
Affiliation(s)
- Niu Li
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Clinical Molecular Diagnostics for Pediatrics, Shanghai 200127, China.
| | - Yufei Xu
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hongzhu Chen
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Lina Chen
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yi Zhang
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Tingting Yu
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Clinical Molecular Diagnostics for Pediatrics, Shanghai 200127, China
| | - Ruen Yao
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Clinical Molecular Diagnostics for Pediatrics, Shanghai 200127, China
| | - Jing Chen
- Department of Hematology and Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qihua Fu
- Shanghai Key Laboratory of Clinical Molecular Diagnostics for Pediatrics, Shanghai 200127, China
| | - Jia Zhou
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Jian Wang
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Clinical Molecular Diagnostics for Pediatrics, Shanghai 200127, China.
| |
Collapse
|
77
|
Guo S, Li L, Yu K, Tan Y, Wang Y. LC-MS/MS for Assessing the Incorporation and Repair of N2-Alkyl-2'-deoxyguanosine in Genomic DNA. Chem Res Toxicol 2022; 35:1814-1820. [PMID: 35584366 PMCID: PMC9588702 DOI: 10.1021/acs.chemrestox.2c00101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Understanding the occurrence, repair, and biological consequences of DNA damage is important in environmental toxicology and risk assessment. The most common way to assess DNA damage elicited by exogenous sources in a laboratory setting is to expose cells or experimental animals with chemicals that modify DNA. Owing to the lack of reaction specificities of DNA damaging agents, the approach frequently does not allow for induction of a specific DNA lesion. Herein, we employed metabolic labeling to selectively incorporate N2-methyl-dG (N2-MedG) and N2-n-butyl-dG (N2-nBudG) into genomic DNA of cultured mammalian cells, and investigated how the levels of the two lesions in cellular DNA are modulated by different DNA repair factors. Our results revealed that nucleotide excision repair (NER) exert moderate effects on the removal of N2-MedG and N2-nBudG from genomic DNA. We also observed that DNA polymerases κ and η contribute to the incorporation of N2-MedG into genomic DNA and modulate its repair in human cells. In addition, loss of ALKBH3 resulted in higher frequencies of N2-MedG and N2-nBuG incorporation into genomic DNA, suggesting a role of oxidative dealkylation in the reversal of these lesions. Together, our study provided new insights into the repair of minor-groove N2-alkyl-dG lesions in mammalian cells.
Collapse
Affiliation(s)
- Su Guo
- Environmental Toxicology Graduate Program, University of California, Riverside, California 92521-0403, United States
| | - Lin Li
- Department of Chemistry, University of California, Riverside, California 92521-0403, United States
| | - Kailin Yu
- Department of Chemistry, University of California, Riverside, California 92521-0403, United States
| | - Ying Tan
- Environmental Toxicology Graduate Program, University of California, Riverside, California 92521-0403, United States
| | - Yinsheng Wang
- Environmental Toxicology Graduate Program, University of California, Riverside, California 92521-0403, United States
- Department of Chemistry, University of California, Riverside, California 92521-0403, United States
| |
Collapse
|
78
|
Chen Y, Shen X, Li G, Yue S, Liang C, Hao Z. Association between aldehyde exposure and kidney stones in adults. Front Public Health 2022; 10:978338. [PMID: 36299743 PMCID: PMC9589346 DOI: 10.3389/fpubh.2022.978338] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 09/20/2022] [Indexed: 01/25/2023] Open
Abstract
Environmental pollution sources may play a key role in the pathogenesis of nephrolithiasis, although the link between environmental aldehyde exposure and the incidence of nephrolithiasis is unclear. The researchers in this study set out to see whether adult kidney stone formation was linked to environmental aldehydes. We examined data from 10,175 adult participants over the age of 20 who took part in the 2013-2014 National Health and Nutrition Examination Survey (NHANES), which was a cross-sectional research. A logistic regression model was employed in this work to examine the relationship between aldehyde exposure and kidney stones, machine learning was utilized to predict the connection of different parameters with the development of kidney stones, and a subgroup analysis was performed to identify sensitive groups. After controlling for all confounding variables, the results revealed that isopentanaldehyde, benzaldehyde, and hexanaldehyde were risk factors for kidney stone formation, with odds ratio (OR) of 2.47, 1.12, and 1.17, respectively, and 95 percent confidence intervals (95% CI) of 1.15-5.34, 1.02-1.22, and 1.00-1.36. Kidney stones may be a result of long-term exposure to aldehydes, which may cause them to form. Environmental pollution-related aldehyde exposure might give a novel notion and direction for future study into the process of kidney stone production, even if the cause is yet unknown.
Collapse
Affiliation(s)
- Yang Chen
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China,Institute of Urology, Anhui Medical University, Hefei, China,Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China
| | - Xudong Shen
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China,Institute of Urology, Anhui Medical University, Hefei, China,Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China
| | - Guoxiang Li
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China,Institute of Urology, Anhui Medical University, Hefei, China,Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China
| | - Shaoyu Yue
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China,Institute of Urology, Anhui Medical University, Hefei, China,Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China
| | - Chaozhao Liang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China,Institute of Urology, Anhui Medical University, Hefei, China,Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China,Chaozhao Liang
| | - Zongyao Hao
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China,Institute of Urology, Anhui Medical University, Hefei, China,Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China,*Correspondence: Zongyao Hao
| |
Collapse
|
79
|
Jiang Y, Huang S, Liu M, Li Z, Xiao W, Zhang H, Yang L, Sun H. Systematic Screening of Trigger Moieties for Designing Formaldehyde Fluorescent Probes and Application in Live Cell Imaging. BIOSENSORS 2022; 12:855. [PMID: 36290992 PMCID: PMC9599387 DOI: 10.3390/bios12100855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/19/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
Formaldehyde (FA) is involved in multiple physiological regulatory processes and plays a crucial role in memory storage. Meanwhile, FA has a notorious reputation as a toxic compound, and it will cause a variety of diseases if its level is unbalanced in the human body. To date, there have been numerous fluorescent probes for FA imaging reported. Among them, the probes based on the 2-aza-Cope rearrangement have attracted the most attention, and their applications in cell imaging have been greatly expanded. Herein, we screened the various trigger moieties of FA fluorescent probes based on the mechanism of 2-aza-Cope rearrangement. FA-2, in which a fluorophore is connected to a 4-nitrobenzylamine group and an allyl group, demonstrated the highest sensitivity, selectivity, and reaction kinetics. Furthermore, FA-Lyso, derived from FA-2, has been successfully designed and applied to monitor exogenous and endogenous FA fluctuations in lysosomes of living cells.
Collapse
Affiliation(s)
- Yin Jiang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Shumei Huang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Minghui Liu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Zejun Li
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Weimin Xiao
- Shenzhen Academy of Metrology & Quality Inspection, Shenzhen 518110, China
| | - Huatang Zhang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Liu Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Hongyan Sun
- Department of Chemistry and Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China
- Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen 518057, China
| |
Collapse
|
80
|
Thada V, Greenberg RA. Unpaved roads: How the DNA damage response navigates endogenous genotoxins. DNA Repair (Amst) 2022; 118:103383. [PMID: 35939975 PMCID: PMC9703833 DOI: 10.1016/j.dnarep.2022.103383] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/28/2022] [Accepted: 07/28/2022] [Indexed: 02/03/2023]
Abstract
Accurate DNA repair is essential for cellular and organismal homeostasis, and DNA repair defects result in genetic diseases and cancer predisposition. Several environmental factors, such as ultraviolet light, damage DNA, but many other molecules with DNA damaging potential are byproducts of normal cellular processes. In this review, we highlight some of the prominent sources of endogenous DNA damage as well as their mechanisms of repair, with a special focus on repair by the homologous recombination and Fanconi anemia pathways. We also discuss how modulating DNA damage caused by endogenous factors may augment current approaches used to treat BRCA-deficient cancers. Finally, we describe how synthetic lethal interactions may be exploited to exacerbate DNA repair deficiencies and cause selective toxicity in additional types of cancers.
