51
|
Medar MLJ, Marinkovic DZ, Kojic Z, Becin AP, Starovlah IM, Kravic-Stevovic T, Andric SA, Kostic TS. Dependence of Leydig Cell's Mitochondrial Physiology on Luteinizing Hormone Signaling. Life (Basel) 2020; 11:life11010019. [PMID: 33396202 PMCID: PMC7824612 DOI: 10.3390/life11010019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/23/2020] [Accepted: 12/29/2020] [Indexed: 12/13/2022] Open
Abstract
Knowledge about the relationship between steroidogenesis and the regulation of the mitochondrial bioenergetics and dynamics, in steroidogenic cells, is not completely elucidated. Here we employed in vivo and ex vivo experimental models to analyze mitochondrial physiology in Leydig cells depending on the different LH-cAMP environments. Activation of LH-receptor in rat Leydig cells ex and in vivo triggered cAMP, increased oxygen consumption, mitoenergetic and steroidogenic activities. Increased mitoenergetic activity i.e., ATP production is achieved through augmented glycolytic ATP production and a small part of oxidative phosphorylation (OXPHOS). Transcription of major genes responsible for mitochondrial dynamics was upregulated for Ppargc1a (regulator of mitogenesis and function) and downregulated for Drp1 (main fission marker), Prkn, Pink1 and Tfeb (mitophagy markers). Leydig cells from gonadotropin-treated rats show increased mitogenesis confirmed by increased mitochondrial mass, increased mtDNA, more frequent mitochondria observed by a transmission electron microscope and increased expression of subunits of respiratory proteins Cytc/CYTC and COX4. Opposite, Leydig cells from hypogonadotropic-hypogonadal rats characterized by low LH-cAMP, testosterone, and ATP production, reduced markers of mitogenesis and mitofusion (Mfn1/2, Opa1) associated with reduced mtDNA content. Altogether results underline LH-cAMP signaling as an important regulator of mitochondrial physiology arranging mitochondrial dynamics, bioenergetic and steroidogenic function in Leydig cells.
Collapse
Affiliation(s)
- Marija L. J. Medar
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, 21102 Novi Sad, Serbia; (M.L.J.M.); (D.Z.M.); (A.P.B.); (I.M.S.); (S.A.A.)
| | - Dijana Z. Marinkovic
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, 21102 Novi Sad, Serbia; (M.L.J.M.); (D.Z.M.); (A.P.B.); (I.M.S.); (S.A.A.)
| | - Zvezdana Kojic
- Institute of Physiology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Alisa P. Becin
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, 21102 Novi Sad, Serbia; (M.L.J.M.); (D.Z.M.); (A.P.B.); (I.M.S.); (S.A.A.)
| | - Isidora M. Starovlah
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, 21102 Novi Sad, Serbia; (M.L.J.M.); (D.Z.M.); (A.P.B.); (I.M.S.); (S.A.A.)
| | - Tamara Kravic-Stevovic
- Institute of Histology and Embriology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Silvana A. Andric
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, 21102 Novi Sad, Serbia; (M.L.J.M.); (D.Z.M.); (A.P.B.); (I.M.S.); (S.A.A.)
| | - Tatjana S. Kostic
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, 21102 Novi Sad, Serbia; (M.L.J.M.); (D.Z.M.); (A.P.B.); (I.M.S.); (S.A.A.)
- Correspondence: ; Tel.: +381-63-514-716
| |
Collapse
|
52
|
Wang LJ, Hsu T, Lin HL, Fu CY. Drosophila MICOS knockdown impairs mitochondrial structure and function and promotes mitophagy in muscle tissue. Biol Open 2020; 9:bio054262. [PMID: 33268479 PMCID: PMC7725604 DOI: 10.1242/bio.054262] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 11/10/2020] [Indexed: 12/24/2022] Open
Abstract
The mitochondrial contact site and cristae organizing system (MICOS) is a multi-protein interaction hub that helps define mitochondrial ultrastructure. While the functional importance of MICOS is mostly characterized in yeast and mammalian cells in culture, the contributions of MICOS to tissue homeostasis in vivo remain further elucidation. In this study, we examined how knocking down expression of Drosophila MICOS genes affects mitochondrial function and muscle tissue homeostasis. We found that CG5903/MIC26-MIC27 colocalizes and functions with Mitofilin/MIC60 and QIL1/MIC13 as a Drosophila MICOS component; knocking down expression of any of these three genes predictably altered mitochondrial morphology, causing loss of cristae junctions, and disruption of cristae packing. Furthermore, the knockdown flies exhibited low mitochondrial membrane potential, fusion/fission imbalances, increased mitophagy, and limited cell death. Reductions in climbing ability indicated deficits in muscle function. Knocking down MICOS genes also caused reduced mtDNA content and fragmented mitochondrial nucleoid structure in Drosophila Together, our data demonstrate an essential role of Drosophila MICOS in maintaining proper homeostasis of mitochondrial structure and function to promote the function of muscle tissue.
Collapse
Affiliation(s)
- Li-Jie Wang
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 115, Taiwan
| | - Tian Hsu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 115, Taiwan
| | - Hsiang-Ling Lin
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 115, Taiwan
| | - Chi-Yu Fu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
53
|
Liu C, Ke P, Zhang J, Zhang X, Chen X. Protein Kinase Inhibitor Peptide as a Tool to Specifically Inhibit Protein Kinase A. Front Physiol 2020; 11:574030. [PMID: 33324237 PMCID: PMC7723848 DOI: 10.3389/fphys.2020.574030] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 11/02/2020] [Indexed: 12/13/2022] Open
Abstract
The protein kinase enzyme family plays a pivotal role in almost every aspect of cellular function, including cellular metabolism, division, proliferation, transcription, movement, and survival. Protein kinase A (PKA), whose activation is triggered by cyclic adenosine monophosphate (cAMP), is widely distributed in various systems and tissues throughout the body and highly related to pathogenesis and progression of various kinds of diseases. The inhibition of PKA activation is essential for the study of PKA functions. Protein kinase inhibitor peptide (PKI) is a potent, heat-stable, and specific PKA inhibitor. It has been demonstrated that PKI can block PKA-mediated phosphorylase activation. Since then, researchers have a lot of knowledge about PKI. PKI is considered to be the most effective and specific method to inhibit PKA and is widely used in related research. In this review, we will first introduce the knowledge on the activation of PKA and mechanisms related on the inhibitory effects of PKI on PKA. Then, we will compare PKI-mediated PKA inhibition vs. several popular methods of PKA inhibition.
Collapse
Affiliation(s)
- Chong Liu
- Department of Pharmacology, Second Military Medical University, Shanghai, China
| | - Ping Ke
- Department of Pharmacology, Second Military Medical University, Shanghai, China
| | - Jingjing Zhang
- Department of Pharmacology, Second Military Medical University, Shanghai, China
| | - Xiaoying Zhang
- Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA, United States
| | - Xiongwen Chen
- Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA, United States
| |
Collapse
|
54
|
Di Benedetto G, Lefkimmiatis K, Pozzan T. The basics of mitochondrial cAMP signalling: Where, when, why. Cell Calcium 2020; 93:102320. [PMID: 33296837 DOI: 10.1016/j.ceca.2020.102320] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/16/2020] [Accepted: 11/16/2020] [Indexed: 12/15/2022]
Abstract
Cytosolic cAMP signalling in live cells has been extensively investigated in the past, while only in the last decade the existence of an intramitochondrial autonomous cAMP homeostatic system began to emerge. Thanks to the development of novel tools to investigate cAMP dynamics and cAMP/PKA-dependent phosphorylation within the matrix and in other mitochondrial compartments, it is now possible to address directly and in intact living cells a series of questions that until now could be addressed only by indirect approaches, in isolated organelles or through subcellular fractionation studies. In this contribution we discuss the mechanisms that regulate cAMP dynamics at the surface and inside mitochondria, and its crosstalk with organelle Ca2+ handling. We then address a series of still unsolved questions, such as the intramitochondrial localization of key elements of the cAMP signaling toolkit, e.g., adenylate cyclases, phosphodiesterases, protein kinase A (PKA) and Epac. Finally, we discuss the evidence for and against the existence of an intramitochondrial PKA pool and the functional role of cAMP increases within the organelle matrix.
Collapse
Affiliation(s)
- Giulietta Di Benedetto
- Neuroscience Institute, National Research Council of Italy (CNR), 35121 Padova, Italy; Veneto Institute of Molecular Medicine, Foundation for Advanced Biomedical Research, 35129 Padova, Italy.
| | - Konstantinos Lefkimmiatis
- Veneto Institute of Molecular Medicine, Foundation for Advanced Biomedical Research, 35129 Padova, Italy; Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| | - Tullio Pozzan
- Neuroscience Institute, National Research Council of Italy (CNR), 35121 Padova, Italy; Veneto Institute of Molecular Medicine, Foundation for Advanced Biomedical Research, 35129 Padova, Italy; Department of Biomedical Sciences, University of Padova, 35121 Padova, Italy
| |
Collapse
|
55
|
Ould Amer Y, Hebert-Chatelain E. Insight into the Interactome of Intramitochondrial PKA Using Biotinylation-Proximity Labeling. Int J Mol Sci 2020; 21:ijms21218283. [PMID: 33167377 PMCID: PMC7663848 DOI: 10.3390/ijms21218283] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/30/2020] [Accepted: 11/02/2020] [Indexed: 12/14/2022] Open
Abstract
Mitochondria are fully integrated in cell signaling. Reversible phosphorylation is involved in adjusting mitochondrial physiology to the cellular needs. Protein kinase A (PKA) phosphorylates several substrates present at the external surface of mitochondria to maintain cellular homeostasis. However, few targets of PKA located inside the organelle are known. The aim of this work was to characterize the impact and the interactome of PKA located inside mitochondria. Our results show that the overexpression of intramitochondrial PKA decreases cellular respiration and increases superoxide levels. Using proximity-dependent biotinylation, followed by LC-MS/MS analysis and in silico phospho-site prediction, we identified 21 mitochondrial proteins potentially targeted by PKA. We confirmed the interaction of PKA with TIM44 using coimmunoprecipitation and observed that TIM44-S80 is a key residue for the interaction between the protein and the kinase. These findings provide insights into the interactome of intramitochondrial PKA and suggest new potential mechanisms in the regulation of mitochondrial functions.
Collapse
Affiliation(s)
- Yasmine Ould Amer
- Department of Biology, University of Moncton, Moncton, NB E1A 3E9, Canada;
- Canada Research Chair in Mitochondrial Signaling and Physiopathology, University of Moncton, Moncton, NB E1A 3E9, Canada
| | - Etienne Hebert-Chatelain
- Department of Biology, University of Moncton, Moncton, NB E1A 3E9, Canada;
- Canada Research Chair in Mitochondrial Signaling and Physiopathology, University of Moncton, Moncton, NB E1A 3E9, Canada
- Correspondence:
| |
Collapse
|
56
|
Walden EA, Fong RY, Pham TT, Knill H, Laframboise SJ, Huard S, Harper ME, Baetz K. Phenomic screen identifies a role for the yeast lysine acetyltransferase NuA4 in the control of Bcy1 subcellular localization, glycogen biosynthesis, and mitochondrial morphology. PLoS Genet 2020; 16:e1009220. [PMID: 33253187 PMCID: PMC7728387 DOI: 10.1371/journal.pgen.1009220] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 12/10/2020] [Accepted: 10/22/2020] [Indexed: 11/30/2022] Open
Abstract
Cellular metabolism is tightly regulated by many signaling pathways and processes, including lysine acetylation of proteins. While lysine acetylation of metabolic enzymes can directly influence enzyme activity, there is growing evidence that lysine acetylation can also impact protein localization. As the Saccharomyces cerevisiae lysine acetyltransferase complex NuA4 has been implicated in a variety of metabolic processes, we have explored whether NuA4 controls the localization and/or protein levels of metabolic proteins. We performed a high-throughput microscopy screen of over 360 GFP-tagged metabolic proteins and identified 23 proteins whose localization and/or abundance changed upon deletion of the NuA4 scaffolding subunit, EAF1. Within this, three proteins were required for glycogen synthesis and 14 proteins were associated with the mitochondria. We determined that in eaf1Δ cells the transcription of glycogen biosynthesis genes is upregulated resulting in increased proteins and glycogen production. Further, in the absence of EAF1, mitochondria are highly fused, increasing in volume approximately 3-fold, and are chaotically distributed but remain functional. Both the increased glycogen synthesis and mitochondrial elongation in eaf1Δ cells are dependent on Bcy1, the yeast regulatory subunit of PKA. Surprisingly, in the absence of EAF1, Bcy1 localization changes from being nuclear to cytoplasmic and PKA activity is altered. We found that NuA4-dependent localization of Bcy1 is dependent on a lysine residue at position 313 of Bcy1. However, the glycogen accumulation and mitochondrial elongation phenotypes of eaf1Δ, while dependent on Bcy1, were not fully dependent on Bcy1-K313 acetylation state and subcellular localization of Bcy1. As NuA4 is highly conserved with the human Tip60 complex, our work may inform human disease biology, revealing new avenues to investigate the role of Tip60 in metabolic diseases.
