51
|
García-Caballero M, Quesada AR, Medina MA, Marí-Beffa M. Fishing anti(lymph)angiogenic drugs with zebrafish. Drug Discov Today 2017; 23:366-374. [PMID: 29081356 DOI: 10.1016/j.drudis.2017.10.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Revised: 10/13/2017] [Accepted: 10/19/2017] [Indexed: 10/18/2022]
Abstract
Zebrafish, an amenable small teleost fish with a complex mammal-like circulatory system, is being increasingly used for drug screening and toxicity studies. It combines the biological complexity of in vivo models with a higher-throughput screening capability compared with other available animal models. Externally growing, transparent embryos, displaying well-defined blood and lymphatic vessels, allow the inexpensive, rapid, and automatable evaluation of drug candidates that are able to inhibit neovascularisation. Here, we briefly review zebrafish as a model for the screening of anti(lymph)angiogenic drugs, with emphasis on the advantages and limitations of the different zebrafish-based in vivo assays.
Collapse
Affiliation(s)
- Melissa García-Caballero
- Department of Molecular Biology and Biochemistry, Faculty of Sciences, and IBIMA (Biomedical Research Institute of Málaga), University of Málaga, Andalucía Tech, Málaga, Spain; Unit 741 of CIBER de Enfermedades Raras, Málaga, Spain
| | - Ana R Quesada
- Department of Molecular Biology and Biochemistry, Faculty of Sciences, and IBIMA (Biomedical Research Institute of Málaga), University of Málaga, Andalucía Tech, Málaga, Spain; Unit 741 of CIBER de Enfermedades Raras, Málaga, Spain
| | - Miguel A Medina
- Department of Molecular Biology and Biochemistry, Faculty of Sciences, and IBIMA (Biomedical Research Institute of Málaga), University of Málaga, Andalucía Tech, Málaga, Spain; Unit 741 of CIBER de Enfermedades Raras, Málaga, Spain.
| | - Manuel Marí-Beffa
- Department of Cellular Biology, Genetics and Physiology, Faculty of Sciences, University of Málaga, Málaga, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina, Málaga, Spain.
| |
Collapse
|
52
|
Whole-body imaging of lymphovascular niches identifies pre-metastatic roles of midkine. Nature 2017; 546:676-680. [PMID: 28658220 DOI: 10.1038/nature22977] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 05/25/2017] [Indexed: 12/14/2022]
Abstract
Cutaneous melanoma is a type of cancer with an inherent potential for lymph node colonization, which is generally preceded by neolymphangiogenesis. However, sentinel lymph node removal does not necessarily extend the overall survival of patients with melanoma. Moreover, lymphatic vessels collapse and become dysfunctional as melanomas progress. Therefore, it is unclear whether (and how) lymphangiogenesis contributes to visceral metastasis. Soluble and vesicle-associated proteins secreted by tumours and/or their stroma have been proposed to condition pre-metastatic sites in patients with melanoma. Still, the identities and prognostic value of lymphangiogenic mediators remain unclear. Moreover, our understanding of lymphangiogenesis (in melanomas and other tumour types) is limited by the paucity of mouse models for live imaging of distal pre-metastatic niches. Injectable lymphatic tracers have been developed, but their limited diffusion precludes whole-body imaging at visceral sites. Vascular endothelial growth factor receptor 3 (VEGFR3) is an attractive 'lymphoreporter' because its expression is strongly downregulated in normal adult lymphatic endothelial cells, but is activated in pathological situations such as inflammation and cancer. Here, we exploit this inducibility of VEGFR3 to engineer mouse melanoma models for whole-body imaging of metastasis generated by human cells, clinical biopsies or endogenously deregulated oncogenic pathways. This strategy revealed early induction of distal pre-metastatic niches uncoupled from lymphangiogenesis at primary lesions. Analyses of the melanoma secretome and validation in clinical specimens showed that the heparin-binding factor midkine is a systemic inducer of neo-lymphangiogenesis that defines patient prognosis. This role of midkine was linked to a paracrine activation of the mTOR pathway in lymphatic endothelial cells. These data support the use of VEGFR3 reporter mice as a 'MetAlert' discovery platform for drivers and inhibitors of metastasis.
Collapse
|
53
|
Nagao M, Hamilton JL, Kc R, Berendsen AD, Duan X, Cheong CW, Li X, Im HJ, Olsen BR. Vascular Endothelial Growth Factor in Cartilage Development and Osteoarthritis. Sci Rep 2017; 7:13027. [PMID: 29026147 PMCID: PMC5638804 DOI: 10.1038/s41598-017-13417-w] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 09/21/2017] [Indexed: 02/07/2023] Open
Abstract
Genome wide studies indicate that vascular endothelial growth factor A (VEGF) is associated with osteoarthritis (OA), and increased VEGF expression correlates with increased disease severity. VEGF is also a chondrocyte survival factor during development and essential for bone formation, skeletal growth and postnatal homeostasis. This raises questions of how the important embryonic and postnatal functions of VEGF can be reconciled with an apparently destructive role in OA. Addressing these questions, we find that VEGF acts as a survival factor in growth plate chondrocytes during development but only up until a few weeks after birth in mice. It is also required for postnatal differentiation of articular chondrocytes and the timely ossification of bones in joint regions. In surgically induced knee OA in mice, a model of post-traumatic OA in humans, increased expression of VEGF is associated with catabolic processes in chondrocytes and synovial cells. Conditional knock-down of Vegf attenuates induced OA. Intra-articular anti-VEGF antibodies suppress OA progression, reduce levels of phosphorylated VEGFR2 in articular chondrocytes and synovial cells and reduce levels of phosphorylated VEGFR1 in dorsal root ganglia. Finally, oral administration of the VEGFR2 kinase inhibitor Vandetanib attenuates OA progression.
Collapse
Affiliation(s)
- Masashi Nagao
- Department of Developmental Biology, Harvard School of Dental Medicine, 188 Longwood Avenue, Boston, MA, 02115, USA.
- Department of Orthopaedic Surgery, Juntendo University School of Medicine 2-1-1 Hongo Bunkyo-ku, Tokyo, 113-8421, Japan.
| | - John L Hamilton
- Department of Biochemistry, Rush University Medical Center, 1735 W, Harrison Street, Chicago, IL, 60612, USA
| | - Ranjan Kc
- Department of Biochemistry, Rush University Medical Center, 1735 W, Harrison Street, Chicago, IL, 60612, USA
| | - Agnes D Berendsen
- Department of Developmental Biology, Harvard School of Dental Medicine, 188 Longwood Avenue, Boston, MA, 02115, USA
| | - Xuchen Duan
- Department of Developmental Biology, Harvard School of Dental Medicine, 188 Longwood Avenue, Boston, MA, 02115, USA
| | - Chan Wook Cheong
- Department of Developmental Biology, Harvard School of Dental Medicine, 188 Longwood Avenue, Boston, MA, 02115, USA
| | - Xin Li
- Department of Biochemistry, Rush University Medical Center, 1735 W, Harrison Street, Chicago, IL, 60612, USA
| | - Hee-Jeong Im
- Jesse Brown Veterans Affairs (VA) Medical Center, 820S, Damen Avenue, Chicago, IL, 60612, USA.
- Department of Bioengineering, University of Illinois, Chicago, IL, 60612, USA.
| | - Bjorn R Olsen
- Department of Developmental Biology, Harvard School of Dental Medicine, 188 Longwood Avenue, Boston, MA, 02115, USA.
| |
Collapse
|
54
|
Mastri M, Rosario S, Tracz A, Frink RE, Brekken RA, Ebos JML. The Challenges of Modeling Drug Resistance to Antiangiogenic Therapy. Curr Drug Targets 2017; 17:1747-1754. [PMID: 26648063 DOI: 10.2174/1389450117666151209123544] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 11/11/2015] [Accepted: 11/11/2015] [Indexed: 02/08/2023]
Abstract
Drug resistance remains an ongoing challenge for the majority of patients treated with inhibitors of the vascular endothelial growth factor (VEGF) pathway, a key regulator of tumor angiogenesis. Preclinical models have played a significant role in identifying multiple complex mechanisms of antiangiogenic treatment failure. Yet questions remain about the optimal methodology to study resistance that may assist in making clinically relevant choices about alternative or combination treatment strategies. The origins of antiangiogenic treatment failure may stem from the tumor vasculature, the tumor itself, or both together, and preclinical methods that define resistance are diverse and rarely compared. We performed a literature search of the preclinical methodologies used to examine resistance to VEGF pathway inhibitors and identified 109 papers from more than 400 that use treatment failure as the starting point for mechanistic study. We found that definitions of resistance are broad and inconsistent, involve only a small number of reagents, and derive mostly from in vitro and in vivo methodologies that often do not represent clinically relevant disease stages or progression. Together, this literature analysis highlights the challenges of studying inhibitors of the tumor microenvironment in the preclinical setting and the need for improved methodology to assist in qualifying (and quantifying) treatment failure to identify mechanisms that will help predict alternative strategies in patients.
Collapse
Affiliation(s)
| | | | | | | | | | - John M L Ebos
- Department of Cancer Genetics and Medicine, Roswell Park Cancer Institute, Elm & Carlton Streets, Buffalo, NY 142631, USA
| |
Collapse
|
55
|
Zhang L, Wang Y, Rashid MH, Liu M, Angara K, Mivechi NF, Maihle NJ, Arbab AS, Ko L. Malignant pericytes expressing GT198 give rise to tumor cells through angiogenesis. Oncotarget 2017; 8:51591-51607. [PMID: 28881671 PMCID: PMC5584272 DOI: 10.18632/oncotarget.18196] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 05/01/2017] [Indexed: 12/21/2022] Open
Abstract
Angiogenesis promotes tumor development. Understanding the crucial factors regulating tumor angiogenesis may reveal new therapeutic targets. Human GT198 (PSMC3IP or Hop2) is an oncoprotein encoded by a DNA repair gene that is overexpressed in tumor stromal vasculature to stimulate the expression of angiogenic factors. Here we show that pericytes expressing GT198 give rise to tumor cells through angiogenesis. GT198+ pericytes and perivascular cells are commonly present in the stromal compartment of various human solid tumors and rodent xenograft tumor models. In human oral cancer, GT198+ pericytes proliferate into GT198+ tumor cells, which migrate into lymph nodes. Increased GT198 expression is associated with increased lymph node metastasis and decreased progression-free survival in oral cancer patients. In rat brain U-251 glioblastoma xenografts, GT198+ pericytes of human tumor origin encase endothelial cells of rat origin to form mosaic angiogenic blood vessels, and differentiate into pericyte-derived tumor cells. The net effect is continued production of glioblastoma tumor cells from malignant pericytes via angiogenesis. In addition, activation of GT198 induces the expression of VEGF and promotes tube formation in cultured U251 cells. Furthermore, vaccination using GT198 protein as an antigen in mouse xenograft of GL261 glioma delayed tumor growth and prolonged mouse survival. Together, these findings suggest that GT198-expressing malignant pericytes can give rise to tumor cells through angiogenesis, and serve as a potential source of cells for distant metastasis. Hence, the oncoprotein GT198 has the potential to be a new target in anti-angiogenic therapies in human cancer.
