51
|
Chandramouly G, Liao S, Rusanov T, Borisonnik N, Calbert ML, Kent T, Sullivan-Reed K, Vekariya U, Kashkina E, Skorski T, Yan H, Pomerantz RT. Polθ promotes the repair of 5'-DNA-protein crosslinks by microhomology-mediated end-joining. Cell Rep 2021; 34:108820. [PMID: 33691100 PMCID: PMC8565190 DOI: 10.1016/j.celrep.2021.108820] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 11/23/2020] [Accepted: 02/12/2021] [Indexed: 12/25/2022] Open
Abstract
DNA polymerase θ (Polθ) confers resistance to chemotherapy agents that cause DNA-protein crosslinks (DPCs) at double-strand breaks (DSBs), such as topoisomerase inhibitors. This suggests Polθ might facilitate DPC repair by microhomology-mediated end-joining (MMEJ). Here, we investigate Polθ repair of DSBs carrying DPCs by monitoring MMEJ in Xenopus egg extracts. MMEJ in extracts is dependent on Polθ, exhibits the MMEJ repair signature, and efficiently repairs 5' terminal DPCs independently of non-homologous end-joining and the replisome. We demonstrate that Polθ promotes the repair of 5' terminal DPCs in mammalian cells by using an MMEJ reporter and find that Polθ confers resistance to formaldehyde in addition to topoisomerase inhibitors. Dual deficiency in Polθ and tyrosyl-DNA phosphodiesterase 2 (TDP2) causes severe cellular sensitivity to etoposide, which demonstrates MMEJ as an independent DPC repair pathway. These studies recapitulate MMEJ in vitro and elucidate how Polθ confers resistance to etoposide.
Collapse
Affiliation(s)
- Gurushankar Chandramouly
- Thomas Jefferson University, Sidney Kimmel Cancer Center, Department of Biochemistry and Molecular Biology, Philadelphia, PA 19107, USA
| | - Shuren Liao
- Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Timur Rusanov
- Washington University School of Medicine, Department of Pathology & Immunology, St. Louis, MO 63110, USA
| | - Nikita Borisonnik
- Thomas Jefferson University, Sidney Kimmel Cancer Center, Department of Biochemistry and Molecular Biology, Philadelphia, PA 19107, USA
| | - Marissa L Calbert
- Thomas Jefferson University, Sidney Kimmel Cancer Center, Department of Biochemistry and Molecular Biology, Philadelphia, PA 19107, USA; Fels Cancer Institute for Personalized Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Tatiana Kent
- Thomas Jefferson University, Sidney Kimmel Cancer Center, Department of Biochemistry and Molecular Biology, Philadelphia, PA 19107, USA
| | - Katherine Sullivan-Reed
- Fels Cancer Institute for Personalized Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Umeshkumar Vekariya
- Fels Cancer Institute for Personalized Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Ekaterina Kashkina
- Fels Cancer Institute for Personalized Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Tomasz Skorski
- Fels Cancer Institute for Personalized Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Hong Yan
- Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Richard T Pomerantz
- Thomas Jefferson University, Sidney Kimmel Cancer Center, Department of Biochemistry and Molecular Biology, Philadelphia, PA 19107, USA.
| |
Collapse
|
52
|
A conserved Ctp1/CtIP C-terminal peptide stimulates Mre11 endonuclease activity. Proc Natl Acad Sci U S A 2021; 118:2016287118. [PMID: 33836577 DOI: 10.1073/pnas.2016287118] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The Mre11-Rad50-Nbs1 complex (MRN) is important for repairing DNA double-strand breaks (DSBs) by homologous recombination (HR). The endonuclease activity of MRN is critical for resecting 5'-ended DNA strands at DSB ends, producing 3'-ended single-strand DNA, a prerequisite for HR. This endonuclease activity is stimulated by Ctp1, the Schizosaccharomyces pombe homolog of human CtIP. Here, with purified proteins, we show that Ctp1 phosphorylation stimulates MRN endonuclease activity by inducing the association of Ctp1 with Nbs1. The highly conserved extreme C terminus of Ctp1 is indispensable for MRN activation. Importantly, a polypeptide composed of the conserved 15 amino acids at the C terminus of Ctp1 (CT15) is sufficient to stimulate Mre11 endonuclease activity. Furthermore, the CT15 equivalent from CtIP can stimulate human MRE11 endonuclease activity, arguing for the generality of this stimulatory mechanism. Thus, we propose that Nbs1-mediated recruitment of CT15 plays a pivotal role in the activation of the Mre11 endonuclease by Ctp1/CtIP.
Collapse
|
53
|
Liu S, Hua Y, Wang J, Li L, Yuan J, Zhang B, Wang Z, Ji J, Kong D. RNA polymerase III is required for the repair of DNA double-strand breaks by homologous recombination. Cell 2021; 184:1314-1329.e10. [PMID: 33626331 DOI: 10.1016/j.cell.2021.01.048] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 09/24/2020] [Accepted: 01/26/2021] [Indexed: 12/22/2022]
Abstract
End resection in homologous recombination (HR) and HR-mediated repair of DNA double-strand breaks (DSBs) removes several kilobases from 5' strands of DSBs, but 3' strands are exempted from degradation. The mechanism by which the 3' overhangs are protected has not been determined. Here, we established that the protection of 3' overhangs is achieved through the transient formation of RNA-DNA hybrids. The DNA strand in the hybrids is the 3' ssDNA overhang, while the RNA strand is newly synthesized. RNA polymerase III (RNAPIII) is responsible for synthesizing the RNA strand. Furthermore, RNAPIII is actively recruited to DSBs by the MRN complex. CtIP and MRN nuclease activity is required for initiating the RNAPIII-mediated RNA synthesis at DSBs. A reduced level of RNAPIII suppressed HR, and genetic loss > 30 bp increased at DSBs. Thus, RNAPIII is an essential HR factor, and the RNA-DNA hybrid is an essential repair intermediate for protecting the 3' overhangs in DSB repair.
Collapse
Affiliation(s)
- Sijie Liu
- Peking-Tsinghua Center for Life Sciences, The National Laboratory of Protein and Plant Gene research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Yu Hua
- Peking-Tsinghua Center for Life Sciences, The National Laboratory of Protein and Plant Gene research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Jingna Wang
- Peking-Tsinghua Center for Life Sciences, The National Laboratory of Protein and Plant Gene research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Lingyan Li
- Peking-Tsinghua Center for Life Sciences, The National Laboratory of Protein and Plant Gene research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Junjie Yuan
- Peking-Tsinghua Center for Life Sciences, The National Laboratory of Protein and Plant Gene research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Bo Zhang
- Peking-Tsinghua Center for Life Sciences, The National Laboratory of Protein and Plant Gene research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Ziyang Wang
- Peking-Tsinghua Center for Life Sciences, The National Laboratory of Protein and Plant Gene research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Jianguo Ji
- Peking-Tsinghua Center for Life Sciences, The National Laboratory of Protein and Plant Gene research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Daochun Kong
- Peking-Tsinghua Center for Life Sciences, The National Laboratory of Protein and Plant Gene research, College of Life Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
54
|
Suzuki R, Murata MM, Manguso N, Watanabe T, Mouakkad-Montoya L, Igari F, Rahman MM, Qu Y, Cui X, Giuliano AE, Takeda S, Tanaka H. The fragility of a structurally diverse duplication block triggers recurrent genomic amplification. Nucleic Acids Res 2021; 49:244-256. [PMID: 33290559 PMCID: PMC7797068 DOI: 10.1093/nar/gkaa1136] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 10/20/2020] [Accepted: 12/05/2020] [Indexed: 11/12/2022] Open
Abstract
The human genome contains hundreds of large, structurally diverse blocks that are insufficiently represented in the reference genome and are thus not amenable to genomic analyses. Structural diversity in the human population suggests that these blocks are unstable in the germline; however, whether or not these blocks are also unstable in the cancer genome remains elusive. Here we report that the 500 kb block called KRTAP_region_1 (KRTAP-1) on 17q12-21 recurrently demarcates the amplicon of the ERBB2 (HER2) oncogene in breast tumors. KRTAP-1 carries numerous tandemly-duplicated segments that exhibit diversity within the human population. We evaluated the fragility of the block by cytogenetically measuring the distances between the flanking regions and found that spontaneous distance outliers (i.e DNA breaks) appear more frequently at KRTAP-1 than at the representative common fragile site (CFS) FRA16D. Unlike CFSs, KRTAP-1 is not sensitive to aphidicolin. The exonuclease activity of DNA repair protein Mre11 protects KRTAP-1 from breaks, whereas CtIP does not. Breaks at KRTAP-1 lead to the palindromic duplication of the ERBB2 locus and trigger Breakage-Fusion-Bridge cycles. Our results indicate that an insufficiently investigated area of the human genome is fragile and could play a crucial role in cancer genome evolution.
Collapse
Affiliation(s)
- Ryusuke Suzuki
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Michael M Murata
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Nicholas Manguso
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Takaaki Watanabe
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | | | - Fumie Igari
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Md Maminur Rahman
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Ying Qu
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Xiaojiang Cui
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.,Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Armando E Giuliano
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.,Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.,Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Shunichi Takeda
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Hisashi Tanaka
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.,Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.,Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
55
|
Sharma S, Anand R, Zhang X, Francia S, Michelini F, Galbiati A, Williams H, Ronato DA, Masson JY, Rothenberg E, Cejka P, d'Adda di Fagagna F. MRE11-RAD50-NBS1 Complex Is Sufficient to Promote Transcription by RNA Polymerase II at Double-Strand Breaks by Melting DNA Ends. Cell Rep 2021; 34:108565. [PMID: 33406426 PMCID: PMC7788559 DOI: 10.1016/j.celrep.2020.108565] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/19/2020] [Accepted: 12/07/2020] [Indexed: 12/24/2022] Open
Abstract
The MRE11-RAD50-NBS1 (MRN) complex supports the synthesis of damage-induced long non-coding RNA (dilncRNA) by RNA polymerase II (RNAPII) from DNA double-strand breaks (DSBs) by an unknown mechanism. Here, we show that recombinant human MRN and native RNAPII are sufficient to reconstitute a minimal functional transcriptional apparatus at DSBs. MRN recruits and stabilizes RNAPII at DSBs. Unexpectedly, transcription is promoted independently from MRN nuclease activities. Rather, transcription depends on the ability of MRN to melt DNA ends, as shown by the use of MRN mutants and specific allosteric inhibitors. Single-molecule FRET assays with wild-type and mutant MRN show a tight correlation between the ability to melt DNA ends and to promote transcription. The addition of RPA enhances MRN-mediated transcription, and unpaired DNA ends allow MRN-independent transcription by RNAPII. These results support a model in which MRN generates single-strand DNA ends that favor the initiation of transcription by RNAPII.
Collapse
Affiliation(s)
- Sheetal Sharma
- IFOM-The FIRC Institute of Molecular Oncology, Milan 20139, Italy; Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Roopesh Anand
- Institute for Research in Biomedicine, Università della Svizzera Italiana (USI), Faculty of Biomedical Sciences, Bellinzona 6500, Switzerland
| | - Xuzhu Zhang
- NYU Langone Medical Center, 450 East 29th Street, New York, NY, USA
| | - Sofia Francia
- IFOM-The FIRC Institute of Molecular Oncology, Milan 20139, Italy; Istituto di Genetica Molecolare, CNR-Consiglio Nazionale delle Ricerche, Pavia 2700, Italy
| | - Flavia Michelini
- IFOM-The FIRC Institute of Molecular Oncology, Milan 20139, Italy
| | | | | | - Daryl A Ronato
- Genome Stability Laboratory, CHU de Québec Research Center, HDQ Pavilion, Oncology Axis, 9 McMahon, Québec City, QC G1R 2J6, Canada; Department of Molecular Biology, Medical Biochemistry, and Pathology, Laval University Cancer Research Center, Québec City, QC G1R 2J6, Canada
| | - Jean-Yves Masson
- Genome Stability Laboratory, CHU de Québec Research Center, HDQ Pavilion, Oncology Axis, 9 McMahon, Québec City, QC G1R 2J6, Canada; Department of Molecular Biology, Medical Biochemistry, and Pathology, Laval University Cancer Research Center, Québec City, QC G1R 2J6, Canada
| | - Eli Rothenberg
- NYU Langone Medical Center, 450 East 29th Street, New York, NY, USA
| | - Petr Cejka
- Institute for Research in Biomedicine, Università della Svizzera Italiana (USI), Faculty of Biomedical Sciences, Bellinzona 6500, Switzerland; Department of Biology, Institute of Biochemistry, Eidgenössische Technische Hochschule (ETH), Zürich 8093, Switzerland.
| | - Fabrizio d'Adda di Fagagna
- IFOM-The FIRC Institute of Molecular Oncology, Milan 20139, Italy; Istituto di Genetica Molecolare, CNR-Consiglio Nazionale delle Ricerche, Pavia 2700, Italy.
| |
Collapse
|
56
|
Abstract
Proteins covalently attached to DNA, also known as DNA-protein crosslinks (DPCs), are common and bulky DNA lesions that interfere with DNA replication, repair, transcription and recombination. Research in the past several years indicates that cells possess dedicated enzymes, known as DPC proteases, which digest the protein component of a DPC. Interestingly, DPC proteases also play a role in proteolysis beside DPC repair, such as in degrading excess histones during DNA replication or controlling DNA replication checkpoints. Here, we discuss the importance of DPC proteases in DNA replication, genome stability and their direct link to human diseases and cancer therapy.
