51
|
Eugenin EA, Basilio D, Sáez JC, Orellana JA, Raine CS, Bukauskas F, Bennett MVL, Berman JW. The role of gap junction channels during physiologic and pathologic conditions of the human central nervous system. J Neuroimmune Pharmacol 2012; 7:499-518. [PMID: 22438035 PMCID: PMC3638201 DOI: 10.1007/s11481-012-9352-5] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Accepted: 02/28/2012] [Indexed: 12/15/2022]
Abstract
Gap junctions (GJs) are expressed in most cell types of the nervous system, including neuronal stem cells, neurons, astrocytes, oligodendrocytes, cells of the blood brain barrier (endothelial cells and astrocytes) and under inflammatory conditions in microglia/macrophages. GJs connect cells by the docking of two hemichannels, one from each cell with each hemichannel being formed by 6 proteins named connexins (Cx). Unapposed hemichannels (uHC) also can be open on the surface of the cells allowing the release of different intracellular factors to the extracellular space. GJs provide a mechanism of cell-to-cell communication between adjacent cells that enables the direct exchange of intracellular messengers, such as calcium, nucleotides, IP(3), and diverse metabolites, as well as electrical signals that ultimately coordinate tissue homeostasis, proliferation, differentiation, metabolism, cell survival and death. Despite their essential functions in physiological conditions, relatively little is known about the role of GJs and uHC in human diseases, especially within the nervous system. The focus of this review is to summarize recent findings related to the role of GJs and uHC in physiologic and pathologic conditions of the central nervous system.
Collapse
Affiliation(s)
- Eliseo A Eugenin
- Department of Pathology, F727, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461, USA.
| | | | | | | | | | | | | | | |
Collapse
|
52
|
Witcher MR, Ellis TL. Astroglial networks and implications for therapeutic neuromodulation of epilepsy. Front Comput Neurosci 2012; 6:61. [PMID: 22952462 PMCID: PMC3429855 DOI: 10.3389/fncom.2012.00061] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 07/30/2012] [Indexed: 01/08/2023] Open
Abstract
Epilepsy is a common chronic neurologic disorder affecting approximately 1% of the world population. More than one-third of all epilepsy patients have incompletely controlled seizures or debilitating medication side effects in spite of optimal medical management. Medically refractory epilepsy is associated with excess injury and mortality, psychosocial dysfunction, and significant cognitive impairment. Effective treatment options for these patients can be limited. The cellular mechanisms underlying seizure activity are incompletely understood, though we here describe multiple lines of evidence supporting the likely contribution of astroglia to epilepsy, with focus on individual astrocytes and their network functions. Of the emerging therapeutic modalities for epilepsy, one of the most intriguing is the field of neuromodulation. Neuromodulatory treatment, which consists of administering electrical pulses to neural tissue to modulate its activity leading to a beneficial effect, may be an option for these patients. Current modalities consist of vagal nerve stimulation, open and closed-loop stimulation, and transcranial magnetic stimulation. Due to their unique properties, we here present astrocytes as likely important targets for the developing field of neuromodulation in the treatment of epilepsy.
Collapse
Affiliation(s)
- Mark R Witcher
- Department of Neurosurgery, Wake Forest University Winston-Salem, NC, USA
| | | |
Collapse
|
53
|
Chen MJ, Kress B, Han X, Moll K, Peng W, Ji RR, Nedergaard M. Astrocytic CX43 hemichannels and gap junctions play a crucial role in development of chronic neuropathic pain following spinal cord injury. Glia 2012; 60:1660-70. [PMID: 22951907 DOI: 10.1002/glia.22384] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Accepted: 06/14/2012] [Indexed: 12/31/2022]
Abstract
Chronic neuropathic pain is a frequent consequence of spinal cord injury (SCI). Yet despite recent advances, upstream releasing mechanisms and effective therapeutic options remain elusive. Previous studies have demonstrated that SCI results in excessive ATP release to the peritraumatic regions and that purinergic signaling, among glial cells, likely plays an essential role in facilitating inflammatory responses and nociceptive sensitization. We sought to assess the role of connexin 43 (Cx43) as a mediator of CNS inflammation and chronic pain. To determine the extent of Cx43 involvement in chronic pain, a weight-drop SCI was performed on transgenic mice with Cx43/Cx30 deletions. SCI induced robust and persistent neuropathic pain including heat hyperalgesia and mechanical allodynia in wild-type control mice, which developed after 4 weeks and was maintained after 8 weeks. Notably, SCI-induced heat hyperalgesia and mechanical allodynia were prevented in transgenic mice with Cx43/Cx30 deletions, but fully developed in transgenic mice with only Cx30 deletion. SCI-induced gliosis, detected as upregulation of glial fibrillary acidic protein in the spinal cord astrocytes at different stages of the injury, was also reduced in the knockout mice with Cx43/Cx30 deletions, when compared with littermate controls. In comparison, a standard regimen of post-SCI treatment of minocycline attenuated neuropathic pain to a significantly lesser degree than Cx43 deletion. These findings suggest Cx43 is critically linked to the development of central neuropathic pain following acute SCI. Since Cx43/Cx30 is expressed by astrocytes, these findings also support an important role of astrocytes in the development of chronic pain.