Collapse
Affiliation(s)
- Elizabeth A. Walden
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
- Ottawa Institute of Systems Biology, Ottawa, Canada
| | - Roger Y. Fong
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
- Ottawa Institute of Systems Biology, Ottawa, Canada
| | - Trang T. Pham
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
- Ottawa Institute of Systems Biology, Ottawa, Canada
| | - Hana Knill
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
- Ottawa Institute of Systems Biology, Ottawa, Canada
| | - Sarah Jane Laframboise
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
- Ottawa Institute of Systems Biology, Ottawa, Canada
| | - Sylvain Huard
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
- Ottawa Institute of Systems Biology, Ottawa, Canada
| | - Mary-Ellen Harper
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
- Ottawa Institute of Systems Biology, Ottawa, Canada
| | - Kristin Baetz
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
- Ottawa Institute of Systems Biology, Ottawa, Canada
| |
Collapse
|
57
|
Sekine S. PINK1 import regulation at a crossroad of mitochondrial fate: the molecular mechanisms of PINK1 import. J Biochem 2020; 167:217-224. [PMID: 31504668 DOI: 10.1093/jb/mvz069] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 08/17/2019] [Indexed: 12/17/2022] Open
Abstract
PTEN-induced kinase 1 (PINK1) is a mitochondrial kinase whose activity is tightly regulated by the mitochondrial health status. In response to mitochondrial damage, activated PINK1 can promote mitophagy, an autophagic elimination of damaged mitochondria, by cooperating with Parkin ubiquitin ligase. Loss-of-function of PINK1/Parkin-mediated mitophagy results in the accumulation of dysfunctional mitochondria, which could be one aetiology of Parkinson's disease (PD). Within step-by-step signalling cascades of PINK1/Parkin-mediated mitophagy, mitochondrial damage-dependent PINK1 kinase activation is a critical step to trigger the mitophagy signal. Recent investigation of this process reveals that this stress-dependent PINK1 kinase activation is achieved by its regulated import into different mitochondrial compartments. Thus, PINK1 import regulation stands at an important crossroad to determine the mitochondrial fate-'keep' or 'remove'? In this review, we will summarize how the PINK1 import is regulated in a mitochondrial health status-dependent manner and how this process could be pharmacologically modulated to activate the PINK1/Parkin pathway.
Collapse
Affiliation(s)
- Shiori Sekine
- Aging Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| |
Collapse
|
58
|
Lobo MJ, Reverte-Salisa L, Chao YC, Koschinski A, Gesellchen F, Subramaniam G, Jiang H, Pace S, Larcom N, Paolocci E, Pfeifer A, Zanivan S, Zaccolo M. Phosphodiesterase 2A2 regulates mitochondria clearance through Parkin-dependent mitophagy. Commun Biol 2020; 3:596. [PMID: 33087821 PMCID: PMC7578833 DOI: 10.1038/s42003-020-01311-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 09/17/2020] [Indexed: 02/07/2023] Open
Abstract
Programmed degradation of mitochondria by mitophagy, an essential process to maintain mitochondrial homeostasis, is not completely understood. Here we uncover a regulatory process that controls mitophagy and involves the cAMP-degrading enzyme phosphodiesterase 2A2 (PDE2A2). We find that PDE2A2 is part of a mitochondrial signalosome at the mitochondrial inner membrane where it interacts with the mitochondrial contact site and organizing system (MICOS). As part of this compartmentalised signalling system PDE2A2 regulates PKA-mediated phosphorylation of the MICOS component MIC60, resulting in modulation of Parkin recruitment to the mitochondria and mitophagy. Inhibition of PDE2A2 is sufficient to regulate mitophagy in the absence of other triggers, highlighting the physiological relevance of PDE2A2 in this process. Pharmacological inhibition of PDE2 promotes a 'fat-burning' phenotype to retain thermogenic beige adipocytes, indicating that PDE2A2 may serve as a novel target with potential for developing therapies for metabolic disorders.
Collapse
Affiliation(s)
- Miguel J Lobo
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | | | - Ying-Chi Chao
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Andreas Koschinski
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Frank Gesellchen
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, UK
| | | | - He Jiang
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, UK
| | - Samuel Pace
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Natasha Larcom
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Ester Paolocci
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Alexander Pfeifer
- Institute of Pharmacology and Toxicology University of Bonn, Bonn, Germany
| | - Sara Zanivan
- Cancer Research UK Beatson Institute, University of Glasgow, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Manuela Zaccolo
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.
| |
Collapse
|
59
|
Guo X, Zhang W, Wang C, Zhang B, Li R, Zhang L, Zhao K, Li Y, Tian L, Li B, Cheng H, Li L, Pei C, Xu H. IRGM promotes the PINK1‐mediated mitophagy through the degradation of Mitofilin in SH‐SY5Y cells. FASEB J 2020; 34:14768-14779. [PMID: 32939830 DOI: 10.1096/fj.202000943rr] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 08/20/2020] [Accepted: 08/24/2020] [Indexed: 01/03/2023]
Affiliation(s)
- Xize Guo
- Department of Immunology Heilongjiang Provincial Key Laboratory for Infection and Immunity Harbin Medical University Harbin China
| | - Wanping Zhang
- Department of Immunology Heilongjiang Provincial Key Laboratory for Infection and Immunity Harbin Medical University Harbin China
| | - Chun Wang
- Department of Immunology Heilongjiang Provincial Key Laboratory for Infection and Immunity Harbin Medical University Harbin China
| | - Bo Zhang
- Department of Cardiology The Forth Affiliated Hospital of Harbin Medical University Harbin China
| | - Rui Li
- Department of Neurology University of Pennsylvania Philadelphia PA USA
| | - Lie Zhang
- Department of Immunology Heilongjiang Provincial Key Laboratory for Infection and Immunity Harbin Medical University Harbin China
| | - Kai Zhao
- Department of Neurosurgery The First Affiliate Hospital of Harbin Medical University Harbin China
| | - Yu Li
- Department of Neurosurgery The First Affiliate Hospital of Harbin Medical University Harbin China
| | - Linlu Tian
- Department of Immunology Heilongjiang Provincial Key Laboratory for Infection and Immunity Harbin Medical University Harbin China
| | - Bo Li
- Department of Immunology Heilongjiang Provincial Key Laboratory for Infection and Immunity Harbin Medical University Harbin China
| | - Huakun Cheng
- Department of Neurosurgery Heilongjiang Provincial Hospital Harbin China
| | - Lixian Li
- Department of Neurosurgery The First Affiliate Hospital of Harbin Medical University Harbin China
| | - Chunying Pei
- Department of Immunology Heilongjiang Provincial Key Laboratory for Infection and Immunity Harbin Medical University Harbin China
| | - Hongwei Xu
- Department of Immunology Heilongjiang Provincial Key Laboratory for Infection and Immunity Harbin Medical University Harbin China
| |
Collapse
|
60
|
Colina-Tenorio L, Horten P, Pfanner N, Rampelt H. Shaping the mitochondrial inner membrane in health and disease. J Intern Med 2020; 287:645-664. [PMID: 32012363 DOI: 10.1111/joim.13031] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 12/19/2019] [Accepted: 01/20/2020] [Indexed: 12/16/2022]
Abstract
Mitochondria play central roles in cellular energetics, metabolism and signalling. Efficient respiration, mitochondrial quality control, apoptosis and inheritance of mitochondrial DNA depend on the proper architecture of the mitochondrial membranes and a dynamic remodelling of inner membrane cristae. Defects in mitochondrial architecture can result in severe human diseases affecting predominantly the nervous system and the heart. Inner membrane morphology is generated and maintained in particular by the mitochondrial contact site and cristae organizing system (MICOS), the F1 Fo -ATP synthase, the fusion protein OPA1/Mgm1 and the nonbilayer-forming phospholipids cardiolipin and phosphatidylethanolamine. These protein complexes and phospholipids are embedded in a network of functional interactions. They communicate with each other and additional factors, enabling them to balance different aspects of cristae biogenesis and to dynamically remodel the inner mitochondrial membrane. Genetic alterations disturbing these membrane-shaping factors can lead to human pathologies including fatal encephalopathy, dominant optic atrophy, Leigh syndrome, Parkinson's disease and Barth syndrome.
Collapse
Affiliation(s)
- L Colina-Tenorio
- From the, Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - P Horten
- From the, Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - N Pfanner
- From the, Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany.,BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - H Rampelt
- From the, Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| |
Collapse
|
61
|
Khosravi S, Harner ME. The MICOS complex, a structural element of mitochondria with versatile functions. Biol Chem 2020; 401:765-778. [DOI: 10.1515/hsz-2020-0103] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 03/16/2020] [Indexed: 01/01/2023]
Abstract
AbstractMitochondria perform a plethora of functions in various cells of different tissues. Their architecture differs remarkably, for instance in neurons versus steroidogenic cells. Furthermore, aberrant mitochondrial architecture results in mitochondrial dysfunction. This indicates strongly that mitochondrial architecture and function are intimately linked. Therefore, a deep knowledge about the determinants of mitochondrial architecture and their function on a molecular level is of utmost importance. In the past decades, various proteins and protein complexes essential for formation of mitochondrial architecture have been identified. Here we will review the current knowledge of the MICOS complex, one of the major structural elements of mitochondria. MICOS is a multi-subunit complex present in the inner mitochondrial membrane. Multiple interaction partners in the inner and outer mitochondrial membrane point to participation in a multitude of important processes, such as generation of mitochondrial architecture, lipid metabolism, and protein import into mitochondria. Since the MICOS complex is highly conserved in form and function throughout evolution, we will highlight the importance of MICOS for mammals. We will emphasize in particular the current knowledge of the association of MICOS with severe human diseases, including Charcot–Marie–Tooth disease type 2, Alzheimer's disease, Parkinson's disease, Frontotemporal Dementia and Amyotrophic Lateral Sclerosis.
