51
|
Papsdorf K, Miklas JW, Hosseini A, Cabruja M, Morrow CS, Savini M, Yu Y, Silva-García CG, Haseley NR, Murphy LM, Yao P, de Launoit E, Dixon SJ, Snyder MP, Wang MC, Mair WB, Brunet A. Lipid droplets and peroxisomes are co-regulated to drive lifespan extension in response to mono-unsaturated fatty acids. Nat Cell Biol 2023; 25:672-684. [PMID: 37127715 PMCID: PMC10185472 DOI: 10.1038/s41556-023-01136-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/23/2023] [Indexed: 05/03/2023]
Abstract
Dietary mono-unsaturated fatty acids (MUFAs) are linked to longevity in several species. But the mechanisms by which MUFAs extend lifespan remain unclear. Here we show that an organelle network involving lipid droplets and peroxisomes is critical for MUFA-induced longevity in Caenorhabditis elegans. MUFAs upregulate the number of lipid droplets in fat storage tissues. Increased lipid droplet number is necessary for MUFA-induced longevity and predicts remaining lifespan. Lipidomics datasets reveal that MUFAs also modify the ratio of membrane lipids and ether lipids-a signature associated with decreased lipid oxidation. In agreement with this, MUFAs decrease lipid oxidation in middle-aged individuals. Intriguingly, MUFAs upregulate not only lipid droplet number but also peroxisome number. A targeted screen identifies genes involved in the co-regulation of lipid droplets and peroxisomes, and reveals that induction of both organelles is optimal for longevity. Our study uncovers an organelle network involved in lipid homeostasis and lifespan regulation, opening new avenues for interventions to delay aging.
Collapse
Affiliation(s)
| | - Jason W Miklas
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Amir Hosseini
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Matias Cabruja
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Christopher S Morrow
- Department of Molecular Metabolism, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Marzia Savini
- Department of Molecular and Human Genetics, Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA
| | - Yong Yu
- Department of Molecular and Human Genetics, Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Carlos G Silva-García
- Department of Molecular Metabolism, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | | | | | - Pallas Yao
- Department of Molecular Metabolism, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | | | - Scott J Dixon
- Department of Biology, Stanford University, Stanford, CA, USA
| | | | - Meng C Wang
- Department of Molecular and Human Genetics, Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - William B Mair
- Department of Molecular Metabolism, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Anne Brunet
- Department of Genetics, Stanford University, Stanford, CA, USA.
- Glenn Laboratories for the Biology of Aging, Stanford University, Stanford, CA, USA.
- Wu Tsai Institute of Neurosciences, Stanford University, Stanford, CA, USA.
| |
Collapse
|
52
|
Abou-Rjeileh U, Dos Santos Neto JM, Chirivi M, O'Boyle N, Salcedo D, Prom C, Laguna J, Parales-Giron J, Lock AL, Contreras GA. Oleic acid abomasal infusion limits lipolysis and improves insulin sensitivity in adipose tissue from periparturient dairy cows. J Dairy Sci 2023; 106:4306-4323. [PMID: 37105874 DOI: 10.3168/jds.2022-22402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 01/03/2023] [Indexed: 04/29/2023]
Abstract
Excessive adipose tissue (AT) lipolysis around parturition in dairy cows is associated with impaired AT insulin sensitivity and increased incidence of metabolic diseases. Supplementing cows with oleic acid (OA) reduces circulating biomarkers of lipolysis and improves energy balance. Nevertheless, it is unclear if OA alters lipid trafficking in AT. In the liver and skeletal muscle, OA improves mitochondrial function and promotes lipid droplet formation by activating perilipin 5 (PLIN5) and peroxisome proliferator-activated receptor α (PPARα). However, it is unknown if this mechanism occurs in AT. The objective of this study was to determine the effect of OA on AT lipolysis, systemic and AT insulin sensitivity, and AT mitochondrial function in periparturient dairy cows. Twelve rumen-cannulated Holstein cows were infused abomasally following parturition with ethanol (CON) or OA (60 g/d) for 14 d. Subcutaneous AT samples were collected at 11 ± 3.6 d before calving (-12 d), and 6 ± 1.0 d (7 d) and 13 ± 1.4 d (14 d) after parturition. An intravenous glucose tolerance test was performed on d 14. Adipocyte morphometry was performed on hematoxylin and eosin-stained AT sections. The antilipolytic effect of insulin (1 μg/L) was evaluated using an ex vivo explant culture following lipolysis stimulation. PLIN5 and PPARα transcription and translation were determined by real-time quantitative PCR and capillary electrophoresis, respectively. RNA sequencing was used to evaluate the transcriptomic profile of mitochondrial gene networks. In CON cows, postpartum lipolysis increased the percentage of smaller (<3,000 µm2) adipocytes at 14 d compared with -12 d. However, OA limited adipocyte size reduction at 14 d. Likewise, OA decreased lipolysis plasma markers nonesterified free fatty acids and β-hydroxybutyrate at 5 and 7 d. Over the 14-d period, compared with CON, OA increased the concentration of plasma insulin and decreased plasma glucose. During the glucose tolerance test, OA decreased circulating glucose concentration (at 10, 20, 30, 40 min) and the glucose clearance rate. Moreover, OA increased insulin at 10 and 20 min and tended to increase it at 30 min. Following lipolysis stimulation, OA improved the antilipolytic effect of insulin in the AT at 14 d. PLIN5 and PPARA gene expression decreased postpartum regardless of treatment. However, OA increased PLIN5 protein expression at 14 d and increased PPARA at 7 and 14 d. Immunohistochemical analysis of AT and RNA sequencing data showed that OA increased the number of mitochondria and improved mitochondrial function. However, OA had no effect on production and digestibility. Our results demonstrate that OA limits AT lipolysis, improves systemic and AT insulin sensitivity, and is associated with markers of mitochondrial function supporting a shift to lipogenesis in AT of periparturient dairy cows.
Collapse
Affiliation(s)
- Ursula Abou-Rjeileh
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing 48824
| | - José M Dos Santos Neto
- Department of Animal Science, College of Agriculture and Natural Resources, Michigan State University, East Lansing 48824
| | - Miguel Chirivi
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing 48824
| | - Nial O'Boyle
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Leicestershire, LE12 5RD, United Kingdom
| | - David Salcedo
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing 48824
| | - Crystal Prom
- Department of Animal Science, College of Agriculture and Natural Resources, Michigan State University, East Lansing 48824
| | - Juliana Laguna
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing 48824
| | - Jair Parales-Giron
- Department of Animal Science, College of Agriculture and Natural Resources, Michigan State University, East Lansing 48824
| | - Adam L Lock
- Department of Animal Science, College of Agriculture and Natural Resources, Michigan State University, East Lansing 48824.
| | - G Andres Contreras
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing 48824.
| |
Collapse
|
53
|
Guan D, Bae H, Zhou D, Chen Y, Jiang C, La CM, Xiao Y, Zhu K, Hu W, Trinh TM, Liu P, Xiong Y, Cai B, Jang C, Lazar MA. Hepatocyte SREBP signaling mediates clock communication within the liver. J Clin Invest 2023; 133:e163018. [PMID: 37066875 PMCID: PMC10104893 DOI: 10.1172/jci163018] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 02/23/2023] [Indexed: 04/18/2023] Open
Abstract
Rhythmic intraorgan communication coordinates environmental signals and the cell-intrinsic clock to maintain organ homeostasis. Hepatocyte-specific KO of core components of the molecular clock Rev-erbα and -β (Reverb-hDKO) alters cholesterol and lipid metabolism in hepatocytes as well as rhythmic gene expression in nonparenchymal cells (NPCs) of the liver. Here, we report that in fatty liver caused by diet-induced obesity (DIO), hepatocyte SREBP cleavage-activating protein (SCAP) was required for Reverb-hDKO-induced diurnal rhythmic remodeling and epigenomic reprogramming in liver macrophages (LMs). Integrative analyses of isolated hepatocytes and LMs revealed that SCAP-dependent lipidomic changes in REV-ERB-depleted hepatocytes led to the enhancement of LM metabolic rhythms. Hepatocytic loss of REV-ERBα and β (REV-ERBs) also attenuated LM rhythms via SCAP-independent polypeptide secretion. These results shed light on the signaling mechanisms by which hepatocytes regulate diurnal rhythms in NPCs in fatty liver disease caused by DIO.
Collapse
Affiliation(s)
- Dongyin Guan
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Hosung Bae
- Department of Biological Chemistry, University of California Irvine, Irvine, California, USA
| | - Dishu Zhou
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Ying Chen
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Chunjie Jiang
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Cam Mong La
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Yang Xiao
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kun Zhu
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Wenxiang Hu
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Basic Research, Guangzhou Laboratory, Guangdong, China
| | - Trang Minh Trinh
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Panpan Liu
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Ying Xiong
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Bishuang Cai
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Cholsoon Jang
- Department of Biological Chemistry, University of California Irvine, Irvine, California, USA
| | - Mitchell A. Lazar
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine and
- Department of Genetics, the University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
54
|
Chen W, Mehlkop O, Scharn A, Nolte H, Klemm P, Henschke S, Steuernagel L, Sotelo-Hitschfeld T, Kaya E, Wunderlich CM, Langer T, Kononenko NL, Giavalisco P, Brüning JC. Nutrient-sensing AgRP neurons relay control of liver autophagy during energy deprivation. Cell Metab 2023; 35:786-806.e13. [PMID: 37075752 PMCID: PMC10173804 DOI: 10.1016/j.cmet.2023.03.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/01/2023] [Accepted: 03/27/2023] [Indexed: 04/21/2023]
Abstract
Autophagy represents a key regulator of aging and metabolism in sensing energy deprivation. We find that fasting in mice activates autophagy in the liver paralleled by activation of hypothalamic AgRP neurons. Optogenetic and chemogenetic activation of AgRP neurons induces autophagy, alters phosphorylation of autophagy regulators, and promotes ketogenesis. AgRP neuron-dependent induction of liver autophagy relies on NPY release in the paraventricular nucleus of the hypothalamus (PVH) via presynaptic inhibition of NPY1R-expressing neurons to activate PVHCRH neurons. Conversely, inhibiting AgRP neurons during energy deprivation abrogates induction of hepatic autophagy and rewiring of metabolism. AgRP neuron activation increases circulating corticosterone concentrations, and reduction of hepatic glucocorticoid receptor expression attenuates AgRP neuron-dependent activation of hepatic autophagy. Collectively, our study reveals a fundamental regulatory principle of liver autophagy in control of metabolic adaptation during nutrient deprivation.
Collapse
Affiliation(s)
- Weiyi Chen
- Max Planck Institute for Metabolism Research, Department of Neuronal Control of Metabolism, Gleueler Str. 50, 50931 Cologne, Germany; Policlinic for Endocrinology, Diabetes, and Preventive Medicine (PEDP), University Hospital Cologne, Kerpener Str. 26, 50924 Cologne, Germany; Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| | - Oliver Mehlkop
- Max Planck Institute for Metabolism Research, Department of Neuronal Control of Metabolism, Gleueler Str. 50, 50931 Cologne, Germany; Policlinic for Endocrinology, Diabetes, and Preventive Medicine (PEDP), University Hospital Cologne, Kerpener Str. 26, 50924 Cologne, Germany; Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| | - Alexandra Scharn
- Max Planck Institute for Metabolism Research, Department of Neuronal Control of Metabolism, Gleueler Str. 50, 50931 Cologne, Germany; Policlinic for Endocrinology, Diabetes, and Preventive Medicine (PEDP), University Hospital Cologne, Kerpener Str. 26, 50924 Cologne, Germany; Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| | - Hendrik Nolte
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Strasse 9B, 50931 Cologne, Germany
| | - Paul Klemm
- Max Planck Institute for Metabolism Research, Department of Neuronal Control of Metabolism, Gleueler Str. 50, 50931 Cologne, Germany; Policlinic for Endocrinology, Diabetes, and Preventive Medicine (PEDP), University Hospital Cologne, Kerpener Str. 26, 50924 Cologne, Germany; Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| | - Sinika Henschke
- Max Planck Institute for Metabolism Research, Department of Neuronal Control of Metabolism, Gleueler Str. 50, 50931 Cologne, Germany; Policlinic for Endocrinology, Diabetes, and Preventive Medicine (PEDP), University Hospital Cologne, Kerpener Str. 26, 50924 Cologne, Germany; Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| | - Lukas Steuernagel
- Max Planck Institute for Metabolism Research, Department of Neuronal Control of Metabolism, Gleueler Str. 50, 50931 Cologne, Germany; Policlinic for Endocrinology, Diabetes, and Preventive Medicine (PEDP), University Hospital Cologne, Kerpener Str. 26, 50924 Cologne, Germany; Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| | - Tamara Sotelo-Hitschfeld
- Max Planck Institute for Metabolism Research, Department of Neuronal Control of Metabolism, Gleueler Str. 50, 50931 Cologne, Germany; Policlinic for Endocrinology, Diabetes, and Preventive Medicine (PEDP), University Hospital Cologne, Kerpener Str. 26, 50924 Cologne, Germany; Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| | - Ecem Kaya
- Max Planck Institute for Metabolism Research, Department of Neuronal Control of Metabolism, Gleueler Str. 50, 50931 Cologne, Germany; Policlinic for Endocrinology, Diabetes, and Preventive Medicine (PEDP), University Hospital Cologne, Kerpener Str. 26, 50924 Cologne, Germany; Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| | - Claudia Maria Wunderlich
- Max Planck Institute for Metabolism Research, Department of Neuronal Control of Metabolism, Gleueler Str. 50, 50931 Cologne, Germany
| | - Thomas Langer
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Strasse 9B, 50931 Cologne, Germany
| | - Natalia L Kononenko
- Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany; Center for Physiology and Pathophysiology, Faculty of Medicine and University Hospital Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| | - Patrick Giavalisco
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Strasse 9B, 50931 Cologne, Germany
| | - Jens Claus Brüning
- Max Planck Institute for Metabolism Research, Department of Neuronal Control of Metabolism, Gleueler Str. 50, 50931 Cologne, Germany; Policlinic for Endocrinology, Diabetes, and Preventive Medicine (PEDP), University Hospital Cologne, Kerpener Str. 26, 50924 Cologne, Germany; Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany; National Center for Diabetes Research (DZD), Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany.
