51
|
Li X, Si N, Song Z, Ren Y, Xiao W. Clinical and genetic findings in patients with congenital cataract and heart diseases. Orphanet J Rare Dis 2021; 16:242. [PMID: 34059112 PMCID: PMC8165991 DOI: 10.1186/s13023-021-01873-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 05/20/2021] [Indexed: 12/02/2022] Open
Abstract
Background Congenital cataract (CC) and congenital heart disease (CHD) are significant birth defects. In clinical practice, the concurrence of CC and CHD is frequently observed in patients. Additionally, some monogenic diseases, copy number variation (CNV) syndromes, and diseases associated with intrauterine infection involve both cataract and heart defects. However, little is known about the association between CC and CHD. Here, we characterised the demographic, clinical, and genetic features of patients with CC and heart defects. Methods Medical records for 334 hospitalised patients diagnosed with CC were reviewed. Demographic and clinical features of patients with CC with and without CHD were compared. Clinical and genomic information for patients with ‘cataract’ and ‘cardiac defects’ were reviewed from Database of Chromosomal Imbalance and Phenotype in Humans using Ensembl Resources (DECIPHER). Microarray-based comparative genomic hybridisation and whole-exome sequencing were performed in 10 trio families with CC and CHD to detect de novo genomic alterations, including copy number variants and single nucleotide changes. Results In a retrospective analysis of 334 patients with CC over the past 10 years at our hospital, we observed a high proportion of patients (41.13%) with CHD (including innocent CHD, which reported as left-to-right shunt in echocardiography test). The CC with CHD group had higher incidences of preterm birth and Down’s syndrome than the CC without CHD group. Atrial septal defect was the most frequent heart defect. A total of 44 cases with cataracts and heart diseases were retrieved from Database of Chromosomal Imbalance and Phenotype in Humans using Ensembl Resources (DECIPHER). In total, 52 genomic alterations were reported, 44% of which were de novo germline variants. In the 10 trio families with CC and CHD, we found de novo CNVs responsible for two well-known chromosomal disorders and identified a novel pathogenic mutation in GJA8 responsible for CC. Conclusions We observed significant associations between CHD and CC in our 10-year patient cohort. Based on the cohort and data from DECIPHER, developmental syndromes in some patients were due to genetic defects, thus explaining the concurrence of CC and CHD. Additionally, we detected de novo mutations as an independent cause of cataracts. Our findings suggest that developmental syndromes in patients with CC deserve more attention in clinical practice by ophthalmologists. Supplementary Information The online version contains supplementary material available at 10.1186/s13023-021-01873-7.
Collapse
Affiliation(s)
- Xinru Li
- Department of Ophthalmology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, China
| | - Nuo Si
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking, Union Medical College, Beijing, China
| | - Zixun Song
- Department of Ophthalmology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, China
| | - Yaqiong Ren
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking, Union Medical College, Beijing, China
| | - Wei Xiao
- Department of Ophthalmology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, China.
| |
Collapse
|
52
|
Needs HI, Protasoni M, Henley JM, Prudent J, Collinson I, Pereira GC. Interplay between Mitochondrial Protein Import and Respiratory Complexes Assembly in Neuronal Health and Degeneration. Life (Basel) 2021; 11:432. [PMID: 34064758 PMCID: PMC8151517 DOI: 10.3390/life11050432] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/27/2021] [Accepted: 05/02/2021] [Indexed: 12/14/2022] Open
Abstract
The fact that >99% of mitochondrial proteins are encoded by the nuclear genome and synthesised in the cytosol renders the process of mitochondrial protein import fundamental for normal organelle physiology. In addition to this, the nuclear genome comprises most of the proteins required for respiratory complex assembly and function. This means that without fully functional protein import, mitochondrial respiration will be defective, and the major cellular ATP source depleted. When mitochondrial protein import is impaired, a number of stress response pathways are activated in order to overcome the dysfunction and restore mitochondrial and cellular proteostasis. However, prolonged impaired mitochondrial protein import and subsequent defective respiratory chain function contributes to a number of diseases including primary mitochondrial diseases and neurodegeneration. This review focuses on how the processes of mitochondrial protein translocation and respiratory complex assembly and function are interlinked, how they are regulated, and their importance in health and disease.
Collapse
Affiliation(s)
- Hope I. Needs
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK; (H.I.N.); (J.M.H.)
| | - Margherita Protasoni
- Medical Research Council-Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK; (M.P.); (J.P.)
| | - Jeremy M. Henley
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK; (H.I.N.); (J.M.H.)
- Centre for Neuroscience and Regenerative Medicine, Faculty of Science, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Julien Prudent
- Medical Research Council-Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK; (M.P.); (J.P.)
| | - Ian Collinson
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK; (H.I.N.); (J.M.H.)
| | - Gonçalo C. Pereira
- Medical Research Council-Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK; (M.P.); (J.P.)
| |
Collapse
|
53
|
Falabella M, Vernon HJ, Hanna MG, Claypool SM, Pitceathly RDS. Cardiolipin, Mitochondria, and Neurological Disease. Trends Endocrinol Metab 2021; 32:224-237. [PMID: 33640250 PMCID: PMC8277580 DOI: 10.1016/j.tem.2021.01.006] [Citation(s) in RCA: 148] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 02/07/2023]
Abstract
Over the past decade, it has become clear that lipid homeostasis is central to cellular metabolism. Lipids are particularly abundant in the central nervous system (CNS) where they modulate membrane fluidity, electric signal transduction, and synaptic stabilization. Abnormal lipid profiles reported in Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and traumatic brain injury (TBI), are further support for the importance of lipid metablism in the nervous system. Cardiolipin (CL), a mitochondria-exclusive phospholipid, has recently emerged as a focus of neurodegenerative disease research. Aberrant CL content, structure, and localization are linked to impaired neurogenesis and neuronal dysfunction, contributing to aging and the pathogenesis of several neurodegenerative diseases, such as AD and PD. Furthermore, the highly tissue-specific acyl chain composition of CL confers it significant potential as a biomarker to diagnose and monitor the progression in several neurological diseases. CL also represents a potential target for pharmacological strategies aimed at treating neurodegeneration. Given the equipoise that currently exists between CL metabolism, mitochondrial function, and neurological disease, we review the role of CL in nervous system physiology and monogenic and neurodegenerative disease pathophysiology, in addition to its potential application as a biomarker and pharmacological target.
Collapse
Affiliation(s)
- Micol Falabella
- Department of Neuromuscular Diseases, University College London Queen Square Institute of Neurology, London, UK
| | - Hilary J Vernon
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michael G Hanna
- Department of Neuromuscular Diseases, University College London Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, UK
| | - Steven M Claypool
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Robert D S Pitceathly
- Department of Neuromuscular Diseases, University College London Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, UK.
| |
Collapse
|
54
|
Acoba MG, Senoo N, Claypool SM. Phospholipid ebb and flow makes mitochondria go. J Cell Biol 2021; 219:151918. [PMID: 32614384 PMCID: PMC7401802 DOI: 10.1083/jcb.202003131] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/28/2020] [Accepted: 06/02/2020] [Indexed: 01/19/2023] Open
Abstract
Mitochondria, so much more than just being energy factories, also have the capacity to synthesize macromolecules including phospholipids, particularly cardiolipin (CL) and phosphatidylethanolamine (PE). Phospholipids are vital constituents of mitochondrial membranes, impacting the plethora of functions performed by this organelle. Hence, the orchestrated movement of phospholipids to and from the mitochondrion is essential for cellular integrity. In this review, we capture recent advances in the field of mitochondrial phospholipid biosynthesis and trafficking, highlighting the significance of interorganellar communication, intramitochondrial contact sites, and lipid transfer proteins in maintaining membrane homeostasis. We then discuss the physiological functions of CL and PE, specifically how they associate with protein complexes in mitochondrial membranes to support bioenergetics and maintain mitochondrial architecture.
Collapse
Affiliation(s)
- Michelle Grace Acoba
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Nanami Senoo
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Steven M Claypool
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
55
|
Acoba MG, Alpergin ESS, Renuse S, Fernández-Del-Río L, Lu YW, Khalimonchuk O, Clarke CF, Pandey A, Wolfgang MJ, Claypool SM. The mitochondrial carrier SFXN1 is critical for complex III integrity and cellular metabolism. Cell Rep 2021; 34:108869. [PMID: 33730581 PMCID: PMC8048093 DOI: 10.1016/j.celrep.2021.108869] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 01/18/2021] [Accepted: 02/24/2021] [Indexed: 12/13/2022] Open
Abstract
Mitochondrial carriers (MCs) mediate the passage of small molecules across the inner mitochondrial membrane (IMM), enabling regulated crosstalk between compartmentalized reactions. Despite MCs representing the largest family of solute carriers in mammals, most have not been subjected to a comprehensive investigation, limiting our understanding of their metabolic contributions. Here, we functionally characterize SFXN1, a member of the non-canonical, sideroflexin family. We find that SFXN1, an integral IMM protein with an uneven number of transmembrane domains, is a TIM22 complex substrate. SFXN1 deficiency leads to mitochondrial respiratory chain impairments, most detrimental to complex III (CIII) biogenesis, activity, and assembly, compromising coenzyme Q levels. The CIII dysfunction is independent of one-carbon metabolism, the known primary role for SFXN1 as a mitochondrial serine transporter. Instead, SFXN1 supports CIII function by participating in heme and α-ketoglutarate metabolism. Our findings highlight the multiple ways that SFXN1-based amino acid transport impacts mitochondrial and cellular metabolic efficiency.
Collapse
Affiliation(s)
- Michelle Grace Acoba
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ebru S Selen Alpergin
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Santosh Renuse
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; McKusick-Nathans Institute of Genetic Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Lucía Fernández-Del-Río
- Department of Chemistry and Biochemistry and Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Ya-Wen Lu
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Oleh Khalimonchuk
- Department of Biochemistry and Nebraska Redox Biology Center, University of Nebraska, Lincoln, NE 68588, USA; Fred & Pamela Buffett Cancer Center, Omaha, NE 68198, USA
| | - Catherine F Clarke
- Department of Chemistry and Biochemistry and Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Akhilesh Pandey
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; McKusick-Nathans Institute of Genetic Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Departments of Pathology and Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Michael J Wolfgang
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Steven M Claypool
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
56
|
Ng MYW, Wai T, Simonsen A. Quality control of the mitochondrion. Dev Cell 2021; 56:881-905. [PMID: 33662258 DOI: 10.1016/j.devcel.2021.02.009] [Citation(s) in RCA: 236] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/06/2021] [Accepted: 02/08/2021] [Indexed: 12/22/2022]
Abstract
Mitochondria are essential organelles that execute and coordinate various metabolic processes in the cell. Mitochondrial dysfunction severely affects cell fitness and contributes to disease. Proper organellar function depends on the biogenesis and maintenance of mitochondria and its >1,000 proteins. As a result, the cell has evolved mechanisms to coordinate protein and organellar quality control, such as the turnover of proteins via mitochondria-associated degradation, the ubiquitin-proteasome system, and mitoproteases, as well as the elimination of mitochondria through mitophagy. Specific quality control mechanisms are engaged depending upon the nature and severity of mitochondrial dysfunction, which can also feed back to elicit transcriptional or proteomic remodeling by the cell. Here, we will discuss the current understanding of how these different quality control mechanisms are integrated and overlap to maintain protein and organellar quality and how they may be relevant for cellular and organismal health.