Collapse
Affiliation(s)
- Michael J Chen
- Department of Neurosurgery, Center for Translational Neuromedicine, University of Rochester Medical School, Rochester, New York, USA
| | | | | | | | | | | | | |
Collapse
|
54
|
Thi MM, Islam S, Suadicani SO, Spray DC. Connexin43 and pannexin1 channels in osteoblasts: who is the "hemichannel"? J Membr Biol 2012; 245:401-9. [PMID: 22797941 DOI: 10.1007/s00232-012-9462-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Accepted: 06/20/2012] [Indexed: 02/03/2023]
Abstract
Osteoblasts sense and respond to mechanical stimuli in a process involving influx and release of large ions and signaling molecules. Unapposed gap junction hemichannels formed of connexin43 (Cx43) have been proposed as a major route for such exchange, in particular for release of ATP and prostaglandin E₂ (PGE₂) in osteocytes. However, we have found that Cx43-null osteoblasts have unaltered, mechanically induced PGE₂ release and ATP-induced YoPro dye uptake. In contrast, PGE₂ release in response to fluid shear stress is abolished in P2X₇ receptor (P2X₇R)-null osteoblasts, and ATP-induced dye uptake is attenuated following treatment of wild-type cells with a P2X₇R or Pannexin1 (Panx1) channel blocker. These data indicate that Panx1 channels, in concert with P2X₇R, likely form a molecular complex that performs the hemichannel function in osteoblast mechanosignaling.
Collapse
Affiliation(s)
- Mia M Thi
- Department of Orthopedic Surgery, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | | | | | | |
Collapse
|
55
|
Stehberg J, Moraga-Amaro R, Salazar C, Becerra A, Echeverría C, Orellana JA, Bultynck G, Ponsaerts R, Leybaert L, Simon F, Sáez JC, Retamal MA. Release of gliotransmitters through astroglial connexin 43 hemichannels is necessary for fear memory consolidation in the basolateral amygdala. FASEB J 2012; 26:3649-57. [PMID: 22665389 DOI: 10.1096/fj.11-198416] [Citation(s) in RCA: 189] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Recent in vitro evidence indicates that astrocytes can modulate synaptic plasticity by releasing neuroactive substances (gliotransmitters). However, whether gliotransmitter release from astrocytes is necessary for higher brain function in vivo, particularly for memory, as well as the contribution of connexin (Cx) hemichannels to gliotransmitter release, remain elusive. Here, we microinfused into the rat basolateral amygdala (BLA) TAT-Cx43L2, a peptide that selectively inhibits Cx43-hemichannel opening while maintaining synaptic transmission or interastrocyte gap junctional communication. In vivo blockade of Cx43 hemichannels during memory consolidation induced amnesia for auditory fear conditioning, as assessed 24 h after training, without affecting short-term memory, locomotion, or shock reactivity. The amnesic effect was transitory, specific for memory consolidation, and was confirmed after microinfusion of Gap27, another Cx43-hemichannel blocker. Learning capacity was recovered after coinfusion of TAT-Cx43L2 and a mixture of putative gliotransmitters (glutamate, glutamine, lactate, d-serine, glycine, and ATP). We propose that gliotransmitter release from astrocytes through Cx43 hemichannels is necessary for fear memory consolidation at the BLA. Thus, the present study is the first to demonstrate a physiological role for astroglial Cx43 hemichannels in brain function, making these channels a novel pharmacological target for the treatment of psychiatric disorders, including post-traumatic stress disorder.