Collapse
Affiliation(s)
- Annamaria Ruggiano
- Medical Research Council (MRC) Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Roosevelt Drive, OX3 7DQ, Oxford, UK
| | - Kristijan Ramadan
- Medical Research Council (MRC) Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Roosevelt Drive, OX3 7DQ, Oxford, UK.
| |
Collapse
|
57
|
Kühbacher U, Duxin JP. How to fix DNA-protein crosslinks. DNA Repair (Amst) 2020; 94:102924. [PMID: 32683310 PMCID: PMC7511601 DOI: 10.1016/j.dnarep.2020.102924] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/03/2020] [Accepted: 07/05/2020] [Indexed: 12/18/2022]
Abstract
Proteins that act on DNA, or are in close proximity to it, can become inadvertently crosslinked to DNA and form highly toxic lesions, known as DNA-protein crosslinks (DPCs). DPCs are generated by different chemotherapeutics, environmental or endogenous sources of crosslinking agents, or by lesions on DNA that stall the catalytic cycle of certain DNA processing enzymes. These bulky adducts impair processes on DNA such as DNA replication or transcription, and therefore pose a serious threat to genome integrity. The large diversity of DPCs suggests that there is more than one canonical mechanism to repair them. Indeed, many different enzymes have been shown to act on DPCs by either processing the protein, the DNA or the crosslink itself. In addition, the cell cycle stage or cell type are likely to dictate pathway choice. In recent years, a detailed understanding of DPC repair during S phase has started to emerge. Here, we review the current knowledge on the mechanisms of replication-coupled DPC repair, and describe and also speculate on possible pathways that remove DPCs outside of S phase. Moreover, we highlight a recent paradigm shifting finding that indicates that DPCs are not always detrimental, but can also play a protective role, preserving the genome from more deleterious forms of DNA damage.
Collapse
Affiliation(s)
- Ulrike Kühbacher
- The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Julien P Duxin
- The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark.
| |
Collapse
|
58
|
Sun Y, Saha LK, Saha S, Jo U, Pommier Y. Debulking of topoisomerase DNA-protein crosslinks (TOP-DPC) by the proteasome, non-proteasomal and non-proteolytic pathways. DNA Repair (Amst) 2020; 94:102926. [DOI: 10.1016/j.dnarep.2020.102926] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 07/06/2020] [Accepted: 07/07/2020] [Indexed: 01/24/2023]
|
59
|
Szlachta K, Manukyan A, Raimer HM, Singh S, Salamon A, Guo W, Lobachev KS, Wang YH. Topoisomerase II contributes to DNA secondary structure-mediated double-stranded breaks. Nucleic Acids Res 2020; 48:6654-6671. [PMID: 32501506 PMCID: PMC7337936 DOI: 10.1093/nar/gkaa483] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/20/2020] [Accepted: 06/01/2020] [Indexed: 12/12/2022] Open
Abstract
DNA double-stranded breaks (DSBs) trigger human genome instability, therefore identifying what factors contribute to DSB induction is critical for our understanding of human disease etiology. Using an unbiased, genome-wide approach, we found that genomic regions with the ability to form highly stable DNA secondary structures are enriched for endogenous DSBs in human cells. Human genomic regions predicted to form non-B-form DNA induced gross chromosomal rearrangements in yeast and displayed high indel frequency in human genomes. The extent of instability in both analyses is in concordance with the structure forming ability of these regions. We also observed an enrichment of DNA secondary structure-prone sites overlapping transcription start sites (TSSs) and CCCTC-binding factor (CTCF) binding sites, and uncovered an increase in DSBs at highly stable DNA secondary structure regions, in response to etoposide, an inhibitor of topoisomerase II (TOP2) re-ligation activity. Importantly, we found that TOP2 deficiency in both yeast and human leads to a significant reduction in DSBs at structure-prone loci, and that sites of TOP2 cleavage have a greater ability to form highly stable DNA secondary structures. This study reveals a direct role for TOP2 in generating secondary structure-mediated DNA fragility, advancing our understanding of mechanisms underlying human genome instability.
Collapse
Affiliation(s)
- Karol Szlachta
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908-0733, USA
| | - Arkadi Manukyan
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908-0733, USA
| | - Heather M Raimer
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908-0733, USA
| | - Sandeep Singh
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908-0733, USA
| | - Anita Salamon
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908-0733, USA
| | - Wenying Guo
- School of Biological Sciences and Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Kirill S Lobachev
- School of Biological Sciences and Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Yuh-Hwa Wang
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908-0733, USA
| |
Collapse
|
60
|
Mechanism and significance of chromosome damage repair by homologous recombination. Essays Biochem 2020; 64:779-790. [DOI: 10.1042/ebc20190093] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/22/2020] [Accepted: 06/29/2020] [Indexed: 12/29/2022]
Abstract
Abstract
Homologous recombination (HR) is a major, conserved pathway of chromosome damage repair. It not only fulfills key functions in the removal of deleterious lesions such as DNA double-strand breaks (DSBs) and interstrand cross-links (ICLs), but also in replication fork repair and protection. Several familial and acquired cancer predisposition syndromes stem from defects in HR. In particular, individuals with mutations in HR genes exhibit predisposition to breast, ovarian, pancreatic, and prostate cancers, and they also show signs of accelerated aging. However, aberrant and untimely HR events can lead to the loss of heterozygosity, genomic rearrangements, and cytotoxic nucleoprotein intermediates. Thus, it is critically important that HR be tightly regulated. In addition to DNA repair, HR is also involved in meiotic chromosome segregation and telomere maintenance in cells that lack telomerase. In this review, we focus on the role of HR in DSB repair (DSBR) and summarize the current state of the field.
Collapse
|
61
|
Kojima Y, Machida YJ. DNA-protein crosslinks from environmental exposure: Mechanisms of formation and repair. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2020; 61:716-729. [PMID: 32329115 PMCID: PMC7575214 DOI: 10.1002/em.22381] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/08/2020] [Accepted: 04/15/2020] [Indexed: 05/19/2023]
Abstract
Many environmental carcinogens cause DNA damage, which can result in mutations and other alterations in genomic DNA if not repaired promptly. Because of the bulkiness of the lesions, DNA-protein crosslinks (DPCs) are one of the types of toxic DNA damage with potentially deleterious consequences. Despite the importance of DPCs, how cells remove these complex DNA adducts has been incompletely understood. However, major progress in the DPC repair field over the past 5 years now supports the view that cells are equipped with multiple mechanisms to cope with DPCs. Here, we first provide an overview of environmental substances that induce DPCs, describing the sources of exposure and mechanisms of DPC formation. We then review current models of DPC repair and discuss their significance for environmental carcinogens.
Collapse
Affiliation(s)
- Yusuke Kojima
- Department of Oncology, Mayo Clinic, 200 First Street SW, Rochester, Minnesota 55905, USA
| | - Yuichi J. Machida
- Department of Oncology, Mayo Clinic, 200 First Street SW, Rochester, Minnesota 55905, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, 200 First Street SW, Rochester, Minnesota 55905, USA
- Correspondence to Yuichi J. Machida.
| |
Collapse
|
62
|
Reginato G, Cejka P. The MRE11 complex: A versatile toolkit for the repair of broken DNA. DNA Repair (Amst) 2020; 91-92:102869. [PMID: 32480356 DOI: 10.1016/j.dnarep.2020.102869] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/30/2020] [Accepted: 05/04/2020] [Indexed: 12/13/2022]
Abstract
When DNA breaks, the ends need to be stabilized and processed to facilitate subsequent repair, which can occur by either direct but error-prone end-joining with another broken DNA molecule or a more accurate homology-directed repair by the recombination machinery. At the same time, the presence of broken DNA triggers a signaling cascade that regulates the repair events and cellular progression through the cell cycle. The MRE11 nuclease, together with RAD50 and NBS1 forms a complex termed MRN that participates in all these processes. Although MRE11 was first identified more than 20 years ago, deep insights into its mechanism of action and regulation are much more recent. Here we review how MRE11 functions within MRN, and how the complex is further regulated by CtIP and its phosphorylation in a cell cycle dependent manner. We describe how RAD50, NBS1 and CtIP convert MRE11, exhibiting per se a 3'→5' exonuclease activity, into an ensemble that instead degrades primarily the 5'-terminated strand by endonucleolytic cleavage at DNA break sites to generate 3' overhangs, as required for the initiation of homologous recombination. The unique mechanism of DNA end resection by MRN-CtIP makes it a very flexible toolkit to process DNA breaks with a variety of secondary structures and protein blocks. Such a block can also be the Ku heterodimer, and emerging evidence suggests that MRN-CtIP may often need to remove Ku from DNA ends before initiating homologous recombination. Misregulation of DNA break repair results in mutations and chromosome rearrangements that can drive cancer development. Therefore, a detailed understanding of the underlying processes is highly relevant for human health.
Collapse
Affiliation(s)
- Giordano Reginato
- Institute for Research in Biomedicine, Università della Svizzera Italiana (USI), Faculty of Biomedical Sciences, Bellinzona, Switzerland; Department of Biology, Institute of Biochemistry, Eidgenössische Technische Hochschule (ETH), Zürich, Switzerland
| | - Petr Cejka
- Institute for Research in Biomedicine, Università della Svizzera Italiana (USI), Faculty of Biomedical Sciences, Bellinzona, Switzerland; Department of Biology, Institute of Biochemistry, Eidgenössische Technische Hochschule (ETH), Zürich, Switzerland.
| |
Collapse
|
63
|
Participation of TDP1 in the repair of formaldehyde-induced DNA-protein cross-links in chicken DT40 cells. PLoS One 2020; 15:e0234859. [PMID: 32589683 PMCID: PMC7319324 DOI: 10.1371/journal.pone.0234859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 06/03/2020] [Indexed: 11/19/2022] Open
Abstract
Proteins are covalently trapped on DNA to form DNA-protein cross-links (DPCs) when cells are exposed to DNA-damaging agents. Aldehyde compounds produce common types of DPCs that contain proteins in an undisrupted DNA strand. Tyrosyl-DNA phosphodiesterase 1 (TDP1) repairs topoisomerase 1 (TOPO1) that is trapped at the 3’-end of DNA. In the present study, we examined the contribution of TDP1 to the repair of formaldehyde-induced DPCs using a reverse genetic strategy with chicken DT40 cells. The results obtained showed that cells deficient in TDP1 were sensitive to formaldehyde. The removal of formaldehyde-induced DPCs was slower in tdp1-deficient cells than in wild type cells. We also found that formaldehyde did not produce trapped TOPO1, indicating that trapped TOPO1 was not a primary cytotoxic DNA lesion that was generated by formaldehyde and repaired by TDP1. The formaldehyde treatment resulted in the accumulation of chromosomal breakages that were more prominent in tdp1-deficient cells than in wild type cells. Therefore, TDP1 plays a critical role in the repair of formaldehyde-induced DPCs that are distinct from trapped TOPO1.
Collapse
|
64
|
James CD, Das D, Bristol ML, Morgan IM. Activating the DNA Damage Response and Suppressing Innate Immunity: Human Papillomaviruses Walk the Line. Pathogens 2020; 9:E467. [PMID: 32545729 PMCID: PMC7350329 DOI: 10.3390/pathogens9060467] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/08/2020] [Accepted: 06/10/2020] [Indexed: 12/25/2022] Open
Abstract
Activation of the DNA damage response (DDR) by external agents can result in DNA fragments entering the cytoplasm and activating innate immune signaling pathways, including the stimulator of interferon genes (STING) pathway. The consequences of this activation can result in alterations in the cell cycle including the induction of cellular senescence, as well as boost the adaptive immune response following interferon production. Human papillomaviruses (HPV) are the causative agents in a host of human cancers including cervical and oropharyngeal; HPV are responsible for around 5% of all cancers. During infection, HPV replication activates the DDR in order to promote the viral life cycle. A striking feature of HPV-infected cells is their ability to continue to proliferate in the presence of an active DDR. Simultaneously, HPV suppress the innate immune response using a number of different mechanisms. The activation of the DDR and suppression of the innate immune response are essential for the progression of the viral life cycle. Here, we describe the mechanisms HPV use to turn on the DDR, while simultaneously suppressing the innate immune response. Pushing HPV from this fine line and tipping the balance towards activation of the innate immune response would be therapeutically beneficial.