Collapse
|
81
|
Li H, Li Q, Shi Q, Wang Y, Liu X, Tian H, Wang X, Yang D, Yang Y. Hemin loaded Zn-N-C single-atom nanozymes for assay of propyl gallate and formaldehyde in food samples. Food Chem 2022; 389:132985. [PMID: 35504070 DOI: 10.1016/j.foodchem.2022.132985] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 04/10/2022] [Accepted: 04/12/2022] [Indexed: 11/24/2022]
Abstract
Single-atom nanozymes (SAzymes) show distinct advantages in catalytic activity and selectivity owing to their stability and special characteristic of maximum atomic utilization. Inspired by the structure of natural horseradish peroxidase (HRP), we developed a simple method for specific determination of both propyl gallate (PG) and formaldehyde (HCHO) by utilizing the intrinsic peroxidase mimics activity of hemin (hem) loaded Zn-nitrogen-carbon single-atom nanozymes (Zn-N-C@hem SAzymes). Zn-N-C@hem was prepared via a salt-template strategy and self-assembly, where hemin exhibits enhancing peroxidase-like activity can catalyze oxidation of colorless PG to yellow product. Upon introduction of HCHO into Zn-N-C@hem/PG system, complete suppression of PG oxidation was showed, resulting in distinguished decrease in absorbance. The colorimetric sensors of PG and HCHO based on Zn-N-C@hem/PG were developed at their respective linear range of concentration 1.25-200 mg/kg and 5-250 mg/kg. The practicability of the rapid analysis of PG and HCHO in food samples has been verified with reliable results.
Collapse
Affiliation(s)
- Hong Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; Institute of Agro-Products Processing, Yunnan Academy of Agricultural Sciences, Kunming 650221, China
| | - Qiulan Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Qiao Shi
- Institute of Agro-Products Processing, Yunnan Academy of Agricultural Sciences, Kunming 650221, China
| | - Yijie Wang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Xiuwei Liu
- Institute of Agro-Products Processing, Yunnan Academy of Agricultural Sciences, Kunming 650221, China
| | - Hao Tian
- Institute of Agro-Products Processing, Yunnan Academy of Agricultural Sciences, Kunming 650221, China
| | - Xinrui Wang
- Institute of Agro-Products Processing, Yunnan Academy of Agricultural Sciences, Kunming 650221, China
| | - Dezhi Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China.
| | - Yaling Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China.
| |
Collapse
|
82
|
Gao G, Wang J, Wang X, Liu G, Fan L, Ru G, Wang S, Song M, Shen W, Zheng X, Han L, Liu L. Reversible Near-Infrared Fluorescent Probe for Rapid Sensing Sulfur Dioxide and Formaldehyde: Recognition and Photoactivation Mechanism and Applications in Bioimaging and Encryption Ink. Anal Chem 2022; 94:13590-13597. [PMID: 36134508 DOI: 10.1021/acs.analchem.2c03335] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
A novel near-infrared (NIR) fluorescent Probe 1 was successfully developed for the reversible detection of sulfur dioxide derivatives and formaldehyde. The purple solution of Probe 1 faded to colorless in 1.8 s with the addition of HSO3-. Meanwhile, its fluorescence signal disappeared instantaneously with a 39 nM detection limit. The probe exhibited excellent selectivity toward HSO3- over other potential interfering agents. Then, its absorption and fluorescence bands were able to effectively recover in response to formaldehyde. Remarkably, this reverse process was able to accelerate 84 times under UV light in 122 s and achieved a recovery rate of 98% by UV light, the photoactivation mechanism was fully determined by HRMS and theoretical calculation. Furthermore, we demonstrated that Probe 1 was successfully applied for the detection of sulfur dioxide derivatives and formaldehyde in living cells and data encryption.
Collapse
Affiliation(s)
- Guangqin Gao
- College of Science, Henan Agricultural University, 63 Agricultural Road, Zhengzhou, Henan 450002, P. R. China
| | - Jinjin Wang
- College of Science, Henan Agricultural University, 63 Agricultural Road, Zhengzhou, Henan 450002, P. R. China
| | - Xingxiao Wang
- College of Science, Henan Agricultural University, 63 Agricultural Road, Zhengzhou, Henan 450002, P. R. China
| | - Guoxing Liu
- College of Science, Henan Agricultural University, 63 Agricultural Road, Zhengzhou, Henan 450002, P. R. China
| | - Liangxin Fan
- College of Science, Henan Agricultural University, 63 Agricultural Road, Zhengzhou, Henan 450002, P. R. China
| | - Guangxin Ru
- College of Science, Henan Agricultural University, 63 Agricultural Road, Zhengzhou, Henan 450002, P. R. China
| | - Shun Wang
- College of Science, Henan Agricultural University, 63 Agricultural Road, Zhengzhou, Henan 450002, P. R. China
| | - Meirong Song
- College of Science, Henan Agricultural University, 63 Agricultural Road, Zhengzhou, Henan 450002, P. R. China
| | - Wenbo Shen
- College of Science, Henan Agricultural University, 63 Agricultural Road, Zhengzhou, Henan 450002, P. R. China
| | - Xin Zheng
- College of Science, Henan Agricultural University, 63 Agricultural Road, Zhengzhou, Henan 450002, P. R. China
| | - Lei Han
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, 700 Changcheng Road, Qingdao, Shandong 266109, P. R. China
| | - Lijie Liu
- College of Science, Henan Agricultural University, 63 Agricultural Road, Zhengzhou, Henan 450002, P. R. China
| |
Collapse
|
83
|
Lyu J, Wang C, Zhang X. Rational Construction of a Mitochondria-Targeted Reversible Fluorescent Probe with Intramolecular FRET for Ratiometric Monitoring Sulfur Dioxide and Formaldehyde. BIOSENSORS 2022; 12:bios12090715. [PMID: 36140101 PMCID: PMC9496144 DOI: 10.3390/bios12090715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 12/16/2022]
Abstract
Sulfur dioxide (SO2) and formaldehyde (FA) are important species that maintain redox homeostasis in life and are closely related to many physiological and pathological processes. Therefore, it is of great significance to realize the reversible monitoring of them at the intracellular level. Here, we synthesized a reversible ratiometric fluorescent probe through a reasonable design, which can sensitively monitor SO2 derivatives and FA, and the detection limit can reach 0.16 μM. The probe can specifically target mitochondria and successfully monitor the fluctuations of SO2 and FA in living cells. It also works well in the detection of SO2 and FA in zebrafish. This high-performance probe is expected to find broad in vitro and in vivo applications.