Collapse
Affiliation(s)
- Jimmy Stehberg
- Laboratorio de Neurobiologia, Departamento de Ciencias Biologicas, Facultad de Ciencias Biologicas and Facultad de Medicina, Universidad Andres Bello, Santiago, Chile.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Kataria H, Wadhwa R, Kaul SC, Kaur G. Water extract from the leaves of Withania somnifera protect RA differentiated C6 and IMR-32 cells against glutamate-induced excitotoxicity. PLoS One 2012; 7:e37080. [PMID: 22606332 PMCID: PMC3351387 DOI: 10.1371/journal.pone.0037080] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Accepted: 04/13/2012] [Indexed: 01/09/2023] Open
Abstract
Glutamate neurotoxicity has been implicated in stroke, head trauma, multiple sclerosis and neurodegenerative disorders. Search for herbal remedies that may possibly act as therapeutic agents is an active area of research to combat these diseases. The present study was designed to investigate the neuroprotective role of Withania somnifera (Ashwagandha), also known as Indian ginseng, against glutamate induced toxicity in the retinoic acid differentiated rat glioma (C6) and human neuroblastoma (IMR-32) cells. The neuroprotective activity of the Ashwagandha leaves derived water extract (ASH-WEX) was evaluated. Cell viability and the expression of glial and neuronal cell differentiation markers was examined in glutamate challenged differentiated cells with and without the presence of ASH-WEX. We demonstrate that RA-differentiated C6 and IMR-32 cells, when exposed to glutamate, undergo loss of neural network and cell death that was accompanied by increase in the stress protein HSP70. ASH-WEX pre-treatment inhibited glutamate-induced cell death and was able to revert glutamate-induced changes in HSP70 to a large extent. Furthermore, the analysis on the neuronal plasticity marker NCAM (Neural cell adhesion molecule) and its polysialylated form, PSA-NCAM revealed that ASH-WEX has therapeutic potential for prevention of neurodegeneration associated with glutamate-induced excitotoxicty.
Collapse
Affiliation(s)
- Hardeep Kataria
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, India
| | - Renu Wadhwa
- National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
- * E-mail: (GK) (RW); (RW) (GK)
| | - Sunil C. Kaul
- National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Gurcharan Kaur
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, India
- * E-mail: (GK) (RW); (RW) (GK)
| |
Collapse
|
57
|
Abstract
Spinal cord injury (SCI) is often complicated by secondary injury as a result of the innate inflammatory response to tissue trauma and swelling. Previous studies have shown that excessive ATP release from peritraumatic regions contributes to the inflammatory response to SCI by activation of low-affinity P2X7 receptors. Because connexin hemichannels constitute an important route for astrocytic ATP release, we here evaluated the impact on post-traumatic ATP release of deletion of connexins (Cx30/Cx43) in astrocytes. In vivo bioluminescence imaging showed a significant reduction in ATP release after weight-drop injury in mice with deletion of Cx43 compared with Cx43-expressing littermates, both on a Cx30 knockout background. Moreover, astrogliosis and microglia activation were reduced in peritraumatic areas of those mice lacking Cx43; motor recovery was also significantly improved, and the traumatic lesion was smaller. Combined, these observations are consistent with a contribution by astrocytic hemichannels to post-traumatic ATP release that aggravates secondary injury and restrains functional recovery after experimental spinal cord injury. Connexins may thereby constitute a new therapeutic target in spinal cord injury.
Collapse
|
58
|
Astrogliosis: a target for intervention in intracerebral hemorrhage? Transl Stroke Res 2012; 3:80-7. [PMID: 24323864 DOI: 10.1007/s12975-012-0165-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 03/23/2012] [Accepted: 03/27/2012] [Indexed: 01/18/2023]
Abstract
Intracerebral hemorrhage (ICH) is a debilitating neurological injury, accounting for 10-15 % of all strokes. Despite neurosurgical intervention and supportive care, the 30-day mortality rate remains ~50 %, with ICH survivors frequently displaying neurological impairments and requiring long-term assisted care. Unfortunately, the lack of medical interventions to improve clinical outcomes has led to the notion that ICH is the least treatable form of stroke. Hence, additional studies are warranted to better understand the pathophysiology of ICH. Astrogliosis is an underlying astrocytic response to a wide range of brain injuries and postulated to have both beneficial and detrimental effects. However, the molecular mechanisms and functional roles of astrogliosis remain least characterized following ICH. Herein, we review the functional roles of astrogliosis in brain injuries and raise the prospects of therapeutically targeting astrogliosis after ICH.
