51
|
Tenchov R, Sasso JM, Wang X, Zhou QA. Aging Hallmarks and Progression and Age-Related Diseases: A Landscape View of Research Advancement. ACS Chem Neurosci 2024; 15:1-30. [PMID: 38095562 PMCID: PMC10767750 DOI: 10.1021/acschemneuro.3c00531] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 01/04/2024] Open
Abstract
Aging is a dynamic, time-dependent process that is characterized by a gradual accumulation of cell damage. Continual functional decline in the intrinsic ability of living organisms to accurately regulate homeostasis leads to increased susceptibility and vulnerability to diseases. Many efforts have been put forth to understand and prevent the effects of aging. Thus, the major cellular and molecular hallmarks of aging have been identified, and their relationships to age-related diseases and malfunctions have been explored. Here, we use data from the CAS Content Collection to analyze the publication landscape of recent aging-related research. We review the advances in knowledge and delineate trends in research advancements on aging factors and attributes across time and geography. We also review the current concepts related to the major aging hallmarks on the molecular, cellular, and organismic level, age-associated diseases, with attention to brain aging and brain health, as well as the major biochemical processes associated with aging. Major age-related diseases have been outlined, and their correlations with the major aging features and attributes are explored. We hope this review will be helpful for apprehending the current knowledge in the field of aging mechanisms and progression, in an effort to further solve the remaining challenges and fulfill its potential.
Collapse
Affiliation(s)
- Rumiana Tenchov
- CAS, a Division of the American Chemical
Society, 2540 Olentangy River Road, Columbus, Ohio 43202, United States
| | - Janet M. Sasso
- CAS, a Division of the American Chemical
Society, 2540 Olentangy River Road, Columbus, Ohio 43202, United States
| | - Xinmei Wang
- CAS, a Division of the American Chemical
Society, 2540 Olentangy River Road, Columbus, Ohio 43202, United States
| | - Qiongqiong Angela Zhou
- CAS, a Division of the American Chemical
Society, 2540 Olentangy River Road, Columbus, Ohio 43202, United States
| |
Collapse
|
52
|
Cipriano A, Moqri M, Maybury-Lewis SY, Rogers-Hammond R, de Jong TA, Parker A, Rasouli S, Schöler HR, Sinclair DA, Sebastiano V. Mechanisms, pathways and strategies for rejuvenation through epigenetic reprogramming. NATURE AGING 2024; 4:14-26. [PMID: 38102454 PMCID: PMC11058000 DOI: 10.1038/s43587-023-00539-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 11/07/2023] [Indexed: 12/17/2023]
Abstract
Over the past decade, there has been a dramatic increase in efforts to ameliorate aging and the diseases it causes, with transient expression of nuclear reprogramming factors recently emerging as an intriguing approach. Expression of these factors, either systemically or in a tissue-specific manner, has been shown to combat age-related deterioration in mouse and human model systems at the cellular, tissue and organismal level. Here we discuss the current state of epigenetic rejuvenation strategies via partial reprogramming in both mouse and human models. For each classical reprogramming factor, we provide a brief description of its contribution to reprogramming and discuss additional factors or chemical strategies. We discuss what is known regarding chromatin remodeling and the molecular dynamics underlying rejuvenation, and, finally, we consider strategies to improve the practical uses of epigenetic reprogramming to treat aging and age-related diseases, focusing on the open questions and remaining challenges in this emerging field.
Collapse
Affiliation(s)
- Andrea Cipriano
- Department of Obstetrics & Gynecology, Stanford School of Medicine, Stanford University, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford School of Medicine, Stanford, CA, USA
| | - Mahdi Moqri
- Department of Obstetrics & Gynecology, Stanford School of Medicine, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford School of Medicine, Stanford University, Stanford, CA, USA
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | - Tineke Anna de Jong
- Department of Obstetrics & Gynecology, Stanford School of Medicine, Stanford University, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford School of Medicine, Stanford, CA, USA
| | - Alexander Parker
- Department of Obstetrics & Gynecology, Stanford School of Medicine, Stanford University, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford School of Medicine, Stanford, CA, USA
| | - Sajede Rasouli
- Department of Obstetrics & Gynecology, Stanford School of Medicine, Stanford University, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford School of Medicine, Stanford, CA, USA
| | - Hans Robert Schöler
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - David A Sinclair
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
- Paul F. Glenn Center for Biology of Aging Research, Harvard Medical School, Boston, MA, USA.
| | - Vittorio Sebastiano
- Department of Obstetrics & Gynecology, Stanford School of Medicine, Stanford University, Stanford, CA, USA.
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford School of Medicine, Stanford, CA, USA.
| |
Collapse
|
53
|
Morandini F, Seluanov A, Gorbunova V. Slow and steady lives the longest. NATURE AGING 2024; 4:7-9. [PMID: 38191688 DOI: 10.1038/s43587-023-00554-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Affiliation(s)
| | - Andrei Seluanov
- Department of Biology, University of Rochester, Rochester, NY, USA
- Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Vera Gorbunova
- Department of Biology, University of Rochester, Rochester, NY, USA.
- Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
54
|
Rodriguez-Colman MJ, Dansen TB, Burgering BMT. FOXO transcription factors as mediators of stress adaptation. Nat Rev Mol Cell Biol 2024; 25:46-64. [PMID: 37710009 DOI: 10.1038/s41580-023-00649-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2023] [Indexed: 09/16/2023]
Abstract
The forkhead box protein O (FOXO, consisting of FOXO1, FOXO3, FOXO4 and FOXO6) transcription factors are the mammalian orthologues of Caenorhabditis elegans DAF-16, which gained notoriety for its capability to double lifespan in the absence of daf-2 (the gene encoding the worm insulin receptor homologue). Since then, research has provided many mechanistic details on FOXO regulation and FOXO activity. Furthermore, conditional knockout experiments have provided a wealth of data as to how FOXOs control development and homeostasis at the organ and organism levels. The lifespan-extending capabilities of DAF-16/FOXO are highly correlated with their ability to induce stress response pathways. Exogenous and endogenous stress, such as cellular redox stress, are considered the main drivers of the functional decline that characterizes ageing. Functional decline often manifests as disease, and decrease in FOXO activity indeed negatively impacts on major age-related diseases such as cancer and diabetes. In this context, the main function of FOXOs is considered to preserve cellular and organismal homeostasis, through regulation of stress response pathways. Paradoxically, the same FOXO-mediated responses can also aid the survival of dysfunctional cells once these eventually emerge. This general property to control stress responses may underlie the complex and less-evident roles of FOXOs in human lifespan as opposed to model organisms such as C. elegans.
Collapse
Affiliation(s)
| | - Tobias B Dansen
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, Netherlands
| | - Boudewijn M T Burgering
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, Netherlands.
- Oncode Institute, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, Netherlands.
| |
Collapse
|
55
|
Boeke JD, Burns KH, Chiappinelli KB, Classon M, Coffin JM, DeCarvalho DD, Dukes JD, Greenbaum B, Kassiotis G, Knutson SK, Levine AJ, Nath A, Papa S, Rios D, Sedivy J, Ting DT. Proceedings of the inaugural Dark Genome Symposium: November 2022. Mob DNA 2023; 14:18. [PMID: 37990347 PMCID: PMC10664479 DOI: 10.1186/s13100-023-00306-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/08/2023] [Indexed: 11/23/2023] Open
Abstract
In November 2022 the first Dark Genome Symposium was held in Boston, USA. The meeting was hosted by Rome Therapeutics and Enara Bio, two biotechnology companies working on translating our growing understanding of this vast genetic landscape into therapies for human disease. The spirit and ambition of the meeting was one of shared knowledge, looking to strengthen the network of researchers engaged in the field. The meeting opened with a welcome from Rosana Kapeller and Kevin Pojasek followed by a first session of field defining talks from key academics in the space. A series of panels, bringing together academia and industry views, were then convened covering a wide range of pertinent topics. Finally, Richard Young and David Ting gave their views on the future direction and promise for patient impact inherent in the growing understanding of the Dark Genome.
Collapse
Affiliation(s)
- Jef D Boeke
- Institute for Systems Genetics, NYU Langone Health, New York, NY, 10016, USA
- Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn, NY, 11201, USA
- Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, 10016, USA
| | - Kathleen H Burns
- Department of Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Katherine B Chiappinelli
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University, Washington, DC, USA
| | - Marie Classon
- Pfizer Centre for Therapeutic Innovation, San Diego, USA
| | - John M Coffin
- Department of Molecular Biology and Microbiology, Tufts University, Boston, MA, 02111, USA
| | - Daniel D DeCarvalho
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Joseph D Dukes
- Enara Bio Limited, Magdalen Centre, 1 Robert Robinson Avenue, The Oxford Science Park, Oxford, OX4 4GA, UK
| | - Benjamin Greenbaum
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - George Kassiotis
- Retroviral Immunology Laboratory, The Francis Crick Institute, London, UK
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
| | - Sarah K Knutson
- Rome Therapeutics, 201 Brookline Avenue, Suite 1001, Boston, MA, USA
| | - Arnold J Levine
- Simons Center for Systems Biology, Institute for Advanced Study, Princeton, NJ, USA
| | - Avindra Nath
- Section for Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Sophie Papa
- Enara Bio Limited, Magdalen Centre, 1 Robert Robinson Avenue, The Oxford Science Park, Oxford, OX4 4GA, UK.
- School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK.
| | - Daniel Rios
- Rome Therapeutics, 201 Brookline Avenue, Suite 1001, Boston, MA, USA
| | - John Sedivy
- Center on the Biology of Aging, Brown University, Providence, RI, USA
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
| | - David T Ting
- Department of Medical Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
56
|
Nehar-Belaid D, Sokolowski M, Ravichandran S, Banchereau J, Chaussabel D, Ucar D. Baseline immune states (BIS) associated with vaccine responsiveness and factors that shape the BIS. Semin Immunol 2023; 70:101842. [PMID: 37717525 DOI: 10.1016/j.smim.2023.101842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/11/2023] [Indexed: 09/19/2023]
Abstract
Vaccines are among the greatest inventions in medicine, leading to the elimination or control of numerous diseases, including smallpox, polio, measles, rubella, and, most recently, COVID-19. Yet, the effectiveness of vaccines varies among individuals. In fact, while some recipients mount a robust response to vaccination that protects them from the disease, others fail to respond. Multiple clinical and epidemiological factors contribute to this heterogeneity in responsiveness. Systems immunology studies fueled by advances in single-cell biology have been instrumental in uncovering pre-vaccination immune cell types and genomic features (i.e., the baseline immune state, BIS) that have been associated with vaccine responsiveness. Here, we review clinical factors that shape the BIS, and the characteristics of the BIS associated with responsiveness to frequently studied vaccines (i.e., influenza, COVID-19, bacterial pneumonia, malaria). Finally, we discuss potential strategies to enhance vaccine responsiveness in high-risk groups, focusing specifically on older adults.
Collapse
Affiliation(s)
| | - Mark Sokolowski
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06030, USA
| | | | | | - Damien Chaussabel
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06030, USA
| | - Duygu Ucar
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06030, USA; Institute for Systems Genomics, University of Connecticut Health Center, Farmington, CT, USA.
| |
Collapse
|
57
|
Basu T, Sehar U, Malhotra K, Culberson J, Khan H, Morton H, Orlov E, Brownell M, Reddy PH. Healthy brain aging and delayed dementia in Texas rural elderly. Ageing Res Rev 2023; 91:102047. [PMID: 37652312 PMCID: PMC10843417 DOI: 10.1016/j.arr.2023.102047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/24/2023] [Accepted: 08/27/2023] [Indexed: 09/02/2023]
Abstract
Healthy aging is the process of preserving and enhancing one's independence, physical and mental well-being, and overall quality of life. It involves the mental, emotional, and cognitive wellness. Although biological and genetic factors have a significant influence on the process of aging gracefully, other adjustable factors also play a crucial role. Adopting positive behaviors such as maintaining a nutritious and balanced diet, engaging in regular physical activity, effectively managing stress and anxiety, ensuring sufficient sleep, nurturing spiritual coping mechanisms, and prioritizing overall well-being from an early stage can collectively influence both lifespan and the quality of health during advanced years. We aim to explore the potential impacts of biological, psychosocial, and environmental factors on the process of healthy cognitive aging in individuals who exhibit healthy aging. Additionally, we plan to present initial findings that demonstrate how maintaining good cognitive health during aging could potentially postpone the emergence of neurodegenerative disorders. We hypothesize that there will be strong associations between biological, environmental, and social factors that cause some elderly to be superior in cognitive health than others. For preliminary data collection, we recruited 25 cognitively healthy individuals and 5 individuals with MCI/AD between the ages of 60-90 years. We conducted anthropometric measurements, and blood biomarker testing, administered surveys, and obtained structural brain magnetic resonance imaging (MRI) scans. The Montreal Cognitive Assessment (MoCA) scores and sub-scores for the healthy group were also reported. We found that at baseline, individuals exhibiting healthy cognitive aging, and those with MCI/AD had comparable measures of anthropometrics and blood biomarkers. The healthy group exhibited lower signs of brain volume loss and the ones observed were age-related. Moreover, within the healthy group, there was a significant correlation (p = 0.003) between age and MoCA scores. Conversely, within the individuals with MCI/AD, the MRI scans showed disease signs of grey and white matter and loss of cerebral volume. Healthy brain aging is a scientific area that remains under-explored. Our current study findings support our hypothesis. Future studies are required in diverse populations to determine the various biological, psychological, environmental, lifestyle, and social factors that contribute to it.
Collapse
Affiliation(s)
- Tanisha Basu
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Ujala Sehar
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Keya Malhotra
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Grace Clinic, Covenant Health System, Lubbock, TX, USA
| | - John Culberson
- Department of Family Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Hafiz Khan
- Public Health Department, School of Population and Public Health, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Hallie Morton
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Erika Orlov
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Malcolm Brownell
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Public Health Department, School of Population and Public Health, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Neurology, Departments of School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Speech, Language and Hearing Sciences, School Health Professions, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Nutritional Sciences Department, College of Human Sciences, Texas Tech University, 1301 Akron Ave, Lubbock, TX 79409, USA.
| |
Collapse
|
58
|
Emerson FJ, Lee SS. Chromatin: the old and young of it. Front Mol Biosci 2023; 10:1270285. [PMID: 37877123 PMCID: PMC10591336 DOI: 10.3389/fmolb.2023.1270285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/20/2023] [Indexed: 10/26/2023] Open
Abstract
Aging affects nearly all aspects of our cells, from our DNA to our proteins to how our cells handle stress and communicate with each other. Age-related chromatin changes are of particular interest because chromatin can dynamically respond to the cellular and organismal environment, and many modifications at chromatin are reversible. Changes at chromatin occur during aging, and evidence from model organisms suggests that chromatin factors could play a role in modulating the aging process itself, as altering proteins that work at chromatin often affect the lifespan of yeast, worms, flies, and mice. The field of chromatin and aging is rapidly expanding, and high-resolution genomics tools make it possible to survey the chromatin environment or track chromatin factors implicated in longevity with precision that was not previously possible. In this review, we discuss the state of chromatin and aging research. We include examples from yeast, Drosophila, mice, and humans, but we particularly focus on the commonly used aging model, the worm Caenorhabditis elegans, in which there are many examples of chromatin factors that modulate longevity. We include evidence of both age-related changes to chromatin and evidence of specific chromatin factors linked to longevity in core histones, nuclear architecture, chromatin remodeling, and histone modifications.
Collapse
Affiliation(s)
| | - Siu Sylvia Lee
- Lee Lab, Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, United States
| |
Collapse
|
59
|
McCauley BS, Dang W. Mammalian aging driven by transcription going awry. Trends Genet 2023; 39:715-716. [PMID: 37419698 PMCID: PMC10527280 DOI: 10.1016/j.tig.2023.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 06/19/2023] [Indexed: 07/09/2023]
Abstract
The mechanisms that underlie increased cryptic transcription during senescence and aging have been poorly understood. Sen et al. recently identified cryptic transcription start sites (cTSSs) and chromatin state changes that may contribute to cTSS activation in mammals. Their results indicate that enhancer-promoter conversion may drive cryptic transcription in senescence.