Collapse
Affiliation(s)
- Siavash Khosravi
- Department of Cell Biology, Biomedical Center, Ludwig-Maximilians University Munich, Großhaderner Str. 9, Planegg/Martinsried, MunichD-82152, Germany
| | - Max E. Harner
- Institute of Cardiovascular Physiology and Pathophysiology, Biomedical Center, Ludwig-Maximilians University Munich, Großhaderner Str. 9, Planegg/Martinsried, MunichD-82152, Germany
| |
Collapse
|
62
|
Kataoka K, Bilkei-Gorzo A, Nozaki C, Togo A, Nakamura K, Ohta K, Zimmer A, Asahi T. Age-dependent Alteration in Mitochondrial Dynamics and Autophagy in Hippocampal Neuron of Cannabinoid CB1 Receptor-deficient Mice. Brain Res Bull 2020; 160:40-49. [PMID: 32294520 DOI: 10.1016/j.brainresbull.2020.03.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/19/2020] [Accepted: 03/23/2020] [Indexed: 12/12/2022]
Abstract
Endocannabinoid system activity contributes to the homeostatic defense against aging and thus may counteract the progression of brain aging. The cannabinoid type 1 (CB1) receptor activity declines with aging in the brain, which impairs neuronal network integrity and cognitive functions. However, the underlying mechanisms that link CB1 activity and memory decline remain unknown. Mitochondrial activity profoundly influences neuronal function, and age-dependent mitochondrial activity change is one of the known hallmarks of brain aging. As CB1 receptor is expressed on mitochondria and may regulate neuronal energy metabolism in hippocampus, we hypothesized that CB1 receptors might influence mitochondria in hippocampal neurons. Here, we found that CB1 receptor significantly affected mitochondrial autophagy (mitophagy) and morphology in an age-dependent manner. Serine 65-phosphorylated ubiquitin, a key marker for mitophagy, was reduced in adult CB1-deficient mice (CB1-KO) compared to those in wild type controls, particularly in CA1 pyramidal cell layer. Transmission electron microscopy (TEM) analysis showed reduced mitophagy-like events in hippocampus of adult CB1-KO. TEM analysis also showed that mitochondrial morphology in adult CB1-KO mice was altered shown by an increase in thin and elongated mitochondria in hippocampal neurons. 3D reconstruction of mitochondrial morphology after scanning electron microscopy additionally revealed an enhanced density of interconnected mitochondria. Altogether, these findings suggest that reduced CB1 signaling in CB1-KO mice leads to reduced mitophagy and abnormal mitochondrial morphology in hippocampal neurons during aging. These mitochondrial changes might be due to the impairments in mitochondrial quality control system, which links age-related decline in CB1 activity and impaired memory.
Collapse
Affiliation(s)
- Kosuke Kataoka
- Faculty of Science and Engineering, Waseda University, 169-8555, Shinjuku, Tokyo, Japan; Institute of Molecular Psychiatry, Medical Faculty, University of Bonn, 53127, Bonn, Germany.
| | - Andras Bilkei-Gorzo
- Institute of Molecular Psychiatry, Medical Faculty, University of Bonn, 53127, Bonn, Germany
| | - Chihiro Nozaki
- Faculty of Science and Engineering, Waseda University, 169-8555, Shinjuku, Tokyo, Japan; Institute of Molecular Psychiatry, Medical Faculty, University of Bonn, 53127, Bonn, Germany
| | - Akinobu Togo
- Advanced Imaging Research Center, Kurume University School of Medicine, 830-0011, Kurume, Fukuoka, Japan
| | - Keiichiro Nakamura
- Division Microscopic and Development Anatomy, Department of Anatomy, Kurume University School of Medicine, 830-0011, Kurume, Fukuoka, Japan
| | - Keisuke Ohta
- Advanced Imaging Research Center, Kurume University School of Medicine, 830-0011, Kurume, Fukuoka, Japan
| | - Andreas Zimmer
- Institute of Molecular Psychiatry, Medical Faculty, University of Bonn, 53127, Bonn, Germany
| | - Toru Asahi
- Faculty of Science and Engineering, Waseda University, 169-8555, Shinjuku, Tokyo, Japan.
| |
Collapse
|
63
|
A Cell-Based High-Throughput Screening Identified Two Compounds that Enhance PINK1-Parkin Signaling. iScience 2020; 23:101048. [PMID: 32335362 PMCID: PMC7183160 DOI: 10.1016/j.isci.2020.101048] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 03/14/2020] [Accepted: 04/04/2020] [Indexed: 12/21/2022] Open
Abstract
Early-onset Parkinson's disease-associated PINK1-Parkin signaling maintains mitochondrial health. Therapeutic approaches for enhancing PINK1-Parkin signaling present a potential strategy for treating various diseases caused by mitochondrial dysfunction. We report two chemical enhancers of PINK1-Parkin signaling, identified using a robust cell-based high-throughput screening system. These small molecules, T0466 and T0467, activate Parkin mitochondrial translocation in dopaminergic neurons and myoblasts at low doses that do not induce mitochondrial accumulation of PINK1. Moreover, both compounds reduce unfolded mitochondrial protein levels, presumably through enhanced PINK1-Parkin signaling. These molecules also mitigate the locomotion defect, reduced ATP production, and disturbed mitochondrial Ca2+ response in the muscles along with the mitochondrial aggregation in dopaminergic neurons through reduced PINK1 activity in Drosophila. Our results suggested that T0466 and T0467 may hold promise as therapeutic reagents in Parkinson's disease and related disorders.
Collapse
|
64
|
N-degron-mediated degradation and regulation of mitochondrial PINK1 kinase. Curr Genet 2020; 66:693-701. [PMID: 32157382 DOI: 10.1007/s00294-020-01062-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 02/04/2020] [Accepted: 02/05/2020] [Indexed: 12/12/2022]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative condition characterized by a gradual loss of a specific group of dopaminergic neurons in the substantia nigra. Importantly, current treatments only address the symptoms of PD, yet not the underlying molecular causes. Concomitantly, the function of genes that cause inherited forms of PD point to mitochondrial dysfunction as a major contributor in the etiology of PD. An inherent challenge that mitochondria face is the continuous exposure to diverse stresses including high levels of reactive oxygen species and protein misfolding, which increase their likelihood of dysregulation. In response, eukaryotic cells have evolved sophisticated quality control mechanisms to identify, repair and/or eliminate abnormal dysfunctional mitochondria. One such mechanism is mitophagy, a process which involves PTEN-induced putative kinase 1 (PINK1), a mitochondrial Ser/Thr kinase and Parkin, an E3 ubiquitin ligase, each encoded by genes responsible for early-onset autosomal recessive familial PD. Over 100 loss-of-function mutations in the PTEN-induced putative kinase 1 (PINK1) gene have been reported to cause autosomal recessive early-onset PD. PINK1 acts upstream of Parkin and is essential for the mitochondrial localization and activation of Parkin. Upon mitochondrial damage, PINK1 builds up on the outer mitochondrial membrane (OMM) and mediates the activation of Parkin. Activated Parkin then ubiquitinates numerous OMM proteins, eliciting mitochondrial autophagy (mitophagy). As a result, damaged mitochondrial components can be selectively eliminated. Thus, PINK1 acts a sensor of damage via fine-tuning of its levels on mitochondria, where it activates Parkin to orchestrate the clearance of unhealthy mitochondria. Previous work has unveiled that the Arg-N-end rule degradation pathway (Arg-N-degron pathway) mediates the degradation of PINK1, and thus fine-tune PINK1-dependent mitochondrial quality control pathway. Herein, we briefly discuss the interconnection between N-end rule degradation pathways and mitophagy in the context of N-degron mediated degradation of mitochondrial kinase PINK1 and highlight some of the future prospects.
Collapse
|
65
|
Nakamura S, Matsui A, Akabane S, Tamura Y, Hatano A, Miyano Y, Omote H, Kajikawa M, Maenaka K, Moriyama Y, Endo T, Oka T. The mitochondrial inner membrane protein LETM1 modulates cristae organization through its LETM domain. Commun Biol 2020; 3:99. [PMID: 32139798 PMCID: PMC7058069 DOI: 10.1038/s42003-020-0832-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 02/17/2020] [Indexed: 11/26/2022] Open
Abstract
LETM1 is a mitochondrial inner membrane protein that is required for maintaining the mitochondrial morphology and cristae structures, and regulates mitochondrial ion homeostasis. Here we report a role of LETM1 in the organization of cristae structures. We identified four amino acid residues of human LETM1 that are crucial for complementation of the growth deficiency caused by gene deletion of a yeast LETM1 orthologue. Substituting amino acid residues with alanine disrupts the correct assembly of a protein complex containing LETM1 and prevents changes in the mitochondrial morphology induced by exogenous LETM1 expression. Moreover, the LETM1 protein changes the shapes of the membranes of in vitro-reconstituted proteoliposomes, leading to the formation of invaginated membrane structures on artificial liposomes. LETM1 mutant proteins with alanine substitutions fail to facilitate the formation of invaginated membrane structures, suggesting that LETM1 plays a fundamental role in the organization of mitochondrial membrane morphology. Nakamura et al find that the mitochondrial protein LETM1 can directly modulate membrane structure in vitro and identify a conserved domain involved in modulating mitochondrial membrane morphology. This study enhances our understanding of how mitochondrial cristae are organised.
Collapse
Affiliation(s)
- Seiko Nakamura
- Department of Molecular Biology, Graduate School of Medical Science, Kyushu University, Fukuoka, 812-8582, Japan
| | - Aiko Matsui
- Department of Life Science, Rikkyo University, Tokyo, 171-8501, Japan
| | - Shiori Akabane
- Department of Life Science, Rikkyo University, Tokyo, 171-8501, Japan
| | - Yasushi Tamura
- Department of Material and Biological Chemistry, Faculty of Science, Yamagata University, Yamagata, 990-8560, Japan
| | - Azumi Hatano
- Department of Life Science, Rikkyo University, Tokyo, 171-8501, Japan
| | - Yuriko Miyano
- Department of Life Science, Rikkyo University, Tokyo, 171-8501, Japan
| | - Hiroshi Omote
- Department of Membrane Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8530, Japan
| | - Mizuho Kajikawa
- Laboratory for Infectious Immunity, RIKEN Research Center for Allergy and Immunology, Kanagawa, 230-0045, Japan
| | - Katsumi Maenaka
- Laboratory of Biomolecular Science, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan
| | - Yoshinori Moriyama
- Department of Membrane Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8530, Japan
| | - Toshiya Endo
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, 603-8555, Japan
| | - Toshihiko Oka
- Department of Life Science, Rikkyo University, Tokyo, 171-8501, Japan.
| |
Collapse
|
66
|
Pfanner N, Warscheid B, Wiedemann N. Mitochondrial proteins: from biogenesis to functional networks. Nat Rev Mol Cell Biol 2020; 20:267-284. [PMID: 30626975 DOI: 10.1038/s41580-018-0092-0] [Citation(s) in RCA: 652] [Impact Index Per Article: 130.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Mitochondria are essential for the viability of eukaryotic cells as they perform crucial functions in bioenergetics, metabolism and signalling and have been associated with numerous diseases. Recent functional and proteomic studies have revealed the remarkable complexity of mitochondrial protein organization. Protein machineries with diverse functions such as protein translocation, respiration, metabolite transport, protein quality control and the control of membrane architecture interact with each other in dynamic networks. In this Review, we discuss the emerging role of the mitochondrial protein import machinery as a key organizer of these mitochondrial protein networks. The preprotein translocases that reside on the mitochondrial membranes not only function during organelle biogenesis to deliver newly synthesized proteins to their final mitochondrial destination but also cooperate with numerous other mitochondrial protein complexes that perform a wide range of functions. Moreover, these protein networks form membrane contact sites, for example, with the endoplasmic reticulum, that are key for integration of mitochondria with cellular function, and defects in protein import can lead to diseases.
Collapse
Affiliation(s)
- Nikolaus Pfanner
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany. .,CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany.
| | - Bettina Warscheid
- CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany.,Institute of Biology II, Biochemistry - Functional Proteomics, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Nils Wiedemann
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany. .,CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
67
|
Shen M, Wang L, Kuang L, Liu D. Knockdown of mitofilin inhibits autophagy and facilitates starvation-induced apoptosis in HeLa cells. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2020; 22:1132-1137. [PMID: 31998453 PMCID: PMC6885394 DOI: 10.22038/ijbms.2019.36173.8617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Objectives Mitofilin contributes to the maintenance of mitochondrial structure and functions. This study was undertaken to determine the mechanisms underlying its regulation of apoptosis. Materials and Methods Mitofilin was knockdowned by specific short hairpin RNA (shRNA) and the stable HeLa cell clone was selected. The autophagy activity were assessed with LC3-II conversion and puncta formation by western blot and fluorescence imaging in starved and normal cultured HeLa cells. Autophagy flux was measured in the presence of NH4Cl. Wortmannin was used to inhibit autophagy. Cell viability and apoptosis were detected with cell counting kit-8 (CCK-8) and fluorescence-activated cell sorting (FACS) assay, respectively. Results Mitofilin expression was down-regulated in starved HeLa cells. In established mitofilin stable knockdown cell lines, LC3-II conversion and puncta formation were detected, which are both hallmarks of autophagy, under both basal and starvation conditions. Mitofilin down-regulation decreased LC3-II conversion and puncta formation, which indicates that loss of mitofilin function inhibits both basal and starvation-induced autophagy activity. CCK-8 and FACS analysis confirmed mitofilin involvement in the regulation of cell survival since mitofilin down-regulation facilitated starvation-induced apoptosis in HeLa cells. Conclusion Taken together, mitofilin is a potent regulator of autophagy and it may modulate cell survival through regulation of autophagy.