Collapse
Affiliation(s)
- Claire D. James
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University (VCU), Richmond, VA 23298, USA; (C.D.J.); (D.D.); (M.L.B.)
| | - Dipon Das
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University (VCU), Richmond, VA 23298, USA; (C.D.J.); (D.D.); (M.L.B.)
| | - Molly L. Bristol
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University (VCU), Richmond, VA 23298, USA; (C.D.J.); (D.D.); (M.L.B.)
| | - Iain M. Morgan
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University (VCU), Richmond, VA 23298, USA; (C.D.J.); (D.D.); (M.L.B.)
- VCU Massey Cancer Center, Richmond, VA 23298, USA
| |
Collapse
|
65
|
Colombo CV, Gnugnoli M, Gobbini E, Longhese MP. How do cells sense DNA lesions? Biochem Soc Trans 2020; 48:677-691. [PMID: 32219379 DOI: 10.1042/bst20191118] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/06/2020] [Accepted: 03/12/2020] [Indexed: 12/17/2023]
Abstract
DNA is exposed to both endogenous and exogenous DNA damaging agents that chemically modify it. To counteract the deleterious effects exerted by DNA lesions, eukaryotic cells have evolved a network of cellular pathways, termed DNA damage response (DDR). The DDR comprises both mechanisms devoted to repair DNA lesions and signal transduction pathways that sense DNA damage and transduce this information to specific cellular targets. These targets, in turn, impact a wide range of cellular processes including DNA replication, DNA repair and cell cycle transitions. The importance of the DDR is highlighted by the fact that DDR inactivation is commonly found in cancer and causes many different human diseases. The protein kinases ATM and ATR, as well as their budding yeast orthologs Tel1 and Mec1, act as master regulators of the DDR. The initiating events in the DDR entail both DNA lesion recognition and assembly of protein complexes at the damaged DNA sites. Here, we review what is known about the early steps of the DDR.
Collapse
Affiliation(s)
- Chiara Vittoria Colombo
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Marco Gnugnoli
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Elisa Gobbini
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Maria Pia Longhese
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| |
Collapse
|
66
|
Akagawa R, Trinh HT, Saha LK, Tsuda M, Hirota K, Yamada S, Shibata A, Kanemaki MT, Nakada S, Takeda S, Sasanuma H. UBC13-Mediated Ubiquitin Signaling Promotes Removal of Blocking Adducts from DNA Double-Strand Breaks. iScience 2020; 23:101027. [PMID: 32283528 PMCID: PMC7155233 DOI: 10.1016/j.isci.2020.101027] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 02/22/2020] [Accepted: 03/26/2020] [Indexed: 12/25/2022] Open
Abstract
Chemical modifications and adducts at DNA double-strand break (DSB) ends must be cleaned before re-joining by non-homologous end-joining (NHEJ). MRE11 nuclease is essential for efficient removal of Topoisomerase II (TOP2)-DNA adducts from TOP2 poison-induced DSBs. However, mechanisms in MRE11 recruitment to DSB sites in G1 phase remain poorly understood. Here, we report that TOP2-DNA adducts are expeditiously removed through UBC13-mediated polyubiquitination, which promotes DSB resection in G2 phase. We found that this ubiquitin signaling is required for efficient recruitment of MRE11 onto DSB sites in G1 by facilitating localization of RAP80 and BRCA1 to DSB sites and complex formation between BRCA1 and MRE11 at DSB sites. UBC13 and MRE11 are dispensable for restriction-enzyme-induced "clean" DSBs repair but responsible for over 50% and 70% of NHEJ-dependent repair of γ-ray-induced "dirty" DSBs, respectively. In conclusion, ubiquitin signaling promotes nucleolytic removal of DSB blocking adducts by MRE11 before NHEJ.
Collapse
Affiliation(s)
- Remi Akagawa
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshida Konoe, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hai Thanh Trinh
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshida Konoe, Sakyo-ku, Kyoto 606-8501, Japan
| | - Liton Kumar Saha
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshida Konoe, Sakyo-ku, Kyoto 606-8501, Japan
| | - Masataka Tsuda
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshida Konoe, Sakyo-ku, Kyoto 606-8501, Japan
| | - Kouji Hirota
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Hachioji-shi, Tokyo 192-0397, Japan
| | - Shintaro Yamada
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshida Konoe, Sakyo-ku, Kyoto 606-8501, Japan; Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Atsushi Shibata
- Signal Transduction Program, Gunma University Initiative for Advanced Research (GIAR), Gunma University, Maebashi, Gunma 371-8511, Japan
| | - Masato T Kanemaki
- National Institute of Genetics, Research Organization of Information and Systems (ROIS), and Department of Genetics, The Graduate University for Advanced Studies (SOKENDAI), Yata 1111, Mishima, Shizuoka 411-8540, Japan
| | - Shinichiro Nakada
- Department of Bioregulation and Cellular Response, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Shunichi Takeda
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshida Konoe, Sakyo-ku, Kyoto 606-8501, Japan.
| | - Hiroyuki Sasanuma
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshida Konoe, Sakyo-ku, Kyoto 606-8501, Japan.
| |
Collapse
|
67
|
Ceppi I, Howard SM, Kasaciunaite K, Pinto C, Anand R, Seidel R, Cejka P. CtIP promotes the motor activity of DNA2 to accelerate long-range DNA end resection. Proc Natl Acad Sci U S A 2020; 117:8859-8869. [PMID: 32241893 PMCID: PMC7183222 DOI: 10.1073/pnas.2001165117] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
To repair a DNA double-strand break by homologous recombination, 5'-terminated DNA strands must first be resected to reveal 3'-overhangs. This process is initiated by a short-range resection catalyzed by MRE11-RAD50-NBS1 (MRN) stimulated by CtIP, which is followed by a long-range step involving EXO1 or DNA2 nuclease. DNA2 is a bifunctional enzyme that contains both single-stranded DNA (ssDNA)-specific nuclease and motor activities. Upon DNA unwinding by Bloom (BLM) or Werner (WRN) helicase, RPA directs the DNA2 nuclease to degrade the 5'-strand. RPA bound to ssDNA also represents a barrier, explaining the need for the motor activity of DNA2 to displace RPA prior to resection. Using ensemble and single-molecule biochemistry, we show that CtIP also dramatically stimulates the adenosine 5'-triphosphate (ATP) hydrolysis-driven motor activity of DNA2 involved in the long-range resection step. This activation in turn strongly promotes the degradation of RPA-coated ssDNA by DNA2. Accordingly, the stimulatory effect of CtIP is only observed with wild-type DNA2, but not the helicase-deficient variant. Similarly to the function of CtIP to promote MRN, also the DNA2 stimulatory effect is facilitated by CtIP phosphorylation. The domain of CtIP required to promote DNA2 is located in the central region lacking in lower eukaryotes and is fully separable from domains involved in the stimulation of MRN. These results establish how CtIP couples both MRE11-dependent short-range and DNA2-dependent long-range resection and define the involvement of the motor activity of DNA2 in this process. Our data might help explain the less severe resection defects of MRE11 nuclease-deficient cells compared to those lacking CtIP.
Collapse
Affiliation(s)
- Ilaria Ceppi
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera Italiana, Bellinzona, 6500, Switzerland
- Institute of Biochemistry, Department of Biology, ETH, Zürich, 8093, Switzerland
| | - Sean M Howard
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera Italiana, Bellinzona, 6500, Switzerland
| | - Kristina Kasaciunaite
- Peter Debye Institute for Soft Matter Physics, Universität Leipzig, Leipzig, 04103, Germany
| | - Cosimo Pinto
- Institute of Molecular Cancer Research, University of Zürich, Zürich, 8057, Switzerland
| | - Roopesh Anand
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera Italiana, Bellinzona, 6500, Switzerland
| | - Ralf Seidel
- Peter Debye Institute for Soft Matter Physics, Universität Leipzig, Leipzig, 04103, Germany
| | - Petr Cejka
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera Italiana, Bellinzona, 6500, Switzerland;
- Institute of Biochemistry, Department of Biology, ETH, Zürich, 8093, Switzerland
| |
Collapse
|
68
|
Streff HE, Gao Y, Nelson SW. Functional evaluation of the C-terminal region of bacteriophage T4 Rad50. Biochem Biophys Res Commun 2020; 526:485-490. [PMID: 32238267 DOI: 10.1016/j.bbrc.2020.02.172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 02/29/2020] [Indexed: 12/27/2022]
Abstract
Bacteriophage T4 encodes orthologs of the proteins Rad50 (gp46) and Mre11 (gp47), which form a heterotetrameric complex (MR) that participates in the processing of DNA ends for recombination-dependent DNA repair. Crystal and high-resolution cryo-EM structures of Rad50 have revealed DNA binding sites near the dimer interface of Rad50 opposite of Mre11, and near the base of the coiled-coils that extend out from the globular head domain. An analysis of T4-Rad50 using sequenced-based algorithms to identify DNA binding residues predicts that a conserved region of positively charged residues near the C-terminus, distal to the observed binding sites, interacts with DNA. Mutant proteins were generated to test this prediction and their enzymatic and DNA binding activities were evaluated. Consistent with the predictions, the Rad50 C-terminal mutants had reduced affinity for DNA as measured by Rad50 equilibrium DNA binding assays and an increased Km-DNA as determined in MR complex nuclease assays. Moreover, the allosteric activation of ATP hydrolysis activity due to DNA binding was substantially reduced, suggesting that these residues may be involved in the communication between the DNA and ATP binding sites.
Collapse
Affiliation(s)
- Haley E Streff
- The Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA, 50011, USA; Undergraduate Research Program at Iowa State University, Ames, IA, 50011, USA
| | - Yang Gao
- The Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA, 50011, USA
| | - Scott W Nelson
- The Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
69
|
Sun Y, Saha S, Wang W, Saha LK, Huang SYN, Pommier Y. Excision repair of topoisomerase DNA-protein crosslinks (TOP-DPC). DNA Repair (Amst) 2020; 89:102837. [PMID: 32200233 DOI: 10.1016/j.dnarep.2020.102837] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/22/2020] [Accepted: 02/25/2020] [Indexed: 12/13/2022]
Abstract
Topoisomerases are essential enzymes solving DNA topological problems such as supercoils, knots and catenanes that arise from replication, transcription, chromatin remodeling and other nucleic acid metabolic processes. They are also the targets of widely used anticancer drugs (e.g. topotecan, irinotecan, enhertu, etoposide, doxorubicin, mitoxantrone) and fluoroquinolone antibiotics (e.g. ciprofloxacin and levofloxacin). Topoisomerases manipulate DNA topology by cleaving one DNA strand (TOP1 and TOP3 enzymes) or both in concert (TOP2 enzymes) through the formation of transient enzyme-DNA cleavage complexes (TOPcc) with phosphotyrosyl linkages between DNA ends and the catalytic tyrosyl residue of the enzymes. Failure in the self-resealing of TOPcc results in persistent TOPcc (which we refer it to as topoisomerase DNA-protein crosslinks (TOP-DPC)) that threaten genome integrity and lead to cancers and neurodegenerative diseases. The cell prevents the accumulation of topoisomerase-mediated DNA damage by excising TOP-DPC and ligating the associated breaks using multiple pathways conserved in eukaryotes. Tyrosyl-DNA phosphodiesterases (TDP1 and TDP2) cleave the tyrosyl-DNA bonds whereas structure-specific endonucleases such as Mre11 and XPF (Rad1) incise the DNA phosphodiester backbone to remove the TOP-DPC along with the adjacent DNA segment. The proteasome and metalloproteases of the WSS1/Spartan family typify proteolytic repair pathways that debulk TOP-DPC to make the peptide-DNA bonds accessible to the TDPs and endonucleases. The purpose of this review is to summarize our current understanding of how the cell excises TOP-DPC and why, when and where the cell recruits one specific mechanism for repairing topoisomerase-mediated DNA damage, acquiring resistance to therapeutic topoisomerase inhibitors and avoiding genomic instability, cancers and neurodegenerative diseases.