Collapse
Affiliation(s)
- Liyong Zhang
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Yan Wang
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Mohammad H. Rashid
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Min Liu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Kartik Angara
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Nahid F. Mivechi
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Nita J. Maihle
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA, USA
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Ali S. Arbab
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Lan Ko
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA, USA
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| |
Collapse
|
56
|
Roudsari LC, Jeffs SE, West JL. Lung Adenocarcinoma Cell Responses in a 3D in Vitro Tumor Angiogenesis Model Correlate with Metastatic Capacity. ACS Biomater Sci Eng 2017; 4:368-377. [DOI: 10.1021/acsbiomaterials.7b00011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Laila C. Roudsari
- Department of Biomedical Engineering and ‡Department of Mechanical Engineering & Materials Science, Duke University, 101 Science Drive, Durham, North Carolina 27708-0281, United States
| | - Sydney E. Jeffs
- Department of Biomedical Engineering and ‡Department of Mechanical Engineering & Materials Science, Duke University, 101 Science Drive, Durham, North Carolina 27708-0281, United States
| | - Jennifer L. West
- Department of Biomedical Engineering and ‡Department of Mechanical Engineering & Materials Science, Duke University, 101 Science Drive, Durham, North Carolina 27708-0281, United States
| |
Collapse
|
57
|
Tumor Microenvironment on a Chip: The Progress and Future Perspective. Bioengineering (Basel) 2017; 4:bioengineering4030064. [PMID: 28952543 PMCID: PMC5615310 DOI: 10.3390/bioengineering4030064] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 07/17/2017] [Accepted: 07/19/2017] [Indexed: 01/24/2023] Open
Abstract
Tumors develop in intricate microenvironments required for their sustained growth, invasion, and metastasis. The tumor microenvironment plays a critical role in the malignant or drug resistant nature of tumors, becoming a promising therapeutic target. Microengineered physiological systems capable of mimicking tumor environments are one emerging platform that allows for quantitative and reproducible characterization of tumor responses with pathophysiological relevance. This review highlights the recent advancements of engineered tumor microenvironment systems that enable the unprecedented mechanistic examination of cancer progression and metastasis. We discuss the progress and future perspective of these microengineered biomimetic approaches for anticancer drug prescreening applications.
Collapse
|
58
|
Habbsa S, McKinstry M, Bowman TV. “Sea”-ing Is Believing: In Vivo Imaging of Hematopoietic Stem Cells and Cancer Using Zebrafish. CURRENT STEM CELL REPORTS 2017. [DOI: 10.1007/s40778-017-0088-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
59
|
Tomaszewski MR, Gonzalez IQ, O'Connor JPB, Abeyakoon O, Parker GJM, Williams KJ, Gilbert FJ, Bohndiek SE. Oxygen Enhanced Optoacoustic Tomography (OE-OT) Reveals Vascular Dynamics in Murine Models of Prostate Cancer. Theranostics 2017; 7:2900-2913. [PMID: 28824724 PMCID: PMC5562224 DOI: 10.7150/thno.19841] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 05/02/2017] [Indexed: 02/07/2023] Open
Abstract
Poor oxygenation of solid tumours has been linked with resistance to chemo- and radio-therapy and poor patient outcomes, hence non-invasive imaging of oxygen supply and demand in tumours could improve disease staging and therapeutic monitoring. Optoacoustic tomography (OT) is an emerging clinical imaging modality that provides static images of endogenous haemoglobin concentration and oxygenation. Here, we demonstrate oxygen enhanced (OE)-OT, exploiting an oxygen gas challenge to visualise the spatiotemporal heterogeneity of tumour vascular function. We show that tracking oxygenation dynamics using OE-OT reveals significant differences between two prostate cancer models in nude mice with markedly different vascular function (PC3 & LNCaP), which appear identical in static OT. LNCaP tumours showed a spatially heterogeneous response within and between tumours, with a substantial but slow response to the gas challenge, aligned with ex vivo analysis, which revealed a generally perfused and viable tumour with marked areas of haemorrhage. PC3 tumours had a lower fraction of responding pixels compared to LNCaP with a high disparity between rim and core response. While the PC3 core showed little or no dynamic response, the rim showed a rapid change, consistent with our ex vivo findings of hypoxic and necrotic core tissue surrounded by a rim of mature and perfused vasculature. OE-OT metrics are shown to be highly repeatable and correlate directly on a per-tumour basis to tumour vessel function assessed ex vivo. OE-OT provides a non-invasive approach to reveal the complex dynamics of tumour vessel perfusion, permeability and vasoactivity in real time. Our findings indicate that OE-OT holds potential for application in prostate cancer patients, to improve delineation of aggressive and indolent disease as well as in patient stratification for chemo- and radio-therapy.
Collapse
Affiliation(s)
- Michal R Tomaszewski
- Department of Physics, University of Cambridge, U.K
- Cancer Research UK Cambridge Institute, University of Cambridge, U.K
| | - Isabel Quiros Gonzalez
- Department of Physics, University of Cambridge, U.K
- Cancer Research UK Cambridge Institute, University of Cambridge, U.K
| | - James PB O'Connor
- Institute of Cancer Sciences, University of Manchester, U.K
- Department of Radiology, The Christie NHS Foundation Trust, U.K
| | | | - Geoff JM Parker
- Centre for Imaging Sciences, University of Manchester, U.K
- Bioxydyn Limited, Manchester, U.K
| | | | | | - Sarah E Bohndiek
- Department of Physics, University of Cambridge, U.K
- Cancer Research UK Cambridge Institute, University of Cambridge, U.K
| |
Collapse
|
60
|
Systemic delivery of siRNA by aminated poly( α )glutamate for the treatment of solid tumors. J Control Release 2017; 257:132-143. [DOI: 10.1016/j.jconrel.2016.06.034] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 06/24/2016] [Indexed: 12/26/2022]
|
61
|
Beedie SL, Diamond AJ, Fraga LR, Figg WD, Vargesson N. Vertebrate embryos as tools for anti-angiogenic drug screening and function. Reprod Toxicol 2017; 70:49-59. [PMID: 27888069 PMCID: PMC6357960 DOI: 10.1016/j.reprotox.2016.11.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 11/04/2016] [Accepted: 11/21/2016] [Indexed: 12/20/2022]
Abstract
The development of new angiogenic inhibitors highlights a need for robust screening assays that adequately capture the complexity of vessel formation, and allow for the quantitative evaluation of the teratogenicity of new anti-angiogenic agents. This review discusses the use of screening assays in vertebrate embryos, specifically focusing upon chicken and zebrafish embryos, for the detection of anti-angiogenic agents.
Collapse
Affiliation(s)
- Shaunna L Beedie
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, UK; Molecular Pharmacology Section, Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, USA
| | - Alexandra J Diamond
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, UK
| | - Lucas Rosa Fraga
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, UK
| | - William D Figg
- Molecular Pharmacology Section, Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, USA
| | - Neil Vargesson
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, UK.
| |
Collapse
|
62
|
Santos C, Vilanova M, Medeiros R, Gil da Costa RM. HPV-transgenic mouse models: Tools for studying the cancer-associated immune response. Virus Res 2017; 235:49-57. [DOI: 10.1016/j.virusres.2017.04.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 04/01/2017] [Accepted: 04/01/2017] [Indexed: 12/29/2022]
|
63
|
García-Caballero M, Van de Velde M, Blacher S, Lambert V, Balsat C, Erpicum C, Durré T, Kridelka F, Noel A. Modeling pre-metastatic lymphvascular niche in the mouse ear sponge assay. Sci Rep 2017; 7:41494. [PMID: 28128294 PMCID: PMC5270255 DOI: 10.1038/srep41494] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 12/21/2016] [Indexed: 01/17/2023] Open
Abstract
Lymphangiogenesis, the formation of new lymphatic vessels, occurs in primary tumors and in draining lymph nodes leading to pre-metastatic niche formation. Reliable in vivo models are becoming instrumental for investigating alterations occurring in lymph nodes before tumor cell arrival. In this study, we demonstrate that B16F10 melanoma cell encapsulation in a biomaterial, and implantation in the mouse ear, prevents their rapid lymphatic spread observed when cells are directly injected in the ear. Vascular remodeling in lymph nodes was detected two weeks after sponge implantation, while their colonization by tumor cells occurred two weeks later. In this model, a huge lymphangiogenic response was induced in primary tumors and in pre-metastatic and metastatic lymph nodes. In control lymph nodes, lymphatic vessels were confined to the cortex. In contrast, an enlargement and expansion of lymphatic vessels towards paracortical and medullar areas occurred in pre-metastatic lymph nodes. We designed an original computerized-assisted quantification method to examine the lymphatic vessel structure and the spatial distribution. This new reliable and accurate model is suitable for in vivo studies of lymphangiogenesis, holds promise for unraveling the mechanisms underlying lymphatic metastases and pre-metastatic niche formation in lymph nodes, and will provide new tools for drug testing.
Collapse
Affiliation(s)
- Melissa García-Caballero
- Laboratory of Tumor and Developmental Biology, GIGA-Cancer, University of Liège, Sart-Tilman, B-4000, Liège, Belgium
| | - Maureen Van de Velde
- Laboratory of Tumor and Developmental Biology, GIGA-Cancer, University of Liège, Sart-Tilman, B-4000, Liège, Belgium
| | - Silvia Blacher
- Laboratory of Tumor and Developmental Biology, GIGA-Cancer, University of Liège, Sart-Tilman, B-4000, Liège, Belgium
| | - Vincent Lambert
- Laboratory of Tumor and Developmental Biology, GIGA-Cancer, University of Liège, Sart-Tilman, B-4000, Liège, Belgium
| | - Cédric Balsat
- Laboratory of Tumor and Developmental Biology, GIGA-Cancer, University of Liège, Sart-Tilman, B-4000, Liège, Belgium
| | - Charlotte Erpicum
- Laboratory of Tumor and Developmental Biology, GIGA-Cancer, University of Liège, Sart-Tilman, B-4000, Liège, Belgium
| | - Tania Durré
- Laboratory of Tumor and Developmental Biology, GIGA-Cancer, University of Liège, Sart-Tilman, B-4000, Liège, Belgium
| | - Frédéric Kridelka
- Laboratory of Tumor and Developmental Biology, GIGA-Cancer, University of Liège, Sart-Tilman, B-4000, Liège, Belgium.,Department of Obstetrics and Gynecology, CHU Liège, Sart-Tilman, B-4000, Liège, Belgium
| | - Agnès Noel
- Laboratory of Tumor and Developmental Biology, GIGA-Cancer, University of Liège, Sart-Tilman, B-4000, Liège, Belgium
| |
Collapse
|
64
|
Antiangiogenic Therapeutic Potential of Peptides Derived from the Molecular Motor KIF13B that Transports VEGFR2 to Plasmalemma in Endothelial Cells. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 187:214-224. [PMID: 27863212 DOI: 10.1016/j.ajpath.2016.09.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 08/28/2016] [Accepted: 09/15/2016] [Indexed: 12/12/2022]
Abstract
Vascular endothelial growth factor receptor 2 (VEGFR2) localized on the surface of endothelial cells (ECs) is a key determinant of the magnitude and duration of angiogenesis induced by vascular endothelial growth factor (VEGF). The kinesin family plus-end motor KIF13B transports VEGFR2 to the EC surface, and as such, specific inhibition of polarized VEGFR2 trafficking prevents angiogenesis. We designed a series of bioactive peptides based on deep analysis of VEGFR2-binding domain of KIF13B that compete specifically with VEGFR2 binding of KIF13B and thereby potently inhibit angiogenesis. Expression of these peptides by lentivirus prevents VEGF-induced capillary network formation in Matrigel plugs and neovascularization in vivo. A synthetic soluble, cell-permeable, 23-amino acid peptide termed kinesin-derived angiogenesis inhibitor (KAI) not only prevents interaction of VEGFR2 with KIF13B but also trafficking of VEGFR2 in the plus-end direction to the EC plasmalemma. Kinesin-derived angiogenesis inhibitor also inhibits VEGF-induced EC migration and tumor growth in human lung carcinoma xenografted in immunodeficient mice. Thus, we describe a novel class of peptides derived from the site of interaction of KIF13B with VEGFR2 that inhibit VEGFR2 trafficking and thereby starve cancer of blood supply.