Collapse
Affiliation(s)
- Mengli Shen
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China 325035
| | - Li Wang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China 325035
| | - Lingyun Kuang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China 325035
| | - Danhui Liu
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China 325035
| |
Collapse
|
68
|
Human muscle pathology is associated with altered phosphoprotein profile of mitochondrial proteins in the skeletal muscle. J Proteomics 2020; 211:103556. [PMID: 31655151 DOI: 10.1016/j.jprot.2019.103556] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 10/08/2019] [Accepted: 10/17/2019] [Indexed: 12/29/2022]
Abstract
Analysis of human muscle diseases highlights the role of mitochondrial dysfunction in the skeletal muscle. Our previous work revealed that diverse upstream events correlated with altered mitochondrial proteome in human muscle biopsies. However, several proteins showed relatively unchanged expression suggesting that post-translational modifications, mainly protein phosphorylation could influence their activity and regulate mitochondrial processes. We conducted mitochondrial phosphoprotein profiling, by proteomics approach, of healthy human skeletal muscle (n = 10) and three muscle diseases (n = 10 each): Dysferlinopathy, Polymyositis and Distal Myopathy with Rimmed Vacuoles. Healthy human muscle mitochondrial proteins displayed 253 phosphorylation sites (phosphosites), which contributed to metabolic and redox processes and mitochondrial organization etc. Electron transport chain complexes accounted for 84 phosphosites. Muscle pathologies displayed 33 hyperphosphorylated and 14 hypophorphorylated sites with only 5 common proteins, indicating varied phosphorylation profile across muscle pathologies. Molecular modelling revealed altered local structure in the phosphorylated sites of Voltage-Dependent Anion Channel 1 and complex V subunit ATP5B1. Molecular dynamics simulations in complex I subunits NDUFV1, NDUFS1 and NDUFV2 revealed that phosphorylation induced structural alterations thereby influencing electron transfer and potentially altering enzyme activity. We propose that altered phosphorylation at specific sites could regulate mitochondrial protein function in the skeletal muscle during physiological and pathological processes.
Collapse
|
69
|
Eramo MJ, Lisnyak V, Formosa LE, Ryan MT. The ‘mitochondrial contact site and cristae organising system’ (MICOS) in health and human disease. J Biochem 2019; 167:243-255. [DOI: 10.1093/jb/mvz111] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 12/05/2019] [Indexed: 12/14/2022] Open
Abstract
AbstractThe ‘mitochondrial contact site and cristae organising system’ (MICOS) is an essential protein complex that promotes the formation, maintenance and stability of mitochondrial cristae. As such, loss of core MICOS components disrupts cristae structure and impairs mitochondrial function. Aberrant mitochondrial cristae morphology and diminished mitochondrial function is a pathological hallmark observed across many human diseases such as neurodegenerative conditions, obesity and diabetes mellitus, cardiomyopathy, and in muscular dystrophies and myopathies. While mitochondrial abnormalities are often an associated secondary effect to the pathological disease process, a direct role for the MICOS in health and human disease is emerging. This review describes the role of MICOS in the maintenance of mitochondrial architecture and summarizes both the direct and associated roles of the MICOS in human disease.
Collapse
Affiliation(s)
- Matthew J Eramo
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, 23 Innovation Walk, Monash University, 3800 Melbourne, Victoria, Australia
| | - Valerie Lisnyak
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, 23 Innovation Walk, Monash University, 3800 Melbourne, Victoria, Australia
| | - Luke E Formosa
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, 23 Innovation Walk, Monash University, 3800 Melbourne, Victoria, Australia
| | - Michael T Ryan
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, 23 Innovation Walk, Monash University, 3800 Melbourne, Victoria, Australia
| |
Collapse
|
70
|
Jayarajan V, Appukuttan A, Aslam M, Reusch P, Regitz-Zagrosek V, Ladilov Y. Regulation of AMPK activity by type 10 adenylyl cyclase: contribution to the mitochondrial biology, cellular redox and energy homeostasis. Cell Mol Life Sci 2019; 76:4945-4959. [PMID: 31172217 PMCID: PMC11105217 DOI: 10.1007/s00018-019-03152-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 05/06/2019] [Accepted: 05/13/2019] [Indexed: 01/28/2023]
Abstract
The downregulation of AMP-activated protein kinase (AMPK) activity contributes to numerous pathologies. Recent reports suggest that the elevation of cellular cAMP promotes AMPK activity. However, the source of the cAMP pool that controls AMPK activity remains unknown. Mammalian cells possess two cAMP sources: membrane-bound adenylyl cyclase (tmAC) and intracellularly localized, type 10 soluble adenylyl cyclase (sAC). Due to the localization of sAC and AMPK in similar intracellular compartments, we hypothesized that sAC may control AMPK activity. In this study, sAC expression and activity were manipulated in H9C2 cells, adult rat cardiomyocytes or endothelial cells. sAC knockdown depleted the cellular cAMP content and decreased AMPK activity in an EPAC-dependent manner. Functionally, sAC knockdown reduced cellular ATP content, increased mitochondrial ROS formation and led to mitochondrial depolarization. Furthermore, sAC downregulation led to EPAC-dependent mitophagy disturbance, indicated by an increased mitochondrial mass and unaffected mitochondrial biogenesis. Consistently, sAC overexpression or stimulation with bicarbonate significantly increased AMPK activity and cellular ATP content. In contrast, tmAC inhibition or stimulation produced no effect on AMPK activity. Therefore, the sAC-EPAC axis may regulate basal and induced AMPK activity and support mitophagy, cellular energy and redox homeostasis. The study argues for sAC as a potential target in treating pathologies associated with AMPK downregulation.
Collapse
Affiliation(s)
- Vignesh Jayarajan
- Charité, Universitätsmedizin Berlin, Institute of Gender in Medicine, Center for Cardiovascular Research, Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Berlin Partner Site, Berlin, Germany
- Department of Clinical Pharmacology, Ruhr-University Bochum, Bochum, Germany
| | - Avinash Appukuttan
- Department of Clinical Pharmacology, Ruhr-University Bochum, Bochum, Germany
| | - Muhammad Aslam
- Internal Medicine I/Cardiology and Angiology, University Hospital of Giessen and Marburg, Giessen, Germany
- Experimental Cardiology, Justus Liebig University Giessen, Giessen, Germany
| | - Peter Reusch
- Department of Clinical Pharmacology, Ruhr-University Bochum, Bochum, Germany
| | - Vera Regitz-Zagrosek
- Charité, Universitätsmedizin Berlin, Institute of Gender in Medicine, Center for Cardiovascular Research, Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Berlin Partner Site, Berlin, Germany
| | - Yury Ladilov
- Charité, Universitätsmedizin Berlin, Institute of Gender in Medicine, Center for Cardiovascular Research, Berlin, Germany.
- DZHK (German Center for Cardiovascular Research), Berlin Partner Site, Berlin, Germany.
| |
Collapse
|
71
|
Abstract
Individual cell types vary enormously in the amount of different organelles they contain. One such organelle is the mitochondrion. Understanding how mitochondrial levels are controlled is essential since so many disease states seem to involve mitochondrial function. The beige adipocyte is an inducible form of adipocyte that emerges in response to cold exposure and some other external stimuli. To perform its thermogenic function, its level of mitochondria increases dramatically. If the stimuli are removed the mitochondrial levels return to base line. Following the withdrawal of external stimuli, beige adipocytes directly acquire a white fat-like phenotype through mitophagy-mediated mitochondrial degradation. The beige cell is therefore a dynamic model for studying the mechanism of mitochondrial biogenesis and degradation.
Collapse
Affiliation(s)
- Xiaodan Lu
- Medical Diagnostic Research Center, Jilin Province People’s Hospital, Changchun, Jilin, China
- School of Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China
| |
Collapse
|
72
|
Lavie J, De Belvalet H, Sonon S, Ion AM, Dumon E, Melser S, Lacombe D, Dupuy JW, Lalou C, Bénard G. Ubiquitin-Dependent Degradation of Mitochondrial Proteins Regulates Energy Metabolism. Cell Rep 2019; 23:2852-2863. [PMID: 29874573 DOI: 10.1016/j.celrep.2018.05.013] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 12/21/2017] [Accepted: 05/03/2018] [Indexed: 12/20/2022] Open
Abstract
The ubiquitin proteasome system (UPS) regulates many cellular functions by degrading key proteins. Notably, the role of UPS in regulating mitochondrial metabolic functions is unclear. Here, we show that ubiquitination occurs in different mitochondrial compartments, including the inner mitochondrial membrane, and that turnover of several metabolic proteins is UPS dependent. We specifically detailed mitochondrial ubiquitination and subsequent UPS-dependent degradation of succinate dehydrogenase subunit A (SDHA), which occurred when SDHA was minimally involved in mitochondrial energy metabolism. We demonstrate that SDHA ubiquitination occurs inside the organelle. In addition, we show that the specific inhibition of SDHA degradation by UPS promotes SDHA-dependent oxygen consumption and increases ATP, malate, and citrate levels. These findings suggest that the mitochondrial metabolic machinery is also regulated by the UPS.
Collapse
Affiliation(s)
- Julie Lavie
- Laboratoire Maladies Rares, Génétique et Métabolisme-INSERM U1211, 33000 Bordeaux, France; Université de Bordeaux, 146 rue Léo-Saignat, 33076 Bordeaux Cedex, France
| | - Harmony De Belvalet
- Laboratoire Maladies Rares, Génétique et Métabolisme-INSERM U1211, 33000 Bordeaux, France; Université de Bordeaux, 146 rue Léo-Saignat, 33076 Bordeaux Cedex, France
| | - Sessinou Sonon
- Laboratoire Maladies Rares, Génétique et Métabolisme-INSERM U1211, 33000 Bordeaux, France; Université de Bordeaux, 146 rue Léo-Saignat, 33076 Bordeaux Cedex, France
| | - Ana Madalina Ion
- Laboratoire Maladies Rares, Génétique et Métabolisme-INSERM U1211, 33000 Bordeaux, France; Université de Bordeaux, 146 rue Léo-Saignat, 33076 Bordeaux Cedex, France; Molecular Mechanisms of Disease, Radboud University, 65000 HC Nijmegen, the Netherlands
| | - Elodie Dumon
- Laboratoire Maladies Rares, Génétique et Métabolisme-INSERM U1211, 33000 Bordeaux, France; Université de Bordeaux, 146 rue Léo-Saignat, 33076 Bordeaux Cedex, France
| | - Su Melser
- Université de Bordeaux, 146 rue Léo-Saignat, 33076 Bordeaux Cedex, France; INSERM, U1215 NeuroCentre Magendie, 33000 Bordeaux, France
| | - Didier Lacombe
- Laboratoire Maladies Rares, Génétique et Métabolisme-INSERM U1211, 33000 Bordeaux, France; Université de Bordeaux, 146 rue Léo-Saignat, 33076 Bordeaux Cedex, France; CHU Bordeaux, Service de Génétique Médicale, 33076 Bordeaux, France
| | - Jean-William Dupuy
- Université de Bordeaux, 146 rue Léo-Saignat, 33076 Bordeaux Cedex, France; Plateforme Protéome, Centre de Génomique Fonctionnelle, Université de Bordeaux, 146 rue Léo Saignat, 33076 Bordeaux Cedex, France
| | - Claude Lalou
- Laboratoire Maladies Rares, Génétique et Métabolisme-INSERM U1211, 33000 Bordeaux, France; Université de Bordeaux, 146 rue Léo-Saignat, 33076 Bordeaux Cedex, France
| | - Giovanni Bénard
- Laboratoire Maladies Rares, Génétique et Métabolisme-INSERM U1211, 33000 Bordeaux, France; Université de Bordeaux, 146 rue Léo-Saignat, 33076 Bordeaux Cedex, France.