Collapse
Affiliation(s)
- Yilun Sun
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Sourav Saha
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Wenjie Wang
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Liton Kumar Saha
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Shar-Yin Naomi Huang
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Yves Pommier
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States.
| |
Collapse
|
70
|
Abstract
In this review, Mirman et al. summarize the current understanding of the role of 53BP1 in DSB repair at deprotected telomeres, in class switch recombination in the immune system, and in the context of PARPi-treated BRCA1-deficient cells. They argue that the primary function of 53BP1 is not to regulate the choice between c-NHEJ and HDR, but to ensure the fidelity of DSB repair, a function that is corrupted in diseases where DNA repair is rewired. 53BP1 is an enigmatic DNA damage response factor that gained prominence because it determines the efficacy of PARP1 inhibitory drugs (PARPi) in BRCA1-deficient cancers. Recent studies have elevated 53BP1 from its modest status of (yet another) DNA damage factor to master regulator of double-strand break (DSB) repair pathway choice. Our review of the literature suggests an alternative view. We propose that 53BP1 has evolved to avoid mutagenic repair outcomes and does so by controlling the processing of DNA ends and the dynamics of DSBs. The consequences of 53BP1 deficiency, such as diminished PARPi efficacy in BRCA1-deficient cells and altered repair of damaged telomeres, can be explained from this viewpoint. We further propose that some of the fidelity functions of 53BP1 coevolved with class switch recombination (CSR) in the immune system. We speculate that, rather than being deterministic in DSB repair pathway choice, 53BP1 functions as a DSB escort that guards against illegitimate and potentially tumorigenic recombination.
Collapse
Affiliation(s)
- Zachary Mirman
- Laboratory for Cell Biology and Genetics, The Rockefeller University, New York, New York 10065, USA
| | - Titia de Lange
- Laboratory for Cell Biology and Genetics, The Rockefeller University, New York, New York 10065, USA
| |
Collapse
|
71
|
Paiano J, Wu W, Yamada S, Sciascia N, Callen E, Paola Cotrim A, Deshpande RA, Maman Y, Day A, Paull TT, Nussenzweig A. ATM and PRDM9 regulate SPO11-bound recombination intermediates during meiosis. Nat Commun 2020; 11:857. [PMID: 32051414 PMCID: PMC7016097 DOI: 10.1038/s41467-020-14654-w] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 01/23/2020] [Indexed: 12/22/2022] Open
Abstract
Meiotic recombination is initiated by SPO11-induced double-strand breaks (DSBs). In most mammals, the methyltransferase PRDM9 guides SPO11 targeting, and the ATM kinase controls meiotic DSB numbers. Following MRE11 nuclease removal of SPO11, the DSB is resected and loaded with DMC1 filaments for homolog invasion. Here, we demonstrate the direct detection of meiotic DSBs and resection using END-seq on mouse spermatocytes with low sample input. We find that DMC1 limits both minimum and maximum resection lengths, whereas 53BP1, BRCA1 and EXO1 play surprisingly minimal roles. Through enzymatic modifications to END-seq, we identify a SPO11-bound meiotic recombination intermediate (SPO11-RI) present at all hotspots. We propose that SPO11-RI forms because chromatin-bound PRDM9 asymmetrically blocks MRE11 from releasing SPO11. In Atm-/- spermatocytes, trapped SPO11 cleavage complexes accumulate due to defective MRE11 initiation of resection. Thus, in addition to governing SPO11 breakage, ATM and PRDM9 are critical local regulators of mammalian SPO11 processing.
Collapse
Affiliation(s)
- Jacob Paiano
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA
- Immunology Graduate Group, University of Pennsylvania, Philadelphia, PA, USA
| | - Wei Wu
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Shintaro Yamada
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
| | - Nicholas Sciascia
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA
- Institute for Biomedical Sciences, George Washington University, Washington, DC, USA
| | - Elsa Callen
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Ana Paola Cotrim
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Rajashree A Deshpande
- The Howard Hughes Medical Institute and The University of Texas at Austin, Austin, TX, 78712, USA
- The Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Yaakov Maman
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Amanda Day
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Tanya T Paull
- The Howard Hughes Medical Institute and The University of Texas at Austin, Austin, TX, 78712, USA
- The Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA
| | - André Nussenzweig
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA.
| |
Collapse
|
72
|
Reinking HK, Hofmann K, Stingele J. Function and evolution of the DNA-protein crosslink proteases Wss1 and SPRTN. DNA Repair (Amst) 2020; 88:102822. [PMID: 32058279 DOI: 10.1016/j.dnarep.2020.102822] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/03/2020] [Accepted: 02/05/2020] [Indexed: 12/15/2022]
Abstract
Covalent DNA-protein crosslinks (DPCs) are highly toxic DNA adducts, which interfere with faithful DNA replication. The proteases Wss1 and SPRTN degrade DPCs and have emerged as crucially important DNA repair enzymes. Their protective role has been described in various model systems ranging from yeasts, plants, worms and flies to mice and humans. Loss of DPC proteases results in genome instability, cellular arrest, premature ageing and cancer predisposition. Here we discuss recent insights into the function and molecular mechanism of these enzymes. Furthermore, we present an in-depth phylogenetic analysis of the Wss1/SPRTN protease continuum. Remarkably flexible domain architectures and constantly changing protein-protein interaction motifs indicate ongoing evolutionary dynamics. Finally, we discuss recent data, which suggest that further partially-overlapping proteolytic systems targeting DPCs exist in eukaryotes. These new developments raise interesting questions regarding the division of labour between different DPC proteases and the mechanisms and principles of repair pathway choice.
Collapse
Affiliation(s)
- Hannah K Reinking
- Gene Center, Ludwig-Maximilians-University Munich, Munich, Germany; Department of Biochemistry, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Kay Hofmann
- Institute for Genetics, University of Cologne, Germany
| | - Julian Stingele
- Gene Center, Ludwig-Maximilians-University Munich, Munich, Germany; Department of Biochemistry, Ludwig-Maximilians-University Munich, Munich, Germany.
| |
Collapse
|
73
|
NBS1 is required for SPO11-linked DNA double-strand break repair in male meiosis. Cell Death Differ 2020; 27:2176-2190. [PMID: 31965061 PMCID: PMC7308329 DOI: 10.1038/s41418-020-0493-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/01/2020] [Accepted: 01/09/2020] [Indexed: 01/21/2023] Open
Abstract
DNA double-strand breaks (DSBs) pose a serious threat to genomic stability. Paradoxically, hundreds of programed DSBs are generated by SPO11 in meiotic prophase, which are exclusively repaired by homologous recombination (HR) to promote obligate crossover between homologous chromosomes. In somatic cells, MRE11-RAD50-NBS1 (MRN) complex-dependent DNA end resection is a prerequisite for HR repair, especially for DSBs that are covalently linked with proteins or chemicals. Interestingly, all meiotic DSBs are linked with SPO11 after being generated. Although MRN complex’s function in meiotic DSB repair has been established in lower organisms, the role of MRN complex in mammalian meiotic DSB repair is not clear. Here, we show that MRN complex is essential for repairing meiotic SPO11-linked DSBs in male mice. In male germ cells, conditional inactivation of NBS1, a key component of MRN complex, causes dramatic reduction of DNA end resection and defective HR repair in meiotic prophase. NBS1 loss severely disrupts chromosome synapsis, generates abnormal chromosome structures, and eventually leads to meiotic arrest and male infertility in mice. Unlike in somatic cells, the recruitment of NBS1 to SPO11-linked DSB sites is MDC1-independent but requires other phosphorylated proteins. Collectively, our study not only reveals the significance of MRN complex in repairing meiotic DSBs but also discovers a unique mechanism that recruits MRN complex to SPO11-linked DSB sites.
Collapse
|
74
|
Serrano-Benítez A, Cortés-Ledesma F, Ruiz JF. "An End to a Means": How DNA-End Structure Shapes the Double-Strand Break Repair Process. Front Mol Biosci 2020; 6:153. [PMID: 31998749 PMCID: PMC6965357 DOI: 10.3389/fmolb.2019.00153] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 12/11/2019] [Indexed: 12/12/2022] Open
Abstract
Endogenously-arising DNA double-strand breaks (DSBs) rarely harbor canonical 5′-phosphate, 3′-hydroxyl moieties at the ends, which are, regardless of the pathway used, ultimately required for their repair. Cells are therefore endowed with a wide variety of enzymes that can deal with these chemical and structural variations and guarantee the formation of ligatable termini. An important distinction is whether the ends are directly “unblocked” by specific enzymatic activities without affecting the integrity of the DNA molecule and its sequence, or whether they are “processed” by unspecific nucleases that remove nucleotides from the termini. DNA end structure and configuration, therefore, shape the repair process, its requirements, and, importantly, its final outcome. Thus, the molecular mechanisms that coordinate and integrate the cellular response to blocked DSBs, although still largely unexplored, can be particularly relevant for maintaining genome integrity and avoiding malignant transformation and cancer.
Collapse
Affiliation(s)
- Almudena Serrano-Benítez
- Andalusian Center of Molecular Biology and Regenerative Medicine (CABIMER-CSIC-University of Seville-Pablo de Olavide University), Seville, Spain
| | - Felipe Cortés-Ledesma
- Andalusian Center of Molecular Biology and Regenerative Medicine (CABIMER-CSIC-University of Seville-Pablo de Olavide University), Seville, Spain.,Topology and DNA breaks Group, Spanish National Cancer Research Center, Madrid, Spain
| | - Jose F Ruiz
- Andalusian Center of Molecular Biology and Regenerative Medicine (CABIMER-CSIC-University of Seville-Pablo de Olavide University), Seville, Spain.,Department of Plant Biochemistry and Molecular Biology, University of Seville, Seville, Spain
| |
Collapse
|
75
|
Szlachta K, Raimer HM, Comeau LD, Wang YH. CNCC: an analysis tool to determine genome-wide DNA break end structure at single-nucleotide resolution. BMC Genomics 2020; 21:25. [PMID: 31914926 PMCID: PMC6950916 DOI: 10.1186/s12864-019-6436-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 12/26/2019] [Indexed: 12/11/2022] Open
Abstract
Background DNA double-stranded breaks (DSBs) are potentially deleterious events in a cell. The end structures (blunt, 3′- and 5′-overhangs) at DSB sites contribute to the fate of their repair and provide critical information concerning the consequences of the damage. Therefore, there has been a recent eruption of DNA break mapping and sequencing methods that aim to map at single-nucleotide resolution where breaks are generated genome-wide. These methods provide high resolution data for the location of DSBs, which can encode the type of end-structure present at these breaks. However, genome-wide analysis of the resulting end structures has not been investigated following these sequencing methods. Results To address this analysis gap, we develop the use of a coverage-normalized cross correlation analysis (CNCC) to process the high-precision genome-wide break mapping data, and determine genome-wide break end structure distributions at single-nucleotide resolution. We take advantage of the single-nucleotide position and the knowledge of strandness from every mapped break to analyze the relative shifts between positive and negative strand encoded break nucleotides. By applying CNCC we can identify the most abundant end structures captured by a break mapping technique, and further can make comparisons between different samples and treatments. We validate our analysis with restriction enzyme digestions of genomic DNA and establish the sensitivity of the analysis using end structures that only exist as a minor fraction of total breaks. Finally, we demonstrate the versatility of our analysis by applying CNCC to the breaks resulting after treatment with etoposide and study the variety of resulting end structures. Conclusion For the first time, on a genome-wide scale, our analysis revealed the increase in the 5′ to 3′ end resection following etoposide treatment, and the global progression of the resection. Furthermore, our method distinguished the change in the pattern of DSB end structure with increasing doses of the drug. The ability of this method to determine DNA break end structures without a priori knowledge of break sequences or genomic position should have broad applications in understanding genome instability.
Collapse
Affiliation(s)
- Karol Szlachta
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia, 22903-0733, USA
| | - Heather M Raimer
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia, 22903-0733, USA
| | - Laurey D Comeau
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia, 22903-0733, USA
| | - Yuh-Hwa Wang
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia, 22903-0733, USA.
| |
Collapse
|
76
|
The Aspartic Protease Ddi1 Contributes to DNA-Protein Crosslink Repair in Yeast. Mol Cell 2020; 77:1066-1079.e9. [PMID: 31902667 DOI: 10.1016/j.molcel.2019.12.007] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 10/24/2019] [Accepted: 12/09/2019] [Indexed: 01/07/2023]
Abstract
Naturally occurring or drug-induced DNA-protein crosslinks (DPCs) interfere with key DNA transactions if not repaired in a timely manner. The unique family of DPC-specific proteases Wss1/SPRTN targets DPC protein moieties for degradation, including stabilized topoisomerase-1 cleavage complexes (Top1ccs). Here, we describe that the efficient DPC disassembly requires Ddi1, another conserved predicted protease in Saccharomyces cerevisiae. We found Ddi1 in a genetic screen of the tdp1 wss1 mutant defective in Top1cc processing. Ddi1 is recruited to a persistent Top1cc-like DPC lesion in an S phase-dependent manner to assist in the eviction of crosslinked protein from DNA. Loss of Ddi1 or its putative protease activity hypersensitizes cells to DPC trapping agents independently from Wss1 and 26S proteasome, implying its broader role in DPC repair. Among the potential Ddi1 targets, we found the core component of Pol II and show that its genotoxin-induced degradation is impaired in ddi1. We propose that the Ddi1 protease contributes to DPC proteolysis.