| |
Collapse
|
55
|
Cinato M, Mardani I, Miljanovic A, Drevinge C, Laudette M, Bollano E, Henricsson M, Tolö J, Bauza Thorbrügge M, Levin M, Lindbom M, Arif M, Pacher P, Andersson L, Olofsson CS, Borén J, Levin MC. Cardiac Plin5 interacts with SERCA2 and promotes calcium handling and cardiomyocyte contractility. Life Sci Alliance 2023; 6:e202201690. [PMID: 36717246 PMCID: PMC9887753 DOI: 10.26508/lsa.202201690] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 01/17/2023] [Accepted: 01/17/2023] [Indexed: 01/31/2023] Open
Abstract
The adult heart develops hypertrophy to reduce ventricular wall stress and maintain cardiac function in response to an increased workload. Although pathological hypertrophy generally progresses to heart failure, physiological hypertrophy may be cardioprotective. Cardiac-specific overexpression of the lipid-droplet protein perilipin 5 (Plin5) promotes cardiac hypertrophy, but it is unclear whether this response is beneficial. We analyzed RNA-sequencing data from human left ventricle and showed that cardiac PLIN5 expression correlates with up-regulation of cardiac contraction-related processes. To investigate how elevated cardiac Plin5 levels affect cardiac contractility, we generated mice with cardiac-specific overexpression of Plin5 (MHC-Plin5 mice). These mice displayed increased left ventricular mass and cardiomyocyte size but preserved heart function. Quantitative proteomics identified sarcoplasmic/endoplasmic reticulum Ca2+ ATPase 2 (SERCA2) as a Plin5-interacting protein. In situ proximity ligation assay further confirmed the Plin5/SERCA2 interaction. Live imaging showed increases in intracellular Ca2+ release during contraction, Ca2+ removal during relaxation, and SERCA2 function in MHC-Plin5 versus WT cardiomyocytes. These results identify a role of Plin5 in improving cardiac contractility through enhanced Ca2+ signaling.
Collapse
Affiliation(s)
- Mathieu Cinato
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, Sahlgrenska Academy at University of Gothenburgand Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Ismena Mardani
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, Sahlgrenska Academy at University of Gothenburgand Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Azra Miljanovic
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, Sahlgrenska Academy at University of Gothenburgand Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Christina Drevinge
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, Sahlgrenska Academy at University of Gothenburgand Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Marion Laudette
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, Sahlgrenska Academy at University of Gothenburgand Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Entela Bollano
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, Sahlgrenska Academy at University of Gothenburgand Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Marcus Henricsson
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, Sahlgrenska Academy at University of Gothenburgand Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Johan Tolö
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Marcos Bauza Thorbrügge
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Max Levin
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, Sahlgrenska Academy at University of Gothenburgand Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Malin Lindbom
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, Sahlgrenska Academy at University of Gothenburgand Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Muhammad Arif
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Pal Pacher
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Linda Andersson
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, Sahlgrenska Academy at University of Gothenburgand Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Charlotta S Olofsson
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Jan Borén
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, Sahlgrenska Academy at University of Gothenburgand Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Malin C Levin
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, Sahlgrenska Academy at University of Gothenburgand Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
56
|
Differential Lipid Accumulation on HepG2 Cells Triggered by Palmitic and Linoleic Fatty Acids Exposure. Molecules 2023; 28:molecules28052367. [PMID: 36903612 PMCID: PMC10005272 DOI: 10.3390/molecules28052367] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/23/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Lipid metabolism pathways such as β-oxidation, lipolysis and, lipogenesis, are mainly associated with normal liver function. However, steatosis is a growing pathology caused by the accumulation of lipids in hepatic cells due to increased lipogenesis, dysregulated lipid metabolism, and/or reduced lipolysis. Accordingly, this investigation hypothesizes a selective in vitro accumulation of palmitic and linoleic fatty acids on hepatocytes. After assessing the metabolic inhibition, apoptotic effect, and reactive oxygen species (ROS) generation by linoleic (LA) and palmitic (PA) fatty acids, HepG2 cells were exposed to different ratios of LA and PA to study the lipid accumulation using the lipophilic dye Oil Red O. Lipidomic studies were also carried out after lipid isolation. Results revealed that LA was highly accumulated and induced ROS production when compared to PA. Lipid profile modifications were observed after LA:PA 1:1 (v/v) exposure, which led to a four-fold increase in triglycerides (TGs) (mainly in linoleic acid-containing species), as well as a increase in cholesterol and polyunsaturated fatty acids (PUFA) content when compared to the control cells. The present work highlights the importance of balancing both PA and LA fatty acids concentrations in HepG2 cells to maintain normal levels of free fatty acids (FFAs), cholesterol, and TGs and to minimize some of the observed in vitro effects (i.e., apoptosis, ROS generation and lipid accumulation) caused by these fatty acids.
Collapse
|
57
|
Fachada V, Silvennoinen M, Sahinaho UM, Rahkila P, Kivelä R, Hulmi JJ, Kujala U, Kainulainen H. Effects of Long-Term Physical Activity and BCAA Availability on the Subcellular Associations between Intramyocellular Lipids, Perilipins and PGC-1 α. Int J Mol Sci 2023; 24:ijms24054282. [PMID: 36901715 PMCID: PMC10002284 DOI: 10.3390/ijms24054282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 02/09/2023] [Indexed: 02/24/2023] Open
Abstract
Cellular skeletal muscle lipid metabolism is of paramount importance for metabolic health, specifically through its connection to branched-chain amino acids (BCAA) metabolism and through its modulation by exercise. In this study, we aimed at better understanding intramyocellular lipids (IMCL) and their related key proteins in response to physical activity and BCAA deprivation. By means of confocal microscopy, we examined IMCL and the lipid droplet coating proteins PLIN2 and PLIN5 in human twin pairs discordant for physical activity. Additionally, in order to study IMCLs, PLINs and their association to peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) in cytosolic and nuclear pools, we mimicked exercise-induced contractions in C2C12 myotubes by electrical pulse stimulation (EPS), with or without BCAA deprivation. The life-long physically active twins displayed an increased IMCL signal in type I fibers when compared to their inactive twin pair. Moreover, the inactive twins showed a decreased association between PLIN2 and IMCL. Similarly, in the C2C12 cell line, PLIN2 dissociated from IMCL when myotubes were deprived of BCAA, especially when contracting. In addition, in myotubes, EPS led to an increase in nuclear PLIN5 signal and its associations with IMCL and PGC-1α. This study demonstrates how physical activity and BCAA availability affects IMCL and their associated proteins, providing further and novel evidence for the link between the BCAA, energy and lipid metabolisms.
Collapse
|
58
|
Niu H, Lei A, Tian H, Yao W, Liu Y, Li C, An X, Chen X, Zhang Z, Wu J, Yang M, Huang J, Cheng F, Zhao J, Hua J, Liu S, Luo J. Scd1 Deficiency in Early Embryos Affects Blastocyst ICM Formation through RPs-Mdm2-p53 Pathway. Int J Mol Sci 2023; 24:ijms24021750. [PMID: 36675264 PMCID: PMC9864350 DOI: 10.3390/ijms24021750] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/08/2023] [Accepted: 01/10/2023] [Indexed: 01/18/2023] Open
Abstract
Embryos contain a large number of lipid droplets, and lipid metabolism is gradually activated during embryonic development to provide energy. However, the regulatory mechanisms remain to be investigated. Stearoyl-CoA desaturase 1 (Scd1) is a fatty acid desaturase gene that is mainly involved in intracellular monounsaturated fatty acid production, which takes part in many physiological processes. Analysis of transcripts at key stages of embryo development revealed that Scd1 was important and expressed at an increased level during the cleavage and blastocyst stages. Knockout Scd1 gene by CRISPR/Cas9 from zygotes revealed a decrease in lipid droplets (LDs) and damage in the inner cell mass (ICM) formation of blastocyst. Comparative analysis of normal and knockout embryo transcripts showed a suppression of ribosome protein (RPs) genes, leading to the arrest of ribosome biogenesis at the 2-cell stage. Notably, the P53-related pathway was further activated at the blastocyst stage, which eventually caused embryonic development arrest and apoptosis. In summary, Scd1 helps in providing energy for embryonic development by regulating intra-embryonic lipid droplet formation. Moreover, deficiency activates the RPs-Mdm2-P53 pathway due to ribosomal stress and ultimately leads to embryonic development arrest. The present results suggested that Scd1 gene is essential to maintain healthy development of embryos by regulating energy support.
Collapse
Affiliation(s)
- Huimin Niu
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Anmin Lei
- Shaanxi Stem Cell Engineering and Technology Research Center, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Huibin Tian
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Weiwei Yao
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Ying Liu
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Cong Li
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Xuetong An
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Xiaoying Chen
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Zhifei Zhang
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Jiao Wu
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Min Yang
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Jiangtao Huang
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Fei Cheng
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Jianqing Zhao
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Jinlian Hua
- Shaanxi Stem Cell Engineering and Technology Research Center, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Shimin Liu
- UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6018, Australia
| | - Jun Luo
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
- Correspondence:
| |
Collapse
|
59
|
Xiong J, Bao J, Hu W, Shang M, Zhang L. Whole-genome resequencing reveals genetic diversity and selection characteristics of dairy goat. Front Genet 2023; 13:1044017. [PMID: 36685859 PMCID: PMC9852865 DOI: 10.3389/fgene.2022.1044017] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 12/13/2022] [Indexed: 01/09/2023] Open
Abstract
The dairy goat is one of the earliest dairy livestock species, which plays an important role in the economic development, especially for developing countries. With the development of agricultural civilization, dairy goats have been widely distributed across the world. However, few studies have been conducted on the specific characteristics of dairy goat. In this study, we collected the whole-genome data of 89 goat individuals by sequencing 48 goats and employing 41 publicly available goats, including five dairy goat breeds (Saanen, Nubian, Alpine, Toggenburg, and Guanzhong dairy goat; n = 24, 15, 11, 6, 6), and three goat breeds (Guishan goat, Longlin goat, Yunshang Black goat; n = 6, 15, 6). Through compared the genomes of dairy goat and non-dairy goat to analyze genetic diversity and selection characteristics of dairy goat. The results show that the eight goats could be divided into three subgroups of European, African, and Chinese indigenous goat populations, and we also found that Australian Nubian, Toggenburg, and Australian Alpine had the highest linkage disequilibrium, the lowest level of nucleotide diversity, and a higher inbreeding coefficient, indicating that they were strongly artificially selected. In addition, we identified several candidate genes related to the specificity of dairy goat, particularly genes associated with milk production traits (GHR, DGAT2, ELF5, GLYCAM1, ACSBG2, ACSS2), reproduction traits (TSHR, TSHB, PTGS2, ESR2), immunity traits (JAK1, POU2F2, LRRC66). Our results provide not only insights into the evolutionary history and breed characteristics of dairy goat, but also valuable information for the implementation and improvement of dairy goat cross breeding program.
Collapse
|
60
|
Lei P, Hu Y, Gao P, Ding Q, Yan J, Zhao J, Li B, Shan Y. Sulforaphane Ameliorates Hepatic Lipid Metabolism via Modulating Lipophagy In Vivo and In Vitro. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:15126-15133. [PMID: 36420856 DOI: 10.1021/acs.jafc.2c06311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Although sulforaphane (SFN) is reported to ameliorate the excessive accumulation of lipid droplets (LDs) in hepatocytes, its underlying mechanism remains unclear. This paper aims to investigate how SFN induces hepatic LD degradation via activating macroautophagy. High-fat diet and free fatty acids (FFAs) were used to induce excessive LD formation in hepatocytes in vivo and in vitro, respectively. SFN-induced macroautophagy was shown by the increased LC3 protein expression both (1.32 ± 0.18) in vivo and (2.43 ± 0.22) in vitro. The mRNA levels of Lc3 (1.99 ± 0.16), Atg4 (2.12 ± 0.23), Ulk1 (1.19 ± 0.12), Atg7 (1.25 ± 0.11), and Atg5 (0.81 ± 0.1) genes were elevated by SFN. SFN individually enhanced the localization of LC3 (0.41 ± 0.15), LAMP1 (0.66 ± 0.14), ATG7 (0.26 ± 0.08), and ATG5 (0.38 ± 0.09) with LDs, indicating the occurrence of lipophagy. In the components of LDs isolated from SFN treatment, the expressions of LC3, ATG7, and ATG5 protein were largely increased both in vivo and in vitro. LDs were visualized in autophagosomes which confirmed that the lipophagy was triggered by SFN. Moreover, SFN treatment improved the profile of FFAs which was characterized by increasing the FFAs in liver (total FFA: 261.51 ± 39.58 μM/g) and serum (total FFA: 967.59 ± 239.18 nM/mL). After silencing the nrf2 gene, ATG7 and ATG5 protein expressions were decreased and attenuated this induction by SFN. Nrf2 gene silencing inversely increased TG contents. In summary, SFN enhanced the LD degradation via stimulating lipophagy in a Nrf2-dependent manner.