Collapse
|
59
|
Suadicani SO, Iglesias R, Wang J, Dahl G, Spray DC, Scemes E. ATP signaling is deficient in cultured Pannexin1-null mouse astrocytes. Glia 2012; 60:1106-16. [PMID: 22499153 DOI: 10.1002/glia.22338] [Citation(s) in RCA: 135] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Accepted: 03/16/2012] [Indexed: 11/11/2022]
Abstract
Pannexins (Panx1, 2, and 3) comprise a group of proteins expressed in vertebrates that share weak yet significant sequence homology with the invertebrate gap junction proteins, the innexins. In contrast to the other vertebrate gap junction protein family (connexin), pannexins do not form intercellular channels, but at least Panx1 forms nonjunctional plasma membrane channels. Panx1 is ubiquitously expressed and has been shown to form large conductance (500 pS) channels that are voltage dependent, mechanosensitive, and permeable to relatively large molecules such as ATP. Pharmacological and knockdown approaches have indicated that Panx1 is the molecular substrate for the so-called "hemichannel" originally attributed to connexin43 and that Panx1 is the pore-forming unit of the P2X(7) receptor. Here, we describe, for the first time, conductance and permeability properties of Panx1-null astrocytes. The electrophysiological and fluorescence imaging analyses performed on these cells fully support our previous pharmacological and Panx1 knockdown studies that showed profoundly lower dye uptake and ATP release than wild-type untreated astrocytes. As a consequence of decreased ATP paracrine signaling, intercellular calcium wave spread is altered in Panx1-null astrocytes. Moreover, we found that in astrocytes as in Panx1-expressing oocytes, elevated extracellular K(+) activates Panx1 channels independently of membrane potential. Thus, on the basis of our present findings and our previous report, we propose that Panx1 channels serve as K(+) sensors for changes in the extracellular milieu such as those occurring under pathological conditions.
Collapse
Affiliation(s)
- Sylvia O Suadicani
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | | | | | |
Collapse
|
60
|
Torres A, Wang F, Xu Q, Fujita T, Dobrowolski R, Willecke K, Takano T, Nedergaard M. Extracellular Ca²⁺ acts as a mediator of communication from neurons to glia. Sci Signal 2012; 5:ra8. [PMID: 22275221 DOI: 10.1126/scisignal.2002160] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Defining the pathways through which neurons and astrocytes communicate may contribute to the elucidation of higher central nervous system functions. We investigated the possibility that decreases in extracellular calcium ion concentration ([Ca(2+)](e)) that occur during synaptic transmission might mediate signaling from neurons to glia. Using noninvasive photolysis of the photolabile Ca(2+) buffer diazo-2 {N-[2-[2-[2-[bis(carboxymethyl)amino]-5-(diazoacetyl)phenoxy]ethoxy]-4-methylphenyl]-N-(carboxymethyl)-, tetrapotassium salt} to reduce [Ca(2+)](e) or caged glutamate to simulate glutamatergic transmission, we found that a local decline in extracellular Ca(2+) triggered astrocytic adenosine triphosphate (ATP) release and astrocytic Ca(2+) signaling. In turn, activation of purinergic P2Y1 receptors on a subset of inhibitory interneurons initiated the generation of action potentials by these interneurons, thereby enhancing synaptic inhibition. Thus, astrocytic ATP release evoked by an activity-associated decrease in [Ca(2+)](e) may provide a negative feedback mechanism that potentiates inhibitory transmission in response to local hyperexcitability.
Collapse
Affiliation(s)
- Arnulfo Torres
- Center for Translational Neuromedicine, Division of Glial Disease and Therapeutics, University of Rochester Medical School, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | | | | | | | | | | | | | | |
Collapse
|
61
|
Agnati LF, Guidolin D, Cortelli P, Genedani S, Cela-Conde C, Fuxe K. Neuronal correlates to consciousness. The "Hall of Mirrors" metaphor describing consciousness as an epiphenomenon of multiple dynamic mosaics of cortical functional modules. Brain Res 2012; 1476:3-21. [PMID: 22322150 DOI: 10.1016/j.brainres.2012.01.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 01/02/2012] [Accepted: 01/04/2012] [Indexed: 12/20/2022]
Abstract
Humans share the common intuition of a self that has access to an inner 'theater of mind' (Baars, 2003). The problem is how this internal theater is formed. Moving from Cook's view (Cook, 2008), we propose that the 'sentience' present in single excitable cells is integrated into units of neurons and glial cells transiently assembled into "functional modules" (FMs) organized as systems of encased networks (from cell networks to molecular networks). In line with Hebb's proposal of 'cell assemblies', FMs can be linked to form higher-order mosaics by means of reverberating circuits. Brain-level subjective awareness results from the binding phenomenon that coordinates several FM mosaics. Thus, consciousness may be thought as the global result of integrative processes taking place at different levels of miniaturization in plastic mosaics. On the basis of these neurobiological data and speculations and of the evidence of 'mirror neurons' the 'Hall of Mirrors' is proposed as a significant metaphor of consciousness. This article is part of a Special Issue entitled: Brain Integration.