Collapse
|
65
|
A tumoural angiogenic gateway blocker, Benzophenone-1B represses the HIF-1α nuclear translocation and its target gene activation against neoplastic progression. Biochem Pharmacol 2016; 125:26-40. [PMID: 27838496 DOI: 10.1016/j.bcp.2016.11.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 11/07/2016] [Indexed: 11/21/2022]
Abstract
Hypoxia is an important module in all solid tumours to promote angiogenesis, invasion and metastasis. Stabilization and subsequent nuclear localization of HIF-1α subunits result in the activation of tumour promoting target genes such as VEGF, MMPs, Flt-1, Ang-1 etc. which plays a pivotal role in adaptation of tumour cells to hypoxia. Increased HIF-α and its nuclear translocation have been correlated with pronounced angiogenesis, aggressive tumour growth and poor patient prognosis leading to current interest in HIF-1α as an anticancer drug target. Benzophenone-1B ([4-(1H-benzimidazol-2-ylmethoxy)-3,5-dimethylphenyl]-(4-methoxyphenyl) methanone, or BP-1B) is a new antineoplastic agent with potential angiopreventive effects. Current investigation reports the cellular biochemical modulation underlying BP-1B cytotoxic/antiangiogenic effects. Experimental evidences postulate that BP-1B exhibits the tumour specific cytotoxic actions against various cancer types with prolonged action. Moreover BP-1B efficiently counteracts endothelial cell capillary formation in in-vitro, in-vivo non-tumour and tumour angiogenic systems. Molecular signaling studies reveal that BP-1B arrests nuclear translocation of HIF-1α devoid of p42/44 pathway under CoCl2 induced hypoxic conditions in various cancer cells thereby leading to abrogated HIF-1α dependent activation of VEGF-A, Flt-1, MMP-2, MMP -9 and Ang-1 angiogenic factors resulting in retarded cell migration and invasions. The in-vitro results were reproducible in the reliable in-vivo solid tumour model. Taken together, we conclude that BP-1B impairs angiogenesis by blocking nuclear localization of HIF-1α which can be translated into a potent HIF-1α inhibitor.
Collapse
|
66
|
Zhang RX, Wong HL, Xue HY, Eoh JY, Wu XY. Nanomedicine of synergistic drug combinations for cancer therapy - Strategies and perspectives. J Control Release 2016; 240:489-503. [PMID: 27287891 PMCID: PMC5064882 DOI: 10.1016/j.jconrel.2016.06.012] [Citation(s) in RCA: 261] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 05/27/2016] [Accepted: 06/06/2016] [Indexed: 12/26/2022]
Abstract
Nanomedicine of synergistic drug combinations has shown increasing significance in cancer therapy due to its promise in providing superior therapeutic benefits to the current drug combination therapy used in clinical practice. In this article, we will examine the rationale, principles, and advantages of applying nanocarriers to improve anticancer drug combination therapy, review the use of nanocarriers for delivery of a variety of combinations of different classes of anticancer agents including small molecule drugs and biologics, and discuss the challenges and future perspectives of the nanocarrier-based combination therapy. The goal of this review is to provide better understanding of this increasingly important new paradigm of cancer treatment and key considerations for rational design of nanomedicine of synergistic drug combinations for cancer therapy.
Collapse
Affiliation(s)
- Rui Xue Zhang
- Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario, Canada M5S 2S2
| | - Ho Lun Wong
- Temple University School of Pharmacy, 3304 North Broad Street, Philadelphia, PA 19140, USA
| | - Hui Yi Xue
- Temple University School of Pharmacy, 3304 North Broad Street, Philadelphia, PA 19140, USA
| | - June Young Eoh
- Temple University School of Pharmacy, 3304 North Broad Street, Philadelphia, PA 19140, USA
| | - Xiao Yu Wu
- Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario, Canada M5S 2S2
| |
Collapse
|
67
|
Smolensky D, Rathore K, Cekanova M. Molecular targets in urothelial cancer: detection, treatment, and animal models of bladder cancer. Drug Des Devel Ther 2016; 10:3305-3322. [PMID: 27784990 PMCID: PMC5063594 DOI: 10.2147/dddt.s112113] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Bladder cancer remains one of the most expensive cancers to treat in the United States due to the length of required treatment and degree of recurrence. In order to treat bladder cancer more effectively, targeted therapies are being investigated. In order to use targeted therapy in a patient, it is important to provide a genetic background of the patient. Recent advances in genome sequencing, as well as transcriptome analysis, have identified major pathway components altered in bladder cancer. The purpose of this review is to provide a broad background on bladder cancer, including its causes, diagnosis, stages, treatments, animal models, as well as signaling pathways in bladder cancer. The major focus is given to the PI3K/AKT pathway, p53/pRb signaling pathways, and the histone modification machinery. Because several promising immunological therapies are also emerging in the treatment of bladder cancer, focus is also given on general activation of the immune system for the treatment of bladder cancer.
Collapse
Affiliation(s)
- Dmitriy Smolensky
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine
- UT-ORNL Graduate School of Genome Science and Technology, The University of Tennessee, Knoxville, TN, USA
| | - Kusum Rathore
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine
| | - Maria Cekanova
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine
- UT-ORNL Graduate School of Genome Science and Technology, The University of Tennessee, Knoxville, TN, USA
| |
Collapse
|
68
|
Nguyen DT, Fan Y, Akay YM, Akay M. TNP-470 Reduces Glioblastoma Angiogenesis in Three Dimensional GelMA Microwell Platform. IEEE Trans Nanobioscience 2016; 15:683-688. [DOI: 10.1109/tnb.2016.2600542] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
69
|
Hammoud L, Adams JR, Loch AJ, Marcellus RC, Uehling DE, Aman A, Fladd C, McKee TD, Jo CEB, Al-Awar R, Egan SE, Rossant J. Identification of RSK and TTK as Modulators of Blood Vessel Morphogenesis Using an Embryonic Stem Cell-Based Vascular Differentiation Assay. Stem Cell Reports 2016; 7:787-801. [PMID: 27618721 PMCID: PMC5063585 DOI: 10.1016/j.stemcr.2016.08.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 08/04/2016] [Accepted: 08/05/2016] [Indexed: 11/05/2022] Open
Abstract
Blood vessels are formed through vasculogenesis, followed by remodeling of the endothelial network through angiogenesis. Many events that occur during embryonic vascular development are recapitulated during adult neoangiogenesis, which is critical to tumor growth and metastasis. Current antiangiogenic tumor therapies, based largely on targeting the vascular endothelial growth factor pathway, show limited clinical benefits, thus necessitating the discovery of alternative targets. Here we report the development of a robust embryonic stem cell-based vascular differentiation assay amenable to small-molecule screens to identify novel modulators of angiogenesis. In this context, RSK and TTK were identified as angiogenic modulators. Inhibition of these pathways inhibited angiogenesis in embryoid bodies and human umbilical vein endothelial cells. Furthermore, inhibition of RSK and TTK reduced tumor growth, vascular density, and improved survival in an in vivo Lewis lung carcinoma mouse model. Our study suggests that RSK and TTK are potential targets for antiangiogenic therapy, and provides an assay system for further pathway screens. Development of ESC-based vascular differentiation assay amenable to drug screening Screening a kinase library identified RSK and TTK as angiogenic modulators RSK and TTK inhibition disrupted angiogenesis in vitro RSK and TTK inhibition inhibited Lewis lung tumor growth and angiogenesis in vivo
Collapse
Affiliation(s)
- Lamis Hammoud
- Program in Developmental and Stem Cell Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada
| | - Jessica R Adams
- Program in Developmental and Stem Cell Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada
| | - Amanda J Loch
- Program in Developmental and Stem Cell Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada
| | - Richard C Marcellus
- Drug Discovery Department, Ontario Institute for Cancer Research, Toronto, ON M5G 0A3, Canada
| | - David E Uehling
- Drug Discovery Department, Ontario Institute for Cancer Research, Toronto, ON M5G 0A3, Canada
| | - Ahmed Aman
- Drug Discovery Department, Ontario Institute for Cancer Research, Toronto, ON M5G 0A3, Canada
| | - Christopher Fladd
- SPARC BioCentre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Trevor D McKee
- Radiation Medicine Program, STTARR Innovation Centre, Princess Margaret Cancer Centre, Toronto, ON M5G 1L7, Canada
| | - Christine E B Jo
- Program in Developmental and Stem Cell Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada
| | - Rima Al-Awar
- Drug Discovery Department, Ontario Institute for Cancer Research, Toronto, ON M5G 0A3, Canada
| | - Sean E Egan
- Program in Developmental and Stem Cell Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Janet Rossant
- Program in Developmental and Stem Cell Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
70
|
Roudsari LC, Jeffs SE, Witt AS, Gill BJ, West JL. A 3D Poly(ethylene glycol)-based Tumor Angiogenesis Model to Study the Influence of Vascular Cells on Lung Tumor Cell Behavior. Sci Rep 2016; 6:32726. [PMID: 27596933 PMCID: PMC5011743 DOI: 10.1038/srep32726] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 08/10/2016] [Indexed: 12/25/2022] Open
Abstract
Tumor angiogenesis is critical to tumor growth and metastasis, yet much is unknown about the role vascular cells play in the tumor microenvironment. In vitro models that mimic in vivo tumor neovascularization facilitate exploration of this role. Here we investigated lung adenocarcinoma cancer cells (344SQ) and endothelial and pericyte vascular cells encapsulated in cell-adhesive, proteolytically-degradable poly(ethylene) glycol-based hydrogels. 344SQ in hydrogels formed spheroids and secreted proangiogenic growth factors that significantly increased with exposure to transforming growth factor beta 1 (TGF-β1), a potent tumor progression-promoting factor. Vascular cells in hydrogels formed tubule networks with localized activated TGF-β1. To study cancer cell-vascular cell interactions, we engineered a 2-layer hydrogel with 344SQ and vascular cell layers. Large, invasive 344SQ clusters (area > 5,000 μm(2), circularity < 0.25) developed at the interface between the layers, and were not evident further from the interface or in control hydrogels without vascular cells. A modified model with spatially restricted 344SQ and vascular cell layers confirmed that observed cluster morphological changes required close proximity to vascular cells. Additionally, TGF-β1 inhibition blocked endothelial cell-driven 344SQ migration. Our findings suggest vascular cells contribute to tumor progression and establish this culture system as a platform for studying tumor vascularization.
Collapse
Affiliation(s)
- Laila C. Roudsari
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| | - Sydney E. Jeffs
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| | - Amber S. Witt
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| | - Bartley J. Gill
- Department of Bioengineering, Rice University, Houston, Texas, USA
| | - Jennifer L. West
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| |
Collapse
|
71
|
Menezes ME, Das SK, Minn I, Emdad L, Wang XY, Sarkar D, Pomper MG, Fisher PB. Detecting Tumor Metastases: The Road to Therapy Starts Here. Adv Cancer Res 2016; 132:1-44. [PMID: 27613128 DOI: 10.1016/bs.acr.2016.07.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Metastasis is the complex process by which primary tumor cells migrate and establish secondary tumors in an adjacent or distant location in the body. Early detection of metastatic disease and effective therapeutic options for targeting these detected metastases remain impediments to effectively treating patients with advanced cancers. If metastatic lesions are identified early, patients might maximally benefit from effective early therapeutic interventions. Further, monitoring patients whose primary tumors are effectively treated for potential metastatic disease onset is also highly valuable. Finally, patients with metastatic disease can be monitored for efficacy of specific therapeutic interventions through effective metastatic detection techniques. Thus, being able to detect and visualize metastatic lesions is key and provides potential to greatly improve overall patient outcomes. In order to achieve these objectives, researchers have endeavored to mechanistically define the steps involved in the metastatic process as well as ways to effectively detect metastatic progression. We presently overview various preclinical and clinical in vitro and in vivo assays developed to more efficiently detect tumor metastases, which provides the foundation for developing more effective therapies for this invariably fatal component of the cancerous process.