Collapse
Affiliation(s)
- Peng Lei
- Department of Nutrition and Food Hygiene, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang 325035, People's Republic of China
- Department of Food Science and Engineering, Harbin Institute of Technology, 92 Xidazhi Street, Harbin, Heilongjiang 150001, People's Republic of China
| | - Yunqi Hu
- Department of Nutrition and Food Hygiene, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang 325035, People's Republic of China
| | - Peng Gao
- Department of Food Science and Engineering, Harbin Institute of Technology, 92 Xidazhi Street, Harbin, Heilongjiang 150001, People's Republic of China
| | - Qi Ding
- Department of Nutrition and Food Hygiene, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang 325035, People's Republic of China
| | - Jielin Yan
- Department of Nutrition and Food Hygiene, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang 325035, People's Republic of China
| | - Jiahe Zhao
- Center of Safety and Evaluation of Drugs, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, People's Republic of China
| | - Baolong Li
- Center of Safety and Evaluation of Drugs, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, People's Republic of China
| | - Yujuan Shan
- Department of Nutrition and Food Hygiene, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang 325035, People's Republic of China
| |
Collapse
|
61
|
The Patatin-Like Phospholipase Domain Containing Protein 7 Regulates Macrophage Classical Activation through SIRT1/NF-κB and p38 MAPK Pathways. Int J Mol Sci 2022; 23:ijms232314983. [PMID: 36499308 PMCID: PMC9739533 DOI: 10.3390/ijms232314983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022] Open
Abstract
Lysophosphatidylcholine (LPC) is a bioactive lipid that modulates macrophage polarization during immune responses, inflammation, and tissue remodeling. Patatin-like phospholipase domain containing protein 7 (PNPLA7) is a lysophospholipase with a preference for LPC. However, the role of PNPLA7 in macrophage polarization as an LPC hydrolase has not been explored. In the current study, we found that PNPLA7 is highly expressed in naïve macrophages and downregulated upon lipopolysaccharide (LPS)-induced polarization towards the classically activated (M1) phenotype. Consistently, overexpression of PNPLA7 suppressed the expression of proinflammatory M1 marker genes, including interleukin 1β (IL-1β), IL-6, inducible nitric oxide synthase (iNOS), and tumor necrosis factor α (TNF-α), whereas knockdown of PNPLA7 augmented the inflammatory gene expression in LPS-challenged macrophages. PNPLA7 overexpression and knockdown increased and decreased Sirtuin1 (SIRT1) mRNA and protein levels, respectively, and affected the acetylation of the nuclear factor-kappa B (NF-κB) p65 subunit, a key transcription factor in M1 polarization. In addition, the levels of phosphorylated p38 mitogen-activated protein kinase (MAPK) were suppressed and enhanced by PNPLA7 overexpression and knockdown, respectively. Taken together, these findings suggest that PNPLA7 suppresses M1 polarization of LPS-challenged macrophages by modulating SIRT1/NF-κB- and p38 MAPK-dependent pathways.
Collapse
|
62
|
SIRT1 activation and its circadian clock control: a promising approach against (frailty in) neurodegenerative disorders. Aging Clin Exp Res 2022; 34:2963-2976. [DOI: 10.1007/s40520-022-02257-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 09/14/2022] [Indexed: 11/01/2022]
|
63
|
Rosas-Rodríguez JA, Virgen-Ortíz A, Ruiz EA, Ortiz RM, Soñanez-Organis JG. Perilipin Isoforms and PGC-1α Are Regulated Differentially in Rat Heart during Pregnancy-Induced Physiological Cardiac Hypertrophy. Medicina (B Aires) 2022; 58:medicina58101433. [PMID: 36295596 PMCID: PMC9611277 DOI: 10.3390/medicina58101433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/12/2022] [Accepted: 10/03/2022] [Indexed: 11/16/2022] Open
Abstract
Background and Objectives: Perilipins 1–5 (PLIN) are lipid droplet-associated proteins that participate in regulating lipid storage and metabolism, and the PLIN5 isoform is known to form a nuclear complex with peroxisome proliferator-activated receptor-gamma coactivator 1-alpha (PGC-1α) to regulate lipid metabolism gene expression. However, the changes in PLIN isoforms’ expression in response to pregnancy-induced cardiac hypertrophy are not thoroughly studied. The aim of this study was to quantify the mRNA expression of PLIN isoforms and PGC-1α along with total triacylglycerol (TAG) and cholesterol levels during late pregnancy and the postpartum period in the rat left ventricle. Materials and Methods: Female Sprague-Dawley rats were divided into three groups: non-pregnant, late pregnancy, and postpartum. The mRNA and protein levels were evaluated using quantitative RT-PCR and Western blotting, respectively. TAG and total cholesterol content were evaluated using commercial colorimetric methods. Results: The expression of mRNAs for PLIN1, 2, and 5 increased during pregnancy and the postpartum period. PGC-1α mRNA and protein expression increased during pregnancy and the postpartum period. Moreover, TAG and total cholesterol increased during pregnancy and returned to basal levels after pregnancy. Conclusions: Our results demonstrate that pregnancy upregulates differentially the expression of PLIN isoforms along with PGC-1α, suggesting that together they might be involved in the regulation of the lipid metabolic shift induced by pregnancy.
Collapse
Affiliation(s)
- Jesús A. Rosas-Rodríguez
- Departamento de Ciencias Químico-Biológicas y Agropecuarias, Universidad de Sonora, Lázaro Cárdenas del Río No. 100, Francisco Villa, Navojoa CP 85880, Mexico
| | - Adolfo Virgen-Ortíz
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima 28040, Mexico
| | - Enrico A. Ruiz
- Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México 07738, Mexico
| | - Rudy M. Ortiz
- Department of Molecular & Cell Biology, University of California Merced, Merced, CA 95343, USA
| | - José G. Soñanez-Organis
- Departamento de Ciencias Químico-Biológicas y Agropecuarias, Universidad de Sonora, Lázaro Cárdenas del Río No. 100, Francisco Villa, Navojoa CP 85880, Mexico
- Correspondence:
| |
Collapse
|
64
|
Burchat N, Akal T, Ntambi JM, Trivedi N, Suresh R, Sampath H. SCD1 is nutritionally and spatially regulated in the intestine and influences systemic postprandial lipid homeostasis and gut-liver crosstalk. Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867:159195. [PMID: 35718096 PMCID: PMC11287785 DOI: 10.1016/j.bbalip.2022.159195] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/21/2022] [Accepted: 06/01/2022] [Indexed: 01/27/2023]
Abstract
Stearoyl-CoA desaturase-1 is an endoplasmic reticulum (ER)-membrane resident protein that inserts a double bond into saturated fatty acids, converting them into their monounsaturated counterparts. Previous studies have demonstrated an important role for SCD1 in modulating tissue and systemic health. Specifically, lack of hepatic or cutaneous SCD1 results in significant reductions in tissue esterified lipids. While the intestine is an important site of lipid esterification and assimilation into the body, the regulation of intestinal SCD1 or its impact on lipid composition in the intestine and other tissues has not been investigated. Here we report that unlike other lipogenic enzymes, SCD1 is enriched in the distal small intestine and in the colon of chow-fed mice and is robustly upregulated by acute refeeding of a high-sucrose diet. We generated a mouse model lacking SCD1 specifically in the intestine (iKO mice). These mice have significant reductions not only in intestinal lipids, but also in plasma triacylglycerols, diacylglycerols, cholesterol esters, and free cholesterol. Additionally, hepatic accumulation of diacylglycerols is significantly reduced in iKO mice. Comprehensive targeted lipidomic profiling revealed a consistent reduction in the myristoleic (14:1) to myristic (14:0) acid ratios in intestine, liver, and plasma of iKO mice. Consistent with the reduction of the monounsaturated fatty acid myristoleic acid in hepatic lipids of chow fed iKO mice, hepatic expression of Pgc-1α, Sirt1, and related fatty acid oxidation genes were reduced in chow-fed iKO mice. Further, lack of intestinal SCD1 reduced expression of de novo lipogenic genes in distal intestine of chow-fed mice and in the livers of mice fed a lipogenic high-sucrose diet. Taken together, these studies reveal a novel pattern of expression of SCD1 in the intestine. They also demonstrate that intestinal SCD1 modulates lipid content and composition of not only intestinal tissues, but also that of plasma and liver. Further, these data point to intestinal SCD1 as a modulator of gut-liver crosstalk, potentially through the production of novel signaling lipids such as myristoleic acid. These data have important implications to understanding how intestinal SCD1 may modulate risk for post-prandial lipemia, hepatic steatosis, and related pathologies.
Collapse
Affiliation(s)
- Natalie Burchat
- Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, United States of America
| | - Tasleenpal Akal
- Department of Nutritional Sciences, Rutgers University, United States of America
| | - James M Ntambi
- Departments of Biochemistry and Nutritional Sciences, University of Wisconsin-Madison, United States of America
| | - Nirali Trivedi
- Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, United States of America
| | - Ranjita Suresh
- Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, United States of America
| | - Harini Sampath
- Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, United States of America; Department of Nutritional Sciences, Rutgers University, United States of America.
| |
Collapse
|
65
|
Heden TD, Chen C, Leland G, Mashek MM, Najt CP, Shang L, Chow LS, Mashek DG. Isolated and combined impact of dietary olive oil and exercise on markers of health and energy metabolism in female mice. J Nutr Biochem 2022; 107:109040. [PMID: 35533899 PMCID: PMC9626252 DOI: 10.1016/j.jnutbio.2022.109040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 03/04/2022] [Accepted: 03/20/2022] [Indexed: 11/27/2022]
Abstract
An olive oil (OO) rich diet or high-intensity interval training (HIIT) independently improve markers of health and energy metabolism, but it is unknown if combining OO and HIIT synergize to improve these markers. This study characterized the isolated and combined impact of OO and HIIT on markers of health and energy metabolism in various tissues in C57BL/6J female mice. Nine-week-old mice were divided into four groups for a 12-week diet and/or exercise intervention including: (1) Control Diet without HIIT (CD), (2) Control Diet with HIIT (CD+HIIT), (3) OO diet (10% kcal from olive oil) without HIIT, and (4) OO diet with HIIT (OO+HIIT). Neither dietary OO or HIIT altered body weight, glucose tolerance, or serum lipids. HIIT, regardless of diet, increased aerobic capacity and HDL cholesterol levels. In liver and heart tissue, OO resulted in similar adaptations as HIIT including increased mitochondrial content and fatty acid oxidation but combining OO with HIIT did not augment these effects. In skeletal muscle, HIIT increased mitochondrial content in type II fibers similarly between diets. An RNA sequencing analysis on type I fibers revealed OO reduced muscle regeneration and lipid metabolism gene abundance, whereas HIIT increased the abundance of these genes, independent of diet. HIIT training, independent of diet, induced subcutaneous white adipose tissue (sWAT) hypertrophy, whereas OO induced gonadal white adipose tissue (gWAT) hypertrophy, an effect that was augmented with HIIT. These data highlight the pleiotropic effects of OO and HIIT, although their combination does not synergize to further improve most markers of health and energy metabolism.
Collapse
Affiliation(s)
- Timothy D Heden
- Department of Biochemistry, Molecular Biology, and Biophysics, Minneapolis, MN
| | - Chen Chen
- Department of Biochemistry, Molecular Biology, and Biophysics, Minneapolis, MN
| | - Grace Leland
- Department of Biochemistry, Molecular Biology, and Biophysics, Minneapolis, MN
| | - Mara M Mashek
- Department of Biochemistry, Molecular Biology, and Biophysics, Minneapolis, MN
| | - Charles P Najt
- Department of Biochemistry, Molecular Biology, and Biophysics, Minneapolis, MN
| | - Linshan Shang
- Department of Biochemistry, Molecular Biology, and Biophysics, Minneapolis, MN
| | - Lisa S Chow
- Department of Medicine, Division of Diabetes, Endocrinology, and Metabolism, Minneapolis, MN
| | - Douglas G Mashek
- Department of Biochemistry, Molecular Biology, and Biophysics, Minneapolis, MN; Department of Medicine, Division of Diabetes, Endocrinology, and Metabolism, Minneapolis, MN.
| |
Collapse
|
66
|
Dave A, Park EJ, Kumar A, Parande F, Beyoğlu D, Idle JR, Pezzuto JM. Consumption of Grapes Modulates Gene Expression, Reduces Non-Alcoholic Fatty Liver Disease, and Extends Longevity in Female C57BL/6J Mice Provided with a High-Fat Western-Pattern Diet. Foods 2022; 11:1984. [PMID: 35804799 PMCID: PMC9265568 DOI: 10.3390/foods11131984] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/23/2022] [Accepted: 06/30/2022] [Indexed: 02/05/2023] Open
Abstract
A key objective of this study was to explore the potential of dietary grape consumption to modulate adverse effects caused by a high-fat (western-pattern) diet. Female C57BL/6J mice were purchased at six-weeks-of-age and placed on a standard (semi-synthetic) diet (STD). At 11 weeks-of-age, the mice were continued on the STD or placed on the STD supplemented with 5% standardized grape powder (STD5GP), a high-fat diet (HFD), or an HFD supplemented with 5% standardized grape powder (HFD5GP). After being provided with the respective diets for 13 additional weeks, the mice were euthanized, and liver was collected for biomarker analysis, determination of genetic expression (RNA-Seq), and histopathological examination. All four dietary groups demonstrated unique genetic expression patterns. Using pathway analysis tools (GO, KEGG and Reactome), relative to the STD group, differentially expressed genes of the STD5GP group were significantly enriched in RNA, mitochondria, and protein translation related pathways, as well as drug metabolism, glutathione, detoxification, and oxidative stress associated pathways. The expression of Gstp1 was confirmed to be upregulated by about five-fold (RT-qPCR), and, based on RNA-Seq data, the expression of additional genes associated with the reduction of oxidative stress and detoxification (Gpx4 and 8, Gss, Gpx7, Sod1) were enhanced by dietary grape supplementation. Cluster analysis of genetic expression patterns revealed the greatest divergence between the HFD5GP and HFD groups. In the HFD5GP group, relative to the HFD group, 14 genes responsible for the metabolism, transportation, hydrolysis, and sequestration of fatty acids were upregulated. Conversely, genes responsible for lipid content and cholesterol synthesis (Plin4, Acaa1b, Slc27a1) were downregulated. The two top classifications emerging as enriched in the HFD5GP group vs. the HFD group (KEGG pathway analysis) were Alzheimer's disease and nonalcoholic fatty liver disease (NAFLD), both of which have been reported in the literature to bear a causal relationship. In the current study, nonalcoholic steatohepatitis was indicated by histological observations that revealed archetype markers of fatty liver induced by the HFD. The adverse response was diminished by grape intervention. In addition to these studies, life-long survival was assessed with C57BL/6J mice. C57BL/6J mice were received at four-weeks-of-age and placed on the STD. At 14-weeks-of-age, the mice were divided into two groups (100 per group) and provided with the HFD or the HFD5GP. Relative to the HFD group, the survival time of the HFD5GP group was enhanced (log-rank test, p = 0.036). The respective hazard ratios were 0.715 (HFD5GP) and 1.397 (HFD). Greater body weight positively correlated with longevity; the highest body weight of the HFD5GP group was attained later in life than the HFD group (p = 0.141). These results suggest the potential of dietary grapes to modulate hepatic gene expression, prevent oxidative damage, induce fatty acid metabolism, ameliorate NAFLD, and increase longevity when co-administered with a high-fat diet.
