51
|
Barrington CL, Galindo G, Koch AL, Horton ER, Morrison EJ, Tisa S, Stasevich TJ, Rissland OS. Synonymous codon usage regulates translation initiation. Cell Rep 2023; 42:113413. [PMID: 38096059 PMCID: PMC10790568 DOI: 10.1016/j.celrep.2023.113413] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 08/30/2023] [Accepted: 10/25/2023] [Indexed: 12/30/2023] Open
Abstract
Nonoptimal synonymous codons repress gene expression, but the underlying mechanisms are poorly understood. We and others have previously shown that nonoptimal codons slow translation elongation speeds and thereby trigger messenger RNA (mRNA) degradation. Nevertheless, transcript levels are often insufficient to explain protein levels, suggesting additional mechanisms by which codon usage regulates gene expression. Using reporters in human and Drosophila cells, we find that transcript levels account for less than half of the variation in protein abundance due to codon usage. This discrepancy is explained by translational differences whereby nonoptimal codons repress translation initiation. Nonoptimal transcripts are also less bound by the translation initiation factors eIF4E and eIF4G1, providing a mechanistic explanation for their reduced initiation rates. Importantly, translational repression can occur without mRNA decay and deadenylation, and it does not depend on the known nonoptimality sensor, CNOT3. Our results reveal a potent mechanism of regulation by codon usage where nonoptimal codons repress further rounds of translation.
Collapse
Affiliation(s)
- Chloe L Barrington
- Department of Biochemistry & Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA; RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Gabriel Galindo
- Department of Biochemistry & Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Amanda L Koch
- Department of Biochemistry & Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Emma R Horton
- Department of Biochemistry & Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA; RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Evan J Morrison
- Department of Biochemistry & Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA; RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Samantha Tisa
- Department of Biochemistry & Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA; RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Timothy J Stasevich
- Department of Biochemistry & Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Olivia S Rissland
- Department of Biochemistry & Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA; RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| |
Collapse
|
52
|
Yousuf MS, Sahn JJ, Yang H, David ET, Shiers S, Mancilla Moreno M, Iketem J, Royer DM, Garcia CD, Zhang J, Hong VM, Mian SM, Ahmad A, Kolber BJ, Liebl DJ, Martin SF, Price TJ. Highly specific σ 2R/TMEM97 ligand FEM-1689 alleviates neuropathic pain and inhibits the integrated stress response. Proc Natl Acad Sci U S A 2023; 120:e2306090120. [PMID: 38117854 PMCID: PMC10756276 DOI: 10.1073/pnas.2306090120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 11/21/2023] [Indexed: 12/22/2023] Open
Abstract
The sigma 2 receptor (σ2R) was described pharmacologically more than three decades ago, but its molecular identity remained obscure until recently when it was identified as transmembrane protein 97 (TMEM97). We and others have shown that σ2R/TMEM97 ligands alleviate mechanical hypersensitivity in mouse neuropathic pain models with a time course wherein maximal antinociceptive effect is approximately 24 h following dosing. We sought to understand this unique antineuropathic pain effect by addressing two key questions: do these σ2R/TMEM97 compounds act selectively via the receptor, and what is their downstream mechanism on nociceptive neurons? Using male and female conventional knockout mice for Tmem97, we find that a σ2R/TMEM97 binding compound, FEM-1689, requires the presence of the gene to produce antinociception in the spared nerve injury model in mice. Using primary mouse dorsal root ganglion neurons, we demonstrate that FEM-1689 inhibits the integrated stress response (ISR) and promotes neurite outgrowth via a σ2R/TMEM97-specific action. We extend the clinical translational value of these findings by showing that FEM-1689 reduces ISR and p-eIF2α levels in human sensory neurons and that it alleviates the pathogenic engagement of ISR by methylglyoxal. We also demonstrate that σ2R/TMEM97 is expressed in human nociceptors and satellite glial cells. These results validate σ2R/TMEM97 as a promising target for further development for the treatment of neuropathic pain.
Collapse
Affiliation(s)
- Muhammad Saad Yousuf
- Center for Advanced Pain Studies and Department of Neuroscience, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX75080
- NuvoNuro Inc., Austin, TX78712
| | - James J. Sahn
- NuvoNuro Inc., Austin, TX78712
- Department of Chemistry, University of Texas at Austin, Austin, TX78712
| | - Hongfen Yang
- Department of Chemistry, University of Texas at Austin, Austin, TX78712
| | - Eric T. David
- Center for Advanced Pain Studies and Department of Neuroscience, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX75080
| | - Stephanie Shiers
- Center for Advanced Pain Studies and Department of Neuroscience, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX75080
| | - Marisol Mancilla Moreno
- Center for Advanced Pain Studies and Department of Neuroscience, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX75080
| | - Jonathan Iketem
- Center for Advanced Pain Studies and Department of Neuroscience, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX75080
| | - Danielle M. Royer
- Center for Advanced Pain Studies and Department of Neuroscience, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX75080
| | - Chelsea D. Garcia
- Center for Advanced Pain Studies and Department of Neuroscience, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX75080
| | - Jennifer Zhang
- Center for Advanced Pain Studies and Department of Neuroscience, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX75080
| | - Veronica M. Hong
- Center for Advanced Pain Studies and Department of Neuroscience, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX75080
| | - Subhaan M. Mian
- Center for Advanced Pain Studies and Department of Neuroscience, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX75080
| | - Ayesha Ahmad
- Center for Advanced Pain Studies and Department of Neuroscience, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX75080
| | - Benedict J. Kolber
- Center for Advanced Pain Studies and Department of Neuroscience, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX75080
| | - Daniel J. Liebl
- The Miami Project to Cure Paralysis, Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, FL33136
| | - Stephen F. Martin
- NuvoNuro Inc., Austin, TX78712
- Department of Chemistry, University of Texas at Austin, Austin, TX78712
| | - Theodore J. Price
- Center for Advanced Pain Studies and Department of Neuroscience, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX75080
- NuvoNuro Inc., Austin, TX78712
| |
Collapse
|
53
|
Boone M, Zappa F. Signaling plasticity in the integrated stress response. Front Cell Dev Biol 2023; 11:1271141. [PMID: 38143923 PMCID: PMC10740175 DOI: 10.3389/fcell.2023.1271141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/29/2023] [Indexed: 12/26/2023] Open
Abstract
The Integrated Stress Response (ISR) is an essential homeostatic signaling network that controls the cell's biosynthetic capacity. Four ISR sensor kinases detect multiple stressors and relay this information to downstream effectors by phosphorylating a common node: the alpha subunit of the eukaryotic initiation factor eIF2. As a result, general protein synthesis is repressed while select transcripts are preferentially translated, thus remodeling the proteome and transcriptome. Mounting evidence supports a view of the ISR as a dynamic signaling network with multiple modulators and feedback regulatory features that vary across cell and tissue types. Here, we discuss updated views on ISR sensor kinase mechanisms, how the subcellular localization of ISR components impacts signaling, and highlight ISR signaling differences across cells and tissues. Finally, we consider crosstalk between the ISR and other signaling pathways as a determinant of cell health.
Collapse
|
54
|
Prabhakar A, Kumar R, Wadhwa M, Ghatpande P, Zhang J, Zhao Z, Lizama CO, Kharbikar BN, Gräf S, Treacy CM, Morrell NW, Graham BB, Lagna G, Hata A. Reversal of pulmonary veno-occlusive disease phenotypes by inhibition of the integrated stress response. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.27.568924. [PMID: 38076809 PMCID: PMC10705277 DOI: 10.1101/2023.11.27.568924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
Pulmonary veno-occlusive disease (PVOD) is a rare form of pulmonary hypertension arising from EIF2AK4 gene mutations or mitomycin C (MMC) administration. The lack of effective PVOD therapies is compounded by a limited understanding of the mechanisms driving the vascular remodeling in PVOD. We show that the administration of MMC in rats mediates the activation of protein kinase R (PKR) and the integrated stress response (ISR), which lead to the release of the endothelial adhesion molecule VE-Cadherin in the complex with Rad51 to the circulation, disruption of endothelial barrier, and vascular remodeling. Pharmacological inhibition of PKR or ISR attenuates the depletion of VE-Cadherin, elevation of vascular permeability, and vascular remodeling instigated by MMC, suggesting potential clinical intervention for PVOD. Finally, the severity of PVOD phenotypes was increased by a heterozygous BMPR2 mutation that truncates the carboxyl tail of BMPR2, underscoring the role of deregulated BMP signal in the development of PVOD.
Collapse
|
55
|
Borankova K, Krchniakova M, Leck LYW, Kubistova A, Neradil J, Jansson PJ, Hogarty MD, Skoda J. Mitoribosomal synthetic lethality overcomes multidrug resistance in MYC-driven neuroblastoma. Cell Death Dis 2023; 14:747. [PMID: 37973789 PMCID: PMC10654511 DOI: 10.1038/s41419-023-06278-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 10/29/2023] [Accepted: 11/06/2023] [Indexed: 11/19/2023]
Abstract
Mitochondria are central for cancer responses to therapy-induced stress signals. Refractory tumors often show attenuated sensitivity to apoptotic signaling, yet clinically relevant molecular actors to target mitochondria-mediated resistance remain elusive. Here, we show that MYC-driven neuroblastoma cells rely on intact mitochondrial ribosome (mitoribosome) processivity and undergo cell death following pharmacological inhibition of mitochondrial translation, regardless of their multidrug/mitochondrial resistance and stem-like phenotypes. Mechanistically, inhibiting mitoribosomes induced the mitochondrial stress-activated integrated stress response (ISR), leading to downregulation of c-MYC/N-MYC proteins prior to neuroblastoma cell death, which could be both rescued by the ISR inhibitor ISRIB. The ISR blocks global protein synthesis and shifted the c-MYC/N-MYC turnover toward proteasomal degradation. Comparing models of various neuroectodermal tumors and normal fibroblasts revealed overexpression of MYC proteins phosphorylated at the degradation-promoting site T58 as a factor that predetermines vulnerability of MYC-driven neuroblastoma to mitoribosome inhibition. Reducing N-MYC levels in a neuroblastoma model with tunable MYCN expression mitigated cell death induction upon inhibition of mitochondrial translation and functionally validated the propensity of neuroblastoma cells for MYC-dependent cell death in response to the mitochondrial ISR. Notably, neuroblastoma cells failed to develop significant resistance to the mitoribosomal inhibitor doxycycline over a long-term repeated (pulsed) selection. Collectively, we identify mitochondrial translation machinery as a novel synthetic lethality target for multidrug-resistant MYC-driven tumors.
Collapse
Affiliation(s)
- Karolina Borankova
- Department of Experimental Biology, Faculty of Science, Masaryk University, 62500, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, 65691, Brno, Czech Republic
| | - Maria Krchniakova
- Department of Experimental Biology, Faculty of Science, Masaryk University, 62500, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, 65691, Brno, Czech Republic
| | - Lionel Y W Leck
- Cancer Drug Resistance & Stem Cell Program, School of Medical Science, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, 2006, Australia
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St. Leonards, NSW, 2065, Australia
| | - Adela Kubistova
- Department of Experimental Biology, Faculty of Science, Masaryk University, 62500, Brno, Czech Republic
| | - Jakub Neradil
- Department of Experimental Biology, Faculty of Science, Masaryk University, 62500, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, 65691, Brno, Czech Republic
| | - Patric J Jansson
- Cancer Drug Resistance & Stem Cell Program, School of Medical Science, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, 2006, Australia
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St. Leonards, NSW, 2065, Australia
| | - Michael D Hogarty
- Division of Oncology and Center for Childhood Cancer Research, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jan Skoda
- Department of Experimental Biology, Faculty of Science, Masaryk University, 62500, Brno, Czech Republic.
- International Clinical Research Center, St. Anne's University Hospital, 65691, Brno, Czech Republic.
| |
Collapse
|
56
|
Ito T, Wuerth JD, Weber F. Protection of eIF2B from inhibitory phosphorylated eIF2: A viral strategy to maintain mRNA translation during the PKR-triggered integrated stress response. J Biol Chem 2023; 299:105287. [PMID: 37742919 PMCID: PMC10616414 DOI: 10.1016/j.jbc.2023.105287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 09/26/2023] Open
Abstract
The integrated stress response (ISR) protects cells from a variety of insults. Once elicited (e.g., by virus infections), it eventually leads to the block of mRNA translation. Central to the ISR are the interactions between translation initiation factors eIF2 and eIF2B. Under normal conditions, eIF2 drives the initiation of protein synthesis through hydrolysis of GTP, which becomes replenished by the guanine nucleotide exchange factor eIF2B. The antiviral branch of the ISR is activated by the RNA-activated kinase PKR which phosphorylates eIF2, thereby converting it into an eIF2B inhibitor. Here, we describe the recently solved structures of eIF2B in complex with eIF2 and a novel escape strategy used by viruses. While unphosphorylated eIF2 interacts with eIF2B in its "productive" conformation, phosphorylated eIF2 [eIF2(αP)] engages a different binding cavity on eIF2B and forces it into the "nonproductive" conformation that prohibits guanine nucleotide exchange factor activity. It is well established that viruses express so-called PKR antagonists that interfere with double-strand RNA, PKR itself, or eIF2. However recently, three taxonomically unrelated viruses were reported to encode antagonists targeting eIF2B instead. For one antagonist, the S segment nonstructural protein of Sandfly fever Sicilian virus, atomic structures showed that it occupies the eIF2(αP)-binding cavity on eIF2B without imposing a switch to the nonproductive conformation. S segment nonstructural protein thus antagonizes the activity of PKR by protecting eIF2B from inhibition by eIF2(αP). As the ISR and specifically eIF2B are central to neuroprotection and a wide range of genetic and age-related diseases, these developments may open new possibilities for treatments.
Collapse
Affiliation(s)
- Takuhiro Ito
- Laboratory for Translation Structural Biology, RIKEN Center for Biosystems Dynamics Research, Yokohama, Japan
| | | | - Friedemann Weber
- Institute for Virology, FB10-Veterinary Medicine, Justus-Liebig University, Giessen, Germany.
| |
Collapse
|
57
|
Sushkin ME, Koehler C, Lemke EA. Remodeling the cellular stress response for enhanced genetic code expansion in mammalian cells. Nat Commun 2023; 14:6931. [PMID: 37903771 PMCID: PMC10616097 DOI: 10.1038/s41467-023-42689-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 10/18/2023] [Indexed: 11/01/2023] Open
Abstract
Genetic code expansion (GCE) reprograms the translational machinery to site-specifically incorporate noncanonical amino acids (ncAAs) into a selected protein. The efficiency of GCE in mammalian cells might be compromised by cellular stress responses, among which, the protein kinase R(PKR)-dependent eIF2α phosphorylation pathway can reduce translation rates. Here we test several strategies to engineer the eIF2α pathway and boost the rate of translation and show that such interventions increase GCE efficiency in mammalian cells. In particular, addition of the N-terminal PKR fragment (1-174) provides a substantial enhancement in cytoplasmic GCE and also in GCE realized by OTOs (orthogonally translating designer organelles), which built on the principle of 2D phase separation to enable mRNA-selective ncAA incorporation. Our study demonstrates an approach for improving the efficiency of GCE and provides a means by which the power of designer organelles can be further optimized to tune protein translation.