Collapse
|
62
|
Decrock E, Vinken M, Bol M, D'Herde K, Rogiers V, Vandenabeele P, Krysko DV, Bultynck G, Leybaert L. Calcium and connexin-based intercellular communication, a deadly catch? Cell Calcium 2011; 50:310-21. [PMID: 21621840 DOI: 10.1016/j.ceca.2011.05.007] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Revised: 05/03/2011] [Accepted: 05/05/2011] [Indexed: 10/18/2022]
Abstract
Ca(2+) is known as a universal messenger mediating a wide variety of cellular processes, including cell death. In fact, this ion has been proposed as the 'cell death master', not only at the intracellular but also at the intercellular level. The most direct form of intercellular spread of cell death is mediated by gap junction channels. These channels have been shown to propagate cell death as well as cell survival signals between the cytoplasm of neighbouring cells, reflecting the dual role of Ca(2+) signals, i.e. cell death versus survival. Its precursor, the unopposed hemichannel (half of a gap junction channel), has recently joined in as a toxic pore connecting the intracellular with the extracellular environment and allowing the passage of a range of substances. The biochemical nature of the so-called intercellular cell death molecule, transferred through gap junctions or released/taken up via hemichannels, remains elusive but several studies pinpoint Ca(2+) itself or its messenger inositol trisphosphate as the responsible masters in crime. Although direct evidence is still lacking, indirect data including Ca(2+) involvement in intercellular communication and cell death, and effects of intercellular communication on intracellular Ca(2+) homeostasis, support this hypothesis. In addition, hemichannels and their molecular building blocks, connexin or pannexin proteins, may exert their effects on Ca(2+)-dependent cell death at the intracellular level, independently from their channel functions. This review provides a cutting edge overview of the current knowledge and underscores the intimate connection between intercellular communication, Ca(2+) signalling and cell death.
Collapse
Affiliation(s)
- Elke Decrock
- Department of Basic Medical Sciences - Physiology Group, Faculty of Medicine and Health Sciences, Ghent University, B-9000 Ghent, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Jiang S, Yuan H, Duan L, Cao R, Gao B, Xiong YF, Rao ZR. Glutamate release through connexin 43 by cultured astrocytes in a stimulated hypertonicity model. Brain Res 2011; 1392:8-15. [DOI: 10.1016/j.brainres.2011.03.056] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Revised: 03/10/2011] [Accepted: 03/23/2011] [Indexed: 11/29/2022]
|
64
|
Kim JE, Kang TC. The P2X7 receptor-pannexin-1 complex decreases muscarinic acetylcholine receptor-mediated seizure susceptibility in mice. J Clin Invest 2011; 121:2037-47. [PMID: 21505260 DOI: 10.1172/jci44818] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Accepted: 03/02/2011] [Indexed: 01/02/2023] Open
Abstract
Pannexin-1 (Panx1) plays a role in the release of ATP and glutamate in neurons and astrocytes. Panx1 can be opened at the resting membrane potential by extracellular ATP via the P2X7 receptor (P2X7R). Panx1 opening has been shown to induce neuronal death and aberrant firing, but its role in neuronal activity has not been established. Here, we report the role of the P2X7R-Panx1 complex in regulating muscarinic acetylcholine 1 (M1) receptor function. P2X7R knockout (P2X7-/-) mice showed greater susceptibility to seizures induced by pilocarpine (PILO), an M1 receptor agonist, than their WT littermates, despite having similar levels of hippocampal M1 receptor expression. This hypersensitivity to PILO in the P2X7-/- mice did not involve the GABA or glutamate system. Both administration of P2X7R antagonists and gene silencing of P2X7R or Panx1 in WT mice increased PILO-induced seizure susceptibility in a process mediated by PKC via intracellular Ca2+ release. Therefore, we suggest that the P2X7R-Panx1 complex may play an important role as a negative modulator of M1 receptor-mediated seizure activity in vivo.