| |
Collapse
|
73
|
Niu K, Fang H, Chen Z, Zhu Y, Tan Q, Wei D, Li Y, Balajee AS, Zhao Y. USP33 deubiquitinates PRKN/parkin and antagonizes its role in mitophagy. Autophagy 2019; 16:724-734. [PMID: 31432739 DOI: 10.1080/15548627.2019.1656957] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
PRKN/parkin activation through phosphorylation of its ubiquitin and ubiquitin-like domain by PINK1 is critical in mitophagy induction for eliminating the damaged mitochondria. Deubiquitinating enzymes (DUBs) functionally reversing PRKN ubiquitination are critical in controlling the magnitude of PRKN-mediated mitophagy process. However, potential DUBs that directly target PRKN and antagonize its pro-mitophagy effect remains to be identified and characterized. Here, we demonstrated that USP33/VDU1 is localized at the outer membrane of mitochondria and serves as a PRKN DUB through their interaction. Cellular and in vitro assays illustrated that USP33 deubiquitinates PRKN in a DUB activity-dependent manner. USP33 prefers to remove K6, K11, K48 and K63-linked ubiquitin conjugates from PRKN, and deubiquitinates PRKN mainly at Lys435. Mutation of this site leads to a significantly decreased level of K63-, but not K48-linked PRKN ubiquitination. USP33 deficiency enhanced both K48- and K63-linked PRKN ubiquitination, but only K63-linked PRKN ubiquitination was significantly increased under mitochondrial depolarization. Further, USP33 knockdown increased both PRKN protein stabilization and its translocation to depolarized mitochondria leading to the enhancement of mitophagy. Moreover, USP33 silencing protects SH-SY5Y human neuroblastoma cells from the neurotoxin MPTP-induced apoptotic cell death. Our findings convincingly demonstrate that USP33 is a novel PRKN deubiquitinase antagonizing its regulatory roles in mitophagy and SH-SY5Y neuron-like cell survival. Thus, USP33 inhibition may represents an attractive new therapeutic strategy for PD patients.Abbreviations: CCCP: carbonyl cyanide 3-chlorophenylhydrazone; DUB: deubiquitinating enzymes; MPTP: 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine; OMM: outer mitochondrial membrane; PD: Parkinson disease; PINK1: PTEN induced kinase 1; PRKN/PARK2: parkin RBR E3 ubiquitin protein ligase; ROS: reactive oxygen species; TM: transmembrane; Ub: ubiquitin; UBA1: ubiquitin like modifier activating enzyme 1; UBE2L3/UbcH7: ubiquitin conjugating enzyme E2 L3; USP33: ubiquitin specific peptidase 33; WT: wild type.
Collapse
Affiliation(s)
- Kaifeng Niu
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Hongbo Fang
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Zixiang Chen
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yuqi Zhu
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Qunsong Tan
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Di Wei
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Yueyang Li
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Adayabalam S Balajee
- REAC/TS, Oak Ridge Associated Universities, Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA
| | - Yongliang Zhao
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
74
|
Abstract
Significance: Alterations in adipose tissue function have profound consequences on whole body energy homeostasis because this tissue is central for fat accumulation, energy expenditure, glucose and insulin metabolism, and hormonal regulation. With the obesity reaching epidemic proportions globally, it is important to understand the mechanisms leading to adipose tissue malfunction. Recent Advances: Autophagy has originally been viewed as an adaptive response to cellular stress, but in recent years this process was shown to regulate important cellular processes. In adipose tissue, autophagy is a key regulator of white adipose tissue (WAT) and brown adipose tissue (BAT) adipogenesis, and dysregulated autophagy impairs fat accumulation both in vitro and in vivo. Animal studies have also suggested an important role for autophagy and mitophagy during the transition from beige to white fat. Human studies have provided evidence for altered autophagy in WAT, and these alterations correlated with the degree of insulin resistance. Critical Issues: Despite these important advances in the study of autophagy in adipose tissue, we still do not understand the physiological role of autophagy in mature white and brown adipocytes. Furthermore, several human studies involving autophagy assessment were performed on whole adipose tissue, which complicates the interpretation of the results considering the cellular heterogeneity of this tissue. Future Directions: Future studies will undoubtedly expand our understanding of the role of autophagy in fully differentiated adipocytes, and uncover novel cross-talks between this tissue and other organs in regulating lipid metabolism, redox signaling, energy homeostasis, and insulin sensitivity.
Collapse
Affiliation(s)
- Maroua Ferhat
- Program in Molecular Medicine, Department of Nutrition and Integrative Physiology, College of Health, University of Utah, Salt Lake City, Utah
| | - Katsuhiko Funai
- Program in Molecular Medicine, Department of Nutrition and Integrative Physiology, College of Health, University of Utah, Salt Lake City, Utah
| | - Sihem Boudina
- Program in Molecular Medicine, Department of Nutrition and Integrative Physiology, College of Health, University of Utah, Salt Lake City, Utah
| |
Collapse
|
75
|
Lucero M, Suarez AE, Chambers JW. Phosphoregulation on mitochondria: Integration of cell and organelle responses. CNS Neurosci Ther 2019; 25:837-858. [PMID: 31025544 PMCID: PMC6566066 DOI: 10.1111/cns.13141] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 03/29/2019] [Accepted: 04/04/2019] [Indexed: 12/20/2022] Open
Abstract
Mitochondria are highly integrated organelles that are crucial to cell adaptation and mitigating adverse physiology. Recent studies demonstrate that fundamental signal transduction pathways incorporate mitochondrial substrates into their biological programs. Reversible phosphorylation is emerging as a useful mechanism to modulate mitochondrial function in accordance with cellular changes. Critical serine/threonine protein kinases, such as the c-Jun N-terminal kinase (JNK), protein kinase A (PKA), PTEN-induced kinase-1 (PINK1), and AMP-dependent protein kinase (AMPK), readily translocate to the outer mitochondrial membrane (OMM), the interface of mitochondria-cell communication. OMM protein kinases phosphorylate diverse mitochondrial substrates that have discrete effects on organelle dynamics, protein import, respiratory complex activity, antioxidant capacity, and apoptosis. OMM phosphorylation events can be tempered through the actions of local protein phosphatases, such as mitogen-activated protein kinase phosphatase-1 (MKP-1) and protein phosphatase 2A (PP2A), to regulate the extent and duration of signaling. The central mediators of OMM signal transduction are the scaffold proteins because the relative abundance of these accessory proteins determines the magnitude and duration of a signaling event on the mitochondrial surface, which dictates the biological outcome of a local signal transduction pathway. The concentrations of scaffold proteins, such as A-kinase anchoring proteins (AKAPs) and Sab (or SH3 binding protein 5-SH3BP5), have been shown to influence neuronal survival and vulnerability, respectively, in models of Parkinson's disease (PD), highlighting the importance of OMM signaling to health and disease. Despite recent progress, much remains to be discovered concerning the mechanisms of OMM signaling. Nonetheless, enhancing beneficial OMM signaling events and inhibiting detrimental protein-protein interactions on the mitochondrial surface may represent highly selective approaches to restore mitochondrial health and homeostasis and mitigate organelle dysfunction in conditions such as PD.
Collapse
Affiliation(s)
- Maribel Lucero
- Department of Environmental Health Sciences, Robert Stempel College of Public Health & Social Work, the Biomolecular Sciences Institute, Florida International University, Miami, Florida
| | - Ana E Suarez
- Department of Environmental Health Sciences, Robert Stempel College of Public Health & Social Work, the Biomolecular Sciences Institute, Florida International University, Miami, Florida
| | - Jeremy W Chambers
- Department of Environmental Health Sciences, Robert Stempel College of Public Health & Social Work, the Biomolecular Sciences Institute, Florida International University, Miami, Florida
| |
Collapse
|
76
|
Zhang C, Wang R, Liu Z, Bunker E, Lee S, Giuntini M, Chapnick D, Liu X. The plant triterpenoid celastrol blocks PINK1-dependent mitophagy by disrupting PINK1's association with the mitochondrial protein TOM20. J Biol Chem 2019; 294:7472-7487. [PMID: 30885942 DOI: 10.1074/jbc.ra118.006506] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 03/05/2019] [Indexed: 12/31/2022] Open
Abstract
A critical function of the PTEN-induced kinase 1 (PINK1)-Parkin pathway is to mediate the clearing of unhealthy or damaged mitochondria via mitophagy. Loss of either PINK1 or Parkin protein expression is associated with Parkinson's disease. Here, using a high-throughput screening approach along with recombinant protein expression and kinase, immunoblotting, and immunofluorescence live-cell imaging assays, we report that celastrol, a pentacyclic triterpenoid isolated from extracts of the medicinal plant Tripterygium wilfordii, blocks recruitment pof Parkin to mitochondria, preventing mitophagy in response to mitochondrial depolarization induced by carbonyl cyanide m-chlorophenylhydrazone or to gamitrinib-induced inhibition of mitochondrial heat shock protein 90 (HSP90). Celastrol's effect on mitophagy was independent of its known role in microtubule disruption. Instead, we show that celastrol suppresses Parkin recruitment by inactivating PINK1 and preventing it from phosphorylating Parkin and also ubiquitin. We also observed that PINK1 directly and strongly associates with TOM20, a component of the translocase of outer mitochondrial membrane (TOM) machinery and relatively weak binding to another TOM subunit, TOM70. Moreover, celastrol disrupted binding between PINK1 and TOM20 both in vitro and in vivo but did not affect binding between TOM20 and TOM70. Using native gel analysis, we also show that celastrol disrupts PINK1 complex formation upon mitochondrial depolarization and sequesters PINK1 to high-molecular-weight protein aggregates. These results reveal that celastrol regulates the mitochondrial quality control pathway by interfering with PINK1-TOM20 binding.
Collapse
Affiliation(s)
- Conggang Zhang
- From the Department of Biochemistry, JSCBB, University of Colorado, Boulder, Colorado 80303 and
| | - Rongchun Wang
- From the Department of Biochemistry, JSCBB, University of Colorado, Boulder, Colorado 80303 and.,the Biology Institute, Qilu University of Technology, Shandong Academy of Sciences, 28789 East Jinshi Street, Licheng District, Jinan 250103, China
| | - Zeyu Liu
- From the Department of Biochemistry, JSCBB, University of Colorado, Boulder, Colorado 80303 and
| | - Eric Bunker
- From the Department of Biochemistry, JSCBB, University of Colorado, Boulder, Colorado 80303 and
| | - Schuyler Lee
- From the Department of Biochemistry, JSCBB, University of Colorado, Boulder, Colorado 80303 and
| | - Michelle Giuntini
- From the Department of Biochemistry, JSCBB, University of Colorado, Boulder, Colorado 80303 and
| | - Douglas Chapnick
- From the Department of Biochemistry, JSCBB, University of Colorado, Boulder, Colorado 80303 and
| | - Xuedong Liu
- From the Department of Biochemistry, JSCBB, University of Colorado, Boulder, Colorado 80303 and
| |
Collapse
|
77
|
Van Laar VS, Otero PA, Hastings TG, Berman SB. Potential Role of Mic60/Mitofilin in Parkinson's Disease. Front Neurosci 2019; 12:898. [PMID: 30740041 PMCID: PMC6357844 DOI: 10.3389/fnins.2018.00898] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 11/16/2018] [Indexed: 12/21/2022] Open
Abstract
There are currently no treatments that hinder or halt the inexorable progression of Parkinson's disease (PD). While the etiology of PD remains elusive, evidence suggests that early dysfunction of mitochondrial respiration and homeostasis play a major role in PD pathogenesis. The mitochondrial structural protein Mic60, also known as mitofilin, is critical for maintaining mitochondrial architecture and function. Loss of Mic60 is associated with detrimental effects on mitochondrial homeostasis. Growing evidence now implicates Mic60 in the pathogenesis of PD. In this review, we discuss the data supporting a role of Mic60 and mitochondrial dysfunction in PD. We will also consider the potential of Mic60 as a therapeutic target for treating neurological disorders.