Collapse
Affiliation(s)
- Mikhail E Sushkin
- Biocenter, Johannes Gutenberg University Mainz, Hanns-Dieter-Hüsch-Weg 17, 55128, Mainz, Germany
- International PhD Programme of the Institute of Molecular Biology, Hanns-Dieter-Hüsch-Weg 17, 55128, Mainz, Germany
| | - Christine Koehler
- Biocenter, Johannes Gutenberg University Mainz, Hanns-Dieter-Hüsch-Weg 17, 55128, Mainz, Germany
- VERAXA Biotech GmbH, Carl-Friedrich-Gauß-Ring 5, 69124, Heidelberg, Germany
| | - Edward A Lemke
- Biocenter, Johannes Gutenberg University Mainz, Hanns-Dieter-Hüsch-Weg 17, 55128, Mainz, Germany.
- Institute of Molecular Biology gGmbH, Ackermannweg 4, 55128, Mainz, Germany.
| |
Collapse
|
58
|
Ricciardi-Jorge T, da Rocha EL, Gonzalez-Kozlova E, Rodrigues-Luiz GF, Ferguson BJ, Sweeney T, Irigoyen N, Mansur DS. PKR-mediated stress response enhances dengue and Zika virus replication. mBio 2023; 14:e0093423. [PMID: 37732809 PMCID: PMC10653888 DOI: 10.1128/mbio.00934-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/01/2023] [Indexed: 09/22/2023] Open
Abstract
IMPORTANCE One of the fundamental features that make viruses intracellular parasites is the necessity to use cellular translational machinery. Hence, this is a crucial checkpoint for controlling infections. Here, we show that dengue and Zika viruses, responsible for nearly 400 million infections every year worldwide, explore such control for optimal replication. Using immunocompetent cells, we demonstrate that arrest of protein translations happens after sensing of dsRNA and that the information required to avoid this blocking is contained in viral 5'-UTR. Our work, therefore, suggests that the non-canonical translation described for these viruses is engaged when the intracellular stress response is activated.
Collapse
Affiliation(s)
- Taissa Ricciardi-Jorge
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil
- The Pirbright Institute, Woking, United Kingdom
| | - Edroaldo Lummertz da Rocha
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil
| | - Edgar Gonzalez-Kozlova
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil
- Icahn School of Medicine, New York, USA
| | - Gabriela Flavia Rodrigues-Luiz
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil
| | - Brian J. Ferguson
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | | | - Nerea Irigoyen
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Daniel Santos Mansur
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil
| |
Collapse
|
59
|
Liu K, Zhao C, Adajar RC, DeZwaan-McCabe D, Rutkowski DT. A beneficial adaptive role for CHOP in driving cell fate selection during ER stress. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.19.533325. [PMID: 36993175 PMCID: PMC10055232 DOI: 10.1101/2023.03.19.533325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Cellular stresses elicit signaling cascades that are capable of either mitigating the inciting dysfunction or initiating cell death. During endoplasmic reticulum (ER) stress, the transcription factor CHOP is widely recognized to promote cell death. However, it is not clear whether CHOP also has a beneficial role during adaptation. Here, we have combined a new, versatile, genetically modified Chop allele with single cell analysis and with stresses of physiological intensity, to rigorously examine the contribution of CHOP to cell fate. Paradoxically, we found that CHOP promoted death in some cells, but proliferation-and hence recovery-in others. Strikingly, this function of CHOP conferred to cells a stress-specific competitive growth advantage. The dynamics of CHOP expression and UPR activation at the single cell level suggested that CHOP maximizes UPR activation, which in turn favors stress resolution, subsequent UPR deactivation, and proliferation. Taken together, these findings suggest that CHOP's function can be better described as a "stress test" that drives cells into either of two mutually exclusive fates-adaptation or death-during stresses of physiological intensity.
Collapse
Affiliation(s)
- Kaihua Liu
- Program in Human Toxicology, University of Iowa Carver College of Medicine, Iowa City, IA
| | - Chaoxian Zhao
- Shanghai Cancer Institute, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Reed C. Adajar
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA
| | - Diane DeZwaan-McCabe
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA
| | - D. Thomas Rutkowski
- Program in Human Toxicology, University of Iowa Carver College of Medicine, Iowa City, IA
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA
| |
Collapse
|
60
|
Li YQ, An XL, Jin FY, Bai YF, Li T, Yang XY, Liu SP, Gao XM, Mao N, Xu H, Cai WC, Yang F. ISRIB inhibits the senescence of type II pulmonary epithelial cells to alleviate pulmonary fibrosis induced by silica in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 264:115410. [PMID: 37647802 DOI: 10.1016/j.ecoenv.2023.115410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/15/2023] [Accepted: 08/24/2023] [Indexed: 09/01/2023]
Abstract
The role and mechanisms of integrated stress response inhibitor (ISRIB) on silicosis are still not well defined. In the present study, the effects of ISRIB on cellular senescence and pulmonary fibrosis in silicosis were evaluated by RNA sequencing, micro-computed tomography, pulmonary function assessment, histological examination, and Western blot analysis. The results showed that ISRIB significantly reduced the degree of pulmonary fibrosis in mice with silicosis and reduced the expression of type I collagen, fibronectin, α-smooth muscle actin, and transforming growth factor-β1. Both in vivo and in vitro results showed that ISRIB reversed the expression of senescence-related factors β-galactosidase, phosphor-ataxia telangiectasia mutated, phosphor-ataxia telangiectasia and Rad3-related protein, p-p53, p21, p16, and plasminogen activator inhibitor type 1. The aforementioned results were consistent with the sequencing results. These findings implied that ISRIB might reduce the degree of pulmonary fibrosis in mice with silicosis by inhibiting the cellular senescence of alveolar epithelial cell type II.
Collapse
Affiliation(s)
- Ya-Qian Li
- School of public and health, Hebei Key Laboratory for Organ Fibrosis Research, North China University of Science and Technology, Tangshan, China
| | - Xu-Liang An
- School of public and health, Hebei Key Laboratory for Organ Fibrosis Research, North China University of Science and Technology, Tangshan, China
| | - Fu-Yu Jin
- School of public and health, Hebei Key Laboratory for Organ Fibrosis Research, North China University of Science and Technology, Tangshan, China
| | - Yi-Fei Bai
- School of public and health, Hebei Key Laboratory for Organ Fibrosis Research, North China University of Science and Technology, Tangshan, China
| | - Tian Li
- School of public and health, Hebei Key Laboratory for Organ Fibrosis Research, North China University of Science and Technology, Tangshan, China
| | - Xin-Yu Yang
- School of public and health, Hebei Key Laboratory for Organ Fibrosis Research, North China University of Science and Technology, Tangshan, China
| | - Shu-Peng Liu
- School of public and health, Hebei Key Laboratory for Organ Fibrosis Research, North China University of Science and Technology, Tangshan, China
| | - Xue-Min Gao
- School of public and health, Hebei Key Laboratory for Organ Fibrosis Research, North China University of Science and Technology, Tangshan, China; NHC Key Laboratory of Pneumoconiosis,Department of Pulmonary and Critical Care Medicine, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Na Mao
- School of public and health, Hebei Key Laboratory for Organ Fibrosis Research, North China University of Science and Technology, Tangshan, China
| | - Hong Xu
- School of public and health, Hebei Key Laboratory for Organ Fibrosis Research, North China University of Science and Technology, Tangshan, China; Health Scicence Center, North China University of Science and Technology, Tangshan, China
| | - Wen-Chen Cai
- School of public and health, Hebei Key Laboratory for Organ Fibrosis Research, North China University of Science and Technology, Tangshan, China.
| | - Fang Yang
- School of public and health, Hebei Key Laboratory for Organ Fibrosis Research, North China University of Science and Technology, Tangshan, China.
| |
Collapse
|
61
|
Lines CL, McGrath MJ, Dorwart T, Conn CS. The integrated stress response in cancer progression: a force for plasticity and resistance. Front Oncol 2023; 13:1206561. [PMID: 37601686 PMCID: PMC10435748 DOI: 10.3389/fonc.2023.1206561] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/07/2023] [Indexed: 08/22/2023] Open
Abstract
During their quest for growth, adaptation, and survival, cancer cells create a favorable environment through the manipulation of normal cellular mechanisms. They increase anabolic processes, including protein synthesis, to facilitate uncontrolled proliferation and deplete the tumor microenvironment of resources. As a dynamic adaptation to the self-imposed oncogenic stress, cancer cells promptly hijack translational control to alter gene expression. Rewiring the cellular proteome shifts the phenotypic balance between growth and adaptation to promote therapeutic resistance and cancer cell survival. The integrated stress response (ISR) is a key translational program activated by oncogenic stress that is utilized to fine-tune protein synthesis and adjust to environmental barriers. Here, we focus on the role of ISR signaling for driving cancer progression. We highlight mechanisms of regulation for distinct mRNA translation downstream of the ISR, expand on oncogenic signaling utilizing the ISR in response to environmental stresses, and pinpoint the impact this has for cancer cell plasticity during resistance to therapy. There is an ongoing need for innovative drug targets in cancer treatment, and modulating ISR activity may provide a unique avenue for clinical benefit.
Collapse
Affiliation(s)
| | | | | | - Crystal S. Conn
- Department of Radiation Oncology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, United States
| |
Collapse
|
62
|
Yeap JW, Ali IAH, Ibrahim B, Tan ML. Chronic obstructive pulmonary disease and emerging ER stress-related therapeutic targets. Pulm Pharmacol Ther 2023; 81:102218. [PMID: 37201652 DOI: 10.1016/j.pupt.2023.102218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 05/05/2023] [Indexed: 05/20/2023]
Abstract
COPD pathogenesis is frequently associated with endoplasmic reticulum stress (ER stress) progression. Targeting the major unfolded protein response (UPR) branches in the ER stress pathway may provide pharmacotherapeutic selection strategies for treating COPD and enable relief from its symptoms. In this study, we aimed to systematically review the potential role of the ER stress inhibitors of major UPR branches (IRE1, PERK, and ATF6) in COPD-related studies and determine the current stage of knowledge in this field. The systematic review was carried out adhering to the PRISMA checklist based on published studies obtained from specific keyword searches of three databases, namely PubMed, ScienceDirect and Springer Database. The search was limited to the year 2000-2022 which includes all in vitro studies, in vivo studies and clinical trials related to the application of ER stress inhibitors toward COPD-induced models and disease. The risk of bias was evaluated using the QUIN, SYRCLE, revised Cochrane risk of bias tool for randomized trials (RoB 2.0) and NIH tool respectively. A total of 7828 articles were screened from three databases and a final total of 37 studies were included in the review. The ER stress and UPR pathways are potentially useful to prevent COPD progression and attenuate the exacerbation of COPD and related symptoms. Interestingly, the off-target effects from inhibition of the UPR pathway may be desirable or undesirable depending on context and therapeutic applications. Targeting the UPR pathway could have complex consequences as the production of ER molecules involved in folding may be impaired which could continuously provoke misfolding of proteins. Although several emerging compounds were noted to be potentially useful for targeted therapy against COPD, clinical studies have yet to be thoroughly explored.
Collapse
Affiliation(s)
- Jia Wen Yeap
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800, Pulau Pinang, Malaysia
| | - Irfhan Ali Hyder Ali
- Respiratory Department, Penang General Hospital, Jalan Residensi, 10990, Pulau Pinang, Malaysia
| | - Baharudin Ibrahim
- Department of Clinical Pharmacy & Pharmacy Practice, Faculty of Pharmacy, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Mei Lan Tan
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800, Pulau Pinang, Malaysia; Centre For Global Sustainability Studies (CGSS), Universiti Sains Malaysia, 11800, Pulau Pinang, Malaysia.
| |
Collapse
|
63
|
Tong F, Hu H, Xu Y, Zhou Y, Xie R, Lei T, Du Y, Yang W, He S, Huang Y, Gong T, Gao H. Hollow copper sulfide nanoparticles carrying ISRIB for the sensitized photothermal therapy of breast cancer and brain metastases through inhibiting stress granule formation and reprogramming tumor-associated macrophages. Acta Pharm Sin B 2023; 13:3471-3488. [PMID: 37655313 PMCID: PMC10465875 DOI: 10.1016/j.apsb.2022.11.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/03/2022] [Accepted: 10/15/2022] [Indexed: 11/07/2022] Open
Abstract
As known, the benefits of photothermal therapy (PTT) are greatly limited by the heat tolerance of cancer cells resulting from overexpressed heat shock proteins (HSPs). Then HSPs further trigger the formation of stress granules (SGs) that regulate protein expression and cell viability under various stress conditions. Inhibition of SG formation can sensitize tumor cells to PTT. Herein, we developed PEGylated pH (low) insertion peptide (PEG-pHLIP)-modified hollow copper sulfide nanoparticles (HCuS NPs) encapsulating the SG inhibitor ISRIB, with the phase-change material lauric acid (LA) as a gate-keeper, to construct a pH-driven and NIR photo-responsive controlled smart drug delivery system (IL@H-PP). The nanomedicine could specifically target slightly acidic tumor sites. Upon irradiation, IL@H-PP realized PTT, and the light-controlled release of ISRIB could effectively inhibit the formation of PTT-induced SG to sensitize tumor cells to PTT, thereby increasing the antitumor effect and inducing potent immunogenic cell death (ICD). Moreover, IL@H-PP could promote the production of reactive oxygen species (ROS) by tumor-associated macrophages (TAMs), repolarizing them towards the M1 phenotype and remodeling the immunosuppressive microenvironment. In vitro/vivo results revealed the potential of PTT combined with SG inhibitors, which provides a new paradigm for antitumor and anti-metastases.