Collapse
|
77
|
Deshpande RA, Myler LR, Soniat MM, Makharashvili N, Lee L, Lees-Miller SP, Finkelstein IJ, Paull TT. DNA-dependent protein kinase promotes DNA end processing by MRN and CtIP. SCIENCE ADVANCES 2020; 6:eaay0922. [PMID: 31934630 PMCID: PMC6949041 DOI: 10.1126/sciadv.aay0922] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 11/12/2019] [Indexed: 06/10/2023]
Abstract
The repair of DNA double-strand breaks occurs through nonhomologous end joining or homologous recombination in vertebrate cells-a choice that is thought to be decided by a competition between DNA-dependent protein kinase (DNA-PK) and the Mre11/Rad50/Nbs1 (MRN) complex but is not well understood. Using ensemble biochemistry and single-molecule approaches, here, we show that the MRN complex is dependent on DNA-PK and phosphorylated CtIP to perform efficient processing and resection of DNA ends in physiological conditions, thus eliminating the competition model. Endonucleolytic removal of DNA-PK-bound DNA ends is also observed at double-strand break sites in human cells. The involvement of DNA-PK in MRN-mediated end processing promotes an efficient and sequential transition from nonhomologous end joining to homologous recombination by facilitating DNA-PK removal.
Collapse
Affiliation(s)
- Rajashree A. Deshpande
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Logan R. Myler
- Laboratory for Cell Biology and Genetics, Rockefeller University, New York, NY 10065, USA
| | - Michael M. Soniat
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Nodar Makharashvili
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Linda Lee
- Department of Biochemistry and Molecular Biology, University of Calgary, Alberta T2N 1N4, Canada
| | - Susan P. Lees-Miller
- Department of Biochemistry and Molecular Biology, University of Calgary, Alberta T2N 1N4, Canada
| | - Ilya J. Finkelstein
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
- Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Tanya T. Paull
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
78
|
Riccio AA, Schellenberg MJ, Williams RS. Molecular mechanisms of topoisomerase 2 DNA-protein crosslink resolution. Cell Mol Life Sci 2020; 77:81-91. [PMID: 31728578 PMCID: PMC6960353 DOI: 10.1007/s00018-019-03367-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 10/11/2019] [Accepted: 10/31/2019] [Indexed: 12/12/2022]
Abstract
The compaction of DNA and the continuous action of DNA transactions, including transcription and DNA replication, create complex DNA topologies that require Type IIA Topoisomerases, which resolve DNA topological strain and control genome dynamics. The human TOP2 enzymes catalyze their reactions via formation of a reversible covalent enzyme DNA-protein crosslink, the TOP2 cleavage complex (TOP2cc). Spurious interactions of TOP2 with DNA damage, environmental toxicants and chemotherapeutic "poisons" perturbs the TOP2 reaction cycle, leading to an accumulation of DNA-protein crosslinks, and ultimately, genomic instability and cell death. Emerging evidence shows that TOP2-DNA protein crosslink (DPC) repair entails multiple strand break repair activities, such as removal of the poisoned TOP2 protein and rejoining of the DNA ends through homologous recombination (HR) or non-homologous end joining (NHEJ). Herein, we discuss the molecular mechanisms of TOP2-DPC resolution, with specific emphasis on the recently uncovered ZATTZnf451-licensed TDP2-catalyzed TOP2-DPC reversal mechanism.
Collapse
Affiliation(s)
- Amanda A Riccio
- Department of Health and Human Services, Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, US National Institutes of Health, Research Triangle Park, NC, USA
| | - Matthew J Schellenberg
- Department of Health and Human Services, Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, US National Institutes of Health, Research Triangle Park, NC, USA
| | - R Scott Williams
- Department of Health and Human Services, Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, US National Institutes of Health, Research Triangle Park, NC, USA.
| |
Collapse
|
79
|
Bian L, Meng Y, Zhang M, Li D. MRE11-RAD50-NBS1 complex alterations and DNA damage response: implications for cancer treatment. Mol Cancer 2019; 18:169. [PMID: 31767017 PMCID: PMC6878665 DOI: 10.1186/s12943-019-1100-5] [Citation(s) in RCA: 156] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 11/08/2019] [Indexed: 01/26/2023] Open
Abstract
Genome instability is a hallmark of cancer cells and can be accelerated by defects in cellular responses to DNA damage. This feature of malignant cells opens new avenues for tumor targeted therapy. MRE11-RAD50-NBS1 complex plays a crucial role in sensing and repair of DNA damage. Through interacting with other important players of DNA damage response, MRE11-RAD50-NBS1 complex is engaged in various DNA damage repair pathways. Mutations in any member of this complex may lead to hypersensitivity to genotoxic agents and predisposition to malignancy. It is assumed that the defects in the complex may contribute to tumorigenesis and that treatments targeting the defect may be beneficial to cancer patients. Here, we summarized the recent research findings of the role of MRE11-RAD50-NBS1 complex in tumorigenesis, cancer treatment and discussed the potential approaches of targeting this complex to treat cancer.
Collapse
Affiliation(s)
- Lei Bian
- Department of Radiation Oncology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yiling Meng
- Department of Radiation Oncology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Meichao Zhang
- Department of Radiation Oncology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Dong Li
- Department of Radiation Oncology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| |
Collapse
|
80
|
Käshammer L, Saathoff JH, Lammens K, Gut F, Bartho J, Alt A, Kessler B, Hopfner KP. Mechanism of DNA End Sensing and Processing by the Mre11-Rad50 Complex. Mol Cell 2019; 76:382-394.e6. [DOI: 10.1016/j.molcel.2019.07.035] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 06/17/2019] [Accepted: 07/25/2019] [Indexed: 02/01/2023]
|
81
|
Type II DNA Topoisomerases Cause Spontaneous Double-Strand Breaks in Genomic DNA. Genes (Basel) 2019; 10:genes10110868. [PMID: 31671674 PMCID: PMC6895833 DOI: 10.3390/genes10110868] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/22/2019] [Accepted: 10/26/2019] [Indexed: 12/31/2022] Open
Abstract
Type II DNA topoisomerase enzymes (TOP2) catalyze topological changes by strand passage reactions. They involve passing one intact double stranded DNA duplex through a transient enzyme-bridged break in another (gated helix) followed by ligation of the break by TOP2. A TOP2 poison, etoposide blocks TOP2 catalysis at the ligation step of the enzyme-bridged break, increasing the number of stable TOP2 cleavage complexes (TOP2ccs). Remarkably, such pathological TOP2ccs are formed during the normal cell cycle as well as in postmitotic cells. Thus, this ‘abortive catalysis’ can be a major source of spontaneously arising DNA double-strand breaks (DSBs). TOP2-mediated DSBs are also formed upon stimulation with physiological concentrations of androgens and estrogens. The frequent occurrence of TOP2-mediated DSBs was previously not appreciated because they are efficiently repaired. This repair is performed in collaboration with BRCA1, BRCA2, MRE11 nuclease, and tyrosyl-DNA phosphodiesterase 2 (TDP2) with nonhomologous end joining (NHEJ) factors. This review first discusses spontaneously arising DSBs caused by the abortive catalysis of TOP2 and then summarizes proteins involved in repairing stalled TOP2ccs and discusses the genotoxicity of the sex hormones.
Collapse
|
82
|
Atkin ND, Raimer HM, Wang YH. Broken by the Cut: A Journey into the Role of Topoisomerase II in DNA Fragility. Genes (Basel) 2019; 10:E791. [PMID: 31614754 PMCID: PMC6826763 DOI: 10.3390/genes10100791] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 10/05/2019] [Accepted: 10/10/2019] [Indexed: 02/07/2023] Open
Abstract
DNA topoisomerase II (TOP2) plays a critical role in many processes such as replication and transcription, where it resolves DNA structures and relieves torsional stress. Recent evidence demonstrated the association of TOP2 with topologically associated domains (TAD) boundaries and CCCTC-binding factor (CTCF) binding sites. At these sites, TOP2 promotes interactions between enhancers and gene promoters, and relieves torsional stress that accumulates at these physical barriers. Interestingly, in executing its enzymatic function, TOP2 contributes to DNA fragility through re-ligation failure, which results in persistent DNA breaks when unrepaired or illegitimately repaired. Here, we discuss the biological processes for which TOP2 is required and the steps at which it can introduce DNA breaks. We describe the repair processes that follow removal of TOP2 adducts and the resultant broken DNA ends, and present how these processes can contribute to disease-associated mutations. Furthermore, we examine the involvement of TOP2-induced breaks in the formation of oncogenic translocations of leukemia and papillary thyroid cancer, as well as the role of TOP2 and proteins which repair TOP2 adducts in other diseases. The participation of TOP2 in generating persistent DNA breaks and leading to diseases such as cancer, could have an impact on disease treatment and prevention.
Collapse
Affiliation(s)
- Naomi D Atkin
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA.
| | - Heather M Raimer
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Yuh-Hwa Wang
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA.
| |
Collapse
|
83
|
Mohiuddin M, Rahman MM, Sale JE, Pearson CE. CtIP-BRCA1 complex and MRE11 maintain replication forks in the presence of chain terminating nucleoside analogs. Nucleic Acids Res 2019; 47:2966-2980. [PMID: 30657944 PMCID: PMC6451104 DOI: 10.1093/nar/gkz009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 12/30/2018] [Accepted: 01/09/2019] [Indexed: 12/20/2022] Open
Abstract
Chain-terminating nucleoside analogs (CTNAs), which cannot be extended by DNA polymerases, are widely used as antivirals or anti-cancer agents, and can induce cell death. Processing of blocked DNA ends, like camptothecin-induced trapped-topoisomerase I, can be mediated by TDP1, BRCA1, CtIP and MRE11. Here, we investigated whether the CtIP-BRCA1 complex and MRE11 also contribute to cellular tolerance to CTNAs, including 2',3'-dideoxycytidine (ddC), cytarabine (ara-C) and zidovudine (Azidothymidine, AZT). We show that BRCA1-/-, CtIPS332A/-/- and nuclease-dead MRE11D20A/- mutants display increased sensitivity to CTNAs, accumulate more DNA damage (chromosomal breaks, γ-H2AX and neutral comets) when treated with CTNAs and exhibit significant delays in replication fork progression during exposure to CTNAs. Moreover, BRCA1-/-, CtIPS332A/-/- and nuclease-dead MRE11D20A/- mutants failed to resume DNA replication in response to CTNAs, whereas control and CtIP+/-/- cells experienced extensive recovery of DNA replication. In summary, we provide clear evidence that MRE11 and the collaborative action of BRCA1 and CtIP play a critical role in the nuclease-dependent removal of incorporated ddC from replicating genomic DNA. We propose that BRCA1-CTIP and MRE11 prepare nascent DNA ends, blocked from synthesis by CTNAs, for further repair.
Collapse
Affiliation(s)
- Mohiuddin Mohiuddin
- Program of Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Md Maminur Rahman
- Department of Radiation Genetics, Kyoto University Graduate School of Medicine, Yoshida Konoe, Sakyo-ku, Kyoto 606-8501, Japan
| | - Julian E Sale
- Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK
| | - Christopher E Pearson
- Program of Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada.,The Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
84
|
Bai Y, Wang W, Li S, Zhan J, Li H, Zhao M, Zhou XA, Li S, Li X, Huo Y, Shen Q, Zhou M, Zhang H, Luo J, Sung P, Zhu WG, Xu X, Wang J. C1QBP Promotes Homologous Recombination by Stabilizing MRE11 and Controlling the Assembly and Activation of MRE11/RAD50/NBS1 Complex. Mol Cell 2019; 75:1299-1314.e6. [PMID: 31353207 DOI: 10.1016/j.molcel.2019.06.023] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 05/06/2019] [Accepted: 06/18/2019] [Indexed: 12/27/2022]
Abstract
MRE11 nuclease forms a trimeric complex (MRN) with RAD50 and NBS1 and plays a central role in preventing genomic instability. When DNA double-strand breaks (DSBs) occur, MRN is quickly recruited to the damage site and initiates DNA end resection; accordingly, MRE11 must be tightly regulated to avoid inefficient repair or nonspecific resection. Here, we show that MRE11 and RAD50 form a complex (MRC) with C1QBP, which stabilizes MRE11/RAD50, while inhibiting MRE11 nuclease activity by preventing its binding to DNA or chromatin. Upon DNA damage, ATM phosphorylates MRE11-S676/S678 to quickly dissociate the MRC complex. Either excess or insufficient C1QBP impedes the recruitment of MRE11 to DSBs and impairs the DNA damage response. C1QBP is highly expressed in breast cancer and positively correlates with MRE11 expression, and the inhibition of C1QBP enhances tumor regression with chemotherapy. By influencing MRE11 at multiple levels, C1QBP is, thus, an important player in the DNA damage response.