Collapse
Affiliation(s)
- Asim Dave
- Division of Pharmaceutical Sciences, Arnold & Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY 11201, USA; (A.D.); (E.-J.P.); (A.K.); (F.P.)
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Eun-Jung Park
- Division of Pharmaceutical Sciences, Arnold & Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY 11201, USA; (A.D.); (E.-J.P.); (A.K.); (F.P.)
| | - Avinash Kumar
- Division of Pharmaceutical Sciences, Arnold & Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY 11201, USA; (A.D.); (E.-J.P.); (A.K.); (F.P.)
| | - Falguni Parande
- Division of Pharmaceutical Sciences, Arnold & Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY 11201, USA; (A.D.); (E.-J.P.); (A.K.); (F.P.)
- Artus Therapeutics, Harvard Life Lab, Allston, MA 02134, USA
| | - Diren Beyoğlu
- Arthur G. Zupko’s Institute of Systems Pharmacology and Pharmacogenomics, Arnold and Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY 11201, USA; (D.B.); (J.R.I.)
| | - Jeffrey R. Idle
- Arthur G. Zupko’s Institute of Systems Pharmacology and Pharmacogenomics, Arnold and Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY 11201, USA; (D.B.); (J.R.I.)
| | - John M. Pezzuto
- College of Pharmacy and Health Sciences, Western New England University, Springfield, MA 01119, USA
| |
Collapse
|
67
|
Scott JS, Nassar ZD, Swinnen JV, Butler LM. Monounsaturated fatty acids: key regulators of cell viability and intracellular signalling in cancer. Mol Cancer Res 2022; 20:1354-1364. [PMID: 35675039 DOI: 10.1158/1541-7786.mcr-21-1069] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/29/2022] [Accepted: 06/06/2022] [Indexed: 11/16/2022]
Abstract
Cancer cells feature increased macromolecular biosynthesis to support the formation of new organelles and membranes for cell division. In particular, lipids are key macromolecules that comprise cellular membrane components, substrates for energy generation and mediators of inter- and intracellular signalling. The emergence of more sensitive and accurate technology for profiling the "lipidome" of cancer cells has led to unprecedented leaps in understanding the complexity of cancer metabolism, but also highlighted promising therapeutic vulnerabilities. Notably, fatty acids, as lipid building blocks, are critical players in all stages of cancer development and progression and the importance of fatty acid desaturation and its impact on cancer cell biology has been well established. Recent years have seen the reports of new mechanistic insights into the role of monounsaturated fatty acids (MUFAs) in cancer, as regulators of cell death and lipid-related cellular signalling. This commentary aims to highlight these diverse roles of MUFAs in cancer cells which may yield new directions for therapeutic interventions involving these important fatty acids.
Collapse
Affiliation(s)
| | | | | | - Lisa M Butler
- University of Adelaide, School of Medicine and Freemasons Foundation Centre for Men's Health, Adelaide, SA, Australia
| |
Collapse
|
68
|
Targeting lipid metabolism in the treatment of ovarian cancer. Oncotarget 2022; 13:768-783. [PMID: 35634242 PMCID: PMC9132258 DOI: 10.18632/oncotarget.28241] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 05/07/2022] [Indexed: 11/25/2022] Open
Abstract
Cancer cells undergo alterations in lipid metabolism to support their high energy needs, tumorigenesis and evade an anti-tumor immune response. Alterations in fatty acid production are controlled by multiple enzymes, chiefly Acetyl CoA Carboxylase, ATP-Citrate Lyase, Fatty Acid Synthase, and Stearoyl CoA Desaturase 1. Ovarian cancer (OC) is a common gynecological malignancy with a high rate of aggressive carcinoma progression and drug resistance. The accumulation of unsaturated fatty acids in ovarian cancer supports cell growth, increased cancer cell migration, and worse patient outcomes. Ovarian cancer cells also expand their lipid stores via increased uptake of lipids using fatty acid translocases, fatty acid-binding proteins, and low-density lipoprotein receptors. Furthermore, increased lipogenesis and lipid uptake promote chemotherapy resistance and dampen the adaptive immune response needed to eliminate tumors. In this review, we discuss the role of lipid synthesis and metabolism in driving tumorigenesis and drug resistance in ovarian cancer conferring poor prognosis and outcomes in patients. We also cover some aspects of how lipids fuel ovarian cancer stem cells, and how these metabolic alterations in intracellular lipid content could potentially serve as biomarkers of ovarian cancer.
Collapse
|
69
|
Kanti MM, Striessnig-Bina I, Wieser BI, Schauer S, Leitinger G, Eichmann TO, Schweiger M, Winkler M, Winter E, Lana A, Kufferath I, Marsh LM, Kwapiszewska G, Zechner R, Hoefler G, Vesely PW. Adipose triglyceride lipase-mediated lipid catabolism is essential for bronchiolar regeneration. JCI Insight 2022; 7:e149438. [PMID: 35349484 PMCID: PMC9090255 DOI: 10.1172/jci.insight.149438] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 03/23/2022] [Indexed: 01/18/2023] Open
Abstract
The lung airways are constantly exposed to inhaled toxic substances, resulting in cellular damage that is repaired by local expansion of resident bronchiolar epithelial club cells. Disturbed bronchiolar epithelial damage repair lies at the core of many prevalent lung diseases, including chronic obstructive pulmonary disease, asthma, pulmonary fibrosis, and lung cancer. However, it is still not known how bronchiolar club cell energy metabolism contributes to this process. Here, we show that adipose triglyceride lipase (ATGL), the rate-limiting enzyme for intracellular lipolysis, is critical for normal club cell function in mice. Deletion of the gene encoding ATGL, Pnpla2 (also known as Atgl), induced substantial triglyceride accumulation, decreased mitochondrial numbers, and decreased mitochondrial respiration in club cells. This defect manifested as bronchiolar epithelial thickening and increased airway resistance under baseline conditions. After naphthalene‑induced epithelial denudation, a regenerative defect was apparent. Mechanistically, dysfunctional PPARα lipid-signaling underlies this phenotype because (a) ATGL was needed for PPARα lipid-signaling in regenerating bronchioles and (b) administration of the specific PPARα agonist WY14643 restored normal bronchiolar club cell ultrastructure and regenerative potential. Our data emphasize the importance of the cellular energy metabolism for lung epithelial regeneration and highlight the significance of ATGL-mediated lipid catabolism for lung health.
Collapse
Affiliation(s)
- Manu Manjunath Kanti
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Isabelle Striessnig-Bina
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Beatrix Irene Wieser
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Silvia Schauer
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Gerd Leitinger
- BioTechMed-Graz, Graz, Austria
- Division of Cell Biology, Histology, and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Thomas O. Eichmann
- BioTechMed-Graz, Graz, Austria
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
- Core Facility Mass Spectrometry, Medical University of Graz, Graz, Austria
| | - Martina Schweiger
- BioTechMed-Graz, Graz, Austria
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Margit Winkler
- BioTechMed-Graz, Graz, Austria
- Institute of Molecular Biotechnology, NAWI Graz, Graz University of Technology, Graz, Austria
| | - Elke Winter
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Andrea Lana
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Iris Kufferath
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Leigh Matthew Marsh
- BioTechMed-Graz, Graz, Austria
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Grazyna Kwapiszewska
- BioTechMed-Graz, Graz, Austria
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Otto Loewi Research Center, Medical University of Graz, Graz, Austria
- Institute for Lung Health, Giessen, Germany
| | - Rudolf Zechner
- BioTechMed-Graz, Graz, Austria
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Gerald Hoefler
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Paul Willibald Vesely
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| |
Collapse
|
70
|
Plin5, a New Target in Diabetic Cardiomyopathy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2122856. [PMID: 35509833 PMCID: PMC9060988 DOI: 10.1155/2022/2122856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 03/14/2022] [Accepted: 04/06/2022] [Indexed: 02/07/2023]
Abstract
Abnormal lipid accumulation is commonly observed in diabetic cardiomyopathy (DC), which can create a lipotoxic microenvironment and damage cardiomyocytes. Lipid toxicity is an important pathogenic factor due to abnormal lipid accumulation in DC. As a lipid droplet (LD) decomposition barrier, Plin5 can protect LDs from lipase decomposition and regulate lipid metabolism, which is involved in the occurrence and development of cardiovascular diseases. In recent years, studies have shown that Plin5 expression is involved in the pathogenesis of DC lipid toxicity, such as oxidative stress, mitochondrial dysfunction, endoplasmic reticulum (ER) stress, and insulin resistance (IR) and has become a key target of DC research. Therefore, understanding the relationship between Plin5 and DC progression as well as the mechanism of this process is crucial for developing new therapeutic approaches and exploring new therapeutic targets. This review is aimed at exploring the latest findings and roles of Plin5 in lipid metabolism and DC-related pathogenesis, to explore possible clinical intervention approaches.
Collapse
|
71
|
Gandi Capsule Improved Podocyte Lipid Metabolism of Diabetic Nephropathy Mice through SIRT1/AMPK/HNF4A Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6275505. [PMID: 35480869 PMCID: PMC9038418 DOI: 10.1155/2022/6275505] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/15/2022] [Indexed: 12/02/2022]
Abstract
Podocyte lipid accumulation is a potential therapeutic target for diabetic nephropathy (DN). This study was aimed at clarifying the mechanism of Gandi capsule (GDC) ameliorating DN by regulating the lipid metabolism of podocytes. Network pharmacology methods were performed to screen the key molecules and potential targets of GDC for constructing the molecular-protein interaction network of GDC and conducting signal pathway enrichment analysis. GDC was predicted to ameliorate DN through SIRT1/AMPK/HNF4A pathway. Our results showed that GDC improved renal function in db/db mice. Besides, GDC exhibited effectiveness in relieving kidney tissue damage and renal lipid accumulation in db/db mice, and same effects were present in GDC-active ingredient baicalin. We further proved the new role of HNF4A in the lipid metabolism of DN mediated by SIRT1 and AMPK signaling pathways. The results suggested decreased expression of SIRT1 and p-AMPKα in the kidney tissue and increased expression of HNF4A of db/db mice compared with the control group. GDC and baicalin could reverse these expression changes. Furthermore, similar expression changes were observed in the murine podocyte cell line (MPC-5) treated with different concentrations of GDC and baicalin. Our research suggested that GDC and its active ingredient baicalin could alleviate the abnormal lipid metabolism in the kidney of db/db mice and might exert renal protection through the SIRT1/AMPK/HNF4A pathway.
Collapse
|
72
|
Islimye E, Girard V, Gould AP. Functions of Stress-Induced Lipid Droplets in the Nervous System. Front Cell Dev Biol 2022; 10:863907. [PMID: 35493070 PMCID: PMC9047859 DOI: 10.3389/fcell.2022.863907] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/22/2022] [Indexed: 12/12/2022] Open
Abstract
Lipid droplets are highly dynamic intracellular organelles that store neutral lipids such as cholesteryl esters and triacylglycerols. They have recently emerged as key stress response components in many different cell types. Lipid droplets in the nervous system are mostly observed in vivo in glia, ependymal cells and microglia. They tend to become more numerous in these cell types and can also form in neurons as a consequence of ageing or stresses involving redox imbalance and lipotoxicity. Abundant lipid droplets are also a characteristic feature of several neurodegenerative diseases. In this minireview, we take a cell-type perspective on recent advances in our understanding of lipid droplet metabolism in glia, neurons and neural stem cells during health and disease. We highlight that a given lipid droplet subfunction, such as triacylglycerol lipolysis, can be physiologically beneficial or harmful to the functions of the nervous system depending upon cellular context. The mechanistic understanding of context-dependent lipid droplet functions in the nervous system is progressing apace, aided by new technologies for probing the lipid droplet proteome and lipidome with single-cell type precision.
Collapse
|
73
|
Li Y, Yang M, Lou A, Yun J, Ren C, Li X, Xia G, Nam K, Yoon D, Jin H, Seo K, Jin X. Integrated analysis of expression profiles with meat quality traits in cattle. Sci Rep 2022; 12:5926. [PMID: 35396568 PMCID: PMC8993808 DOI: 10.1038/s41598-022-09998-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 03/31/2022] [Indexed: 11/17/2022] Open
Abstract
MicroRNAs (miRNAs) play a vital role in improving meat quality by binding to messenger RNAs (mRNAs). We performed an integrated analysis of miRNA and mRNA expression profiling between bulls and steers based on the differences in meat quality traits. Fat and fatty acids are the major phenotypic indices of meat quality traits to estimate between-group variance. In the present study, 90 differentially expressed mRNAs (DEGs) and 18 differentially expressed miRNAs (DEMs) were identified. Eighty-three potential DEG targets and 18 DEMs were used to structure a negative interaction network, and 75 matching target genes were shown in this network. Twenty-six target genes were designated as intersection genes, screened from 18 DEMs, and overlapped with the DEGs. Seventeen of these genes enriched to 19 terms involved in lipid metabolism. Subsequently, 13 DEGs and nine DEMs were validated using quantitative real-time PCR, and seven critical genes were selected to explore the influence of fat and fatty acids through hub genes and predict functional association. A dual-luciferase reporter and Western blot assays confirmed a predicted miRNA target (bta-miR-409a and PLIN5). These findings provide substantial evidence for molecular genetic controls and interaction among genes in cattle.