Collapse
Affiliation(s)
- Brenna S McCauley
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA
| | - Weiwei Dang
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
60
|
Sarhan NR, El Nashar EM, Hamza E, El-Beah SM, Alghamdi MA, Al-Khater KM, Aldahhan RA, Abul-Ela ES. Nuclear factor erythrogen-2 associated factor 2 (Nrf2) signaling is an essential molecular pathway for the anti-aging effect of whey protein in the prefrontal cortex of aging rat model (Histological and Biochemical Study). Tissue Cell 2023; 84:102192. [PMID: 37579617 DOI: 10.1016/j.tice.2023.102192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/29/2023] [Accepted: 08/07/2023] [Indexed: 08/16/2023]
Abstract
Aging is a highly complicated natural process. Brain aging is associated with remarkable neurodegenerative changes and oxidative damage. Whey protein (WP) has been mentioned to have an antioxidant property. Nuclear factor erythrogen-2 associated factor 2 (Nrf2) signaling pathway is an antioxidant defense system. Nrf2 activity declines with age so, its activation could be a promising therapeutic strategy for aging. This study aimed to explore the anti-aging role of WP against D-galactose (D-gal) induced age-related degenerative changes and oxidative damage in the prefrontal cortex (PFC) and investigate its underlying mechanisms. Forty adult male rats were divided into 4 groups; control, WP group received WP (28.77 mg/kg/day) by gastric tube on the 4th experimental week; D-gal (model group) received D-gal (300 mg/kg/day) intraperitoneally for 8 weeks and D-gal +WP group received WP on the 4th week of D-gal treatment. Specimens from PFC were obtained for biochemical, histological, immunohistochemical and western blot analysis. WP treatment in D-gal +WP group reduced lipid peroxidation, enhanced antioxidant enzyme activities, decreased advanced glycation end products level and improved the histological and ultrastructural alterations. Moreover, the number of neurons expressed the senescence marker; p21 and percentage area of the astrocytic marker; glial fibrillary acidic protein were significantly reduced. WP also enhanced Nrf2 pathway and its downstream targets; heme oxygenase-1 and NADPH quinone oxidoreductase 1. In conclusion WP alleviates the D-gal-induced PFC aging through activating Nrf2 pathway, reducing cell senescence and gliosis. So, it may be a potential therapeutic target to retard the aging process.
Collapse
Affiliation(s)
- Nahla Reda Sarhan
- Medical Histology and Cell Biology Department, Faculty of Medicine, Mansoura University, Egypt; Medical Histology and Cell Biology Department, Faculty of Medicine, Horus University - Egypt.
| | - Eman Mohamed El Nashar
- Department of Anatomy, college of Medicine, King Khalid University, Abha 61421, Saudi Arabia
| | - Eman Hamza
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Mansoura University, Egypt; Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Horus University - Egypt
| | - Shimaa M El-Beah
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Mansoura University, Egypt; Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Badr University in Cairo, Egypt
| | - Mansour Abdullah Alghamdi
- Department of Anatomy, college of Medicine, King Khalid University, Abha 61421, Saudi Arabia; Genomics and Personalized Medicine Unit, college of Medicine, King Khalid University, Abha 61421, Saudi Arabia
| | - Khulood Mohammed Al-Khater
- Department of Anatomy, College of Medicine, Imam Abdulrahman Bin Faisal University, P.O. Box, 2114, Dammam 31451, Saudi Arabia
| | - Rashid A Aldahhan
- Department of Anatomy, College of Medicine, Imam Abdulrahman Bin Faisal University, P.O. Box, 2114, Dammam 31451, Saudi Arabia
| | - Eman Shaaban Abul-Ela
- Medical Histology and Cell Biology Department, Faculty of Medicine, Mansoura University, Egypt
| |
Collapse
|
61
|
Jassim A, Rahrmann EP, Simons BD, Gilbertson RJ. Cancers make their own luck: theories of cancer origins. Nat Rev Cancer 2023; 23:710-724. [PMID: 37488363 DOI: 10.1038/s41568-023-00602-5] [Citation(s) in RCA: 90] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/20/2023] [Indexed: 07/26/2023]
Abstract
Cancer has been a leading cause of death for decades. This dismal statistic has increased efforts to prevent the disease or to detect it early, when treatment is less invasive, relatively inexpensive and more likely to cure. But precisely how tissues are transformed continues to provoke controversy and debate, hindering cancer prevention and early intervention strategies. Various theories of cancer origins have emerged, including the suggestion that it is 'bad luck': the inevitable consequence of random mutations in proliferating stem cells. In this Review, we discuss the principal theories of cancer origins and the relative importance of the factors that underpin them. The body of available evidence suggests that developing and ageing tissues 'walk a tightrope', retaining adequate levels of cell plasticity to generate and maintain tissues while avoiding overstepping into transformation. Rather than viewing cancer as 'bad luck', understanding the complex choreography of cell intrinsic and extrinsic factors that characterize transformation holds promise to discover effective new ways to prevent, detect and stop cancer before it becomes incurable.
Collapse
Affiliation(s)
- Amir Jassim
- CRUK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Eric P Rahrmann
- CRUK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Ben D Simons
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
- Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Cambridge, UK
| | - Richard J Gilbertson
- CRUK Cambridge Institute, University of Cambridge, Cambridge, UK.
- Department of Oncology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
62
|
Brener A, Lorber D, Reuveny A, Toledano H, Porat-Kuperstein L, Lebenthal Y, Weizman E, Olender T, Volk T. Sedentary Behavior Impacts on the Epigenome and Transcriptome: Lessons from Muscle Inactivation in Drosophila Larvae. Cells 2023; 12:2333. [PMID: 37830547 PMCID: PMC10571804 DOI: 10.3390/cells12192333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 10/14/2023] Open
Abstract
The biological mechanisms linking sedentary lifestyles and metabolic derangements are incompletely understood. In this study, temporal muscle inactivation in Drosophila larvae carrying a temperature-sensitive mutation in the shibire (shi1) gene was induced to mimic sedentary behavior during early life and study its transcriptional outcome. Our findings indicated a significant change in the epigenetic profile, as well as the genomic profile, of RNA Pol II binding in the inactive muscles relative to control, within a relatively short time period. Whole-genome analysis of RNA-Pol II binding to DNA by muscle-specific targeted DamID (TaDa) protocol revealed that muscle inactivity altered Pol II binding in 121 out of 2010 genes (6%), with a three-fold enrichment of genes coding for lncRNAs. The suppressed protein-coding genes included genes associated with longevity, DNA repair, muscle function, and ubiquitin-dependent proteostasis. Moreover, inducing muscle inactivation exerted a multi-level impact upon chromatin modifications, triggering an altered epigenetic balance of active versus inactive marks. The downregulated genes in the inactive muscles included genes essential for muscle structure and function, carbohydrate metabolism, longevity, and others. Given the multiple analogous genes in Drosophila for many human genes, extrapolating our findings to humans may hold promise for establishing a molecular link between sedentary behavior and metabolic diseases.
Collapse
Affiliation(s)
- Avivit Brener
- Pediatric Endocrinology and Diabetes Institute, Dana-Dwek Children’s Hospital, Tel Aviv Sourasky Medical Center, Affiliated with the Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; (A.B.); (Y.L.)
| | - Dana Lorber
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel; (D.L.); (A.R.); (T.O.)
| | - Adriana Reuveny
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel; (D.L.); (A.R.); (T.O.)
| | - Hila Toledano
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, Haifa 3498838, Israel; (H.T.); (L.P.-K.)
| | - Lilach Porat-Kuperstein
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, Haifa 3498838, Israel; (H.T.); (L.P.-K.)
| | - Yael Lebenthal
- Pediatric Endocrinology and Diabetes Institute, Dana-Dwek Children’s Hospital, Tel Aviv Sourasky Medical Center, Affiliated with the Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; (A.B.); (Y.L.)
| | - Eviatar Weizman
- G-INCPM, Weizmann Institute of Science, Rehovot 7610001, Israel;
| | - Tsviya Olender
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel; (D.L.); (A.R.); (T.O.)
| | - Talila Volk
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel; (D.L.); (A.R.); (T.O.)
| |
Collapse
|
63
|
Lu AT, Fei Z, Haghani A, Robeck TR, Zoller JA, Li CZ, Lowe R, Yan Q, Zhang J, Vu H, Ablaeva J, Acosta-Rodriguez VA, Adams DM, Almunia J, Aloysius A, Ardehali R, Arneson A, Baker CS, Banks G, Belov K, Bennett NC, Black P, Blumstein DT, Bors EK, Breeze CE, Brooke RT, Brown JL, Carter GG, Caulton A, Cavin JM, Chakrabarti L, Chatzistamou I, Chen H, Cheng K, Chiavellini P, Choi OW, Clarke SM, Cooper LN, Cossette ML, Day J, DeYoung J, DiRocco S, Dold C, Ehmke EE, Emmons CK, Emmrich S, Erbay E, Erlacher-Reid C, Faulkes CG, Ferguson SH, Finno CJ, Flower JE, Gaillard JM, Garde E, Gerber L, Gladyshev VN, Gorbunova V, Goya RG, Grant MJ, Green CB, Hales EN, Hanson MB, Hart DW, Haulena M, Herrick K, Hogan AN, Hogg CJ, Hore TA, Huang T, Izpisua Belmonte JC, Jasinska AJ, Jones G, Jourdain E, Kashpur O, Katcher H, Katsumata E, Kaza V, Kiaris H, Kobor MS, Kordowitzki P, Koski WR, Krützen M, Kwon SB, Larison B, Lee SG, Lehmann M, Lemaitre JF, Levine AJ, Li C, Li X, Lim AR, Lin DTS, Lindemann DM, Little TJ, Macoretta N, Maddox D, Matkin CO, Mattison JA, McClure M, Mergl J, et alLu AT, Fei Z, Haghani A, Robeck TR, Zoller JA, Li CZ, Lowe R, Yan Q, Zhang J, Vu H, Ablaeva J, Acosta-Rodriguez VA, Adams DM, Almunia J, Aloysius A, Ardehali R, Arneson A, Baker CS, Banks G, Belov K, Bennett NC, Black P, Blumstein DT, Bors EK, Breeze CE, Brooke RT, Brown JL, Carter GG, Caulton A, Cavin JM, Chakrabarti L, Chatzistamou I, Chen H, Cheng K, Chiavellini P, Choi OW, Clarke SM, Cooper LN, Cossette ML, Day J, DeYoung J, DiRocco S, Dold C, Ehmke EE, Emmons CK, Emmrich S, Erbay E, Erlacher-Reid C, Faulkes CG, Ferguson SH, Finno CJ, Flower JE, Gaillard JM, Garde E, Gerber L, Gladyshev VN, Gorbunova V, Goya RG, Grant MJ, Green CB, Hales EN, Hanson MB, Hart DW, Haulena M, Herrick K, Hogan AN, Hogg CJ, Hore TA, Huang T, Izpisua Belmonte JC, Jasinska AJ, Jones G, Jourdain E, Kashpur O, Katcher H, Katsumata E, Kaza V, Kiaris H, Kobor MS, Kordowitzki P, Koski WR, Krützen M, Kwon SB, Larison B, Lee SG, Lehmann M, Lemaitre JF, Levine AJ, Li C, Li X, Lim AR, Lin DTS, Lindemann DM, Little TJ, Macoretta N, Maddox D, Matkin CO, Mattison JA, McClure M, Mergl J, Meudt JJ, Montano GA, Mozhui K, Munshi-South J, Naderi A, Nagy M, Narayan P, Nathanielsz PW, Nguyen NB, Niehrs C, O'Brien JK, O'Tierney Ginn P, Odom DT, Ophir AG, Osborn S, Ostrander EA, Parsons KM, Paul KC, Pellegrini M, Peters KJ, Pedersen AB, Petersen JL, Pietersen DW, Pinho GM, Plassais J, Poganik JR, Prado NA, Reddy P, Rey B, Ritz BR, Robbins J, Rodriguez M, Russell J, Rydkina E, Sailer LL, Salmon AB, Sanghavi A, Schachtschneider KM, Schmitt D, Schmitt T, Schomacher L, Schook LB, Sears KE, Seifert AW, Seluanov A, Shafer ABA, Shanmuganayagam D, Shindyapina AV, Simmons M, Singh K, Sinha I, Slone J, Snell RG, Soltanmaohammadi E, Spangler ML, Spriggs MC, Staggs L, Stedman N, Steinman KJ, Stewart DT, Sugrue VJ, Szladovits B, Takahashi JS, Takasugi M, Teeling EC, Thompson MJ, Van Bonn B, Vernes SC, Villar D, Vinters HV, Wallingford MC, Wang N, Wayne RK, Wilkinson GS, Williams CK, Williams RW, Yang XW, Yao M, Young BG, Zhang B, Zhang Z, Zhao P, Zhao Y, Zhou W, Zimmermann J, Ernst J, Raj K, Horvath S. Universal DNA methylation age across mammalian tissues. NATURE AGING 2023; 3:1144-1166. [PMID: 37563227 PMCID: PMC10501909 DOI: 10.1038/s43587-023-00462-6] [Show More Authors] [Citation(s) in RCA: 131] [Impact Index Per Article: 65.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 06/21/2023] [Indexed: 08/12/2023]
Abstract
Aging, often considered a result of random cellular damage, can be accurately estimated using DNA methylation profiles, the foundation of pan-tissue epigenetic clocks. Here, we demonstrate the development of universal pan-mammalian clocks, using 11,754 methylation arrays from our Mammalian Methylation Consortium, which encompass 59 tissue types across 185 mammalian species. These predictive models estimate mammalian tissue age with high accuracy (r > 0.96). Age deviations correlate with human mortality risk, mouse somatotropic axis mutations and caloric restriction. We identified specific cytosines with methylation levels that change with age across numerous species. These sites, highly enriched in polycomb repressive complex 2-binding locations, are near genes implicated in mammalian development, cancer, obesity and longevity. Our findings offer new evidence suggesting that aging is evolutionarily conserved and intertwined with developmental processes across all mammals.