Collapse
Affiliation(s)
- M E Menezes
- Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - S K Das
- Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - I Minn
- The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - L Emdad
- Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - X-Y Wang
- Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - D Sarkar
- Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - M G Pomper
- The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - P B Fisher
- Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States.
| |
Collapse
|
72
|
Purushothaman P, Uppal T, Sarkar R, Verma SC. KSHV-Mediated Angiogenesis in Tumor Progression. Viruses 2016; 8:E198. [PMID: 27447661 PMCID: PMC4974533 DOI: 10.3390/v8070198] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 06/18/2016] [Accepted: 07/07/2016] [Indexed: 12/14/2022] Open
Abstract
Human herpesvirus 8 (HHV-8), also known as Kaposi's sarcoma-associated herpesvirus (KSHV), is a malignant human oncovirus belonging to the gamma herpesvirus family. HHV-8 is closely linked to the pathogenesis of Kaposi's sarcoma (KS) and two other B-cell lymphoproliferative diseases: primary effusion lymphoma (PEL) and a plasmablastic variant of multicentric Castleman's disease (MCD). KS is an invasive tumor of endothelial cells most commonly found in untreated HIV-AIDS or immuno-compromised individuals. KS tumors are highly vascularized and have abnormal, excessive neo-angiogenesis, inflammation, and proliferation of infected endothelial cells. KSHV directly induces angiogenesis in an autocrine and paracrine fashion through a complex interplay of various viral and cellular pro-angiogenic and inflammatory factors. KS is believed to originate due to a combination of KSHV's efficient strategies for evading host immune systems and several pro-angiogenic and pro-inflammatory stimuli. In addition, KSHV infection of endothelial cells produces a wide array of viral oncoproteins with transforming capabilities that regulate multiple host-signaling pathways involved in the activation of angiogenesis. It is likely that the cellular-signaling pathways of angiogenesis and lymph-angiogenesis modulate the rate of tumorigenesis induction by KSHV. This review summarizes the current knowledge on regulating KSHV-mediated angiogenesis by integrating the findings reported thus far on the roles of host and viral genes in oncogenesis, recent developments in cell-culture/animal-model systems, and various anti-angiogenic therapies for treating KSHV-related lymphoproliferative disorders.
Collapse
Affiliation(s)
- Pravinkumar Purushothaman
- Department of Microbiology and Immunology, University of Nevada, Reno, School of Medicine, 1664 N Virginia Street, MS 320, Reno, NV 89557, USA.
| | - Timsy Uppal
- Department of Microbiology and Immunology, University of Nevada, Reno, School of Medicine, 1664 N Virginia Street, MS 320, Reno, NV 89557, USA.
| | - Roni Sarkar
- Department of Microbiology and Immunology, University of Nevada, Reno, School of Medicine, 1664 N Virginia Street, MS 320, Reno, NV 89557, USA.
| | - Subhash C Verma
- Department of Microbiology and Immunology, University of Nevada, Reno, School of Medicine, 1664 N Virginia Street, MS 320, Reno, NV 89557, USA.
| |
Collapse
|
73
|
Shah T, Wildes F, Kakkad S, Artemov D, Bhujwalla ZM. Lymphatic endothelial cells actively regulate prostate cancer cell invasion. NMR IN BIOMEDICINE 2016; 29:904-911. [PMID: 27149683 DOI: 10.1002/nbm.3543] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 03/23/2016] [Accepted: 03/29/2016] [Indexed: 06/05/2023]
Abstract
Lymphatic vessels serve as the primary route for metastatic spread to lymph nodes. However, it is not clear how interactions between cancer cells and lymphatic endothelial cells (LECs), especially within hypoxic microenvironments, affect the invasion of cancer cells. Here, using an MR compatible cell perfusion assay, we investigated the role of LEC-prostate cancer (PCa) cell interaction in the invasion and degradation of the extracellular matrix (ECM) by two human PCa cell lines, PC-3 and DU-145, under normoxia and hypoxia, and determined the metabolic changes that occurred under these conditions. We observed a significant increase in the invasion of ECM by invasive PC-3 cells, but not poorly invasive DU-145 cells when human dermal lymphatic microvascular endothelial cells (HMVEC-dlys) were present. Enhanced degradation of ECM by PC-3 cells in the presence of HMVEC-dlys identified interactions between HMVEC-dlys and PCa cells influencing cancer cell invasion. The enhanced ECM degradation was partly attributed to increased MMP-9 enzymatic activity in PC-3 cells when HMVEC-dlys were in close proximity. Significantly higher uPAR and MMP-9 expression levels observed in PC-3 cells compared to DU-145 cells may be one mechanism for increased invasion and degradation of matrigel by these cells irrespective of the presence of HMVEC-dlys. Hypoxia significantly decreased invasion by PC-3 cells, but this decrease was significantly attenuated when HMVEC-dlys were present. Significantly higher phosphocholine was observed in invasive PC-3 cells, while higher glycerophosphocholine was observed in DU-145 cells. These metabolites were not altered in the presence of HMVEC-dlys. Significantly increased lipid levels and lipid droplets were observed in PC-3 and DU-145 cells under hypoxia reflecting an adaptive survival response to oxidative stress. These results suggest that in vivo, invasive cells in or near lymphatic endothelial cells are likely to be more invasive and degrade the ECM to influence the metastatic cascade. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Tariq Shah
- JHU ICMIC Program, Division of Cancer Imaging Research, Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Flonne Wildes
- JHU ICMIC Program, Division of Cancer Imaging Research, Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Samata Kakkad
- JHU ICMIC Program, Division of Cancer Imaging Research, Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Dmitri Artemov
- JHU ICMIC Program, Division of Cancer Imaging Research, Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Zaver M Bhujwalla
- JHU ICMIC Program, Division of Cancer Imaging Research, Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
74
|
Chang JH, Putra I, Huang YH, Chang M, Han K, Zhong W, Gao X, Wang S, Dugas-Ford J, Nguyen T, Hong YK, Azar DT. Limited versus total epithelial debridement ocular surface injury: Live fluorescence imaging of hemangiogenesis and lymphangiogenesis in Prox1-GFP/Flk1::Myr-mCherry mice. Biochim Biophys Acta Gen Subj 2016; 1860:2148-56. [PMID: 27233452 DOI: 10.1016/j.bbagen.2016.05.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 05/04/2016] [Accepted: 05/20/2016] [Indexed: 12/14/2022]
Abstract
BACKGROUND Immunohistochemical staining experiments have shown that both hemangiogenesis and lymphangiogenesis occur following severe corneal and conjunctival injury and that the neovascularization of the cornea often has severe visual consequences. To better understand how hemangiogenesis and lymphangiogenesis are induced by different degrees of ocular injury, we investigated patterns of injury-induced corneal neovascularization in live Prox1-GFP/Flk1::myr-mCherry mice, in which blood and lymphatic vessels can be imaged simultaneously in vivo. METHODS The eyes of Prox1-GFP/Flk1::myr-mCherry mice were injured according to four models based on epithelial debridement of the: A) central cornea (a 1.5-mm-diameter circle of tissue over the corneal apex), B) total cornea, C) bulbar conjunctiva, and D) cornea+bulbar conjunctiva. Corneal blood and lymphatic vessels were imaged on days 0, 3, 7, and 10 post-injury, and the percentages of the cornea containing blood and lymphatic vessels were calculated. RESULTS Neither central corneal nor bulbar conjunctival debridement resulted in significant vessel growth in the mouse cornea, whereas total corneal and corneal+bulbar conjunctival debridement did. On day 10 in the central cornea, total cornea, bulbar conjunctiva, and corneal+bulbar conjunctival epithelial debridement models, the percentage of the corneal surface that was occupied by blood vessels (hemangiogenesis) was 1.9±0.8%, 7.14±2.4%, 2.29±1%, and 15.05±2.14%, respectively, and the percentage of the corneal surface that was occupied by lymphatic vessels (lymphangiogenesis) was 2.45±1.51%, 4.85±0.95%, 2.95±1.27%, and 4.15±3.85%, respectively. CONCLUSIONS Substantial corneal debridement was required to induce corneal neovascularization in the mouse cornea, and the corneal epithelium may therefore be partially responsible for maintaining corneal avascularity. GENERAL SIGNIFICANCE Our study demonstrates that GFP/Flk1::myr-mCherry mice are a useful model for studying coordinated hemangiogenic and lymphangiogenic responses.
Collapse
Affiliation(s)
- Jin-Hong Chang
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA.
| | - Ilham Putra
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Yu-Hui Huang
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Michael Chang
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Kyuyeon Han
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Wei Zhong
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Xinbo Gao
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Shuangyong Wang
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Jennifer Dugas-Ford
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Tara Nguyen
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Young-Kwon Hong
- Department of Surgery, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Dimitri T Azar
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
75
|
Bavle RM, Sudhakara M. CANCER CONUNDRUM. J Oral Maxillofac Pathol 2016; 20:5-8. [PMID: 27194853 PMCID: PMC4860936 DOI: 10.4103/0973-029x.180902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Affiliation(s)
- Radhika M Bavle
- Department of Oral and Maxillofacial Pathology, Krishnadevaraya College of Dental Sciences, Bangalore, Karnataka, India. E-mail:
| | - M Sudhakara
- Department of Oral and Maxillofacial Pathology, Krishnadevaraya College of Dental Sciences, Bangalore, Karnataka, India. E-mail:
| |
Collapse
|
76
|
Abdel-Moneim AS, El-Fol HA, Kamel MM, Soliman ASA, Mahdi EA, El-Gammal AS, Mahran TZM. Screening of human bocavirus in surgically excised cancer specimens. Arch Virol 2016; 161:2095-102. [PMID: 27155943 DOI: 10.1007/s00705-016-2885-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 04/30/2016] [Indexed: 12/18/2022]
Abstract
Human bocavirus (HBoV) is a prevalent virus worldwide and is mainly associated with respiratory disorders. Recently, it was detected in several disease conditions, including cancers. Colorectal cancer (CRC) is the third main cause of cancers worldwide. Risk factors that initiate cell transformation include nutritional, hereditary and infectious causes. The aim of the current study was to screen for the presence of HBoV in solid tumors of colorectal cancer and to determine the genotypes of the detected strains. Surgically excised and paraffin-embedded colorectal cancer tissue specimens from 101 male and female patients with and without metastasis were collected over the last four years. Pathological analysis and tumor stages were determined. The presence of HBoV was screened by polymerase chain reaction, and the genotype of the detected HBoV was determined by direct gene sequencing. Most of the examined specimens were adenocarcinoma with mucinous activity in many of them. Twenty-four out of 101 (23.8 %) CRC tissue specimens were found to contain HBoV-1. Low sequence diversity was recorded in the detected strains. The virus was detected in both male and female patients with an age range of 30-75 years. It is proposed that HBoV-1 could play a potential role in the induction of CRC.
Collapse
Affiliation(s)
- Ahmed S Abdel-Moneim
- College of Medicine, Taif University, Al-Taif, Saudi Arabia.