Collapse
Affiliation(s)
- Jinxiao Lyu
- Cancer Centre and Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau SAR 999078, China
| | - Chunfei Wang
- Cancer Centre and Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau SAR 999078, China
| | - Xuanjun Zhang
- Cancer Centre and Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau SAR 999078, China
- MOE Frontiers Science Center for Precision Oncology, University of Macau, Macau SAR 999078, China
- Correspondence:
| |
Collapse
|
84
|
Ding N, Li Z, Hao Y, Zhang C. Design of a New Hydrazine Moiety-Based Near-Infrared Fluorescence Probe for Detection and Imaging of Endogenous Formaldehyde In Vivo. Anal Chem 2022; 94:12120-12126. [PMID: 36005545 DOI: 10.1021/acs.analchem.2c02166] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Formaldehyde (FA), the smallest molecular aldehyde with strong reducing properties, could regulate body homeostasis endogenously during physiological and pathological processes. The effective near-infrared (NIR) fluorescent probe is needed as a visualizer of FA in biologic organisms. In this work, a novel NIR fluorescent Probe-NHNH2 was designed on the basis of Probe-NH2 via introducing a strong nucleophilic hydrazine group, which can be used as a quenching and recognizing moiety for the detection of FA. With the treatment of FA, the hydrazine group of Probe-NHNH2 undergoes condensation and achieves a turn-on NIR fluorescence signal at a wavelength of 706 nm. The spectroscopic performance of Probe-NHNH2 for FA was evaluated, and it exhibited high sensitivity and selectivity for the detection of FA in solution. Moreover, compared to the amine moiety-based Probe-NH2, which our group reported, we found that hydrazine moiety-based Probe-NHNH2, exhibited a better reaction time of within 10 min and a lower detection limit of 0.68 μM, reflecting that the reaction of FA with hydrazine moiety is faster and more sensitive than that of FA with the amino group. More importantly, Probe-NHNH2 was successfully applied to real-time imaging of endogenous FA by reacting with effective stimulant tetrahydrofolate and scavenger sodium bisulfite in zebrafish and mice. It is expected that we can provide a new rapid, sensitive NIR fluorescence theoretical basis for FA detection and in vivo imaging applications.
Collapse
Affiliation(s)
- Ning Ding
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Zhao Li
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Yitong Hao
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Chengxiao Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| |
Collapse
|
85
|
Gene Expression Analysis Reveals Prognostic Biomarkers of the Tyrosine Metabolism Reprogramming Pathway for Prostate Cancer. JOURNAL OF ONCOLOGY 2022; 2022:5504173. [PMID: 35847355 PMCID: PMC9279037 DOI: 10.1155/2022/5504173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 05/23/2022] [Indexed: 11/30/2022]
Abstract
Background Tyrosine metabolism pathway-related genes were related to prostate cancer progression, which may be used as potential prognostic markers. Aims To dissect the dysregulation of tyrosine metabolism in prostate cancer and build a prognostic signature based on tyrosine metabolism-related genes for prostate cancer. Materials and Method. Cross-platform gene expression data of prostate cancer cohorts were collected from both The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO). Based on the expression of tyrosine metabolism-related enzymes (TMREs), an unsupervised consensus clustering method was used to classify prostate cancer patients into different molecular subtypes. We employed the least absolute shrinkage and selection operator (LASSO) Cox regression analysis to evaluate prognostic characteristics based on TMREs to obtain a prognostic effect. The nomogram model was established and used to synthesize molecular subtypes, prognostic characteristics, and clinicopathological features. Kaplan–Meier plots and logrank analysis were used to clarify survival differences between subtypes. Results Based on the hierarchical clustering method and the expression profiles of TMREs, prostate cancer samples were assigned into two subgroups (S1, subgroup 1; S2, subgroup 2), and the Kaplan–Meier plot and logrank analysis showed distinct survival outcomes between S1 and S2 subgroups. We further established a four-gene-based prognostic signature, and both in-group testing dataset and out-group testing dataset indicated the robustness of this model. By combining the four gene-based signatures and clinicopathological features, the nomogram model achieved better survival outcomes than any single classifier. Interestingly, we found that immune-related pathways were significantly concentrated on S1-upregulated genes, and the abundance of memory B cells, CD4+ resting memory T cells, M0 macrophages, resting dendritic cells, and resting mast cells were significantly different between S1 and S2 subgroups. Conclusions Our results indicate the prognostic value of genes related to tyrosine metabolism in prostate cancer and provide inspiration for treatment and prevention strategies.
Collapse
|
86
|
Pollard JA, Furutani E, Liu S, Esrick E, Cohen LE, Bledsoe J, Liu CW, Lu K, de Haro MJR, Surrallés J, Malsch M, Kuniholm A, Galvin A, Armant M, Kim AS, Ballotti K, Moreau L, Zhou Y, Babushok D, Boulad F, Carroll C, Hartung H, Hont A, Nakano T, Olson T, Sze SG, Thompson AA, Wlodarski MW, Gu X, Libermann TA, D’Andrea A, Grompe M, Weller E, Shimamura A. Metformin for treatment of cytopenias in children and young adults with Fanconi anemia. Blood Adv 2022; 6:3803-3811. [PMID: 35500223 PMCID: PMC9631552 DOI: 10.1182/bloodadvances.2021006490] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 04/15/2022] [Indexed: 11/26/2022] Open
Abstract
Fanconi anemia (FA), a genetic DNA repair disorder characterized by marrow failure and cancer susceptibility. In FA mice, metformin improves blood counts and delays tumor development. We conducted a single institution study of metformin in nondiabetic patients with FA to determine feasibility and tolerability of metformin treatment and to assess for improvement in blood counts. Fourteen of 15 patients with at least 1 cytopenia (hemoglobin < 10 g/dL; platelet count < 100 000 cells/µL; or an absolute neutrophil count < 1000 cells/µL) were eligible to receive metformin for 6 months. Median patient age was 9.4 years (range 6.0-26.5 ). Thirteen of 14 subjects (93%) tolerated maximal dosing for age; 1 subject had dose reduction for grade 2 gastrointestinal symptoms. No subjects developed hypoglycemia or metabolic acidosis. No subjects had dose interruptions caused by toxicity, and no grade 3 or higher adverse events attributed to metformin were observed. Hematologic response based on modified Myelodysplastic Syndrome International Working Group criteria was observed in 4 of 13 evaluable patients (30.8%; 90% confidence interval, 11.3-57.3). Median time to response was 84.5 days (range 71-128 days). Responses were noted in neutrophils (n = 3), platelets (n = 1), and red blood cells (n = 1). No subjects met criteria for disease progression or relapse during treatment. Correlative studies explored potential mechanisms of metformin activity in FA. Plasma proteomics showed reduction in inflammatory pathways with metformin. Metformin is safe and tolerable in nondiabetic patients with FA and may provide therapeutic benefit. This trial was registered at as #NCT03398824.