Collapse
Affiliation(s)
- Yunxiao Li
- College of Life Science, Shandong University, Qingdao, China
| | - Miaosen Yang
- Department of Chemistry, Northeast Electric Power University, Jilin, China
| | - Angang Lou
- Department of Veterinary Medicine, College of Agriculture, Yanbian University, Yanji, China
| | - Jinyan Yun
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin, China
| | - Chunyu Ren
- Animal Husbandry Bureau of Yanbian Autonomous Prefecture, Yanji, China
| | - Xiangchun Li
- Department of Veterinary Medicine, College of Agriculture, Yanbian University, Yanji, China
| | - Guangjun Xia
- Department of Veterinary Medicine, College of Agriculture, Yanbian University, Yanji, China
| | - Kichang Nam
- Department of Animal Science and Technology, College of Life Science and Natural Resources, Sunchon National University, Sunchon, South Korea
| | - Duhak Yoon
- Department of Animal Science, Kyungpook National University, Taegu, South Korea
| | - Haiguo Jin
- Branch of Animal Husbandry, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Kangseok Seo
- Department of Animal Science and Technology, College of Life Science and Natural Resources, Sunchon National University, Sunchon, South Korea.
| | - Xin Jin
- Engineering Research Center of North-East Cold Region Beef Cattle Science and Technology Innovation, Ministry of Education, Yanbian University, Yanji, China.
| |
Collapse
|
74
|
Barrett JS, Whytock KL, Strauss JA, Wagenmakers AJM, Shepherd SO. High intramuscular triglyceride turnover rates and the link to insulin sensitivity: influence of obesity, type 2 diabetes and physical activity. Appl Physiol Nutr Metab 2022; 47:343-356. [PMID: 35061523 DOI: 10.1139/apnm-2021-0631] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Large intramuscular triglyceride (IMTG) stores in sedentary, obese individuals have been linked to insulin resistance, yet well-trained athletes exhibit high IMTG levels whilst maintaining insulin sensitivity. Contrary to previous assumptions, it is now known that IMTG content per se does not result in insulin resistance. Rather, insulin resistance is caused, at least in part, by the presence of high concentrations of harmful lipid metabolites, such as diacylglycerols and ceramides in muscle. Several mechanistic differences between obese sedentary individuals and their highly trained counterparts have been identified, which determine the differential capacity for IMTG synthesis and breakdown in these populations. In this review, we first describe the most up-to-date mechanisms by which a low IMTG turnover rate (both breakdown and synthesis) leads to the accumulation of lipid metabolites and results in skeletal muscle insulin resistance. We then explore current and potential exercise and nutritional strategies that target IMTG turnover in sedentary obese individuals, to improve insulin sensitivity. Overall, improving IMTG turnover should be an important component of successful interventions that aim to prevent the development of insulin resistance in the ever-expanding sedentary, overweight and obese populations. Novelty: A description of the most up-to-date mechanisms regulating turnover of the IMTG pool. An exploration of current and potential exercise/nutritional strategies to target and enhance IMTG turnover in obese individuals. Overall, highlights the importance of improving IMTG turnover to prevent the development of insulin resistance.
Collapse
Affiliation(s)
- J S Barrett
- Research Institute for Sport & Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - K L Whytock
- Translational Research Institute, AdventHealth, Orlando, FL 32804, USA
| | - J A Strauss
- Research Institute for Sport & Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - A J M Wagenmakers
- Research Institute for Sport & Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - S O Shepherd
- Research Institute for Sport & Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| |
Collapse
|
75
|
Gan X, Zhao J, Chen Y, Li Y, Xuan B, Gu M, Feng F, Yang Y, Yang D, Sun X. Plin5 inhibits proliferation and migration of vascular smooth muscle cell through interacting with PGC-1α following vascular injury. Bioengineered 2022; 13:10665-10678. [PMID: 35470759 PMCID: PMC9161997 DOI: 10.1080/21655979.2022.2065762] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/01/2022] [Accepted: 04/06/2022] [Indexed: 11/02/2022] Open
Abstract
Abnormal proliferation and migration of vascular smooth muscle cell (VSMC) is a hallmark of vascular neointima hyperplasia. Perilipin 5 (Plin5), a regulator of lipid metabolism, is also confirmed to be involved in vascular disorders, such as microvascular endothelial dysfunction and atherosclerosis. To investigate the regulation and function of plin5 in the phenotypic alteration of VSMC, -an animal model of vascular intima hyperplasia was established in C57BL/6 J and Plin5 knockdown (Plin5±) mice by wire injure. Immunohistochemical staining was used to analyze neointima hyperplasia in artery. Ki-67, dihydroethidium immunofluorescence staining and wound healing assay were used to measure proliferation, reactive oxygen species (ROS) generation and migration of VSMC, respectively. Plin5 was downregulated in artery subjected to vascular injury and in VSMC subjected to platelet-derived growth factor (PDGF)-BB. Plin5 knockdown led to accelerated neointima hyperplasia, excessive proliferation and migration of VSMC after injury. In vitro, we observed increased ROS content in VSMC isolated from Plin5± mice. Antioxidative N-acetylcysteine (NAC) inhibited VSMC proliferation and migration induced by PDGF-BB or plin5 knockdown. More importantly, plin5-peroxlsome proliferator-activated receptor-γ coactivator (PGC)-1α interaction was also attenuated in VSMC after knockdown of plin5. Overexpression of PGC-1α suppressed PDGF-BB-induced ROS generation, proliferation, and migration in VSMC isolated from Plin5± mice. These data suggest that plin5 serves as a potent regulator of VSMC proliferation, migration, and neointima hyperplasia by interacting with PGC-1α and affecting ROS generation.
Collapse
Affiliation(s)
- Xueqing Gan
- Department of Cardiology, The General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Jiaqi Zhao
- Department of Cardiology, The General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Yingmei Chen
- Department of Cardiology, The General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Yong Li
- Department of Cardiology, The People’s Hospital of Chaotian District in Guangyuan, Guangyuan, Sichuan, China
| | - Bing Xuan
- Department of Cardiology, The General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Min Gu
- Department of Cardiology, The General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Feifei Feng
- Department of Cardiology, The General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Yongjian Yang
- Department of Cardiology, The General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Dachun Yang
- Department of Cardiology, The General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Xiongshan Sun
- Department of Cardiology, The General Hospital of Western Theater Command, Chengdu, Sichuan, China
| |
Collapse
|
76
|
Huang Y, Yong P, Dickey D, Vora SM, Wu H, Bernlohr DA. Inflammasome Activation and Pyroptosis via a Lipid-regulated SIRT1-p53-ASC Axis in Macrophages From Male Mice and Humans. Endocrinology 2022; 163:6523230. [PMID: 35136993 PMCID: PMC8896164 DOI: 10.1210/endocr/bqac014] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Indexed: 02/07/2023]
Abstract
Obesity-linked diabetes is associated with accumulation of proinflammatory macrophages into adipose tissue leading to inflammasome activation and pyroptotic secretion of interleukin (IL)-1β and IL-18. Targeting fatty acid binding protein 4 (FABP4) uncouples obesity from inflammation, attenuates characteristics of type 2 diabetes and is mechanistically linked to the cellular accumulation of monounsaturated fatty acids in macrophages. Herein we show that pharmacologic inhibition or genetic deletion of FABP4 activates silent mating type information regulation 2 homolog 1 (SIRT1) and deacetylates its downstream targets p53 and signal transducer and activator of transcription 3 (STAT3). Pharmacologic inhibition of fatty acid synthase or stearoyl-coenzyme A desaturase inhibits, whereas exogenous addition of C16:1 or C18:1 but not their saturated acyl chain counterparts, activates SIRT1 and p53/STAT3 signaling and IL-1β/IL-18 release. Expression of the p53 target gene ASC [apoptosis-associated speck-like protein containing a C-terminal caspase recruitment domain (CARD)] required for assembly of the NLR family pyrin domain containing 3 (NLRP3) inflammasome is downregulated in FABP4 null mice and macrophage cell lines leading to loss of procaspase 1 activation and pyroptosis. Concomitant with loss of ASC expression in FABP4-/- macrophages, inflammasome activation, gasdermin D processing, and functional activation of pyroptosis are all diminished in FABP4 null macrophages but can be rescued by silencing SIRT1 or exogenous expression of ASC. Taken together, these results reveal a novel lipid-regulated pathway linking to SIRT1-p53-ASC signaling and activation of inflammasome action and pyroptosis.
Collapse
Affiliation(s)
- Yimao Huang
- Departments of Biochemistry, Molecular Biology and Biophysics
| | - Peter Yong
- Departments of Biochemistry, Molecular Biology and Biophysics
| | - Deborah Dickey
- Departments of Biochemistry, Molecular Biology and Biophysics
| | - Setu M Vora
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, and Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA, USA
| | - Hao Wu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, and Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA, USA
| | - David A Bernlohr
- Departments of Biochemistry, Molecular Biology and Biophysics
- Institute for Diabetes, Obesity and Metabolism University of Minnesota-Twin Cities, Minneapolis, MN, USA
- Correspondence: David A. Bernlohr, Department of Biochemistry, Molecular Biology and Biophysics, The University of Minnesota-Twin Cities, Minneapolis, MN 55455, USA.
| |
Collapse
|
77
|
Plin5 Bidirectionally Regulates Lipid Metabolism in Oxidative Tissues. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4594956. [PMID: 35401929 PMCID: PMC8989587 DOI: 10.1155/2022/4594956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 10/08/2021] [Accepted: 03/16/2022] [Indexed: 11/20/2022]
Abstract
Cytoplasmic lipid droplets (LDs) can store neutral lipids as an energy source when needed and also regulate the key metabolic processes of intracellular lipid accumulation, which is associated with several metabolic diseases. The perilipins (Plins) are a family of proteins that associate with the surface of LDs. As a member of Plins superfamily, perilipin 5 (Plin5) coats LDs in cardiomyocytes, which is significantly related to reactive oxygen species (ROS) production originated from mitochondria in the heart, consequently determining the progression of diabetic cardiomyopathy. Plin5 may play a bidirectional function in lipid metabolism which is in a state of dynamic balance. In the basic state, Plin5 inhibited the binding of comparative gene identification-58 (CGI-58) to adipose triglyceride lipase (ATGL) by binding CGI-58, thus inhibiting lipolysis. However, when the body is under stress (such as cold, fasting, exercise, and other stimuli), protein kinase A (PKA) phosphorylates and activates Plin5, which then causes Plin5 to release the binding site of CGI-58 and ATGL, prompting CGI-58 to bind to ATGL and activate ATGL activity, thus accelerating the lipolysis process, revealing the indispensable role of Plin5 in lipid turnover. Here, the purpose of this review is to summarize the present understanding of the bidirectional regulation role of Plin5 in oxidative tissues and to reveal its potential role in diabetic cardiomyopathy protection.
Collapse
|
78
|
Abstract
Lipid droplets (LDs) are ubiquitous organelles that store and supply lipids for energy metabolism, membrane synthesis and production of lipid-derived signaling molecules. While compositional differences in the phospholipid monolayer or neutral lipid core of LDs impact their metabolism and function, the proteome of LDs has emerged as a major influencer in all aspects of LD biology. The perilipins (PLINs) are the most studied and abundant proteins residing on the LD surface. This Cell Science at a Glance and the accompanying poster summarize our current knowledge of the common and unique features of the mammalian PLIN family of proteins, the mechanisms through which they affect cell metabolism and signaling, and their links to disease.
Collapse
Affiliation(s)
- Charles P. Najt
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Mahima Devarajan
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Douglas G. Mashek
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
79
|
Bosch M, Pol A. Eukaryotic lipid droplets: metabolic hubs, and immune first responders. Trends Endocrinol Metab 2022; 33:218-229. [PMID: 35065875 DOI: 10.1016/j.tem.2021.12.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/23/2021] [Accepted: 12/23/2021] [Indexed: 12/18/2022]
Abstract
As major eukaryotic lipid storage organelles, lipid droplets (LDs) are metabolic hubs coordinating energy flux and building block distribution. Infectious pathogens often promote accumulation and physically interact with LDs. The most accepted view is that host LDs are hijacked by invaders to draw on nutrients for host colonisation. However, unique traits such as biogenesis plasticity, dynamic proteome, signalling capacity, and ability to interact with other organelles endow LDs with competencies to face complex biological challenges. Here, we focus on published data suggesting that LDs are not usurped organelles but innate immunity first responders. By comparison with analogous mechanisms activated on LDs in nutrient-poor environments, our review supports the hypothesis that host LDs actively participate in immunometabolism, immune signalling, and microbial killing.
Collapse
Affiliation(s)
- Marta Bosch
- Lipid Trafficking and Disease Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; Department of Biomedical Sciences, Faculty of Medicine, Universitat de Barcelona, 08036 Barcelona, Spain.
| | - Albert Pol
- Lipid Trafficking and Disease Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; Department of Biomedical Sciences, Faculty of Medicine, Universitat de Barcelona, 08036 Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010, Barcelona
| |
Collapse
|
80
|
Tong X, Liu S, Stein R, Imai Y. Lipid Droplets' Role in the Regulation of β-Cell Function and β-Cell Demise in Type 2 Diabetes. Endocrinology 2022; 163:6516108. [PMID: 35086144 PMCID: PMC8826878 DOI: 10.1210/endocr/bqac007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Indexed: 01/29/2023]
Abstract
During development of type 2 diabetes (T2D), excessive nutritional load is thought to expose pancreatic islets to toxic effects of lipids and reduce β-cell function and mass. However, lipids also play a positive role in cellular metabolism and function. Thus, proper trafficking of lipids is critical for β cells to maximize the beneficial effects of these molecules while preventing their toxic effects. Lipid droplets (LDs) are organelles that play an important role in the storage and trafficking of lipids. In this review, we summarize the discovery of LDs in pancreatic β cells, LD lifecycle, and the effect of LD catabolism on β-cell insulin secretion. We discuss factors affecting LD formation such as age, cell type, species, and nutrient availability. We then outline published studies targeting critical LD regulators, primarily in rat and human β-cell models, to understand the molecular effect of LD formation and degradation on β-cell function and health. Furthermore, based on the abnormal LD accumulation observed in human T2D islets, we discuss the possible role of LDs during the development of β-cell failure in T2D. Current knowledge indicates that proper formation and clearance of LDs are critical to normal insulin secretion, endoplasmic reticulum homeostasis, and mitochondrial integrity in β cells. However, it remains unclear whether LDs positively or negatively affect human β-cell demise in T2D. Thus, we discuss possible research directions to address the knowledge gap regarding the role of LDs in β-cell failure.