Collapse
Affiliation(s)
- Yongtai Bai
- Department of Radiation Medicine, Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Weibin Wang
- Department of Radiation Medicine, Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Siyu Li
- Department of Radiation Medicine, Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Jun Zhan
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Hanxiao Li
- Department of Radiation Medicine, Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Meimei Zhao
- Department of Radiation Medicine, Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Xiao Albert Zhou
- Department of Radiation Medicine, Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Shiwei Li
- Department of Radiation Medicine, Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Xiaoman Li
- Department of Radiation Medicine, Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Yanfei Huo
- Department of Radiation Medicine, Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Qinjian Shen
- Department of Radiation Medicine, Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Mei Zhou
- Department of Radiation Medicine, Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Hongquan Zhang
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Jianyuan Luo
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Patrick Sung
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Wei-Guo Zhu
- Department of Biochemistry and Molecular Biology, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Xingzhi Xu
- Department of Biochemistry and Molecular Biology, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Jiadong Wang
- Department of Radiation Medicine, Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China.
| |
Collapse
|
85
|
Hogrel G, Lu Y, Laurent S, Henry E, Etienne C, Phung DK, Dulermo R, Bossé A, Pluchon PF, Clouet-d'Orval B, Flament D. Physical and functional interplay between PCNA DNA clamp and Mre11-Rad50 complex from the archaeon Pyrococcus furiosus. Nucleic Acids Res 2019; 46:5651-5663. [PMID: 29741662 PMCID: PMC6009593 DOI: 10.1093/nar/gky322] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 04/18/2018] [Indexed: 01/10/2023] Open
Abstract
Several archaeal species prevalent in extreme environments are particularly exposed to factors likely to cause DNA damages. These include hyperthermophilic archaea (HA), living at temperatures >70°C, which arguably have efficient strategies and robust genome guardians to repair DNA damage threatening their genome integrity. In contrast to Eukarya and other archaea, homologous recombination appears to be a vital pathway in HA, and the Mre11–Rad50 complex exerts a broad influence on the initiation of this DNA damage response process. In a previous study, we identified a physical association between the Proliferating Cell Nuclear Antigen (PCNA) and the Mre11–Rad50 (MR) complex. Here, by performing co-immunoprecipitation and SPR analyses, we identified a short motif in the C- terminal portion of Pyrococcus furiosus Mre11 involved in the interaction with PCNA. Through this work, we revealed a PCNA-interaction motif corresponding to a variation on the PIP motif theme which is conserved among Mre11 sequences of Thermococcale species. Additionally, we demonstrated functional interplay in vitro between P. furiosus PCNA and MR enzymatic functions in the DNA end resection process. At physiological ionic strength, PCNA stimulates MR nuclease activities for DNA end resection and promotes an endonucleolytic incision proximal to the 5′ strand of double strand DNA break.
Collapse
Affiliation(s)
- Gaëlle Hogrel
- Ifremer, UMR6197, Laboratoire de Microbiologie des Environnements Extrêmes, 29280 Plouzané, France.,Université de Bretagne Occidentale, UMR6197, Laboratoire de Microbiologie des Environnements Extrêmes, 29280 Plouzané, France.,CNRS, UMR6197, Laboratoire de Microbiologie des Environnements Extrêmes, 29280 Plouzané, France
| | - Yang Lu
- Ifremer, UMR6197, Laboratoire de Microbiologie des Environnements Extrêmes, 29280 Plouzané, France.,Université de Bretagne Occidentale, UMR6197, Laboratoire de Microbiologie des Environnements Extrêmes, 29280 Plouzané, France.,CNRS, UMR6197, Laboratoire de Microbiologie des Environnements Extrêmes, 29280 Plouzané, France
| | - Sébastien Laurent
- Ifremer, UMR6197, Laboratoire de Microbiologie des Environnements Extrêmes, 29280 Plouzané, France.,Université de Bretagne Occidentale, UMR6197, Laboratoire de Microbiologie des Environnements Extrêmes, 29280 Plouzané, France.,CNRS, UMR6197, Laboratoire de Microbiologie des Environnements Extrêmes, 29280 Plouzané, France
| | - Etienne Henry
- Ifremer, UMR6197, Laboratoire de Microbiologie des Environnements Extrêmes, 29280 Plouzané, France.,Université de Bretagne Occidentale, UMR6197, Laboratoire de Microbiologie des Environnements Extrêmes, 29280 Plouzané, France.,CNRS, UMR6197, Laboratoire de Microbiologie des Environnements Extrêmes, 29280 Plouzané, France
| | - Clarisse Etienne
- Université de Toulouse; UPS, 118 Route de Narbonne, F-31062 Toulouse, France; CNRS; LMGM; F-31062 Toulouse, France
| | - Duy Khanh Phung
- Université de Toulouse; UPS, 118 Route de Narbonne, F-31062 Toulouse, France; CNRS; LMGM; F-31062 Toulouse, France
| | - Rémi Dulermo
- Ifremer, UMR6197, Laboratoire de Microbiologie des Environnements Extrêmes, 29280 Plouzané, France.,Université de Bretagne Occidentale, UMR6197, Laboratoire de Microbiologie des Environnements Extrêmes, 29280 Plouzané, France.,CNRS, UMR6197, Laboratoire de Microbiologie des Environnements Extrêmes, 29280 Plouzané, France
| | - Audrey Bossé
- Ifremer, UMR6197, Laboratoire de Microbiologie des Environnements Extrêmes, 29280 Plouzané, France.,Université de Bretagne Occidentale, UMR6197, Laboratoire de Microbiologie des Environnements Extrêmes, 29280 Plouzané, France.,CNRS, UMR6197, Laboratoire de Microbiologie des Environnements Extrêmes, 29280 Plouzané, France
| | - Pierre-François Pluchon
- Ifremer, UMR6197, Laboratoire de Microbiologie des Environnements Extrêmes, 29280 Plouzané, France.,Université de Bretagne Occidentale, UMR6197, Laboratoire de Microbiologie des Environnements Extrêmes, 29280 Plouzané, France.,CNRS, UMR6197, Laboratoire de Microbiologie des Environnements Extrêmes, 29280 Plouzané, France
| | - Béatrice Clouet-d'Orval
- Université de Toulouse; UPS, 118 Route de Narbonne, F-31062 Toulouse, France; CNRS; LMGM; F-31062 Toulouse, France
| | - Didier Flament
- Ifremer, UMR6197, Laboratoire de Microbiologie des Environnements Extrêmes, 29280 Plouzané, France.,Université de Bretagne Occidentale, UMR6197, Laboratoire de Microbiologie des Environnements Extrêmes, 29280 Plouzané, France.,CNRS, UMR6197, Laboratoire de Microbiologie des Environnements Extrêmes, 29280 Plouzané, France
| |
Collapse
|
86
|
Lin Y, Bai L, Cupello S, Hossain MA, Deem B, McLeod M, Raj J, Yan S. APE2 promotes DNA damage response pathway from a single-strand break. Nucleic Acids Res 2019; 46:2479-2494. [PMID: 29361157 PMCID: PMC5861430 DOI: 10.1093/nar/gky020] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 01/09/2018] [Indexed: 02/06/2023] Open
Abstract
As the most common type of DNA damage, DNA single-strand breaks (SSBs) are primarily repaired by the SSB repair mechanism. If not repaired properly or promptly, unrepaired SSBs lead to genome stability and have been implicated in cancer and neurodegenerative diseases. However, it remains unknown how unrepaired SSBs are recognized by DNA damage response (DDR) pathway, largely because of the lack of a feasible experimental system. Here, we demonstrate evidence showing that an ATR-dependent checkpoint signaling is activated by a defined plasmid-based site-specific SSB structure in Xenopus HSS (high-speed supernatant) system. Notably, the distinct SSB signaling requires APE2 and canonical checkpoint proteins, including ATR, ATRIP, TopBP1, Rad9 and Claspin. Importantly, the SSB-induced ATR DDR is essential for SSB repair. We and others show that APE2 interacts with PCNA via its PIP box and preferentially interacts with ssDNA via its C-terminus Zf–GRF domain, a conserved motif found in >100 proteins involved in DNA/RNA metabolism. Here, we identify a novel mode of APE2–PCNA interaction via APE2 Zf–GRF and PCNA C-terminus. Mechanistically, the APE2 Zf–GRF–PCNA interaction facilitates 3′-5′ SSB end resection, checkpoint protein complex assembly, and SSB-induced DDR pathway. Together, we propose that APE2 promotes ATR–Chk1 DDR pathway from a single-strand break.
Collapse
Affiliation(s)
- Yunfeng Lin
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Liping Bai
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Steven Cupello
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Md Akram Hossain
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Bradley Deem
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Melissa McLeod
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Jude Raj
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Shan Yan
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| |
Collapse
|
87
|
Liu X, Wang XS, Lee BJ, Wu-Baer FK, Lin X, Shao Z, Estes VM, Gautier J, Baer R, Zha S. CtIP is essential for early B cell proliferation and development in mice. J Exp Med 2019; 216:1648-1663. [PMID: 31097467 PMCID: PMC6605744 DOI: 10.1084/jem.20181139] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 09/10/2018] [Accepted: 04/24/2019] [Indexed: 11/08/2022] Open
Abstract
B cell development requires efficient proliferation and successful assembly and modifications of the immunoglobulin gene products. CtIP is an essential gene implicated in end resection and DNA repair. Here, we show that CtIP is essential for early B cell development but dispensable in naive B cells. CtIP loss is well tolerated in G1-arrested B cells and during V(D)J recombination, but in proliferating B cells, CtIP loss leads to a progressive cell death characterized by ATM hyperactivation, G2/M arrest, genomic instability, and 53BP1 nuclear body formation, indicating that the essential role of CtIP during proliferation underscores its stage-specific requirement in B cells. B cell proliferation requires phosphorylation of CtIP at T847 presumably by CDK, but not its interaction with CtBP or Rb or its nuclease activity. CtIP phosphorylation by ATM/ATR at T859 (T855 in mice) promotes end resection in G1-arrested cells but is dispensable for B cell development and class switch recombination, suggesting distinct roles for T859 and T847 phosphorylation in B cell development.