Collapse
Affiliation(s)
- Jessica A. Pollard
- Pediatric Hematology-Oncology, Boston Children’s Hospital, Boston, MA
- Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA
- Department of Pediatrics, Harvard Medical School, Boston, MA
| | - Elissa Furutani
- Pediatric Hematology-Oncology, Boston Children’s Hospital, Boston, MA
- Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA
- Department of Pediatrics, Harvard Medical School, Boston, MA
| | - Shanshan Liu
- Biostatistics and Research Design Center, Institutional Centers for Clinical and Translational Research, Harvard Medical School, Boston, MA
| | - Erica Esrick
- Pediatric Hematology-Oncology, Boston Children’s Hospital, Boston, MA
- Department of Pediatrics, Harvard Medical School, Boston, MA
| | - Laurie E. Cohen
- Department of Pediatrics, Harvard Medical School, Boston, MA
- Department of Endocrinology, and
| | - Jacob Bledsoe
- Department of Pathology, Boston Children’s Hospital, Boston, MA
| | - Chih-Wei Liu
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Kun Lu
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Maria Jose Ramirez de Haro
- Joint Research Unit UAB-Sant Pau Biomedical Research Institute,Institut de Recerca Hospital de la Santa Creu i Sant Pau-IIB Sant Pau, Universitat Autònoma de Barcelona, Barcelona Spain
- Center for Biomedical Network Research on Rare Diseases, Madrid, Spain
| | - Jordi Surrallés
- Joint Research Unit UAB-Sant Pau Biomedical Research Institute,Institut de Recerca Hospital de la Santa Creu i Sant Pau-IIB Sant Pau, Universitat Autònoma de Barcelona, Barcelona Spain
- Center for Biomedical Network Research on Rare Diseases, Madrid, Spain
| | - Maggie Malsch
- Pediatric Hematology-Oncology, Boston Children’s Hospital, Boston, MA
- Clinical Research Operations Center, Institutional Centers for Clinical and Translational Research, Boston Children’s Hospital, Boston, MA
| | - Ashley Kuniholm
- Clinical Research Operations Center, Institutional Centers for Clinical and Translational Research, Boston Children’s Hospital, Boston, MA
| | - Ashley Galvin
- Clinical Research Operations Center, Institutional Centers for Clinical and Translational Research, Boston Children’s Hospital, Boston, MA
| | - Myriam Armant
- Trans Laboratory, Boston Children’s Hospital, Boston, MA
| | - Annette S. Kim
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Kaitlyn Ballotti
- Pediatric Hematology-Oncology, Boston Children’s Hospital, Boston, MA
| | - Lisa Moreau
- Comprehensive Center for Fanconi Anemia, Dana-Farber Cancer Institute, Boston, MA
| | - Yu Zhou
- Pediatric Hematology-Oncology, Boston Children’s Hospital, Boston, MA
| | - Daria Babushok
- Division of Hematology-Oncology, University of Pennsylvania, Philadelphia, PA
| | - Farid Boulad
- Pediatric Hematology-Oncology, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Clint Carroll
- Pediatric Hematology-Oncology, The Children's Hospital at TriStar Centennial, Nashville, TN
| | - Helge Hartung
- Pediatric Hematology-Oncology, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Amy Hont
- Pediatric Hematology-Oncology, Children’s National Medical Center, Washington, DC
| | - Taizo Nakano
- Pediatric Hematology-Oncology, Children’s Hospital Colorado, Denver, CO
| | - Tim Olson
- Pediatric Hematology-Oncology, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Sei-Gyung Sze
- Department of Pediatrics, Maine Medical Center, Tufts University School of Medicine, Portland, ME
| | - Alexis A. Thompson
- Pediatric Hematology-Oncology, Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL
| | - Marcin W. Wlodarski
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Xuesong Gu
- Beth Israel Deaconess Medical Center Genomics, Proteomics, Bioinformatics and Systems Biology Center, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Towia A. Libermann
- Beth Israel Deaconess Medical Center Genomics, Proteomics, Bioinformatics and Systems Biology Center, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Alan D’Andrea
- Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Markus Grompe
- Oregon Stem Cell Center, Department of Pediatrics, Papé Family Institute, Oregon Health and Science University, Portland, OR; and
| | - Edie Weller
- Department of Pediatrics, Harvard Medical School, Boston, MA
- Biostatistics and Research Design Center, Institutional Centers for Clinical and Translational Research, Harvard Medical School, Boston, MA
| | - Akiko Shimamura
- Pediatric Hematology-Oncology, Boston Children’s Hospital, Boston, MA
- Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA
- Department of Pediatrics, Harvard Medical School, Boston, MA
| |
Collapse
|
87
|
Zheng B, Yu L, Dong H, Zhu J, Yang L, Yuan X. Photo-Responsive Micelles with Controllable and Co-Release of Carbon Monoxide, Formaldehyde and Doxorubicin. Polymers (Basel) 2022; 14:polym14122416. [PMID: 35745992 PMCID: PMC9230906 DOI: 10.3390/polym14122416] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/11/2022] [Accepted: 06/12/2022] [Indexed: 02/04/2023] Open
Abstract
Endogenous gases have attracted much attention due to their potent applications in disease therapies. The combined therapy, including gaseous molecules and other medicines that can create synergistic effects, is a new way for future treatment. However, due to the gaseous state, gas utilization in medical service is still limited. To pave the way for future usage, in this work, an amphiphilic block copolymer containing nitrobenzyl ether, 3-hydroxyflavone (3-HF) derivatives and ether linker was constructed. The nitrobenzyl ether group endows the polymer with a photo-responsive character. Upon light illumination, 3-HF derivatives can be triggered for carbon monoxide (CO) release. The ether linker can also be released emitting formaldehyde (FA). The self-assembly induced micelle can encompass medicine, e.g., doxorubicin (DOX), into it and a controlled release of DOX can be realized upon light illumination. As far as we know, there is no report on the combination donor of CO and DOX and this is the first attempt on the co-release of CO, FA and DOX.
Collapse
Affiliation(s)
- Bin Zheng
- School of Chemistry and Chemical Engineering, Hefei Normal University, Hefei 230061, China; (H.D.); (J.Z.); (L.Y.); (X.Y.)
- Correspondence: ; Tel.: +86-551-6375-8370
| | - Lulu Yu
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China;
| | - Huaze Dong
- School of Chemistry and Chemical Engineering, Hefei Normal University, Hefei 230061, China; (H.D.); (J.Z.); (L.Y.); (X.Y.)
| | - Jinmiao Zhu
- School of Chemistry and Chemical Engineering, Hefei Normal University, Hefei 230061, China; (H.D.); (J.Z.); (L.Y.); (X.Y.)
| | - Liang Yang
- School of Chemistry and Chemical Engineering, Hefei Normal University, Hefei 230061, China; (H.D.); (J.Z.); (L.Y.); (X.Y.)
| | - Xinsong Yuan
- School of Chemistry and Chemical Engineering, Hefei Normal University, Hefei 230061, China; (H.D.); (J.Z.); (L.Y.); (X.Y.)
| |
Collapse
|
88
|
Lipskerov FA, Sheshukova EV, Komarova TV. Approaches to Formaldehyde Measurement: From Liquid Biological Samples to Cells and Organisms. Int J Mol Sci 2022; 23:6642. [PMID: 35743083 PMCID: PMC9224381 DOI: 10.3390/ijms23126642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/09/2022] [Accepted: 06/12/2022] [Indexed: 12/14/2022] Open
Abstract
Formaldehyde (FA) is the simplest aldehyde present both in the environment and in living organisms. FA is an extremely reactive compound capable of protein crosslinking and DNA damage. For a long time, FA was considered a "biochemical waste" and a by-product of normal cellular metabolism, but in recent decades the picture has changed. As a result, the need arose for novel instruments and approaches to monitor and measure not only environmental FA in water, cosmetics, and household products, but also in food, beverages and biological samples including cells and even organisms. Despite numerous protocols being developed for in vitro and in cellulo FA assessment, many of them have remained at the "proof-of-concept" stage. We analyze the suitability of different methods developed for non-biological objects, and present an overview of the recently developed approaches, including chemically-synthesized probes and genetically encoded FA-sensors for in cellulo and in vivo FA monitoring. We also discuss the prospects of classical methods such as chromatography and spectrophotometry, and how they have been adapted in response to the demand for precise, selective and highly sensitive evaluation of FA concentration fluctuations in biological samples. The main objectives of this review is to summarize data on the main approaches for FA content measurement in liquid biological samples, pointing out the advantages and disadvantages of each method; to report the progress in development of novel molecules suitable for application in living systems; and, finally, to discuss genetically encoded FA-sensors based on existing natural biological FA-responsive elements.