Collapse
Affiliation(s)
- Xin Tong
- Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, Tennessee 37232, USA
| | - Siming Liu
- Department of Internal Medicine Carver College of Medicine, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa 52242, USA
| | - Roland Stein
- Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, Tennessee 37232, USA
| | - Yumi Imai
- Department of Internal Medicine Carver College of Medicine, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa 52242, USA
- Iowa City Veterans Affairs Medical Center, Iowa City, Iowa 52246, USA
- Correspondence: Yumi Imai, MD, Department of Internal Medicine Carver College of Medicine, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, 200 Hawkins Dr, PBDB Rm 3318, Iowa City, IA 52242, USA.
| |
Collapse
|
81
|
Higgins CB, Mayer AL, Zhang Y, Franczyk M, Ballentine S, Yoshino J, DeBosch BJ. SIRT1 selectively exerts the metabolic protective effects of hepatocyte nicotinamide phosphoribosyltransferase. Nat Commun 2022; 13:1074. [PMID: 35228549 PMCID: PMC8885655 DOI: 10.1038/s41467-022-28717-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 02/07/2022] [Indexed: 12/30/2022] Open
Abstract
Calorie restriction abates aging and cardiometabolic disease by activating metabolic signaling pathways, including nicotinamide adenine dinucleotide (NAD+) biosynthesis and salvage. Nicotinamide phosphoribosyltransferase (NAMPT) is rate-limiting in NAD+ salvage, yet hepatocyte NAMPT actions during fasting and metabolic duress remain unclear. We demonstrate that hepatocyte NAMPT is upregulated in fasting mice, and in isolated hepatocytes subjected to nutrient withdrawal. Mice lacking hepatocyte NAMPT exhibit defective FGF21 activation and thermal regulation during fasting, and are sensitized to diet-induced glucose intolerance. Hepatocyte NAMPT overexpression induced FGF21 and adipose browning, improved glucose homeostasis, and attenuated dyslipidemia in obese mice. Hepatocyte SIRT1 deletion reversed hepatocyte NAMPT effects on dark-cycle thermogenesis, and hepatic FGF21 expression, but SIRT1 was dispensable for NAMPT insulin-sensitizing, anti-dyslipidemic, and light-cycle thermogenic effects. Hepatocyte NAMPT thus conveys key aspects of the fasting response, which selectively dissociate through hepatocyte SIRT1. Modulating hepatocyte NAD+ is thus a potential mechanism through which to attenuate fasting-responsive disease.
Collapse
Affiliation(s)
- Cassandra B. Higgins
- grid.4367.60000 0001 2355 7002Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110 USA
| | | | - Yiming Zhang
- grid.4367.60000 0001 2355 7002Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - Michael Franczyk
- grid.26091.3c0000 0004 1936 9959Department of Medicine, Keio University School of Medicine, Minato, Tokyo, Japan
| | - Samuel Ballentine
- grid.4367.60000 0001 2355 7002Department of Anatomic and Molecular Pathology, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - Jun Yoshino
- grid.26091.3c0000 0004 1936 9959Department of Medicine, Keio University School of Medicine, Minato, Tokyo, Japan
| | - Brian J. DeBosch
- grid.4367.60000 0001 2355 7002Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110 USA ,grid.4367.60000 0001 2355 7002Department of Cell Biology & Physiology, Washington University School of Medicine, St. Louis, MO 63110 USA
| |
Collapse
|
82
|
Olive Oil Improves While Trans Fatty Acids Further Aggravate the Hypomethylation of LINE-1 Retrotransposon DNA in an Environmental Carcinogen Model. Nutrients 2022; 14:nu14040908. [PMID: 35215560 PMCID: PMC8878525 DOI: 10.3390/nu14040908] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/13/2022] [Accepted: 02/14/2022] [Indexed: 02/08/2023] Open
Abstract
DNA methylation is an epigenetic mechanism that is crucial for mammalian development and genomic stability. Aberrant DNA methylation changes have been detected not only in malignant tumor tissues; the decrease of global DNA methylation levels is also characteristic for aging. The consumption of extra virgin olive oil (EVOO) as part of a balanced diet shows preventive effects against age-related diseases and cancer. On the other hand, consuming trans fatty acids (TFA) increases the risk of cardiovascular diseases as well as cancer. The aim of the study was to investigate the LINE-1 retrotransposon (L1-RTP) DNA methylation pattern in liver, kidney, and spleen of mice as a marker of genetic instability. For that, mice were fed with EVOO or TFA and were pretreated with environmental carcinogen 7,12-dimethylbenz[a]anthracene (DMBA)-a harmful substance known to cause L1-RTP DNA hypomethylation. Our results show that DMBA and its combination with TFA caused significant L1-RTP DNA hypomethylation compared to the control group via inhibition of DNA methyltransferase (DNMT) enzymes. EVOO had the opposite effect by significantly decreasing DMBA and DMBA + TFA-induced hypomethylation, thereby counteracting their effects.
Collapse
|
83
|
Zhao P, Jin Y, Wu X, Huang J, Chen L, Tan Y, Yuan H, Wu J, Ren Z. Artificial Lipid Droplets: Novel Effective Biomaterials to Protect Cells against Oxidative Stress and Lipotoxicity. NANOMATERIALS 2022; 12:nano12040672. [PMID: 35215001 PMCID: PMC8879118 DOI: 10.3390/nano12040672] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 02/01/2023]
Abstract
Lipid droplets (LDs) play an important role in the regulation of cellular stress. This suggests LDs can be applied as safe and effective biomaterials to alleviate cellular stress and lipotoxicity. Here, we constructed a convenient method to generate stable and pure artificial lipid droplets (aLDs). aLDs can maintain their biological function by incubating LD-associated proteins or organelles in vitro. It was validated that perilipin-coated aLDs could be uptaken by cells, significantly reducing hydrogen peroxide-induced reactive oxidative species (ROS) and alleviating cellular lipotoxicity caused by excess fatty acid. Our work demonstrated a direct role of LDs in regulating cellular stress levels, providing methods and potential value for future research and medical applications of LDs.
Collapse
Affiliation(s)
- Pengxiang Zhao
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, College of Animal Science, Huazhong Agricultural University, Wuhan 430070, China; (P.Z.); (Y.J.); (X.W.); (J.H.); (L.C.); (Y.T.); (J.W.)
| | - Yi Jin
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, College of Animal Science, Huazhong Agricultural University, Wuhan 430070, China; (P.Z.); (Y.J.); (X.W.); (J.H.); (L.C.); (Y.T.); (J.W.)
| | - Xiang Wu
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, College of Animal Science, Huazhong Agricultural University, Wuhan 430070, China; (P.Z.); (Y.J.); (X.W.); (J.H.); (L.C.); (Y.T.); (J.W.)
| | - Jin Huang
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, College of Animal Science, Huazhong Agricultural University, Wuhan 430070, China; (P.Z.); (Y.J.); (X.W.); (J.H.); (L.C.); (Y.T.); (J.W.)
| | - Lupeng Chen
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, College of Animal Science, Huazhong Agricultural University, Wuhan 430070, China; (P.Z.); (Y.J.); (X.W.); (J.H.); (L.C.); (Y.T.); (J.W.)
| | - Yanjie Tan
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, College of Animal Science, Huazhong Agricultural University, Wuhan 430070, China; (P.Z.); (Y.J.); (X.W.); (J.H.); (L.C.); (Y.T.); (J.W.)
| | - Hong Yuan
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China;
| | - Jian Wu
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, College of Animal Science, Huazhong Agricultural University, Wuhan 430070, China; (P.Z.); (Y.J.); (X.W.); (J.H.); (L.C.); (Y.T.); (J.W.)
| | - Zhuqing Ren
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, College of Animal Science, Huazhong Agricultural University, Wuhan 430070, China; (P.Z.); (Y.J.); (X.W.); (J.H.); (L.C.); (Y.T.); (J.W.)
- Hubei Hongshan Laboratory, Wuhan 430072, China
- Correspondence:
| |
Collapse
|
84
|
Wang Y, Tong L, Gu N, Ma X, Lu D, Yu D, Yu N, Zhang J, Li J, Guo X. Association of Sirtuin 1 Gene Polymorphisms with the Risk of Coronary Heart Disease in Chinese Han Patients with Type 2 Diabetes Mellitus. J Diabetes Res 2022; 2022:8494502. [PMID: 35469171 PMCID: PMC9034909 DOI: 10.1155/2022/8494502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 02/18/2022] [Accepted: 03/23/2022] [Indexed: 11/29/2022] Open
Abstract
AIMS To explore the associations between polymorphisms in SIRT1 and coronary heart disease (CHD) risk in Chinese Han patients with type 2 diabetes (T2D). METHODS This case-controlled study enrolled 492 patients with T2D: 297 with CHD and 195 without CHD. Five SIRT1 haplotype-tagging single-nucleotide polymorphisms (rs3818291, rs12242965, rs3818292, rs4746720, and rs16924934) were selected from Chinese Han data in the GRCh37.p13 phase 3 database and genotyped by polymerase chain reaction-restriction fraction length polymorphism or sequencing. RESULTS The rs16924934 G allele was associated with a higher risk of CHD than the A allele (odds ratio (OR) = 1.429; 95% confidence interval (CI) = 1.003-2.037; P = 0.048). Using an additive inheritance model, the rs3818291 G/A genotype was associated with a higher CHD risk than the G/G genotype (OR' = 1.683; 95%CI = 1.033-2.743; P' = 0.037 after adjustment for CHD risk factors). Smokers carrying G/A or A/A rs3818291 genotypes had a 3-fold higher CHD risk than those carrying GG (adjusted OR' = 3.035; P' = 0.011) and a 2.6-fold higher CHD risk than nonsmokers carrying GG (adjusted OR' = 2.604; P' = 0.033). CONCLUSIONS Genetic polymorphisms of SIRT1 are associated with the risk of CHD in a Chinese Han population with T2D.
Collapse
Affiliation(s)
- Yuxin Wang
- Department of Endocrinology, Peking University First Hospital, Beijing, China
| | - Linchao Tong
- Department of Endocrinology, Peking University First Hospital, Beijing, China
| | - Nan Gu
- Department of Endocrinology, Peking University First Hospital, Beijing, China
| | - Xiaowei Ma
- Department of Endocrinology, Peking University First Hospital, Beijing, China
| | - Difei Lu
- Department of Endocrinology, Peking University First Hospital, Beijing, China
| | - Dahong Yu
- Department of Endocrinology, Peking University First Hospital, Beijing, China
- Department of Endocrinology, Changping District Hospital, Beijing, China
| | - Na Yu
- Department of Endocrinology, Peking University First Hospital, Beijing, China
| | - Junqing Zhang
- Department of Endocrinology, Peking University First Hospital, Beijing, China
| | - Jianping Li
- Department of Cardiology, Peking University First Hospital, Beijing, China
| | - Xiaohui Guo
- Department of Endocrinology, Peking University First Hospital, Beijing, China
| |
Collapse
|
85
|
Kien B, Kolleritsch S, Kunowska N, Heier C, Chalhoub G, Tilp A, Wolinski H, Stelzl U, Haemmerle G. Lipid droplet-mitochondria coupling via Perilipin 5 augments respiratory capacity but is dispensable for FA oxidation. J Lipid Res 2022; 63:100172. [PMID: 35065923 PMCID: PMC8953689 DOI: 10.1016/j.jlr.2022.100172] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 12/15/2021] [Accepted: 01/03/2022] [Indexed: 01/08/2023] Open
|
86
|
Xu M, Ding L, Liang J, Yang X, Liu Y, Wang Y, Ding M, Huang X. NAD kinase sustains lipogenesis and mitochondrial metabolismthrough fatty acid synthesis. Cell Rep 2021; 37:110157. [PMID: 34965438 DOI: 10.1016/j.celrep.2021.110157] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/27/2021] [Accepted: 12/02/2021] [Indexed: 10/19/2022] Open
Abstract
Lipid storage in fat tissue is important for energy homeostasis and cellular functions. Through RNAi screening in Drosophila fat body, we found that knockdown of a Drosophila NAD kinase (NADK), which phosphorylates NAD to synthesize NADP de novo, causes lipid storage defects. NADK sustains lipogenesis by maintaining the pool of NADPH. Promoting NADPH production rescues the lipid storage defect in the fat body of NADK RNAi animals. Furthermore, NADK and fatty acid synthase 1 (FASN1) regulate mitochondrial mass and function by altering the levels of acetyl-CoA and fatty acids. Reducing the level of acetyl-CoA or increasing the synthesis of cardiolipin (CL), a mitochondrion-specific phospholipid, partially rescues the mitochondrial defects of NADK RNAi. Therefore, NADK- and FASN1-mediated fatty acid synthesis coordinates lipid storage and mitochondrial function.
Collapse
Affiliation(s)
- Mengyao Xu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Long Ding
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jingjing Liang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiao Yang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; School of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, TaiAn 271016, China
| | - Yuan Liu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yingchun Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mei Ding
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xun Huang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
87
|
Huang W, Gao F, Zhang Y, Chen T, Xu C. Lipid Droplet-Associated Proteins in Cardiomyopathy. ANNALS OF NUTRITION AND METABOLISM 2021; 78:1-13. [PMID: 34856540 DOI: 10.1159/000520122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 10/08/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND The heart requires a high rate of fatty-acid oxidation (FAO) to meet its energy needs. Neutral lipids are the main source of energy for the heart and are stored in lipid droplets (LDs), which are cytosolic organelles that primarily serve to store neutral lipids and regulate cellular lipid metabolism. LD-associated proteins (LDAPs) are proteins either located on the surface of the LDs or reside in the cytosol and contribute to lipid metabolism. Therefore, abnormal cardiac lipid accumulation or FAO can alter the redox state of the heart, resulting in cardiomyopathy, a group of diseases that negatively affect the myocardial function, thereby leading to heart failure and even cardiac death. SUMMARY LDs, along with LDAPs, are pivotal for modulating heart lipid homeostasis. The proper cardiac development and the maintenance of its normal function depend largely on lipid homeostasis regulated by LDs and LDAPs. Overexpression or deletion of specific LDAPs can trigger myocardial dysfunction and may contribute to the development of cardiomyopathy. Extensive connections and interactions may also exist between LDAPs. Key Message: In this review, the various mechanisms involved in LDAP-mediated regulation of lipid metabolism, the association between cardiac development and lipid metabolism, as well as the role of LDAPs in cardiomyopathy progression are discussed.