Collapse
Affiliation(s)
- Victor S Van Laar
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, United States
| | - P Anthony Otero
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, United States.,Division of Neuropathology, Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,Cellular and Molecular Pathology (CMP) Program, Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Teresa G Hastings
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States
| | - Sarah B Berman
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, United States.,Clinical and Translational Science Institute, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
78
|
Fan P, Xie XH, Chen CH, Peng X, Zhang P, Yang C, Wang YT. Molecular Regulation Mechanisms and Interactions Between Reactive Oxygen Species and Mitophagy. DNA Cell Biol 2018; 38:10-22. [PMID: 30556744 DOI: 10.1089/dna.2018.4348] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The generation of reactive oxygen species (ROS) in response to oxidative stress has important effects on cell development, normal function, and survival. It may cause oxidative damage to intracellular macromolecular substances and mitochondria through several signaling pathways. However, the damaged mitochondria promote further ROS generation, creating a vicious cycle that can cause cellular injury. In addition, excessive ROS produced by damaged mitochondria can trigger mitophagy, a process that can scavenge impaired mitochondria and reduce ROS level to maintain stable mitochondrial function in cells. Therefore, mitophagy heaps maintain cellular homeostasis under oxidative stress. In this article, we review recent advances in cellular damage caused by excessive ROS, the mechanism of mitophagy, and the close relationship between ROS and mitophagy. This review provides a new perspective on therapeutic strategies for related diseases.
Collapse
Affiliation(s)
- Pan Fan
- 1 Department of Spine Center, Zhongda Hospital, Medical School, Southeast University , Nanjing, Jiangsu, China
| | - Xing-Hui Xie
- 1 Department of Spine Center, Zhongda Hospital, Medical School, Southeast University , Nanjing, Jiangsu, China
| | - Chang-Hong Chen
- 2 Department of Orthopaedic Surgery, Jiangyin Hospital of Traditional Chinese Medicine , Wuxi, Jiangsu, China
| | - Xin Peng
- 1 Department of Spine Center, Zhongda Hospital, Medical School, Southeast University , Nanjing, Jiangsu, China
| | - Po Zhang
- 1 Department of Spine Center, Zhongda Hospital, Medical School, Southeast University , Nanjing, Jiangsu, China
| | - Cheng Yang
- 1 Department of Spine Center, Zhongda Hospital, Medical School, Southeast University , Nanjing, Jiangsu, China
| | - Yun-Tao Wang
- 1 Department of Spine Center, Zhongda Hospital, Medical School, Southeast University , Nanjing, Jiangsu, China
| |
Collapse
|
79
|
Feng Y, Madungwe NB, Bopassa JC. Mitochondrial inner membrane protein, Mic60/mitofilin in mammalian organ protection. J Cell Physiol 2018; 234:3383-3393. [PMID: 30259514 DOI: 10.1002/jcp.27314] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 08/02/2018] [Indexed: 12/13/2022]
Abstract
The identification of the mitochondrial contact site and cristae organizing system (MICOS) in the inner mitochondrial membrane shed light on the intricate components necessary for mitochondria to form their signature cristae in which many protein complexes including the electron transport chain are localized. Mic60/mitofilin has been described as the core component for the assembly and maintenance of MICOS, thus controlling cristae morphology, protein transport, mitochondrial DNA transcription, as well as connecting the inner and outer mitochondrial membranes. Although Mic60 homologs are present in many species, mammalian Mic60 is only recently gaining attention as a critical player in several organ systems and diseases with mitochondrial-defect origins. In this review, we summarize what is currently known about the ever-expanding role of Mic60 in mammals, and highlight some new studies pushing the field of mitochondrial cristae organization towards potentially new and exciting therapies targeting this protein.
Collapse
Affiliation(s)
- Yansheng Feng
- Department of Cellular and Integrative Physiology, School of Medicine, University of Texas Health Science Center at San Antonio, Texas.,Department of Pathophysiology, Xinxiang Medical University, Xinxiang, China
| | - Ngonidzashe B Madungwe
- Department of Cellular and Integrative Physiology, School of Medicine, University of Texas Health Science Center at San Antonio, Texas.,Department of Biomedical Engineering, University of Texas at San Antonio, Texas
| | - Jean C Bopassa
- Department of Cellular and Integrative Physiology, School of Medicine, University of Texas Health Science Center at San Antonio, Texas
| |
Collapse
|
80
|
Kim SJ, Ahn DG, Syed GH, Siddiqui A. The essential role of mitochondrial dynamics in antiviral immunity. Mitochondrion 2018; 41:21-27. [PMID: 29246869 PMCID: PMC5988924 DOI: 10.1016/j.mito.2017.11.007] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 11/29/2017] [Accepted: 11/29/2017] [Indexed: 01/17/2023]
Abstract
Viruses alter cellular physiology and function to establish cellular environment conducive for viral proliferation. Viral immune evasion is an essential aspect of viral persistence and proliferation. The multifaceted mitochondria play a central role in many cellular events such as metabolism, bioenergetics, cell death, and innate immune signaling. Recent findings accentuate that viruses regulate mitochondrial function and dynamics to facilitate viral proliferation. In this review, we will discuss how viruses exploit mitochondrial dynamics to modulate mitochondria-mediated antiviral innate immune response during infection. This review will provide new insight to understanding the virus-mediated alteration of mitochondrial dynamics and functions to perturb host antiviral immune signaling.
Collapse
Affiliation(s)
- Seong-Jun Kim
- Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Yuseong, Daejeon 34114, South Korea
| | - Dae-Gyun Ahn
- Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Yuseong, Daejeon 34114, South Korea
| | - Gulam H Syed
- Institute of Life Sciences, Bhubaneswar, Odisha 751023, India
| | - Aleem Siddiqui
- Division of Infectious Diseases, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
81
|
Lu X, Altshuler-Keylin S, Wang Q, Chen Y, Henrique Sponton C, Ikeda K, Maretich P, Yoneshiro T, Kajimura S. Mitophagy controls beige adipocyte maintenance through a Parkin-dependent and UCP1-independent mechanism. Sci Signal 2018; 11:11/527/eaap8526. [PMID: 29692364 DOI: 10.1126/scisignal.aap8526] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Beige adipocytes are an inducible form of mitochondria-enriched thermogenic adipocytes that emerge in response to external stimuli, such as chronic cold exposure. We have previously shown that after the withdrawal of external stimuli, beige adipocytes directly acquire a white fat-like phenotype through autophagy-mediated mitochondrial degradation. We investigated the upstream pathway that mediates mitochondrial clearance and report that Parkin-mediated mitophagy plays a key role in the beige-to-white adipocyte transition. Mice genetically deficient in Park2 showed reduced mitochondrial degradation and retained thermogenic beige adipocytes even after the withdrawal of external stimuli. Norepinephrine signaling through the PKA pathway inhibited the recruitment of Parkin protein to mitochondria in beige adipocytes. However, mitochondrial proton uncoupling by uncoupling protein 1 (UCP1) was dispensable for Parkin recruitment and beige adipocyte maintenance. These results suggest a physiological mechanism by which external cues control mitochondrial homeostasis in thermogenic fat cells through mitophagy.
Collapse
Affiliation(s)
- Xiaodan Lu
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA.,Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, San Francisco, CA 94143, USA.,Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA.,Medical Diagnostic Research Center, Jilin Province People's Hospital, Changchun, Jilin 130021, China.,Department of Immunology, Jilin University, Changchun, Jilin 130021, China
| | - Svetlana Altshuler-Keylin
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA.,Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, San Francisco, CA 94143, USA.,Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA.,Department of Physiological Chemistry, Genentech Inc., South San Francisco, CA 94080, USA
| | - Qiang Wang
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA.,Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, San Francisco, CA 94143, USA.,Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Yong Chen
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA.,Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, San Francisco, CA 94143, USA.,Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Carlos Henrique Sponton
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA.,Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, San Francisco, CA 94143, USA.,Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA.,Obesity and Comorbidities Research Center, University of Campinas (UNICAMP), Campinas, Sao Paulo 13084-970, Brazil
| | - Kenji Ikeda
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA.,Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, San Francisco, CA 94143, USA.,Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Pema Maretich
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA.,Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, San Francisco, CA 94143, USA.,Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Takeshi Yoneshiro
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA.,Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, San Francisco, CA 94143, USA.,Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Shingo Kajimura
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA. .,Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, San Francisco, CA 94143, USA.,Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
82
|
Mitochondrial cAMP-PKA signaling: What do we really know? BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1859:868-877. [PMID: 29694829 DOI: 10.1016/j.bbabio.2018.04.005] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 04/06/2018] [Accepted: 04/18/2018] [Indexed: 12/22/2022]
Abstract
Mitochondria are key organelles for cellular homeostasis. They generate the most part of ATP that is used by cells through oxidative phosphorylation. They also produce reactive oxygen species, neurotransmitters and other signaling molecules. They are important for calcium homeostasis and apoptosis. Considering the role of this organelle, it is not surprising that most mitochondrial dysfunctions are linked to the development of pathologies. Various mechanisms adjust mitochondrial activity according to physiological needs. The cAMP-PKA signaling emerged in recent years as a direct and powerful mean to regulate mitochondrial functions. Multiple evidence demonstrates that such pathway can be triggered from cytosol or directly within mitochondria. Notably, specific anchor proteins target PKA to mitochondria whereas enzymes necessary for generation and degradation of cAMP are found directly in these organelles. Mitochondrial PKA targets proteins localized in different compartments of mitochondria, and related to various functions. Alterations of mitochondrial cAMP-PKA signaling affect the development of several physiopathological conditions, including neurodegenerative diseases. It is however difficult to discriminate between the effects of cAMP-PKA signaling triggered from cytosol or directly in mitochondria. The specific roles of PKA localized in different mitochondrial compartments are also not completely understood. The aim of this work is to review the role of cAMP-PKA signaling in mitochondrial (patho)physiology.
Collapse
|
83
|
The role of compartmentalized signaling pathways in the control of mitochondrial activities in cancer cells. Biochim Biophys Acta Rev Cancer 2018; 1869:293-302. [PMID: 29673970 DOI: 10.1016/j.bbcan.2018.04.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/13/2018] [Accepted: 04/14/2018] [Indexed: 02/06/2023]
Abstract
Mitochondria are the powerhouse organelles present in all eukaryotic cells. They play a fundamental role in cell respiration, survival and metabolism. Stimulation of G-protein coupled receptors (GPCRs) by dedicated ligands and consequent activation of the cAMP·PKA pathway finely couple energy production and metabolism to cell growth and survival. Compartmentalization of PKA signaling at mitochondria by A-Kinase Anchor Proteins (AKAPs) ensures efficient transduction of signals generated at the cell membrane to the organelles, controlling important aspects of mitochondrial biology. Emerging evidence implicates mitochondria as essential bioenergetic elements of cancer cells that promote and support tumor growth and metastasis. In this context, mitochondria provide the building blocks for cellular organelles, cytoskeleton and membranes, and supply all the metabolic needs for the expansion and dissemination of actively replicating cancer cells. Functional interference with mitochondrial activity deeply impacts on cancer cell survival and proliferation. Therefore, mitochondria represent valuable targets of novel therapeutic approaches for the treatment of cancer patients. Understanding the biology of mitochondria, uncovering the molecular mechanisms regulating mitochondrial activity andmapping the relevant metabolic and signaling networks operating in cancer cells will undoubtly contribute to create a molecular platform to be used for the treatment of proliferative disorders. Here, we will highlight the emerging roles of signaling pathways acting downstream to GPCRs and their intersection with the ubiquitin proteasome system in the control of mitochondrial activity in different aspects of cancer cell biology.