Collapse
Affiliation(s)
- Fedor A. Lipskerov
- Vavilov Institute of General Genetics Russian Academy of Sciences, 119991 Moscow, Russia; (F.A.L.); (E.V.S.)
- Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Ekaterina V. Sheshukova
- Vavilov Institute of General Genetics Russian Academy of Sciences, 119991 Moscow, Russia; (F.A.L.); (E.V.S.)
| | - Tatiana V. Komarova
- Vavilov Institute of General Genetics Russian Academy of Sciences, 119991 Moscow, Russia; (F.A.L.); (E.V.S.)
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
89
|
Casado JA, Valeri A, Sanchez-Domínguez R, Vela P, Lopez A, Navarro S, Alberquilla O, Hanenberg H, Pujol R, Segovia JC, Minguillón J, Surrallés J, Diaz-de-Heredia C, Sevilla J, Rio P, Bueren JA. Upregulation of NKG2D ligands impairs hematopoietic stem cell function in Fanconi anemia. J Clin Invest 2022; 132:142842. [PMID: 35671096 PMCID: PMC9337828 DOI: 10.1172/jci142842] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 05/25/2022] [Indexed: 11/21/2022] Open
Abstract
Fanconi anemia (FA) is the most prevalent inherited bone marrow failure (BMF) syndrome. Nevertheless, the pathophysiological mechanisms of BMF in FA have not been fully elucidated. Since FA cells are defective in DNA repair, we hypothesized that FA hematopoietic stem and progenitor cells (HSPCs) might express DNA damage–associated stress molecules such as natural killer group 2 member D ligands (NKG2D-Ls). These ligands could then interact with the activating NKG2D receptor expressed in cytotoxic NK or CD8+ T cells, which may result in progressive HSPC depletion. Our results indeed demonstrated upregulated levels of NKG2D-Ls in cultured FA fibroblasts and T cells, and these levels were further exacerbated by mitomycin C or formaldehyde. Notably, a high proportion of BM CD34+ HSPCs from patients with FA also expressed increased levels of NKG2D-Ls, which correlated inversely with the percentage of CD34+ cells in BM. Remarkably, the reduced clonogenic potential characteristic of FA HSPCs was improved by blocking NKG2D–NKG2D-L interactions. Moreover, the in vivo blockage of these interactions in a BMF FA mouse model ameliorated the anemia in these animals. Our study demonstrates the involvement of NKG2D–NKG2D-L interactions in FA HSPC functionality, suggesting an unexpected role of the immune system in the progressive BMF that is characteristic of FA.
Collapse
Affiliation(s)
- Jose A Casado
- Division of Innovative Therapies, CIEMAT and Advanced Therapies Unit, IIS-Fundación Jimenez Diaz and Autónoma University, Madrid, Spain
| | - Antonio Valeri
- Division of Innovative Therapies, CIEMAT and Advanced Therapies Unit, IIS-Fundación Jimenez Diaz and Autónoma University, Madrid, Spain
| | - Rebeca Sanchez-Domínguez
- Division of Innovative Therapies, CIEMAT and Advanced Therapies Unit, IIS-Fundación Jimenez Diaz and Autónoma University, Madrid, Spain
| | - Paula Vela
- Division of Innovative Therapies, CIEMAT and Advanced Therapies Unit, IIS-Fundación Jimenez Diaz and Autónoma University, Madrid, Spain
| | - Andrea Lopez
- Division of Innovative Therapies, CIEMAT and Advanced Therapies Unit, IIS-Fundación Jimenez Diaz and Autónoma University, Madrid, Spain
| | - Susana Navarro
- Division of Innovative Therapies, CIEMAT and Advanced Therapies Unit, IIS-Fundación Jimenez Diaz and Autónoma University, Madrid, Spain
| | - Omaira Alberquilla
- Division of Innovative Therapies, CIEMAT and Advanced Therapies Unit, IIS-Fundación Jimenez Diaz and Autónoma University, Madrid, Spain
| | - Helmut Hanenberg
- Department of Pediatrics, University Hospital, University Duisburg-Essen, Essen, Germany
| | - Roser Pujol
- Department of Genetics and Microbiology, Universitat Autónoma de Barcelona, Barcelona, Spain
| | - Jose C Segovia
- Division of Innovative Therapies, CIEMAT and Advanced Therapies Unit, IIS-Fundación Jimenez Diaz and Autónoma University, Madrid, Spain
| | - Jordi Minguillón
- Department of Genetics and Microbiology, Universitat Autónoma de Barcelona, Barcelona, Spain
| | - Jordi Surrallés
- Department of Genetics and Microbiology, Universitat Autónoma de Barcelona, Barcelona, Spain
| | | | - Julián Sevilla
- Hospital Universitari Vall d'Hebron, Vall d'Hebron Institut de Recerca, Barcelona, Spain
| | - Paula Rio
- Division of Innovative Therapies, CIEMAT and Advanced Therapies Unit, IIS-Fundación Jimenez Diaz and Autónoma University, Madrid, Spain
| | - Juan A Bueren
- Division of Innovative Therapies, CIEMAT and Advanced Therapies Unit, IIS-Fundación Jimenez Diaz and Autónoma University, Madrid, Spain
| |
Collapse
|
90
|
FANCD2 maintains replication fork stability during misincorporation of the DNA demethylation products 5-hydroxymethyl-2'-deoxycytidine and 5-hydroxymethyl-2'-deoxyuridine. Cell Death Dis 2022; 13:503. [PMID: 35624090 PMCID: PMC9142498 DOI: 10.1038/s41419-022-04952-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 12/14/2022]
Abstract
Fanconi anemia (FA) is a rare hereditary disorder caused by mutations in any one of the FANC genes. FA cells are mainly characterized by extreme hypersensitivity to interstrand crosslink (ICL) agents. Additionally, the FA proteins play a crucial role in concert with homologous recombination (HR) factors to protect stalled replication forks. Here, we report that the 5-methyl-2'-deoxycytidine (5mdC) demethylation (pathway) intermediate 5-hydroxymethyl-2'-deoxycytidine (5hmdC) and its deamination product 5-hydroxymethyl-2'-deoxyuridine (5hmdU) elicit a DNA damage response, chromosome aberrations, replication fork impairment and cell viability loss in the absence of FANCD2. Interestingly, replication fork instability by 5hmdC or 5hmdU was associated to the presence of Poly(ADP-ribose) polymerase 1 (PARP1) on chromatin, being both phenotypes exacerbated by olaparib treatment. Remarkably, Parp1-/- cells did not show any replication fork defects or sensitivity to 5hmdC or 5hmdU, suggesting that retained PARP1 at base excision repair (BER) intermediates accounts for the observed replication fork defects upon 5hmdC or 5hmdU incorporation in the absence of FANCD2. We therefore conclude that 5hmdC is deaminated in vivo to 5hmdU, whose fixation by PARP1 during BER, hinders replication fork progression and contributes to genomic instability in FA cells.