Collapse
Affiliation(s)
- Matthew Yoke Wui Ng
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, 0372 Oslo, Norway; Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, University of Oslo, 0316 Oslo, Norway
| | - Timothy Wai
- Institut Pasteur CNRS UMR 3691, 25-28 Rue du Docteur Roux, Paris, France.
| | - Anne Simonsen
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, 0372 Oslo, Norway; Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, University of Oslo, 0316 Oslo, Norway.
| |
Collapse
|
57
|
Qi L, Wang Q, Guan Z, Wu Y, Shen C, Hong S, Cao J, Zhang X, Yan C, Yin P. Cryo-EM structure of the human mitochondrial translocase TIM22 complex. Cell Res 2021; 31:369-372. [PMID: 32901109 PMCID: PMC8027037 DOI: 10.1038/s41422-020-00400-w] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 08/05/2020] [Indexed: 01/30/2023] Open
Affiliation(s)
- Liangbo Qi
- grid.35155.370000 0004 1790 4137National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan, Hubei 430070 China
| | - Qiang Wang
- grid.35155.370000 0004 1790 4137National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan, Hubei 430070 China
| | - Zeyuan Guan
- grid.35155.370000 0004 1790 4137National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan, Hubei 430070 China
| | - Yan Wu
- grid.35155.370000 0004 1790 4137National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan, Hubei 430070 China
| | - Cuicui Shen
- grid.35155.370000 0004 1790 4137National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan, Hubei 430070 China
| | - Sixing Hong
- grid.35155.370000 0004 1790 4137National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan, Hubei 430070 China
| | - Jianbo Cao
- grid.35155.370000 0004 1790 4137Public Laboratory of Electron Microscopy, Huazhong Agricultural University, Wuhan, Hubei 430070 China
| | - Xing Zhang
- grid.13402.340000 0004 1759 700XDepartment of Biophysics, and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Center of Cryo Electron Microscopy, Zhejiang University, Hangzhou, Zhejiang 310058 China
| | - Chuangye Yan
- grid.12527.330000 0001 0662 3178Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084 China
| | - Ping Yin
- grid.35155.370000 0004 1790 4137National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan, Hubei 430070 China
| |
Collapse
|
58
|
The role of AGK in thrombocytopoiesis and possible therapeutic strategies. Blood 2021; 136:119-129. [PMID: 32202634 DOI: 10.1182/blood.2019003851] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 03/03/2020] [Indexed: 12/11/2022] Open
Abstract
Abnormal megakaryocyte development and platelet production lead to thrombocytopenia or thrombocythemia and increase the risk of hemorrhage or thrombosis. Acylglycerol kinase (AGK) is a mitochondrial membrane kinase that catalyzes the formation of phosphatidic acid and lysophosphatidic acid. Mutation of AGK has been described as the major cause of Sengers syndrome, and the patients with Sengers syndrome have been reported to exhibit thrombocytopenia. In this study, we found that megakaryocyte/platelet-specific AGK-deficient mice developed thrombocytopenia and splenomegaly, mainly caused by inefficient bone marrow thrombocytopoiesis and excessive extramedullary hematopoiesis, but not by apoptosis of circulating platelets. It has been reported that the G126E mutation arrests the kinase activity of AGK. The AGK G126E mutation did not affect peripheral platelet counts or megakaryocyte differentiation, suggesting that the involvement of AGK in megakaryocyte development and platelet biogenesis was not dependent on its kinase activity. The Mpl/Janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (Stat3) pathway is the major signaling pathway regulating megakaryocyte development. Our study confirmed that AGK can bind to JAK2 in megakaryocytes/platelets. More interestingly, we found that the JAK2 V617F mutation dramatically enhanced the binding of AGK to JAK2 and greatly facilitated JAK2/Stat3 signaling in megakaryocytes/platelets in response to thrombopoietin. We also found that the JAK2 JAK homology 2 domain peptide YGVCF617CGDENI enhanced the binding of AGK to JAK2 and that cell-permeable peptides containing YGVCF617CGDENI sequences accelerated proplatelet formation. Therefore, our study reveals critical roles of AGK in megakaryocyte differentiation and platelet biogenesis and suggests that targeting the interaction between AGK and JAK2 may be a novel strategy for the treatment of thrombocytopenia or thrombocythemia.
Collapse
|
59
|
Li W, Zheng M, Zhao G, Wang J, Liu J, Wang S, Feng F, Liu D, Zhu D, Li Q, Guo L, Guo Y, Liu R, Wen J. Identification of QTL regions and candidate genes for growth and feed efficiency in broilers. Genet Sel Evol 2021; 53:13. [PMID: 33549052 PMCID: PMC7866652 DOI: 10.1186/s12711-021-00608-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 01/26/2021] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Feed accounts for about 70% of the total cost of poultry meat production. Residual feed intake (RFI) has become the preferred measure of feed efficiency because it is phenotypically independent of growth rate and body weight. In this study, our aim was to estimate genetic parameters and identify quantitative trait loci (QTL) for feed efficiency in 3314 purebred broilers using a genome-wide association study. Broilers were genotyped using a custom 55 K single nucleotide polymorphism (SNP) array. RESULTS Estimates of genomic heritability for seven growth and feed efficiency traits, including body weight at 28 days of age (BW28), BW42, average daily feed intake (ADFI), RFI, and RFI adjusted for weight of abdominal fat (RFIa), ranged from 0.12 to 0.26. Eleven genome-wide significant SNPs and 15 suggestively significant SNPs were detected, of which 19 clustered around two genomic regions. A region on chromosome 16 (2.34-2.66 Mb) was associated with both BW28 and BW42, and the most significant SNP in this region, AX_101003762, accounted for 7.6% of the genetic variance of BW28. The other region, on chromosome 1 (91.27-92.43 Mb) was associated with RFI and ADFI, and contains the NSUN3 and EPHA6 as candidate genes. The most significant SNP in this region, AX_172588157, accounted for 4.4% of the genetic variance of RFI. In addition, a genomic region containing the gene AGK on chromosome 1 was found to be associated with RFIa. The NSUN3 and AGK genes were found to be differentially expressed in breast muscle, thigh muscle, and abdominal fat between male broilers with high and low RFI. CONCLUSIONS We identified QTL regions for BW28 and BW42 (spanning 0.32 Mb) and RFI (spanning 1.16 Mb). The NSUN3, EPHA6, and AGK were identified as the most likely candidate genes for these QTL. These genes are involved in mitochondrial function and behavioral regulation. These results contribute to the identification of candidate genes and variants for growth and feed efficiency in poultry.
Collapse
Affiliation(s)
- Wei Li
- State Key Laboratory of Animal Nutrition; Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
- College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Maiqing Zheng
- State Key Laboratory of Animal Nutrition; Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Guiping Zhao
- State Key Laboratory of Animal Nutrition; Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Jie Wang
- State Key Laboratory of Animal Nutrition; Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Jie Liu
- State Key Laboratory of Animal Nutrition; Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Shunli Wang
- State Key Laboratory of Animal Nutrition; Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Furong Feng
- Foshan Gaoming Xinguang Agricultural and Animal Industrials Corporation, Foshan, 528515 China
| | - Dawei Liu
- Foshan Gaoming Xinguang Agricultural and Animal Industrials Corporation, Foshan, 528515 China
| | - Dan Zhu
- Foshan Gaoming Xinguang Agricultural and Animal Industrials Corporation, Foshan, 528515 China
| | - Qinghe Li
- State Key Laboratory of Animal Nutrition; Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Liping Guo
- State Key Laboratory of Animal Nutrition; Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
- College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Yuming Guo
- College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Ranran Liu
- State Key Laboratory of Animal Nutrition; Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Jie Wen
- State Key Laboratory of Animal Nutrition; Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| |
Collapse
|
60
|
Mitochondrial control of cellular protein homeostasis. Biochem J 2021; 477:3033-3054. [PMID: 32845275 DOI: 10.1042/bcj20190654] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/20/2020] [Accepted: 08/03/2020] [Indexed: 02/08/2023]
Abstract
Mitochondria are involved in several vital functions of the eukaryotic cell. The majority of mitochondrial proteins are coded by nuclear DNA. Constant import of proteins from the cytosol is a prerequisite for the efficient functioning of the organelle. The protein import into mitochondria is mediated by diverse import pathways and is continuously under watch by quality control systems. However, it is often challenged by both internal and external factors, such as oxidative stress or energy shortage. The impaired protein import and biogenesis leads to the accumulation of mitochondrial precursor proteins in the cytosol and activates several stress response pathways. These defense mechanisms engage a network of processes involving transcription, translation, and protein clearance to restore cellular protein homeostasis. In this review, we provide a comprehensive analysis of various factors and processes contributing to mitochondrial stress caused by protein biogenesis failure and summarize the recovery mechanisms employed by the cell.
Collapse
|
61
|
Palmer CS, Anderson AJ, Stojanovski D. Mitochondrial protein import dysfunction: mitochondrial disease, neurodegenerative disease and cancer. FEBS Lett 2021; 595:1107-1131. [PMID: 33314127 DOI: 10.1002/1873-3468.14022] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/12/2020] [Accepted: 10/17/2020] [Indexed: 12/13/2022]
Abstract
The majority of proteins localised to mitochondria are encoded by the nuclear genome, with approximately 1500 proteins imported into mammalian mitochondria. Dysfunction in this fundamental cellular process is linked to a variety of pathologies including neuropathies, cardiovascular disorders, myopathies, neurodegenerative diseases and cancer, demonstrating the importance of mitochondrial protein import machinery for cellular function. Correct import of proteins into mitochondria requires the co-ordinated activity of multimeric protein translocation and sorting machineries located in both the outer and inner mitochondrial membranes, directing the imported proteins to the destined mitochondrial compartment. This dynamic process maintains cellular homeostasis, and its dysregulation significantly affects cellular signalling pathways and metabolism. This review summarises current knowledge of the mammalian mitochondrial import machinery and the pathological consequences of mutation of its components. In addition, we will discuss the role of mitochondrial import in cancer, and our current understanding of the role of mitochondrial import in neurodegenerative diseases including Alzheimer's disease, Huntington's disease and Parkinson's disease.
Collapse
Affiliation(s)
- Catherine S Palmer
- Department of Biochemistry and Molecular Biology and The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Australia
| | - Alexander J Anderson
- Department of Biochemistry and Molecular Biology and The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Australia
| | - Diana Stojanovski
- Department of Biochemistry and Molecular Biology and The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Australia
| |
Collapse
|
62
|
Jackson TD, Hock DH, Fujihara KM, Palmer CS, Frazier AE, Low YC, Kang Y, Ang CS, Clemons NJ, Thorburn DR, Stroud DA, Stojanovski D. The TIM22 complex mediates the import of sideroflexins and is required for efficient mitochondrial one-carbon metabolism. Mol Biol Cell 2021; 32:475-491. [PMID: 33476211 PMCID: PMC8101445 DOI: 10.1091/mbc.e20-06-0390] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Acylglycerol kinase (AGK) is a mitochondrial lipid kinase that contributes to protein biogenesis as a subunit of the TIM22 complex at the inner mitochondrial membrane. Mutations in AGK cause Sengers syndrome, an autosomal recessive condition characterized by congenital cataracts, hypertrophic cardiomyopathy, skeletal myopathy, and lactic acidosis. We mapped the proteomic changes in Sengers patient fibroblasts and AGKKO cell lines to understand the effects of AGK dysfunction on mitochondria. This uncovered down-regulation of a number of proteins at the inner mitochondrial membrane, including many SLC25 carrier family proteins, which are predicted substrates of the complex. We also observed down-regulation of SFXN proteins, which contain five transmembrane domains, and show that they represent a novel class of TIM22 complex substrate. Perturbed biogenesis of SFXN proteins in cells lacking AGK reduces the proliferative capabilities of these cells in the absence of exogenous serine, suggesting that dysregulation of one-carbon metabolism is a molecular feature in the biology of Sengers syndrome.
Collapse
Affiliation(s)
- Thomas D Jackson
- Department of Biochemistry and Pharmacology and The Bio21 Molecular Science and Biotechnology Institute
| | - Daniella H Hock
- Department of Biochemistry and Pharmacology and The Bio21 Molecular Science and Biotechnology Institute
| | - Kenji M Fujihara
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria 3010, Australia.,Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
| | - Catherine S Palmer
- Department of Biochemistry and Pharmacology and The Bio21 Molecular Science and Biotechnology Institute
| | - Ann E Frazier
- Murdoch Children's Research Institute and.,Department of Paediatrics, University of Melbourne, Melbourne, Victoria 3052, Australia
| | - Yau C Low
- Murdoch Children's Research Institute and.,Department of Paediatrics, University of Melbourne, Melbourne, Victoria 3052, Australia
| | - Yilin Kang
- Department of Biochemistry and Pharmacology and The Bio21 Molecular Science and Biotechnology Institute
| | - Ching-Seng Ang
- Bio21 Mass Spectrometry and Proteomics Facility, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Nicholas J Clemons
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria 3010, Australia.,Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
| | - David R Thorburn
- Murdoch Children's Research Institute and.,Victorian Clinical Genetics Services Royal Children's Hospital, Melbourne, Victoria 3052, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Victoria 3052, Australia
| | - David A Stroud
- Department of Biochemistry and Pharmacology and The Bio21 Molecular Science and Biotechnology Institute
| | - Diana Stojanovski
- Department of Biochemistry and Pharmacology and The Bio21 Molecular Science and Biotechnology Institute
| |
Collapse
|
63
|
Valpadashi A, Callegari S, Linden A, Neumann P, Ficner R, Urlaub H, Deckers M, Rehling P. Defining the architecture of the human TIM22 complex by chemical crosslinking. FEBS Lett 2020; 595:157-168. [PMID: 33125709 DOI: 10.1002/1873-3468.13978] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/19/2020] [Accepted: 10/25/2020] [Indexed: 12/22/2022]
Abstract
The majority of mitochondrial proteins are nuclear encoded and imported into mitochondria as precursor proteins via dedicated translocases. The translocase of the inner membrane 22 (TIM22) is a multisubunit molecular machine specialized for the translocation of hydrophobic, multi-transmembrane-spanning proteins with internal targeting signals into the inner mitochondrial membrane. Here, we undertook a crosslinking-mass spectrometry (XL-MS) approach to determine the molecular arrangement of subunits of the human TIM22 complex. Crosslinking of the isolated TIM22 complex using the BS3 crosslinker resulted in the broad generation of crosslinks across the majority of TIM22 components, including the small TIM chaperone complex. The crosslinking data uncovered several unexpected features, opening new avenues for a deeper investigation into the steps required for TIM22-mediated translocation in humans.