Collapse
|
84
|
Serricchio M, Vissa A, Kim PK, Yip CM, McQuibban GA. Cardiolipin synthesizing enzymes form a complex that interacts with cardiolipin-dependent membrane organizing proteins. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863:447-457. [DOI: 10.1016/j.bbalip.2018.01.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 01/09/2018] [Accepted: 01/12/2018] [Indexed: 12/22/2022]
|
85
|
Mitochondrial Abnormality Facilitates Cyst Formation in Autosomal Dominant Polycystic Kidney Disease. Mol Cell Biol 2017; 37:MCB.00337-17. [PMID: 28993480 PMCID: PMC5705822 DOI: 10.1128/mcb.00337-17] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 09/28/2017] [Indexed: 12/14/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) constitutes the most inherited kidney disease. Mutations in the PKD1 and PKD2 genes, encoding the polycystin 1 and polycystin 2 Ca2+ ion channels, respectively, result in tubular epithelial cell-derived renal cysts. Recent clinical studies demonstrate oxidative stress to be present early in ADPKD. Mitochondria comprise the primary reactive oxygen species source and also their main effector target; however, the pathophysiological role of mitochondria in ADPKD remains uncharacterized. To clarify this function, we examined the mitochondria of cyst-lining cells in ADPKD model mice (Ksp-Cre PKD1flox/flox) and rats (Han:SPRD Cy/+), demonstrating obvious tubular cell morphological abnormalities. Notably, the mitochondrial DNA copy number and peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) expression were decreased in ADPKD model animal kidneys, with PGC-1α expression inversely correlated with oxidative stress levels. Consistent with these findings, human ADPKD cyst-derived cells with heterozygous and homozygous PKD1 mutation exhibited morphological and functional abnormalities, including increased mitochondrial superoxide. Furthermore, PGC-1α expression was suppressed by decreased intracellular Ca2+ levels via calcineurin, p38 mitogen-activated protein kinase (MAPK), and nitric oxide synthase deactivation. Moreover, the mitochondrion-specific antioxidant MitoQuinone (MitoQ) reduced intracellular superoxide and inhibited cyst epithelial cell proliferation through extracellular signal-related kinase/MAPK inactivation. Collectively, these results indicate that mitochondrial abnormalities facilitate cyst formation in ADPKD.
Collapse
|
86
|
Zhou J, Yao W, Li C, Wu W, Li Q, Liu H. Administration of follicle-stimulating hormone induces autophagy via upregulation of HIF-1α in mouse granulosa cells. Cell Death Dis 2017; 8:e3001. [PMID: 28817115 PMCID: PMC5596559 DOI: 10.1038/cddis.2017.371] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 06/25/2017] [Accepted: 07/04/2017] [Indexed: 02/07/2023]
Abstract
Recent studies reported the important role of autophagy in follicular development. However, the underlying molecular mechanisms remain elusive. In this study, we investigated the effect of follicle-stimulating hormone (FSH) on mouse granulosa cells (MGCs). Results indicated that autophagy was induced by FSH, which is known to be the dominant hormone regulating follicular development and granulosa cell (GC) proliferation. The activation of mammalian target of rapamycin (mTOR), a master regulator of autophagy, was inhibited during the process of MGC autophagy. Moreover, MHY1485 (an agonist of mTOR) significantly suppressed autophagy signaling by activating mTOR. The expression of hypoxia-inducible factor 1-alpha (HIF-1α) was increased after FSH treatment. Blocking hypoxia-inducible factor 1-alpha attenuated autophagy signaling. In vitro, CoCl2-induced hypoxia enhanced cell autophagy and affected the expression of beclin1 and BCL2/adenovirus E1B interacting protein 3 (Bnip3) in the presence of FSH. Knockdown of beclin1 and Bnip3 suppressed autophagy signaling in MGCs. Furthermore, our in vivo study demonstrated that the FSH-induced increase in weight was significantly reduced after effectively inhibiting autophagy with chloroquine, which was correlated with incomplete mitophagy process through the PINK1-Parkin pathway, delayed cell cycle, and reduced cell proliferation rate. In addition, chloroquine treatment decreased inhibin alpha subunit, but enhanced the expression of 3 beta-hydroxysteroid dehydrogenase. Blocking autophagy resulted in a significantly lower percentage of antral and preovulatory follicles after FSH stimulation. In conclusion, our results indicate that FSH induces autophagy signaling in MGCs via HIF-1α. In addition, our results provide evidence that autophagy induced by FSH is related to follicle development and atresia.
Collapse
Affiliation(s)
- Jilong Zhou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Wang Yao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Chengyu Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Wangjun Wu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Qifa Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Honglin Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
87
|
Sastri M, Darshi M, Mackey M, Ramachandra R, Ju S, Phan S, Adams S, Stein K, Douglas CR, Kim JJ, Ellisman MH, Taylor SS, Perkins GA. Sub-mitochondrial localization of the genetic-tagged mitochondrial intermembrane space-bridging components Mic19, Mic60 and Sam50. J Cell Sci 2017; 130:3248-3260. [PMID: 28808085 DOI: 10.1242/jcs.201400] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 08/02/2017] [Indexed: 01/14/2023] Open
Abstract
Each mitochondrial compartment contains varying protein compositions that underlie a diversity of localized functions. Insights into the localization of mitochondrial intermembrane space-bridging (MIB) components will have an impact on our understanding of mitochondrial architecture, dynamics and function. By using the novel visualizable genetic tags miniSOG and APEX2 in cultured mouse cardiac and human astrocyte cell lines and performing electron tomography, we have mapped at nanoscale resolution three key MIB components, Mic19, Mic60 and Sam50 (also known as CHCHD3, IMMT and SAMM50, respectively), in the environment of structural landmarks such as cristae and crista junctions (CJs). Tagged Mic19 and Mic60 were located at CJs, distributed in a network pattern along the mitochondrial periphery and also enriched inside cristae. We discovered an association of Mic19 with cytochrome c oxidase subunit IV. It was also found that tagged Sam50 is not uniformly distributed in the outer mitochondrial membrane and appears to incompletely overlap with Mic19- or Mic60-positive domains, most notably at the CJs.
Collapse
Affiliation(s)
- Mira Sastri
- Department of Chemistry and Biochemistry, University of California, San Diego, CA 92093, USA
| | - Manjula Darshi
- Howard Hughes Medical Institute, University of California, San Diego, CA 92093, USA
| | - Mason Mackey
- National Center for Microscopy and Imaging Research, University of California, San Diego, CA 92093, USA
| | - Ranjan Ramachandra
- National Center for Microscopy and Imaging Research, University of California, San Diego, CA 92093, USA
| | - Saeyeon Ju
- National Center for Microscopy and Imaging Research, University of California, San Diego, CA 92093, USA
| | - Sebastien Phan
- National Center for Microscopy and Imaging Research, University of California, San Diego, CA 92093, USA
| | - Stephen Adams
- Department of Pharmacology, University of California, San Diego, CA 92093, USA
| | - Kathryn Stein
- Department of Chemistry and Biochemistry, University of California, San Diego, CA 92093, USA
| | - Christopher R Douglas
- Department of Chemistry and Biochemistry, University of California, San Diego, CA 92093, USA
| | - Jiwan John Kim
- Department of Chemistry and Biochemistry, University of California, San Diego, CA 92093, USA
| | - Mark H Ellisman
- National Center for Microscopy and Imaging Research, University of California, San Diego, CA 92093, USA
| | - Susan S Taylor
- Department of Chemistry and Biochemistry, University of California, San Diego, CA 92093, USA.,Howard Hughes Medical Institute, University of California, San Diego, CA 92093, USA.,Department of Pharmacology, University of California, San Diego, CA 92093, USA
| | - Guy A Perkins
- National Center for Microscopy and Imaging Research, University of California, San Diego, CA 92093, USA
| |
Collapse
|
88
|
Das Banerjee T, Dagda RY, Dagda M, Chu CT, Rice M, Vazquez-Mayorga E, Dagda RK. PINK1 regulates mitochondrial trafficking in dendrites of cortical neurons through mitochondrial PKA. J Neurochem 2017; 142:545-559. [PMID: 28556983 DOI: 10.1111/jnc.14083] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 05/22/2017] [Accepted: 05/23/2017] [Indexed: 12/12/2022]
Abstract
Mitochondrial Protein Kinase A (PKA) and PTEN-induced kinase 1 (PINK1), which is linked to Parkinson's disease, are two neuroprotective serine/threonine kinases that regulate dendrite remodeling and mitochondrial function. We have previously shown that PINK1 regulates dendrite morphology by enhancing PKA activity. Here, we show the molecular mechanisms by which PINK1 and PKA in the mitochondrion interact to regulate dendrite remodeling, mitochondrial morphology, content, and trafficking in dendrites. PINK1-deficient cortical neurons exhibit impaired mitochondrial trafficking, reduced mitochondrial content, fragmented mitochondria, and a reduction in dendrite outgrowth compared to wild-type neurons. Transient expression of wild-type, but not a PKA-binding-deficient mutant of the PKA-mitochondrial scaffold dual-specificity A Kinase Anchoring Protein 1 (D-AKAP1), restores mitochondrial trafficking, morphology, and content in dendrites of PINK1-deficient cortical neurons suggesting that recruiting PKA to the mitochondrion reverses mitochondrial pathology in dendrites induced by loss of PINK1. Mechanistically, full-length and cleaved forms of PINK1 increase the binding of the regulatory subunit β of PKA (PKA/RIIβ) to D-AKAP1 to enhance the autocatalytic-mediated phosphorylation of PKA/RIIβ and PKA activity. D-AKAP1/PKA governs mitochondrial trafficking in dendrites via the Miro-2/TRAK2 complex and by increasing the phosphorylation of Miro-2. Our study identifies a new role of D-AKAP1 in regulating mitochondrial trafficking through Miro-2, and supports a model in which PINK1 and mitochondrial PKA participate in a similar neuroprotective signaling pathway to maintain dendrite connectivity.
Collapse
Affiliation(s)
- Tania Das Banerjee
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, Nevada, USA
| | - Raul Y Dagda
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, Nevada, USA
| | - Marisela Dagda
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, Nevada, USA
| | - Charleen T Chu
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Monica Rice
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, Nevada, USA
| | - Emmanuel Vazquez-Mayorga
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, Nevada, USA.,Department of Biomedical Sciences, Universidad Autonoma de Ciudad Juarez, Cd. Juarez, Mexico
| | - Ruben K Dagda
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, Nevada, USA
| |
Collapse
|
89
|
Mitochondrial contact site and cristae organizing system: A central player in membrane shaping and crosstalk. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:1481-1489. [PMID: 28526561 DOI: 10.1016/j.bbamcr.2017.05.004] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 05/01/2017] [Indexed: 01/08/2023]
Abstract
Mitochondria are multifunctional metabolic factories and integrative signaling organelles of eukaryotic cells. The structural basis for their numerous functions is a complex and dynamic double-membrane architecture. The outer membrane connects mitochondria to the cytosol and other organelles. The inner membrane is composed of a boundary region and highly folded cristae membranes. The evolutionarily conserved mitochondrial contact site and cristae organizing system (MICOS) connects the two inner membrane domains via formation and stabilization of crista junction structures. Moreover, MICOS establishes contact sites between inner and outer mitochondrial membranes by interacting with outer membrane protein complexes. MICOS deficiency leads to a grossly altered inner membrane architecture resulting in far-reaching functional perturbations in mitochondria. Consequently, mutations affecting the function of MICOS are responsible for a diverse spectrum of human diseases. In this article, we summarize recent insights and concepts on the role of MICOS in the organization of mitochondrial membranes. This article is part of a Special Issue entitled: Membrane Contact Sites edited by Christian Ungermann and Benoit Kornmann.