Collapse
|
91
|
Peake JD, Noguchi E. Fanconi anemia: current insights regarding epidemiology, cancer, and DNA repair. Hum Genet 2022; 141:1811-1836. [PMID: 35596788 DOI: 10.1007/s00439-022-02462-9] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 05/09/2022] [Indexed: 12/12/2022]
Abstract
Fanconi anemia is a genetic disorder that is characterized by bone marrow failure, as well as a predisposition to malignancies including leukemia and squamous cell carcinoma (SCC). At least 22 genes are associated with Fanconi anemia, constituting the Fanconi anemia DNA repair pathway. This pathway coordinates multiple processes and proteins to facilitate the repair of DNA adducts including interstrand crosslinks (ICLs) that are generated by environmental carcinogens, chemotherapeutic crosslinkers, and metabolic products of alcohol. ICLs can interfere with DNA transactions, including replication and transcription. If not properly removed and repaired, ICLs cause DNA breaks and lead to genomic instability, a hallmark of cancer. In this review, we will discuss the genetic and phenotypic characteristics of Fanconi anemia, the epidemiology of the disease, and associated cancer risk. The sources of ICLs and the role of ICL-inducing chemotherapeutic agents will also be discussed. Finally, we will review the detailed mechanisms of ICL repair via the Fanconi anemia DNA repair pathway, highlighting critical regulatory processes. Together, the information in this review will underscore important contributions to Fanconi anemia research in the past two decades.
Collapse
Affiliation(s)
- Jasmine D Peake
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA, 19102, USA
| | - Eishi Noguchi
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA, 19102, USA.
| |
Collapse
|
92
|
Brunsdon H, Brombin A, Peterson S, Postlethwait JH, Patton EE. Aldh2 is a lineage-specific metabolic gatekeeper in melanocyte stem cells. Development 2022; 149:275182. [PMID: 35485397 PMCID: PMC9188749 DOI: 10.1242/dev.200277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 04/20/2022] [Indexed: 12/31/2022]
Abstract
Melanocyte stem cells (McSCs) in zebrafish serve as an on-demand source of melanocytes during growth and regeneration, but metabolic programs associated with their activation and regenerative processes are not well known. Here, using live imaging coupled with scRNA-sequencing, we discovered that, during regeneration, quiescent McSCs activate a dormant embryonic neural crest transcriptional program followed by an aldehyde dehydrogenase (Aldh) 2 metabolic switch to generate progeny. Unexpectedly, although ALDH2 is well known for its aldehyde-clearing mechanisms, we find that, in regenerating McSCs, Aldh2 activity is required to generate formate – the one-carbon (1C) building block for nucleotide biosynthesis – through formaldehyde metabolism. Consequently, we find that disrupting the 1C cycle with low doses of methotrexate causes melanocyte regeneration defects. In the absence of Aldh2, we find that purines are the metabolic end product sufficient for activated McSCs to generate progeny. Together, our work reveals McSCs undergo a two-step cell state transition during regeneration, and that the reaction products of Aldh2 enzymes have tissue-specific stem cell functions that meet metabolic demands in regeneration. Summary: In zebrafish melanocyte regeneration, quiescent McSCs respond by re-expressing a neural crest identity, followed by an Aldh2-dependent metabolic switch to generate progeny.
Collapse
Affiliation(s)
- Hannah Brunsdon
- MRC Human Genetics Unit, Institute of Genetics and Cancer, The University of Edinburgh, Western General Hospital Campus, Crewe Road, Edinburgh EH4 2XU, UK.,Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, The University of Edinburgh, Western General Hospital Campus, Crewe Road, Edinburgh EH4 2XU, UK
| | - Alessandro Brombin
- MRC Human Genetics Unit, Institute of Genetics and Cancer, The University of Edinburgh, Western General Hospital Campus, Crewe Road, Edinburgh EH4 2XU, UK.,Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, The University of Edinburgh, Western General Hospital Campus, Crewe Road, Edinburgh EH4 2XU, UK
| | - Samuel Peterson
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA
| | | | - E Elizabeth Patton
- MRC Human Genetics Unit, Institute of Genetics and Cancer, The University of Edinburgh, Western General Hospital Campus, Crewe Road, Edinburgh EH4 2XU, UK.,Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, The University of Edinburgh, Western General Hospital Campus, Crewe Road, Edinburgh EH4 2XU, UK
| |
Collapse
|
93
|
Chihanga T, Vicente-Muñoz S, Ruiz-Torres S, Pal B, Sertorio M, Andreassen PR, Khoury R, Mehta P, Davies SM, Lane AN, Romick-Rosendale LE, Wells SI. Head and Neck Cancer Susceptibility and Metabolism in Fanconi Anemia. Cancers (Basel) 2022; 14:cancers14082040. [PMID: 35454946 PMCID: PMC9025423 DOI: 10.3390/cancers14082040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/05/2022] [Accepted: 04/11/2022] [Indexed: 02/06/2023] Open
Abstract
Fanconi anemia (FA) is a rare inherited, generally autosomal recessive syndrome, but it displays X-linked or dominant negative inheritance for certain genes. FA is characterized by a deficiency in DNA damage repair that results in bone marrow failure, and in an increased risk for various epithelial tumors, most commonly squamous cell carcinomas of the head and neck (HNSCC) and of the esophagus, anogenital tract and skin. Individuals with FA exhibit increased human papilloma virus (HPV) prevalence. Furthermore, a subset of anogenital squamous cell carcinomas (SCCs) in FA harbor HPV sequences and FA-deficient laboratory models reveal molecular crosstalk between HPV and FA proteins. However, a definitive role for HPV in HNSCC development in the FA patient population is unproven. Cellular metabolism plays an integral role in tissue homeostasis, and metabolic deregulation is a known hallmark of cancer progression that supports uncontrolled proliferation, tumor development and metastatic dissemination. The metabolic consequences of FA deficiency in keratinocytes and associated impact on the development of SCC in the FA population is poorly understood. Herein, we review the current literature on the metabolic consequences of FA deficiency and potential effects of resulting metabolic reprogramming on FA cancer phenotypes.
Collapse
Affiliation(s)
- Tafadzwa Chihanga
- Division of Oncology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (T.C.); (S.R.-T.); (B.P.)
| | - Sara Vicente-Muñoz
- Department of Pathology and Laboratory Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (S.V.-M.); (L.E.R.-R.)
| | - Sonya Ruiz-Torres
- Division of Oncology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (T.C.); (S.R.-T.); (B.P.)
| | - Bidisha Pal
- Division of Oncology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (T.C.); (S.R.-T.); (B.P.)
| | - Mathieu Sertorio
- Department of Radiation Oncology, College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA;
| | - Paul R. Andreassen
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA;
| | - Ruby Khoury
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (R.K.); (P.M.); (S.M.D.)
| | - Parinda Mehta
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (R.K.); (P.M.); (S.M.D.)
| | - Stella M. Davies
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (R.K.); (P.M.); (S.M.D.)
| | - Andrew N. Lane
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA;
| | - Lindsey E. Romick-Rosendale
- Department of Pathology and Laboratory Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (S.V.-M.); (L.E.R.-R.)
| | - Susanne I. Wells
- Division of Oncology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (T.C.); (S.R.-T.); (B.P.)
- Correspondence: ; Tel.: +1-513-636-5986
| |
Collapse
|
94
|
Wang M, Dingler FA, Patel KJ. Genotoxic aldehydes in the hematopoietic system. Blood 2022; 139:2119-2129. [PMID: 35148375 DOI: 10.1182/blood.2019004316] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 01/24/2022] [Indexed: 11/20/2022] Open
Abstract
Reactive aldehydes are potent genotoxins that threaten the integrity of hematopoietic stem cells and blood production. To protect against aldehydes, mammals have evolved a family of enzymes to detoxify aldehydes, and the Fanconi anemia DNA repair pathway to process aldehyde-induced DNA damage. Loss of either protection mechanisms in humans results in defective hematopoiesis and predisposition to leukemia. This review will focus on the impact of genotoxic aldehydes on hematopoiesis, the sources of endogenous aldehydes, and potential novel protective pathways.