Collapse
Affiliation(s)
- Fan Tong
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Haili Hu
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yanyan Xu
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yang Zhou
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Rou Xie
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Ting Lei
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yufan Du
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Wenqin Yang
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Siqin He
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yuan Huang
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Tao Gong
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Huile Gao
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
64
|
Xu X, Arunagiri A, Alam M, Haataja L, Evans CR, Zhao I, Castro-Gutierrez R, Russ HA, Demangel C, Qi L, Tsai B, Liu M, Arvan P. Nutrient-dependent regulation of β-cell proinsulin content. J Biol Chem 2023; 299:104836. [PMID: 37209827 PMCID: PMC10302188 DOI: 10.1016/j.jbc.2023.104836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/27/2023] [Accepted: 04/30/2023] [Indexed: 05/22/2023] Open
Abstract
Insulin is made from proinsulin, but the extent to which fasting/feeding controls the homeostatically regulated proinsulin pool in pancreatic β-cells remains largely unknown. Here, we first examined β-cell lines (INS1E and Min6, which proliferate slowly and are routinely fed fresh medium every 2-3 days) and found that the proinsulin pool size responds to each feeding within 1 to 2 h, affected both by the quantity of fresh nutrients and the frequency with which they are provided. We observed no effect of nutrient feeding on the overall rate of proinsulin turnover as quantified from cycloheximide-chase experiments. We show that nutrient feeding is primarily linked to rapid dephosphorylation of translation initiation factor eIF2α, presaging increased proinsulin levels (and thereafter, insulin levels), followed by its rephosphorylation during the ensuing hours that correspond to a fall in proinsulin levels. The decline of proinsulin levels is blunted by the integrated stress response inhibitor, ISRIB, or by inhibition of eIF2α rephosphorylation with a general control nonderepressible 2 (not PERK) kinase inhibitor. In addition, we demonstrate that amino acids contribute importantly to the proinsulin pool; mass spectrometry shows that β-cells avidly consume extracellular glutamine, serine, and cysteine. Finally, we show that in both rodent and human pancreatic islets, fresh nutrient availability dynamically increases preproinsulin, which can be quantified without pulse-labeling. Thus, the proinsulin available for insulin biosynthesis is rhythmically controlled by fasting/feeding cycles.
Collapse
Affiliation(s)
- Xiaoxi Xu
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical Center, Ann Arbor, Michigan, USA; Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
| | - Anoop Arunagiri
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Maroof Alam
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Leena Haataja
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Charles R Evans
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Ivy Zhao
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Roberto Castro-Gutierrez
- Department of Pharmacology & Therapeutics, University of Florida College of Medicine, Gainesville, Florida, USA; Diabetes Institute, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Holger A Russ
- Department of Pharmacology & Therapeutics, University of Florida College of Medicine, Gainesville, Florida, USA; Diabetes Institute, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Caroline Demangel
- Immunobiology and Therapy Unit, Institut Pasteur, Inserm U1224, Université Paris Cité, Paris, France
| | - Ling Qi
- Departments of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Billy Tsai
- Departments of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Ming Liu
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China.
| | - Peter Arvan
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical Center, Ann Arbor, Michigan, USA; Departments of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, USA.
| |
Collapse
|
65
|
Shariq M, Malik AA, Sheikh JA, Hasnain SE, Ehtesham NZ. Regulation of autophagy by SARS-CoV-2: The multifunctional contributions of ORF3a. J Med Virol 2023; 95:e28959. [PMID: 37485696 DOI: 10.1002/jmv.28959] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/01/2023] [Accepted: 07/04/2023] [Indexed: 07/25/2023]
Abstract
Severe acute respiratory syndrome-coronavirus-1 (SARS-CoV-2) regulates autophagic flux by blocking the fusion of autophagosomes with lysosomes, causing the accumulation of membranous vesicles for replication. Multiple SARS-CoV-2 proteins regulate autophagy with significant roles attributed to ORF3a. Mechanistically, open reading frame 3a (ORF3a) forms a complex with UV radiation resistance associated, regulating the functions of the PIK3C3-1 and PIK3C3-2 lipid kinase complexes, thereby modulating autophagosome biogenesis. ORF3a sequesters VPS39 onto the late endosome/lysosome, inhibiting assembly of the soluble NSF attachement protein REceptor (SNARE) complex and preventing autolysosome formation. ORF3a promotes the interaction between BECN1 and HMGB1, inducing the assembly of PIK3CA kinases into the ER (endoplasmic reticulum) and activating reticulophagy, proinflammatory responses, and ER stress. ORF3a recruits BORCS6 and ARL8B to lysosomes, initiating the anterograde transport of the virus to the plasma membrane. ORF3a also activates the SNARE complex (STX4-SNAP23-VAMP7), inducing fusion of lysosomes with the plasma membrane for viral egress. These mechanistic details can provide multiple targets for inhibiting SARS-CoV-2 by developing host- or host-pathogen interface-based therapeutics.
Collapse
Affiliation(s)
- Mohd Shariq
- Inflammation Biology and Cell Signalling Laboratory, ICMR-National Institute of Pathology, New Delhi, India
| | - Asrar A Malik
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Javaid A Sheikh
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi, India
| | - Seyed E Hasnain
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, New Delhi, India
| | - Nasreen Z Ehtesham
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
66
|
Bukhari SIA, Truesdell SS, Datta C, Choudhury P, Wu KQ, Shrestha J, Maharjan R, Plotsker E, Elased R, Laisa S, Bhambhani V, Lin Y, Kreuzer J, Morris R, Koh SB, Ellisen LW, Haas W, Ly A, Vasudevan S. Regulation of RNA methylation by therapy treatment, promotes tumor survival. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.19.540602. [PMID: 37292633 PMCID: PMC10245743 DOI: 10.1101/2023.05.19.540602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Our data previously revealed that chemosurviving cancer cells translate specific genes. Here, we find that the m6A-RNA-methyltransferase, METTL3, increases transiently in chemotherapy-treated breast cancer and leukemic cells in vitro and in vivo. Consistently, m6A increases on RNA from chemo-treated cells, and is needed for chemosurvival. This is regulated by eIF2α phosphorylation and mTOR inhibition upon therapy treatment. METTL3 mRNA purification reveals that eIF3 promotes METTL3 translation that is reduced by mutating a 5'UTR m6A-motif or depleting METTL3. METTL3 increase is transient after therapy treatment, as metabolic enzymes that control methylation and thus m6A levels on METTL3 RNA, are altered over time after therapy. Increased METTL3 reduces proliferation and anti-viral immune response genes, and enhances invasion genes, which promote tumor survival. Consistently, overriding phospho-eIF2α prevents METTL3 elevation, and reduces chemosurvival and immune-cell migration. These data reveal that therapy-induced stress signals transiently upregulate METTL3 translation, to alter gene expression for tumor survival.
Collapse
Affiliation(s)
- Syed IA Bukhari
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Brigham and Harvard Medical School, Boston, MA 02114
| | - Samuel S Truesdell
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Brigham and Harvard Medical School, Boston, MA 02114
| | - Chandreyee Datta
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Brigham and Harvard Medical School, Boston, MA 02114
| | - Pritha Choudhury
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Brigham and Harvard Medical School, Boston, MA 02114
| | - Keith Q Wu
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Brigham and Harvard Medical School, Boston, MA 02114
| | - Jitendra Shrestha
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Brigham and Harvard Medical School, Boston, MA 02114
| | - Ruby Maharjan
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Brigham and Harvard Medical School, Boston, MA 02114
| | - Ethan Plotsker
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Brigham and Harvard Medical School, Boston, MA 02114
| | - Ramzi Elased
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Brigham and Harvard Medical School, Boston, MA 02114
| | - Sadia Laisa
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Brigham and Harvard Medical School, Boston, MA 02114
| | - Vijeta Bhambhani
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Brigham and Harvard Medical School, Boston, MA 02114
| | - Yue Lin
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Brigham and Harvard Medical School, Boston, MA 02114
| | - Johannes Kreuzer
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Brigham and Harvard Medical School, Boston, MA 02114
| | - Robert Morris
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Brigham and Harvard Medical School, Boston, MA 02114
| | - Siang-Boon Koh
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Brigham and Harvard Medical School, Boston, MA 02114
| | - Leif W. Ellisen
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Brigham and Harvard Medical School, Boston, MA 02114
| | - Wilhelm Haas
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Brigham and Harvard Medical School, Boston, MA 02114
| | - Amy Ly
- Department of Pathology, Massachusetts General Hospital, Massachusetts General Brigham and Harvard Medical School, Boston, MA 02114
| | - Shobha Vasudevan
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Brigham and Harvard Medical School, Boston, MA 02114
| |
Collapse
|
67
|
Krug S, Prasad P, Xiao S, Lun S, Ruiz-Bedoya CA, Klunk M, Ordonez AA, Jain SK, Srikrishna G, Kramnik I, Bishai WR. Adjunctive Integrated Stress Response Inhibition Accelerates Tuberculosis Clearance in Mice. mBio 2023; 14:e0349622. [PMID: 36853048 PMCID: PMC10128048 DOI: 10.1128/mbio.03496-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 01/09/2023] [Indexed: 03/01/2023] Open
Abstract
Despite numerous advances in tuberculosis (TB) drug development, long treatment durations have led to the emergence of multidrug resistance, which poses a major hurdle to global TB control. Shortening treatment time therefore remains a top priority. Host-directed therapies that promote bacterial clearance and/or lung health may improve the efficacy and treatment duration of tuberculosis antibiotics. We recently discovered that inhibition of the integrated stress response, which is abnormally activated in tuberculosis and associated with necrotic granuloma formation, reduced bacterial numbers and lung inflammation in mice. Here, we evaluated the impact of the integrated stress response (ISR) inhibitor ISRIB, administered as an adjunct to standard tuberculosis antibiotics, on bacterial clearance, relapse, and lung pathology in a mouse model of tuberculosis. Throughout the course of treatment, ISRIB robustly lowered bacterial burdens compared to the burdens with standard TB therapy alone and accelerated the time to sterility in mice, as demonstrated by significantly reduced relapse rates after 4 months of treatment. In addition, mice receiving adjunctive ISRIB tended to have reduced lung necrosis and inflammation. Together, our findings identify the ISR pathway as a promising therapeutic target with the potential to shorten TB treatment durations and improve lung health. IMPORTANCE Necrosis of lung lesions is a hallmark of tuberculosis (TB) that promotes bacterial growth, dissemination, and transmission. This process is driven by the persistent hyperactivation of the integrated stress response (ISR) pathway. Here, we show that adjunctive ISR inhibition during standard antibiotic therapy accelerates bacterial clearance and reduces immunopathology in a clinically relevant mouse model of TB, suggesting that host-directed therapies that de-escalate these pathological stress responses may shorten TB treatment durations. Our findings present an important conceptual advance toward overcoming the challenge of improving TB therapy and lowering the global burden of disease.
Collapse
Affiliation(s)
- Stefanie Krug
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Pankaj Prasad
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Shiqi Xiao
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Shichun Lun
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Camilo A. Ruiz-Bedoya
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Mariah Klunk
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Alvaro A. Ordonez
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Sanjay K. Jain
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Geetha Srikrishna
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Igor Kramnik
- The National Emerging Infectious Diseases Laboratory, Boston University School of Medicine, Boston, Massachusetts, USA
- Department of Medicine, Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts, USA
| | - William R. Bishai
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
68
|
de la Peña JB, Chase R, Kunder N, Smith PR, Lou TF, Stanowick A, Suresh P, Shukla T, Butcher SE, Price TJ, Campbell ZT. Inhibition of Nonsense-Mediated Decay Induces Nociceptive Sensitization through Activation of the Integrated Stress Response. J Neurosci 2023; 43:2921-2933. [PMID: 36894318 PMCID: PMC10124962 DOI: 10.1523/jneurosci.1604-22.2023] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 02/20/2023] [Accepted: 03/01/2023] [Indexed: 03/11/2023] Open
Abstract
RNA stability is meticulously controlled. Here, we sought to determine whether an essential post-transcriptional regulatory mechanism plays a role in pain. Nonsense-mediated decay (NMD) safeguards against translation of mRNAs that harbor premature termination codons and controls the stability of ∼10% of typical protein-coding mRNAs. It hinges on the activity of the conserved kinase SMG1. Both SMG1 and its target, UPF1, are expressed in murine DRG sensory neurons. SMG1 protein is present in both the DRG and sciatic nerve. Using high-throughput sequencing, we examined changes in mRNA abundance following inhibition of SMG1. We confirmed multiple NMD stability targets in sensory neurons, including ATF4. ATF4 is preferentially translated during the integrated stress response (ISR). This led us to ask whether suspension of NMD induces the ISR. Inhibition of NMD increased eIF2-α phosphorylation and reduced the abundance of the eIF2-α phosphatase constitutive repressor of eIF2-α phosphorylation. Finally, we examined the effects of SMG1 inhibition on pain-associated behaviors. Peripheral inhibition of SMG1 results in mechanical hypersensitivity in males and females that persists for several days and priming to a subthreshold dose of PGE2. Priming was fully rescued by a small-molecule inhibitor of the ISR. Collectively, our results indicate that suspension of NMD promotes pain through stimulation of the ISR.SIGNIFICANCE STATEMENT Nociceptors undergo long-lived changes in their plasticity which may contribute to chronic pain. Translational regulation has emerged as a dominant mechanism in pain. Here, we investigate the role of a major pathway of RNA surveillance called nonsense-mediated decay (NMD). Modulation of NMD is potentially beneficial for a broad array of diseases caused by frameshift or nonsense mutations. Our results suggest that inhibition of the rate-limiting step of NMD drives behaviors associated with pain through activation of the ISR. This work reveals complex interconnectivity between RNA stability and translational regulation and suggests an important consideration in harnessing the salubrious benefits of NMD disruption.
Collapse
Affiliation(s)
- June Bryan de la Peña
- Department of Anesthesiology, University of Wisconsin-Madison, Madison, Wisconsin 53792
| | - Rebecca Chase
- Department of Biological Sciences, University of Texas at Dallas, Richardson, Texas 75080
| | - Nikesh Kunder
- Department of Biological Sciences, University of Texas at Dallas, Richardson, Texas 75080
| | - Patrick R Smith
- Department of Anesthesiology, University of Wisconsin-Madison, Madison, Wisconsin 53792
| | - Tzu-Fang Lou
- Department of Biological Sciences, University of Texas at Dallas, Richardson, Texas 75080
| | - Alexander Stanowick
- Department of Biological Sciences, University of Texas at Dallas, Richardson, Texas 75080
| | - Prarthana Suresh
- Department of Biological Sciences, University of Texas at Dallas, Richardson, Texas 75080
| | - Tarjani Shukla
- Department of Anesthesiology, University of Wisconsin-Madison, Madison, Wisconsin 53792
| | - Samuel E Butcher
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53792
| | - Theodore J Price
- Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, Texas 75080
- Department of Neuroscience, University of Texas at Dallas, Richardson, Texas 75080
| | - Zachary T Campbell
- Department of Anesthesiology, University of Wisconsin-Madison, Madison, Wisconsin 53792
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53792
| |
Collapse
|
69
|
Gupta M, Walters B, Katsara O, Granados Blanco K, Geter P, Schneider R. eIF2Bδ blocks the integrated stress response and maintains eIF2B activity and cancer metastasis by overexpression in breast cancer stem cells. Proc Natl Acad Sci U S A 2023; 120:e2207898120. [PMID: 37014850 PMCID: PMC10104532 DOI: 10.1073/pnas.2207898120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 03/08/2023] [Indexed: 04/05/2023] Open
Abstract
Breast cancer (BC) metastasis involves cancer stem cells (CSCs) and their regulation by micro-RNAs (miRs), but miR targeting of the translation machinery in CSCs is poorly explored. We therefore screened miR expression levels in a range of BC cell lines, comparing non-CSCs to CSCs, and focused on miRs that target translation and protein synthesis factors. We describe a unique translation regulatory axis enacted by reduced expression of miR-183 in breast CSCs, which we show targets the eIF2Bδ subunit of guanine nucleotide exchange factor eIF2B, a regulator of protein synthesis and the integrated stress response (ISR) pathway. We report that reduced expression of miR-183 greatly increases eIF2Bδ protein levels, preventing strong induction of the ISR and eIF2α phosphorylation, by preferential interaction with P-eIF2α. eIF2Bδ overexpression is essential for BC cell invasion, metastasis, maintenance of metastases, and breast CSC expansion in animal models. Increased expression of eIF2Bδ, a site of action of the drug ISRIB that also prevents ISR signaling, is essential for breast CSC maintenance and metastatic capacity.