Collapse
Affiliation(s)
- Xiangyu Liu
- Institute for Cancer Genetics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Shenzhen University Carson Cancer Center, Department of Biochemistry and Molecular Biology, School of Medicine, Shenzhen University, Shenzhen, China
| | - Xiaobin S Wang
- Institute for Cancer Genetics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
- Pathobiology and Human Disease Graduate Program, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
| | - Brian J Lee
- Institute for Cancer Genetics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
| | - Foon K Wu-Baer
- Institute for Cancer Genetics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
| | - Xiaohui Lin
- Institute for Cancer Genetics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
| | - Zhengping Shao
- Institute for Cancer Genetics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
| | - Verna M Estes
- Institute for Cancer Genetics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
| | - Jean Gautier
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
| | - Richard Baer
- Institute for Cancer Genetics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
| | - Shan Zha
- Institute for Cancer Genetics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
- Division of Pediatric Oncology, Hematology and Stem Cell Transplantation, Department of Pediatrics, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY
| |
Collapse
|
88
|
Casari E, Rinaldi C, Marsella A, Gnugnoli M, Colombo CV, Bonetti D, Longhese MP. Processing of DNA Double-Strand Breaks by the MRX Complex in a Chromatin Context. Front Mol Biosci 2019; 6:43. [PMID: 31231660 PMCID: PMC6567933 DOI: 10.3389/fmolb.2019.00043] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 05/21/2019] [Indexed: 12/24/2022] Open
Abstract
DNA double-strand breaks (DSBs) are highly cytotoxic lesions that must be repaired to ensure genomic stability and avoid cell death. The cellular response to DSBs is initiated by the evolutionarily conserved Mre11-Rad50-Xrs2/NBS1 (MRX/MRN) complex that has structural and catalytic functions. Furthermore, it is responsible for DSB signaling through the activation of the checkpoint kinase Tel1/ATM. Here, we review functions and regulation of the MRX/MRN complex in DSB processing in a chromatin context, as well as its interplay with Tel1/ATM.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Maria Pia Longhese
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, Milan, Italy
| |
Collapse
|
89
|
Wilsker DF, Barrett AM, Dull AB, Lawrence SM, Hollingshead MG, Chen A, Kummar S, Parchment RE, Doroshow JH, Kinders RJ. Evaluation of Pharmacodynamic Responses to Cancer Therapeutic Agents Using DNA Damage Markers. Clin Cancer Res 2019; 25:3084-3095. [PMID: 30792217 PMCID: PMC6522288 DOI: 10.1158/1078-0432.ccr-18-2523] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 12/12/2018] [Accepted: 02/14/2019] [Indexed: 12/21/2022]
Abstract
PURPOSE We sought to examine the pharmacodynamic activation of the DNA damage response (DDR) pathway in tumors following anticancer treatment for confirmation of target engagement. EXPERIMENTAL DESIGN We evaluated the time course and spatial activation of 3 protein biomarkers of DNA damage recognition and repair (γH2AX, pS343-Nbs1, and Rad51) simultaneously in a quantitative multiplex immunofluorescence assay (IFA) to assess DDR pathway activation in tumor tissues following exposure to DNA-damaging agents. RESULTS Because of inherent biological variability, baseline DDR biomarker levels were evaluated in a colorectal cancer microarray to establish clinically relevant thresholds for pharmacodynamic activation. Xenograft-bearing mice and clinical colorectal tumor biopsies obtained from subjects exposed to DNA-damaging therapeutic regimens demonstrated marked intratumor heterogeneity in the timing and extent of DDR biomarker activation due, in part, to the cell-cycle dependency of DNA damage biomarker expression. CONCLUSIONS We have demonstrated the clinical utility of this DDR multiplex IFA in preclinical models and clinical specimens following exposure to multiple classes of cytotoxic agents, DNA repair protein inhibitors, and molecularly targeted agents, in both homologous recombination-proficient and -deficient contexts. Levels exceeding 4% nuclear area positive (NAP) γH2AX, 4% NAP pS343-Nbs1, and 5% cells with ≥5 Rad51 nuclear foci indicate a DDR activation response to treatment in human colorectal cancer tissue. Determination of effect-level cutoffs allows for robust interpretation of biomarkers with significant interpatient and intratumor heterogeneity; simultaneous assessment of biomarkers induced at different phases of the DDR guards against the risk of false negatives due to an ill-timed biopsy.
Collapse
Affiliation(s)
- Deborah F Wilsker
- Clinical Pharmacodynamic Biomarkers Program, Applied/Developmental Research Directorate, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland.
| | - Allison M Barrett
- Clinical Pharmacodynamic Biomarkers Program, Applied/Developmental Research Directorate, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Angie B Dull
- Clinical Pharmacodynamic Biomarkers Program, Applied/Developmental Research Directorate, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Scott M Lawrence
- Clinical Pharmacodynamic Biomarkers Program, Applied/Developmental Research Directorate, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | | | - Alice Chen
- Division of Cancer Treatment and Diagnosis, NCI, Bethesda, Maryland
| | - Shivaani Kummar
- Division of Cancer Treatment and Diagnosis, NCI, Bethesda, Maryland
| | - Ralph E Parchment
- Clinical Pharmacodynamic Biomarkers Program, Applied/Developmental Research Directorate, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - James H Doroshow
- Division of Cancer Treatment and Diagnosis, NCI, Bethesda, Maryland
- Developmental Therapeutics Branch, Center for Cancer Research, NCI, Bethesda, Maryland
| | - Robert J Kinders
- Clinical Pharmacodynamic Biomarkers Program, Applied/Developmental Research Directorate, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland.
| |
Collapse
|
90
|
Anand R, Jasrotia A, Bundschuh D, Howard SM, Ranjha L, Stucki M, Cejka P. NBS1 promotes the endonuclease activity of the MRE11-RAD50 complex by sensing CtIP phosphorylation. EMBO J 2019; 38:e101005. [PMID: 30787182 PMCID: PMC6443204 DOI: 10.15252/embj.2018101005] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 01/08/2019] [Accepted: 02/01/2019] [Indexed: 11/09/2022] Open
Abstract
DNA end resection initiates DNA double-strand break repair by homologous recombination. MRE11-RAD50-NBS1 and phosphorylated CtIP perform the first resection step via MRE11-catalyzed endonucleolytic DNA cleavage. Human NBS1, more than its homologue Xrs2 in Saccharomyces cerevisiae, is crucial for this process, highlighting complex mechanisms that regulate the MRE11 nuclease in higher eukaryotes. Using a reconstituted system, we show here that NBS1, through its FHA and BRCT domains, functions as a sensor of CtIP phosphorylation. NBS1 then activates the MRE11-RAD50 nuclease through direct physical interactions with MRE11. In the absence of NBS1, MRE11-RAD50 exhibits a weaker nuclease activity, which requires CtIP but not strictly its phosphorylation. This identifies at least two mechanisms by which CtIP augments MRE11: a phosphorylation-dependent mode through NBS1 and a phosphorylation-independent mode without NBS1. In support, we show that limited DNA end resection occurs in vivo in the absence of the FHA and BRCT domains of NBS1. Collectively, our data suggest that NBS1 restricts the MRE11-RAD50 nuclease to S-G2 phase when CtIP is extensively phosphorylated. This defines mechanisms that regulate the MRE11 nuclease in DNA metabolism.
Collapse
Affiliation(s)
- Roopesh Anand
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera italiana (USI), Bellinzona, Switzerland
| | - Arti Jasrotia
- Department of Gynecology, University of Zurich, Schlieren, Switzerland
| | - Diana Bundschuh
- Department of Gynecology, University of Zurich, Schlieren, Switzerland
| | - Sean Michael Howard
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera italiana (USI), Bellinzona, Switzerland
| | - Lepakshi Ranjha
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera italiana (USI), Bellinzona, Switzerland
| | - Manuel Stucki
- Department of Gynecology, University of Zurich, Schlieren, Switzerland
| | - Petr Cejka
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera italiana (USI), Bellinzona, Switzerland
- Department of Biology, Institute of Biochemistry, Eidgenössische Technische Hochschule (ETH), Zürich, Switzerland
| |
Collapse
|
91
|
Stepwise 5' DNA end-specific resection of DNA breaks by the Mre11-Rad50-Xrs2 and Sae2 nuclease ensemble. Proc Natl Acad Sci U S A 2019; 116:5505-5513. [PMID: 30819891 DOI: 10.1073/pnas.1820157116] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
To repair DNA double-strand breaks by homologous recombination, the 5'-terminated DNA strands must first be resected to produce 3' overhangs. Mre11 from Saccharomyces cerevisiae is a 3' → 5' exonuclease that is responsible for 5' end degradation in vivo. Using plasmid-length DNA substrates and purified recombinant proteins, we show that the combined exonuclease and endonuclease activities of recombinant MRX-Sae2 preferentially degrade the 5'-terminated DNA strand, which extends beyond the vicinity of the DNA end. Mechanistically, Rad50 restricts the Mre11 exonuclease in an ATP binding-dependent manner, preventing 3' end degradation. Phosphorylated Sae2, along with stimulating the MRX endonuclease as shown previously, also overcomes this inhibition to promote the 3' → 5' exonuclease of MRX, which requires ATP hydrolysis by Rad50. Our results support a model in which MRX-Sae2 catalyzes 5'-DNA end degradation by stepwise endonucleolytic DNA incisions, followed by exonucleolytic 3' → 5' degradation of the individual DNA fragments. This model explains how both exonuclease and endonuclease activities of Mre11 functionally integrate within the MRX-Sae2 ensemble to resect 5'-terminated DNA.
Collapse
|
92
|
Wilkinson OJ, Martín-González A, Kang H, Northall SJ, Wigley DB, Moreno-Herrero F, Dillingham MS. CtIP forms a tetrameric dumbbell-shaped particle which bridges complex DNA end structures for double-strand break repair. eLife 2019; 8:42129. [PMID: 30601117 PMCID: PMC6344080 DOI: 10.7554/elife.42129] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 01/01/2019] [Indexed: 12/16/2022] Open
Abstract
CtIP is involved in the resection of broken DNA during the S and G2 phases of the cell cycle for repair by recombination. Acting with the MRN complex, it plays a particularly important role in handling complex DNA end structures by localised nucleolytic processing of DNA termini in preparation for longer range resection. Here we show that human CtIP is a tetrameric protein adopting a dumbbell architecture in which DNA binding domains are connected by long coiled-coils. The protein complex binds two short DNA duplexes with high affinity and bridges DNA molecules in trans. DNA binding is potentiated by dephosphorylation and is not specific for DNA end structures per se. However, the affinity for linear DNA molecules is increased if the DNA terminates with complex structures including forked ssDNA overhangs and nucleoprotein conjugates. This work provides a biochemical and structural basis for the function of CtIP at complex DNA breaks.
Collapse
Affiliation(s)
| | - Alejandro Martín-González
- Department of Macromolecular Structures, Centro Nacional de Biotecnologia, Consejo Superior de Investigaciones Cientificas, Madrid, Spain
| | - Haejoo Kang
- Department of Medicine, Imperial College London, London, United Kingdom
| | - Sarah J Northall
- School of Biochemistry, University of Bristol, Bristol, United Kingdom
| | - Dale B Wigley
- Department of Medicine, Imperial College London, London, United Kingdom
| | - Fernando Moreno-Herrero
- Department of Macromolecular Structures, Centro Nacional de Biotecnologia, Consejo Superior de Investigaciones Cientificas, Madrid, Spain
| | | |
Collapse
|
93
|
Myler LR, Soniat MM, Zhang X, Deshpande RA, Paull TT, Finkelstein IJ. Purification and Biophysical Characterization of the Mre11-Rad50-Nbs1 Complex. Methods Mol Biol 2019; 2004:269-287. [PMID: 31147924 PMCID: PMC6667175 DOI: 10.1007/978-1-4939-9520-2_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The Mre11-Rad50-Nbs1 (MRN) complex coordinates the repair of DNA double-strand breaks, replication fork restart, meiosis, class-switch recombination, and telomere maintenance. As such, MRN is an essential molecular machine that has homologs in all organisms of life, from bacteriophage to humans. In human cells, MRN is a >500 kDa multifunctional complex that encodes DNA binding, ATPase, and both endonuclease and exonuclease activities. MRN also forms larger assemblies and interacts with multiple DNA repair and replication factors. The enzymatic properties of MRN have been the subject of intense research for over 20 years, and more recently, single-molecule biophysics studies are beginning to probe its many biochemical activities. Here, we describe the methods used to overexpress, fluorescently label, and visualize MRN and its activities on single molecules of DNA.
Collapse
Affiliation(s)
- Logan R Myler
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, USA
| | - Michael M Soniat
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, USA
- Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX, USA
| | - Xiaoming Zhang
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, USA
- The Howard Hughes Medical Institute, The University of Texas at Austin, Austin, TX, USA
| | - Rajashree A Deshpande
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, USA
- The Howard Hughes Medical Institute, The University of Texas at Austin, Austin, TX, USA
| | - Tanya T Paull
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, USA
- The Howard Hughes Medical Institute, The University of Texas at Austin, Austin, TX, USA
| | - Ilya J Finkelstein
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, USA.
- Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
94
|
Abstract
DNA double-strand breaks (DSBs) are a potentially lethal DNA lesions that disrupt both the physical and genetic continuity of the DNA duplex. Homologous recombination (HR) is a universally conserved genome maintenance pathway that initiates via nucleolytic processing of the broken DNA ends (resection). Eukaryotic DNA resection is catalyzed by the resectosome-a multicomponent molecular machine consisting of the nucleases DNA2 or Exonuclease 1 (EXO1), Bloom's helicase (BLM), the MRE11-RAD50-NBS1 (MRN) complex, and additional regulatory factors. Here, we describe methods for purification and single-molecule imaging and analysis of EXO1, DNA2, and BLM. We also describe how to adapt resection assays to the high-throughput single-molecule DNA curtain assay. By organizing hundreds of individual molecules on the surface of a microfluidic flowcell, DNA curtains visualize protein complexes with the required spatial and temporal resolution to resolve the molecular choreography during critical DNA-processing reactions.