Collapse
Affiliation(s)
- Meng Wang
- Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom
- Department of Haematology and
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, United Kingdom; and
| | - Felix A Dingler
- Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - K J Patel
- Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| |
Collapse
|
95
|
Meyers LM, Krawic C, Luczak MW, Zhitkovich A. Vulnerability of HIF1α and HIF2α to damage by proteotoxic stressors. Toxicol Appl Pharmacol 2022; 445:116041. [DOI: 10.1016/j.taap.2022.116041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/21/2022] [Accepted: 04/26/2022] [Indexed: 02/07/2023]
|
96
|
Zhao J, Zhang B, Mao Q, Ping K, Zhang P, Lin F, Liu D, Feng Y, Sun M, Zhang Y, Li QH, Zhang T, Mou Y, Wang S. Discovery of a Colon-Targeted Azo Prodrug of Tofacitinib through the Establishment of Colon-Specific Delivery Systems Constructed by 5-ASA-PABA-MAC and 5-ASA-PABA-Diamine for the Treatment of Ulcerative Colitis. J Med Chem 2022; 65:4926-4948. [PMID: 35275619 DOI: 10.1021/acs.jmedchem.1c02166] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
To mitigate the systemic adverse effects of tofacitinib, 5-ASA-PABA-MAC and 5-ASA-PABA-diamine colon-specific delivery systems were constructed, and tofacitinib azo prodrugs 9 and 20a-20g were synthesized accordingly. The release studies suggested that these systems could effectively release tofacitinib in vitro, and the 5-ASA-PABA-diamine system could successfully realize the colon targeting of tofacitinib in vivo. Specifically, compound 20g displayed a 3.67-fold decrease of plasma AUC(tofacitinib, 0-∞) and a 9.61-fold increase of colonic AUC(tofacitinib, 0-12h), compared with tofacitinib at a molar equivalent oral dose. Moreover, mouse models suggested that compound 20g (1.5 mg/kg) could achieve roughly the same efficacy against ulcerative colitis compared with tofacitinib (10 mg/kg) and did not impair natural killer cells. These results demonstrated the feasibility of compound 20g as an effective alternative to mitigate the systemic adverse effects of tofacitinib, and 5-ASA-PABA-MAC and 5-ASA-PABA-diamine systems were proven to be effective for colon-specific drug delivery.
Collapse
Affiliation(s)
- Jiaxing Zhao
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Culture Road, Shenhe District, Shenyang 110016, China
| | - Bing Zhang
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Culture Road, Shenhe District, Shenyang 110016, China
| | - Qing Mao
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Culture Road, Shenhe District, Shenyang 110016, China
| | - Kunqi Ping
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Culture Road, Shenhe District, Shenyang 110016, China
| | - Peng Zhang
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Culture Road, Shenhe District, Shenyang 110016, China
| | - Fengwei Lin
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Culture Road, Shenhe District, Shenyang 110016, China
| | - Dan Liu
- Shenyang Hinewy Pharmaceutical Technology Co., Ltd., 41 Liutang Road, Shenhe District, Shenyang 110016, China
| | - Yao Feng
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Culture Road, Shenhe District, Shenyang 110016, China
| | - Ming Sun
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Culture Road, Shenhe District, Shenyang 110016, China
| | - Yan Zhang
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Culture Road, Shenhe District, Shenyang 110016, China
| | - Qiu Hua Li
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Culture Road, Shenhe District, Shenyang 110016, China
| | - Tingjian Zhang
- School of Pharmacy, China Medical University, 77 Puhe Road, North New Area, Shenyang 110122, China
| | - Yanhua Mou
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Culture Road, Shenhe District, Shenyang 110016, China
| | - Shaojie Wang
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Culture Road, Shenhe District, Shenyang 110016, China
| |
Collapse
|
97
|
Weng X, Chen J, Fei Q, Guo X, Liu S, Wen L, Liang H, Guo C, Nie L, Jing C. The association of aldehydes exposure with diabetes mellitus in US population: NHANES 2013-2014. CHEMOSPHERE 2022; 291:133019. [PMID: 34813847 DOI: 10.1016/j.chemosphere.2021.133019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 10/11/2021] [Accepted: 11/19/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND The association of mixed aldehydes exposure with diabetes remains unclear. OBJECTIVE We aimed to explore associations between serum aldehydes concentration and diabetes. METHODS We analyzed associations between aldehydes and diabetes using data from 1795 participants in the National Health and Nutrition Examination Survey (NHANES) from 2013 to 2014 by multiple logistic regression models. Bayesian kernel machine regression (BKMR) was used to evaluate the combined association of serum aldehydes on prediabetes and diabetes. RESULTS Isopentanaldehyde increased the risk of diabetes 2.09 fold (95%CI:1.05-4.16) in the highest tertile, compared to the lowest-tertile concentration after adjusting for covariates, with a p-value for trend (P-t) equal to 0.041, in females. The adjusted OR of prediabetes with a 95% CI for the highest tertile was 0.52(0.28, 0.97) for benzaldehyde in females (P-t = 0.034). We also found associations in the male group between butyraldehyde and diabetes for the second (OR:2.80, 95%CI:1.35-5.79) and third (OR:2.59, 95%CI:1.30-5.17) tertile levels (P-t = 0.010). The risk of diabetes increased 2.55 fold (95%CI: 1.26-5.16, P-t = 0.008), in subjects in the highest tertile of hexanaldehyde concentration. Other aldehydes did not show a statistically significant association with diabetes or prediabetes. The BKMR model showed a positive association of mixed aldehydes with diabetes in males, and butyraldehyde showed a significant positive trend with the highest posterior inclusion probability (PIP = 0.85). Mixed aldehydes increased female's risk from prediabetes to diabetes in which isopentanaldehyde had the highest posterior inclusion probability (PIP = 0.67). CONCLUSIONS The mixed aldehydes might increase the risk of suffering from diabetes in males and accelerate the progression of diabetes in females, in which butyraldehyde and isopentanaldehyde play the most important roles.
Collapse
Affiliation(s)
- Xueqiong Weng
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou, 510632, Guangdong, China
| | - Jingmin Chen
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou, 510632, Guangdong, China
| | - Qiaoyuan Fei
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou, 510632, Guangdong, China
| | - Xinrong Guo
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou, 510632, Guangdong, China
| | - Shan Liu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou, 510632, Guangdong, China
| | - Lin Wen
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou, 510632, Guangdong, China
| | - Huanzhu Liang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou, 510632, Guangdong, China
| | - Congcong Guo
- Jiaojiang Center for Disease Control and Prevention, Taizhou, Zhejiang Province, China
| | - Lihong Nie
- Department of Endocrine, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Chunxia Jing
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou, 510632, Guangdong, China; Guangdong Key Laboratory of Environmental Exposure and Health, Jinan University, Guangzhou, 510632, Guangdong, China.
| |
Collapse
|
98
|
Abstract
Metabolism has been studied mainly in cultured cells or at the level of whole tissues or whole organisms in vivo. Consequently, our understanding of metabolic heterogeneity among cells within tissues is limited, particularly when it comes to rare cells with biologically distinct properties, such as stem cells. Stem cell function, tissue regeneration and cancer suppression are all metabolically regulated, although it is not yet clear whether there are metabolic mechanisms unique to stem cells that regulate their activity and function. Recent work has, however, provided evidence that stem cells do have a metabolic signature that is distinct from that of restricted progenitors and that metabolic changes influence tissue homeostasis and regeneration. Stem cell maintenance throughout life in many tissues depends upon minimizing anabolic pathway activation and cell division. Consequently, stem cell activation by tissue injury is associated with changes in mitochondrial function, lysosome activity and lipid metabolism, potentially at the cost of eroding self-renewal potential. Stem cell metabolism is also regulated by the environment: stem cells metabolically interact with other cells in their niches and are able to sense and adapt to dietary changes. The accelerating understanding of stem cell metabolism is revealing new aspects of tissue homeostasis with the potential to promote tissue regeneration and cancer suppression.