Collapse
Affiliation(s)
- Ji-Eun Kim
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University, Chunchon, South Korea
| | | |
Collapse
|
65
|
Neuroinflammation leads to region-dependent alterations in astrocyte gap junction communication and hemichannel activity. J Neurosci 2011; 31:414-25. [PMID: 21228152 DOI: 10.1523/jneurosci.5247-10.2011] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Inflammation attenuates gap junction (GJ) communication in cultured astrocytes. Here we used a well-characterized model of experimental brain abscess as a tool to query effects of the CNS inflammatory milieu on astrocyte GJ communication and electrophysiological properties. Whole-cell patch-clamp recordings were performed on green fluorescent protein (GFP)-positive astrocytes in acute brain slices from glial fibrillary acidic protein-GFP mice at 3 or 7 d after Staphylococcus aureus infection in the striatum. Astrocyte GJ communication was significantly attenuated in regions immediately surrounding the abscess margins and progressively increased to levels typical of uninfected brain with increasing distance from the abscess proper. Conversely, astrocytes bordering the abscess demonstrated hemichannel activity as evident by enhanced ethidium bromide (EtBr) uptake that could be blocked by several pharmacological inhibitors, including the connexin 43 (Cx43) mimetic peptide Gap26, carbenoxolone, the pannexin1 (Panx1) mimetic peptide (10)Panx1, and probenecid. However, hemichannel opening was transient with astrocytic EtBr uptake observed near the abscess at day 3 but not day 7 after infection. The region-dependent pattern of hemichannel activity at day 3 directly correlated with increases in Cx43, Cx30, Panx1, and glutamate transporter expression (glial L-glutamate transporter and L-glutamate/L-aspartate transporter) along the abscess margins. Changes in astrocyte resting membrane potential and input conductance correlated with the observed changes in GJ communication and hemichannel activity. Collectively, these findings indicate that astrocyte coupling and electrical properties are most dramatically affected near the primary inflammatory site and reveal an opposing relationship between the open states of GJ channels versus hemichannels during acute infection. This relationship may extend to other CNS diseases typified with an inflammatory component.
Collapse
|
66
|
Thi MM, Urban-Maldonado M, Spray DC, Suadicani SO. Characterization of hTERT-immortalized osteoblast cell lines generated from wild-type and connexin43-null mouse calvaria. Am J Physiol Cell Physiol 2010; 299:C994-C1006. [PMID: 20686067 PMCID: PMC2980299 DOI: 10.1152/ajpcell.00544.2009] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Accepted: 08/03/2010] [Indexed: 11/22/2022]
Abstract
The gap junction protein connexin43 (Cx43) has been proposed to play key roles in bone differentiation and mineralization, but underlying cellular mechanisms are not totally understood. To further explore roles of Cx43 in these processes, we immortalized calvarial osteoblasts from wild-type and Cx43-null mice using human telomerase reverse transcriptase (hTERT). Osteoblastic (MOB) cell lines were generated from three individual wild-type and three individual Cx43-null mouse calvaria. Average population doubling times of the cell lines were higher than of the primary osteoblasts but did not greatly differ with regard to genotype. Modest to high level of Cx45 expression was detected in MOBs of both genotypes. Most of the cell lines expressed osteoblastic markers [Type I collagen, osteopontin, osteocalcin, parathyroid hormone/parathyroid hormone-related peptide receptor (PTH/PTHrP), periostin (OSF-2), osterix (Osx), runt-related transcription factor 2 (Runx2), alkaline phosphatase (ALP)], and mineralization was comparable to that of primary osteoblasts. Two MOB cell lines from each genotype with most robust maintenance of osteoblast lineage markers were analyzed in greater detail, revealing that the Cx43-null cell lines showed a significant delay in early differentiation (up to 9 days in culture). Matrix mineralization was markedly delayed in one of the Cx43-null lines and slightly delayed in the other. These findings comparing new and very stable wild-type and Cx43-null osteoblastic cell lines define a role for Cx43 in early differentiation and mineralization stages of osteoblasts and further support the concept that Cx43 plays important role in the cellular processes associated with skeleton function.