Collapse
Affiliation(s)
- A T Lu
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Altos Labs, San Diego Institute of Science, San Diego, CA, USA
| | - Z Fei
- Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Statistics, University of California, Riverside, Riverside, CA, USA
| | - A Haghani
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Altos Labs, San Diego Institute of Science, San Diego, CA, USA
| | - T R Robeck
- Zoological SeaWorld Parks and Entertainment, Orlando, FL, USA
| | - J A Zoller
- Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA, USA
| | - C Z Li
- Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA, USA
| | - R Lowe
- Altos Labs, Cambridge Institute of Science, Cambridge, UK
| | - Q Yan
- Altos Labs, San Diego Institute of Science, San Diego, CA, USA
| | - J Zhang
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - H Vu
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, CA, USA
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - J Ablaeva
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - V A Acosta-Rodriguez
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - D M Adams
- Department of Biology, University of Maryland, College Park, MD, USA
| | - J Almunia
- Loro Parque Fundacion, Puerto de la Cruz, Spain
| | - A Aloysius
- Department of Biology, University of Kentucky, Lexington, KY, USA
| | - R Ardehali
- Division of Cardiology, Department of Internal Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - A Arneson
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, CA, USA
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - C S Baker
- Marine Mammal Institute, Oregon State University, Newport, OR, USA
| | - G Banks
- School of Science and Technology, Clifton Campus, Nottingham Trent University, Nottingham, UK
| | - K Belov
- School of Life and Environmental Sciences, the University of Sydney, Sydney, New South Wales, Australia
| | - N C Bennett
- Department of Zoology and Entomology, University of Pretoria, Hatfield, South Africa
| | - P Black
- Busch Gardens Tampa, Tampa, FL, USA
| | - D T Blumstein
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA, USA
- Rocky Mountain Biological Laboratory, Crested Butte, CO, USA
| | - E K Bors
- Marine Mammal Institute, Oregon State University, Newport, OR, USA
| | - C E Breeze
- Altius Institute for Biomedical Sciences, Seattle, WA, USA
| | - R T Brooke
- Epigenetic Clock Development Foundation, Los Angeles, CA, USA
| | - J L Brown
- Center for Species Survival, Smithsonian Conservation Biology Institute, Front Royal, VA, USA
| | - G G Carter
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, OH, USA
| | - A Caulton
- AgResearch, Invermay Agricultural Centre, Mosgiel, New Zealand
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - J M Cavin
- Gulf World, Dolphin Company, Panama City Beach, FL, USA
| | - L Chakrabarti
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, UK
| | - I Chatzistamou
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC, USA
| | - H Chen
- Department of Pharmacology, Addiction Science and Toxicology, the University of Tennessee Health Science Center, Memphis, TN, USA
| | - K Cheng
- Medical Informatics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - P Chiavellini
- Biochemistry Research Institute of La Plata, Histology and Pathology, School of Medicine, University of La Plata, La Plata, Argentina
| | - O W Choi
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - S M Clarke
- AgResearch, Invermay Agricultural Centre, Mosgiel, New Zealand
| | - L N Cooper
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, USA
| | - M L Cossette
- Department of Environmental and Life Sciences, Trent University, Peterborough, Ontario, Canada
| | - J Day
- Taronga Institute of Science and Learning, Taronga Conservation Society Australia, Mosman, New South Wales, Australia
| | - J DeYoung
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - S DiRocco
- SeaWorld of Florida, Orlando, FL, USA
| | - C Dold
- Zoological Operations, SeaWorld Parks and Entertainment, Orlando, FL, USA
| | | | - C K Emmons
- Conservation Biology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA, USA
| | - S Emmrich
- Departments of Biology and Medicine, University of Rochester, Rochester, NY, USA
| | - E Erbay
- Altos Labs, San Francisco, CA, USA
| | - C Erlacher-Reid
- SeaWorld of Florida, Orlando, FL, USA
- SeaWorld Orlando, Orlando, FL, USA
| | - C G Faulkes
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - S H Ferguson
- Fisheries and Oceans Canada, Freshwater Institute, Winnipeg, Manitoba, Canada
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - C J Finno
- Department of Population Health and Reproduction, University of California, Davis School of Veterinary Medicine, Davis, CA, USA
| | | | - J M Gaillard
- Universite de Lyon, Universite Lyon 1, CNRS, Laboratoire de Biometrie et Biologie Evolutive, Villeurbanne, France
| | - E Garde
- Greenland Institute of Natural Resources, Nuuk, Greenland
| | - L Gerber
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, UNSW Sydney, Sydney, New South Wales, Australia
| | - V N Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - V Gorbunova
- Departments of Biology and Medicine, University of Rochester, Rochester, NY, USA
| | - R G Goya
- Biochemistry Research Institute of La Plata, Histology and Pathology, School of Medicine, University of La Plata, La Plata, Argentina
| | - M J Grant
- Applied Translational Genetics Group, School of Biological Sciences, Centre for Brain Research, the University of Auckland, Auckland, New Zealand
| | - C B Green
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - E N Hales
- Department of Population Health and Reproduction, University of California, Davis School of Veterinary Medicine, Davis, CA, USA
| | - M B Hanson
- Conservation Biology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA, USA
| | - D W Hart
- Department of Zoology and Entomology, University of Pretoria, Hatfield, South Africa
| | - M Haulena
- Vancouver Aquarium, Vancouver, British Columbia, Canada
| | - K Herrick
- SeaWorld of California, San Diego, CA, USA
| | - A N Hogan
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - C J Hogg
- School of Life and Environmental Sciences, the University of Sydney, Sydney, New South Wales, Australia
| | - T A Hore
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - T Huang
- Division of Human Genetics, Department of Pediatrics, University at Buffalo, Buffalo, NY, USA
- Division of Genetics and Metabolism, Oishei Children's Hospital, Buffalo, NY, USA
| | | | - A J Jasinska
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - G Jones
- School of Biological Sciences, University of Bristol, Bristol, UK
| | | | - O Kashpur
- Mother Infant Research Institute, Tufts Medical Center, Boston, MA, USA
| | - H Katcher
- Yuvan Research, Mountain View, CA, USA
| | | | - V Kaza
- Peromyscus Genetic Stock Center, University of South Carolina, Columbia, SC, USA
| | - H Kiaris
- Peromyscus Genetic Stock Center, University of South Carolina, Columbia, SC, USA
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, USA
| | - M S Kobor
- Edwin S.H. Leong Healthy Aging Program, Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, British Columbia, Canada
| | - P Kordowitzki
- Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Olsztyn, Poland
- Institute for Veterinary Medicine, Nicolaus Copernicus University, Torun, Poland
| | - W R Koski
- LGL Limited, King City, Ontario, Canada
| | - M Krützen
- Evolutionary Genetics Group, Department of Evolutionary Anthropology, University of Zurich, Zurich, Switzerland
| | - S B Kwon
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, CA, USA
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - B Larison
- Department of Ecology and Evolutionary Biology, UCLA, Los Angeles, CA, USA
- Center for Tropical Research, Institute for the Environment and Sustainability, UCLA, Los Angeles, CA, USA
| | - S G Lee
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - M Lehmann
- Biochemistry Research Institute of La Plata, Histology and Pathology, School of Medicine, University of La Plata, La Plata, Argentina
| | - J F Lemaitre
- Universite de Lyon, Universite Lyon 1, CNRS, Laboratoire de Biometrie et Biologie Evolutive, Villeurbanne, France
| | - A J Levine
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - C Li
- Texas Pregnancy and Life-course Health Center, Southwest National Primate Research Center, San Antonio, TX, USA
- Department of Animal Science, College of Agriculture and Natural Resources, Laramie, WY, USA
| | - X Li
- Technology Center for Genomics and Bioinformatics, Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - A R Lim
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - D T S Lin
- Centre for Molecular Medicine and Therapeutics, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - T J Little
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - N Macoretta
- Departments of Biology and Medicine, University of Rochester, Rochester, NY, USA
| | - D Maddox
- White Oak Conservation, Yulee, FL, USA
| | - C O Matkin
- North Gulf Oceanic Society, Homer, AK, USA
| | - J A Mattison
- Translational Gerontology Branch, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | | | - J Mergl
- Marineland of Canada, Niagara Falls, Ontario, Canada
| | - J J Meudt
- Biomedical and Genomic Research Group, Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - G A Montano
- Zoological Operations, SeaWorld Parks and Entertainment, Orlando, FL, USA
| | - K Mozhui
- Department of Preventive Medicine, University of Tennessee Health Science Center, College of Medicine, Memphis, TN, USA
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, College of Medicine, Memphis, TN, USA
| | - J Munshi-South
- Louis Calder Center-Biological Field Station, Department of Biological Sciences, Fordham University, Armonk, NY, USA
| | - A Naderi
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, USA
| | - M Nagy
- Museum fur Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany
| | - P Narayan
- Applied Translational Genetics Group, School of Biological Sciences, Centre for Brain Research, the University of Auckland, Auckland, New Zealand
| | - P W Nathanielsz
- Texas Pregnancy and Life-course Health Center, Southwest National Primate Research Center, San Antonio, TX, USA
- Department of Animal Science, College of Agriculture and Natural Resources, Laramie, WY, USA
| | - N B Nguyen
- Division of Cardiology, Department of Internal Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - C Niehrs
- Institute of Molecular Biology, Mainz, Germany
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - J K O'Brien
- Taronga Institute of Science and Learning, Taronga Conservation Society Australia, Mosman, New South Wales, Australia
| | - P O'Tierney Ginn
- Mother Infant Research Institute, Tufts Medical Center, Boston, MA, USA
- Department of Obstetrics and Gynecology, Tufts University School of Medicine, Boston, MA, USA
| | - D T Odom
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- Division of Regulatory Genomics and Cancer Evolution, Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | - A G Ophir
- Department of Psychology, Cornell University, Ithaca, NY, USA
| | - S Osborn
- SeaWorld of Texas, San Antonio, TX, USA
| | - E A Ostrander
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - K M Parsons
- Conservation Biology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA, USA
| | - K C Paul
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - M Pellegrini
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA
| | - K J Peters
- Evolutionary Genetics Group, Department of Evolutionary Anthropology, University of Zurich, Zurich, Switzerland
- School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, Australia
| | - A B Pedersen
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - J L Petersen
- Department of Animal Science, University of Nebraska, Lincoln, NE, USA
| | - D W Pietersen
- Mammal Research Institute, Department of Zoology and Entomology, University of Pretoria, Hatfield, South Africa
| | - G M Pinho
- Department of Ecology and Evolutionary Biology, UCLA, Los Angeles, CA, USA
| | - J Plassais
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - J R Poganik
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - N A Prado
- Department of Biology, College of Arts and Science, Adelphi University, Garden City, NY, USA
| | - P Reddy
- Altos Labs, San Diego Institute of Science, San Diego, CA, USA
- Salk Institute for Biological Studies, La Jolla, CA, USA
| | - B Rey
- Universite de Lyon, Universite Lyon 1, CNRS, Laboratoire de Biometrie et Biologie Evolutive, Villeurbanne, France
| | - B R Ritz
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, CA, USA
- Department of Environmental Health Sciences, UCLA Fielding School of Public Health, Los Angeles, CA, USA
- Department of Neurology, UCLA David Geffen School of Medicine, Los Angeles, CA, USA
| | - J Robbins
- Center for Coastal Studies, Provincetown, MA, USA
| | | | - J Russell
- SeaWorld of California, San Diego, CA, USA
| | - E Rydkina
- Departments of Biology and Medicine, University of Rochester, Rochester, NY, USA
| | - L L Sailer
- Department of Psychology, Cornell University, Ithaca, NY, USA
| | - A B Salmon
- The Sam and Ann Barshop Institute for Longevity and Aging Studies and Department of Molecular Medicine, UT Health San Antonio and the Geriatric Research Education and Clinical Center, South Texas Veterans Healthcare System, San Antonio, TX, USA
| | | | - K M Schachtschneider
- Department of Radiology, University of Illinois at Chicago, Chicago, IL, USA
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL, USA
- National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - D Schmitt
- College of Agriculture, Missouri State University, Springfield, MO, USA
| | - T Schmitt
- SeaWorld of California, San Diego, CA, USA
| | | | - L B Schook
- Department of Radiology, University of Illinois at Chicago, Chicago, IL, USA
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - K E Sears
- Department of Ecology and Evolutionary Biology, UCLA, Los Angeles, CA, USA
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA
| | - A W Seifert
- Department of Biology, University of Kentucky, Lexington, KY, USA
| | - A Seluanov
- Departments of Biology and Medicine, University of Rochester, Rochester, NY, USA
| | - A B A Shafer
- Department of Forensic Science, Environmental and Life Sciences, Trent University, Peterborough, Ontario, Canada
| | - D Shanmuganayagam
- Biomedical and Genomic Research Group, Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI, USA
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - A V Shindyapina
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - K Singh
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS University, Mumbai, India
| | - I Sinha
- Department of Ecology and Evolutionary Biology, UCLA, Los Angeles, CA, USA
| | - J Slone
- Division of Human Genetics, Department of Pediatrics, University at Buffalo, Buffalo, NY, USA
| | - R G Snell
- Applied Translational Genetics Group, School of Biological Sciences, Centre for Brain Research, the University of Auckland, Auckland, New Zealand
| | - E Soltanmaohammadi
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, USA
| | - M L Spangler
- Department of Animal Science, University of Nebraska, Lincoln, NE, USA
| | | | - L Staggs
- SeaWorld of Florida, Orlando, FL, USA
| | | | - K J Steinman
- Species Preservation Laboratory, SeaWorld San Diego, San Diego, CA, USA
| | - D T Stewart
- Biology Department, Acadia University, Wolfville, Nova Scotia, Canada
| | - V J Sugrue
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - B Szladovits
- Department of Pathobiology and Population Sciences, Royal Veterinary College, Hatfield, UK
| | - J S Takahashi
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Howard Hughes Medical Institute, Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - M Takasugi
- Departments of Biology and Medicine, University of Rochester, Rochester, NY, USA
| | - E C Teeling
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - M J Thompson
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA
| | - B Van Bonn
- John G. Shedd Aquarium, Chicago, IL, USA
| | - S C Vernes
- School of Biology, the University of St Andrews, Fife, UK
- Neurogenetics of Vocal Communication Group, Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands
| | - D Villar
- Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - H V Vinters
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - M C Wallingford
- Mother Infant Research Institute, Tufts Medical Center, Boston, MA, USA
- Division of Obstetrics and Gynecology, Tufts University School of Medicine, Boston, MA, USA
| | - N Wang
- Center for Neurobehavioral Genetics, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - R K Wayne
- Department of Ecology and Evolutionary Biology, UCLA, Los Angeles, CA, USA
| | - G S Wilkinson
- Department of Biology, University of Maryland, College Park, MD, USA
| | - C K Williams
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - R W Williams
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, College of Medicine, Memphis, TN, USA
| | - X W Yang
- Center for Neurobehavioral Genetics, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - M Yao
- Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA, USA
| | - B G Young
- Fisheries and Oceans Canada, Winnipeg, Manitoba, Canada
| | - B Zhang
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Z Zhang
- Departments of Biology and Medicine, University of Rochester, Rochester, NY, USA
| | - P Zhao
- Division of Cardiology, Department of Internal Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA, USA
| | - Y Zhao
- Departments of Biology and Medicine, University of Rochester, Rochester, NY, USA
| | - W Zhou
- Center for Computational and Genomic Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - J Zimmermann
- Department of Mathematics and Technology, University of Applied Sciences Koblenz, Koblenz, Germany
| | - J Ernst
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, CA, USA
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - K Raj
- Altos Labs, Cambridge Institute of Science, Cambridge, UK
| | - S Horvath
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
- Altos Labs, San Diego Institute of Science, San Diego, CA, USA.
- Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
64
|
Culberson JW, Kopel J, Sehar U, Reddy PH. Urgent needs of caregiving in ageing populations with Alzheimer's disease and other chronic conditions: Support our loved ones. Ageing Res Rev 2023; 90:102001. [PMID: 37414157 PMCID: PMC10756323 DOI: 10.1016/j.arr.2023.102001] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/27/2023] [Accepted: 07/03/2023] [Indexed: 07/08/2023]
Abstract
The ageing process begins at birth. It is a life-long process, and its exact origins are still unknown. Several hypotheses attempt to describe the normal ageing process, including hormonal imbalance, formation of reactive oxygen species, DNA methylation & DNA damage accumulation, loss of proteostasis, epigenetic alterations, mitochondrial dysfunction, senescence, inflammation, and stem cell depletion. With increased lifespan in elderly individuals, the prevalence of age-related diseases including, cancer, diabetes, obesity, hypertension, Alzheimer's, Alzheimer's disease and related dementias, Parkinson's, and other mental illnesses are increased. These increased age-related illnesses, put tremendous pressure & burden on caregivers, family members, and friends who are living with patients with age-related diseases. As medical needs evolve, the caregiver is expected to experience an increase in duties and challenges, which may result in stress on themselves, and impact their own family life. In the current article, we assess the biological mechanisms of ageing and its effect on body systems, exploring lifestyle and ageing, with a specific focus on age-related disorders. We also discussed the history of caregiving and specific challenges faced by caregivers in the presence of multiple comorbidities. We also assessed innovative approaches to funding caregiving, and efforts to improve the medical system to better organize chronic care efforts, while improving the skill and efficiency of both informal and formal caregivers. We also discussed the role of caregiving in end-of-life care. Our critical analysis strongly suggests that there is an urgent need for caregiving in aged populations and support from local, state, and federal agencies.