- Department of Virology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt.
| | - Hosam A El-Fol
- Department of Surgical Oncology, Faculty of Medicine, Menofia University, Monufia, Egypt
| | - Mahmoud M Kamel
- Department of Clinical Pathology National Cancer Institute, Cairo University, Cairo, Egypt
| | - Ahmed S A Soliman
- Department of Pathology, National Research Institute, Cairo University, Cairo, Egypt
| | - Emad A Mahdi
- Department of Biology, College of Science, Taif University, Al-Taif, Saudi Arabia
- Department of Pathology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Ahmed S El-Gammal
- Department of Surgical Oncology, Faculty of Medicine, Menofia University, Monufia, Egypt
| | | |
Collapse
|
77
|
Faustino-Rocha AI, Silva A, Gabriel J, Gil da Costa RM, Moutinho M, Oliveira PA, Gama A, Ferreira R, Ginja M. Long-term exercise training as a modulator of mammary cancer vascularization. Biomed Pharmacother 2016; 81:273-280. [PMID: 27261604 DOI: 10.1016/j.biopha.2016.04.030] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 04/12/2016] [Accepted: 04/12/2016] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Breast cancer remains a leading cause of death by cancer worldwide. It is commonly accepted that angiogenesis and the expression of angiogenic factors such as vascular endothelial growth factor-A (VEGF-A) is associated with the increased risk of metastasis and poor patient outcome. OBJECTIVE This work aimed to evaluate the effects of long-term exercise training on the growth and vascularization of mammary tumors in a rat model. MATERIALS AND METHODS Fifty female Sprague-Dawley rats were divided into four groups: two N-methyl-N-nitrosourea (MNU)-exposed groups (exercised and sedentary) and two control groups (exercised and sedentary). MNU was administered once, intraperitoneally at 7 weeks-old. Animals were then exercised on a treadmill for 35 weeks. Mammary tumors were evaluated using thermography, ultrasonography [Power Doppler (PDI), B Flow and contrast-enhanced ultrasound (CEUS)], and immunohistochemistry (VEGF-A). RESULTS Both, MNU sedentary and exercised groups showed 100% of tumor incidence, but exercised animals showed less tumors with an increased latency period. Exercise training also enhanced VEGF-A immunoexpression and vascularization (microvessel density, MVD) (p<0.05), and reduced histological aggressiveness. Ultrasound and thermal imaging analysis confirmed the enhanced vascularization of tumors on exercised animals. CONCLUSION Long-term exercise training increased VEGF-A expression, leading to enhanced tumor vascularization and reduced tumor burden, multiplicity and histological aggressiveness.
Collapse
Affiliation(s)
- A I Faustino-Rocha
- Department of Veterinary Sciences, School of Agrarian and Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal; Center for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), UTAD, Vila Real, Portugal; Animal and Veterinary Research Center (CECAV), UTAD, Vila Real, Portugal; Organic Chemistry, Natural Products and Foodstuffs (QOPNA), Mass Spectrometry Center, Department of Chemistry, University of Aveiro, Aveiro, Portugal.
| | - A Silva
- Institute of Science and Innovation in Mechanical and Industrial Engineering (INEGI), Faculty of Engineering (FEUP), University of Porto, Porto, Portugal
| | - J Gabriel
- Institute of Science and Innovation in Mechanical and Industrial Engineering (INEGI), Faculty of Engineering (FEUP), University of Porto, Porto, Portugal
| | - R M Gil da Costa
- Laboratory for Process Environment Biotechnology and Energy Engineering (LEPABE), FEUP, University of Porto, Porto, Portugal; Molecular Oncology and Viral Pathology Group, CI-IPOP, Portuguese Institute of Oncology, Porto, Portugal
| | - M Moutinho
- Department of Veterinary Sciences, School of Agrarian and Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - P A Oliveira
- Department of Veterinary Sciences, School of Agrarian and Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal; Center for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), UTAD, Vila Real, Portugal
| | - A Gama
- Department of Veterinary Sciences, School of Agrarian and Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal; Animal and Veterinary Research Center (CECAV), UTAD, Vila Real, Portugal
| | - R Ferreira
- Organic Chemistry, Natural Products and Foodstuffs (QOPNA), Mass Spectrometry Center, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - M Ginja
- Department of Veterinary Sciences, School of Agrarian and Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal; Center for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), UTAD, Vila Real, Portugal
| |
Collapse
|
78
|
Hagerling C, Werb Z. Neutrophils: Critical components in experimental animal models of cancer. Semin Immunol 2016; 28:197-204. [PMID: 26976824 DOI: 10.1016/j.smim.2016.02.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 02/24/2016] [Accepted: 02/24/2016] [Indexed: 12/26/2022]
Abstract
Neutrophils have a crucial role in tumor development and metastatic progression. The contribution of neutrophils in tumor development is multifaceted and contradictory. On the one hand, neutrophils prompt tumor inception, promote tumor development by mediating the initial angiogenic switch and facilitate colonization of circulating tumor cells, and on the other hand, have cytotoxic and anti-metastatic capabilities. Our understanding of the role of neutrophils in tumor development has greatly depended on different experimental animal models of cancer. In this review we cover important findings that have been made about neutrophils in experimental animal models of cancer, point to their advantages and limitations, and discuss novel techniques that can be used to expand our knowledge of how neutrophils influence tumor progression.
Collapse
Affiliation(s)
- Catharina Hagerling
- University of California, San Francisco, Department of Anatomy, 513 Parnassus Avenue, HSW1320, San Francisco, CA 94143, USA.
| | - Zena Werb
- University of California, San Francisco, Department of Anatomy, 513 Parnassus Avenue, HSW1320, San Francisco, CA 94143, USA.
| |
Collapse
|
79
|
Local inhibition of elastase reduces EMILIN1 cleavage reactivating lymphatic vessel function in a mouse lymphoedema model. Clin Sci (Lond) 2016; 130:1221-36. [PMID: 26920215 PMCID: PMC4888021 DOI: 10.1042/cs20160064] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 02/26/2016] [Indexed: 01/03/2023]
Abstract
Lymphatic vasculature critically depends on the connections of lymphatic endothelial cells with the extracellular matrix (ECM), which are mediated by anchoring filaments (AFs). The ECM protein EMILIN1 is a component of AFs and is involved in the regulation of lymphatic vessel functions: accordingly, Emilin1−/− mice display lymphatic vascular morphological alterations, leading to functional defects such as mild lymphoedema, lymph leakage and compromised lymph drainage. In the present study, using a mouse post-surgical tail lymphoedema model, we show that the acute phase of acquired lymphoedema correlates with EMILIN1 degradation due to neutrophil elastase (NE) released by infiltrating neutrophils. As a consequence, the intercellular junctions of lymphatic endothelial cells are weakened and drainage to regional lymph nodes is severely affected. The local administration of sivelestat, a specific NE inhibitor, prevents EMILIN1 degradation and reduces lymphoedema, restoring a normal lymphatic functionality. The finding that, in human secondary lymphoedema samples, we also detected cleaved EMILIN1 with the typical bands of an NE-dependent pattern of fragmentation establishes a rationale for a powerful strategy that targets NE inhibition. In conclusion, the attempts to block EMILIN1 degradation locally represent the basis for a novel ‘ECM’ pharmacological approach to assessing new lymphoedema treatments.
Collapse
|
80
|
Antonioli L, Yegutkin GG, Pacher P, Blandizzi C, Haskó G. Anti-CD73 in cancer immunotherapy: awakening new opportunities. Trends Cancer 2016; 2:95-109. [PMID: 27014745 PMCID: PMC4800751 DOI: 10.1016/j.trecan.2016.01.003] [Citation(s) in RCA: 160] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In recent years, cancer immunotherapy made significant advances due to a better understanding of the principles underlying tumor biology and immunology. In this context, CD73 is a key molecule, since via degradation of adenosine monophosphate into adenosine, endorses the generation of an immunosuppressed and pro-angiogenic niche within the tumor microenvironment that promotes the onset and progression of cancer. Targeting CD73 results in favorable antitumor effects in pre-clinical models and combined treatments of CD73 blockade with other immune-modulating agents (i.e. anti-CTLA-4 mAb or anti-PD1 mAb) is particularly attractive. Although there is still a long way to go, anti-CD73 therapy, through the development of CD73 monoclonal antibodies, can potentially constitute a new biologic therapy for cancer patients. In this review, we discuss the link between CD73 and the onset, development and spread of tumors, highlighting the potential value of this molecule as a target and as a novel biomarker in the context of personalized cancer therapy.
Collapse
Affiliation(s)
- Luca Antonioli
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; Department of Surgery and Center for Immunity and Inflammation, Rutgers-New Jersey Medical School, Newark, NJ 07103, USA
| | - Gennady G Yegutkin
- Medicity Research Laboratory, Department of Medical Microbiology and Immunology, University of Turku, Finland
| | - Pál Pacher
- Section on Oxidative Stress Tissue Injury, Laboratories of Physiological Studies, National Institutes of Health/NIAAA, Bethesda, MD 20892, USA
| | - Corrado Blandizzi
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - György Haskó
- Department of Surgery and Center for Immunity and Inflammation, Rutgers-New Jersey Medical School, Newark, NJ 07103, USA
| |
Collapse
|
81
|
Special issue: Extracellular matrix: Therapeutic tools and targets in cancer treatment. Adv Drug Deliv Rev 2016; 97:1-3. [PMID: 26872878 DOI: 10.1016/j.addr.2016.01.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Extracellular matrix (ECM) constituents play not only structural roles during development and tissue homeostasis, but also many biological functions throughout life. Molecular diversity and a vast interactome provide the basis for this multi-functionality. Moreover, native or processed ECM molecules interact with various receptors, thereby activating signaling pathways that control cell differentiation, proliferation, adhesion and migration, all relevant to tumor biology. Thus, there is an emerging field focused on exploiting ECM components as novel therapeutic targets in the treatment of cancer and other diseases, providing potent tools to advance drug delivery and tissue penetration. In this special issue we provide a critical appraisal of this emerging field focusing on: 1) ECM proteins (matricellular proteins, collagen, elastin, fibronectin, proteoglycans), integrins, and protease-facilitated drug delivery; 2) ECM-derived therapeutics (hyaluronan, heparin, heparan sulfate), 3) ECM-like biomaterials, and 4) ECM as critical determinant in drug efficacy, with special emphasis on applications in tumor treatment.
Collapse
|
82
|
Roudsari LC, West JL. Studying the influence of angiogenesis in in vitro cancer model systems. Adv Drug Deliv Rev 2016; 97:250-9. [PMID: 26571106 DOI: 10.1016/j.addr.2015.11.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 11/03/2015] [Accepted: 11/04/2015] [Indexed: 12/18/2022]
Abstract
Tumor angiogenesis is a hallmark of cancer that has been identified as a critical component of cancer progression, facilitating rapid tumor growth and metastasis. Anti-angiogenic therapies have exhibited only modest clinical success, highlighting a need for better models that can be used to gain a more thorough understanding of tumor angiogenesis and screen potential therapeutics more accurately. This review explores how recent progress in in vitro cancer and vascular models individually can be applied to the development of in vitro tumor angiogenesis models. Current in vitro tumor angiogenesis models are also discussed, with a focus on aspects of the process that have been successfully recapitulated and opportunities for applying new technologies to expand model complexity to better represent the tumor microenvironment. Continued advances in vascularized tumor models will provide tools to identify novel therapeutic targets and validate their therapeutic benefit.
Collapse
Affiliation(s)
- Laila C Roudsari
- Department of Biomedical Engineering, Duke University, Room 1427, Fitzpatrick CIEMAS, 101 Science Drive, Campus Box 90281, Durham, NC 27708, USA.
| | - Jennifer L West
- Department of Biomedical Engineering, Duke University, Room 1427, Fitzpatrick CIEMAS, 101 Science Drive, Campus Box 90281, Durham, NC 27708, USA.
| |
Collapse
|
83
|
Abstract
PURPOSE OF REVIEW Throughout history, development of novel microscopy techniques has been of fundamental importance to advance the vascular biology field.This review offers a concise summary of the most recently developed imaging techniques and discusses how they can be applied to vascular biology. In addition, we reflect upon the most important fluorescent reporters for vascular research that are currently available. RECENT FINDINGS Recent advances in light sheet-based imaging techniques now offer the ability to live image the vascular system in whole organs or even in whole animals during development and in pathological conditions with a satisfactory spatial and temporal resolution. Conversely, super resolution microscopy now allows studying cellular processes at a near-molecular resolution. SUMMARY Major recent improvements in a number of imaging techniques now allow study of vascular biology in ways that could not be considered previously. Researchers now have well-developed tools to specifically examine the dynamic nature of vascular development during angiogenic sprouting, remodeling and regression as well as the vascular responses in disease situations in vivo. In addition, open questions in endothelial and lymphatic cell biology that require subcellular resolution such as actin dynamics, junctional complex formation and stability, vascular permeability and receptor trafficking can now be approached with high resolution.