Collapse
Affiliation(s)
- Mia M Thi
- Department of Orthopaedic Surgery, Albert Einstein College of Medicine of Yeshiva University, Bronx, NY 10461, USA.
| | | | | | | |
Collapse
|
67
|
Dutta R, Trapp BD. Mechanisms of neuronal dysfunction and degeneration in multiple sclerosis. Prog Neurobiol 2010; 93:1-12. [PMID: 20946934 DOI: 10.1016/j.pneurobio.2010.09.005] [Citation(s) in RCA: 324] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Revised: 09/14/2010] [Accepted: 09/30/2010] [Indexed: 01/18/2023]
Abstract
Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system. Due to its high prevalence, MS is the leading cause of non-traumatic neurological disability in young adults in the United States and Europe. The clinical disease course is variable and starts with reversible episodes of neurological disability in the third or fourth decade of life. This transforms into a disease of continuous and irreversible neurological decline by the sixth or seventh decade. Available therapies for MS patients have little benefit for patients who enter this irreversible phase of the disease. It is well established that irreversible loss of axons and neurons are the major cause of the irreversible and progressive neurological decline that most MS patients endure. This review discusses the etiology, mechanisms and progress made in determining the cause of axonal and neuronal loss in MS.
Collapse
Affiliation(s)
- Ranjan Dutta
- Department of Neurosciences/NC30, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | | |
Collapse
|
68
|
Regional changes in purines and selected purinergic receptors in immature rat brain exposed to lead. Toxicology 2010; 279:100-7. [PMID: 20932874 DOI: 10.1016/j.tox.2010.09.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Revised: 09/02/2010] [Accepted: 09/24/2010] [Indexed: 12/20/2022]
Abstract
Lead (Pb) toxicity still remains a significant health problem, since it was recognized as a potent neurodevelopmental toxin. Regarding the fact that in the nervous system ATP is not only the energy source but also acts as a signaling molecule outside the cell, it was of interest to investigate both the level of purines and expression of purinergic receptors in different regions of immature rat brain under Pb toxicity conditions. We examined the expression of A₁ receptor which is involved in neuroprotective mechanisms, and P2X₇R receptor related to the inflammatory and neurodegenerative processes. Expression of receptors' protein was analysed using immunoblotting method whereas HPLC method was used to measure the levels of purines. We observed the features of energetic stress in all examined brain structures expressed by decrease in ATP and ADP levels and AEC ratio. However, in forebrain cortex, the observed changes were milder than in cerebellum and hippocampus. Enhanced expression of A₁R and high increase of adenosine (Ado) level, suggest the proper function of protective mechanisms mediated by Ado. We have found that hippocampus is most vulnerable to Pb toxicity, both due to the high energy depletion and the pattern of expression of investigated receptors. Enhanced expression of P2X₇R and connexin 43 (Cx43) in glial fraction (GPV), suggests the involvement of astrocytic pool of cells into the pathological changes observed in this structure of Pb-exposed immature rat brains.
Collapse
|
69
|
Pajski ML, Venton BJ. Adenosine Release Evoked by Short Electrical Stimulations in Striatal Brain Slices is Primarily Activity Dependent. ACS Chem Neurosci 2010; 1:775-787. [PMID: 21218131 DOI: 10.1021/cn100037d] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Adenosine is an important neuromodulator in the brain. Traditionally, adenosine is thought to arise in the extracellular space by either an extracellular mechanism, where it is formed outside the cell by the breakdown of released ATP, or an intracellular mechanism, where adenosine made inside the cell is transported out. Recently, a proposed third mechanism of activity dependent adenosine release has also been proposed. Here, we used fast-scan cyclic voltammetry to compare the time course and mechanism of adenosine formation evoked by either low- or high-frequency stimulations in striatal rat brain slices. Low-frequency stimulations (5 pulses at 10 Hz) resulted in an average adenosine efflux of 0.22 ± 0.02 μM, while high-frequency stimulations (5 pulses, 60 Hz) evoked 0.36 ± 0.04 μM. Blocking intracellular formation by inhibiting adenosine transporters with S-(4-nitrobenzyl)-6-thioinosine (NBTI) or propentofylline did not decrease release for either frequency, indicating that the release was not due to the intracellular mechanism. Blocking extracellular formation with ARL-67156 reduced low-frequency release about 60%, but did not affect high-frequency release. Both low- and high-frequency stimulated release were almost completely blocked by removal of calcium, indicating activity dependence. Reducing dopamine efflux did not affect adenosine release but inhibiting ionotropic glutamate receptors did, indicating that adenosine release is dependent on downstream effects of glutamate. Therefore, adenosine release after short, high-frequency physiological stimulations is independent of transporter activity or ATP metabolism, and may be due to direct release of adenosine after glutamate receptor activation.