Collapse
|
90
|
Di Benedetto G, Gerbino A, Lefkimmiatis K. Shaping mitochondrial dynamics: The role of cAMP signalling. Biochem Biophys Res Commun 2017; 500:65-74. [PMID: 28501614 DOI: 10.1016/j.bbrc.2017.05.041] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 05/07/2017] [Indexed: 12/25/2022]
Abstract
In recent years, our idea of mitochondria evolved from "mere" energy and metabolite producers to key regulators of many cellular functions. In order to preserve and protect their functional status, these organelles engage a number of dynamic processes that allow them to decrease accumulated burden and maintain their homeostasis. Indeed, mitochondria can unite (fusion), divide (fission), position themselves strategically in the cell (motility/trafficking) and if irreversibly damaged or dysfunctional eliminated (mitophagy). These dynamic processes can be controlled both by mitochondrial and cellular signalling pathways, hence allowing mitochondria to tune their function to the cellular needs. Among the regulatory mechanisms, reversible phosphorylation downstream the cyclic AMP (cAMP) signalling cascade was shown to deeply influence mitochondrial dynamics. This review explores the emerging evidence suggesting that cAMP is a key player in the orchestration of mitochondrial fusion/fission, motility and mitophagy, extending the repertoire of this second messenger, which is now recognised as a major regulator of mitochondrial homeostasis.
Collapse
Affiliation(s)
- Giulietta Di Benedetto
- Neuroscience Institute, Italian National Research Council (CNR), Venetian Institute of Molecular Medicine, 35131, Padova, Italy
| | - Andrea Gerbino
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, Bari, Italy
| | - Konstantinos Lefkimmiatis
- Neuroscience Institute, Italian National Research Council (CNR), Venetian Institute of Molecular Medicine, 35131, Padova, Italy.
| |
Collapse
|
91
|
Rampelt H, Zerbes RM, van der Laan M, Pfanner N. Role of the mitochondrial contact site and cristae organizing system in membrane architecture and dynamics. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:737-746. [DOI: 10.1016/j.bbamcr.2016.05.020] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 05/12/2016] [Accepted: 05/17/2016] [Indexed: 12/22/2022]
|
92
|
Harnett MM, Pineda MA, Latré de Laté P, Eason RJ, Besteiro S, Harnett W, Langsley G. From Christian de Duve to Yoshinori Ohsumi: More to autophagy than just dining at home. Biomed J 2017; 40:9-22. [PMID: 28411887 PMCID: PMC6138802 DOI: 10.1016/j.bj.2016.12.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 12/26/2016] [Accepted: 12/28/2016] [Indexed: 12/21/2022] Open
Abstract
Christian de Duve first coined the expression “autophagy” during his seminal work on the discovery of lysosomes, which led to him being awarded the Nobel Prize in Physiology or Medicine in 1974. The term was adopted to distinguish degradation of intracellular components from the uptake and degradation of extracellular substances that he called “heterophagy”. Studies until the 1990s were largely observational/morphological-based until in 1993 Yoshinori Oshumi described a genetic screen in yeast undergoing nitrogen deprivation that led to the isolation of autophagy-defective mutants now better known as ATG (AuTophaGy-related) genes. The screen identified mutants that fell into 15 complementation groups implying that at least 15 genes were involved in the regulation of autophagy in yeast undergoing nutrient deprivation, but today, 41 yeast ATG genes have been described and many (though not all) have orthologues in humans. Attempts to identify the genetic basis of autophagy led to an explosion in its research and it's not surprising that in 2016 Yoshinori Oshumi was awarded the Nobel Prize in Physiology or Medicine. Our aim here is not to exhaustively review the ever-expanding autophagy literature (>60 papers per week), but to celebrate Yoshinori Oshumi's Nobel Prize by highlighting just a few aspects that are not normally extensively covered. In an accompanying mini-review we address the role of autophagy in early-diverging eukaryote parasites that like yeast, lack lysosomes and so use a digestive vacuole to degrade autophagosome cargo and also discuss how parasitized host cells react to infection by subverting regulation of autophagy.
Collapse
Affiliation(s)
- Margaret M Harnett
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow, UK.
| | - Miguel A Pineda
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow, UK
| | - Perle Latré de Laté
- Inserm U1016, CNRS UMR8104, Cochin Institute, Paris, France; The laboratory of Comparative Cell Biology of Apicomplexa, Medical Faculty of Paris-Descartes University, Sorbonne Paris City, France
| | - Russell J Eason
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow, UK
| | - Sébastien Besteiro
- DIMNP, UMR CNRS 5235, Montpellier University, Place Eugène Bataillon, Building 24, CC Montpellier, France
| | - William Harnett
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Gordon Langsley
- Inserm U1016, CNRS UMR8104, Cochin Institute, Paris, France; The laboratory of Comparative Cell Biology of Apicomplexa, Medical Faculty of Paris-Descartes University, Sorbonne Paris City, France.
| |
Collapse
|
93
|
Altshuler-Keylin S, Kajimura S. Mitochondrial homeostasis in adipose tissue remodeling. Sci Signal 2017; 10:10/468/eaai9248. [PMID: 28246203 DOI: 10.1126/scisignal.aai9248] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Mitochondrial homeostasis is regulated by a balance between mitochondrial biogenesis and degradation. Emerging evidence suggests that mitophagy, a selective form of autophagy that degrades mitochondria, plays a key role in the physiology and pathophysiology of mitochondria-enriched cells, such as brown and beige adipocytes. This review discusses findings regarding the roles of autophagy and mitophagy in cellular development, maintenance, and functions of metabolic organs, including adipose tissue, liver, and pancreas. A better understanding of the molecular links between mitophagy and energy metabolism will help to identify promising targets for the treatment of obesity and obesity-associated disorders.
Collapse
Affiliation(s)
- Svetlana Altshuler-Keylin
- UCSF Diabetes Center, University of California, San Francisco, San Francisco, CA 94143-0669, USA.,Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143-0669, USA.,Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143-0669, USA
| | - Shingo Kajimura
- UCSF Diabetes Center, University of California, San Francisco, San Francisco, CA 94143-0669, USA. .,Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143-0669, USA.,Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143-0669, USA
| |
Collapse
|
94
|
Kabayama H, Tokushige N, Takeuchi M, Kabayama M, Fukuda M, Mikoshiba K. Parkin promotes proteasomal degradation of synaptotagmin IV by accelerating polyubiquitination. Mol Cell Neurosci 2017; 80:89-99. [PMID: 28254618 DOI: 10.1016/j.mcn.2017.02.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 02/02/2017] [Accepted: 02/15/2017] [Indexed: 12/25/2022] Open
Abstract
Parkin is an E3 ubiquitin ligase whose mutations cause autosomal recessive juvenile Parkinson's disease (PD). Unlike the human phenotype, parkin knockout (KO) mice show no apparent dopamine neuron degeneration, although they demonstrate reduced expression and activity of striatal mitochondrial proteins believed to be necessary for neuronal survival. Instead, parkin-KO mice show reduced striatal evoked dopamine release, abnormal synaptic plasticity, and non-motor symptoms, all of which appear to mimic the preclinical features of Parkinson's disease. Extensive studies have screened candidate synaptic proteins responsible for reduced evoked dopamine release, and synaptotagmin XI (Syt XI), an isoform of Syt family regulating membrane trafficking, has been identified as a substrate of parkin in humans. However, its expression level is unaltered in the striatum of parkin-KO mice. Thus, the target(s) of parkin and the molecular mechanisms underlying the impaired dopamine release in parkin-KO mice remain unknown. In this study, we focused on Syt IV because of its highly homology to Syt XI, and because they share an evolutionarily conserved lack of Ca2+-binding capacity; thus, Syt IV plays an inhibitory role in Ca2+-dependent neurotransmitter release in PC12 cells and neurons in various brain regions. We found that a proteasome inhibitor increased Syt IV protein, but not Syt XI protein, in neuron-like, differentiated PC12 cells, and that parkin interacted with and polyubiquitinated Syt IV, thereby accelerating its protein turnover. Parkin overexpression selectively degraded Syt IV protein, but not Syt I protein (indispensable for Ca2+-dependent exocytosis), thus enhancing depolarization-dependent exocytosis. Furthermore, in parkin-KO mice, the level of striatal Syt IV protein was increased. Our data indicate a crucial role for parkin in the proteasomal degradation of Syt IV, and provide a potential mechanism of parkin-regulated, evoked neurotransmitter release.
Collapse
Affiliation(s)
- Hiroyuki Kabayama
- Laboratory for Developmental Neurobiology, Brain Science Institute, Institute of Physical and Chemical Research (RIKEN), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| | - Naoko Tokushige
- Laboratory for Developmental Neurobiology, Brain Science Institute, Institute of Physical and Chemical Research (RIKEN), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Makoto Takeuchi
- Laboratory for Developmental Neurobiology, Brain Science Institute, Institute of Physical and Chemical Research (RIKEN), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Miyuki Kabayama
- Division of Functional Morphology, Department of Basic Veterinary Medicine, School of Veterinary Medicine, Nippon Veterinary and Life Science University, 1-7-1 Kyonantyo, Musashino, Tokyo 180-8602, Japan
| | - Mitsunori Fukuda
- Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Katsuhiko Mikoshiba
- Laboratory for Developmental Neurobiology, Brain Science Institute, Institute of Physical and Chemical Research (RIKEN), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| |
Collapse
|
95
|
Kansler ER, Verma A, Langdon EM, Simon-Vermot T, Yin A, Lee W, Attiyeh M, Elemento O, White RM. Melanoma genome evolution across species. BMC Genomics 2017; 18:136. [PMID: 28173755 PMCID: PMC5297047 DOI: 10.1186/s12864-017-3518-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Accepted: 01/26/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cancer genomes evolve in both space and time, which contributes to the genetic heterogeneity that underlies tumor progression and drug resistance. In human melanoma, identifying mechanistically important events in tumor evolution is hampered due to the high background mutation rate from ultraviolet (UV) light. Cross-species oncogenomics is a powerful tool for identifying these core events, in which transgenically well-defined animal models of cancer are compared to human cancers to identify key conserved alterations. RESULTS We use a zebrafish model of tumor progression and drug resistance for cross-species genomic analysis in melanoma. Zebrafish transgenic tumors are initiated with just 2 genetic lesions, BRAFV600E and p53-/-, yet take 4-6 months to appear, at which time whole genome sequencing demonstrated >3,000 new mutations. An additional 4-month exposure to the BRAF inhibitor vemurafenib resulted in a highly drug resistant tumor that showed 3 additional new DNA mutations in the genes BUB1B, PINK1, and COL16A1. These genetic changes in drug resistance are accompanied by a massive reorganization of the transcriptome, with differential RNA expression of over 800 genes, centered on alterations in cAMP and PKA signaling. By comparing both the DNA and mRNA changes to a large panel of human melanomas, we find that there is a highly significant enrichment of these alterations in human patients with vemurafenib resistant disease. CONCLUSIONS Our results suggest that targeting of alterations that are conserved between zebrafish and humans may offer new avenues for therapeutic intervention. The approaches described here will be broadly applicable to the diverse array of cancer models available in the zebrafish, which can be used to inform human cancer genomics.
Collapse
Affiliation(s)
- Emily R Kansler
- Memorial Sloan Kettering Cancer Center, Cancer Biology & Genetics, New York, USA
| | - Akanksha Verma
- Weill-Cornell Medical College, Institute for Computational Biomedicine, New York, USA
| | - Erin M Langdon
- Memorial Sloan Kettering Cancer Center, Cancer Biology & Genetics, New York, USA
| | - Theresa Simon-Vermot
- Memorial Sloan Kettering Cancer Center, Cancer Biology & Genetics, New York, USA
| | - Alexandra Yin
- Memorial Sloan Kettering Cancer Center, Cancer Biology & Genetics, New York, USA
| | - William Lee
- Memorial Sloan Kettering Cancer Center, Computational Biology, New York, USA
| | - Marc Attiyeh
- Memorial Sloan Kettering Cancer Center, The David M. Rubenstein Center for Pancreatic Cancer Research, New York, USA
| | - Olivier Elemento
- Weill-Cornell Medical College, Institute for Computational Biomedicine, New York, USA
| | - Richard M White
- Memorial Sloan Kettering Cancer Center, Cancer Biology & Genetics, New York, USA. .,Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, USA.
| |
Collapse
|