Collapse
Affiliation(s)
- Bàrbara Laviña
- Department of Immunology, Genetics and Pathology, The Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | | |
Collapse
|
84
|
Amand M, Erpicum C, Gilles C, Noël A, Rahmouni S. Functional Analysis of Dual-Specificity Protein Phosphatases in Angiogenesis. Methods Mol Biol 2016; 1447:331-49. [PMID: 27514814 DOI: 10.1007/978-1-4939-3746-2_18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Therapeutic perspectives targeting angiogenesis in cancer stimulated an intense investigation of the mechanisms triggering and governing angiogenic processes. Several publications have highlighted the importance of typical dual-specificity phosphatases (DSPs) or MKPs in endothelial cells and their role in controlling different biological functions implicated in angiogenesis such as migration, proliferation, apoptosis, tubulogenesis, and cell adhesion. However, among atypical DSPs, the only one investigated in angiogenesis was DUSP3. We recently identified this DSP as a new key player in endothelial cells and angiogenesis. In this chapter we provide with detailed protocols and models used to investigate the role of DUSP3 in endothelial cells and angiogenesis. We start the chapter with an overview of the role of several DSPs in angiogenesis. We continue with providing a full description of a highly efficient transfection protocol to deplete DUSP3 using small interfering RNA (siRNA) in the primary human umbilical vein endothelial cells (HUVEC). We next describe the major assays used to investigate different processes involved in angiogenesis such as tube formation assay, proliferation assay and spheroids sprouting assay. We finish the chapter by validating our results in DUSP3-knockout mice using in vivo angiogenesis assays such as Matrigel plug and Lewis lung carcinoma cell subcutaneous xenograft model followed by anti-CD31 immunofluorescence and ex vivo aortic ring assay. All methods described can be adapted to other phosphatases and signaling molecules.
Collapse
Affiliation(s)
- Mathieu Amand
- Immunology and Infectious Diseases Unit, GIGA-Signal Transduction, University of Liège, 1, Avenue de l'hôpital, B34., 4000, Liège, Belgium
| | - Charlotte Erpicum
- Laboratory of Tumor and Developmental Biology, GIGA-Cancer, University of Liège, Liège, Belgium
| | - Christine Gilles
- Laboratory of Tumor and Developmental Biology, GIGA-Cancer, University of Liège, Liège, Belgium
| | - Agnès Noël
- Laboratory of Tumor and Developmental Biology, GIGA-Cancer, University of Liège, Liège, Belgium
| | - Souad Rahmouni
- Immunology and Infectious Diseases Unit, GIGA-Signal Transduction, University of Liège, 1, Avenue de l'hôpital, B34., 4000, Liège, Belgium.
| |
Collapse
|
85
|
Organ-wide 3D-imaging and topological analysis of the continuous microvascular network in a murine lymph node. Sci Rep 2015; 5:16534. [PMID: 26567707 PMCID: PMC4645097 DOI: 10.1038/srep16534] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 10/15/2015] [Indexed: 11/08/2022] Open
Abstract
Understanding of the microvasculature has previously been limited by the lack of methods capable of capturing and modelling complete vascular networks. We used novel imaging and computational techniques to establish the topology of the entire blood vessel network of a murine lymph node, combining 63,706 confocal images at 2 μm pixel resolution to cover a volume of 3.88 mm(3). Detailed measurements including the distribution of vessel diameters, branch counts, and identification of voids were subsequently re-visualised in 3D revealing regional specialisation within the network. By focussing on critical immune microenvironments we quantified differences in their vascular topology. We further developed a morphology-based approach to identify High Endothelial Venules, key sites for lymphocyte extravasation. These data represent a comprehensive and continuous blood vessel network of an entire organ and provide benchmark measurements that will inform modelling of blood vessel networks as well as enable comparison of vascular topology in different organs.
Collapse
|
86
|
Derer A, Deloch L, Rubner Y, Fietkau R, Frey B, Gaipl US. Radio-Immunotherapy-Induced Immunogenic Cancer Cells as Basis for Induction of Systemic Anti-Tumor Immune Responses - Pre-Clinical Evidence and Ongoing Clinical Applications. Front Immunol 2015; 6:505. [PMID: 26500646 PMCID: PMC4597129 DOI: 10.3389/fimmu.2015.00505] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 09/16/2015] [Indexed: 01/18/2023] Open
Abstract
Radiotherapy (RT) primarily aims to locally destroy the tumor via the induction of DNA damage in the tumor cells. However, the so-called abscopal, namely systemic and immune–mediated, effects of RT move over more and more in the focus of scientists and clinicians since combinations of local irradiation with immune therapy have been demonstrated to induce anti-tumor immunity. We here summarize changes of the phenotype and microenvironment of tumor cells after exposure to irradiation, chemotherapeutic agents, and immune modulating agents rendering the tumor more immunogenic. The impact of therapy-modified tumor cells and damage-associated molecular patterns on local and systemic control of the primary tumor, recurrent tumors, and metastases will be outlined. Finally, clinical studies affirming the bench-side findings of interactions and synergies of radiation therapy and immunotherapy will be discussed. Focus is set on combination of radio(chemo)therapy (RCT) with immune checkpoint inhibitors, growth factor inhibitors, and chimeric antigen receptor T-cell therapy. Well-deliberated combination of RCT with selected immune therapies and growth factor inhibitors bear the great potential to further improve anti-cancer therapies.
Collapse
Affiliation(s)
- Anja Derer
- Department of Radiation Oncology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg , Erlangen , Germany
| | - Lisa Deloch
- Department of Radiation Oncology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg , Erlangen , Germany
| | - Yvonne Rubner
- Department of Radiation Oncology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg , Erlangen , Germany
| | - Rainer Fietkau
- Department of Radiation Oncology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg , Erlangen , Germany
| | - Benjamin Frey
- Department of Radiation Oncology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg , Erlangen , Germany
| | - Udo S Gaipl
- Department of Radiation Oncology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg , Erlangen , Germany
| |
Collapse
|
87
|
Hirosue S, Dubrot J. Modes of Antigen Presentation by Lymph Node Stromal Cells and Their Immunological Implications. Front Immunol 2015; 6:446. [PMID: 26441957 PMCID: PMC4561840 DOI: 10.3389/fimmu.2015.00446] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 08/17/2015] [Indexed: 12/15/2022] Open
Abstract
Antigen presentation is no longer the exclusive domain of cells of hematopoietic origin. Recent works have demonstrated that lymph node stromal cell (LNSC) populations, such as fibroblastic reticular cells, lymphatic and blood endothelial cells, not only provide a scaffold for lymphocyte interactions but also exhibit active immunomodulatory roles that are critical to mounting and resolving effective immune responses. Importantly, LNSCs possess the ability to present antigens and establish antigen-specific interactions with T cells. One example is the expression of peripheral tissue antigens, which are presented on major histocompatibility complex (MHC)-I molecules with tolerogenic consequences on T cells. Additionally, exogenous antigens, including self and tumor antigens, can be processed and presented on MHC-I complexes, which result in dysfunctional activation of antigen-specific CD8+ T cells. While MHC-I is widely expressed on cells of both hematopoietic and non-hematopoietic origins, antigen presentation via MHC-II is more precisely regulated. Nevertheless, LNSCs are capable of endogenously expressing, or alternatively, acquiring MHC-II molecules. Transfer of antigen between LNSC and dendritic cells in both directions has been recently suggested to promote tolerogenic roles of LNSCs on the CD4+ T cell compartment. Thus, antigen presentation by LNSCs is thought to be a mechanism that promotes the maintenance of peripheral tolerance as well as generates a pool of diverse antigen-experienced T cells for protective immunity. This review aims to integrate the current and emerging literature to highlight the importance of LNSCs in immune responses, and emphasize their role in antigen trafficking, retention, and presentation.
Collapse
Affiliation(s)
- Sachiko Hirosue
- Institute of Bioengineering, École Polytechnique Fédéral de Lausanne , Lausanne , Switzerland
| | - Juan Dubrot
- Department of Pathology and Immunology, Université de Genève , Geneva , Switzerland
| |
Collapse
|
88
|
Klein KR, Caron KM. Adrenomedullin in lymphangiogenesis: from development to disease. Cell Mol Life Sci 2015; 72:3115-26. [PMID: 25953627 PMCID: PMC11113374 DOI: 10.1007/s00018-015-1921-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 04/01/2015] [Accepted: 04/29/2015] [Indexed: 12/01/2022]
Abstract
Over the past decade, we have begun to appreciate that the lymphatic vascular system does more than simply return plasma back into the circulatory system and, in fact, contributes to a wide variety of normal and disease states. For this reason, much research has been devoted to understanding how lymphatic vessels form and function, with a particular interest in which molecules contribute to lymphatic vessel growth and maintenance. In the following review, we focus on a potent lymphangiogenic factor, adrenomedullin, and its known roles in lymphangiogenesis, lymphatic function, and human lymphatic disease. As one of the first, pharmacologically tractable G protein-coupled receptor pathways characterized in lymphatic endothelial cells, the continued study of adrenomedullin effects on the lymphatic system may open new avenues for the modulation of lymphatic growth and function in a variety of lymphatic-related diseases that currently have few treatments.
Collapse
Affiliation(s)
- Klara R. Klein
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, CB # 7545, 6312B MBRB, 111 Mason Farm Road, Chapel Hill, NC 27599 USA
| | - Kathleen M. Caron
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, CB # 7545, 6312B MBRB, 111 Mason Farm Road, Chapel Hill, NC 27599 USA
- Department of Genetics, The University of North Carolina, Chapel Hill, NC 27599 USA
| |
Collapse
|
89
|
Guo Y, Xia P, Zheng JJ, Sun XB, Pan XD, Zhang X, Wu CZ. Receptors for advanced glycation end products (RAGE) is associated with microvessel density and is a prognostic biomarker for clear cell renal cell carcinoma. Biomed Pharmacother 2015. [PMID: 26211596 DOI: 10.1016/j.biopha.2015.06.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The receptor for advanced glycation end products (RAGE) is involved in a variety of biological processes, including tumorigenisis. Previous studies have demonstrated that RAGE regulates the neo-angiogenesis related downstream molecule - vascular endothelial growth factor receptor 2 (VEGFR-2). Here, we investigated the potential relationship between RAGE, VEGFR-2 and angiogenesis in 80 renal cell carcinoma (RCC) patients. Real-time quantitative PCR and ELISA analysis were used to explore the RAGE and VEGFR-2 gene expression levels and the protein of VEGFR-2 expression. Meanwhile, angiogenesis was detected by the semi-quantification of endothelial cell marker CD34 combined with caldesmon, which was detected by microvessel density (MVD) technique and immunohistochemistry. Tumors were classified as low or high RAGE-expressing using the median as the cut-off. Immunofluorescence staining for RAGE protein was performed as well. Additionally, the median gene expression levels of VEGFR-2 in the tumors were significantly lower expressing low levels of RAGE expression, 0.34 (95% CI, 0.28-0.39) compared to the expressing high levels of RAGE expression, 0.45 (95% CI, 0.29-0.61), (P=0.03). The median MVD was significantly lower in the tumors expressing low levels of RAGE, 6.5 (95% CI, 6.21-7.43), compared to the expressing high levels, 7.9 (95% CI, 6.25-8.93), (P<0.01). Further, a positive association was certified with VEGFR-2 protein levels, P=0.07. Besides, RCC with high levels of RAGE expression are associated with high VEGFR-2 mRNA/protein levels and a higher density of microvessels; conversely, Kaplan-Meier survival analysis suggests that a significant correlation of elevated RAGE expression with decreased overall survival and metastasis-free survival. Our results establish that RAGE was identified as a potential prognostic biomarker for disease prognosis of RCC.