Collapse
Affiliation(s)
- Malavika Gupta
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY10016
| | - Beth A. Walters
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY10016
| | - Olga Katsara
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY10016
| | - Karol Granados Blanco
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY10016
| | - Phillip A. Geter
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY10016
| | - Robert J. Schneider
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY10016
- New York University Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY10016
| |
Collapse
|
70
|
Chen Y, Chen L, Wu X, Zhao Y, Wang Y, Jiang D, Liu X, Zhou T, Li S, Wei Y, Liu Y, Hu C, Zhou B, Qin J, Ying H, Ding Q. Acute liver steatosis translationally controls the epigenetic regulator MIER1 to promote liver regeneration in a study with male mice. Nat Commun 2023; 14:1521. [PMID: 36934083 PMCID: PMC10024732 DOI: 10.1038/s41467-023-37247-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/07/2023] [Indexed: 03/20/2023] Open
Abstract
The early phase lipid accumulation is essential for liver regeneration. However, whether this acute lipid accumulation can serve as signals to direct liver regeneration rather than simply providing building blocks for cell proliferation remains unclear. Through in vivo CRISPR screening, we identify MIER1 (mesoderm induction early response 1) as a key epigenetic regulator that bridges the acute lipid accumulation and cell cycle gene expression during liver regeneration in male animals. Physiologically, liver acute lipid accumulation induces the phosphorylation of EIF2S1(eukaryotic translation initiation factor 2), which consequently attenuated Mier1 translation. MIER1 downregulation in turn promotes cell cycle gene expression and regeneration through chromatin remodeling. Importantly, the lipids-EIF2S1-MIER1 pathway is impaired in animals with chronic liver steatosis; whereas MIER1 depletion significantly improves regeneration in these animals. Taken together, our studies identify an epigenetic mechanism by which the early phase lipid redistribution from adipose tissue to liver during regeneration impacts hepatocyte proliferation, and suggest a potential strategy to boost liver regeneration.
Collapse
Affiliation(s)
- Yanhao Chen
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, P. R. China.
| | - Lanlan Chen
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, P. R. China
| | - Xiaoshan Wu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, P. R. China
- School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Yongxu Zhao
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, P. R. China
| | - Yuchen Wang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, P. R. China
| | - Dacheng Jiang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, P. R. China
| | - Xiaojian Liu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, P. R. China
| | - Tingting Zhou
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, P. R. China
| | - Shuang Li
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, P. R. China
| | - Yuda Wei
- Department of Clinical Laboratory, Linyi People's Hospital, Xuzhou Medical University, Xuzhou, Shandong, 276000, P. R. China
| | - Yan Liu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, P. R. China
| | - Cheng Hu
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Ben Zhou
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, P. R. China
| | - Jun Qin
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, P. R. China
| | - Hao Ying
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, P. R. China
| | - Qiurong Ding
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, P. R. China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, 100101, Beijing, P. R. China.
| |
Collapse
|
71
|
Guidarelli A, Spina A, Fiorani M, Zito E, Cantoni O. Arsenite enhances ERO1α expression via ryanodine receptor dependent and independent mechanisms. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 98:104080. [PMID: 36781116 DOI: 10.1016/j.etap.2023.104080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/23/2022] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
Arsenite is a potent carcinogen and toxic compound inducing an array of deleterious effects via different mechanisms, which include the Ca2+-dependent formation of reactive oxygen species. The mechanism whereby the metalloid affects Ca2+ homeostasis involves an initial stimulation of the inositol 1, 4, 5-triphosphate receptor, an event associated with an endoplasmic reticulum (ER) stress leading to increased ERO1α expression, and ERO1α dependent activation of the ryanodine receptor (RyR). Ca2+ release from the RyR is then critically connected with the mitochondrial accumulation of Ca2+. We now report that the resulting formation of mitochondrial superoxide triggers a second mechanism of ER stress dependent ERO1α expression, which however fails to impact on Ca2+ release from the RyR or, more generally, on Ca2+ homeostasis. Our results therefore demonstrate that arsenite stimulates two different and sequential mechanisms leading to increased ERO1α expression with different functions, possibly due to their different subcellular compartmentalization.
Collapse
Affiliation(s)
- Andrea Guidarelli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Andrea Spina
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Mara Fiorani
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Ester Zito
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy; Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Orazio Cantoni
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy.
| |
Collapse
|
72
|
Dobrinskikh E, Hennessy CE, Kurche JS, Kim E, Estrella AM, Cardwell J, Yang IV, Schwartz DA. Epithelial Endoplasmic Reticulum Stress Enhances the Risk of Muc5b-associated Lung Fibrosis. Am J Respir Cell Mol Biol 2023; 68:62-74. [PMID: 36108173 PMCID: PMC9817917 DOI: 10.1165/rcmb.2022-0252oc] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 09/15/2022] [Indexed: 02/05/2023] Open
Abstract
The gain-of-function minor allele of the MUC5B (mucin 5B, oligomeric mucus/gel-forming) promoter (rs35705950) is the strongest risk factor for idiopathic pulmonary fibrosis (IPF), a devastating fibrotic lung disease that leads to progressive respiratory failure in adults. We have previously demonstrated that Muc5b overexpression in mice worsens lung fibrosis after bleomycin exposure and have hypothesized that excess Muc5b promotes endoplasmic reticulum (ER) stress and apoptosis, stimulating fibrotic lung injury. Here, we report that ER stress pathway members ATF4 (activating transcription factor 4) and ATF6 coexpress with MUC5B in epithelia of the distal IPF airway and honeycomb cyst and that this is more pronounced in carriers of the gain-of-function MUC5B promoter variant. Similarly, in mice exposed to bleomycin, Muc5b expression is temporally associated with markers of ER stress. Using bulk and single-cell RNA sequencing in bleomycin-exposed mice, we found that pathologic ER stress-associated transcripts Atf4 and Ddit3 (DNA damage inducible transcript 3) were elevated in alveolar epithelia of SFTPC-Muc5b transgenic (SFTPC-Muc5bTg) mice relative to wild-type (WT) mice. Activation of the ER stress response inhibits protein translation for most genes by phosphorylation of Eif2α (eukaryotic translation initiation factor 2 alpha), which prevents guanine exchange by Eif2B and facilitates translation of Atf4. The integrated stress response inhibitor (ISRIB) facilitates interaction of phosphorylated Eif2α with Eif2B, overcoming translation inhibition associated with ER stress and reducing Atf4. We found that a single dose of ISRIB diminished Atf4 translation in SFTPC-Muc5bTg mice after bleomycin injury. Moreover, ISRIB resolved the exaggerated fibrotic response of SFTPC-Muc5bTg mice to bleomycin. In summary, we demonstrate that MUC5B and Muc5b expression is associated with pathologic ER stress and that restoration of normal translation with a single dose of ISRIB promotes lung repair in bleomycin-injured Muc5b-overexpressing mice.
Collapse
Affiliation(s)
| | | | - Jonathan S. Kurche
- Department of Medicine
- Pulmonary Section, Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, Colorado
| | | | - Alani M. Estrella
- Roy and Diana Vagelos College of Physicians and Surgeons, Columbia University Medical Center, New York, New York; and
| | | | - Ivana V. Yang
- Department of Medicine
- Department of Epidemiology, Colorado School of Public Health, Aurora, Colorado
| | - David A. Schwartz
- Department of Medicine
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado
| |
Collapse
|
73
|
Dudka W, Hoser G, Mondal SS, Turos-Korgul L, Swatler J, Kusio-Kobialka M, Wołczyk M, Klejman A, Brewinska-Olchowik M, Kominek A, Wiech M, Machnicki MM, Seferynska I, Stoklosa T, Piwocka K. Targeting integrated stress response with ISRIB combined with imatinib treatment attenuates RAS/RAF/MAPK and STAT5 signaling and eradicates chronic myeloid leukemia cells. BMC Cancer 2022; 22:1254. [PMID: 36460969 PMCID: PMC9719211 DOI: 10.1186/s12885-022-10289-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 11/07/2022] [Indexed: 12/05/2022] Open
Abstract
The integrated stress response (ISR) facilitates cellular adaptation to unfavorable conditions by reprogramming the cellular response. ISR activation was reported in neurological disorders and solid tumors; however, the function of ISR and its role as a possible therapeutic target in hematological malignancies still remain largely unexplored. Previously, we showed that the ISR is activated in chronic myeloid leukemia (CML) cells and correlates with blastic transformation and tyrosine kinase inhibitor (TKI) resistance. Moreover, the ISR was additionally activated in response to imatinib as a type of protective internal signaling. Here, we show that ISR inhibition combined with imatinib treatment sensitized and more effectively eradicated leukemic cells both in vitro and in vivo compared to treatment with single agents. The combined treatment specifically inhibited the STAT5 and RAS/RAF/MEK/ERK pathways, which are recognized as drivers of resistance. Mechanistically, this drug combination attenuated both interacting signaling networks, leading to BCR-ABL1- and ISR-dependent STAT5 activation. Consequently, leukemia engraftment in patient-derived xenograft mice bearing CD34+ TKI-resistant CML blasts carrying PTPN11 mutation responsible for hyperactivation of the RAS/RAF/MAPK and JAK/STAT5 pathways was decreased upon double treatment. This correlated with the downregulation of genes related to the RAS/RAF/MAPK, JAK/STAT5 and stress response pathways and was associated with lower expression of STAT5-target genes regulating proliferation, viability and the stress response. Collectively, these findings highlight the effect of imatinib plus ISRIB in the eradication of leukemic cells resistant to TKIs and suggest potential clinical benefits for leukemia patients with TKI resistance related to RAS/RAF/MAPK or STAT5 signaling. We propose that personalized treatment based on the genetic selection of patients carrying mutations that cause overactivation of the targeted pathways and therefore make their sensitivity to such treatment probable should be considered as a possible future direction in leukemia treatment.
Collapse
Affiliation(s)
- Wioleta Dudka
- grid.419305.a0000 0001 1943 2944Laboratory of Cytometry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Grazyna Hoser
- Center of Postgraduate Medical Education, Laboratory of Flow Cytometry, Warsaw, Poland
| | - Shamba S. Mondal
- grid.419305.a0000 0001 1943 2944Laboratory of Bioinformatics, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Laura Turos-Korgul
- grid.419305.a0000 0001 1943 2944Laboratory of Cytometry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Julian Swatler
- grid.419305.a0000 0001 1943 2944Laboratory of Cytometry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Monika Kusio-Kobialka
- grid.419305.a0000 0001 1943 2944Laboratory of Cytometry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Magdalena Wołczyk
- grid.419305.a0000 0001 1943 2944Laboratory of Cytometry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Agata Klejman
- grid.419305.a0000 0001 1943 2944Laboratory of Animal Models, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Marta Brewinska-Olchowik
- grid.419305.a0000 0001 1943 2944Laboratory of Cytometry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Agata Kominek
- grid.419305.a0000 0001 1943 2944Laboratory of Cytometry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Milena Wiech
- grid.419305.a0000 0001 1943 2944Laboratory of Cytometry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Marcin M. Machnicki
- grid.13339.3b0000000113287408Department of Tumor Biology and Genetics, Medical University of Warsaw, Warsaw, Poland
| | - Ilona Seferynska
- grid.419032.d0000 0001 1339 8589Department of Hematology, Institute of Hematology and Blood Transfusion, Warsaw, Poland
| | - Tomasz Stoklosa
- grid.13339.3b0000000113287408Department of Tumor Biology and Genetics, Medical University of Warsaw, Warsaw, Poland
| | - Katarzyna Piwocka
- grid.419305.a0000 0001 1943 2944Laboratory of Cytometry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| |
Collapse
|
74
|
Aloise C, Schipper JG, de Groot RJ, van Kuppeveld FJM. Move and countermove: the integrated stress response in picorna- and coronavirus-infected cells. Curr Opin Immunol 2022; 79:102254. [PMID: 36274340 PMCID: PMC9515345 DOI: 10.1016/j.coi.2022.102254] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 09/25/2022] [Indexed: 01/29/2023]
Abstract
Viruses, when entering their host cells, are met by a fierce intracellular immune defense. One prominent antiviral pathway is the integrated stress response (ISR). Upon activation of the ISR - typically though not exclusively upon detection of dsRNA - translation-initiation factor eukaryotic initiation factor 2 (eIF2) becomes phosphorylated to act as an inhibitor of guanine nucleotide-exchange factor eIF2B. Thus, with the production of ternary complex blocked, a global translational arrest ensues. Successful virus replication hinges on effective countermeasures. Here, we review ISR antagonists and antagonistic mechanisms employed by picorna- and coronaviruses. Special attention will be given to a recently discovered class of viral antagonists that inhibit the ISR by targeting eIF2B, thereby allowing unabated translation initiation even at exceedingly high levels of phosphorylated eIF2.