Collapse
Affiliation(s)
- Weiwei Huang
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China.,Department of Physiology and Pathophysiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Fei Gao
- Department of Physiology and Pathophysiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yuting Zhang
- Department of Physiology and Pathophysiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Tianhui Chen
- Department of Ophthalmology and Vision Science, Eye and ENT Hospital of Fudan University, Shanghai, China.,Key Laboratory of Myopia of State Health Ministry, and Key Laboratory of Visual Impairment and Restoration of Shanghai, Shanghai, China
| | - Chen Xu
- Department of Physiology and Pathophysiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
88
|
Moriel-Carretero M. The Many Faces of Lipids in Genome Stability (and How to Unmask Them). Int J Mol Sci 2021; 22:12930. [PMID: 34884734 PMCID: PMC8657548 DOI: 10.3390/ijms222312930] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/12/2021] [Accepted: 11/26/2021] [Indexed: 12/15/2022] Open
Abstract
Deep efforts have been devoted to studying the fundamental mechanisms ruling genome integrity preservation. A strong focus relies on our comprehension of nucleic acid and protein interactions. Comparatively, our exploration of whether lipids contribute to genome homeostasis and, if they do, how, is severely underdeveloped. This disequilibrium may be understood in historical terms, but also relates to the difficulty of applying classical lipid-related techniques to a territory such as a nucleus. The limited research in this domain translates into scarce and rarely gathered information, which with time further discourages new initiatives. In this review, the ways lipids have been demonstrated to, or very likely do, impact nuclear transactions, in general, and genome homeostasis, in particular, are explored. Moreover, a succinct yet exhaustive battery of available techniques is proposed to tackle the study of this topic while keeping in mind the feasibility and habits of "nucleus-centered" researchers.
Collapse
Affiliation(s)
- María Moriel-Carretero
- Centre de Recherche en Biologie Cellulaire de Montpellier (CRBM), Université de Montpellier, Centre National de la Recherche Scientifique, CEDEX 5, 34293 Montpellier, France
| |
Collapse
|
89
|
Yan P, Li Z, Xiong J, Geng Z, Wei W, Zhang Y, Wu G, Zhuang T, Tian X, Liu Z, Liu J, Sun K, Chen F, Zhang Y, Zeng C, Huang Y, Zhang B. LARP7 ameliorates cellular senescence and aging by allosterically enhancing SIRT1 deacetylase activity. Cell Rep 2021; 37:110038. [PMID: 34818543 DOI: 10.1016/j.celrep.2021.110038] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 08/24/2021] [Accepted: 11/01/2021] [Indexed: 01/10/2023] Open
Abstract
Cellular senescence is associated with pleiotropic physiopathological processes, including aging and age-related diseases. The persistent DNA damage is a major stress leading to senescence, but the underlying molecular link remains elusive. Here, we identify La Ribonucleoprotein 7 (LARP7), a 7SK RNA binding protein, as an aging antagonist. DNA damage-mediated Ataxia Telangiectasia Mutated (ATM) activation triggers the extracellular shuttling and downregulation of LARP7, which dampens SIRT1 deacetylase activity, enhances p53 and NF-κB (p65) transcriptional activity by augmenting their acetylation, and thereby accelerates cellular senescence. Deletion of LARP7 leads to senescent cell accumulation and premature aging in rodent model. Furthermore, we show this ATM-LARP7-SIRT1-p53/p65 senescence axis is active in vascular senescence and atherogenesis, and preventing its activation substantially alleviates senescence and atherogenesis. Together, this study identifies LARP7 as a gatekeeper of senescence, and the altered ATM-LARP7-SIRT1-p53/p65 pathway plays an important role in DNA damage response (DDR)-mediated cellular senescence and atherosclerosis.
Collapse
Affiliation(s)
- Pengyi Yan
- Key Laboratory of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Department of Pediatric Cardiology, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, China
| | - Zixuan Li
- Key Laboratory of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Department of Pediatric Cardiology, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, China
| | - Junhao Xiong
- Key Laboratory of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Department of Pediatric Cardiology, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, China
| | - Zilong Geng
- Key Laboratory of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Department of Pediatric Cardiology, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, China
| | - Weiting Wei
- Key Laboratory of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Department of Pediatric Cardiology, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, China
| | - Yan Zhang
- Renji-Med Clinical Stem Cell Research Center, Renji Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Gengze Wu
- Department of Cardiology, Chongqing Institute of Cardiology, Chongqing Cardiovascular Clinical Research Center, Daping Hospital, The Third Military Medical University, Chongqing, China
| | - Tao Zhuang
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Pudong New District, Shanghai 200120, China
| | - Xiaoyu Tian
- School of Biomedical Sciences, Heart and Vascular Institute, Shenzhen Research Institute and Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Zhijie Liu
- Department of Molecular Medicine, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Junling Liu
- Department of Biochemistry and Molecular Cell Biology and Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kun Sun
- Key Laboratory of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Department of Pediatric Cardiology, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, China
| | - Fengyuan Chen
- Key Laboratory of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Department of Pediatric Cardiology, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, China
| | - Yuzhen Zhang
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Pudong New District, Shanghai 200120, China
| | - Chunyu Zeng
- Department of Cardiology, Chongqing Institute of Cardiology, Chongqing Cardiovascular Clinical Research Center, Daping Hospital, The Third Military Medical University, Chongqing, China
| | - Yu Huang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Bing Zhang
- Key Laboratory of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Department of Pediatric Cardiology, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, China.
| |
Collapse
|
90
|
Grabner GF, Xie H, Schweiger M, Zechner R. Lipolysis: cellular mechanisms for lipid mobilization from fat stores. Nat Metab 2021; 3:1445-1465. [PMID: 34799702 DOI: 10.1038/s42255-021-00493-6] [Citation(s) in RCA: 363] [Impact Index Per Article: 90.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/15/2021] [Indexed: 12/13/2022]
Abstract
The perception that intracellular lipolysis is a straightforward process that releases fatty acids from fat stores in adipose tissue to generate energy has experienced major revisions over the last two decades. The discovery of new lipolytic enzymes and coregulators, the demonstration that lipophagy and lysosomal lipolysis contribute to the degradation of cellular lipid stores and the characterization of numerous factors and signalling pathways that regulate lipid hydrolysis on transcriptional and post-transcriptional levels have revolutionized our understanding of lipolysis. In this review, we focus on the mechanisms that facilitate intracellular fatty-acid mobilization, drawing on canonical and noncanonical enzymatic pathways. We summarize how intracellular lipolysis affects lipid-mediated signalling, metabolic regulation and energy homeostasis in multiple organs. Finally, we examine how these processes affect pathogenesis and how lipolysis may be targeted to potentially prevent or treat various diseases.
Collapse
Affiliation(s)
- Gernot F Grabner
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Hao Xie
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Martina Schweiger
- Institute of Molecular Biosciences, University of Graz, Graz, Austria.
- BioTechMed-Graz, Graz, Austria.
| | - Rudolf Zechner
- Institute of Molecular Biosciences, University of Graz, Graz, Austria.
- BioTechMed-Graz, Graz, Austria.
| |
Collapse
|
91
|
Leptin Reduces Plin5 m 6A Methylation through FTO to Regulate Lipolysis in Piglets. Int J Mol Sci 2021; 22:ijms221910610. [PMID: 34638947 PMCID: PMC8508756 DOI: 10.3390/ijms221910610] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/26/2021] [Accepted: 09/27/2021] [Indexed: 12/17/2022] Open
Abstract
Perilipin5 (Plin5) is a scaffold protein that plays an important role in lipid droplets (LD) formation, but the regulatory effect of leptin on it is unclear. Our study aimed to explore the underlying mechanisms by which leptin reduces the N6-methyladenosine (m6A) methylation of Plin5 through fat mass and obesity associated genes (FTO) and regulates the lipolysis. To this end, 24 Landrace male piglets (7.73 ± 0.38 kg) were randomly sorted into two groups, either a control group (Control, n = 12) or a 1 mg/kg leptin recombinant protein treatment group (Leptin, n = 12). After 4 weeks of treatment, the results showed that leptin treatment group had lower body weight, body fat percentage and blood lipid levels, but the levels of Plin5 mRNA and protein increased significantly in adipose tissue (p < 0.05). Leptin promotes the up-regulation of FTO expression level in vitro, which in turn leads to the decrease of Plin5 M6A methylation (p < 0.05). In in vitro porcine adipocytes, overexpression of FTO aggravated the decrease of M6A methylation and increased the expression of Plin5 protein, while the interference fragment of FTO reversed the decrease of m6A methylation (p < 0.05). Finally, the overexpression in vitro of Plin5 significantly reduces the size of LD, promotes the metabolism of triglycerides and the operation of the mitochondrial respiratory chain, and increases thermogenesis. This study clarified that leptin can regulate Plin5 M6A methylation by promoting FTO to affect the lipid metabolism and energy consumption, providing a theoretical basis for treating diseases related to obesity.
Collapse
|
92
|
Wang H, Ma M, Li Y, Liu J, Sun C, Liu S, Ma Y, Yan Y, Tang Z, Shen S, Yu J, Wu Y, Jiang J, Wang L, Jin ZB, Ying H, Li Y. miR-183 and miR-96 orchestrate both glucose and fat utilization in skeletal muscle. EMBO Rep 2021; 22:e52247. [PMID: 34358402 DOI: 10.15252/embr.202052247] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 06/27/2021] [Accepted: 07/01/2021] [Indexed: 01/07/2023] Open
Abstract
Our knowledge of the coordination of fuel usage in skeletal muscle is incomplete. Whether and how microRNAs are involved in the substrate selection for oxidation is largely unknown. Here we show that mice lacking miR-183 and miR-96 have enhanced muscle oxidative phenotype and altered glucose/lipid homeostasis. Moreover, loss of miR-183 and miR-96 results in a shift in substrate utilization toward fat relative to carbohydrates in mice. Mechanistically, loss of miR-183 and miR-96 suppresses glucose utilization in skeletal muscle by increasing PDHA1 phosphorylation via targeting FoxO1 and PDK4. On the other hand, loss of miR-183 and miR-96 promotes fat usage in skeletal muscle by enhancing intramuscular lipolysis via targeting FoxO1 and ATGL. Thus, our study establishes miR-183 and miR-96 as master coordinators of fuel selection and metabolic homeostasis owing to their capability of modulating both glucose utilization and fat catabolism. Lastly, we show that loss of miR-183 and miR-96 can alleviate obesity and improve glucose metabolism in high-fat diet-induced mice, suggesting that miR-183 and miR-96 may serve as therapeutic targets for metabolic diseases.
Collapse
Affiliation(s)
- Hui Wang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Mei Ma
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yuying Li
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Jinxin Liu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Chao Sun
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Shengnan Liu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yiruo Ma
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Ying Yan
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Zhili Tang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Siyi Shen
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Jing Yu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yuting Wu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Jingjing Jiang
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Li Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Zi-Bing Jin
- Beijing Ophthalmology & Visual Science Key Laboratory, Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Hao Ying
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.,Key Laboratory of Food Safety Risk Assessment, Ministry of Health, Beijing, China
| | - Yan Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
93
|
Bosch M, Sweet MJ, Parton RG, Pol A. Lipid droplets and the host-pathogen dynamic: FATal attraction? J Cell Biol 2021; 220:e202104005. [PMID: 34165498 PMCID: PMC8240858 DOI: 10.1083/jcb.202104005] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 02/06/2023] Open
Abstract
In the ongoing conflict between eukaryotic cells and pathogens, lipid droplets (LDs) emerge as a choke point in the battle for nutrients. While many pathogens seek the lipids stored in LDs to fuel an expensive lifestyle, innate immunity rewires lipid metabolism and weaponizes LDs to defend cells and animals. Viruses, bacteria, and parasites directly and remotely manipulate LDs to obtain substrates for metabolic energy, replication compartments, assembly platforms, membrane blocks, and tools for host colonization and/or evasion such as anti-inflammatory mediators, lipoviroparticles, and even exosomes. Host LDs counterattack such advances by synthesizing bioactive lipids and toxic nucleotides, organizing immune signaling platforms, and recruiting a plethora of antimicrobial proteins to provide a front-line defense against the invader. Here, we review the current state of this conflict. We will discuss why, when, and how LDs efficiently coordinate and precisely execute a plethora of immune defenses. In the age of antimicrobial resistance and viral pandemics, understanding innate immune strategies developed by eukaryotic cells to fight and defeat dangerous microorganisms may inform future anti-infective strategies.