Collapse
Affiliation(s)
- Yong Guo
- Transplantation Centre, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325014, China.
| | - Peng Xia
- Transplantation Centre, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325014, China.
| | - Jian-Jian Zheng
- Wenzhou Key Laboratory of Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325014, China.
| | - Xian-Bin Sun
- Transplantation Centre, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325014, China.
| | - Xiao-Dong Pan
- Transplantation Centre, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325014, China.
| | - Xing Zhang
- Wenzhou Key Laboratory of Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325014, China.
| | - Cun-Zao Wu
- Transplantation Centre, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325014, China.
| |
Collapse
|
90
|
Hu Z, Brooks SA, Dormoy V, Hsu CW, Hsu HY, Lin LT, Massfelder T, Rathmell WK, Xia M, Al-Mulla F, Al-Temaimi R, Amedei A, Brown DG, Prudhomme KR, Colacci A, Hamid RA, Mondello C, Raju J, Ryan EP, Woodrick J, Scovassi AI, Singh N, Vaccari M, Roy R, Forte S, Memeo L, Salem HK, Lowe L, Jensen L, Bisson WH, Kleinstreuer N. Assessing the carcinogenic potential of low-dose exposures to chemical mixtures in the environment: focus on the cancer hallmark of tumor angiogenesis. Carcinogenesis 2015; 36 Suppl 1:S184-S202. [PMID: 26106137 PMCID: PMC4492067 DOI: 10.1093/carcin/bgv036] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 12/12/2014] [Accepted: 12/15/2014] [Indexed: 01/09/2023] Open
Abstract
One of the important 'hallmarks' of cancer is angiogenesis, which is the process of formation of new blood vessels that are necessary for tumor expansion, invasion and metastasis. Under normal physiological conditions, angiogenesis is well balanced and controlled by endogenous proangiogenic factors and antiangiogenic factors. However, factors produced by cancer cells, cancer stem cells and other cell types in the tumor stroma can disrupt the balance so that the tumor microenvironment favors tumor angiogenesis. These factors include vascular endothelial growth factor, endothelial tissue factor and other membrane bound receptors that mediate multiple intracellular signaling pathways that contribute to tumor angiogenesis. Though environmental exposures to certain chemicals have been found to initiate and promote tumor development, the role of these exposures (particularly to low doses of multiple substances), is largely unknown in relation to tumor angiogenesis. This review summarizes the evidence of the role of environmental chemical bioactivity and exposure in tumor angiogenesis and carcinogenesis. We identify a number of ubiquitous (prototypical) chemicals with disruptive potential that may warrant further investigation given their selectivity for high-throughput screening assay targets associated with proangiogenic pathways. We also consider the cross-hallmark relationships of a number of important angiogenic pathway targets with other cancer hallmarks and we make recommendations for future research. Understanding of the role of low-dose exposure of chemicals with disruptive potential could help us refine our approach to cancer risk assessment, and may ultimately aid in preventing cancer by reducing or eliminating exposures to synergistic mixtures of chemicals with carcinogenic potential.
Collapse
Affiliation(s)
- Zhiwei Hu
- To whom correspondence should be addressed. Tel: +1 614 685 4606; Fax: +1-614-247-7205;
| | - Samira A. Brooks
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Valérian Dormoy
- INSERM U1113, team 3 “Cell Signalling and Communication in Kidney and Prostate Cancer”, University of Strasbourg, Facultée de Médecine, 67085 Strasbourg, France
- Department of Cell and Developmental Biology, University of California, Irvine, CA 92697, USA
| | - Chia-Wen Hsu
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892-3375, USA
| | - Hsue-Yin Hsu
- Department of Life Sciences, Tzu-Chi University, Taiwan, Republic of China
| | - Liang-Tzung Lin
- Department of Microbiology and Immunology, Taipei Medical University, Taiwan, Republic of China
| | - Thierry Massfelder
- INSERM U1113, team 3 “Cell Signalling and Communication in Kidney and Prostate Cancer”, University of Strasbourg, Facultée de Médecine, 67085 Strasbourg, France
| | - W. Kimryn Rathmell
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Menghang Xia
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892-3375, USA
| | - Fahd Al-Mulla
- Department of Life Sciences, Tzu-Chi University, Taiwan, Republic of China
| | | | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Firenze, Florence 50134, Italy
| | - Dustin G. Brown
- Department of Environmental and Radiological Health Sciences
, Colorado State University/Colorado School of Public Health, Fort Collins, CO 80523, USA
| | - Kalan R. Prudhomme
- Environmental and Molecular Toxicology, Environmental Health Science Center, Oregon State University, Corvallis, OR 97331, USA
| | - Annamaria Colacci
- Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, Bologna, Italy
| | - Roslida A. Hamid
- Faculty of Medicine and Health Sciences, University Putra, Serdang, Selangor, Malaysia
| | - Chiara Mondello
- Institute of Molecular Genetics, National Research Council, Pavia 27100, Italy
| | - Jayadev Raju
- Regulatory Toxicology Research Division, Bureau of Chemical Safety, Food Directorate
, Health Products and Food Branch Health Canada, Ottawa, Ontario K1A0K9, Canada
| | - Elizabeth P. Ryan
- Department of Environmental and Radiological Health Sciences
, Colorado State University/Colorado School of Public Health, Fort Collins, CO 80523, USA
| | - Jordan Woodrick
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, WashingtonDC 20057, USA
| | - A. Ivana Scovassi
- Institute of Molecular Genetics, National Research Council, Pavia 27100, Italy
| | - Neetu Singh
- Advanced Molecular Science Research Centre (Centre for Advance Research), King George’s Medical University, Lucknow, Uttar Pradesh 226003, India
| | - Monica Vaccari
- Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, Bologna, Italy
| | - Rabindra Roy
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, WashingtonDC 20057, USA
| | - Stefano Forte
- Mediterranean Institute of Oncology, Viagrande 95029, Italy
| | - Lorenzo Memeo
- Mediterranean Institute of Oncology, Viagrande 95029, Italy
| | - Hosni K. Salem
- Urology Department, kasr Al-Ainy School of Medicine, Cairo University, El Manial, Cairo 12515, Egypt
| | - Leroy Lowe
- Getting to Know Cancer, Truro, Nova Scotia B2N 1X5, Canada
| | - Lasse Jensen
- Division of Cardiovascular Medicine, Department of Medical and Health Sciences, Linköping University, Linköping, Sweden and
| | - William H. Bisson
- Environmental and Molecular Toxicology, Environmental Health Science Center, Oregon State University, Corvallis, OR 97331, USA
| | - Nicole Kleinstreuer
- Integrated Laboratory Systems, Inc., in support of the National Toxicology Program Interagency Center for the Evaluation of Alternative Toxicological Methods, NIEHS, MD K2-16, RTP, NC 27709, USA
| |
Collapse
|
91
|
Zhan J, Li Y, Yu J, Zhao Y, Cao W, Ma J, Sun X, Sun L, Qian H, Zhu W, Xu W. Culture medium of bone marrow-derived human mesenchymal stem cells effects lymphatic endothelial cells and tumor lymph vessel formation. Oncol Lett 2015; 9:1221-1226. [PMID: 25663886 PMCID: PMC4315037 DOI: 10.3892/ol.2015.2868] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 12/19/2014] [Indexed: 12/22/2022] Open
Abstract
Human bone marrow mesenchymal stem cells (hBM-MSCs) favor tumor growth and metastasis in vivo and in vitro. Neovascularization is involved in several pathological conditions, including tumor growth and metastasis. Previous studies have demonstrated that human bone marrow MSC-derived conditioned medium (hBM-MSC-CM) can promote tumor growth by inducing the expression of vascular epidermal growth factor (VEGF) in tumor cells. However, the effect of BM-MSCs on tumor lymph vessel formation has yet to be elucidated. In the present study, the effect of BM-MSCs on processes involved in lymph vessel formation, including tube formation, migration and proliferation, was investigated in human-derived lymphatic endothelial cells (HDLECs). It was identified that hBM-MSC-CM promoted the tube formation and migration of HDLECs. In addition, tumor cells were revealed to participate in lymph vessel formation. In the present study, the SGC-7901, HGC-27 and GFP-MCF-7 cell lines were treated with hBM-MSC-CM. The results demonstrated that the expression of the lymph-associated markers, prospero homeobox protein 1 and VEGF receptor-3, were increased in the SGC-7901 and HGC-27 cell lines, but not in the GFP-MCF-7 cells. The tube formation assay demonstrated that the HGC-27 cells treated with hBM-MSC-CM for 20 days underwent tube formation. These findings indicate that hBM-MSC-CM can promote tube formation in HDLECs and HGC-27 cells, which may be associated with lymph vessel formation during tumor growth and metastasis.
Collapse
Affiliation(s)
- Jie Zhan
- School of Medical Science and Laboratory Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Yahong Li
- Center of Prenatal Diagnosis, Nanjing Maternal and Child Health Hospital Affiliated to Nanjing Medical University, Nanjing, Jisngsu 210004, P.R. China
| | - Jing Yu
- School of Medical Science and Laboratory Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Yuanyaun Zhao
- School of Medical Science and Laboratory Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Wenming Cao
- School of Medical Science and Laboratory Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Jie Ma
- School of Medical Science and Laboratory Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Xiaoxian Sun
- School of Medical Science and Laboratory Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Li Sun
- School of Medical Science and Laboratory Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Hui Qian
- School of Medical Science and Laboratory Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Wei Zhu
- School of Medical Science and Laboratory Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Wenrong Xu
- School of Medical Science and Laboratory Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China ; The Affiliated Hospital, Jiangsu University, Zhenjiang, Jiangsu 212002, P.R. China
| |
Collapse
|
92
|
Zhang B, Gao Z, Sun M, Li H, Fan H, Chen D, Zheng J. Prognostic significance of VEGF-C, semaphorin 3F, and neuropilin-2 expression in oral squamous cell carcinomas and their relationship with lymphangiogenesis. J Surg Oncol 2014; 111:382-8. [PMID: 25475162 DOI: 10.1002/jso.23842] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 10/18/2014] [Indexed: 12/14/2022]
Affiliation(s)
- Bing Zhang
- Department of Anatomy; Basic Medical Science College; Harbin Medical University; Harbin China
- Department of Oral and Maxillofacial Surgery; School and Hospital of Stomatology; Harbin Medical University; Harbin China
| | - Zhongxiuzi Gao
- Department of Anatomy; Basic Medical Science College; Harbin Medical University; Harbin China
| | - Miao Sun
- Department of Oral and Maxillofacial Surgery; School and Hospital of Stomatology; Harbin Medical University; Harbin China
| | - Haixia Li
- Department of Anatomy; Basic Medical Science College; Harbin Medical University; Harbin China
| | - Haixia Fan
- Department of Anatomy; Basic Medical Science College; Harbin Medical University; Harbin China
| | - Dong Chen
- Department of Oral and Maxillofacial Surgery; School and Hospital of Stomatology; Harbin Medical University; Harbin China
| | - Jinhua Zheng
- Department of Anatomy; Basic Medical Science College; Harbin Medical University; Harbin China
| |
Collapse
|
93
|
Elevated microRNA-185 is associated with high vascular endothelial growth factor receptor 2 expression levels and high microvessel density in clear cell renal cell carcinoma. Tumour Biol 2014; 35:12757-63. [DOI: 10.1007/s13277-014-2602-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 09/03/2014] [Indexed: 12/20/2022] Open
|
94
|
Abstract
Recent developments and improvements of multimodal imaging methods for use in animal research have substantially strengthened the options of in vivo visualization of cancer-related processes over time. Moreover, technological developments in probe synthesis and labelling have resulted in imaging probes with the potential for basic research, as well as for translational and clinical applications. In addition, more sophisticated cancer models are available to address cancer-related research questions. This Review gives an overview of developments in these three fields, with a focus on imaging approaches in animal cancer models and how these can help the translation of new therapies into the clinic.