Collapse
Affiliation(s)
- Anusha Valpadashi
- Department of Cellular Biochemistry, University Medical Center Göttingen, Germany
| | - Sylvie Callegari
- Department of Cellular Biochemistry, University Medical Center Göttingen, Germany.,Ubiquitin Signalling Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.,Department of Medical Biology, University of Melbourne, Australia
| | - Andreas Linden
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.,Department of Clinical Chemistry, Bioanalytics, University Medical Center Göttingen, Germany
| | - Piotr Neumann
- Department of Molecular Structural Biology, Institute for Microbiology and Genetics, Göttingen Center for Molecular Biosciences, Georg-August-University Göttingen, Germany
| | - Ralf Ficner
- Department of Molecular Structural Biology, Institute for Microbiology and Genetics, Göttingen Center for Molecular Biosciences, Georg-August-University Göttingen, Germany.,Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Goettingen, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.,Department of Clinical Chemistry, Bioanalytics, University Medical Center Göttingen, Germany
| | - Markus Deckers
- Department of Cellular Biochemistry, University Medical Center Göttingen, Germany
| | - Peter Rehling
- Department of Cellular Biochemistry, University Medical Center Göttingen, Germany.,Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Goettingen, Germany.,Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| |
Collapse
|
64
|
Metabolic Alterations Caused by Defective Cardiolipin Remodeling in Inherited Cardiomyopathies. Life (Basel) 2020; 10:life10110277. [PMID: 33187128 PMCID: PMC7697959 DOI: 10.3390/life10110277] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/04/2020] [Accepted: 11/06/2020] [Indexed: 12/21/2022] Open
Abstract
The heart is the most energy-consuming organ in the human body. In heart failure, the homeostasis of energy supply and demand is endangered by an increase in cardiomyocyte workload, or by an insufficiency in energy-providing processes. Energy metabolism is directly associated with mitochondrial redox homeostasis. The production of toxic reactive oxygen species (ROS) may overwhelm mitochondrial and cellular ROS defense mechanisms in case of heart failure. Mitochondria are essential cell organelles and provide 95% of the required energy in the heart. Metabolic remodeling, changes in mitochondrial structure or function, and alterations in mitochondrial calcium signaling diminish mitochondrial energy provision in many forms of cardiomyopathy. The mitochondrial respiratory chain creates a proton gradient across the inner mitochondrial membrane, which couples respiration with oxidative phosphorylation and the preservation of energy in the chemical bonds of ATP. Akin to other mitochondrial enzymes, the respiratory chain is integrated into the inner mitochondrial membrane. The tight association with the mitochondrial phospholipid cardiolipin (CL) ensures its structural integrity and coordinates enzymatic activity. This review focuses on how changes in mitochondrial CL may be associated with heart failure. Dysfunctional CL has been found in diabetic cardiomyopathy, ischemia reperfusion injury and the aging heart. Barth syndrome (BTHS) is caused by an inherited defect in the biosynthesis of cardiolipin. Moreover, a dysfunctional CL pool causes other types of rare inherited cardiomyopathies, such as Sengers syndrome and Dilated Cardiomyopathy with Ataxia (DCMA). Here we review the impact of cardiolipin deficiency on mitochondrial functions in cellular and animal models. We describe the molecular mechanisms concerning mitochondrial dysfunction as an incitement of cardiomyopathy and discuss potential therapeutic strategies.
Collapse
|
65
|
Zhao T, Goedhart C, Pfeffer G, Greenway SC, Lines M, Khan A, Innes AM, Shutt TE. Skeletal Phenotypes Due to Abnormalities in Mitochondrial Protein Homeostasis and Import. Int J Mol Sci 2020; 21:8327. [PMID: 33171986 PMCID: PMC7664180 DOI: 10.3390/ijms21218327] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/28/2020] [Accepted: 11/03/2020] [Indexed: 12/19/2022] Open
Abstract
Mitochondrial disease represents a collection of rare genetic disorders caused by mitochondrial dysfunction. These disorders can be quite complex and heterogeneous, and it is recognized that mitochondrial disease can affect any tissue at any age. The reasons for this variability are not well understood. In this review, we develop and expand a subset of mitochondrial diseases including predominantly skeletal phenotypes. Understanding how impairment ofdiverse mitochondrial functions leads to a skeletal phenotype will help diagnose and treat patients with mitochondrial disease and provide additional insight into the growing list of human pathologies associated with mitochondrial dysfunction. The underlying disease genes encode factors involved in various aspects of mitochondrial protein homeostasis, including proteases and chaperones, mitochondrial protein import machinery, mediators of inner mitochondrial membrane lipid homeostasis, and aminoacylation of mitochondrial tRNAs required for translation. We further discuss a complex of frequently associated phenotypes (short stature, cataracts, and cardiomyopathy) potentially explained by alterations to steroidogenesis, a process regulated by mitochondria. Together, these observations provide novel insight into the consequences of impaired mitochondrial protein homeostasis.
Collapse
Affiliation(s)
- Tian Zhao
- Departments of Medical Genetics and Biochemistry & Molecular Biology, Cumming School of Medicine, Alberta Children’s Hospital Research Institute, Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada;
| | - Caitlin Goedhart
- Departments of Pediatrics and Medical Genetics, Cumming School of Medicine, Alberta Children’s Hospital Research Institute, Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada; (C.G.); (M.L.); (A.M.I)
| | - Gerald Pfeffer
- Departments of Clinical Neurosciences and Medical Genetics, Cumming School of Medicine, Hotchkiss Brain Institute, Alberta Child Health Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada;
| | - Steven C Greenway
- Departments of Pediatrics, Cardiac Sciences and Biochemistry & Molecular Biology, Cumming School of Medicine, Alberta Children’s Hospital Research Institute and Libin Cardiovascular Institute, University of Calgary, Calgary, AB T2N 4N1, Canada;
| | - Matthew Lines
- Departments of Pediatrics and Medical Genetics, Cumming School of Medicine, Alberta Children’s Hospital Research Institute, Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada; (C.G.); (M.L.); (A.M.I)
| | - Aneal Khan
- Departments of Pediatrics and Medical Genetics, Cumming School of Medicine, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T3B 6A8, Canada;
| | - A Micheil Innes
- Departments of Pediatrics and Medical Genetics, Cumming School of Medicine, Alberta Children’s Hospital Research Institute, Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada; (C.G.); (M.L.); (A.M.I)
| | - Timothy E Shutt
- Departments of Medical Genetics and Biochemistry & Molecular Biology, Cumming School of Medicine, Alberta Children’s Hospital Research Institute, Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada;
| |
Collapse
|
66
|
Yu CH, Davidson S, Harapas CR, Hilton JB, Mlodzianoski MJ, Laohamonthonkul P, Louis C, Low RRJ, Moecking J, De Nardo D, Balka KR, Calleja DJ, Moghaddas F, Ni E, McLean CA, Samson AL, Tyebji S, Tonkin CJ, Bye CR, Turner BJ, Pepin G, Gantier MP, Rogers KL, McArthur K, Crouch PJ, Masters SL. TDP-43 Triggers Mitochondrial DNA Release via mPTP to Activate cGAS/STING in ALS. Cell 2020; 183:636-649.e18. [PMID: 33031745 PMCID: PMC7599077 DOI: 10.1016/j.cell.2020.09.020] [Citation(s) in RCA: 614] [Impact Index Per Article: 122.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 07/21/2020] [Accepted: 09/08/2020] [Indexed: 02/07/2023]
Abstract
Cytoplasmic accumulation of TDP-43 is a disease hallmark for many cases of amyotrophic lateral sclerosis (ALS), associated with a neuroinflammatory cytokine profile related to upregulation of nuclear factor κB (NF-κB) and type I interferon (IFN) pathways. Here we show that this inflammation is driven by the cytoplasmic DNA sensor cyclic guanosine monophosphate (GMP)-AMP synthase (cGAS) when TDP-43 invades mitochondria and releases DNA via the permeability transition pore. Pharmacologic inhibition or genetic deletion of cGAS and its downstream signaling partner STING prevents upregulation of NF-κB and type I IFN induced by TDP-43 in induced pluripotent stem cell (iPSC)-derived motor neurons and in TDP-43 mutant mice. Finally, we document elevated levels of the specific cGAS signaling metabolite cGAMP in spinal cord samples from patients, which may be a biomarker of mtDNA release and cGAS/STING activation in ALS. Our results identify mtDNA release and cGAS/STING activation as critical determinants of TDP-43-associated pathology and demonstrate the potential for targeting this pathway in ALS. TDP-43 enters mitochondria, triggers mtDNA release via the mPTP TDP-43-induced cytosolic mtDNA accumulation activates the cGAS/STING pathway Evidence of cytoplasmic mtDNA was found in ALS patient cells and disease models Blocking STING prevents inflammation and neurodegeneration in vitro and in vivo
Collapse
Affiliation(s)
- Chien-Hsiung Yu
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Sophia Davidson
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Cassandra R Harapas
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - James B Hilton
- Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, VIC 3010, Australia; Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3010, Australia
| | - Michael J Mlodzianoski
- Centre for Dynamic Imaging, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Pawat Laohamonthonkul
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Cynthia Louis
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Ronnie Ren Jie Low
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Jonas Moecking
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia; Institute of Structural Biology, University of Bonn, 53127 Bonn, Germany
| | - Dominic De Nardo
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia; Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3168, Australia
| | - Katherine R Balka
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia; Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3168, Australia
| | - Dale J Calleja
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Fiona Moghaddas
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia; Department of Immunology and Allergy, The Royal Melbourne Hospital, Parkville, VIC 3052, Australia
| | - Erya Ni
- Infection and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Catriona A McLean
- Anatomical Pathology, The Alfred Hospital, Melbourne, VIC 3004, Australia
| | - Andre L Samson
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Shiraz Tyebji
- Infection and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Christopher J Tonkin
- Infection and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Christopher R Bye
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3010, Australia
| | - Bradley J Turner
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3010, Australia
| | - Genevieve Pepin
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia; Department of Molecular and Translational Science, Monash University, Clayton, VIC 3168, Australia
| | - Michael P Gantier
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia; Department of Molecular and Translational Science, Monash University, Clayton, VIC 3168, Australia
| | - Kelly L Rogers
- Centre for Dynamic Imaging, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Kate McArthur
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3168, Australia
| | - Peter J Crouch
- Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, VIC 3010, Australia; Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3010, Australia
| | - Seth L Masters
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia; Immunology Laboratory, Guangzhou Institute of Paediatrics, Guangzhou Women and Children's Medical Centre, Guangzhou, Guangdong 510623, China.
| |
Collapse
|
67
|
Muñoz-Gómez SA, Snyder SN, Montoya SJ, Wideman JG. Independent accretion of TIM22 complex subunits in the animal and fungal lineages. F1000Res 2020; 9:1060. [PMID: 33014348 PMCID: PMC7523481 DOI: 10.12688/f1000research.25904.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/21/2020] [Indexed: 12/25/2022] Open
Abstract
Background: The mitochondrial protein import complexes arose early in eukaryogenesis. Most of the components of the protein import pathways predate the last eukaryotic common ancestor. For example, the carrier-insertase TIM22 complex comprises the widely conserved Tim22 channel core. However, the auxiliary components of fungal and animal TIM22 complexes are exceptions to this ancient conservation. Methods: Using comparative genomics and phylogenetic approaches, we identified precisely when each TIM22 accretion occurred. Results: In animals, we demonstrate that Tim29 and Tim10b arose early in the holozoan lineage. Tim29 predates the metazoan lineage being present in the animal sister lineages, choanoflagellate and filastereans, whereas the erroneously named Tim10b arose from a duplication of Tim9 at the base of metazoans. In fungi, we show that Tim54 has representatives present in every holomycotan lineage including microsporidians and fonticulids, whereas Tim18 and Tim12 appeared much later in fungal evolution. Specifically, Tim18 and Tim12 arose from duplications of Sdh3 and Tim10, respectively, early in the Saccharomycotina. Surprisingly, we show that Tim54 is distantly related to AGK suggesting that AGK and Tim54 are extremely divergent orthologues and the origin of AGK/Tim54 interaction with Tim22 predates the divergence of animals and fungi. Conclusions: We argue that the evolutionary history of the TIM22 complex is best understood as the neutral structural divergence of an otherwise strongly functionally conserved protein complex. This view suggests that many of the differences in structure/subunit composition of multi-protein complexes are non-adaptive. Instead, most of the phylogenetic variation of functionally conserved molecular machines, which have been under stable selective pressures for vast phylogenetic spans, such as the TIM22 complex, is most likely the outcome of the interplay of random genetic drift and mutation pressure.