Collapse
Affiliation(s)
- John W Culberson
- Department of Family and Community Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Jonathan Kopel
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Ujala Sehar
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Nutritional Sciences Department, College of Human Sciences, Texas Tech University, 1301 Akron Ave, Lubbock, TX 79409, USA; Neurology, Departments of School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Public Health Department of Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Speech, Language and Hearing Sciences, School Health Professions, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| |
Collapse
|
65
|
DiVito Evans A, Fairbanks RA, Schmidt P, Levine MT. Histone methylation regulates reproductive diapause in Drosophila melanogaster. PLoS Genet 2023; 19:e1010906. [PMID: 37703303 PMCID: PMC10499233 DOI: 10.1371/journal.pgen.1010906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 08/07/2023] [Indexed: 09/15/2023] Open
Abstract
Fluctuating environments threaten fertility and viability. To better match the immediate, local environment, many organisms adopt alternative phenotypic states, a phenomenon called "phenotypic plasticity." Natural populations that predictably encounter fluctuating environments tend to be more plastic than conspecific populations that encounter a constant environment, suggesting that phenotypic plasticity can be adaptive. Despite pervasive evidence of such "adaptive phenotypic plasticity," gene regulatory mechanisms underlying plasticity remains poorly understood. Here we test the hypothesis that environment-dependent phenotypic plasticity is mediated by epigenetic factors. To test this hypothesis, we exploit the adaptive reproductive arrest of Drosophila melanogaster females, called diapause. Using an inbred line from a natural population with high diapause plasticity, we demonstrate that diapause is determined epigenetically: only a subset of genetically identical individuals enter diapause and this diapause plasticity is epigenetically transmitted for at least three generations. Upon screening a suite of epigenetic marks, we discovered that the active histone marks H3K4me3 and H3K36me1 are depleted in diapausing ovaries. Using ovary-specific knockdown of histone mark writers and erasers, we demonstrate that H3K4me3 and H3K36me1 depletion promotes diapause. Given that diapause is highly polygenic, that is, distinct suites of alleles mediate diapause plasticity across distinct genotypes, we also investigated the potential for genetic variation in diapause-determining epigenetic marks. Specifically, we asked if these histone marks were similarly depleted in diapause of a genotypically distinct line. We found evidence of divergence in both the gene expression program and histone mark abundance. This study reveals chromatin determinants of phenotypic plasticity and suggests that these determinants may be genotype-dependent, offering new insight into how organisms may exploit and evolve epigenetic mechanisms to persist in fluctuating environments.
Collapse
Affiliation(s)
- Abigail DiVito Evans
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Epigenetics Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Regina A. Fairbanks
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Epigenetics Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Paul Schmidt
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Mia T. Levine
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Epigenetics Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
66
|
Liu R, Zhao E, Yu H, Yuan C, Abbas MN, Cui H. Methylation across the central dogma in health and diseases: new therapeutic strategies. Signal Transduct Target Ther 2023; 8:310. [PMID: 37620312 PMCID: PMC10449936 DOI: 10.1038/s41392-023-01528-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 08/26/2023] Open
Abstract
The proper transfer of genetic information from DNA to RNA to protein is essential for cell-fate control, development, and health. Methylation of DNA, RNAs, histones, and non-histone proteins is a reversible post-synthesis modification that finetunes gene expression and function in diverse physiological processes. Aberrant methylation caused by genetic mutations or environmental stimuli promotes various diseases and accelerates aging, necessitating the development of therapies to correct the disease-driver methylation imbalance. In this Review, we summarize the operating system of methylation across the central dogma, which includes writers, erasers, readers, and reader-independent outputs. We then discuss how dysregulation of the system contributes to neurological disorders, cancer, and aging. Current small-molecule compounds that target the modifiers show modest success in certain cancers. The methylome-wide action and lack of specificity lead to undesirable biological effects and cytotoxicity, limiting their therapeutic application, especially for diseases with a monogenic cause or different directions of methylation changes. Emerging tools capable of site-specific methylation manipulation hold great promise to solve this dilemma. With the refinement of delivery vehicles, these new tools are well positioned to advance the basic research and clinical translation of the methylation field.
Collapse
Affiliation(s)
- Ruochen Liu
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China
- Jinfeng Laboratory, Chongqing, 401329, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400715, China
| | - Erhu Zhao
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China
- Jinfeng Laboratory, Chongqing, 401329, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400715, China
| | - Huijuan Yu
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China
| | - Chaoyu Yuan
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China
| | - Muhammad Nadeem Abbas
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China
- Jinfeng Laboratory, Chongqing, 401329, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400715, China
| | - Hongjuan Cui
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China.
- Jinfeng Laboratory, Chongqing, 401329, China.
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China.
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
67
|
Senapati P, Miyano M, Sayaman RW, Basam M, Leung A, LaBarge MA, Schones DE. Loss of epigenetic suppression of retrotransposons with oncogenic potential in aging mammary luminal epithelial cells. Genome Res 2023; 33:1229-1241. [PMID: 37463750 PMCID: PMC10547379 DOI: 10.1101/gr.277511.122] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 06/23/2023] [Indexed: 07/20/2023]
Abstract
A primary function of DNA methylation in mammalian genomes is to repress transposable elements (TEs). The widespread methylation loss that is commonly observed in cancer cells results in the loss of epigenetic repression of TEs. The aging process is similarly characterized by changes to the methylome. However, the impact of these epigenomic alterations on TE silencing and the functional consequences of this have remained unclear. To assess the epigenetic regulation of TEs in aging, we profiled DNA methylation in human mammary luminal epithelial cells (LEps)-a key cell lineage implicated in age-related breast cancers-from younger and older women. We report here that several TE subfamilies function as regulatory elements in normal LEps, and a subset of these display consistent methylation changes with age. Methylation changes at these TEs occurred at lineage-specific transcription factor binding sites, consistent with loss of lineage specificity. Whereas TEs mainly showed methylation loss, CpG islands (CGIs) that are targets of the Polycomb repressive complex 2 (PRC2) show a gain of methylation in aging cells. Many TEs with methylation loss in aging LEps have evidence of regulatory activity in breast cancer samples. We furthermore show that methylation changes at TEs impact the regulation of genes associated with luminal breast cancers. These results indicate that aging leads to DNA methylation changes at TEs that undermine the maintenance of lineage specificity, potentially increasing susceptibility to breast cancer.
Collapse
Affiliation(s)
- Parijat Senapati
- Department of Diabetes Complications and Metabolism, Beckman Research Institute, City of Hope, Duarte, California 91010, USA
| | - Masaru Miyano
- Department of Population Sciences, Beckman Research Institute, City of Hope, Duarte, California 91010, USA
| | - Rosalyn W Sayaman
- Department of Population Sciences, Beckman Research Institute, City of Hope, Duarte, California 91010, USA
- Department of Laboratory Medicine, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California 94143-0981, USA
| | - Mudaser Basam
- Department of Diabetes Complications and Metabolism, Beckman Research Institute, City of Hope, Duarte, California 91010, USA
- Department of Population Sciences, Beckman Research Institute, City of Hope, Duarte, California 91010, USA
| | - Amy Leung
- Department of Diabetes Complications and Metabolism, Beckman Research Institute, City of Hope, Duarte, California 91010, USA
| | - Mark A LaBarge
- Department of Population Sciences, Beckman Research Institute, City of Hope, Duarte, California 91010, USA
- Irell & Manella Graduate School of Biological Sciences, City of Hope, Duarte, California 91010, USA
- Center for Cancer Biomarker Research, University of Bergen, 5021 Bergen, Norway
| | - Dustin E Schones
- Department of Diabetes Complications and Metabolism, Beckman Research Institute, City of Hope, Duarte, California 91010, USA;
- Irell & Manella Graduate School of Biological Sciences, City of Hope, Duarte, California 91010, USA
| |
Collapse
|
68
|
Plesa AM, Shadpour M, Boyden E, Church GM. Transcriptomic reprogramming for neuronal age reversal. Hum Genet 2023; 142:1293-1302. [PMID: 37004545 PMCID: PMC10066999 DOI: 10.1007/s00439-023-02529-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 01/24/2023] [Indexed: 04/04/2023]
Abstract
Aging is a progressive multifaceted functional decline of a biological system. Chronic age-related conditions such as neurodegenerative diseases are leading causes of death worldwide, and they are becoming a pressing problem for our society. To address this global challenge, there is a need for novel, safe, and effective rejuvenation therapies aimed at reversing age-related phenotypes and improving human health. With gene expression being a key determinant of cell identity and function, and in light of recent studies reporting rejuvenation effects through genetic perturbations, we propose an age reversal strategy focused on reprogramming the cell transcriptome to a youthful state. To this end, we suggest using transcriptomic data from primary human cells to predict rejuvenation targets and develop high-throughput aging assays, which can be used in large perturbation screens. We propose neural cells as particularly relevant targets for rejuvenation due to substantial impact of neurodegeneration on human frailty. Of all cell types in the brain, we argue that glutamatergic neurons, neuronal stem cells, and oligodendrocytes represent the most impactful and tractable targets. Lastly, we provide experimental designs for anti-aging reprogramming screens that will likely enable the development of neuronal age reversal therapies, which hold promise for dramatically improving human health.
Collapse
Affiliation(s)
- Alexandru M. Plesa
- Department of Genetics, Harvard Medical School, Boston, MA USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA USA
| | - Michael Shadpour
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA USA
- Department of Biological Engineering, MIT, Cambridge, MA USA
| | - Ed Boyden
- Department of Biological Engineering, MIT, Cambridge, MA USA
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA USA
- McGovern Institute for Brain Research, MIT, Cambridge, MA USA
- Howard Hughes Medical Institute, MIT, Cambridge, MA USA
| | - George M. Church
- Department of Genetics, Harvard Medical School, Boston, MA USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA USA
| |
Collapse
|
69
|
Han J, Yu G, Zhang X, Dai Y, Zhang H, Zhang B, Wang K. Histone Maps in Gossypium darwinii Reveal Epigenetic Regulation Drives Subgenome Divergence and Cotton Domestication. Int J Mol Sci 2023; 24:10607. [PMID: 37445787 DOI: 10.3390/ijms241310607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/16/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
The functional annotation of genomes, including chromatin modifications, is essential to understand the intricate architecture of chromatin and the consequential gene regulation. However, such an annotation remains limited for cotton genomes. Here, we conducted chromatin profiling in a wild allotetraploid cotton Gossypium darwinii (AD genome) by integrating the data of histone modification, transcriptome, and chromatin accessibility. We revealed that the A subgenome showed a higher level of active histone marks and lower level of repressive histone marks than the D subgenome, which was consistent with the expression bias between the two subgenomes. We show that the bias in transcription and histone modification between the A and D subgenomes may be caused by genes unique to the subgenome but not by homoeologous genes. Moreover, we integrate histone marks and open chromatin to define six chromatin states (S1-S6) across the cotton genome, which index different genomic elements including genes, promoters, and transposons, implying distinct biological functions. In comparison to the domesticated cotton species, we observed that 23.2% of genes in the genome exhibit a transition from one chromatin state to another at their promoter. Strikingly, the S2 (devoid of epigenetic marks) to S3 (enriched for the mark of open chromatin) was the largest transition group. These transitions occurred simultaneously with changes in gene expression, which were significantly associated with several domesticated traits in cotton. Collectively, our study provides a useful epigenetic resource for research on allopolyploid plants. The domestication-induced chromatin dynamics and associated genes identified here will aid epigenetic engineering, improving polyploid crops.
Collapse
Affiliation(s)
- Jinlei Han
- School of Life Sciences, Nantong University, Nantong 226019, China
| | - Guangrun Yu
- School of Life Sciences, Nantong University, Nantong 226019, China
| | - Xin Zhang
- School of Life Sciences, Nantong University, Nantong 226019, China
| | - Yan Dai
- School of Life Sciences, Nantong University, Nantong 226019, China
| | - Hui Zhang
- School of Life Sciences, Nantong University, Nantong 226019, China
| | - Baohong Zhang
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| | - Kai Wang
- School of Life Sciences, Nantong University, Nantong 226019, China
| |
Collapse
|
70
|
Tarnovsky YC, Taiber S, Nissan Y, Boonman A, Assaf Y, Wilkinson GS, Avraham KB, Yovel Y. Bats experience age-related hearing loss (presbycusis). Life Sci Alliance 2023; 6:e202201847. [PMID: 36997281 PMCID: PMC10067528 DOI: 10.26508/lsa.202201847] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 04/01/2023] Open
Abstract
Hearing loss is a hallmark of aging, typically initially affecting the higher frequencies. In echolocating bats, the ability to discern high frequencies is essential. However, nothing is known about age-related hearing loss in bats, and they are often assumed to be immune to it. We tested the hearing of 47 wild Egyptian fruit bats by recording their auditory brainstem response and cochlear microphonics, and we also assessed the cochlear histology in four of these bats. We used the bats' DNA methylation profile to evaluate their age and found that bats exhibit age-related hearing loss, with more prominent deterioration at the higher frequencies. The rate of the deterioration was ∼1 dB per year, comparable to the hearing loss observed in humans. Assessing the noise in the fruit bat roost revealed that these bats are exposed to continuous immense noise-mostly of social vocalizations-supporting the assumption that bats might be partially resistant to loud noise. Thus, in contrast to previous assumptions, our results suggest that bats constitute a model animal for the study of age-related hearing loss.
Collapse
Affiliation(s)
- Yifat Chaya Tarnovsky
- School of Neurobiology, Biochemistry, and Biophysics, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Shahar Taiber
- School of Neurobiology, Biochemistry, and Biophysics, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yomiran Nissan
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Arjan Boonman
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Yaniv Assaf
- School of Neurobiology, Biochemistry, and Biophysics, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | | | - Karen B Avraham
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yossi Yovel
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- School of Mechanical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
71
|
Lim ST, Kang S. Exercise therapy for sarcopenia and diabetes. World J Diabetes 2023; 14:565-572. [PMID: 37273255 PMCID: PMC10237001 DOI: 10.4239/wjd.v14.i5.565] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/13/2023] [Accepted: 04/10/2023] [Indexed: 05/15/2023] Open
Abstract
Aging is characterized by the gradual deterioration of function at the molecular, cellular, tissue, and organism levels in humans. The typical diseases caused by changes in body composition, as well as functional decline in the human body’s organs due to aging include sarcopenia and metabolic disorders. The accumulation of dysfunctional aging β cells with age can cause decreased glucose tolerance and diabetes. Muscle decline has a multifactorial origin, involving lifestyle habits, disease triggers, and age-dependent biological changes. The reduced function of β cells in elderly people lowers insulin sensitivity, which affects protein synthesis and interferes with muscle synthesis. The functional decrease and aggravation of disease in elderly people with less regular exercise or physical activity causes imbalances in food intake and a continuous, vicious cycle. In contrast, resistance exercise increases the function of β cells and protein synthesis in elderly people. In this review, we discuss regular physical activities or exercises to prevent and improve health, which is sarcopenia as decreased muscle mass and metabolic disorders as diabetes in the elderly.
Collapse
Affiliation(s)
- Seung-Taek Lim
- Institute of Sports and Arts Convergence (ISAC), Inha University, Incheon 22212, South Korea
- Waseda Institute for Sport Sciences, Waseda University, Saitama 341-0018, Japan
| | - Sunghwun Kang
- Laboratory of Exercise Physiology, College of Art, Culture and Engineering, Kangwon National University, Chuncheon-si 24341, South Korea
- Interdisciplinary Program in Biohealth-machinery convergence engineering, Kangwon National University, Chuncheon-si 24341, South Korea
| |
Collapse
|
72
|
Guzz PH, Lomoio U, Veltri P. GTExVisualizer: a web platform for supporting ageing studies. Bioinformatics 2023; 39:btad303. [PMID: 37154702 PMCID: PMC10196670 DOI: 10.1093/bioinformatics/btad303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 05/10/2023] Open
Abstract
MOTIVATION Studying ageing effects on molecules is an important new topic for life science. To perform such studies, the need for data, models, algorithms, and tools arises to elucidate molecular mechanisms. GTEx (standing for Genotype-Tissue Expression) portal is a web-based data source allowing to retrieve patients' transcriptomics data annotated with tissues, gender, and age information. It represents the more complete data sources for ageing effects studies. Nevertheless, it lacks functionalities to query data at the sex/age level, as well as tools for protein interaction studies, thereby limiting ageing studies. As a result, users need to download query results to proceed to further analysis, such as retrieving the expression of a given gene on different age (or sex) classes in many tissues. RESULTS We present the GTExVisualizer, a platform to query and analyse GTEx data. This tool contains a web interface able to: (i) graphically represent and study query results; (ii) analyse genes using sex/age expression patterns, also integrated with network-based modules; and (iii) report results as plot-based representation as well as (gene) networks. Finally, it allows the user to obtain basic statistics which evidence differences in gene expression among sex/age groups. CONCLUSION The GTExVisualizer novelty consists in providing a tool for studying ageing/sex-related effects on molecular processes. AVAILABILITY AND IMPLEMENTATION GTExVisualizer is available at: http://gtexvisualizer.herokuapp.com. The source code and data are available at: https://github.com/UgoLomoio/gtex_visualizer.