Collapse
|
75
|
Varone E, Decio A, Barbera MC, Bolis M, Di Rito L, Pisati F, Giavazzi R, Zito E. Endoplasmic reticulum oxidoreductin 1-alpha deficiency and activation of protein translation synergistically impair breast tumour resilience. Br J Pharmacol 2022; 179:5180-5195. [PMID: 35853086 DOI: 10.1111/bph.15927] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 07/08/2022] [Accepted: 07/13/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND AND PURPOSE Endoplasmic reticulum (ER) stress triggers an adaptive response in tumours which fosters cell survival and resilience to stress. Activation of the ER stress response, through its PERK branch, promotes phosphorylation of the α-subunit of the translation initiation factor eIF2, thereby repressing general protein translation and augmenting the translation of ATF4 with the downstream CHOP transcription factor and the protein disulfide oxidase, ERO1-alpha EXPERIMENTAL APPROACH: Here, we show that ISRIB, a small molecule that inhibits the action of phosphorylated eIF2alpha, activating protein translation, synergistically interacts with the genetic deficiency of protein disulfide oxidase ERO1-alpha, enfeebling breast tumour growth and spread. KEY RESULTS ISRIB represses the CHOP signal, but does not inhibit ERO1. Mechanistically, ISRIB increases the ER protein load with a marked perturbing effect on ERO1-deficient triple-negative breast cancer cells, which display impaired proteostasis and have adapted to a low client protein load in hypoxia, and ERO1 deficiency impairs VEGF-dependent angiogenesis. ERO1-deficient triple-negative breast cancer xenografts have an augmented ER stress response and its PERK branch. ISRIB acts synergistically with ERO1 deficiency, inhibiting the growth of triple-negative breast cancer xenografts by impairing proliferation and angiogenesis. CONCLUSION AND IMPLICATIONS These results demonstrate that ISRIB together with ERO1 deficiency synergistically shatter the PERK-dependent adaptive ER stress response, by restarting protein synthesis in the setting of impaired proteostasis, finally promoting tumour cytotoxicity. Our findings suggest two surprising features in breast tumours: ERO1 is not regulated via CHOP under hypoxic conditions, and ISRIB offers a therapeutic option to efficiently inhibit tumour progression in conditions of impaired proteostasis.
Collapse
Affiliation(s)
- Ersilia Varone
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Alessandra Decio
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | | | - Marco Bolis
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy.,Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland, Bellinzona, Switzerland.,Bioinformatics Core Unit, Swiss Institute of Bioinformatics, Bellinzona, Switzerland
| | - Laura Di Rito
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | | | | | - Ester Zito
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy.,Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| |
Collapse
|
76
|
Patel A, Mitrea D, Namasivayam V, Murcko MA, Wagner M, Klein IA. Principles and functions of condensate modifying drugs. Front Mol Biosci 2022; 9:1007744. [PMID: 36483537 PMCID: PMC9725174 DOI: 10.3389/fmolb.2022.1007744] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 10/25/2022] [Indexed: 01/10/2024] Open
Abstract
Biomolecular condensates are compartmentalized communities of biomolecules, which unlike traditional organelles, are not enclosed by membranes. Condensates play roles in diverse cellular processes, are dysfunctional in many disease states, and are often enriched in classically "undruggable" targets. In this review, we provide an overview for how drugs can modulate condensate structure and function by phenotypically classifying them as dissolvers (dissolve condensates), inducers (induce condensates), localizers (alter localization of the specific condensate community members) or morphers (alter the physiochemical properties). We discuss the growing list of bioactive molecules that function as condensate modifiers (c-mods), including small molecules, oligonucleotides, and peptides. We propose that understanding mechanisms of condensate perturbation of known c-mods will accelerate the discovery of a new class of therapies for difficult-to-treat diseases.
Collapse
Affiliation(s)
| | - Diana Mitrea
- Dewpoint Therapeutics, Boston, MA, United States
| | | | | | | | | |
Collapse
|
77
|
Cherubini A, Zito E. ER stress as a trigger of UPR and ER-phagy in cancer growth and spread. Front Oncol 2022; 12:997235. [PMID: 36408145 PMCID: PMC9667062 DOI: 10.3389/fonc.2022.997235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 10/12/2022] [Indexed: 01/25/2023] Open
Abstract
Tumors can survive environmental and metabolic stress by triggering homeostatic responses that re-establish the pre-stress status and permit them to grow and thrive. The endoplasmic reticulum (ER) is the organelle where proteins undergo post-translational modifications and are folded and exported to the secretory pathway. Its environment and activity are therefore fundamental for proteostasis, i.e., the plethora of mechanisms controlling protein formation, folding, degradation, and secretion, needed to assure protein balance and cellular health. In different tumor-related conditions, such as after the activation of oncogenes or under hypoxia and nutrient deprivation, the ER experiences stress, triggered by a high load of proteins to be folded compared to the limited folding capacity of the organelle. As a consequence, three ER membrane sensors and the related unfolded protein response (UPR) are activated. The UPR comprises a complex interconnection between signal transduction pathways that promote a homeostatic response that acts by increasing the amount of protein chaperones and of proteins involved in ER-associated protein degradation (ERAD) on one hand and attenuating protein translation on the other. ER-phagy, literally "eating" the ER, is part of another homeostatic response consisting of the clearance of non-functional ER portions including misfolded proteins. This response is also activated by a set of dedicated ER-phagy receptors after ER stimuli, which overlap the stimuli generating ER stress. Thus, the UPR and ER-phagy are two closely related homeostatic mechanisms that cooperate in re-establishing ER homeostasis. However, while the role of the UPR in favoring cancer growth and thriving by promoting angiogenesis, metastasis, chemotherapy resistance, and epithelial-to-mesenchymal transition is consolidated, that of ER-phagy is still in its infancy. This essay provides an overview of emerging concepts on ER stress, the UPR, and ER-phagy and their crosstalk in tumorigenesis. We also critically review new findings on their pharmacological targeting in cancer.
Collapse
Affiliation(s)
- Alessandro Cherubini
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy,Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Ester Zito
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy,Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy,*Correspondence: Ester Zito,
| |
Collapse
|
78
|
Akdel M, Pires DEV, Pardo EP, Jänes J, Zalevsky AO, Mészáros B, Bryant P, Good LL, Laskowski RA, Pozzati G, Shenoy A, Zhu W, Kundrotas P, Serra VR, Rodrigues CHM, Dunham AS, Burke D, Borkakoti N, Velankar S, Frost A, Basquin J, Lindorff-Larsen K, Bateman A, Kajava AV, Valencia A, Ovchinnikov S, Durairaj J, Ascher DB, Thornton JM, Davey NE, Stein A, Elofsson A, Croll TI, Beltrao P. A structural biology community assessment of AlphaFold2 applications. Nat Struct Mol Biol 2022; 29:1056-1067. [PMID: 36344848 PMCID: PMC9663297 DOI: 10.1038/s41594-022-00849-w] [Citation(s) in RCA: 303] [Impact Index Per Article: 101.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 09/20/2022] [Indexed: 11/09/2022]
Abstract
Most proteins fold into 3D structures that determine how they function and orchestrate the biological processes of the cell. Recent developments in computational methods for protein structure predictions have reached the accuracy of experimentally determined models. Although this has been independently verified, the implementation of these methods across structural-biology applications remains to be tested. Here, we evaluate the use of AlphaFold2 (AF2) predictions in the study of characteristic structural elements; the impact of missense variants; function and ligand binding site predictions; modeling of interactions; and modeling of experimental structural data. For 11 proteomes, an average of 25% additional residues can be confidently modeled when compared with homology modeling, identifying structural features rarely seen in the Protein Data Bank. AF2-based predictions of protein disorder and complexes surpass dedicated tools, and AF2 models can be used across diverse applications equally well compared with experimentally determined structures, when the confidence metrics are critically considered. In summary, we find that these advances are likely to have a transformative impact in structural biology and broader life-science research.
Collapse
Affiliation(s)
- Mehmet Akdel
- Bioinformatics Group, Department of Plant Sciences, Wageningen University and Research, Wageningen, the Netherlands
| | - Douglas E V Pires
- School of Computing and Information Systems, University of Melbourne, Melbourne, Victoria, Australia
| | - Eduard Porta Pardo
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Spain
- Barcelona Supercomputing Center (BSC), Barcelona, Spain
| | - Jürgen Jänes
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge, UK
| | - Arthur O Zalevsky
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
| | | | - Patrick Bryant
- Dep of Biochemistry and Biophysics and Science for Life Laboratory, Solna, Sweden
| | - Lydia L Good
- Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Roman A Laskowski
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge, UK
| | - Gabriele Pozzati
- Dep of Biochemistry and Biophysics and Science for Life Laboratory, Solna, Sweden
| | - Aditi Shenoy
- Dep of Biochemistry and Biophysics and Science for Life Laboratory, Solna, Sweden
| | - Wensi Zhu
- Dep of Biochemistry and Biophysics and Science for Life Laboratory, Solna, Sweden
| | - Petras Kundrotas
- Dep of Biochemistry and Biophysics and Science for Life Laboratory, Solna, Sweden
| | | | - Carlos H M Rodrigues
- School of Computing and Information Systems, University of Melbourne, Melbourne, Victoria, Australia
| | - Alistair S Dunham
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge, UK
| | - David Burke
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge, UK
| | - Neera Borkakoti
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge, UK
| | - Sameer Velankar
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge, UK
| | - Adam Frost
- Department of Biochemistry and Biophysics University of California, San Francisco, CA, USA
| | - Jérôme Basquin
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Kresten Lindorff-Larsen
- Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Alex Bateman
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge, UK
| | - Andrey V Kajava
- Université de Montpellier, Centre de Recherche en Biologie Cellulaire de Montpellier (CRBM) CNRS, Montpellier, France
| | | | - Sergey Ovchinnikov
- Faculty of Arts and Sciences, Division of Science, Harvard University, Cambridge, MA, USA.
| | | | - David B Ascher
- School of Chemistry and Molecular Biology, University of Queensland, Brisbane, Queensland, Australia.
| | - Janet M Thornton
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge, UK.
| | | | - Amelie Stein
- Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| | - Arne Elofsson
- Dep of Biochemistry and Biophysics and Science for Life Laboratory, Solna, Sweden.
| | - Tristan I Croll
- Cambridge Institute for Medical Research, Department of Haematology, The University of Cambridge, Cambridge, UK.
| | - Pedro Beltrao
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge, UK.
- Institute of Molecular Systems Biology, ETH Zürich, Zürich, Switzerland.
| |
Collapse
|
79
|
Datta C, Truesdell SS, Wu KQ, Bukhari SIA, Ngue H, Buchanan B, Le Tonqueze O, Lee S, Kollu S, Granovetter MA, Boukhali M, Kreuzer J, Batool MS, Balaj L, Haas W, Vasudevan S. Ribosome changes reprogram translation for chemosurvival in G0 leukemic cells. SCIENCE ADVANCES 2022; 8:eabo1304. [PMID: 36306353 PMCID: PMC9616492 DOI: 10.1126/sciadv.abo1304] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Quiescent leukemic cells survive chemotherapy, with translation changes. Our data reveal that FXR1, a protein amplified in several aggressive cancers, is elevated in quiescent and chemo-treated leukemic cells and promotes chemosurvival. This suggests undiscovered roles for this RNA- and ribosome-associated protein in chemosurvival. We find that FXR1 depletion reduces translation, with altered rRNAs, snoRNAs, and ribosomal proteins (RPs). FXR1 regulates factors that promote transcription and processing of ribosomal genes and snoRNAs. Ribosome changes in FXR1-overexpressing cells, including RPLP0/uL10 levels, activate eIF2α kinases. Accordingly, phospho-eIF2α increases, enabling selective translation of survival and immune regulators in FXR1-overexpressing cells. Overriding these genes or phospho-eIF2α with inhibitors reduces chemosurvival. Thus, elevated FXR1 in quiescent or chemo-treated leukemic cells alters ribosomes that trigger stress signals to redirect translation for chemosurvival.
Collapse
Affiliation(s)
- Chandreyee Datta
- Massachusetts General Hospital Cancer Center, Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Samuel S. Truesdell
- Massachusetts General Hospital Cancer Center, Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Keith Q. Wu
- Massachusetts General Hospital Cancer Center, Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Syed I. A. Bukhari
- Massachusetts General Hospital Cancer Center, Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Harrison Ngue
- Massachusetts General Hospital Cancer Center, Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Brienna Buchanan
- Massachusetts General Hospital Cancer Center, Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Olivier Le Tonqueze
- Massachusetts General Hospital Cancer Center, Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Sooncheol Lee
- Massachusetts General Hospital Cancer Center, Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Swapna Kollu
- Massachusetts General Hospital Cancer Center, Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Madeleine A. Granovetter
- Massachusetts General Hospital Cancer Center, Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Myriam Boukhali
- Massachusetts General Hospital Cancer Center, Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Johannes Kreuzer
- Massachusetts General Hospital Cancer Center, Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Maheen S. Batool
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Leonora Balaj
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Wilhelm Haas
- Massachusetts General Hospital Cancer Center, Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Shobha Vasudevan
- Massachusetts General Hospital Cancer Center, Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
- Corresponding author.
| |
Collapse
|
80
|
Wuerth JD, Weber F. Shielding the mRNA-translation factor eIF2B from inhibitory p-eIF2 as a viral strategy to evade protein kinase R-mediated innate immunity. Curr Opin Immunol 2022; 78:102251. [PMID: 36242870 DOI: 10.1016/j.coi.2022.102251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 09/05/2022] [Indexed: 01/29/2023]
Abstract
The interferon-regulated kinase PKR (protein kinase RNA-activated) is a potent innate immune factor against a broad range of viruses. Being part of the integrated stress response (ISR), its restrictive effect is predominantly exerted by phosphorylating the eukaryotic translation-initiation factor eIF2, thereby turning it into an inhibitor of translation-initiation factor eIF2B. A plethora of viruses are known to evade the shutdown of cellular mRNA translation by interfering either with PKR activation or with eIF2 phosphorylation. Recently, a novel PKR evasion strategy was described: proteins from three taxonomically distinct RNA viruses allow for full PKR activation and eIF2 phosphorylation in the infected cell, but protect eIF2B from inhibition by phosphorylated eIF2, thus enabling mRNA translation in the presence of an activated ISR.
Collapse
Affiliation(s)
- Jennifer D Wuerth
- Institute of Innate Immunity, Medical Faculty, University of Bonn, 53127 Bonn, Germany
| | - Friedemann Weber
- Institute for Virology, FB10-Veterinary Medicine, Justus-Liebig University, D-35392 Giessen, Germany.
| |
Collapse
|
81
|
Zou Y, Yuan Z, Sun Y, Zhai M, Tan Z, Guan R, Aschner M, Luo W, Zhang J. Resetting Proteostasis of CIRBP with ISRIB Suppresses Neural Stem Cell Apoptosis under Hypoxic Exposure. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3627026. [PMID: 36211820 PMCID: PMC9546721 DOI: 10.1155/2022/3627026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/19/2022] [Indexed: 11/17/2022]
Abstract
Neurological disorders are often progressive and lead to disabilities with limited available therapies. Epidemiological evidence implicated that prolonged exposure to hypoxia leads to neurological damage and a plethora of complications. Neural stem cells (NSCs) are a promising tool for neurological damage therapy in terms of their unique properties. However, the literature on the outcome of NSCs exposed to severe hypoxia is scarce. In this study, we identified a responsive gene that reacts to multiple cellular stresses, marked cold-inducible RNA-binding protein (CIRBP), which could attenuate NSC apoptosis under hypoxic pressure. Interestingly, ISRIB, a small-molecule modulator of the PERK-ATF4 signaling pathway, could prevent the reduction and apoptosis of NSCs in two steps: enhancing the expression of CIRBP through the protein kinase R- (PKR-) like endoplasmic reticulum kinase (PERK) and activating transcription factor 4 (ATF4) axis. Taken together, CIRBP was found to be a critical factor that could protect NSCs against apoptosis induced by hypoxia, and ISRIB could be acted upstream of the axis and may be recruited as an open potential therapeutic strategy to prevent or treat hypoxia-induced brain hazards.