Collapse
Affiliation(s)
- Sergio A. Muñoz-Gómez
- Biodesign Center for Mechanisms of Evolution, School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Shannon N. Snyder
- Biodesign Center for Mechanisms of Evolution, School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Samantha J. Montoya
- Biodesign Center for Mechanisms of Evolution, School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Jeremy G. Wideman
- Biodesign Center for Mechanisms of Evolution, School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA
| |
Collapse
|
68
|
Huang S, Cao Y, Guo H, Yao Y, Li L, Chen J, Li J, Xiang X, Deng J, Xiong J. Up-regulated acylglycerol kinase (AGK) expression associates with gastric cancer progression through the formation of a novel YAP1-AGK-positive loop. J Cell Mol Med 2020; 24:11133-11145. [PMID: 32827244 PMCID: PMC7576242 DOI: 10.1111/jcmm.15613] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 06/20/2020] [Accepted: 06/23/2020] [Indexed: 12/31/2022] Open
Abstract
Acylglycerol kinase (AGK) uses adenosine triphosphate (ATP) and acylglycerol to generate adenosine diphosphate (ADP) and acyl‐sn‐glycerol 3‐phosphate in cells. Recent evidence has demonstrated that dysregulated AGK expression is associated with the development of various human cancers. This study investigated the effects of AGK on gastric cancer cell proliferation and carcinogenesis and explored the underlying molecular events. AGK expression was up‐regulated in gastric cancer and was associated with poor prognosis in gastric cancer patients. AGK overexpression increased gastric cancer proliferation, invasion capacity and the expression of the epithelial‐mesenchymal transition markers in vitro. Conversely, the knockdown of AGK expression reduced gastric cancer cell proliferation in vitro and in nude mouse tumour cell xenografts. Importantly, AGK expression was associated with the YAP1 expression in gastric cancer cells and tissues. YAP1 expression also transcriptionally induced AGK expression through the binding of TEAD to the AGK gene promoter. However, AGK expression inhibited the activation of the Hippo pathway proteins and induced YAP1 nuclear localization to enhance the transcription activity of YAP1/TEADs. In conclusion, the study demonstrates that AGK is not only a novel target of the Hippo‐YAP1 pathway, but that it also positively regulates YAP1 expression, thus forming a YAP1‐AGK–positive feedback loop.
Collapse
Affiliation(s)
- Shanshan Huang
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yuan Cao
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Hui Guo
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yangyang Yao
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Li Li
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jun Chen
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Junhe Li
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiaojun Xiang
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jun Deng
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jianping Xiong
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
69
|
Horten P, Colina-Tenorio L, Rampelt H. Biogenesis of Mitochondrial Metabolite Carriers. Biomolecules 2020; 10:E1008. [PMID: 32645990 PMCID: PMC7408425 DOI: 10.3390/biom10071008] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/02/2020] [Accepted: 07/03/2020] [Indexed: 12/28/2022] Open
Abstract
: Metabolite carriers of the mitochondrial inner membrane are crucial for cellular physiology since mitochondria contribute essential metabolic reactions and synthesize the majority of the cellular ATP. Like almost all mitochondrial proteins, carriers have to be imported into mitochondria from the cytosol. Carrier precursors utilize a specialized translocation pathway dedicated to the biogenesis of carriers and related proteins, the carrier translocase of the inner membrane (TIM22) pathway. After recognition and import through the mitochondrial outer membrane via the translocase of the outer membrane (TOM) complex, carrier precursors are ushered through the intermembrane space by hexameric TIM chaperones and ultimately integrated into the inner membrane by the TIM22 carrier translocase. Recent advances have shed light on the mechanisms of TOM translocase and TIM chaperone function, uncovered an unexpected versatility of the machineries, and revealed novel components and functional crosstalk of the human TIM22 translocase.
Collapse
Affiliation(s)
- Patrick Horten
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; (P.H.); (L.C.-T.)
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Lilia Colina-Tenorio
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; (P.H.); (L.C.-T.)
- CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Heike Rampelt
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; (P.H.); (L.C.-T.)
- CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
70
|
Terao R, Kaneko H. Lipid Signaling in Ocular Neovascularization. Int J Mol Sci 2020; 21:ijms21134758. [PMID: 32635437 PMCID: PMC7369954 DOI: 10.3390/ijms21134758] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/02/2020] [Accepted: 07/02/2020] [Indexed: 12/13/2022] Open
Abstract
Vasculogenesis and angiogenesis play a crucial role in embryonic development. Pathological neovascularization in ocular tissues can lead to vision-threatening vascular diseases, including proliferative diabetic retinopathy, retinal vein occlusion, retinopathy of prematurity, choroidal neovascularization, and corneal neovascularization. Neovascularization involves various cellular processes and signaling pathways and is regulated by angiogenic factors such as vascular endothelial growth factor (VEGF) and hypoxia-inducible factor (HIF). Modulating these circuits may represent a promising strategy to treat ocular neovascular diseases. Lipid mediators derived from membrane lipids are abundantly present in most tissues and exert a wide range of biological functions by regulating various signaling pathways. In particular, glycerophospholipids, sphingolipids, and polyunsaturated fatty acids exert potent pro-angiogenic or anti-angiogenic effects, according to the findings of numerous preclinical and clinical studies. In this review, we summarize the current knowledge regarding the regulation of ocular neovascularization by lipid mediators and their metabolites. A better understanding of the effects of lipid signaling in neovascularization may provide novel therapeutic strategies to treat ocular neovascular diseases and other human disorders.
Collapse
Affiliation(s)
- Ryo Terao
- Department of Ophthalmology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
- Correspondence: ; Tel.: +81-3-3815-5411
| | - Hiroki Kaneko
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan;
| |
Collapse
|
71
|
Abstract
Mitochondrial disease presenting in childhood is characterized by clinical, biochemical and genetic complexity. Some children are affected by canonical syndromes, but the majority have nonclassical multisystemic disease presentations involving virtually any organ in the body. Each child has a unique constellation of clinical features and disease trajectory, leading to enormous challenges in diagnosis and management of these heterogeneous disorders. This review discusses the classical mitochondrial syndromes presenting most frequently in childhood and then presents an organ-based perspective including systems less frequently linked to mitochondrial disease, such as skin and hair abnormalities and immune dysfunction. An approach to diagnosis is then presented, encompassing clinical evaluation and biochemical, neuroimaging and genetic investigations, and emphasizing the problem of phenocopies. The impact of next-generation sequencing is discussed, together with the importance of functional validation of novel genetic variants never previously linked to mitochondrial disease. The review concludes with a brief discussion of currently available and emerging therapies. The field of mitochondrial medicine has made enormous strides in the last 30 years, with approaching 400 different genes across two genomes now linked to primary mitochondrial disease. However, many important questions remain unanswered, including the reasons for tissue specificity and variability of clinical presentation of individuals sharing identical gene defects, and a lack of disease-modifying therapies and biomarkers to monitor disease progression and/or response to treatment.
Collapse
Affiliation(s)
- S Rahman
- Mitochondrial Research Group, UCL Great Ormond Street Institute of Child Health, London, UK
| |
Collapse
|
72
|
Guleray N, Kosukcu C, Taskiran ZE, Simsek Kiper PO, Utine GE, Gucer S, Tokatli A, Boduroglu K, Alikasifoglu M. Atypical Presentation of Sengers Syndrome: A Novel Mutation Revealed with Postmortem Genetic Testing. Fetal Pediatr Pathol 2020; 39:163-171. [PMID: 31303091 DOI: 10.1080/15513815.2019.1639089] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
INTRODUCTION Sengers syndrome is an autosomal recessive disorder characterized by congenital cataracts, hypertrophic cardiomyopathy, skeletal myopathy and lactic acidosis. The causative AGK mutations have been identified with whole exome sequencing. CLINICAL REPORT We report on a 9-month-old infant with episodic lactic acidosis who died before a definitive diagnosis could be established. Postmortem genomic autopsy revealed a novel homozygous NM_018238: c.1215dupG; p.Phe406Valfs*4 mutation in AGK (OMIM 610345) confirming the diagnosis of Sengers syndrome. CONCLUSION This report provides further evidence that reverse genetics is a useful approach in patients who do not manifest the hallmark features of known and recognizable syndromes.
Collapse
Affiliation(s)
- Naz Guleray
- Department of Medical Genetics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Can Kosukcu
- Department of Medical Genetics, Hacettepe University Faculty of Medicine, Ankara, Turkey.,Department of Bioinformatics, Hacettepe University Institute of Health Sciences, Ankara, Turkey
| | - Zihni Ekim Taskiran
- Department of Medical Genetics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Pelin Ozlem Simsek Kiper
- Division of Pediatric Genetics, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Gulen Eda Utine
- Division of Pediatric Genetics, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Safak Gucer
- Division of Pediatric Pathology, Department of Pediatrics, Hacettepe Universitesi Faculty of Medicine, Ankara, Turkey
| | - Aysegul Tokatli
- Division of Pediatric Metabolism and Nutrition, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Koray Boduroglu
- Department of Medical Genetics, Hacettepe University Faculty of Medicine, Ankara, Turkey.,Division of Pediatric Genetics, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Mehmet Alikasifoglu
- Department of Medical Genetics, Hacettepe University Faculty of Medicine, Ankara, Turkey.,Division of Pediatric Genetics, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
73
|
Agudelo Garcia PA, Nagarajan P, Parthun MR. Hat1-Dependent Lysine Acetylation Targets Diverse Cellular Functions. J Proteome Res 2020; 19:1663-1673. [PMID: 32081014 DOI: 10.1021/acs.jproteome.9b00843] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Lysine acetylation has emerged as one of the most important post-translational modifications, regulating different biological processes. However, its regulation by lysine acetyltransferases is still unclear in most cases. Hat1 is a lysine acetyltransferase originally identified based on its ability to acetylate histones. Using an unbiased proteomics approach, we have determined how loss of Hat1 affects the mammalian acetylome. Hat1+/+ and Hat1-/- mouse embryonic fibroblast cell lines were grown in both glucose- and galactose-containing media, as Hat1 is required for growth on galactose, and Hat1-/- cells exhibit defects in mitochondrial function. Following trypsin digestion of whole cell extracts, acetylated peptides were enriched by acetyllysine affinity purification, and acetylated peptides were identified and analyzed by label-free quantitation. Comparison of the acetylome from Hat1+/+ cells grown on galactose and glucose demonstrated that there are large carbon source-dependent changes in the mammalian acetylome where the acetylation of enzymes involved in glycolysis were the most affected. Comparisons of the acetylomes from Hat1+/+ and Hat1-/- cells identified 65 proteins whose acetylation decreased by at least 2.5-fold in cells lacking Hat1. In Hat1-/- cells, acetylation of the autoregulatory loop of CBP (CREB-binding protein) was the most highly affected, decreasing by up to 20-fold. In addition to the proteins involved in chromatin structure, Hat1-dependent acetylation was also found in a number of transcriptional regulators, including p53 and mitochondrial proteins. Hat1 mitochondrial localization suggests that it may be directly involved in the acetylation of mitochondrial proteins. Data are available via ProteomeXchange with identifier PXD017362.
Collapse
Affiliation(s)
- Paula A Agudelo Garcia
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Prabakaran Nagarajan
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Mark R Parthun
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
74
|
Pfanner N, Warscheid B, Wiedemann N. Mitochondrial proteins: from biogenesis to functional networks. Nat Rev Mol Cell Biol 2020; 20:267-284. [PMID: 30626975 DOI: 10.1038/s41580-018-0092-0] [Citation(s) in RCA: 654] [Impact Index Per Article: 130.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Mitochondria are essential for the viability of eukaryotic cells as they perform crucial functions in bioenergetics, metabolism and signalling and have been associated with numerous diseases. Recent functional and proteomic studies have revealed the remarkable complexity of mitochondrial protein organization. Protein machineries with diverse functions such as protein translocation, respiration, metabolite transport, protein quality control and the control of membrane architecture interact with each other in dynamic networks. In this Review, we discuss the emerging role of the mitochondrial protein import machinery as a key organizer of these mitochondrial protein networks. The preprotein translocases that reside on the mitochondrial membranes not only function during organelle biogenesis to deliver newly synthesized proteins to their final mitochondrial destination but also cooperate with numerous other mitochondrial protein complexes that perform a wide range of functions. Moreover, these protein networks form membrane contact sites, for example, with the endoplasmic reticulum, that are key for integration of mitochondria with cellular function, and defects in protein import can lead to diseases.