Collapse
Affiliation(s)
- Pietro Hiram Guzz
- Department of Surgical and Medical Sciences, Magna Graecia University of Catanzaro, Viale Europa, Catanzaro 88100, Italy
- Data Analytics Research Center, University of Catanzaro, Catanzaro, Italy
| | - Ugo Lomoio
- Department of Surgical and Medical Sciences, Magna Graecia University of Catanzaro, Viale Europa, Catanzaro 88100, Italy
| | | |
Collapse
|
73
|
Kühlwein JK, Ruf WP, Kandler K, Witzel S, Lang C, Mulaw MA, Ekici AB, Weishaupt JH, Ludolph AC, Grozdanov V, Danzer KM. ALS is imprinted in the chromatin accessibility of blood cells. Cell Mol Life Sci 2023; 80:131. [PMID: 37095391 PMCID: PMC10126052 DOI: 10.1007/s00018-023-04769-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/20/2023] [Accepted: 03/27/2023] [Indexed: 04/26/2023]
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a complex and incurable neurodegenerative disorder in which genetic and epigenetic factors contribute to the pathogenesis of all forms of ALS. The interplay of genetic predisposition and environmental footprints generates epigenetic signatures in the cells of affected tissues, which then alter transcriptional programs. Epigenetic modifications that arise from genetic predisposition and systemic environmental footprints should in theory be detectable not only in affected CNS tissue but also in the periphery. Here, we identify an ALS-associated epigenetic signature ('epiChromALS') by chromatin accessibility analysis of blood cells of ALS patients. In contrast to the blood transcriptome signature, epiChromALS includes also genes that are not expressed in blood cells; it is enriched in CNS neuronal pathways and it is present in the ALS motor cortex. By combining simultaneous ATAC-seq and RNA-seq with single-cell sequencing in PBMCs and motor cortex from ALS patients, we demonstrate that epigenetic changes associated with the neurodegenerative disease can be found in the periphery, thus strongly suggesting a mechanistic link between the epigenetic regulation and disease pathogenesis.
Collapse
Affiliation(s)
- Julia K Kühlwein
- Department of Neurology, University Clinic, University of Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Baden-Wuerttemberg, Germany
| | - Wolfgang P Ruf
- Department of Neurology, University Clinic, University of Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Baden-Wuerttemberg, Germany
| | - Katharina Kandler
- Department of Neurology, University Clinic, University of Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Baden-Wuerttemberg, Germany
| | - Simon Witzel
- Department of Neurology, University Clinic, University of Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Baden-Wuerttemberg, Germany
| | - Christina Lang
- Department of Neurology, University Clinic, University of Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Baden-Wuerttemberg, Germany
| | - Medhanie A Mulaw
- Medical Faculty, University of Ulm, 89081, Ulm, Baden-Wuerttemberg, Germany
| | - Arif B Ekici
- Institute of Human Genetics, University Clinic Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, 91054, Erlangen, Bayern, Germany
| | - Jochen H Weishaupt
- Division for Neurodegenerative Diseases, Neurology Department, University Medicine Mannheim, Heidelberg University, 68167, Mannheim, Baden-Wuerttemberg, Germany
| | - Albert C Ludolph
- Department of Neurology, University Clinic, University of Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Baden-Wuerttemberg, Germany
- German Center for Neurodegenerative Diseases (DZNE), 89081, Ulm, Baden-Wuerttemberg, Germany
| | - Veselin Grozdanov
- Department of Neurology, University Clinic, University of Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Baden-Wuerttemberg, Germany
| | - Karin M Danzer
- Department of Neurology, University Clinic, University of Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Baden-Wuerttemberg, Germany.
- German Center for Neurodegenerative Diseases (DZNE), 89081, Ulm, Baden-Wuerttemberg, Germany.
| |
Collapse
|
74
|
la Torre A, Lo Vecchio F, Greco A. Epigenetic Mechanisms of Aging and Aging-Associated Diseases. Cells 2023; 12:cells12081163. [PMID: 37190071 DOI: 10.3390/cells12081163] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 04/04/2023] [Accepted: 04/07/2023] [Indexed: 05/17/2023] Open
Abstract
Aging is an inevitable outcome of life, characterized by a progressive decline in tissue and organ function. At a molecular level, it is marked by the gradual alterations of biomolecules. Indeed, important changes are observed on the DNA, as well as at a protein level, that are influenced by both genetic and environmental parameters. These molecular changes directly contribute to the development or progression of several human pathologies, including cancer, diabetes, osteoporosis, neurodegenerative disorders and others aging-related diseases. Additionally, they increase the risk of mortality. Therefore, deciphering the hallmarks of aging represents a possibility for identifying potential druggable targets to attenuate the aging process, and then the age-related comorbidities. Given the link between aging, genetic, and epigenetic alterations, and given the reversible nature of epigenetic mechanisms, the precisely understanding of these factors may provide a potential therapeutic approach for age-related decline and disease. In this review, we center on epigenetic regulatory mechanisms and their aging-associated changes, highlighting their inferences in age-associated diseases.
Collapse
Affiliation(s)
- Annamaria la Torre
- Laboratory of Gerontology and Geriatrics, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, 71013 Foggia, Italy
| | - Filomena Lo Vecchio
- Laboratory of Gerontology and Geriatrics, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, 71013 Foggia, Italy
| | - Antonio Greco
- Complex Unit of Geriatrics, Department of Medical Sciences, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, 71013 Foggia, Italy
| |
Collapse
|
75
|
Zocher S, Toda T. Epigenetic aging in adult neurogenesis. Hippocampus 2023; 33:347-359. [PMID: 36624660 DOI: 10.1002/hipo.23494] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/11/2022] [Accepted: 12/06/2022] [Indexed: 01/11/2023]
Abstract
Neural stem cells (NSCs) in the hippocampus generate new neurons throughout life, which functionally contribute to cognitive flexibility and mood regulation. Yet adult hippocampal neurogenesis substantially declines with age and age-related impairments in NSC activity underlie this reduction. Particularly, increased NSC quiescence and consequently reduced NSC proliferation are considered to be major drivers of the low neurogenesis levels in the aged brain. Epigenetic regulators control the gene expression programs underlying NSC quiescence, proliferation and differentiation and are hence critical to the regulation of adult neurogenesis. Epigenetic alterations have also emerged as central hallmarks of aging, and recent studies suggest the deterioration of the NSC-specific epigenetic landscape as a driver of the age-dependent decline in adult neurogenesis. In this review, we summarize the recently accumulating evidence for a role of epigenetic dysregulation in NSC aging and propose perspectives for future research directions.
Collapse
Affiliation(s)
- Sara Zocher
- Nuclear Architecture in Neural Plasticity and Aging Laboratory, German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany
| | - Tomohisa Toda
- Nuclear Architecture in Neural Plasticity and Aging Laboratory, German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany
- Institute of Medical Physics and Microtissue Engineering, Faculty of Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
76
|
Tai H, Tsai W, Chang M, Praveen Rajneesh C, Tseng X, Hsu W, Wu Y, Chiang H. Intracavernous injection of platelet-rich plasma reverses erectile dysfunction of chronic cavernous nerve degeneration through reduction of prostate hyperplasia evidence from an aging-induced erectile dysfunction rat model. FASEB J 2023; 37:e22826. [PMID: 36856608 PMCID: PMC11977599 DOI: 10.1096/fj.202201443r] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 12/27/2022] [Accepted: 02/02/2023] [Indexed: 03/02/2023]
Abstract
Age-induced erectile dysfunction (ED) is a convoluted medical condition, and restoring erectile function (EF) under geriatric conditions is highly complicated. Platelet-rich plasma (PRP) treatment is an inexpensive cell-based therapeutic strategy. We have aimed to restore EF in aged-ED rats with PRP as a therapeutic tool. Male rats were grouped into aged and young according to age. The young rats were considered as normal control (NC) and treated with saline. Aged were further divided into 2 groups and treated with intracavernous (IC) PRP and saline. Treatment was scheduled at the 9th and 10th week for NC and 41th and 42th week for aged-ED rats, with EF analysis scheduled on the 12th week for NC and 44th week for aged-ED rats, respectively. Erectile response, immunofluorescence staining, and electron microscopic analyses were performed. IC PRP treatment effectively reduced prostate hyperplasia (PH). EF response indicated a significant increase in crucial EF parameters in PRP-treated aged-ED rats. Histological evidence denoted a rigid and restored development of tunica adventitia of the dorsal artery, decreased vacuolation of the dorsal penile nerve, and structural expansion of the epineurium. Masson's trichrome and immunostaining results affirmed an elevated expression of α-smooth muscle actin (α-SMA) in the corpus cavernosum (CC). Ultrastructure findings revealed that PRP effectively rejuvenated degenerating nerves, preserved endothelium and adherent junctions of corporal smooth muscle, and restored the axonal scaffolds by upregulating neurofilament-H (NF-H) expression. Finally, PRP enhanced neural stability by enhancing the axonal remyelination processes in aged-ED rats. Hence, PRP treatment was proven to restore EF in aged-ED rats, which was considered a safe, novel, cost-effective, and hassle-free strategy for EF restoration in geriatric patients.
Collapse
Affiliation(s)
- Huai‐Ching Tai
- Department of Urology, Fu Jen Catholic University HospitalFu Jen Catholic UniversityNew Taipei CityTaiwan
- School of Medicine, College of MedicineFu Jen Catholic UniversityNew Taipei CityTaiwan
| | - Wei‐Kung Tsai
- Department of UrologyMacKay Memorial HospitalTaipei CityTaiwan
- Ph.D. Program in Nutrition and Food ScienceFu Jen Catholic UniversityNew Taipei CityTaiwan
- Graduate Institute of Biomedical and Pharmaceutical ScienceFu Jen Catholic UniversityNew Taipei CityTaiwan
- Department of MedicineMacKay Medical CollegeNew Taipei CityTaiwan
- MacKay Junior College of Medicine, Nursing, and ManagementTaipei CityTaiwan
| | - Meng‐Lin Chang
- Department of Urology, Fu Jen Catholic University HospitalFu Jen Catholic UniversityNew Taipei CityTaiwan
- School of Medicine, College of MedicineFu Jen Catholic UniversityNew Taipei CityTaiwan
| | | | - Xiao‐Wen Tseng
- Program in Pharmaceutical Biotechnology, College of MedicineFu Jen Catholic UniversityNew Taipei CityTaiwan
| | - Wen‐Chun Hsu
- Graduate Institute of Nutrition and Food SciencesFu Jen Catholic UniversityNew Taipei CityTaiwan
- Department of Clinical PathologyCathay General HospitalTaipei CityTaiwan
| | - Yi‐No Wu
- School of Medicine, College of MedicineFu Jen Catholic UniversityNew Taipei CityTaiwan
| | - Han‐Sun Chiang
- Department of Urology, Fu Jen Catholic University HospitalFu Jen Catholic UniversityNew Taipei CityTaiwan
- Graduate Institute of Biomedical and Pharmaceutical ScienceFu Jen Catholic UniversityNew Taipei CityTaiwan
- Division of Urology, Department of SurgeryCardinal Tien HospitalNew Taipei CityTaiwan
| |
Collapse
|
77
|
Si J, Chen L, Yu C, Guo Y, Sun D, Pang Y, Millwood IY, Walters RG, Yang L, Chen Y, Du H, Feng S, Yang X, Avery D, Chen J, Chen Z, Liang L, Li L, Lv J. Healthy lifestyle, DNA methylation age acceleration, and incident risk of coronary heart disease. Clin Epigenetics 2023; 15:52. [PMID: 36978155 PMCID: PMC10045869 DOI: 10.1186/s13148-023-01464-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 03/12/2023] [Indexed: 03/30/2023] Open
Abstract
BACKGROUND DNA methylation clocks emerged as a tool to determine biological aging and have been related to mortality and age-related diseases. Little is known about the association of DNA methylation age (DNAm age) with coronary heart disease (CHD), especially in the Asian population. RESULTS Methylation level of baseline blood leukocyte DNA was measured by Infinium Methylation EPIC BeadChip for 491 incident CHD cases and 489 controls in the prospective China Kadoorie Biobank. We calculated the methylation age using a prediction model developed among Chinese. The correlation between chronological age and DNAm age was 0.90. DNA methylation age acceleration (Δage) was defined as the residual of regressing DNA methylation age on the chronological age. After adjustment for multiple risk factors of CHD and cell type proportion, compared with participants in the bottom quartile of Δage, the OR (95% CI) for CHD was 1.84 (1.17, 2.89) for participants in the top quartile. One SD increment in Δage was associated with 30% increased risk of CHD (OR = 1.30; 95% CI 1.09, 1.56; Ptrend = 0.003). The average number of cigarette equivalents consumed per day and waist-to-hip ratio were positively associated with Δage; red meat consumption was negatively associated with Δage, characterized by accelerated aging in those who never or rarely consumed red meat (all P < 0.05). Further mediation analysis revealed that 10%, 5% and 18% of the CHD risk related to smoking, waist-to-hip ratio and never or rarely red meat consumption was mediated through methylation aging, respectively (all P for mediation effect < 0.05). CONCLUSIONS We first identified the association between DNAm age acceleration and incident CHD in the Asian population, and provided evidence that unfavorable lifestyle-induced epigenetic aging may play an important part in the underlying pathway to CHD.
Collapse
Affiliation(s)
- Jiahui Si
- Institute of Medical Technology, Health Science Center of Peking University, Beijing, China
- National Institute of Health Data Science at Peking University, Peking University, Beijing, China
| | - Lu Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, 38 Xueyuan Road, Beijing, 100191, China
| | - Canqing Yu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, 38 Xueyuan Road, Beijing, 100191, China
- Center for Public Health and Epidemic Preparedness & Response, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| | - Yu Guo
- Fuwai Hospital Chinese Academy of Medical Sciences, Beijing, China
| | - Dianjianyi Sun
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, 38 Xueyuan Road, Beijing, 100191, China
- Center for Public Health and Epidemic Preparedness & Response, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| | - Yuanjie Pang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, 38 Xueyuan Road, Beijing, 100191, China
- Center for Public Health and Epidemic Preparedness & Response, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| | - Iona Y Millwood
- Medical Research Council Population Health Research Unit at the University of Oxford, Oxford, UK
- Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Robin G Walters
- Medical Research Council Population Health Research Unit at the University of Oxford, Oxford, UK
- Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Ling Yang
- Medical Research Council Population Health Research Unit at the University of Oxford, Oxford, UK
- Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Yiping Chen
- Medical Research Council Population Health Research Unit at the University of Oxford, Oxford, UK
- Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Huaidong Du
- Medical Research Council Population Health Research Unit at the University of Oxford, Oxford, UK
- Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Shixian Feng
- NCDs Prevention and Control Department, Henan CDC, Zhengzhou, Henan, China
| | - Xiaoming Yang
- Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Daniel Avery
- Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Junshi Chen
- China National Center for Food Safety Risk Assessment, Beijing, China
| | - Zhengming Chen
- Medical Research Council Population Health Research Unit at the University of Oxford, Oxford, UK
- Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Liming Liang
- Departments of Epidemiology and Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Liming Li
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, 38 Xueyuan Road, Beijing, 100191, China.