Collapse
Affiliation(s)
- Yuankang Zou
- Department of Occupational and Environmental Health, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, No. 169 Chang Le West Rd., Xi'an, Shaanxi 710032, China
| | - Ziyan Yuan
- Institute of Medical Information and Library, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100020, China
| | - Yafei Sun
- Department of Occupational and Environmental Health, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, No. 169 Chang Le West Rd., Xi'an, Shaanxi 710032, China
| | - Maodeng Zhai
- Department of Occupational and Environmental Health, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, No. 169 Chang Le West Rd., Xi'an, Shaanxi 710032, China
| | - Zhice Tan
- Department of Occupational and Environmental Health, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, No. 169 Chang Le West Rd., Xi'an, Shaanxi 710032, China
| | - Ruili Guan
- Department of Occupational and Environmental Health, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, No. 169 Chang Le West Rd., Xi'an, Shaanxi 710032, China
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Wenjing Luo
- Department of Occupational and Environmental Health, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, No. 169 Chang Le West Rd., Xi'an, Shaanxi 710032, China
| | - Jianbin Zhang
- Department of Occupational and Environmental Health, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, No. 169 Chang Le West Rd., Xi'an, Shaanxi 710032, China
| |
Collapse
|
82
|
Guidarelli A, Spina A, Fiorani M, Zito E, Cantoni O. Inhibition of activity/expression, or genetic deletion, of ERO1α blunts arsenite geno- and cyto-toxicity. Food Chem Toxicol 2022; 168:113360. [PMID: 35964836 DOI: 10.1016/j.fct.2022.113360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/07/2022] [Accepted: 08/06/2022] [Indexed: 11/29/2022]
Abstract
Our recent studies suggest that arsenite stimulates the crosstalk between the inositol 1, 4, 5-triphosphate receptor (IP3R) and the ryanodine receptor (RyR) via a mechanism dependent on endoplasmic reticulum (ER) oxidoreductin1α (ERO1α) up-regulation. Under these conditions, the fraction of Ca2+ released by the RyR via an ERO1α-dependent mechanism was promptly cleared by the mitochondria and critically mediated O2-. formation, responsible for the triggering of time-dependent events associated with strand scission of genomic DNA and delayed mitochondrial apoptosis. We herein report that, in differentiated C2C12 cells, this sequence of events can be intercepted by genetic deletion of ERO1α as well as by EN460, an inhibitor of ERO1α activity. Similar results were obtained for the early effects mediated by arsenite in proliferating U937 cells, in which however the long-term studies were hampered by the intrinsic toxicity of the inhibitor. It was then interesting to observe that ISRIB, an inhibitor of p-eIF2 alpha, was in both cell types devoid of intrinsic toxicity and able to suppress ERO1α expression and the resulting downstream effects leading to arsenite geno- and cyto-toxicity. We therefore conclude that pharmacological inhibition of ERO1α activity, or expression, effectively counteracts the deleterious effects induced by the metalloid via a mechanism associated with prevention of mitochondrial O2-. formation.
Collapse
Affiliation(s)
- Andrea Guidarelli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Andrea Spina
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Mara Fiorani
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Ester Zito
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy; Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Orazio Cantoni
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy.
| |
Collapse
|
83
|
Wolzak K, Nölle A, Farina M, Abbink TE, van der Knaap MS, Verhage M, Scheper W. Neuron-specific translational control shift ensures proteostatic resilience during ER stress. EMBO J 2022; 41:e110501. [PMID: 35791631 PMCID: PMC9379547 DOI: 10.15252/embj.2021110501] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 06/06/2022] [Accepted: 06/09/2022] [Indexed: 11/30/2022] Open
Abstract
Proteostasis is essential for cellular survival and particularly important for highly specialised post‐mitotic cells such as neurons. Transient reduction in protein synthesis by protein kinase R‐like endoplasmic reticulum (ER) kinase (PERK)‐mediated phosphorylation of eukaryotic translation initiation factor 2α (p‐eIF2α) is a major proteostatic survival response during ER stress. Paradoxically, neurons are remarkably tolerant to PERK dysfunction, which suggests the existence of cell type‐specific mechanisms that secure proteostatic stress resilience. Here, we demonstrate that PERK‐deficient neurons, unlike other cell types, fully retain the capacity to control translation during ER stress. We observe rescaling of the ATF4 response, while the reduction in protein synthesis is fully retained. We identify two molecular pathways that jointly drive translational control in PERK‐deficient neurons. Haem‐regulated inhibitor (HRI) mediates p‐eIF2α and the ATF4 response and is complemented by the tRNA cleaving RNase angiogenin (ANG) to reduce protein synthesis. Overall, our study elucidates an intricate back‐up mechanism to ascertain translational control during ER stress in neurons that provides a mechanistic explanation for the thus far unresolved observation of neuronal resilience to proteostatic stress.
Collapse
Affiliation(s)
- Kimberly Wolzak
- Department of Functional Genomics, Faculty of Science, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit (VU) Amsterdam, Amsterdam, The Netherlands.,Functional Genomics Section, Department of Human Genetics, Amsterdam University Medical Centers (UMC) Location Vrije Universiteit, Amsterdam, The Netherlands
| | - Anna Nölle
- Department of Pathology, Amsterdam University Medical Centers (UMC) Location Vrije Universiteit, Amsterdam, The Netherlands
| | - Margherita Farina
- Department of Functional Genomics, Faculty of Science, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit (VU) Amsterdam, Amsterdam, The Netherlands
| | - Truus Em Abbink
- Department of Child Neurology, Amsterdam University Medical Centers (UMC) Location Vrije Universiteit, Amsterdam, The Netherlands
| | - Marjo S van der Knaap
- Department of Functional Genomics, Faculty of Science, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit (VU) Amsterdam, Amsterdam, The Netherlands.,Department of Child Neurology, Amsterdam University Medical Centers (UMC) Location Vrije Universiteit, Amsterdam, The Netherlands
| | - Matthijs Verhage
- Department of Functional Genomics, Faculty of Science, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit (VU) Amsterdam, Amsterdam, The Netherlands.,Functional Genomics Section, Department of Human Genetics, Amsterdam University Medical Centers (UMC) Location Vrije Universiteit, Amsterdam, The Netherlands
| | - Wiep Scheper
- Department of Functional Genomics, Faculty of Science, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit (VU) Amsterdam, Amsterdam, The Netherlands.,Functional Genomics Section, Department of Human Genetics, Amsterdam University Medical Centers (UMC) Location Vrije Universiteit, Amsterdam, The Netherlands
| |
Collapse
|
84
|
The role of eIF2 phosphorylation in cell and organismal physiology: new roles for well-known actors. Biochem J 2022; 479:1059-1082. [PMID: 35604373 DOI: 10.1042/bcj20220068] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/21/2022] [Accepted: 04/25/2022] [Indexed: 02/06/2023]
Abstract
Control of protein synthesis (mRNA translation) plays key roles in shaping the proteome and in many physiological, including homeostatic, responses. One long-known translational control mechanism involves phosphorylation of initiation factor, eIF2, which is catalysed by any one of four protein kinases, which are generally activated in response to stresses. They form a key arm of the integrated stress response (ISR). Phosphorylated eIF2 inhibits eIF2B (the protein that promotes exchange of eIF2-bound GDP for GTP) and thus impairs general protein synthesis. However, this mechanism actually promotes translation of certain mRNAs by virtue of specific features they possess. Recent work has uncovered many previously unknown features of this regulatory system. Several studies have yielded crucial insights into the structure and control of eIF2, including that eIF2B is regulated by several metabolites. Recent studies also reveal that control of eIF2 and the ISR helps determine organismal lifespan and surprising roles in sensing mitochondrial stresses and in controlling the mammalian target of rapamycin (mTOR). The latter effect involves an unexpected role for one of the eIF2 kinases, HRI. Phosphoproteomic analysis identified new substrates for another eIF2 kinase, Gcn2, which senses the availability of amino acids. Several genetic disorders arise from mutations in genes for eIF2α kinases or eIF2B (i.e. vanishing white matter disease, VWM and microcephaly, epileptic seizures, microcephaly, hypogenitalism, diabetes and obesity, MEHMO). Furthermore, the eIF2-mediated ISR plays roles in cognitive decline associated with Alzheimer's disease. New findings suggest potential therapeutic value in interfering with the ISR in certain settings, including VWM, for example by using compounds that promote eIF2B activity.
Collapse
|
85
|
Regulation and function of elF2B in neurological and metabolic disorders. Biosci Rep 2022; 42:231311. [PMID: 35579296 PMCID: PMC9208314 DOI: 10.1042/bsr20211699] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/28/2022] [Accepted: 05/12/2022] [Indexed: 11/27/2022] Open
Abstract
Eukaryotic initiation factor 2B, eIF2B is a guanine nucleotide exchange, factor with a central role in coordinating the initiation of translation. During stress and disease, the activity of eIF2B is inhibited via the phosphorylation of its substrate eIF2 (p-eIF2α). A number of different kinases respond to various stresses leading to the phosphorylation of the alpha subunit of eIF2, and collectively this regulation is known as the integrated stress response, ISR. This targeting of eIF2B allows the cell to regulate protein synthesis and reprogramme gene expression to restore homeostasis. Advances within structural biology have furthered our understanding of how eIF2B interacts with eIF2 in both the productive GEF active form and the non-productive eIF2α phosphorylated form. Here, current knowledge of the role of eIF2B in the ISR is discussed within the context of normal and disease states focusing particularly on diseases such as vanishing white matter disease (VWMD) and permanent neonatal diabetes mellitus (PNDM), which are directly linked to mutations in eIF2B. The role of eIF2B in synaptic plasticity and memory formation is also discussed. In addition, the cellular localisation of eIF2B is reviewed and considered along with the role of additional in vivo eIF2B binding factors and protein modifications that may play a role in modulating eIF2B activity during health and disease.
Collapse
|
86
|
Weng A, Maciel Herrerias M, Watanabe S, Welch LC, Flozak AS, Grant RA, Aillon RP, Dada LA, Han SH, Hinchcliff M, Misharin AV, Budinger GRS, Gottardi CJ. Lung Injury Induces Alveolar Type 2 Cell Hypertrophy and Polyploidy with Implications for Repair and Regeneration. Am J Respir Cell Mol Biol 2022; 66:564-576. [PMID: 35202558 PMCID: PMC9116356 DOI: 10.1165/rcmb.2021-0356oc] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Epithelial polyploidization after injury is a conserved phenomenon recently shown to improve barrier restoration during wound healing. Whether lung injury can induce alveolar epithelial polyploidy is not known. We show that bleomycin injury induces alveolar type 2 cell (AT2) hypertrophy and polyploidy. AT2 polyploidization is also seen in short term ex vivo cultures, where AT2-to-AT1 transdifferentiation is associated with substantial binucleation due to failed cytokinesis. Both hypertrophic and polyploid features of AT2 cells can be attenuated by inhibiting the integrated stress response using the small molecule ISRIB. These data suggest that AT2 hypertrophic growth and polyploidization may be a feature of alveolar epithelial injury. Because AT2 cells serve as facultative progenitors for the distal lung epithelium, a propensity for injury-induced binucleation has implications for AT2 self-renewal and regenerative potential upon reinjury, which may benefit from targeting the integrated stress response.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Monique Hinchcliff
- Division of Rheumatology, Allergy and Immunology, Department of Medicine, Yale University School of Medicine New Haven, Connecticut
| | | | | | - Cara J. Gottardi
- Department of Pulmonary Medicine and,Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois; and
| |
Collapse
|
87
|
Boone M, Wang L, Lawrence RE, Frost A, Walter P, Schoof M. A point mutation in the nucleotide exchange factor eIF2B constitutively activates the integrated stress response by allosteric modulation. eLife 2022; 11:e76171. [PMID: 35416150 PMCID: PMC9132573 DOI: 10.7554/elife.76171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
In eukaryotic cells, stressors reprogram the cellular proteome by activating the integrated stress response (ISR). In its canonical form, stress-sensing kinases phosphorylate the eukaryotic translation initiation factor eIF2 (eIF2-P), which ultimately leads to reduced levels of ternary complex required for initiation of mRNA translation. Previously we showed that translational control is primarily exerted through a conformational switch in eIF2's nucleotide exchange factor, eIF2B, which shifts from its active A-State conformation to its inhibited I-State conformation upon eIF2-P binding, resulting in reduced nucleotide exchange on eIF2 (Schoof et al. 2021). Here, we show functionally and structurally how a single histidine to aspartate point mutation in eIF2B's β subunit (H160D) mimics the effects of eIF2-P binding by promoting an I-State like conformation, resulting in eIF2-P independent activation of the ISR. These findings corroborate our previously proposed A/I-State model of allosteric ISR regulation.