Collapse
Affiliation(s)
- Nikolaus Pfanner
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany. .,CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany.
| | - Bettina Warscheid
- CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany.,Institute of Biology II, Biochemistry - Functional Proteomics, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Nils Wiedemann
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany. .,CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
75
|
Abstract
Mitochondria are essential organelles of eukaryotic cells. They consist of hundreds of different proteins that exhibit crucial activities in respiration, catabolic metabolism and the synthesis of amino acids, lipids, heme and iron-sulfur clusters. With the exception of a handful of hydrophobic mitochondrially encoded membrane proteins, all these proteins are synthesized on cytosolic ribosomes, targeted to receptors on the mitochondrial surface, and transported across or inserted into the outer and inner mitochondrial membrane before they are folded and assembled into their final native structure. This review article provides a comprehensive overview of the mechanisms and components of the mitochondrial protein import systems with a particular focus on recent developments in the field.
Collapse
Affiliation(s)
- Katja G Hansen
- Cell Biology, University of Kaiserslautern, Erwin-Schrödinger-Strasse 13, 67663, Kaiserslautern, Germany
| | - Johannes M Herrmann
- Cell Biology, University of Kaiserslautern, Erwin-Schrödinger-Strasse 13, 67663, Kaiserslautern, Germany.
| |
Collapse
|
76
|
Wei X, Du M, Xie J, Luo T, Zhou Y, Zhang K, Li J, Chen D, Xu P, Jia M, Zhou H, Fang H, Lyu J, Yang Y. Mutations in TOMM70 lead to multi-OXPHOS deficiencies and cause severe anemia, lactic acidosis, and developmental delay. J Hum Genet 2020; 65:231-240. [PMID: 31907385 DOI: 10.1038/s10038-019-0714-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/24/2019] [Accepted: 12/15/2019] [Indexed: 11/09/2022]
Abstract
TOM70 is a member of the TOM complex that transports cytosolic proteins into mitochondria. Here, we identified two compound heterozygous variants in TOMM70 [c.794C>T (p.T265M) and c.1745C>T (p.A582V)] from a patient with severe anemia, lactic acidosis, and developmental delay. Patient-derived immortalized lymphocytes showed decreased TOM70 expression, oligomerized TOM70 complex, and TOM 20/22/40 complex compared with expression in control lymphocytes. Functional analysis revealed that patient-derived cells exhibited multi-oxidative phosphorylation system (OXPHOS) complex defects, with complex IV being primarily affected. As a result, patient-derived cells grew slower in galactose medium and generated less ATP and more extracellular lactic acid than did control cells. In vitro cell model compensatory experiments confirmed the pathogenicity of TOMM70 variants since only wild-type TOM70, but not mutant TOM70, could restore the complex IV defect and TOM70 expression in TOM70 knockdown U2OS cells. Altogether, we report the first case of mitochondrial disease-causing mutations in TOMM70 and demonstrate that TOM70 is essential for multi-OXPHOS assembly. Mutational screening of TOMM70 should be employed to identify mitochondrial disease-causing gene mutations in the future.
Collapse
Affiliation(s)
- Xiujuan Wei
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Miaomiao Du
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Jie Xie
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Ting Luo
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Yan Zhou
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Kun Zhang
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Jin Li
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Deyu Chen
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Pu Xu
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Manli Jia
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Huaibin Zhou
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Hezhi Fang
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| | - Jianxin Lyu
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China. .,Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Hangzhou, 310053, Zhejiang, China.
| | - Yanling Yang
- Department of Pediatrics, Peking University First Hospital, 100034, Beijing, China.
| |
Collapse
|
77
|
Kumar A, Matta SK, D'Silva P. Role of conserved regions of Tim22 in the structural organization of the carrier translocase. J Cell Sci 2020; 133:jcs.244632. [DOI: 10.1242/jcs.244632] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 06/15/2020] [Indexed: 11/20/2022] Open
Abstract
Mitochondrial biogenesis requires efficient sorting of various proteins into different mitochondrial sub-compartments mediated by dedicated protein machinery present in the outer and inner membrane. Among them, the TIM22 complex enables the integration of complex membrane proteins with internal targeting signals into the inner membrane. Although the Tim22 forms the core of the complex, the dynamic recruitment of subunits to the channel is still enigmatic. The present study first-time highlights that IMS and TM4 regions of Tim22 are critically required for the interaction of the membrane-embedded subunits including, Tim54, Tim18, and Sdh3, thereby maintain the functional architecture of TIM22 translocase. On the other hand, TM1 and TM2 regions of Tim22 are important for the Tim18 association, while TM3 is exclusively required for the Sdh3 interaction. Moreover, the impairment in TIM22 complex assembly influences its translocase activity, mitochondrial network, and the viability of cells lacking mitochondrial DNA. Overall our findings provide compelling evidence to highlight the significance of conserved regions of Tim22 that are important for the maintenance of the TIM22 complex and mitochondrial integrity.
Collapse
Affiliation(s)
- Abhishek Kumar
- Department of Biochemistry, New Biological Sciences Building, Indian Institute of Science, C V Raman Avenue, Bangalore-560012, India
| | - Srujan Kumar Matta
- Department of Biochemistry, New Biological Sciences Building, Indian Institute of Science, C V Raman Avenue, Bangalore-560012, India
| | - Patrick D'Silva
- Department of Biochemistry, New Biological Sciences Building, Indian Institute of Science, C V Raman Avenue, Bangalore-560012, India
| |
Collapse
|
78
|
Sacchetto C, Sequeira V, Bertero E, Dudek J, Maack C, Calore M. Metabolic Alterations in Inherited Cardiomyopathies. J Clin Med 2019; 8:E2195. [PMID: 31842377 PMCID: PMC6947282 DOI: 10.3390/jcm8122195] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/06/2019] [Accepted: 12/09/2019] [Indexed: 12/12/2022] Open
Abstract
The normal function of the heart relies on a series of complex metabolic processes orchestrating the proper generation and use of energy. In this context, mitochondria serve a crucial role as a platform for energy transduction by supplying ATP to the varying demand of cardiomyocytes, involving an intricate network of pathways regulating the metabolic flux of substrates. The failure of these processes results in structural and functional deficiencies of the cardiac muscle, including inherited cardiomyopathies. These genetic diseases are characterized by cardiac structural and functional anomalies in the absence of abnormal conditions that can explain the observed myocardial abnormality, and are frequently associated with heart failure. Since their original description, major advances have been achieved in the genetic and phenotype knowledge, highlighting the involvement of metabolic abnormalities in their pathogenesis. This review provides a brief overview of the role of mitochondria in the energy metabolism in the heart and focuses on metabolic abnormalities, mitochondrial dysfunction, and storage diseases associated with inherited cardiomyopathies.
Collapse
Affiliation(s)
- Claudia Sacchetto
- IMAiA—Institute for Molecular Biology and RNA Technology, Faculty of Health, Universiteitssingel 50, 6229ER Maastricht, The Netherlands;
- Medicine and Life Sciences, Faculty of Science and Engineering, Universiteitssingel 50, 6229ER Maastricht, The Netherlands
- Department of Biology, University of Padova, via Ugo Bassi 58B, 35121 Padova, Italy
| | - Vasco Sequeira
- Department of Translational Science, Comprehensive Heart Failure Center, University Clinic Würzburg, Am Schwarzenberg 15, 9708 Würzburg, Germany; (V.S.); (E.B.); (J.D.)
| | - Edoardo Bertero
- Department of Translational Science, Comprehensive Heart Failure Center, University Clinic Würzburg, Am Schwarzenberg 15, 9708 Würzburg, Germany; (V.S.); (E.B.); (J.D.)
| | - Jan Dudek
- Department of Translational Science, Comprehensive Heart Failure Center, University Clinic Würzburg, Am Schwarzenberg 15, 9708 Würzburg, Germany; (V.S.); (E.B.); (J.D.)
| | - Christoph Maack
- Department of Translational Science, Comprehensive Heart Failure Center, University Clinic Würzburg, Am Schwarzenberg 15, 9708 Würzburg, Germany; (V.S.); (E.B.); (J.D.)
| | - Martina Calore
- IMAiA—Institute for Molecular Biology and RNA Technology, Faculty of Health, Universiteitssingel 50, 6229ER Maastricht, The Netherlands;
- Medicine and Life Sciences, Faculty of Science and Engineering, Universiteitssingel 50, 6229ER Maastricht, The Netherlands
| |
Collapse
|
79
|
Vamecq J, Papegay B, Nuyens V, Boogaerts J, Leo O, Kruys V. Mitochondrial dysfunction, AMPK activation and peroxisomal metabolism: A coherent scenario for non-canonical 3-methylglutaconic acidurias. Biochimie 2019; 168:53-82. [PMID: 31626852 DOI: 10.1016/j.biochi.2019.10.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 10/10/2019] [Indexed: 12/13/2022]
Abstract
The occurrence of 3-methylglutaconic aciduria (3-MGA) is a well understood phenomenon in leucine oxidation and ketogenesis disorders (primary 3-MGAs). In contrast, its genesis in non-canonical (secondary) 3-MGAs, a growing-up group of disorders encompassing more than a dozen of inherited metabolic diseases, is a mystery still remaining unresolved for three decades. To puzzle out this anthologic problem of metabolism, three clues were considered: (i) the variety of disorders suggests a common cellular target at the cross-road of metabolic and signaling pathways, (ii) the response to leucine loading test only discriminative for primary but not secondary 3-MGAs suggests these latter are disorders of extramitochondrial HMG-CoA metabolism as also attested by their failure to increase 3-hydroxyisovalerate, a mitochondrial metabolite accumulating only in primary 3-MGAs, (iii) the peroxisome is an extramitochondrial site possessing its own pool and displaying metabolism of HMG-CoA, suggesting its possible involvement in producing extramitochondrial 3-methylglutaconate (3-MG). Following these clues provides a unifying common basis to non-canonical 3-MGAs: constitutive mitochondrial dysfunction induces AMPK activation which, by inhibiting early steps in cholesterol and fatty acid syntheses, pipelines cytoplasmic acetyl-CoA to peroxisomes where a rise in HMG-CoA followed by local dehydration and hydrolysis may lead to 3-MGA yield. Additional contributors are considered, notably for 3-MGAs associated with hyperammonemia, and to a lesser extent in CLPB deficiency. Metabolic and signaling itineraries followed by the proposed scenario are essentially sketched, being provided with compelling evidence from the literature coming in their support.
Collapse
Affiliation(s)
- Joseph Vamecq
- Inserm, CHU Lille, Univ Lille, Department of Biochemistry and Molecular Biology, Laboratory of Hormonology, Metabolism-Nutrition & Oncology (HMNO), Center of Biology and Pathology (CBP) Pierre-Marie Degand, CHRU Lille, EA 7364 RADEME, University of North France, Lille, France.
| | - Bérengère Papegay
- Laboratory of Experimental Medicine (ULB unit 222), University Hospital Center, Charleroi, (CHU Charleroi), Belgium
| | - Vincent Nuyens
- Laboratory of Experimental Medicine (ULB unit 222), University Hospital Center, Charleroi, (CHU Charleroi), Belgium
| | - Jean Boogaerts
- Laboratory of Experimental Medicine (ULB unit 222), University Hospital Center, Charleroi, (CHU Charleroi), Belgium
| | - Oberdan Leo
- Laboratory of Immunobiology, Department of Molecular Biology, ULB Immunology Research Center (UIRC), Free University of Brussels (ULB), Gosselies, Belgium
| | - Véronique Kruys
- Laboratory of Molecular Biology of the Gene, Department of Molecular Biology, ULB Immunology Research Center (UIRC), Free University of Brussels (ULB), Gosselies, Belgium
| |
Collapse
|
80
|
Odendall F, Backes S, Tatsuta T, Weill U, Schuldiner M, Langer T, Herrmann JM, Rapaport D, Dimmer KS. The mitochondrial intermembrane space-facing proteins Mcp2 and Tgl2 are involved in yeast lipid metabolism. Mol Biol Cell 2019; 30:2681-2694. [PMID: 31483742 PMCID: PMC6761770 DOI: 10.1091/mbc.e19-03-0166] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Mitochondria are unique organelles harboring two distinct membranes, the mitochondrial inner and outer membrane (MIM and MOM, respectively). Mitochondria comprise only a subset of metabolic pathways for the synthesis of membrane lipids; therefore most lipid species and their precursors have to be imported from other cellular compartments. One such import process is mediated by the ER mitochondria encounter structure (ERMES) complex. Both mitochondrial membranes surround the hydrophilic intermembrane space (IMS). Therefore, additional systems are required that shuttle lipids between the MIM and MOM. Recently, we identified the IMS protein Mcp2 as a high-copy suppressor for cells that lack a functional ERMES complex. To understand better how mitochondria facilitate transport and biogenesis of lipids, we searched for genetic interactions of this suppressor. We found that MCP2 has a negative genetic interaction with the gene TGL2 encoding a neutral lipid hydrolase. We show that this lipase is located in the intermembrane space of the mitochondrion and is imported via the Mia40 disulfide relay system. Furthermore, we show a positive genetic interaction of double deletion of MCP2 and PSD1, the gene encoding the enzyme that synthesizes the major amount of cellular phosphatidylethanolamine. Finally, we demonstrate that the nucleotide-binding motifs of the predicted atypical kinase Mcp2 are required for its proper function. Taken together, our data suggest that Mcp2 is involved in mitochondrial lipid metabolism and an increase of this involvement by overexpression suppresses loss of ERMES.