- Center for Public Health and Epidemic Preparedness & Response, Peking University, 38 Xueyuan Road, Beijing, 100191, China.
| | - Jun Lv
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, 38 Xueyuan Road, Beijing, 100191, China.
- Center for Public Health and Epidemic Preparedness & Response, Peking University, 38 Xueyuan Road, Beijing, 100191, China.
| |
Collapse
|
78
|
Yasukouchi A. The next stage of physiological anthropology. J Physiol Anthropol 2023; 42:3. [PMID: 36895022 PMCID: PMC9999635 DOI: 10.1186/s40101-023-00320-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023] Open
|
79
|
Aguilar-Hernández L, Alejandre R, César Morales-Medina J, Iannitti T, Flores G. Cellular mechanisms in brain aging: Focus on physiological and pathological aging. J Chem Neuroanat 2023; 128:102210. [PMID: 36496000 DOI: 10.1016/j.jchemneu.2022.102210] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 11/28/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022]
Abstract
Aging is a natural phenomenon characterized by accumulation of cellular damage and debris. Oxidative stress, cellular senescence, sustained inflammation, and DNA damage are the main cellular processes characteristic of aging associated with morphological and functional decline. These effects tend to be more pronounced in tissues with high metabolic rates such as the brain, mainly in regions such as the prefrontal cortex, hippocampus, and amygdala. These regions are highly related to cognitive behavior, and therefore their atrophy usually leads to decline in processes such as memory and learning. These cognitive declines can occur in physiological aging and are exacerbated in pathological aging. In this article, we review the cellular processes that underlie the triggers of aging and how they relate to one another, causing the atrophy of nerve tissue that is typical of aging. The main topic of this review to determine the central factor that triggers all the cellular processes that lead to cellular aging and discriminate between normal and pathological aging. Finally, we review how the use of supplements with antioxidant and anti-inflammatory properties reduces the cognitive decline typical of aging, which reinforces the hypothesis of oxidative stress and cellular damage as contributors of physiological atrophy of aging. Moreover, cumulative evidence suggests their possible use as therapies, which improve the aging population's quality of life.
Collapse
Affiliation(s)
- Leonardo Aguilar-Hernández
- Lab. Neuropsiquiatría, Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, 14 Sur 6301, San Manuel 72570, Puebla, Mexico; Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Ricardo Alejandre
- Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Julio César Morales-Medina
- Centro de Investigación en Reproducción Animal, CINVESTAV-Universidad Autónoma de Tlaxcala, AP 62, CP 90000 Tlaxcala, Mexico
| | - Tommaso Iannitti
- University of Ferrara, Department of Medical Sciences, Section of Experimental Medicine, Via Fossato di Mortara 70, 44121 Ferrara, Italy
| | - Gonzalo Flores
- Lab. Neuropsiquiatría, Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, 14 Sur 6301, San Manuel 72570, Puebla, Mexico.
| |
Collapse
|
80
|
Yasuda T, Baba H, Ishimoto T. Cellular senescence in the tumor microenvironment and context-specific cancer treatment strategies. FEBS J 2023; 290:1290-1302. [PMID: 34653317 DOI: 10.1111/febs.16231] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/04/2021] [Accepted: 10/14/2021] [Indexed: 12/29/2022]
Abstract
Cellular senescence in cancer development is known to have tumor-suppressive and tumor-promoting roles. Recent studies have revealed numerous molecular mechanisms of senescence followed by senescence-associated secretory phenotype induction and showed the significance of senescence on both sides. Cellular senescence in stromal cells is one of the reasons for therapeutic resistance in advanced cancer; thus, it is an inevitable phenomenon to address while seeking an effective cancer treatment strategy. This review summarizes the molecular mechanisms regarding cellular senescence, focusing on the dual roles played by senescence, and offers some direction toward successful treatments targeting harmful senescent cells.
Collapse
Affiliation(s)
- Tadahito Yasuda
- Gastrointestinal Cancer Biology, International Research Center for Medical Sciences (IRCMS), Kumamoto University, Japan.,Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Japan
| | - Hideo Baba
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Japan.,Center for Metabolic Regulation of Healthy Aging, Faculty of Life Sciences, Kumamoto University, Japan
| | - Takatsugu Ishimoto
- Gastrointestinal Cancer Biology, International Research Center for Medical Sciences (IRCMS), Kumamoto University, Japan.,Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Japan
| |
Collapse
|
81
|
Soto ME, Pérez-Torres I, Rubio-Ruiz ME, Cano-Martínez A, Manzano-Pech L, Guarner-Lans V. Frailty and the Interactions between Skeletal Muscle, Bone, and Adipose Tissue-Impact on Cardiovascular Disease and Possible Therapeutic Measures. Int J Mol Sci 2023; 24:ijms24054534. [PMID: 36901968 PMCID: PMC10003713 DOI: 10.3390/ijms24054534] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/18/2023] [Accepted: 02/24/2023] [Indexed: 03/02/2023] Open
Abstract
Frailty is a global health problem that impacts clinical practice. It is complex, having a physical and a cognitive component, and it is the result of many contributing factors. Frail patients have oxidative stress and elevated proinflammatory cytokines. Frailty impairs many systems and results in a reduced physiological reserve and increased vulnerability to stress. It is related to aging and to cardiovascular diseases (CVD). There are few studies on the genetic factors of frailty, but epigenetic clocks determine age and frailty. In contrast, there is genetic overlap of frailty with cardiovascular disease and its risk factors. Frailty is not yet considered a risk factor for CVD. It is accompanied by a loss and/or poor functioning of muscle mass, which depends on fiber protein content, resulting from the balance between protein breakdown and synthesis. Bone fragility is also implied, and there is a crosstalk between adipocytes, myocytes, and bone. The identification and assessment of frailty is difficult, without there being a standard instrument to identify or treat it. Measures to prevent its progression include exercises, as well as supplementing the diet with vitamin D and K, calcium, and testosterone. In conclusion, more research is needed to better understand frailty and to avoid complications in CVD.
Collapse
Affiliation(s)
- María Elena Soto
- Department of Endocrinology, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico
| | - Israel Pérez-Torres
- Department of Cardiovascular Biomedicine, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico
| | - María Esther Rubio-Ruiz
- Department of Physiology, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico
| | - Agustina Cano-Martínez
- Department of Physiology, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico
| | - Linaloe Manzano-Pech
- Department of Cardiovascular Biomedicine, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico
| | - Verónica Guarner-Lans
- Department of Physiology, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico
- Correspondence:
| |
Collapse
|
82
|
Zeng H, Lu X, Sun H, Wang H. Editorial: Epigenetics of metabolism, immunology and aging. Front Genet 2023; 14:1135889. [PMID: 36741313 PMCID: PMC9891722 DOI: 10.3389/fgene.2023.1135889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 01/12/2023] [Indexed: 01/19/2023] Open
Affiliation(s)
- Hailuan Zeng
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China,Human Phenome Institute, Fudan University, Shanghai, China,*Correspondence: Hailuan Zeng, ; Xiaofan Lu, ; Heng Sun, ; Haitao Wang,
| | - Xiaofan Lu
- Department of Cancer and Functional Genomics, Institute of Genetics and Molecular and Cellular Biology, CNRS/INSERM/UNISTRA, Illkirch, France,State Key Laboratory of Natural Medicines, Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing, China,*Correspondence: Hailuan Zeng, ; Xiaofan Lu, ; Heng Sun, ; Haitao Wang,
| | - Heng Sun
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau, Macau SAR, China,MOE Frontiers Science Center for Precision Oncology, University of Macau, Macau, Macau SAR, China,Zhuhai Research Institute, University of Macau, Zhuhai, China,*Correspondence: Hailuan Zeng, ; Xiaofan Lu, ; Heng Sun, ; Haitao Wang,
| | - Haitao Wang
- Thoracic Surgery Branch, Center for Cancer Research, National Cancer Institute (NCI), Bethesda, MD, United States,*Correspondence: Hailuan Zeng, ; Xiaofan Lu, ; Heng Sun, ; Haitao Wang,
| |
Collapse
|
83
|
Long-term impact of paediatric critical illness on the difference between epigenetic and chronological age in relation to physical growth. Clin Epigenetics 2023; 15:8. [PMID: 36639798 PMCID: PMC9840263 DOI: 10.1186/s13148-023-01424-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/07/2023] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Altered DNA-methylation affects biological ageing in adults and developmental processes in children. DNA-methylation is altered by environmental factors, trauma and illnesses. We hypothesised that paediatric critical illness, and the nutritional management in the paediatric intensive care unit (PICU), affects DNA-methylation changes that underly the developmental processes of childhood ageing. RESULTS We studied the impact of critical illness, and of the early use of parenteral nutrition (early-PN) versus late-PN, on "epigenetic age-deviation" in buccal mucosa of 818 former PICU-patients (406 early-PN, 412 late-PN) who participated in the 2-year follow-up of the multicentre PEPaNIC-RCT (ClinicalTrials.gov-NCT01536275), as compared with 392 matched healthy children, and assessed whether this relates to their impaired growth. The epigenetic age-deviation (difference between PedBE clock-estimated epigenetic age and chronological age) was calculated. Using bootstrapped multivariable linear regression models, we assessed the impact hereon of critical illness, and of early-PN versus late-PN. As compared with healthy children, epigenetic age of patients assessed 2 years after PICU-admission deviated negatively from chronological age (p < 0.05 in 51% of bootstrapped replicates), similarly in early-PN and late-PN groups. Next, we identified vulnerable subgroups for epigenetic age-deviation using interaction analysis. We revealed that DNA-methylation age-deceleration in former PICU-patients was dependent on age at time of illness (p < 0.05 for 83% of bootstrapped replicates), with vulnerability starting from 6 years onwards. Finally, we assessed whether vulnerability to epigenetic age-deviation could be related to impaired growth from PICU-admission to follow-up at 2 and 4 years. Multivariable repeated measures ANOVA showed that former PICU-patients, as compared with healthy children, grew less in height (p = 0.0002) and transiently gained weight (p = 0.0003) over the 4-year time course. Growth in height was more stunted in former PICU-patients aged ≥ 6-years at time of critical illness (p = 0.002) than in the younger patients. CONCLUSIONS As compared with healthy children, former PICU-patients, in particular those aged ≥ 6-years at time of illness, revealed epigenetic age-deceleration, with a physical correlate revealing stunted growth in height. Whether this vulnerability around the age of 6 years for epigenetic age-deceleration and stunted growth years later relates to altered endocrine pathways activated at the time of adrenarche requires further investigation.
Collapse
|
84
|
Stevanovic M, Lazic A, Schwirtlich M, Stanisavljevic Ninkovic D. The Role of SOX Transcription Factors in Ageing and Age-Related Diseases. Int J Mol Sci 2023; 24:851. [PMID: 36614288 PMCID: PMC9821406 DOI: 10.3390/ijms24010851] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 01/05/2023] Open
Abstract
The quest for eternal youth and immortality is as old as humankind. Ageing is an inevitable physiological process accompanied by many functional declines that are driving factors for age-related diseases. Stem cell exhaustion is one of the major hallmarks of ageing. The SOX transcription factors play well-known roles in self-renewal and differentiation of both embryonic and adult stem cells. As a consequence of ageing, the repertoire of adult stem cells present in various organs steadily declines, and their dysfunction/death could lead to reduced regenerative potential and development of age-related diseases. Thus, restoring the function of aged stem cells, inducing their regenerative potential, and slowing down the ageing process are critical for improving the health span and, consequently, the lifespan of humans. Reprograming factors, including SOX family members, emerge as crucial players in rejuvenation. This review focuses on the roles of SOX transcription factors in stem cell exhaustion and age-related diseases, including neurodegenerative diseases, visual deterioration, chronic obstructive pulmonary disease, osteoporosis, and age-related cancers. A better understanding of the molecular mechanisms of ageing and the roles of SOX transcription factors in this process could open new avenues for developing novel strategies that will delay ageing and prevent age-related diseases.
Collapse
Affiliation(s)
- Milena Stevanovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia
- Faculty of Biology, University of Belgrade, Studentski trg 16, 11158 Belgrade, Serbia
- Serbian Academy of Sciences and Arts, Knez Mihailova 35, 11000 Belgrade, Serbia
| | - Andrijana Lazic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia
| | - Marija Schwirtlich
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia
| | | |
Collapse
|
85
|
Bamshad C, Najafi-Ghalehlou N, Pourmohammadi-Bejarpasi Z, Tomita K, Kuwahara Y, Sato T, Feizkhah A, Roushnadeh AM, Roudkenar MH. Mitochondria: how eminent in ageing and neurodegenerative disorders? Hum Cell 2023; 36:41-61. [PMID: 36445534 DOI: 10.1007/s13577-022-00833-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/23/2022] [Indexed: 11/30/2022]
Abstract
Numerous factors are implicated in the onset and progression of ageing and neurodegenerative disorders, with defects in cell energy supply and free radicals regulation designated as being the main functions of mitochondria and highly accentuated in plentiful studies. Hence, analysing the role of mitochondria as one of the main factors implicated in these disorders could undoubtedly come in handy with respect to disease prevention and treatment. In this review, first, we will explore how mitochondria account for neurodegenerative disorders and ageing and later will draw the various pathways contributing to mitochondrial dysfunction in their distinct way. Also, we will discuss the deviation-countering mechanisms, particularly mitophagy, a subset of autophagy known as a much larger cellular defence mechanism and regulatory system, along with its potential therapeutic effects. Last but not least, we will be highlighting the mitochondrial transfer experiments with animal models of neurodegenerative disorders.
Collapse
Affiliation(s)
- Chia Bamshad
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Nima Najafi-Ghalehlou
- Department of Medical Laboratory Sciences, Faculty of Paramedicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Pourmohammadi-Bejarpasi
- Burn and Regenerative Medicine Research Center, School of Medicine, Velayat Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Kazuo Tomita
- Department of Applied Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Yoshikazu Kuwahara
- Division of Radiation Biology and Medicine, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Tomoaki Sato
- Department of Applied Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Alireza Feizkhah
- Burn and Regenerative Medicine Research Center, School of Medicine, Velayat Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Amaneh Mohammadi Roushnadeh
- Burn and Regenerative Medicine Research Center, School of Medicine, Velayat Hospital, Guilan University of Medical Sciences, Rasht, Iran.
| | - Mehryar Habibi Roudkenar
- Burn and Regenerative Medicine Research Center, School of Medicine, Velayat Hospital, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
86
|
Aversano S, Caiazza C, Caiazzo M. Induced pluripotent stem cell-derived and directly reprogrammed neurons to study neurodegenerative diseases: The impact of aging signatures. Front Aging Neurosci 2022; 14:1069482. [PMID: 36620769 PMCID: PMC9810544 DOI: 10.3389/fnagi.2022.1069482] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 11/22/2022] [Indexed: 12/24/2022] Open
Abstract
Many diseases of the central nervous system are age-associated and do not directly result from genetic mutations. These include late-onset neurodegenerative diseases (NDDs), which represent a challenge for biomedical research and drug development due to the impossibility to access to viable human brain specimens. Advancements in reprogramming technologies have allowed to obtain neurons from induced pluripotent stem cells (iPSCs) or directly from somatic cells (iNs), leading to the generation of better models to understand the molecular mechanisms and design of new drugs. Nevertheless, iPSC technology faces some limitations due to reprogramming-associated cellular rejuvenation which resets the aging hallmarks of donor cells. Given the prominent role of aging for the development and manifestation of late-onset NDDs, this suggests that this approach is not the most suitable to accurately model age-related diseases. Direct neuronal reprogramming, by which a neuron is formed via direct conversion from a somatic cell without going through a pluripotent intermediate stage, allows the possibility to generate patient-derived neurons that maintain aging and epigenetic signatures of the donor. This aspect may be advantageous for investigating the role of aging in neurodegeneration and for finely dissecting underlying pathological mechanisms. Here, we will compare iPSC and iN models as regards the aging status and explore how this difference is reported to affect the phenotype of NDD in vitro models.