Collapse
Affiliation(s)
- Morgane Boone
- Howard Hughes Medical Institute, University of California at San FranciscoSan FranciscoUnited States
- Department of Biochemistry and Biophysics, University of California at San FranciscoSan FranciscoUnited States
| | - Lan Wang
- Howard Hughes Medical Institute, University of California at San FranciscoSan FranciscoUnited States
- Department of Biochemistry and Biophysics, University of California at San FranciscoSan FranciscoUnited States
| | - Rosalie E Lawrence
- Howard Hughes Medical Institute, University of California at San FranciscoSan FranciscoUnited States
- Department of Biochemistry and Biophysics, University of California at San FranciscoSan FranciscoUnited States
| | - Adam Frost
- Department of Biochemistry and Biophysics, University of California at San FranciscoSan FranciscoUnited States
- Chan Zuckerberg BiohubSan FranciscoUnited States
| | - Peter Walter
- Howard Hughes Medical Institute, University of California at San FranciscoSan FranciscoUnited States
- Department of Biochemistry and Biophysics, University of California at San FranciscoSan FranciscoUnited States
| | - Michael Schoof
- Howard Hughes Medical Institute, University of California at San FranciscoSan FranciscoUnited States
- Department of Biochemistry and Biophysics, University of California at San FranciscoSan FranciscoUnited States
| |
Collapse
|
88
|
Flurochloridone Induced Cell Apoptosis via ER Stress and eIF2α-ATF4/ATF6-CHOP-Bim/Bax Signaling Pathways in Mouse TM4 Sertoli Cells. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19084564. [PMID: 35457433 PMCID: PMC9024663 DOI: 10.3390/ijerph19084564] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/03/2022] [Accepted: 04/05/2022] [Indexed: 02/06/2023]
Abstract
Flurochloridone (FLC), as a novel herbicide, has been widely used in many countries since 1980s. Current studies have shown that FLC has toxic effects on male reproduction and its target organ is testis, while the underlying mechanism is still unknown. Mouse testis Sertoli cell line TM4 cells were used as an in vitro model and treated with FLC at different doses (40, 80, 160 μM) for different times (6, 12, 24 h). Cell viability, cytotoxicity and apoptotic cells were detected by CCK-8 assay, LDH leakage assay and flow cytometry. The protein levels of GRP78, phosphorylated-eIF2α, ATF4, ATF6, CHOP, Bim and Bax were observed by Western Blot and Immunofluorescence staining. FLC inhibited cell viability and induced cytotoxicity in dose-dependent way in TM4 cells. The percentage of apoptotic cells were 6.2% ± 0.6%, 7.3% ± 0.3%, 9.8% ± 0.4%, 13.2% ± 0.2%, respectively. The expression levels of ER stress and UPR related proteins were activated over dose. Meanwhile, the pro-apoptotic proteins (Bim and Bax) were also up-regulated in dose-dependent. After pretreated with ISRIB, the inhibitor of eIF2α phosphorylation, the elevated expression of GRP78, phosphorylated-eIF2α, ATF4, ATF6, CHOP and Bim was down to normal level accordingly. In conclusion, FLC induced apoptosis in TM4 cells mediated by UPR signaling pathways.
Collapse
|
89
|
Hyun SA, Lee YJ, Jang S, Ko MY, Lee CY, Cho YW, Yun YE, Lee BS, Seo JW, Moon KS, Ka M. Adipose stem cell-derived extracellular vesicles ameliorates corticosterone-induced apoptosis in the cortical neurons via inhibition of ER stress. Stem Cell Res Ther 2022; 13:110. [PMID: 35313975 PMCID: PMC8935810 DOI: 10.1186/s13287-022-02785-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 01/03/2022] [Indexed: 12/29/2022] Open
Abstract
Background Corticosterone (CORT) can induce neuronal damage in various brain regions, including the cerebral cortex, the region implicated in depression. However, the underlying mechanisms of these CORT-induced effects remain poorly understood. Recently, many studies have suggested that adipose stem cell-derived extracellular vesicles (A-EVs) protect neurons in the brain.
Methods To investigated neuroprotection effects of A-EVs in the CORT-induced cortical neurons, we cultured cortical neurons from E15 mice for 7 days, and the cultured cortical neurons were pretreated with different numbers (5 × 105–107 per mL) of A-EVs (A-EVs5, A-EVs6, A-EVs7) for 30 min followed by administration of 200 μM CORT for 24 h. Results Here, we show that A-EVs exert antiapoptotic effects by inhibiting endoplasmic reticulum (ER) stress in CORT-induced cortical neurons. We found that A-EVs prevented neuronal cell death induced by CORT in cultured cortical neurons. More importantly, we found that CORT exposure in cortical neurons resulted in increased levels of apoptosis-related proteins such as cleaved caspase-3. However, pretreatment with A-EVs rescued the levels of caspase-3. Intriguingly, CORT-induced apoptosis involved upstream activation of ER stress proteins such as GRP78, CHOP and ATF4. However, pretreatment with A-EVs inhibited ER stress-related protein expression. Conclusion Our findings reveal that A-EVs exert antiapoptotic effects via inhibition of ER stress in CORT-induced cell death.
Collapse
Affiliation(s)
- Sung-Ae Hyun
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, KRICT, Daejeon, 34114, Republic of Korea
| | - Young Ju Lee
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, KRICT, Daejeon, 34114, Republic of Korea
| | - Sumi Jang
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, KRICT, Daejeon, 34114, Republic of Korea
| | - Moon Yi Ko
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, KRICT, Daejeon, 34114, Republic of Korea
| | - Chang Youn Lee
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, KRICT, Daejeon, 34114, Republic of Korea
| | - Yong Woo Cho
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan, 15588, Republic of Korea
| | - Ye Eun Yun
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan, 15588, Republic of Korea
| | - Byoung-Seok Lee
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, KRICT, Daejeon, 34114, Republic of Korea
| | - Joung-Wook Seo
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, KRICT, Daejeon, 34114, Republic of Korea
| | - Kyoung-Sik Moon
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, KRICT, Daejeon, 34114, Republic of Korea.
| | - Minhan Ka
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, KRICT, Daejeon, 34114, Republic of Korea.
| |
Collapse
|
90
|
Biancon G, Joshi P, Zimmer JT, Hunck T, Gao Y, Lessard MD, Courchaine E, Barentine AES, Machyna M, Botti V, Qin A, Gbyli R, Patel A, Song Y, Kiefer L, Viero G, Neuenkirchen N, Lin H, Bewersdorf J, Simon MD, Neugebauer KM, Tebaldi T, Halene S. Precision analysis of mutant U2AF1 activity reveals deployment of stress granules in myeloid malignancies. Mol Cell 2022; 82:1107-1122.e7. [PMID: 35303483 PMCID: PMC8988922 DOI: 10.1016/j.molcel.2022.02.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 12/21/2021] [Accepted: 02/15/2022] [Indexed: 12/13/2022]
Abstract
Splicing factor mutations are common among cancers, recently emerging as drivers of myeloid malignancies. U2AF1 carries hotspot mutations in its RNA-binding motifs; however, how they affect splicing and promote cancer remain unclear. The U2AF1/U2AF2 heterodimer is critical for 3' splice site (3'SS) definition. To specifically unmask changes in U2AF1 function in vivo, we developed a crosslinking and immunoprecipitation procedure that detects contacts between U2AF1 and the 3'SS AG at single-nucleotide resolution. Our data reveal that the U2AF1 S34F and Q157R mutants establish new 3'SS contacts at -3 and +1 nucleotides, respectively. These effects compromise U2AF2-RNA interactions, resulting predominantly in intron retention and exon exclusion. Integrating RNA binding, splicing, and turnover data, we predicted that U2AF1 mutations directly affect stress granule components, which was corroborated by single-cell RNA-seq. Remarkably, U2AF1-mutant cell lines and patient-derived MDS/AML blasts displayed a heightened stress granule response, pointing to a novel role for biomolecular condensates in adaptive oncogenic strategies.
Collapse
Affiliation(s)
- Giulia Biancon
- Section of Hematology, Department of Internal Medicine, Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, USA.
| | - Poorval Joshi
- Section of Hematology, Department of Internal Medicine, Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, USA
| | - Joshua T Zimmer
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT, USA; Institute for Biomolecular Design and Discovery, Yale University, West Haven, CT, USA
| | - Torben Hunck
- Section of Hematology, Department of Internal Medicine, Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, USA
| | - Yimeng Gao
- Section of Hematology, Department of Internal Medicine, Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, USA
| | - Mark D Lessard
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Edward Courchaine
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT, USA
| | - Andrew E S Barentine
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA; Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Martin Machyna
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT, USA
| | - Valentina Botti
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT, USA
| | - Ashley Qin
- Section of Hematology, Department of Internal Medicine, Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, USA
| | - Rana Gbyli
- Section of Hematology, Department of Internal Medicine, Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, USA
| | - Amisha Patel
- Section of Hematology, Department of Internal Medicine, Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, USA
| | - Yuanbin Song
- Section of Hematology, Department of Internal Medicine, Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, USA; Department of Hematologic Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Lea Kiefer
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | | | - Nils Neuenkirchen
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA; Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, USA
| | - Haifan Lin
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA; Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, USA; Yale Center for RNA Science and Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Joerg Bewersdorf
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA; Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Matthew D Simon
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT, USA; Yale Center for RNA Science and Medicine, Yale University School of Medicine, New Haven, CT, USA; Institute for Biomolecular Design and Discovery, Yale University, West Haven, CT, USA
| | - Karla M Neugebauer
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT, USA; Yale Center for RNA Science and Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Toma Tebaldi
- Section of Hematology, Department of Internal Medicine, Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, USA; Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy.
| | - Stephanie Halene
- Section of Hematology, Department of Internal Medicine, Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, USA; Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, USA; Yale Center for RNA Science and Medicine, Yale University School of Medicine, New Haven, CT, USA; Department of Pathology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
91
|
Inhibition of the ISR abrogates mGluR5-dependent long-term depression and spatial memory deficits in a rat model of Alzheimer's disease. Transl Psychiatry 2022; 12:96. [PMID: 35260557 PMCID: PMC8904583 DOI: 10.1038/s41398-022-01862-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 02/18/2022] [Accepted: 02/18/2022] [Indexed: 12/13/2022] Open
Abstract
Soluble amyloid-β-protein (Aβ) oligomers, a major hallmark of AD, trigger the integrated stress response (ISR) via multiple pathologies including neuronal hyperactivation, microvascular hypoxia, and neuroinflammation. Increasing eIF2α phosphorylation, the core event of ISR, facilitates metabotropic glutamate receptor (mGluR)-dependent long-term depression (LTD), and suppressing its phosphorylation has the opposite effect. Having found the facilitation of mGluR5-LTD by Aβ in live rats, we wondered if suppressing eIF2α phosphorylation cascade would protect against the synaptic plasticity and cognitive disrupting effects of Aβ. We demonstrate here that the facilitation of mGluR5-LTD in a delayed rat model by single i.c.v. injection of synthetic Aβ1-42. Systemic administration of the small-molecule inhibitor of the ISR called ISRIB (trans-isomer) prevents Aβ-facilitated LTD and abrogates spatial learning and memory deficits in the hippocampus in exogenous synthetic Aβ-injected rats. Moreover, ex vivo evidence indicates that ISRIB normalizes protein synthesis in the hippocampus. Targeting the ISR by suppressing the eIF2α phosphorylation cascade with the eIF2B activator ISRIB may provide protective effects against the synaptic and cognitive disruptive effects of Aβ which likely mediate the early stage of sporadic AD.
Collapse
|
92
|
Machlovi SI, Neuner SM, Hemmer BM, Khan R, Liu Y, Huang M, Zhu JD, Castellano JM, Cai D, Marcora E, Goate AM. APOE4 confers transcriptomic and functional alterations to primary mouse microglia. Neurobiol Dis 2022; 164:105615. [PMID: 35031484 PMCID: PMC8934202 DOI: 10.1016/j.nbd.2022.105615] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 12/09/2021] [Accepted: 01/05/2022] [Indexed: 12/12/2022] Open
Abstract
Common genetic variants in more than forty loci modulate risk for Alzheimer's disease (AD). AD risk alleles are enriched within enhancers active in myeloid cells, suggesting that microglia, the brain-resident macrophages, may play a key role in the etiology of AD. A major genetic risk factor for AD is Apolipoprotein E (APOE) genotype, with the ε4/ε4 (E4) genotype increasing risk for AD by approximately 15 fold compared to the most common ε3/ε3 (E3) genotype. However, the impact of APOE genotype on microglial function has not been thoroughly investigated. To address this, we cultured primary microglia from mice in which both alleles of the mouse Apoe gene have been humanized to encode either human APOE ε3 or APOE ε4. Relative to E3 microglia, E4 microglia exhibit altered morphology, increased endolysosomal mass, increased cytokine/chemokine production, and increased lipid and lipid droplet accumulation at baseline. These changes were accompanied by decreased translation and increased phosphorylation of eIF2ɑ and eIF2ɑ-kinases that participate in the integrated stress response, suggesting that E4 genotype leads to elevated levels of cellular stress in microglia relative to E3 genotype. Using live-cell imaging and flow cytometry, we also show that E4 microglia exhibited increased phagocytic uptake of myelin and other substrates compared to E3 microglia. While transcriptomic profiling of myelin-challenged microglia revealed a largely overlapping response profile across genotypes, differential enrichment of genes in interferon signaling, extracellular matrix and translation-related pathways was identified in E4 versus E3 microglia both at baseline and following myelin challenge. Together, our results suggest E4 genotype confers several important functional alterations to microglia even prior to myelin challenge, providing insight into the molecular and cellular mechanisms by which APOE4 may increase risk for AD.
Collapse
Affiliation(s)
- Saima I Machlovi
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Ronald M. Loeb Center for Alzheimer's Disease, Nash Family Department of Neuroscience, Friedman Brain Institute, New York, NY, USA; Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sarah M Neuner
- Ronald M. Loeb Center for Alzheimer's Disease, Nash Family Department of Neuroscience, Friedman Brain Institute, New York, NY, USA; Department of Genetics and Genomic Sciences, New York, NY, USA; Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Brittany M Hemmer
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Ronald M. Loeb Center for Alzheimer's Disease, Nash Family Department of Neuroscience, Friedman Brain Institute, New York, NY, USA; Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Riana Khan
- Ronald M. Loeb Center for Alzheimer's Disease, Nash Family Department of Neuroscience, Friedman Brain Institute, New York, NY, USA; Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yiyuan Liu
- Ronald M. Loeb Center for Alzheimer's Disease, Nash Family Department of Neuroscience, Friedman Brain Institute, New York, NY, USA; Department of Genetics and Genomic Sciences, New York, NY, USA; Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Min Huang
- James J Peters VA Medical Center, Research & Development, Bronx, NY, USA; Department of Neurology, New York, NY, USA; Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jeffrey D Zhu
- Ronald M. Loeb Center for Alzheimer's Disease, Nash Family Department of Neuroscience, Friedman Brain Institute, New York, NY, USA; Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Joseph M Castellano
- Ronald M. Loeb Center for Alzheimer's Disease, Nash Family Department of Neuroscience, Friedman Brain Institute, New York, NY, USA; Department of Neurology, New York, NY, USA; Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dongming Cai
- Ronald M. Loeb Center for Alzheimer's Disease, Nash Family Department of Neuroscience, Friedman Brain Institute, New York, NY, USA; James J Peters VA Medical Center, Research & Development, Bronx, NY, USA; Department of Neurology, New York, NY, USA; Alzheimer Disease Research Center, New York, NY, USA; Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Edoardo Marcora
- Ronald M. Loeb Center for Alzheimer's Disease, Nash Family Department of Neuroscience, Friedman Brain Institute, New York, NY, USA; Department of Genetics and Genomic Sciences, New York, NY, USA; Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alison M Goate
- Ronald M. Loeb Center for Alzheimer's Disease, Nash Family Department of Neuroscience, Friedman Brain Institute, New York, NY, USA; Department of Genetics and Genomic Sciences, New York, NY, USA; Department of Neurology, New York, NY, USA; Alzheimer Disease Research Center, New York, NY, USA; Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
93
|
Yakovlev OA, Yudin MA, Chepur SV, Vengerovich NG, Stepanov AV, Babkin AA. Non-Specific Targets for Correction of Pneumonia Caused by Aerosols Containing Damaging Factors of Various Nature. BIOLOGY BULLETIN REVIEWS 2022; 12. [PMCID: PMC9749646 DOI: 10.1134/s207908642206010x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This review article provides data on the current state of the pathogenesis peculiarities of body and lung inflammation (pneumonia) under the influence of damaging factors of various nature: infectious agents, chemical toxicants, as well as incorporated radionuclides, etc. The peculiarities of inflammation itself, as a typical pathological process, are considered. Information on mediators that induce the so-called pro-resolving phase of inflammation manifestations is given. Approaches to the neuroimmune correction of non-specific inflammation are substantiated. Data on the following alternative approaches to the correction of nonspecific inflammation are summarized: factors of the coagulation system, modulators of the integrated stress response, and modulators of sigma-1 receptors. Based on the data presented, general directions for the treatment of nonspecific pneumonia are formulated, including reflexogenic and anti-inflammatory therapy in combination with multimodal drugs, as well as pro-resolving therapy in combination with drugs that prevent fibrosis.