Collapse
Affiliation(s)
- Fenja Odendall
- Interfaculty Institute of Biochemistry, University of Tübingen, 72076 Tübingen, Germany
| | - Sandra Backes
- Cell Biology, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Takashi Tatsuta
- Max Planck Institute for Biology of Ageing, 50931 Köln, Germany
| | - Uri Weill
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Maya Schuldiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Thomas Langer
- Max Planck Institute for Biology of Ageing, 50931 Köln, Germany
| | | | - Doron Rapaport
- Interfaculty Institute of Biochemistry, University of Tübingen, 72076 Tübingen, Germany
| | - Kai Stefan Dimmer
- Interfaculty Institute of Biochemistry, University of Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
81
|
Hu Z, Qu G, Yu X, Jiang H, Teng XL, Ding L, Hu Q, Guo X, Zhou Y, Wang F, Li HB, Chen L, Jiang J, Su B, Liu J, Zou Q. Acylglycerol Kinase Maintains Metabolic State and Immune Responses of CD8 + T Cells. Cell Metab 2019; 30:290-302.e5. [PMID: 31204281 DOI: 10.1016/j.cmet.2019.05.016] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 03/23/2019] [Accepted: 05/17/2019] [Indexed: 12/21/2022]
Abstract
CD8+ T cell expansions and functions rely on glycolysis, but the mechanisms underlying CD8+ T cell glycolytic metabolism remain elusive. Here, we show that acylglycerol kinase (AGK) is required for the establishment and maintenance of CD8+ T cell metabolic and functional fitness. AGK deficiency dampens CD8+ T cell antitumor functions in vivo and perturbs CD8+ T cell proliferation in vitro. Activation of phosphatidylinositol-3-OH kinase (PI3K)-mammalian target of rapamycin (mTOR) signaling, which mediates elevated CD8+ T cell glycolysis, is tightly dependent on AGK kinase activity. Mechanistically, T cell antigen receptor (TCR)- and CD28-stimulated recruitment of PTEN to the plasma membrane facilitates AGK-PTEN interaction and AGK-triggered PTEN phosphorylation, thereby restricting PTEN phosphatase activity in CD8+ T cells. Collectively, these results demonstrate that AGK maintains CD8+ T cell metabolic and functional state by restraining PTEN activity and highlight a critical role for AGK in CD8+ T cell metabolic programming and effector function.
Collapse
Affiliation(s)
- Zhilin Hu
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Guojun Qu
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Xiaoyan Yu
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Haojie Jiang
- Department of Biochemistry and Molecular Cell Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Xiao-Lu Teng
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Lei Ding
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Qianwen Hu
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Xinwei Guo
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Yan Zhou
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Feng Wang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Hua-Bing Li
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Lei Chen
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Jin Jiang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Bing Su
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China.
| | - Junling Liu
- Department of Biochemistry and Molecular Cell Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China.
| | - Qiang Zou
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China.
| |
Collapse
|
82
|
Callegari S, Müller T, Schulz C, Lenz C, Jans DC, Wissel M, Opazo F, Rizzoli SO, Jakobs S, Urlaub H, Rehling P, Deckers M. A MICOS-TIM22 Association Promotes Carrier Import into Human Mitochondria. J Mol Biol 2019; 431:2835-2851. [PMID: 31103774 DOI: 10.1016/j.jmb.2019.05.015] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/10/2019] [Accepted: 05/10/2019] [Indexed: 01/05/2023]
Abstract
Mitochondrial membrane proteins with internal targeting signals are inserted into the inner membrane by the carrier translocase (TIM22 complex). For this, precursors have to be initially directed from the TOM complex in the outer mitochondrial membrane across the intermembrane space toward the TIM22 complex. How these two translocation processes are topologically coordinated is still unresolved. Using proteomic approaches, we find that the human TIM22 complex associates with the mitochondrial contact site and cristae organizing system (MICOS) complex. This association does not appear to be conserved in yeast, whereby the yeast MICOS complex instead interacts with the presequence translocase. Using a yeast mic10Δ strain and a HEK293T MIC10 knockout cell line, we characterize the role of MICOS for protein import into the mitochondrial inner membrane and matrix. We find that a physiological cristae organization promotes efficient import via the presequence pathway in yeast, while in human mitochondria, the MICOS complex is dispensable for protein import along the presequence pathway. However, in human mitochondria, the MICOS complex is required for the efficient import of carrier proteins into the mitochondrial inner membrane. Our analyses suggest that in human mitochondria, positioning of the carrier translocase at the crista junction, and potentially in vicinity to the TOM complex, is required for efficient transport into the inner membrane.
Collapse
Affiliation(s)
- Sylvie Callegari
- Department of Cellular Biochemistry, University Medical Center Göttingen, Humboldtallee 23, 37073 Göttingen, Germany
| | - Tobias Müller
- Department of Cellular Biochemistry, University Medical Center Göttingen, Humboldtallee 23, 37073 Göttingen, Germany
| | - Christian Schulz
- Department of Cellular Biochemistry, University Medical Center Göttingen, Humboldtallee 23, 37073 Göttingen, Germany
| | - Christof Lenz
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany; Department of Clinical Chemistry, Bioanalytics, University Medical Center Göttingen, Robert-Koch-Strasse 40, 37075 Göttingen, Germany
| | - Daniel C Jans
- Department of NanoBiophotonics, Mitochondrial Structure and Dynamics Group, Max Planck Institute for Biophysical Chemistry, Am Fassberg, 11 37077 Göttingen, Germany; Clinic for Neurology, University Medical Center Göttingen, Robert-Koch-Strasse 40, 37075 Göttingen, Germany
| | - Mirjam Wissel
- Department of Cellular Biochemistry, University Medical Center Göttingen, Humboldtallee 23, 37073 Göttingen, Germany
| | - Felipe Opazo
- Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, von-Siebold-Strasse 3a, 37075 Göttingen, Germany; Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, Humboldtallee 23, 37073 Göttingen, Germany
| | - Silvio O Rizzoli
- Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, von-Siebold-Strasse 3a, 37075 Göttingen, Germany; Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, Humboldtallee 23, 37073 Göttingen, Germany
| | - Stefan Jakobs
- Department of NanoBiophotonics, Mitochondrial Structure and Dynamics Group, Max Planck Institute for Biophysical Chemistry, Am Fassberg, 11 37077 Göttingen, Germany; Clinic for Neurology, University Medical Center Göttingen, Robert-Koch-Strasse 40, 37075 Göttingen, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany; Department of Clinical Chemistry, Bioanalytics, University Medical Center Göttingen, Robert-Koch-Strasse 40, 37075 Göttingen, Germany
| | - Peter Rehling
- Department of Cellular Biochemistry, University Medical Center Göttingen, Humboldtallee 23, 37073 Göttingen, Germany; Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany.
| | - Markus Deckers
- Department of Cellular Biochemistry, University Medical Center Göttingen, Humboldtallee 23, 37073 Göttingen, Germany
| |
Collapse
|
83
|
Nicolas E, Tricarico R, Savage M, Golemis EA, Hall MJ. Disease-Associated Genetic Variation in Human Mitochondrial Protein Import. Am J Hum Genet 2019; 104:784-801. [PMID: 31051112 PMCID: PMC6506819 DOI: 10.1016/j.ajhg.2019.03.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 03/19/2019] [Indexed: 12/14/2022] Open
Abstract
Mitochondrial dysfunction has consequences not only for cellular energy output but also for cellular signaling pathways. Mitochondrial dysfunction, often based on inherited gene variants, plays a role in devastating human conditions such as mitochondrial neuropathies, myopathies, cardiovascular disorders, and Parkinson and Alzheimer diseases. Of the proteins essential for mitochondrial function, more than 98% are encoded in the cell nucleus, translated in the cytoplasm, sorted based on the presence of encoded mitochondrial targeting sequences (MTSs), and imported to specific mitochondrial sub-compartments based on the integrated activity of a series of mitochondrial translocases, proteinases, and chaperones. This import process is typically dynamic; as cellular homeostasis is coordinated through communication between the mitochondria and the nucleus, many of the adaptive responses to stress depend on modulation of mitochondrial import. We here describe an emerging class of disease-linked gene variants that are found to impact the mitochondrial import machinery itself or to affect the proteins during their import into mitochondria. As a whole, this class of rare defects highlights the importance of correct trafficking of mitochondrial proteins in the cell and the potential implications of failed targeting on metabolism and energy production. The existence of this variant class could have importance beyond rare neuromuscular disorders, given an increasing body of evidence suggesting that aberrant mitochondrial function may impact cancer risk and therapeutic response.
Collapse
Affiliation(s)
- Emmanuelle Nicolas
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Rossella Tricarico
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Michelle Savage
- Cancer Prevention and Control Program, Department of Clinical Genetics, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Erica A Golemis
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Michael J Hall
- Cancer Prevention and Control Program, Department of Clinical Genetics, Fox Chase Cancer Center, Philadelphia, PA 19111, USA.
| |
Collapse
|
84
|
Doan KN, Ellenrieder L, Becker T. Mitochondrial porin links protein biogenesis to metabolism. Curr Genet 2019; 65:899-903. [PMID: 30944955 DOI: 10.1007/s00294-019-00965-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 03/29/2019] [Accepted: 03/30/2019] [Indexed: 12/18/2022]
Abstract
In this report, we summarize recent findings about a role of the outer membrane metabolite channel VDAC/porin in protein import into mitochondria. Mitochondria fulfill key functions for cellular energy metabolism. Their biogenesis involves the import of about 1000 different proteins that are produced as precursors on cytosolic ribosomes. The translocase of the outer membrane (TOM complex) forms the entry gate for mitochondrial precursor proteins. Dedicated protein translocases sort the preproteins into the different mitochondrial subcompartments. While protein transport pathways are analyzed to some detail, only little is known about regulatory mechanisms that fine-tune protein import upon metabolic signaling. Recently, a dual role of the voltage-dependent anion channel (VDAC), also termed porin, in mitochondrial protein biogenesis was reported. First, VDAC/porin promotes as a coupling factor import of carrier proteins into the inner membrane. Second, VDAC/porin regulates the formation of the TOM complex. Thus, the major metabolite channel in the outer membrane VDAC/porin connects protein import to mitochondrial metabolism.
Collapse
Affiliation(s)
- Kim Nguyen Doan
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany.,Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Lars Ellenrieder
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany.,Kelly Services AG Providing Services To Novartis Pharma AG, 4058, Basel, Switzerland
| | - Thomas Becker
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany. .,CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany.
| |
Collapse
|
85
|
Liu Y, Wang X, Coyne LP, Yang Y, Qi Y, Middleton FA, Chen XJ. Mitochondrial carrier protein overloading and misfolding induce aggresomes and proteostatic adaptations in the cytosol. Mol Biol Cell 2019; 30:1272-1284. [PMID: 30893019 PMCID: PMC6724602 DOI: 10.1091/mbc.e19-01-0046] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Previous studies in yeast showed that mitochondrial stressors not directly targeting the protein import machinery can cause mitochondrial precursor overaccumulation stress (mPOS) in the cytosol independent of bioenergetics. Here, we demonstrate mPOS and stress responses in human cells. We show that overloading of mitochondrial membrane carrier, but not matrix proteins, is sufficient to induce cytosolic aggresomes and apoptosis. The aggresomes appear to triage unimported mitochondrial proteins. Interestingly, expression of highly unstable mutant variants of the mitochondrial carrier protein, Ant1, also induces aggresomes despite a greater than 20-fold reduction in protein level compared to wild type. Thus, overloading of the protein import machinery, rather than protein accumulation, is critical for aggresome induction. The data suggest that the import of mitochondrial proteins is saturable and that the cytosol is limited in degrading unimported mitochondrial proteins. In addition, we found that EGR1, eEF1a, and ubiquitin C are up-regulated by Ant1 overloading. These proteins are known to promote autophagy, protein targeting to aggresomes, and the processing of protein aggregates, respectively. Finally, we found that overexpression of the misfolded variants of Ant1 induces additional cytosolic responses including proteasomal activation. In summary, our work captured a profound effect of unimported mitochondrial proteins on cytosolic proteostasis and revealed multiple anti-mPOS mechanisms in human cells.