Collapse
Affiliation(s)
- Simona Aversano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Carmen Caiazza
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Massimiliano Caiazzo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy,Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht, Netherlands,*Correspondence: Massimiliano Caiazzo,
| |
Collapse
|
87
|
Cai Y, Song W, Li J, Jing Y, Liang C, Zhang L, Zhang X, Zhang W, Liu B, An Y, Li J, Tang B, Pei S, Wu X, Liu Y, Zhuang CL, Ying Y, Dou X, Chen Y, Xiao FH, Li D, Yang R, Zhao Y, Wang Y, Wang L, Li Y, Ma S, Wang S, Song X, Ren J, Zhang L, Wang J, Zhang W, Xie Z, Qu J, Wang J, Xiao Y, Tian Y, Wang G, Hu P, Ye J, Sun Y, Mao Z, Kong QP, Liu Q, Zou W, Tian XL, Xiao ZX, Liu Y, Liu JP, Song M, Han JDJ, Liu GH. The landscape of aging. SCIENCE CHINA. LIFE SCIENCES 2022; 65:2354-2454. [PMID: 36066811 PMCID: PMC9446657 DOI: 10.1007/s11427-022-2161-3] [Citation(s) in RCA: 191] [Impact Index Per Article: 63.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/05/2022] [Indexed: 02/07/2023]
Abstract
Aging is characterized by a progressive deterioration of physiological integrity, leading to impaired functional ability and ultimately increased susceptibility to death. It is a major risk factor for chronic human diseases, including cardiovascular disease, diabetes, neurological degeneration, and cancer. Therefore, the growing emphasis on "healthy aging" raises a series of important questions in life and social sciences. In recent years, there has been unprecedented progress in aging research, particularly the discovery that the rate of aging is at least partly controlled by evolutionarily conserved genetic pathways and biological processes. In an attempt to bring full-fledged understanding to both the aging process and age-associated diseases, we review the descriptive, conceptual, and interventive aspects of the landscape of aging composed of a number of layers at the cellular, tissue, organ, organ system, and organismal levels.
Collapse
Affiliation(s)
- Yusheng Cai
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Wei Song
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, College of Life Sciences, Wuhan University, Wuhan, 430071, China
| | - Jiaming Li
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ying Jing
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Chuqian Liang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Liyuan Zhang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
| | - Xia Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Wenhui Zhang
- University of Chinese Academy of Sciences, Beijing, 100049, China
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Beibei Liu
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
| | - Yongpan An
- Peking University International Cancer Institute, Peking University Health Science Center, Peking University, Beijing, 100191, China
| | - Jingyi Li
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Baixue Tang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Siyu Pei
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xueying Wu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yuxuan Liu
- School of Pharmaceutical Sciences, Beijing Advanced Innovation Center for Structural Biology, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing, 100084, China
| | - Cheng-Le Zhuang
- Colorectal Cancer Center/Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai, 200072, China
| | - Yilin Ying
- Department of Geriatrics, Medical Center on Aging of Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
- International Laboratory in Hematology and Cancer, Shanghai Jiaotong University School of Medicine/Ruijin Hospital, Shanghai, 200025, China
| | - Xuefeng Dou
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yu Chen
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Fu-Hui Xiao
- State Key Laboratory of Genetic Resources and Evolution/Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China
| | - Dingfeng Li
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Ruici Yang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Ya Zhao
- Aging and Vascular Diseases, Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang, 330031, China
| | - Yang Wang
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Lihui Wang
- Institute of Ageing Research, Hangzhou Normal University, School of Basic Medical Sciences, Hangzhou, 311121, China
| | - Yujing Li
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Shuai Ma
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Si Wang
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
- The Fifth People's Hospital of Chongqing, Chongqing, 400062, China.
| | - Xiaoyuan Song
- MOE Key Laboratory of Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, Neurodegenerative Disorder Research Center, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China.
| | - Jie Ren
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Liang Zhang
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Jun Wang
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Weiqi Zhang
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
| | - Zhengwei Xie
- Peking University International Cancer Institute, Peking University Health Science Center, Peking University, Beijing, 100191, China.
| | - Jing Qu
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Jianwei Wang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China.
| | - Yichuan Xiao
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Ye Tian
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Gelin Wang
- School of Pharmaceutical Sciences, Beijing Advanced Innovation Center for Structural Biology, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing, 100084, China.
| | - Ping Hu
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Colorectal Cancer Center/Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai, 200072, China.
- Guangzhou Laboratory, Guangzhou International Bio Island, Guangzhou, 510005, China.
| | - Jing Ye
- Department of Geriatrics, Medical Center on Aging of Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China.
- International Laboratory in Hematology and Cancer, Shanghai Jiaotong University School of Medicine/Ruijin Hospital, Shanghai, 200025, China.
| | - Yu Sun
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China.
- Department of Medicine and VAPSHCS, University of Washington, Seattle, 98195, USA.
| | - Zhiyong Mao
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| | - Qing-Peng Kong
- State Key Laboratory of Genetic Resources and Evolution/Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China.
| | - Qiang Liu
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China.
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China.
| | - Weiguo Zou
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Xiao-Li Tian
- Aging and Vascular Diseases, Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang, 330031, China.
| | - Zhi-Xiong Xiao
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China.
| | - Yong Liu
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, College of Life Sciences, Wuhan University, Wuhan, 430071, China.
| | - Jun-Ping Liu
- Institute of Ageing Research, Hangzhou Normal University, School of Basic Medical Sciences, Hangzhou, 311121, China.
- Department of Immunology and Pathology, Monash University Faculty of Medicine, Prahran, Victoria, 3181, Australia.
- Hudson Institute of Medical Research, and Monash University Department of Molecular and Translational Science, Clayton, Victoria, 3168, Australia.
| | - Moshi Song
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Jing-Dong J Han
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology, Peking University, Beijing, 100871, China.
| | - Guang-Hui Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
| |
Collapse
|
88
|
Libertini G, Corbi G, Shubernetskaya O, Ferrara N. Is Human Aging a Form of Phenoptosis? BIOCHEMISTRY. BIOKHIMIIA 2022; 87:1446-1464. [PMID: 36717439 DOI: 10.1134/s0006297922120033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
A much debated question is whether aging is the cumulative consequence of degenerative factors insufficiently opposed by natural selection, or, on the contrary, an ordered process, genetically determined and regulated, modeled by natural selection, and for which the definition of phenoptotic phenomenon would be entirely appropriate. In this review, theoretical arguments and empirical data about the two hypotheses are exposed, with more evidence in support of the thesis of aging as a form of phenoptosis. However, as the thesis of aging as an adaptive and programmed phenomenon necessarily requires the existence of specific mechanisms that determine to age, such as the subtelomere-telomere theory proposed for this purpose, the evidence supporting the mechanisms described by this theory is reported. In particular, it is highlighted that the recent interpretation of the role of TERRA sequences in the context of subtelomere-telomere theory is a fundamental point in supporting the hypothesized mechanisms. Furthermore, some characteristics of the mechanisms proposed by the theory, such as epigenetic modifications in aging, gradual cell senescence, cell senescence, limits in cell duplications, and fixed size of the telomeric heterochromatin hood, are exposed in their compatibility with both the thesis of aging as phenoptotic phenomenon and the opposite thesis. In short, aging as a form of phenoptosis appears a scientifically sound hypothesis while the opposite thesis should clarify the meaning of various phenomena that appear to invalidate it.
Collapse
Affiliation(s)
- Giacinto Libertini
- Italian Society for Evolutionary Biology (SIBE), Asti, 14100, Italy. .,Department of Translational Medical Sciences, Federico II University of Naples, Naples, 80131, Italy
| | - Graziamaria Corbi
- Department of Medicine and Health Sciences, University of Molise, Campobasso, 86100, Italy. .,Italian Society of Gerontology and Geriatrics (SIGG), Firenze, 50129, Italy
| | - Olga Shubernetskaya
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, 117997, Russia.
| | - Nicola Ferrara
- Department of Translational Medical Sciences, Federico II University of Naples, Naples, 80131, Italy. .,Istituti Clinici Scientifici Maugeri SPA - Società Benefit, IRCCS, Telese Terme, BN, 82037, Italy
| |
Collapse
|
89
|
Bovine-derived α-lactalbumin exhibits cardiovascular protection against aging by ameliorating the inflammatory process in mice. Int Immunopharmacol 2022; 113:109291. [DOI: 10.1016/j.intimp.2022.109291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/18/2022] [Accepted: 09/25/2022] [Indexed: 11/05/2022]
|
90
|
de Lima Camillo LP, Lapierre LR, Singh R. A pan-tissue DNA-methylation epigenetic clock based on deep learning. NPJ AGING 2022. [PMCID: PMC9158789 DOI: 10.1038/s41514-022-00085-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
AbstractSeveral age predictors based on DNA methylation, dubbed epigenetic clocks, have been created in recent years, with the vast majority based on regularized linear regression. This study explores the improvement in the performance and interpretation of epigenetic clocks using deep learning. First, we gathered 142 publicly available data sets from several human tissues to develop AltumAge, a neural network framework that is a highly accurate and precise age predictor. Compared to ElasticNet, AltumAge performs better for within-data set and cross-data set age prediction, being particularly more generalizable in older ages and new tissue types. We then used deep learning interpretation methods to learn which methylation sites contributed to the final model predictions. We observe that while most important CpG sites are linearly related to age, some highly-interacting CpG sites can influence the relevance of such relationships. Using chromatin annotations, we show that the CpG sites with the highest contribution to the model predictions were related to gene regulatory regions in the genome, including proximity to CTCF binding sites. We also found age-related KEGG pathways for genes containing these CpG sites. Lastly, we performed downstream analyses of AltumAge to explore its applicability and compare its age acceleration with Horvath’s 2013 model. We show that our neural network approach predicts higher age acceleration for tumors, for cells that exhibit age-related changes in vitro, such as immune and mitochondrial dysfunction, and for samples from patients with multiple sclerosis, type 2 diabetes, and HIV, among other conditions. Altogether, our neural network approach provides significant improvement and flexibility compared to current epigenetic clocks for both performance and model interpretability.
Collapse
|
91
|
Martínez Corrales G, Li M, Svermova T, Goncalves A, Voicu D, Dobson AJ, Southall TD, Alic N. Transcriptional memory of dFOXO activation in youth curtails later-life mortality through chromatin remodeling and Xbp1. NATURE AGING 2022; 2:1176-1190. [PMID: 37118537 PMCID: PMC7614430 DOI: 10.1038/s43587-022-00312-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 10/19/2022] [Indexed: 12/03/2022]
Abstract
A transient, homeostatic transcriptional response can result in transcriptional memory, programming subsequent transcriptional outputs. Transcriptional memory has great but unappreciated potential to alter animal aging as animals encounter a multitude of diverse stimuli throughout their lifespan. Here we show that activating an evolutionarily conserved, longevity-promoting transcription factor, dFOXO, solely in early adulthood of female fruit flies is sufficient to improve their subsequent health and survival in midlife and late life. This youth-restricted dFOXO activation causes persistent changes to chromatin landscape in the fat body and requires chromatin remodelers such as the SWI/SNF and ISWI complexes to program health and longevity. Chromatin remodeling is accompanied by a long-lasting transcriptional program that is distinct from that observed during acute dFOXO activation and includes induction of Xbp1. We show that this later-life induction of Xbp1 is sufficient to curtail later-life mortality. Our study demonstrates that transcriptional memory can profoundly alter how animals age.
Collapse
Affiliation(s)
- Guillermo Martínez Corrales
- Institute of Healthy Ageing and the Research Department of Genetics, Evolution, and Environment, University College London, London, UK
| | - Mengjia Li
- Institute of Healthy Ageing and the Research Department of Genetics, Evolution, and Environment, University College London, London, UK
| | - Tatiana Svermova
- Institute of Healthy Ageing and the Research Department of Genetics, Evolution, and Environment, University College London, London, UK
| | - Alex Goncalves
- Institute of Healthy Ageing and the Research Department of Genetics, Evolution, and Environment, University College London, London, UK
| | - Diana Voicu
- Institute of Healthy Ageing and the Research Department of Genetics, Evolution, and Environment, University College London, London, UK
| | - Adam J Dobson
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Tony D Southall
- Department of Life Sciences, Imperial College London, London, UK
| | - Nazif Alic
- Institute of Healthy Ageing and the Research Department of Genetics, Evolution, and Environment, University College London, London, UK.
| |
Collapse
|
92
|
Kim DY, Lim B, Lim D, Park W, Lee KT, Cho ES, Lim KS, Cheon SN, Choi BH, Park JE, Kim JM. Integrative methylome and transcriptome analysis of porcine abdominal fat indicates changes in fat metabolism and immune responses during different development. J Anim Sci 2022; 100:skac302. [PMID: 36074647 PMCID: PMC9733533 DOI: 10.1093/jas/skac302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 09/07/2022] [Indexed: 12/15/2022] Open
Abstract
Fat is involved in synthesizing fatty acids (FAs), FA circulation, and lipid metabolism. Various genetic studies have been conducted on porcine fat but understanding the growth and specific adipose tissue is insufficient. The purpose of this study is to investigate the epigenetic difference in abdominal fat according to the growth of porcine. The samples were collected from the porcine abdominal fat of different developmental stages (10 and 26 weeks of age). Then, the samples were sequenced using MBD-seq and RNA-seq for profiling DNA methylation and RNA expression. In 26 weeks of age pigs, differentially methylated genes (DMGs) and differentially expressed genes (DEGs) were identified as 2,251 and 5,768, compared with 10 weeks of age pigs, respectively. Gene functional analysis was performed using GO and KEGG databases. In functional analysis results of DMGs and DEGs, immune responses such as chemokine signaling pathways, B cell receptor signaling pathways, and lipid metabolism terms such as PPAR signaling pathways and fatty acid degradation were identified. It is thought that there is an influence between DNA methylation and gene expression through changes in genes with similar functions. The effects of DNA methylation on gene expression were investigated using cis-regulation and trans-regulation analysis to integrate and interpret different molecular layers. In the cis-regulation analysis using 629 overlapping genes between DEGs and DMGs, immune response functions were identified, while in trans-regulation analysis through the TF-target gene network, the co-expression network of lipid metabolism-related functions was distinguished. Our research provides an understanding of the underlying mechanisms for epigenetic regulation in porcine abdominal fat with aging.
Collapse
Affiliation(s)
- Do-Young Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Gyeonggi-do 17546, Republic of Korea
| | - Byeonghwi Lim
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Gyeonggi-do 17546, Republic of Korea
| | - Dajeong Lim
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju, Jeollabuk-do 55365, Republic of Korea
| | - Woncheol Park
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju, Jeollabuk-do 55365, Republic of Korea
| | - Kyung-Tai Lee
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju, Jeollabuk-do 55365, Republic of Korea
| | - Eun-Seok Cho
- Swine Science Division, National Institute of Animal Science, RDA, Cheonan, Chungcheongnam-do 31000, Republic of Korea
| | - Kyu-Sang Lim
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Si Nae Cheon
- Animal Welfare Research Team, National Institute of Animal Science, RDA, Wanju, Jeollabuk-do 55365, Republic of Korea
| | - Bong-Hwan Choi
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju, Jeollabuk-do 55365, Republic of Korea
| | - Jong-Eun Park
- Department of Animal Biotechnology, College of Applied Life Science, Jeju National University, Jeju-si, 63243, Republic of Korea
| | - Jun-Mo Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Gyeonggi-do 17546, Republic of Korea
| |
Collapse
|
93
|
Bari KA, Berg MD, Genereaux J, Brandl CJ, Lajoie P. Tra1 controls the transcriptional landscape of the aging cell. G3 (BETHESDA, MD.) 2022; 13:6782959. [PMID: 36315064 PMCID: PMC9836359 DOI: 10.1093/g3journal/jkac287] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 10/25/2022] [Indexed: 11/07/2022]
Abstract
Gene expression undergoes considerable changes during the aging process. The mechanisms regulating the transcriptional response to cellular aging remain poorly understood. Here, we employ the budding yeast Saccharomyces cerevisiae to better understand how organisms adapt their transcriptome to promote longevity. Chronological lifespan assays in yeast measure the survival of nondividing cells at stationary phase over time, providing insights into the aging process of postmitotic cells. Tra1 is an essential component of both the yeast Spt-Ada-Gcn5 acetyltransferase/Spt-Ada-Gcn5 acetyltransferase-like and nucleosome acetyltransferase of H4 complexes, where it recruits these complexes to acetylate histones at targeted promoters. Importantly, Tra1 regulates the transcriptional response to multiple stresses. To evaluate the role of Tra1 in chronological aging, we took advantage of a previously characterized mutant allele that carries mutations in the TRA1 PI3K domain (tra1Q3). We found that loss of functions associated with tra1Q3 sensitizes cells to growth media acidification and shortens lifespan. Transcriptional profiling reveals that genes differentially regulated by Tra1 during the aging process are enriched for components of the response to stress. Notably, expression of catalases (CTA1, CTT1) involved in hydrogen peroxide detoxification decreases in chronologically aged tra1Q3 cells. Consequently, they display increased sensitivity to oxidative stress. tra1Q3 cells are unable to grow on glycerol indicating a defect in mitochondria function. Aged tra1Q3 cells also display reduced expression of peroxisomal genes, exhibit decreased numbers of peroxisomes, and cannot grow on media containing oleate. Thus, Tra1 emerges as an important regulator of longevity in yeast via multiple mechanisms.