Collapse
|
99
|
Bahmad HF, Demus T, Moubarak MM, Daher D, Alvarez Moreno JC, Polit F, Lopez O, Merhe A, Abou-Kheir W, Nieder AM, Poppiti R, Omarzai Y. Overcoming Drug Resistance in Advanced Prostate Cancer by Drug Repurposing. Med Sci (Basel) 2022; 10:15. [PMID: 35225948 PMCID: PMC8883996 DOI: 10.3390/medsci10010015] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/12/2022] [Accepted: 02/16/2022] [Indexed: 12/12/2022] Open
Abstract
Prostate cancer (PCa) is the second most common cancer in men. Common treatments include active surveillance, surgery, or radiation. Androgen deprivation therapy and chemotherapy are usually reserved for advanced disease or biochemical recurrence, such as castration-resistant prostate cancer (CRPC), but they are not considered curative because PCa cells eventually develop drug resistance. The latter is achieved through various cellular mechanisms that ultimately circumvent the pharmaceutical's mode of action. The need for novel therapeutic approaches is necessary under these circumstances. An alternative way to treat PCa is by repurposing of existing drugs that were initially intended for other conditions. By extrapolating the effects of previously approved drugs to the intracellular processes of PCa, treatment options will expand. In addition, drug repurposing is cost-effective and efficient because it utilizes drugs that have already demonstrated safety and efficacy. This review catalogues the drugs that can be repurposed for PCa in preclinical studies as well as clinical trials.
Collapse
Affiliation(s)
- Hisham F. Bahmad
- Arkadi M. Rywlin M.D. Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach, FL 33140, USA; (J.C.A.M.); (F.P.); (R.P.); (Y.O.)
| | - Timothy Demus
- Division of Urology, Columbia University, Mount Sinai Medical Center, Miami Beach, FL 33140, USA; (T.D.); (A.M.N.)
| | - Maya M. Moubarak
- Department of Anatomy, Cell Biology, and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon; (M.M.M.); (W.A.-K.)
- CNRS, IBGC, UMR5095, Universite de Bordeaux, F-33000 Bordeaux, France
| | - Darine Daher
- Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon;
| | - Juan Carlos Alvarez Moreno
- Arkadi M. Rywlin M.D. Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach, FL 33140, USA; (J.C.A.M.); (F.P.); (R.P.); (Y.O.)
| | - Francesca Polit
- Arkadi M. Rywlin M.D. Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach, FL 33140, USA; (J.C.A.M.); (F.P.); (R.P.); (Y.O.)
| | - Olga Lopez
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA;
| | - Ali Merhe
- Department of Urology, Jackson Memorial Hospital, University of Miami, Leonard M. Miller School of Medicine, Miami, FL 33136, USA;
| | - Wassim Abou-Kheir
- Department of Anatomy, Cell Biology, and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon; (M.M.M.); (W.A.-K.)
| | - Alan M. Nieder
- Division of Urology, Columbia University, Mount Sinai Medical Center, Miami Beach, FL 33140, USA; (T.D.); (A.M.N.)
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA;
| | - Robert Poppiti
- Arkadi M. Rywlin M.D. Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach, FL 33140, USA; (J.C.A.M.); (F.P.); (R.P.); (Y.O.)
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA;
| | - Yumna Omarzai
- Arkadi M. Rywlin M.D. Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach, FL 33140, USA; (J.C.A.M.); (F.P.); (R.P.); (Y.O.)
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA;
| |
Collapse
|
100
|
Umansky C, Morellato AE, Rieckher M, Scheidegger MA, Martinefski MR, Fernández GA, Pak O, Kolesnikova K, Reingruber H, Bollini M, Crossan GP, Sommer N, Monge ME, Schumacher B, Pontel LB. Endogenous formaldehyde scavenges cellular glutathione resulting in redox disruption and cytotoxicity. Nat Commun 2022; 13:745. [PMID: 35136057 PMCID: PMC8827065 DOI: 10.1038/s41467-022-28242-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 01/14/2022] [Indexed: 12/25/2022] Open
Abstract
Formaldehyde (FA) is a ubiquitous endogenous and environmental metabolite that is thought to exert cytotoxicity through DNA and DNA-protein crosslinking, likely contributing to the onset of the human DNA repair condition Fanconi Anaemia. Mutations in the genes coding for FA detoxifying enzymes underlie a human inherited bone marrow failure syndrome (IBMFS), even in the presence of functional DNA repair, raising the question of whether FA causes relevant cellular damage beyond genotoxicity. Here, we report that FA triggers cellular redox imbalance in human cells and in Caenorhabditis elegans. Mechanistically, FA reacts with the redox-active thiol group of glutathione (GSH), altering the GSH:GSSG ratio and causing oxidative stress. FA cytotoxicity is prevented by the enzyme alcohol dehydrogenase 5 (ADH5/GSNOR), which metabolizes FA-GSH products, lastly yielding reduced GSH. Furthermore, we show that GSH synthesis protects human cells from FA, indicating an active role of GSH in preventing FA toxicity. These findings might be relevant for patients carrying mutations in FA-detoxification systems and could suggest therapeutic benefits from thiol-rich antioxidants like N-acetyl-L-cysteine.
Collapse
Affiliation(s)
- Carla Umansky
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA), CONICET - Partner Institute of the Max Planck Society, C1425FQD, Buenos Aires, Argentina
| | - Agustín E Morellato
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA), CONICET - Partner Institute of the Max Planck Society, C1425FQD, Buenos Aires, Argentina
| | - Matthias Rieckher
- Institute for Genome Stability in Ageing and Disease, Medical Faculty, University of Cologne, and Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), and Center for Molecular Medicine Cologne (CMMC), 50931, Cologne, Germany
| | - Marco A Scheidegger
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA), CONICET - Partner Institute of the Max Planck Society, C1425FQD, Buenos Aires, Argentina
| | - Manuela R Martinefski
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1425FQD, Buenos Aires, Argentina
| | - Gabriela A Fernández
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1425FQD, Buenos Aires, Argentina
| | - Oleg Pak
- Justus-Liebig University, Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Ksenia Kolesnikova
- Institute for Genome Stability in Ageing and Disease, Medical Faculty, University of Cologne, and Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), and Center for Molecular Medicine Cologne (CMMC), 50931, Cologne, Germany
| | - Hernán Reingruber
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA), CONICET - Partner Institute of the Max Planck Society, C1425FQD, Buenos Aires, Argentina
| | - Mariela Bollini
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1425FQD, Buenos Aires, Argentina
| | - Gerry P Crossan
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Natascha Sommer
- Justus-Liebig University, Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - María Eugenia Monge
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1425FQD, Buenos Aires, Argentina
| | - Björn Schumacher
- Institute for Genome Stability in Ageing and Disease, Medical Faculty, University of Cologne, and Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), and Center for Molecular Medicine Cologne (CMMC), 50931, Cologne, Germany
| | - Lucas B Pontel
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA), CONICET - Partner Institute of the Max Planck Society, C1425FQD, Buenos Aires, Argentina.
| |
Collapse
|