Collapse
Affiliation(s)
- Yaxin Liu
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| | - Xiaowen Wang
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| | - Liam P Coyne
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| | - Yuan Yang
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| | - Yue Qi
- Department of Pathology, State University of New York Upstate Medical University, Syracuse, NY 13210
| | - Frank A Middleton
- Department of Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse, NY 13210
| | - Xin Jie Chen
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, NY 13210.,Department of Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse, NY 13210
| |
Collapse
|
86
|
Richter F, Dennerlein S, Nikolov M, Jans DC, Naumenko N, Aich A, MacVicar T, Linden A, Jakobs S, Urlaub H, Langer T, Rehling P. ROMO1 is a constituent of the human presequence translocase required for YME1L protease import. J Cell Biol 2018; 218:598-614. [PMID: 30598479 PMCID: PMC6363466 DOI: 10.1083/jcb.201806093] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 10/18/2018] [Accepted: 11/26/2018] [Indexed: 01/15/2023] Open
Abstract
Mitochondria are the powerhouses of eukaryotic cells and rely on protein import from the cytosol. Richter et al. found ROMO1 as a new constituent of the human mitochondrial import machinery linking protein import to quality control and mitochondrial morphology. The mitochondrial presequence translocation machinery (TIM23 complex) is conserved between the yeast Saccharomyces cerevisiae and humans; however, functional characterization has been mainly performed in yeast. Here, we define the constituents of the human TIM23 complex using mass spectrometry and identified ROMO1 as a new translocase constituent with an exceptionally short half-life. Analyses of a ROMO1 knockout cell line revealed aberrant inner membrane structure and altered processing of the GTPase OPA1. We show that in the absence of ROMO1, mitochondria lose the inner membrane YME1L protease, which participates in OPA1 processing and ROMO1 turnover. While ROMO1 is dispensable for general protein import along the presequence pathway, we show that it participates in the dynamics of TIM21 during respiratory chain biogenesis and is specifically required for import of YME1L. This selective import defect can be linked to charge distribution in the unusually long targeting sequence of YME1L. Our analyses establish an unexpected link between mitochondrial protein import and inner membrane protein quality control.
Collapse
Affiliation(s)
- Frank Richter
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Sven Dennerlein
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Miroslav Nikolov
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Daniel C Jans
- Department of NanoBiophotonics, Mitochondrial Structure and Dynamics Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.,Department of Neurology, University Medical Center, Göttingen, Germany
| | - Nataliia Naumenko
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Abhishek Aich
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Thomas MacVicar
- Department of Mitochondrial Proteostasis, Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Andreas Linden
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.,Bioanalytics Group, Department of Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Stefan Jakobs
- Department of NanoBiophotonics, Mitochondrial Structure and Dynamics Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.,Department of Neurology, University Medical Center, Göttingen, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.,Bioanalytics Group, Department of Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Thomas Langer
- Department of Mitochondrial Proteostasis, Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Peter Rehling
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany .,Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| |
Collapse
|
87
|
Pacheu-Grau D, Callegari S, Emperador S, Thompson K, Aich A, Topol SE, Spencer EG, McFarland R, Ruiz-Pesini E, Torkamani A, Taylor RW, Montoya J, Rehling P. Mutations of the mitochondrial carrier translocase channel subunit TIM22 cause early-onset mitochondrial myopathy. Hum Mol Genet 2018; 27:4135-4144. [PMID: 30452684 PMCID: PMC6240735 DOI: 10.1093/hmg/ddy305] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 08/10/2018] [Accepted: 08/10/2018] [Indexed: 11/13/2022] Open
Abstract
Protein import into mitochondria is facilitated by translocases within the outer and the inner mitochondrial membranes that are dedicated to a highly specific subset of client proteins. The mitochondrial carrier translocase (TIM22 complex) inserts multispanning proteins, such as mitochondrial metabolite carriers and translocase subunits (TIM23, TIM17A/B and TIM22), into the inner mitochondrial membrane. Both types of substrates are essential for mitochondrial metabolic function and biogenesis. Here, we report on a subject, diagnosed at 1.5 years, with a neuromuscular presentation, comprising hypotonia, gastroesophageal reflux disease and persistently elevated serum and Cerebrospinal fluid lactate (CSF). Patient fibroblasts displayed reduced oxidative capacity and altered mitochondrial morphology. Using trans-mitochondrial cybrid cell lines, we excluded a candidate variant in mitochondrial DNA as causative of these effects. Whole-exome sequencing identified compound heterozygous variants in the TIM22 gene (NM_013337), resulting in premature truncation in one allele (p.Tyr25Ter) and a point mutation in a conserved residue (p.Val33Leu), within the intermembrane space region, of the TIM22 protein in the second allele. Although mRNA transcripts of TIM22 were elevated, biochemical analyses revealed lower levels of TIM22 protein and an even greater deficiency of TIM22 complex formation. In agreement with a defect in carrier translocase function, carrier protein amounts in the inner membrane were found to be reduced. This is the first report of pathogenic variants in the TIM22 pore-forming subunit of the carrier translocase affecting the biogenesis of inner mitochondrial membrane proteins critical for metabolite exchange.
Collapse
Affiliation(s)
- David Pacheu-Grau
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, D-37073, Germany
| | - Sylvie Callegari
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, D-37073, Germany
| | - Sonia Emperador
- Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza-CIBER de Enfermedades Raras (CIBERER)-Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Zaragoza, 50013, Spain
| | - Kyle Thompson
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, NE2 4HH, United Kingdom
| | - Abhishek Aich
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, D-37073, Germany
| | - Sarah E Topol
- The Scripps Translational Science Institute, The Scripps Research Institute, La Jolla, CA 92037, United States
| | - Emily G Spencer
- The Scripps Translational Science Institute, The Scripps Research Institute, La Jolla, CA 92037, United States
| | - Robert McFarland
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, NE2 4HH, United Kingdom
| | - Eduardo Ruiz-Pesini
- Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza-CIBER de Enfermedades Raras (CIBERER)-Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Zaragoza, 50013, Spain
| | - Ali Torkamani
- The Scripps Translational Science Institute, The Scripps Research Institute, La Jolla, CA 92037, United States
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, United States
| | - Robert W Taylor
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, NE2 4HH, United Kingdom
| | - Julio Montoya
- Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza-CIBER de Enfermedades Raras (CIBERER)-Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Zaragoza, 50013, Spain
| | - Peter Rehling
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, D-37073, Germany
- Max-Planck Institute for Biophysical Chemistry, D-37077, Göttingen, Germany
| |
Collapse
|
88
|
Heinemeyer T, Stemmet M, Bardien S, Neethling A. Underappreciated Roles of the Translocase of the Outer and Inner Mitochondrial Membrane Protein Complexes in Human Disease. DNA Cell Biol 2018; 38:23-40. [PMID: 30481057 DOI: 10.1089/dna.2018.4292] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mitochondria are critical for cellular survival, and for their proper functioning, translocation of ∼1500 proteins across the mitochondrial membranes is required. The translocase of the outer (TOMM) and inner mitochondrial membrane (TIMM) complexes are major components of this translocation machinery. Through specific processes, preproteins and other molecules are imported, translocated, and directed to specific mitochondrial compartments for their function. In this study, we review the association of subunits of these complexes with human disease. Pathogenic mutations have been identified in the TIMM8A (DDP) and DNAJC19 (TIMM14) genes and are linked to Mohr-Tranebjærg syndrome and dilated cardiomyopathy syndrome (with and without ataxia), respectively. Polymorphisms in TOMM40 have been associated with Alzheimer's disease, frontotemporal lobar degeneration, Parkinson's disease with dementia, dementia with Lewy bodies, nonpathological cognitive aging, and various cardiovascular-related traits. Furthermore, reduced protein expression levels of several complex subunits have been associated with Parkinson's disease, Meniere's disease, and cardiovascular disorders. However, increased mRNA and protein levels of complex subunits are found in cancers. This review highlights the importance of the mitochondrial import machinery in human disease and stresses the need for further studies. Ultimately, this knowledge may prove to be critical for the development of therapeutic modalities for these conditions.
Collapse
Affiliation(s)
- Thea Heinemeyer
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University , Cape Town, South Africa
| | - Monique Stemmet
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University , Cape Town, South Africa
| | - Soraya Bardien
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University , Cape Town, South Africa
| | - Annika Neethling
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University , Cape Town, South Africa
| |
Collapse
|
89
|
Mitochondrial diseases caused by dysfunctional mitochondrial protein import. Biochem Soc Trans 2018; 46:1225-1238. [PMID: 30287509 DOI: 10.1042/bst20180239] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 08/20/2018] [Accepted: 08/31/2018] [Indexed: 12/18/2022]
Abstract
Mitochondria are essential organelles which perform complex and varied functions within eukaryotic cells. Maintenance of mitochondrial health and functionality is thus a key cellular priority and relies on the organelle's extensive proteome. The mitochondrial proteome is largely encoded by nuclear genes, and mitochondrial proteins must be sorted to the correct mitochondrial sub-compartment post-translationally. This essential process is carried out by multimeric and dynamic translocation and sorting machineries, which can be found in all four mitochondrial compartments. Interestingly, advances in the diagnosis of genetic disease have revealed that mutations in various components of the human import machinery can cause mitochondrial disease, a heterogenous and often severe collection of disorders associated with energy generation defects and a multisystem presentation often affecting the cardiovascular and nervous systems. Here, we review our current understanding of mitochondrial protein import systems in human cells and the molecular basis of mitochondrial diseases caused by defects in these pathways.
Collapse
|
90
|
Reyes A, Melchionda L, Burlina A, Robinson AJ, Ghezzi D, Zeviani M. Mutations in TIMM50 compromise cell survival in OxPhos-dependent metabolic conditions. EMBO Mol Med 2018; 10:e8698. [PMID: 30190335 PMCID: PMC6180300 DOI: 10.15252/emmm.201708698] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 08/02/2018] [Accepted: 08/14/2018] [Indexed: 02/02/2023] Open
Abstract
TIMM50 is an essential component of the TIM23 complex, the mitochondrial inner membrane machinery that imports cytosolic proteins containing a mitochondrial targeting presequence into the mitochondrial inner compartment. Whole exome sequencing (WES) identified compound heterozygous pathogenic mutations in TIMM50 in an infant patient with rapidly progressive, severe encephalopathy. Patient fibroblasts presented low levels of TIMM50 and other components of the TIM23 complex, lower mitochondrial membrane potential, and impaired TIM23-dependent protein import. As a consequence, steady-state levels of several components of mitochondrial respiratory chain were decreased, resulting in decreased respiration and increased ROS production. Growth of patient fibroblasts in galactose shifted energy production metabolism toward oxidative phosphorylation (OxPhos), producing an apparent improvement in most of the above features but also increased apoptosis. Complementation of patient fibroblasts with TIMM50 improved or restored these features to control levels. Moreover, RNASEH1 and ISCU mutant fibroblasts only shared a few of these features with TIMM50 mutant fibroblasts. Our results indicate that mutations in TIMM50 cause multiple mitochondrial bioenergetic dysfunction and that functional TIMM50 is essential for cell survival in OxPhos-dependent conditions.
Collapse
Affiliation(s)
- Aurelio Reyes
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Laura Melchionda
- Unit of Molecular Neurogenetics, Foundation Carlo Besta Neurological Institute-IRCCS, Milan, Italy
| | - Alberto Burlina
- Division of Inherited Metabolic Diseases, Department of Pediatrics, University Hospital Padova, Padova, Italy
| | - Alan J Robinson
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Daniele Ghezzi
- Unit of Molecular Neurogenetics, Foundation Carlo Besta Neurological Institute-IRCCS, Milan, Italy
| | - Massimo Zeviani
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| |
Collapse
|
91
|
Dudek J, Hartmann M, Rehling P. The role of mitochondrial cardiolipin in heart function and its implication in cardiac disease. Biochim Biophys Acta Mol Basis Dis 2018; 1865:810-821. [PMID: 30837070 DOI: 10.1016/j.bbadis.2018.08.025] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 08/14/2018] [Accepted: 08/17/2018] [Indexed: 01/21/2023]
Abstract
Mitochondria play an essential role in the energy metabolism of the heart. Many of the essential functions are associated with mitochondrial membranes and oxidative phosphorylation driven by the respiratory chain. Mitochondrial membranes are unique in the cell as they contain the phospholipid cardiolipin. The important role of cardiolipin in cardiovascular health is highlighted by several cardiac diseases, in which cardiolipin plays a fundamental role. Barth syndrome, Sengers syndrome, and Dilated cardiomyopathy with ataxia (DCMA) are genetic disorders, which affect cardiolipin biosynthesis. Other cardiovascular diseases including ischemia/reperfusion injury and heart failure are also associated with changes in the cardiolipin pool. Here, we summarize molecular functions of cardiolipin in mitochondrial biogenesis and morphology. We highlight the role of cardiolipin for the respiratory chain, metabolite carriers, and mitochondrial metabolism and describe links to apoptosis and mitochondria specific autophagy (mitophagy) with possible implications in cardiac disease.