Collapse
Affiliation(s)
- Marta Bosch
- Lipid Trafficking and Disease Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Department of Biomedical Sciences, Faculty of Medicine, Universitat de Barcelona, Barcelona, Spain
| | - Matthew J. Sweet
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
- Centre for Inflammation and Disease Research, Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
- Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Australia
| | - Robert G. Parton
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
- Centre for Microscopy and Microanalysis, University of Queensland, Brisbane, Australia
| | - Albert Pol
- Lipid Trafficking and Disease Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Department of Biomedical Sciences, Faculty of Medicine, Universitat de Barcelona, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| |
Collapse
|
94
|
Raman Study on Lipid Droplets in Hepatic Cells Co-Cultured with Fatty Acids. Int J Mol Sci 2021; 22:ijms22147378. [PMID: 34298998 PMCID: PMC8307330 DOI: 10.3390/ijms22147378] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/01/2021] [Accepted: 07/05/2021] [Indexed: 01/03/2023] Open
Abstract
The purpose of the present study was to investigate molecular compositions of lipid droplets changing in live hepatic cells stimulated with major fatty acids in the human body, i.e., palmitic, stearic, oleic, and linoleic acids. HepG2 cells were used as the model hepatic cells. Morphological changes of lipid droplets were observed by optical microscopy and transmission electron microscopy (TEM) during co-cultivation with fatty acids up to 5 days. The compositional changes in the fatty chains included in the lipid droplets were analyzed via Raman spectroscopy and chemometrics. The growth curves of the cells indicated that palmitic, stearic, and linoleic acids induced cell death in HepG2 cells, but oleic acid did not. Microscopic observations suggested that the rates of fat accumulation were high for oleic and linoleic acids, but low for palmitic and stearic acids. Raman analysis indicated that linoleic fatty chains taken into the cells are modified into oleic fatty chains. These results suggest that the signaling pathway of cell death is independent of fat stimulations. Moreover, these results suggest that hepatic cells have a high affinity for linoleic acid, but linoleic acid induces cell death in these cells. This may be one of the causes of inflammation in nonalcoholic fatty liver disease (NAFLD).
Collapse
|
95
|
Huang T, Zhou W, Ma X, Jiang J, Zhang F, Zhou W, He H, Cui G. Oral administration of camellia oil ameliorates obesity and modifies the gut microbiota composition in mice fed a high-fat diet. FEMS Microbiol Lett 2021; 368:6293841. [PMID: 34089327 DOI: 10.1093/femsle/fnab063] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 06/02/2021] [Indexed: 12/17/2022] Open
Abstract
Obesity, which is often caused by adipocyte metabolism dysfunction, is rapidly becoming a serious global health issue. Studies in the literature have shown that camellia oil (Camellia oleifera Abel) exerted potential lipid regulation and other multiple biological activities. Here, we aimed to investigate the effects of camellia oil on obese mice induced by a high-fat diet and to explore gut microbiota alterations after camellia oil intervention. The results showed that oral administration of camellia oil dramatically attenuated the fat deposits, serum levels of the total cholesterol, triacylglycerol, low-density lipoprotein cholesterol, fasting plasma glucose, the atherosclerosis index, the hepatic steatosis and inflammation in high-fat diet-induced obese mice. Meanwhile, the high-density lipoprotein cholesterol level in obese mice was enhanced after the camellia oil treatment. Furthermore, 16S rRNA analysis showed that certain aspects of the gut microbiota, especially the gut microbiota diversity and the relative abundance of Actinobacteria, Coriobacteriaceae, Lactobacillus and Anoxybacillus, were significantly increased by camellia oil treatment while the ratio of Firmicutes to Bacteroidetes was decreased. Taken together, our finding suggested that camellia oil was a potential dietary supplement and functional food for ameliorating fat deposits, hyperglycemia and fatty liver, probably by modifying the gut microbiota composition.
Collapse
Affiliation(s)
- Tianyang Huang
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, Guangdong, China
| | - Weikang Zhou
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, Guangdong, China
| | - Xiangguo Ma
- The Fifth Affiliated Hospital of Zunyi Medical University, Zhuhai, Guangdong, China
| | - Jianhui Jiang
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, Guangdong, China
| | - Fuan Zhang
- Guizhou Camellia Oil Engineering Technology Research Center, Tongren, Guizhou, China
| | - Wanmeng Zhou
- Guizhou Camellia Oil Engineering Technology Research Center, Tongren, Guizhou, China
| | - Hao He
- The Fifth Affiliated Hospital of Zunyi Medical University, Zhuhai, Guangdong, China
| | - Guozhen Cui
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, Guangdong, China
| |
Collapse
|
96
|
Gallardo-Montejano VI, Yang C, Hahner L, McAfee JL, Johnson JA, Holland WL, Fernandez-Valdivia R, Bickel PE. Perilipin 5 links mitochondrial uncoupled respiration in brown fat to healthy white fat remodeling and systemic glucose tolerance. Nat Commun 2021; 12:3320. [PMID: 34083525 PMCID: PMC8175597 DOI: 10.1038/s41467-021-23601-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 04/28/2021] [Indexed: 02/06/2023] Open
Abstract
Exposure of mice or humans to cold promotes significant changes in brown adipose tissue (BAT) with respect to histology, lipid content, gene expression, and mitochondrial mass and function. Herein we report that the lipid droplet coat protein Perilipin 5 (PLIN5) increases markedly in BAT during exposure of mice to cold. To understand the functional significance of cold-induced PLIN5, we created and characterized gain- and loss-of-function mouse models. Enforcing PLIN5 expression in mouse BAT mimics the effects of cold with respect to mitochondrial cristae packing and uncoupled substrate-driven respiration. PLIN5 is necessary for the maintenance of mitochondrial cristae structure and respiratory function during cold stress. We further show that promoting PLIN5 function in BAT is associated with healthy remodeling of subcutaneous white adipose tissue and improvements in systemic glucose tolerance and diet-induced hepatic steatosis. These observations will inform future strategies that seek to exploit thermogenic adipose tissue as a therapeutic target for type 2 diabetes, obesity, and nonalcoholic fatty liver disease. Perilipin 5 is a lipid droplet protein that interacts with PGC1α in the nucleus to regulate mitochondrial metabolism. Here the authors use genetically engineered mouse models to determine the physiologic role of Perilipin 5, and show that it regulates mitochondrial adaptations to cold, as well as systemic energy metabolism.
Collapse
Affiliation(s)
- Violeta I Gallardo-Montejano
- Division of Endocrinology, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Chaofeng Yang
- Division of Endocrinology, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Lisa Hahner
- Division of Endocrinology, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - John L McAfee
- Division of Endocrinology, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA.,Pathology and Laboratory Medicine Institute, Cleveland, OH, USA
| | - Joshua A Johnson
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - William L Holland
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Nutrition and Integrative Physiology and the Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, UT, USA
| | | | - Perry E Bickel
- Division of Endocrinology, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
97
|
Tegeder I, Kögel D. When lipid homeostasis runs havoc: Lipotoxicity links lysosomal dysfunction to autophagy. Matrix Biol 2021; 100-101:99-117. [DOI: 10.1016/j.matbio.2020.11.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/29/2020] [Accepted: 11/30/2020] [Indexed: 02/07/2023]
|
98
|
Mass Sanchez PB, Krizanac M, Weiskirchen R, Asimakopoulos A. Understanding the Role of Perilipin 5 in Non-Alcoholic Fatty Liver Disease and Its Role in Hepatocellular Carcinoma: A Review of Novel Insights. Int J Mol Sci 2021; 22:5284. [PMID: 34067931 PMCID: PMC8156377 DOI: 10.3390/ijms22105284] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/07/2021] [Accepted: 05/16/2021] [Indexed: 12/24/2022] Open
Abstract
Consumption of high-calorie foods, such as diets rich in fats, is an important factor leading to the development of steatohepatitis. Several studies have suggested how lipid accumulation creates a lipotoxic microenvironment for cells, leading cells to deregulate their transcriptional and translational activity. This deregulation induces the development of liver diseases such as non-alcoholic fatty liver disease (NAFLD) and subsequently also the appearance of hepatocellular carcinoma (HCC) which is one of the deadliest types of cancers worldwide. Understanding its pathology and studying new biomarkers with better specificity in predicting disease prognosis can help in the personalized treatment of the disease. In this setting, understanding the link between NAFLD and HCC progression, the differentiation of each stage in between as well as the mechanisms underlying this process, are vital for development of new treatments and in exploring new therapeutic targets. Perilipins are a family of five closely related proteins expressed on the surface of lipid droplets (LD) in several tissues acting in several pathways involved in lipid metabolism. Recent studies have shown that Plin5 depletion acts protectively in the pathogenesis of liver injury underpinning the importance of pathways associated with PLIN5. PLIN5 expression is involved in pro-inflammatory cytokine regulation and mitochondrial damage, as well as endoplasmic reticulum (ER) stress, making it critical target of the NAFLD-HCC studies. The aim of this review is to dissect the recent findings and functions of PLIN5 in lipid metabolism, metabolic disorders, and NAFLD as well as the progression of NAFLD to HCC.
Collapse
Affiliation(s)
| | | | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, D-52074 Aachen, Germany; (P.B.M.S.); (M.K.)
| | - Anastasia Asimakopoulos
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, D-52074 Aachen, Germany; (P.B.M.S.); (M.K.)
| |
Collapse
|
99
|
Lubojemska A, Stefana MI, Sorge S, Bailey AP, Lampe L, Yoshimura A, Burrell A, Collinson L, Gould AP. Adipose triglyceride lipase protects renal cell endocytosis in a Drosophila dietary model of chronic kidney disease. PLoS Biol 2021; 19:e3001230. [PMID: 33945525 PMCID: PMC8121332 DOI: 10.1371/journal.pbio.3001230] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 05/14/2021] [Accepted: 04/13/2021] [Indexed: 12/13/2022] Open
Abstract
Obesity-related renal lipotoxicity and chronic kidney disease (CKD) are prevalent pathologies with complex aetiologies. One hallmark of renal lipotoxicity is the ectopic accumulation of lipid droplets in kidney podocytes and in proximal tubule cells. Renal lipid droplets are observed in human CKD patients and in high-fat diet (HFD) rodent models, but their precise role remains unclear. Here, we establish a HFD model in Drosophila that recapitulates renal lipid droplets and several other aspects of mammalian CKD. Cell type-specific genetic manipulations show that lipid can overflow from adipose tissue and is taken up by renal cells called nephrocytes. A HFD drives nephrocyte lipid uptake via the multiligand receptor Cubilin (Cubn), leading to the ectopic accumulation of lipid droplets. These nephrocyte lipid droplets correlate with endoplasmic reticulum (ER) and mitochondrial deficits, as well as with impaired macromolecular endocytosis, a key conserved function of renal cells. Nephrocyte knockdown of diglyceride acyltransferase 1 (DGAT1), overexpression of adipose triglyceride lipase (ATGL), and epistasis tests together reveal that fatty acid flux through the lipid droplet triglyceride compartment protects the ER, mitochondria, and endocytosis of renal cells. Strikingly, boosting nephrocyte expression of the lipid droplet resident enzyme ATGL is sufficient to rescue HFD-induced defects in renal endocytosis. Moreover, endocytic rescue requires a conserved mitochondrial regulator, peroxisome proliferator-activated receptor-gamma coactivator 1α (PGC1α). This study demonstrates that lipid droplet lipolysis counteracts the harmful effects of a HFD via a mitochondrial pathway that protects renal endocytosis. It also provides a genetic strategy for determining whether lipid droplets in different biological contexts function primarily to release beneficial or to sequester toxic lipids.
Collapse
Affiliation(s)
- Aleksandra Lubojemska
- Physiology and Metabolism Laboratory, The Francis Crick Institute, London, United Kingdom
| | - M. Irina Stefana
- Physiology and Metabolism Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Sebastian Sorge
- Physiology and Metabolism Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Andrew P. Bailey
- Physiology and Metabolism Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Lena Lampe
- Physiology and Metabolism Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Azumi Yoshimura
- Electron Microscopy Science Technology Platform, The Francis Crick Institute, London, United Kingdom
| | - Alana Burrell
- Electron Microscopy Science Technology Platform, The Francis Crick Institute, London, United Kingdom
| | - Lucy Collinson
- Electron Microscopy Science Technology Platform, The Francis Crick Institute, London, United Kingdom
| | - Alex P. Gould
- Physiology and Metabolism Laboratory, The Francis Crick Institute, London, United Kingdom
- * E-mail:
| |
Collapse
|
100
|
Griffin JD, Bejarano E, Wang XD, Greenberg AS. Integrated Action of Autophagy and Adipose Tissue Triglyceride Lipase Ameliorates Diet-Induced Hepatic Steatosis in Liver-Specific PLIN2 Knockout Mice. Cells 2021; 10:cells10051016. [PMID: 33923083 PMCID: PMC8145136 DOI: 10.3390/cells10051016] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/19/2021] [Accepted: 04/22/2021] [Indexed: 01/22/2023] Open
Abstract
An imbalance in the storage and breakdown of hepatic lipid droplet (LD) triglyceride (TAG) leads to hepatic steatosis, a defining feature of non-alcoholic fatty liver disease (NAFLD). The two primary cellular pathways regulating hepatic TAG catabolism are lipolysis, initiated by adipose triglyceride lipase (ATGL), and lipophagy. Each of these processes requires access to the LD surface to initiate LD TAG catabolism. Ablation of perilipin 2 (PLIN2), the most abundant lipid droplet-associated protein in steatotic liver, protects mice from diet-induced NAFLD. However, the mechanisms underlaying this protection are unclear. We tested the contributions of ATGL and lipophagy mediated lipolysis to reduced hepatic TAG in mice with liver-specific PLIN2 deficiency (PLIN2LKO) fed a Western-type diet for 12 weeks. We observed enhanced autophagy in the absence of PLIN2, as determined by ex vivo p62 flux, as well as increased p62- and LC3-positive autophagic vesicles in PLIN2LKO livers and isolated primary hepatocytes. Increased levels of autophagy correlated with significant increases in cellular fatty acid (FA) oxidation in PLIN2LKO hepatocytes. We observed that inhibition of either autophagy or ATGL blunted the increased FA oxidation in PLIN2LKO hepatocytes. Additionally, combined inhibition of ATGL and autophagy reduced FA oxidation to the same extent as treatment with either inhibitor alone. In sum, these studies show that protection against NAFLD in the absence of hepatic PLIN2 is driven by the integrated actions of both ATGL and lipophagy.
Collapse
Affiliation(s)
- John D. Griffin
- Obesity and Metabolism Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111, USA;
| | - Eloy Bejarano
- Laboratory for Nutrition and Vision Research, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111, USA;
- School of Health Sciences, Universidad CEU Cardenal Herrera, 46001 Valencia, Spain
| | - Xiang-Dong Wang
- Laboratory for Nutrition and Cancer Biology, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111, USA;
| | - Andrew S. Greenberg
- Obesity and Metabolism Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111, USA;
- Correspondence:
| |
Collapse
|