Collapse
Affiliation(s)
- Khaleda Afrin Bari
- Department of Anatomy and Cell Biology, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Matthew D Berg
- Present address for Matthew D Berg: Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Julie Genereaux
- Department of Anatomy and Cell Biology, The University of Western Ontario, London, ON N6A 5C1, Canada,Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Christopher J Brandl
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Patrick Lajoie
- Corresponding author: Department of Anatomy and Cell Biology, The University of Western Ontario, London, ON N6A 5C1, Canada.
| |
Collapse
|
94
|
Panyard DJ, Yu B, Snyder MP. The metabolomics of human aging: Advances, challenges, and opportunities. SCIENCE ADVANCES 2022; 8:eadd6155. [PMID: 36260671 PMCID: PMC9581477 DOI: 10.1126/sciadv.add6155] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 09/01/2022] [Indexed: 05/02/2023]
Abstract
As the global population becomes older, understanding the impact of aging on health and disease becomes paramount. Recent advancements in multiomic technology have allowed for the high-throughput molecular characterization of aging at the population level. Metabolomics studies that analyze the small molecules in the body can provide biological information across a diversity of aging processes. Here, we review the growing body of population-scale metabolomics research on aging in humans, identifying the major trends in the field, implicated biological pathways, and how these pathways relate to health and aging. We conclude by assessing the main challenges in the research to date, opportunities for advancing the field, and the outlook for precision health applications.
Collapse
Affiliation(s)
- Daniel J. Panyard
- Department of Genetics, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Bing Yu
- Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Michael P. Snyder
- Department of Genetics, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
95
|
Auzmendi-Iriarte J, Moreno-Cugnon L, Saenz-Antoñanzas A, Grassi D, de Pancorbo MM, Arevalo MA, Wood IC, Matheu A. High levels of HDAC expression correlate with microglial aging. Expert Opin Ther Targets 2022; 26:911-922. [PMID: 36503367 DOI: 10.1080/14728222.2022.2158081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Cellular damage gradually accumulates with aging, promoting a time-dependent functional decline of the brain. Microglia play an essential regulatory role in maintaining cognitive activity by phagocytosing cell debris and apoptotic cells during neurogenesis. The activities of different histone deacetylases (HDACs) regulate microglial function during development and neurodegeneration. However, no studies have described the role of HDACs in microglia during physiological aging. RESEARCH DESIGN AND METHODS HDAC and microglial marker levels were examined in microglial cells after inducing senescence in vitro and in mouse and human hippocampal biopsies in vivo, using quantitative real-time PCR. Publicly available datasets were used to determine HDAC expression in different brain areas during physiological aging. RESULTS HDAC expression increased upon the induction of senescence with bleomycin or serial passage in microglial cultures. High levels of HDACs were detected in mice and aged human brain samples. Human hippocampal samples showed a positive correlation between the expression of HDAC1, 3, and 7 and microglial and senescence markers. HDAC1 and 3 levels are enriched in the purified aged microglial population. CONCLUSIONS Several HDACs, particularly HDAC1, are elevated in microglia upon senescence induction in vitro and with aging in vivo, and correlate with microglial and senescence biomarkers.
Collapse
Affiliation(s)
| | - Leire Moreno-Cugnon
- Cellular Oncology Group, Biodonostia Health Research Institute, San Sebastian, Spain
| | | | - Daniela Grassi
- Department of Anatomy, Histology and Neuroscience, Autonoma University of Madrid, Madrid, Spain.,Consejo Superior de Investigaciones Científicas (CSIC), Instituto Cajal, Madrid, Spain
| | - Marian M de Pancorbo
- BIOMICs Research Group, Lascaray Research Center, University of the Basque Country, Vitoria, Spain
| | - Maria-Angeles Arevalo
- Consejo Superior de Investigaciones Científicas (CSIC), Instituto Cajal, Madrid, Spain.,CIBER de Fragilidad y Envejecimiento Saludable (CIBERfes), Madrid, Spain
| | - Ian C Wood
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Ander Matheu
- Cellular Oncology Group, Biodonostia Health Research Institute, San Sebastian, Spain.,CIBER de Fragilidad y Envejecimiento Saludable (CIBERfes), Madrid, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
96
|
Stover PJ, Field MS, Brawley HN, Angelin B, Iversen PO, Frühbeck G. Nutrition and stem cell integrity in aging. J Intern Med 2022; 292:587-603. [PMID: 35633146 DOI: 10.1111/joim.13507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Adult stem cells (SCs) represent the regenerative capacity of organisms throughout their lifespan. The maintenance of robust SC populations capable of renewing organs and physiological systems is one hallmark of healthy aging. The local environment of SCs, referred to as the niche, includes the nutritional milieu, which is essential to maintain the quantity and quality of SCs available for renewal and regeneration. There is increased recognition that SCs have unique metabolism and conditional nutrient needs compared to fully differentiated cells. However, the contribution of SC nutrition to overall human nutritional requirements is an understudied and underappreciated area of investigation. Nutrient needs vary across the lifespan and are modified by many factors including individual health, disease, physiological states including pregnancy, age, sex, and during recovery from injury. Although current nutrition guidance is generally derived for apparently healthy populations and to prevent nutritional deficiency diseases, there are increased efforts to establish nutrient-based and food-based recommendations based on reducing chronic disease. Understanding the dynamics of SC nutritional needs throughout the life span, including the role of nutrition in extending biological age by blunting biological systems decay, is fundamental to establishing food and nutrient guidance for chronic disease reduction and health maintenance. This review summarizes a 3-day symposium of the Marabou Foundation (www.marabousymposium.org) held to examine the metabolic properties and unique nutritional needs of adult SCs and their role in healthy aging and age-related chronic disease.
Collapse
Affiliation(s)
- P J Stover
- Texas A&M AgriLife Institute for Advancing Health through Agriculture, Texas A&M University, College Station, Texas, USA
| | - M S Field
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, USA
| | - H N Brawley
- Texas A&M AgriLife Institute for Advancing Health through Agriculture, Texas A&M University, College Station, Texas, USA
| | - B Angelin
- Cardiometabolic Unit, Clinical Department of Endocrinology, and Department of Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, Stockholm, Stockholm, Sweden
| | - P O Iversen
- Department of Nutrition, University of Oslo, Oslo, Norway
| | - G Frühbeck
- Department of Endocrinology & Nutrition, Clínica Universidad de Navarra, CIBEROBN, IdiSNA, Pamplona, Navarra, Spain
| |
Collapse
|
97
|
Migliore L, Coppedè F. Gene-environment interactions in Alzheimer disease: the emerging role of epigenetics. Nat Rev Neurol 2022; 18:643-660. [PMID: 36180553 DOI: 10.1038/s41582-022-00714-w] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/18/2022] [Indexed: 12/15/2022]
Abstract
With the exception of a few monogenic forms, Alzheimer disease (AD) has a complex aetiology that is likely to involve multiple susceptibility genes and environmental factors. The role of environmental factors is difficult to determine and, until a few years ago, the molecular mechanisms underlying gene-environment (G × E) interactions in AD were largely unknown. Here, we review evidence that has emerged over the past two decades to explain how environmental factors, such as diet, lifestyle, alcohol, smoking and pollutants, might interact with the human genome. In particular, we discuss how various environmental AD risk factors can induce epigenetic modifications of key AD-related genes and pathways and consider how epigenetic mechanisms could contribute to the effects of oxidative stress on AD onset. Studies on early-life exposures are helping to uncover critical time windows of sensitivity to epigenetic influences from environmental factors, thereby laying the foundations for future primary preventative approaches. We conclude that epigenetic modifications need to be considered when assessing G × E interactions in AD.
Collapse
Affiliation(s)
- Lucia Migliore
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy. .,Department of Laboratory Medicine, Pisa University Hospital, Pisa, Italy.
| | - Fabio Coppedè
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| |
Collapse
|
98
|
Sleiman MB, Roy S, Gao AW, Sadler MC, von Alvensleben GVG, Li H, Sen S, Harrison DE, Nelson JF, Strong R, Miller RA, Kutalik Z, Williams RW, Auwerx J. Sex- and age-dependent genetics of longevity in a heterogeneous mouse population. Science 2022; 377:eabo3191. [PMID: 36173858 PMCID: PMC9905652 DOI: 10.1126/science.abo3191] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
DNA variants that modulate life span provide insight into determinants of health, disease, and aging. Through analyses in the UM-HET3 mice of the Interventions Testing Program (ITP), we detected a sex-independent quantitative trait locus (QTL) on chromosome 12 and identified sex-specific QTLs, some of which we detected only in older mice. Similar relations between life history and longevity were uncovered in mice and humans, underscoring the importance of early access to nutrients and early growth. We identified common age- and sex-specific genetic effects on gene expression that we integrated with model organism and human data to create a hypothesis-building interactive resource of prioritized longevity and body weight genes. Finally, we validated Hipk1, Ddost, Hspg2, Fgd6, and Pdk1 as conserved longevity genes using Caenorhabditis elegans life-span experiments.
Collapse
Affiliation(s)
- Maroun Bou Sleiman
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Suheeta Roy
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center (UTHSC), Memphis, TN 38163, USA
| | - Arwen W. Gao
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Marie C. Sadler
- Institute of Primary Care and Public Health (Unisante), University of Lausanne, Lausanne 1011, Switzerland
- Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland
- Department of Computational Biology, University of Lausanne, Lausanne 1015, Switzerland
| | - Giacomo V. G. von Alvensleben
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Hao Li
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Saunak Sen
- Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | | | - James F. Nelson
- Barshop Center for Longevity Studies at the University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Randy Strong
- Barshop Center for Longevity Studies at the University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
- South Texas Veterans Healthcare System, San Antonio, TX 78229, USA
| | - Richard A. Miller
- Department of Pathology, University of Michigan Geriatrics Center, Ann Arbor, MI 48109-2200, USA
| | - Zoltán Kutalik
- Institute of Primary Care and Public Health (Unisante), University of Lausanne, Lausanne 1011, Switzerland
- Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland
- Department of Computational Biology, University of Lausanne, Lausanne 1015, Switzerland
| | - Robert W. Williams
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center (UTHSC), Memphis, TN 38163, USA
| | - Johan Auwerx
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| |
Collapse
|
99
|
Ashapkin V, Suvorov A, Pilsner JR, Krawetz SA, Sergeyev O. Age-associated epigenetic changes in mammalian sperm: implications for offspring health and development. Hum Reprod Update 2022; 29:24-44. [PMID: 36066418 PMCID: PMC9825272 DOI: 10.1093/humupd/dmac033] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 08/05/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Modern reproductive behavior in most developed countries is characterized by delayed parenthood. Older gametes are generally less fertile, accumulating and compounding the effects of varied environmental exposures that are modified by lifestyle factors. Clinicians are primarily concerned with advanced maternal age, while the influence of paternal age on fertility, early development and offspring health remains underappreciated. There is a growing trend to use assisted reproductive technologies for couples of advanced reproductive age. Thus, the number of children born from older gametes is increasing. OBJECTIVE AND RATIONALE We review studies reporting age-associated epigenetic changes in mammals and humans in sperm, including DNA methylation, histone modifications and non-coding RNAs. The interplay between environment, fertility, ART and age-related epigenetic signatures is explored. We focus on the association of sperm epigenetics on epigenetic and phenotype events in embryos and offspring. SEARCH METHODS Peer-reviewed original and review articles over the last two decades were selected using PubMed and the Web of Science for this narrative review. Searches were performed by adopting the two groups of main terms. The first group included 'advanced paternal age', 'paternal age', 'postponed fatherhood', 'late fatherhood', 'old fatherhood' and the second group included 'sperm epigenetics', 'sperm', 'semen', 'epigenetic', 'inheritance', 'DNA methylation', 'chromatin', 'non-coding RNA', 'assisted reproduction', 'epigenetic clock'. OUTCOMES Age is a powerful factor in humans and rodent models associated with increased de novo mutations and a modified sperm epigenome. Age affects all known epigenetic mechanisms, including DNA methylation, histone modifications and profiles of small non-coding (snc)RNA. While DNA methylation is the most investigated, there is a controversy about the direction of age-dependent changes in differentially hypo- or hypermethylated regions with advanced age. Successful development of the human sperm epigenetic clock based on cross-sectional data and four different methods for DNA methylation analysis indicates that at least some CpG exhibit a linear relationship between methylation levels and age. Rodent studies show a significant overlap between genes regulated through age-dependent differentially methylated regions and genes targeted by age-dependent sncRNA. Both age-dependent epigenetic mechanisms target gene networks enriched for embryo developmental, neurodevelopmental, growth and metabolic pathways. Thus, age-dependent changes in the sperm epigenome cannot be described as a stochastic accumulation of random epimutations and may be linked with autism spectrum disorders. Chemical and lifestyle exposures and ART techniques may affect the epigenetic aging of sperm. Although most epigenetic modifications are erased in the early mammalian embryo, there is growing evidence that an altered offspring epigenome and phenotype is linked with advanced paternal age due to the father's sperm accumulating epigenetic changes with time. It has been hypothesized that age-induced changes in the sperm epigenome are profound, physiological and dynamic over years, yet stable over days and months, and likely irreversible. WIDER IMPLICATIONS This review raises a concern about delayed fatherhood and age-associated changes in the sperm epigenome that may compromise reproductive health of fathers and transfer altered epigenetic information to subsequent generations. Prospective studies using healthy males that consider confounders are recommended. We suggest a broader discussion focused on regulation of the father's age in natural and ART conceptions is needed. The professional community should be informed and should raise awareness in the population and when counseling older men.
Collapse
Affiliation(s)
| | | | - J Richard Pilsner
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Stephen A Krawetz
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA,Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA
| | - Oleg Sergeyev
- Correspondence address. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskye Gory, House 1, Building 40, Room 322, Moscow 119992, Russia. E-mail: https://orcid.org/0000-0002-5745-3348
| |
Collapse
|
100
|
Abstract
Many cancers show an increase in incidence with age, and age is the biggest single risk factor for many cancers. However, the molecular basis of this relationship is poorly understood. Through a collection of review articles, our thematic issue discusses the link between aging and cancer in aspects including somatic mutations, proteostasis, mitochondria, metabolism, senescence, epigenetic regulation, immune regulation, DNA damage, and telomere function.
Collapse
Affiliation(s)
- Aaron Havas
- Sanford Burnham Prebys Medical Discovery InstituteLa JollaCAUSA
| | - Shanshan Yin
- Sanford Burnham Prebys Medical Discovery InstituteLa JollaCAUSA
| | - P. D. Adams
- Sanford Burnham Prebys Medical Discovery InstituteLa JollaCAUSA
| |
Collapse
|