Collapse
Affiliation(s)
- Jan Dudek
- Institute of Cellular Biochemistry, University Medical Center Göttingen, D-37073 Göttingen, Germany
| | - Magnus Hartmann
- Institute of Cellular Biochemistry, University Medical Center Göttingen, D-37073 Göttingen, Germany
| | - Peter Rehling
- Institute of Cellular Biochemistry, University Medical Center Göttingen, D-37073 Göttingen, Germany; Max Planck Institute for Biophysical Chemistry, D-37077 Göttingen, Germany.
| |
Collapse
|
92
|
Plant mitochondrial protein import: the ins and outs. Biochem J 2018; 475:2191-2208. [PMID: 30018142 DOI: 10.1042/bcj20170521] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 06/19/2018] [Accepted: 06/21/2018] [Indexed: 01/29/2023]
Abstract
The majority of the mitochondrial proteome, required to fulfil its diverse range of functions, is cytosolically synthesised and translocated via specialised machinery. The dedicated translocases, receptors, and associated proteins have been characterised in great detail in yeast over the last several decades, yet many of the mechanisms that regulate these processes in higher eukaryotes are still unknown. In this review, we highlight the current knowledge of mitochondrial protein import in plants. Despite the fact that the mechanisms of mitochondrial protein import have remained conserved across species, many unique features have arisen in plants to encompass the developmental, tissue-specific, and stress-responsive regulation in planta. An understanding of unique features and mechanisms in plants provides us with a unique insight into the regulation of mitochondrial biogenesis in higher eukaryotes.
Collapse
|
93
|
Pacheu-Grau D, Rucktäschel R, Deckers M. Mitochondrial dysfunction and its role in tissue-specific cellular stress. Cell Stress 2018; 2:184-199. [PMID: 31225486 PMCID: PMC6551628 DOI: 10.15698/cst2018.07.147] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Mitochondrial bioenergetics require the coordination of two different and independent genomes. Mutations in either genome will affect mitochondrial functionality and produce different sources of cellular stress. Depending on the kind of defect and stress, different tissues and organs will be affected, leading to diverse pathological conditions. There is no curative therapy for mitochondrial diseases, nevertheless, there are strategies described that fight the various stress forms caused by the malfunctioning organelles. Here, we will revise the main kinds of stress generated by mutations in mitochondrial genes and outline several ways of fighting this stress.
Collapse
Affiliation(s)
- David Pacheu-Grau
- Department of Cellular Biochemistry, University Medical Center Göttingen, Germany
| | - Robert Rucktäschel
- Department of Cellular Biochemistry, University Medical Center Göttingen, Germany
| | - Markus Deckers
- Department of Cellular Biochemistry, University Medical Center Göttingen, Germany
| |
Collapse
|
94
|
Rahman J, Rahman S. Mitochondrial medicine in the omics era. Lancet 2018; 391:2560-2574. [PMID: 29903433 DOI: 10.1016/s0140-6736(18)30727-x] [Citation(s) in RCA: 184] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 02/28/2018] [Accepted: 03/14/2018] [Indexed: 12/16/2022]
Abstract
Mitochondria are dynamic bioenergetic organelles whose maintenance requires around 1500 proteins from two genomes. Mutations in either the mitochondrial or nuclear genome can disrupt a plethora of cellular metabolic and homoeostatic functions. Mitochondrial diseases represent one of the most common and severe groups of inherited genetic disorders, characterised by clinical, biochemical, and genetic heterogeneity, diagnostic odysseys, and absence of disease-modifying curative therapies. This Review aims to discuss recent advances in mitochondrial biology and medicine arising from widespread use of high-throughput omics technologies, and also includes a broad discussion of emerging therapies for mitochondrial disease. New insights into both bioenergetic and biosynthetic mitochondrial functionalities have expedited the genetic diagnosis of primary mitochondrial disorders, and identified novel mitochondrial pathomechanisms and new targets for therapeutic intervention. As we enter this new era of mitochondrial medicine, underpinned by global unbiased approaches and multifaceted investigation of mitochondrial function, omics technologies will continue to shed light on unresolved mitochondrial questions, paving the way for improved outcomes for patients with mitochondrial diseases.
Collapse
Affiliation(s)
- Joyeeta Rahman
- Mitochondrial Research Group, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Shamima Rahman
- Mitochondrial Research Group, UCL Great Ormond Street Institute of Child Health, London, UK; Metabolic Unit, Great Ormond Street Hospital NHS Foundation Trust, London, UK.
| |
Collapse
|
95
|
Frazier AE, Thorburn DR, Compton AG. Mitochondrial energy generation disorders: genes, mechanisms, and clues to pathology. J Biol Chem 2017; 294:5386-5395. [PMID: 29233888 DOI: 10.1074/jbc.r117.809194] [Citation(s) in RCA: 169] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Inherited disorders of oxidative phosphorylation cause the clinically and genetically heterogeneous diseases known as mitochondrial energy generation disorders, or mitochondrial diseases. Over the last three decades, mutations causing these disorders have been identified in almost 290 genes, but many patients still remain without a molecular diagnosis. Moreover, while our knowledge of the genetic causes is continually expanding, our understanding into how these defects lead to cellular dysfunction and organ pathology is still incomplete. Here, we review recent developments in disease gene discovery, functional characterization, and shared pathogenic parameters influencing disease pathology that offer promising avenues toward the development of effective therapies.
Collapse
Affiliation(s)
- Ann E Frazier
- From the Murdoch Children's Research Institute, Royal Children's Hospital and Department of Paediatrics, University of Melbourne, and
| | - David R Thorburn
- From the Murdoch Children's Research Institute, Royal Children's Hospital and Department of Paediatrics, University of Melbourne, and.,Victorian Clinical Genetic Services, Royal Children's Hospital, Melbourne, Victoria 3052, Australia
| | - Alison G Compton
- From the Murdoch Children's Research Institute, Royal Children's Hospital and Department of Paediatrics, University of Melbourne, and
| |
Collapse
|
96
|
Allali S, Dorboz I, Samaan S, Slama A, Rambaud C, Boespflug-Tanguy O, Sarret C. Mutation in the AGK gene in two siblings with unusual Sengers syndrome. Metab Brain Dis 2017; 32:2149-2154. [PMID: 28868593 DOI: 10.1007/s11011-017-0101-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Accepted: 08/21/2017] [Indexed: 12/14/2022]
Abstract
Sengers syndrome is a rare autosomal recessive metabolic disorder caused by lack of acylglycerol kinase due to mutations in the AGK gene. It is characterized by congenital cataract, hypertrophic cardiomyopathy, myopathy and lactic acidosis. Two clinical forms have been described: a severe neonatal form, and a more benign form displaying exercise intolerance. We describe two siblings with congenital cataract, cardiomyopathy, hypotonia, intellectual disability and lactic acidosis. Whole exome sequencing revealed a homozygous c.1035dup mutation in the two siblings, supporting a diagnosis of Sengers syndrome. Our patients presented an intermediate form with intellectual deficiency, an unusual feature in Sengers syndrome. This permitted a prenatal diagnosis for a following pregnancy.
Collapse
Affiliation(s)
- Sanae Allali
- Service des Urgences Pédiatriques, Hôpital Estaing, Centre Hospitalier Universitaire de Clermont-Ferrand, Clermont-Ferrand, France
| | - Imen Dorboz
- Inserm U1141 Paris Diderot Sorbonne Université-Paris Cité, DHU PROTECT, Hôpital Robert Debré, Paris, France
| | - Simon Samaan
- Département de Génétique, Hôpital Robert Debré, Assistance Publique - Hôpitaux de Paris, Paris, France
| | - Abdelhamid Slama
- pôle BPP-SP, Hôpital de Bicêtre, Assistance Publique - Hôpitaux de Paris, Le Kremlin-Bicêtre, France
| | - Charlène Rambaud
- Service de Génétique Médicale, Hôpital Estaing, Centre Hospitalier Universitaire de Clermont-Ferrand, Clermont-Ferrand, France
| | - Odile Boespflug-Tanguy
- Inserm U1141 Paris Diderot Sorbonne Université-Paris Cité, DHU PROTECT, Hôpital Robert Debré, Paris, France
| | - Catherine Sarret
- Service de Génétique Médicale, Hôpital Estaing, Centre Hospitalier Universitaire de Clermont-Ferrand, Clermont-Ferrand, France.
| |
Collapse
|
97
|
Houten SM. Protein moonlighting in inborn errors of metabolism: the case of the mitochondrial acylglycerol kinase. J Inherit Metab Dis 2017; 40:755-756. [PMID: 29290639 PMCID: PMC5743438 DOI: 10.1007/s10545-017-0090-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Sander M Houten
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, Box 1498, New York, NY 10029, USA
| |
Collapse
|
98
|
Dudek J. Role of Cardiolipin in Mitochondrial Signaling Pathways. Front Cell Dev Biol 2017; 5:90. [PMID: 29034233 PMCID: PMC5626828 DOI: 10.3389/fcell.2017.00090] [Citation(s) in RCA: 276] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 09/21/2017] [Indexed: 02/06/2023] Open
Abstract
The phospholipid cardiolipin (CL) is an essential constituent of mitochondrial membranes and plays a role in many mitochondrial processes, including respiration and energy conversion. Pathological changes in CL amount or species composition can have deleterious consequences for mitochondrial function and trigger the production of reactive oxygen species. Signaling networks monitor mitochondrial function and trigger an adequate cellular response. Here, we summarize the role of CL in cellular signaling pathways and focus on tissues with high-energy demand, like the heart. CL itself was recently identified as a precursor for the formation of lipid mediators. We highlight the concept of CL as a signaling platform. CL is exposed to the outer mitochondrial membrane upon mitochondrial stress and CL domains serve as a binding site in many cellular signaling events. During mitophagy, CL interacts with essential players of mitophagy like Beclin 1 and recruits the autophagic machinery by its interaction with LC3. Apoptotic signaling pathways require CL as a binding platform to recruit apoptotic factors such as tBid, Bax, caspase-8. CL required for the activation of the inflammasome and plays a role in inflammatory signaling. As changes in CL species composition has been observed in many diseases, the signaling pathways described here may play a general role in pathology.
Collapse
Affiliation(s)
- Jan Dudek
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
99
|
Mårtensson CU, Becker T. Acylglycerol Kinase: Mitochondrial Protein Transport Meets Lipid Biosynthesis. Trends Cell Biol 2017; 27:700-702. [PMID: 28867158 DOI: 10.1016/j.tcb.2017.08.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 08/16/2017] [Indexed: 10/19/2022]
Abstract
The carrier translocase (TIM22 complex) inserts hydrophobic proteins into the mitochondrial inner membrane. Recently, the acylglycerol kinase (AGK) mutated in Sengers syndrome was identified as a novel subunit of the human TIM22 complex. This finding reveals an exciting link between mitochondrial protein and lipid biogenesis.
Collapse
Affiliation(s)
- Christoph U Mårtensson
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Thomas Becker
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany.
| |
Collapse
|
100
|
Kang Y, Fielden LF, Stojanovski D. Mitochondrial protein transport in health and disease. Semin Cell Dev Biol 2017; 76:142-153. [PMID: 28765093 DOI: 10.1016/j.semcdb.2017.07.028] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 07/18/2017] [Accepted: 07/19/2017] [Indexed: 01/17/2023]
Abstract
Mitochondria are fundamental structures that fulfil important and diverse functions within cells, including cellular respiration and iron-sulfur cluster biogenesis. Mitochondrial function is reliant on the organelles proteome, which is maintained and adjusted depending on cellular requirements. The majority of mitochondrial proteins are encoded by nuclear genes and must be trafficked to, and imported into the organelle following synthesis in the cytosol. These nuclear-encoded mitochondrial precursors utilise dynamic and multimeric translocation machines to traverse the organelles membranes and be partitioned to the appropriate mitochondrial subcompartment. Yeast model systems have been instrumental in establishing the molecular basis of mitochondrial protein import machines and mechanisms, however unique players and mechanisms are apparent in higher eukaryotes. Here, we review our current knowledge on mitochondrial protein import in human cells and how dysfunction in these pathways can lead to disease.
Collapse
Affiliation(s)
- Yilin Kang
- Department of Biochemistry and Molecular Biology and The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Laura F Fielden
- Department of Biochemistry and Molecular Biology and The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Diana Stojanovski
- Department of Biochemistry and Molecular Biology and The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, 3010, Australia.
| |
Collapse
|