Collapse
|
95
|
Lamarche BJ, Orazio NI, Goben B, Meisenhelder J, You Z, Weitzman MD, Hunter T. Repair of protein-linked DNA double strand breaks: Using the adenovirus genome as a model substrate in cell-based assays. DNA Repair (Amst) 2018; 74:80-90. [PMID: 30583959 DOI: 10.1016/j.dnarep.2018.12.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 12/07/2018] [Accepted: 12/07/2018] [Indexed: 11/29/2022]
Abstract
The DNA double strand breaks (DSBs) created during meiotic recombination and during some types of chemotherapy contain protein covalently attached to their 5' termini. Removal of the end-blocking protein is a prerequisite to DSB processing by non-homologous end-joining or homologous recombination. One mechanism for removing the protein involves CtIP-stimulated Mre11-catalyzed nicking of the protein-linked strand distal to the DSB terminus, releasing the end-blocking protein while it remains covalently attached to an oligonucleotide. Much of what is known about this repair process has recently been deciphered through in vitro reconstitution studies. We present here a novel model system based on adenovirus (Ad), which contains the Ad terminal protein covalently linked to the 5' terminus of its dsDNA genome, for studying the repair of 5' protein-linked DSBs in vivo. It was previously shown that the genome of Ad mutants that lack early region 4 (E4) can be joined into concatemers in vivo, suggesting that the Ad terminal protein had been removed from the genome termini prior to ligation. Here we show that during infection with the E4-deleted Ad mutant dl1004, the Ad terminal protein is removed in a manner that recapitulates removal of end-blocking proteins from cellular DSBs. In addition to displaying a dependence on CtIP, and Mre11 acting as the endonuclease, the protein-linked oligonucleotides that are released from the viral genome are similar in size to the oligos that remain attached to Spo11 and Top2 after they are removed from the 5' termini of DSBs during meiotic recombination and etoposide chemotherapy, respectively. The single nucleotide resolution that is possible with this assay, combined with the single sequence context in which the lesion is presented, make it a useful tool for further refining our mechanistic understanding of how blocking proteins are removed from the 5' termini of DSBs.
Collapse
Affiliation(s)
- Brandon J Lamarche
- Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, California, 92037, USA; Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California, 92037, USA
| | - Nicole I Orazio
- Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, California, 92037, USA
| | - Brittany Goben
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California, 92037, USA
| | - Jill Meisenhelder
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California, 92037, USA
| | - Zhongsheng You
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, 63110, USA
| | - Matthew D Weitzman
- Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, California, 92037, USA.
| | - Tony Hunter
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California, 92037, USA.
| |
Collapse
|
96
|
Saathoff JH, Käshammer L, Lammens K, Byrne RT, Hopfner KP. The bacterial Mre11-Rad50 homolog SbcCD cleaves opposing strands of DNA by two chemically distinct nuclease reactions. Nucleic Acids Res 2018; 46:11303-11314. [PMID: 30277537 PMCID: PMC6265447 DOI: 10.1093/nar/gky878] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 09/14/2018] [Accepted: 09/19/2018] [Indexed: 12/22/2022] Open
Abstract
The Mre11-Rad50 complex is a DNA double-strand break sensor that cleaves blocked DNA ends and hairpins by an ATP-dependent endo/exonuclease activity for subsequent repair. For that, Mre11-Rad50 complexes, including the Escherichia coli homolog SbcCD, can endonucleolytically cleave one or both strands near a protein block and process free DNA ends via a 3'-5' exonuclease, but a unified basis for these distinct activities is lacking. Here we analyzed DNA binding, ATPase and nuclease reactions on different DNA substrates. SbcCD clips terminal bases of both strands of the DNA end in the presence of ATPγS. It introduces a DNA double-strand break around 20-25 bp from a blocked end after multiple rounds of ATP hydrolysis in a reaction that correlates with local DNA meltability. Interestingly, we find that nuclease reactions on opposing strands are chemically distinct, leaving a 5' phosphate on one strand, but a 3' phosphate on the other strand. Collectively, our results identify an unexpected chemical variability of the nuclease, indicating that the complex is oriented at a free DNA end and facing a block with opposite polarity. This suggests a unified model for ATP-dependent endo- and exonuclease reactions at internal DNA near a block and at free DNA ends.
Collapse
Affiliation(s)
- Jan-Hinnerk Saathoff
- Department of Biochemistry, Ludwig-Maximilians-Universität München, Feodor Lynen Straße 25, 81377 Munich, Germany
- Gene Center, Ludwig-Maximilians-Universität München, Feodor Lynen Straße 25, 81377 Munich, Germany
| | - Lisa Käshammer
- Department of Biochemistry, Ludwig-Maximilians-Universität München, Feodor Lynen Straße 25, 81377 Munich, Germany
- Gene Center, Ludwig-Maximilians-Universität München, Feodor Lynen Straße 25, 81377 Munich, Germany
| | - Katja Lammens
- Department of Biochemistry, Ludwig-Maximilians-Universität München, Feodor Lynen Straße 25, 81377 Munich, Germany
- Gene Center, Ludwig-Maximilians-Universität München, Feodor Lynen Straße 25, 81377 Munich, Germany
| | - Robert Thomas Byrne
- Department of Biochemistry, Ludwig-Maximilians-Universität München, Feodor Lynen Straße 25, 81377 Munich, Germany
- Gene Center, Ludwig-Maximilians-Universität München, Feodor Lynen Straße 25, 81377 Munich, Germany
| | - Karl-Peter Hopfner
- Department of Biochemistry, Ludwig-Maximilians-Universität München, Feodor Lynen Straße 25, 81377 Munich, Germany
- Gene Center, Ludwig-Maximilians-Universität München, Feodor Lynen Straße 25, 81377 Munich, Germany
- Center for Integrated Protein Science, Munich, Germany
| |
Collapse
|
97
|
BRCA1 ensures genome integrity by eliminating estrogen-induced pathological topoisomerase II-DNA complexes. Proc Natl Acad Sci U S A 2018; 115:E10642-E10651. [PMID: 30352856 DOI: 10.1073/pnas.1803177115] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Women having BRCA1 germ-line mutations develop cancer in breast and ovary, estrogen-regulated tissues, with high penetrance. Binding of estrogens to the estrogen receptor (ER) transiently induces DNA double-strand breaks (DSBs) by topoisomerase II (TOP2) and controls gene transcription. TOP2 resolves catenated DNA by transiently generating DSBs, TOP2-cleavage complexes (TOP2ccs), where TOP2 covalently binds to 5' ends of DSBs. TOP2 frequently fails to complete its catalysis, leading to formation of pathological TOP2ccs. We have previously shown that the endonucleolytic activity of MRE11 plays a key role in removing 5' TOP2 adducts in G1 phase. We show here that BRCA1 promotes MRE11-mediated removal of TOP2 adducts in G1 phase. We disrupted the BRCA1 gene in 53BP1-deficient ER-positive breast cancer and B cells. The loss of BRCA1 caused marked increases of pathological TOP2ccs in G1 phase following exposure to etoposide, which generates pathological TOP2ccs. We conclude that BRCA1 promotes the removal of TOP2 adducts from DSB ends for subsequent nonhomologous end joining. BRCA1-deficient cells showed a decrease in etoposide-induced MRE11 foci in G1 phase, suggesting that BRCA1 repairs pathological TOP2ccs by promoting the recruitment of MRE11 to TOP2cc sites. BRCA1 depletion also leads to the increase of unrepaired DSBs upon estrogen treatment both in vitro in G1-arrested breast cancer cells and in vivo in epithelial cells of mouse mammary glands. BRCA1 thus plays a critical role in removing pathological TOP2ccs induced by estrogens as well as etoposide. We propose that BRCA1 suppresses tumorigenesis by removing estrogen-induced pathological TOP2ccs throughout the cell cycle.
Collapse
|
98
|
Regulatory control of DNA end resection by Sae2 phosphorylation. Nat Commun 2018; 9:4016. [PMID: 30275497 PMCID: PMC6167383 DOI: 10.1038/s41467-018-06417-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 08/29/2018] [Indexed: 12/31/2022] Open
Abstract
DNA end resection plays a critical function in DNA double-strand break repair pathway choice. Resected DNA ends are refractory to end-joining mechanisms and are instead channeled to homology-directed repair. Using biochemical, genetic, and imaging methods, we show that phosphorylation of Saccharomyces cerevisiae Sae2 controls its capacity to promote the Mre11-Rad50-Xrs2 (MRX) nuclease to initiate resection of blocked DNA ends by at least two distinct mechanisms. First, DNA damage and cell cycle-dependent phosphorylation leads to Sae2 tetramerization. Second, and independently, phosphorylation of the conserved C-terminal domain of Sae2 is a prerequisite for its physical interaction with Rad50, which is also crucial to promote the MRX endonuclease. The lack of this interaction explains the phenotype of rad50S mutants defective in the processing of Spo11-bound DNA ends during meiotic recombination. Our results define how phosphorylation controls the initiation of DNA end resection and therefore the choice between the key DNA double-strand break repair mechanisms. It has previously been established that DNA end resection in yeast and in humans is under CDK control. Here the authors explain how phosphorylation regulates the capacity of Sae2 — the yeast orthologue of human CtIP — to promote DNA end resection.
Collapse
|
99
|
Bonetti D, Colombo CV, Clerici M, Longhese MP. Processing of DNA Ends in the Maintenance of Genome Stability. Front Genet 2018; 9:390. [PMID: 30258457 PMCID: PMC6143663 DOI: 10.3389/fgene.2018.00390] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 08/29/2018] [Indexed: 12/17/2022] Open
Abstract
DNA double-strand breaks (DSBs) are particularly hazardous lesions as their inappropriate repair can result in chromosome rearrangements, an important driving force of tumorigenesis. DSBs can be repaired by end joining mechanisms or by homologous recombination (HR). HR requires the action of several nucleases that preferentially remove the 5′-terminated strands at both DSB ends in a process called DNA end resection. The same nucleases are also involved in the processing of replication fork structures. Much of our understanding of these pathways has come from studies in the model organism Saccharomyces cerevisiae. Here, we review the current knowledge of the mechanism of resection at DNA DSBs and replication forks.
Collapse
Affiliation(s)
- Diego Bonetti
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milan, Italy
| | | | - Michela Clerici
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milan, Italy
| | - Maria Pia Longhese
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milan, Italy
| |
Collapse
|
100
|
Weyand CM, Shen Y, Goronzy JJ. Redox-sensitive signaling in inflammatory T cells and in autoimmune disease. Free Radic Biol Med 2018; 125:36-43. [PMID: 29524605 PMCID: PMC6128787 DOI: 10.1016/j.freeradbiomed.2018.03.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 03/01/2018] [Accepted: 03/04/2018] [Indexed: 12/13/2022]
Abstract
Reactive oxygen species (ROS) are byproducts of oxygen metabolism best known for their damaging potential, but recent evidence has exposed their role as secondary messengers, which regulate cell function through redox-activatable signaling systems. In immune cells, specifically in T cells, redox-sensitive signaling pathways have been implicated in controlling several functional domains; including cell cycle progression, T effector cell differentiation, tissue invasion and inflammatory behavior. T cells from patients with the autoimmune disease rheumatoid arthritis (RA) have emerged as a valuable model system to examine the functional impact of ROS on T cell function. Notably, RA T cells are distinguished from healthy T cells based on reduced ROS production and undergo "reductive stress". Upstream defects leading to the ROSlow status of RA T cells are connected to metabolic reorganization. RA T cells shunt glucose away from pyruvate and ATP production towards the pentose phosphate pathway, where they generate NADPH and consume cellular ROS. Downstream consequences of the ROSlow conditions in RA T cells include insufficient activation of the DNA repair kinase ATM, bypassing of the G2/M cell cycle checkpoint and biased differentiation of T cells into IFN-γ and IL-17-producing inflammatory cells. Also, ROSlow T cells rapidly invade into peripheral tissue due to dysregulated lipogenesis, excessive membrane ruffling, and overexpression of a motility module dominated by the scaffolding protein Tks5. These data place ROS into a pinnacle position in connecting cellular metabolism and protective versus auto-aggressive T cell immunity. Therapeutic interventions for targeted ROS enhancement instead of ROS depletion should be developed as a novel strategy to treat autoimmune tissue inflammation.
Collapse
Affiliation(s)
- Cornelia M Weyand
- Department of Medicine, Division of Immunology and Rheumatology, Stanford University, Stanford, CA 94305, USA; Department of Medicine, Veterans Affairs Palo Alto Health Care System Palo Alto, CA 94306, USA.
| | - Yi Shen
- Department of Medicine, Division of Immunology and Rheumatology, Stanford University, Stanford, CA 94305, USA; Department of Medicine, Veterans Affairs Palo Alto Health Care System Palo Alto, CA 94306, USA
| | - Jorg J Goronzy
- Department of Medicine, Division of Immunology and Rheumatology, Stanford University, Stanford, CA 94305, USA; Department of Medicine, Veterans Affairs Palo Alto Health Care System Palo Alto, CA 94306, USA
| |
Collapse
|