Collapse
Affiliation(s)
- Marion de Jong
- Departments of Nuclear Medicine and Radiology, Erasmus MC Rotterdam, Room Na-610, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Jeroen Essers
- Departments of Genetics (Cancer Genomics Centre), Radiation Oncology and Vascular Surgery, Erasmus MC Rotterdam, P.O Box 2040, 3000CA Rotterdam, The Netherlands
| | - Wytske M van Weerden
- Department of Urology, Erasmus MC Rotterdam, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| |
Collapse
|
95
|
High MMP-21 expression in metastatic lymph nodes predicts unfavorable overall survival for oral squamous cell carcinoma patients with lymphatic metastasis. Oncol Rep 2014; 31:2644-50. [PMID: 24700287 DOI: 10.3892/or.2014.3124] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 02/22/2014] [Indexed: 11/05/2022] Open
Abstract
The aim of the present study was to examine the clinical significance of lymph node metastatic (LNM) foci in predicting the overall survival of oral squamous cell carcinoma (OSCC) patients with LNM. MMP-21 was screened based on the LNM animal model of OSCC. Then four proteins, matrix metalloproteinase (MMP)-2, MMP-21, vascular endothelial growth factor (VEGF)-C and VEGF receptor (VEGFR)-3 were examined by immunohistochemistry in 63 OSCC specimens, including the primary tumors (PTs) and the corresponding LNM foci. The expression levels between the PTs and LNM foci were compared by Wilcoxon paired test. Relationships between expression of the four proteins and patient overall survival were assessed by Kaplan-Meier based on the median of the labeling index. The Cox proportional hazards model was used to assess the relative hazard factors. MMP-21 and VEGF-C expression levels were higher in the LNM foci than levels in the PTs. Results showed that MMP-2 and VEGF-C expression levels in the PTs and MMP-2, MMP-21 and VEGF-C expression in the LNM foci correlated with the overall survival of the OSCC patients with lymphatic metastasis. MMP-21 expression level in the LNM foci was the most reliable predictor among all the tested factors. These results suggest that high MMP-21 expression in LNM foci can be used to predict survival in OSCC patients with LNM. Characteristics of LNM foci may be more reliable than PT characteristics in predicting the overall survival of OSCC patients with lymphatic metastasis.
Collapse
|
96
|
Schmitt SM, Gull M, Brändli AW. Engineering Xenopus embryos for phenotypic drug discovery screening. Adv Drug Deliv Rev 2014; 69-70:225-46. [PMID: 24576445 DOI: 10.1016/j.addr.2014.02.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 02/13/2014] [Accepted: 02/14/2014] [Indexed: 02/08/2023]
Abstract
Many rare human inherited diseases remain untreatable despite the fact that the disease causing genes are known and adequate mouse disease models have been developed. In vivo phenotypic drug screening relies on isolating drug candidates by their ability to produce a desired therapeutic phenotype in whole organisms. Embryos of zebrafish and Xenopus frogs are abundant, small and free-living. They can be easily arrayed in multi-well dishes and treated with small organic molecules. With the development of novel genome modification tools, such a zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and CRISPR/Cas, it is now possible to efficiently engineer non-mammalian models of inherited human diseases. Here, we will review the rapid progress made in adapting these novel genome editing tools to Xenopus. The advantages of Xenopus embryos as in vivo models to study human inherited diseases will be presented and their utility for drug discovery screening will be discussed. Being a tetrapod, Xenopus complements zebrafish as an indispensable non-mammalian animal model for the study of human disease pathologies and the discovery of novel therapeutics for inherited diseases.
Collapse
|
97
|
Lenoir B, Wagner DR, Blacher S, Sala-Newby GB, Newby AC, Noel A, Devaux Y. Effects of adenosine on lymphangiogenesis. PLoS One 2014; 9:e92715. [PMID: 24651845 PMCID: PMC3961410 DOI: 10.1371/journal.pone.0092715] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 02/25/2014] [Indexed: 02/01/2023] Open
Abstract
Background The lymphatic system controls tissue homeostasis by draining protein-rich lymph to the vascular system. Lymphangiogenesis, the formation of lymphatic vessels, is a normal event in childhood but promotes tumor spread and metastasis during adulthood. Blocking lymphangiogenesis may therefore be of therapeutic interest. Production of adenosine is enhanced in the tumor environment and contributes to tumor progression through stimulation of angiogenesis. In this study, we determined whether adenosine affects lymphangiogenesis. Methods Lymphatic endothelial cells (HMVEC-dLy) were cultured in presence of adenosine and their proliferation, migration and tube formation was assessed. Gelatin sponges embedded with the stable analogue of adenosine 2-chloro adenosine were implanted in mice ear and lymphangiogenesis was quantified. Mice were intravenously injected with adenoviruses containing expression vector for 5′-endonucleotidase, which plays a major role in the formation of adenosine. Results In vitro, we observed that adenosine decreased the proliferation of lymphatic endothelial cells, their migration and tube formation. However, in vivo, gelatin sponges containing 2-chloro adenosine and implanted in mice ear displayed an elevated level of lymphangiogenesis (2.5-fold, p<0.001). Adenovirus-mediated over-expression of cytosolic 5′-nucleotidase IA stimulated lymphangiogenesis and the recruitment of macrophages in mouse liver. Proliferation of lymphatic endothelial cells was enhanced (2-fold, p<0.001) when incubated in the presence of conditioned medium from murine macrophages. Conclusion We have shown that adenosine stimulates lymphangiogenesis in vivo, presumably through a macrophage-mediated mechanism. This observation suggests that blockade of adenosine receptors may help in anti-cancer therapies.
Collapse
Affiliation(s)
- Bénédicte Lenoir
- Laboratory of Cardiovascular Research, Centre de Recherche Public de la Santé (CRP – Santé), Luxembourg
| | - Daniel R. Wagner
- Laboratory of Cardiovascular Research, Centre de Recherche Public de la Santé (CRP – Santé), Luxembourg
- Division of Cardiology, Centre Hospitalier Luxembourg, Luxembourg
| | - Silvia Blacher
- Laboratory of Tumor and Development Biology, Groupe Interdisciplinaire de Génoprotéomique Appliquée - Cancer, University of Liège, Liège, Belgium
| | - Graciela B. Sala-Newby
- Bristol Heart Institute, Bristol Royal Infirmary, University of Bristol, Bristol, United Kingdom
| | - Andrew C. Newby
- Bristol Heart Institute, Bristol Royal Infirmary, University of Bristol, Bristol, United Kingdom
| | - Agnès Noel
- Laboratory of Tumor and Development Biology, Groupe Interdisciplinaire de Génoprotéomique Appliquée - Cancer, University of Liège, Liège, Belgium
| | - Yvan Devaux
- Laboratory of Cardiovascular Research, Centre de Recherche Public de la Santé (CRP – Santé), Luxembourg
- * E-mail:
| |
Collapse
|
98
|
Cassidy LD, Liau SS, Venkitaraman AR. Chromosome instability and carcinogenesis: insights from murine models of human pancreatic cancer associated with BRCA2 inactivation. Mol Oncol 2014; 8:161-8. [PMID: 24268522 PMCID: PMC3989051 DOI: 10.1016/j.molonc.2013.10.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 10/07/2013] [Accepted: 10/13/2013] [Indexed: 01/01/2023] Open
Abstract
Chromosomal instability is a hallmark of human cancer cells, but its role in carcinogenesis remains poorly resolved. Insights into this role have emerged from studies on the tumour suppressor BRCA2, whose inactivation in human cancers causes chromosomal instability through the loss of essential functions of the BRCA2 protein in the normal mechanisms responsible for the replication, repair and segregation of DNA during cell division. Humans who carry heterozygous germline mutations in the BRCA2 gene are highly predisposed to cancers of the breast, ovary, pancreas, prostate and other tissues. Here, we review recent studies that describe genetically engineered mouse models (GEMMs) for pancreatic cancer associated with BRCA2 mutations. These studies not only surprisingly show that BRCA2 does not follow the classical Knudson "two hit" paradigm for tumour suppression, but also highlight features of the interplay between TP53 inactivation and carcinogenesis in the context of BRCA2 deficiency. Thus, the models reveal novel aspects of cancer evolution in carriers of germline BRCA2 mutations, provide new insights into the tumour suppressive role of BRCA2, and establish valuable new preclinical settings for testing approaches to pancreatic cancer therapy; together, these features emphasize the value of GEMMs in cancer research.
Collapse
Affiliation(s)
- Liam D Cassidy
- University of Cambridge, Medical Research Council Cancer Cell Unit, Hutchison/MRC Research Centre, Hills Road, Cambridge CB2 0XZ, United Kingdom
| | - Siong-Seng Liau
- University of Cambridge, Medical Research Council Cancer Cell Unit, Hutchison/MRC Research Centre, Hills Road, Cambridge CB2 0XZ, United Kingdom
| | - Ashok R Venkitaraman
- University of Cambridge, Medical Research Council Cancer Cell Unit, Hutchison/MRC Research Centre, Hills Road, Cambridge CB2 0XZ, United Kingdom.
| |
Collapse
|
99
|
Mousa SA, Lin HY, Tang HY, Hercbergs A, Luidens MK, Davis PJ. Modulation of angiogenesis by thyroid hormone and hormone analogues: implications for cancer management. Angiogenesis 2014; 17:463-9. [PMID: 24458693 DOI: 10.1007/s10456-014-9418-5] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 01/14/2014] [Indexed: 11/30/2022]
Abstract
Acting via a cell surface receptor on integrin αvβ3, thyroid hormone is pro-angiogenic. Nongenomic mechanisms of actions of the hormone and hormone analogues at αvβ3 include modulation of activities of multiple vascular growth factor receptors and their ligands (vascular endothelial growth factor, basic fibroblast growth factor, platelet-derived growth factor, epidermal growth factor), as well as of angiogenic chemokines (CX3 family). Thyroid hormone also may increase activity of small molecules that support neovascularization (bradykinin, angiotensin II) and stimulate endothelial cell motility. Therapeutic angio-inhibition in the setting of cancer may be opposed by endogenous thyroid hormone, particularly when a single vascular growth factor is the treatment target. This may be a particular issue in management of aggressive or recurrent tumors. It is desirable to have access to chemotherapies that affect multiple steps in angiogenesis and to examine as alternatives in aggressive cancers the induction of subclinical hypothyroidism or use of antagonists of the αvβ3 thyroid hormone receptor that are under development.
Collapse
Affiliation(s)
- Shaker A Mousa
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Albany, NY, USA,
| | | | | | | | | | | |
Collapse
|
100
|
Tumor models for prostate cancer exemplified by fibroblast growth factor 8-induced tumorigenesis and tumor progression. Reprod Biol 2014; 14:16-24. [PMID: 24607251 DOI: 10.1016/j.repbio.2014.01.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2013] [Accepted: 01/06/2014] [Indexed: 12/29/2022]
Abstract
Prostate cancer is a very common malignancy among Western males. Although most tumors are indolent and grow slowly, some grow and metastasize aggressively. Because prostate cancer growth is usually androgen-dependent, androgen ablation offers a therapeutic option to treat post-resection tumor recurrence or primarily metastasized prostate cancer. However, patients often relapse after the primary response to androgen ablation therapy, and there is no effective cure for cases of castration-resistant prostate cancer (CRPC). The mechanisms of tumor growth in CRPC are poorly understood. Although the androgen receptors (ARs) remain functional in CRPC, other mechanisms are clearly activated (e.g., disturbed growth factor signaling). Results from our laboratory and others have shown that dysregulation of fibroblast growth factor (FGF) signaling, including FGF receptor 1 (FGFR1) activation and FGF8b overexpression, has an important role in prostate cancer growth and progression. Several experimental models have been developed for prostate tumorigenesis and various stages of tumor progression. These models include genetically engineered mice and rats, as well as induced tumors and xenografts in immunodeficient mice. The latter was created using parental and genetically modified cell lines. All of these models greatly helped to elucidate the roles of different genes in prostate carcinogenesis and tumor progression. Recently, patient-derived xenografts have been studied for possible use in testing individual, specific responses of tumor tissue to different treatment options. Feasible and functional CRPC models for drug responsiveness analysis and the development of effective therapies targeting the FGF signaling pathway and other pathways in prostate cancer are being actively investigated.
Collapse
|