Collapse
Affiliation(s)
- O. A. Yakovlev
- State Research Experimental Institute of Military Medicine, 198515 St. Petersburg, Russia
| | - M. A. Yudin
- State Research Experimental Institute of Military Medicine, 198515 St. Petersburg, Russia ,North-Western State Medical University named after I.I. Mechnikov, 195067 St. Petersburg, Russia
| | - S. V. Chepur
- State Research Experimental Institute of Military Medicine, 198515 St. Petersburg, Russia
| | - N. G. Vengerovich
- State Research Experimental Institute of Military Medicine, 198515 St. Petersburg, Russia ,Saint-Petersburg State Chemical Pharmaceutical University, 197376 St. Petersburg, Russia
| | - A. V. Stepanov
- State Research Experimental Institute of Military Medicine, 198515 St. Petersburg, Russia
| | - A. A. Babkin
- State Research Experimental Institute of Military Medicine, 198515 St. Petersburg, Russia
| |
Collapse
|
94
|
Sekine Y, Ron D, Zyryanova AF. Fluorescence Intensity-Based eIF2B's Guanine Nucleotide-Exchange Factor Activity Assay. Methods Mol Biol 2022; 2428:187-196. [PMID: 35171481 DOI: 10.1007/978-1-0716-1975-9_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Guanine nucleotide-exchange factors (GEFs) activate the function of guanine nucleotide-binding proteins (G-proteins) by promoting the exchange of GDP for GTP on the latter. Here, we describe a protocol for in vitro measurements of the GEF activity of eukaryotic translation initiation factor 2B, eIF2B, toward its substrate eIF2. This protocol provides a relatively simple method for determining the eIF2B's GEF activity in crude cell extracts. The eIF2 heterotrimeric substrate, with phosphorylated or unphosphorylated eIF2α, is prepared by immunoprecipitation, following subsequent loading of a fluorescent BODIPY-FL dye-attached GDP. The exchange of the bound fluorescent GDP molecule for an unlabeled one on eIF2 promoted by eIF2B is monitored kinetically using a fluorescence microplate reader.
Collapse
Affiliation(s)
- Yusuke Sekine
- Division of Endocrinology and Metabolism, Department of Medicine, Aging Institute, University of Pittsburgh, Pittsburgh, PA, USA.
| | - David Ron
- Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, UK
| | - Alisa F Zyryanova
- Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, UK
| |
Collapse
|
95
|
Kershaw CJ, Jennings MD, Cortopassi F, Guaita M, Al-Ghafli H, Pavitt GD. GTP binding to translation factor eIF2B stimulates its guanine nucleotide exchange activity. iScience 2021; 24:103454. [PMID: 34877508 PMCID: PMC8633983 DOI: 10.1016/j.isci.2021.103454] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/26/2021] [Accepted: 11/11/2021] [Indexed: 01/23/2023] Open
Abstract
eIF2B is the guanine nucleotide exchange factor (GEF) required for cytoplasmic protein synthesis initiation in eukaryotes and its regulation within the integrated stress response (ISR). It activates its partner factor eIF2, thereby promoting translation initiation. Here we provide evidence through biochemical and genetic approaches that eIF2B can bind directly to GTP and this can enhance its rate of GEF activity toward eIF2–GDP in vitro. GTP binds to a subcomplex of the eIF2Bγ and ε subunits. The eIF2Bγ amino-terminal domain shares structural homology with hexose sugar phosphate pyrophosphorylase enzymes that bind specific nucleotides. A K66R mutation in eIF2Bγ is especially sensitive to guanine or GTP in a range of functional assays. Taken together, our data suggest eIF2Bγ may act as a sensor of purine nucleotide availability and thus modulate eIF2B activity and protein synthesis in response to fluctuations in cellular nucleotide levels. eIF2B, the GDP exchange factor for eIF2 in translation and its control, binds GTP GTP binding enhances the rate of eIF2B GEF activity toward eIF2–GDP in vitro A K66R mutation in yeast eIF2Bγ is sensitive to guanine in vivo or GTP in vitro eIF2B may act as a sensor of purine nucleotide availability
Collapse
Affiliation(s)
- Christopher J Kershaw
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK
| | - Martin D Jennings
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK
| | - Francesco Cortopassi
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK
| | - Margherita Guaita
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK
| | - Hawra Al-Ghafli
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK
| | - Graham D Pavitt
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK
| |
Collapse
|
96
|
Schoof M, Wang L, Cogan JZ, Lawrence RE, Boone M, Wuerth JD, Frost A, Walter P. Viral evasion of the integrated stress response through antagonism of eIF2-P binding to eIF2B. Nat Commun 2021; 12:7103. [PMID: 34876554 PMCID: PMC8651678 DOI: 10.1038/s41467-021-26164-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 09/17/2021] [Indexed: 01/07/2023] Open
Abstract
Viral infection triggers activation of the integrated stress response (ISR). In response to viral double-stranded RNA (dsRNA), RNA-activated protein kinase (PKR) phosphorylates the translation initiation factor eIF2, converting it from a translation initiator into a potent translation inhibitor and this restricts the synthesis of viral proteins. Phosphorylated eIF2 (eIF2-P) inhibits translation by binding to eIF2's dedicated, heterodecameric nucleotide exchange factor eIF2B and conformationally inactivating it. We show that the NSs protein of Sandfly Fever Sicilian virus (SFSV) allows the virus to evade the ISR. Mechanistically, NSs tightly binds to eIF2B (KD = 30 nM), blocks eIF2-P binding, and rescues eIF2B GEF activity. Cryo-EM structures demonstrate that SFSV NSs and eIF2-P directly compete, with the primary NSs contacts to eIF2Bα mediated by five 'aromatic fingers'. NSs binding preserves eIF2B activity by maintaining eIF2B's conformation in its active A-State.
Collapse
Affiliation(s)
- Michael Schoof
- Howard Hughes Medical Institute, University of California at San Francisco, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, CA, USA
| | - Lan Wang
- Howard Hughes Medical Institute, University of California at San Francisco, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, CA, USA
| | - J Zachery Cogan
- Howard Hughes Medical Institute, University of California at San Francisco, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, CA, USA
| | - Rosalie E Lawrence
- Howard Hughes Medical Institute, University of California at San Francisco, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, CA, USA
| | - Morgane Boone
- Howard Hughes Medical Institute, University of California at San Francisco, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, CA, USA
| | | | - Adam Frost
- Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Peter Walter
- Howard Hughes Medical Institute, University of California at San Francisco, San Francisco, CA, USA.
- Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, CA, USA.
| |
Collapse
|
97
|
Kashiwagi K, Shichino Y, Osaki T, Sakamoto A, Nishimoto M, Takahashi M, Mito M, Weber F, Ikeuchi Y, Iwasaki S, Ito T. eIF2B-capturing viral protein NSs suppresses the integrated stress response. Nat Commun 2021; 12:7102. [PMID: 34876589 PMCID: PMC8651795 DOI: 10.1038/s41467-021-27337-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 11/14/2021] [Indexed: 12/17/2022] Open
Abstract
Various stressors such as viral infection lead to the suppression of cap-dependent translation and the activation of the integrated stress response (ISR), since the stress-induced phosphorylated eukaryotic translation initiation factor 2 [eIF2(αP)] tightly binds to eIF2B to prevent it from exchanging guanine nucleotide molecules on its substrate, unphosphorylated eIF2. Sandfly fever Sicilian virus (SFSV) evades this cap-dependent translation suppression through the interaction between its nonstructural protein NSs and host eIF2B. However, its precise mechanism has remained unclear. Here, our cryo-electron microscopy (cryo-EM) analysis reveals that SFSV NSs binds to the α-subunit of eIF2B in a competitive manner with eIF2(αP). Together with SFSV NSs, eIF2B retains nucleotide exchange activity even in the presence of eIF2(αP), in line with the cryo-EM structures of the eIF2B•SFSV NSs•unphosphorylated eIF2 complex. A genome-wide ribosome profiling analysis clarified that SFSV NSs expressed in cultured human cells attenuates the ISR triggered by thapsigargin, an endoplasmic reticulum stress inducer. Furthermore, SFSV NSs introduced in rat hippocampal neurons and human induced-pluripotent stem (iPS) cell-derived motor neurons exhibits neuroprotective effects against the ISR-inducing stress. Since ISR inhibition is beneficial in various neurological disease models, SFSV NSs may be a promising therapeutic ISR inhibitor.
Collapse
Affiliation(s)
- Kazuhiro Kashiwagi
- Laboratory for Translation Structural Biology, RIKEN Center for Biosystems Dynamics Research, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Yuichi Shichino
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, 351-0198, Japan
| | - Tatsuya Osaki
- Institute of Industrial Science, The University of Tokyo, Meguro-ku, Tokyo, 153-8505, Japan
| | - Ayako Sakamoto
- Laboratory for Translation Structural Biology, RIKEN Center for Biosystems Dynamics Research, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Madoka Nishimoto
- Laboratory for Translation Structural Biology, RIKEN Center for Biosystems Dynamics Research, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Mari Takahashi
- Laboratory for Translation Structural Biology, RIKEN Center for Biosystems Dynamics Research, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Mari Mito
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, 351-0198, Japan
| | - Friedemann Weber
- Institute for Virology, FB10-Veterinary Medicine, Justus-Liebig University, Giessen, D-35392, Germany
| | - Yoshiho Ikeuchi
- Institute of Industrial Science, The University of Tokyo, Meguro-ku, Tokyo, 153-8505, Japan.
- Institute for AI and Beyond, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8655, Japan.
| | - Shintaro Iwasaki
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, 351-0198, Japan.
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, 277-8561, Japan.
| | - Takuhiro Ito
- Laboratory for Translation Structural Biology, RIKEN Center for Biosystems Dynamics Research, Tsurumi-ku, Yokohama, 230-0045, Japan.
| |
Collapse
|
98
|
Pharmacological targeting of endoplasmic reticulum stress in disease. Nat Rev Drug Discov 2021; 21:115-140. [PMID: 34702991 DOI: 10.1038/s41573-021-00320-3] [Citation(s) in RCA: 287] [Impact Index Per Article: 71.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2021] [Indexed: 02/08/2023]
Abstract
The accumulation of misfolded proteins in the endoplasmic reticulum (ER) leads to ER stress, resulting in activation of the unfolded protein response (UPR) that aims to restore protein homeostasis. However, the UPR also plays an important pathological role in many diseases, including metabolic disorders, cancer and neurological disorders. Over the last decade, significant effort has been invested in targeting signalling proteins involved in the UPR and an array of drug-like molecules is now available. However, these molecules have limitations, the understanding of which is crucial for their development into therapies. Here, we critically review the existing ER stress and UPR-directed drug-like molecules, highlighting both their value and their limitations.
Collapse
|
99
|
Yan Y, Harding HP, Ron D. Higher-order phosphatase-substrate contacts terminate the integrated stress response. Nat Struct Mol Biol 2021; 28:835-846. [PMID: 34625748 PMCID: PMC8500838 DOI: 10.1038/s41594-021-00666-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 08/23/2021] [Indexed: 01/09/2023]
Abstract
Many regulatory PPP1R subunits join few catalytic PP1c subunits to mediate phosphoserine and phosphothreonine dephosphorylation in metazoans. Regulatory subunits engage the surface of PP1c, locally affecting flexible access of the phosphopeptide to the active site. However, catalytic efficiency of holophosphatases towards their phosphoprotein substrates remains unexplained. Here we present a cryo-EM structure of the tripartite PP1c-PPP1R15A-G-actin holophosphatase that terminates signaling in the mammalian integrated stress response (ISR) in the pre-dephosphorylation complex with its substrate, translation initiation factor 2α (eIF2α). G-actin, whose essential role in eIF2α dephosphorylation is supported crystallographically, biochemically and genetically, aligns the catalytic and regulatory subunits, creating a composite surface that engages the N-terminal domain of eIF2α to position the distant phosphoserine-51 at the active site. Substrate residues that mediate affinity for the holophosphatase also make critical contacts with eIF2α kinases. Thus, a convergent process of higher-order substrate recognition specifies functionally antagonistic phosphorylation and dephosphorylation in the ISR.
Collapse
Affiliation(s)
- Yahui Yan
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Heather P Harding
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - David Ron
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK.
| |
Collapse
|
100
|
Licari E, Sánchez-Del-Campo L, Falletta P. The two faces of the Integrated Stress Response in cancer progression and therapeutic strategies. Int J Biochem Cell Biol 2021; 139:106059. [PMID: 34400318 DOI: 10.1016/j.biocel.2021.106059] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/08/2021] [Accepted: 08/10/2021] [Indexed: 01/05/2023]
Abstract
In recent years considerable progress has been made in identifying the impact of mRNA translation in tumour progression. Cancer cells hijack the pre-existing translation machinery to thrive under the adverse conditions originating from intrinsic oncogenic programs, that increase their energetic demand, and from the hostile microenvironment. A key translation program frequently dysregulated in cancer is the Integrated Stress Response, that reprograms translation by attenuating global protein synthesis to decrease metabolic demand while increasing translation of specific mRNAs that support survival, migration, immune escape. In this review we provide an overview of the Integrated Stress Response, emphasise its dual role during tumorigenesis and cancer progression, and highlight the therapeutic strategies available to target it.
Collapse
Affiliation(s)
| | - Luis Sánchez-Del-Campo
- Department of Biochemistry and Molecular Biology A, School of Biology, IMIB-University of Murcia, 30100, Spain
| | - Paola Falletta
- Experimental Imaging Center, IRCCS Ospedale San Raffaele, Milan, Italy.
| |
Collapse
|