Collapse
Affiliation(s)
- Megan L. Pajski
- Chemistry Department, University of Virginia, P.O. Box 400319, Charlottesville, Virginia 22904, United States
| | - B. Jill Venton
- Chemistry Department, University of Virginia, P.O. Box 400319, Charlottesville, Virginia 22904, United States
| |
Collapse
|
70
|
Domingues AMDJ, Taylor M, Fern R. Glia as transmitter sources and sensors in health and disease. Neurochem Int 2010; 57:359-66. [PMID: 20380859 DOI: 10.1016/j.neuint.2010.03.024] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Revised: 03/19/2010] [Accepted: 03/31/2010] [Indexed: 10/19/2022]
Abstract
Glial cells express a bewildering array of neurotransmitter receptors. To illustrate the complexity of expression, we have assayed non-glutamatergic neurotransmitter receptor mRNA in isolated rat optic nerve, a preparation devoid of neurons and neuronal synapses and from which relatively pure "glial" RNA can be isolated. Of the 44 receptor subunits examined which span the GABA-A, nicotinic, adreno- and glycine receptor families, over three quarters were robustly expressed in this mixed population of white matter glial cells, with several expressed at higher levels than found in control whole brain RNA. In addition to the complexity of glial receptor expression, numerous neurotransmitter release mechanisms have been identified. We have focused on glutamate release from astrocytes, which can occur via at least seven distinct pathways and which is implicated in excitotoxic injury and are neurons and glia. Recent findings suggest that non-glutamatergic receptors can also mediate acute glial injury are also discussed.
Collapse
|
71
|
Agnesi F, Blaha CD, Lin J, Lee KH. Local glutamate release in the rat ventral lateral thalamus evoked by high-frequency stimulation. J Neural Eng 2010; 7:26009. [PMID: 20332553 PMCID: PMC2905138 DOI: 10.1088/1741-2560/7/2/026009] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Thalamic deep brain stimulation (DBS) is proven therapy for essential tremor, Parkinson's disease and Tourette's syndrome. We tested the hypothesis that high-frequency electrical stimulation results in local thalamic glutamate release. Enzyme-linked glutamate amperometric biosensors were implanted in anesthetized rat thalamus adjacent to the stimulating electrode. Electrical stimulation was delivered to investigate the effect of frequency, pulse width, voltage-controlled or current-controlled stimulation, and charge balancing. Monophasic electrical stimulation-induced glutamate release was linearly dependent on stimulation frequency, intensity and pulse width. Prolonged stimulation evoked glutamate release to a plateau that subsequently decayed back to baseline after stimulation. Glutamate release was less pronounced with voltage-controlled stimulation and not present with charge balanced current-controlled stimulation. Using fixed potential amperometry in combination with a glutamate bioprobe and adjacent microstimulating electrode, the present study has shown that monophasic current-controlled stimulation of the thalamus in the anesthetized rat evoked linear increases in local extracellular glutamate concentrations that were dependent on stimulation duration, frequency, intensity and pulse width. However, the efficacy of monophasic voltage-controlled stimulation, in terms of evoking glutamate release in the thalamus, was substantially lower compared to monophasic current-controlled stimulation and entirely absent with biphasic (charge balanced) current-controlled stimulation. It remains to be determined whether similar glutamate release occurs with human DBS electrodes and similar charge balanced stimulation. As such, the present results indicate the importance of evaluating local neurotransmitter dynamics in studying the mechanism of action of DBS.
Collapse
Affiliation(s)
- Filippo Agnesi
- Department of Physiology and Biomedical Engineering, Mayo Clinic
| | | | - Jessica Lin
- Department of Neurologic Surgery, Mayo Clinic
| | | |
Collapse
|
72
|
Featherstone DE. Intercellular glutamate signaling in the nervous system and beyond. ACS Chem Neurosci 2010; 1:4-12. [PMID: 22778802 DOI: 10.1021/cn900006n] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2009] [Revised: 09/25/2009] [Indexed: 01/22/2023] Open
Abstract
Most intercellular glutamate signaling in the nervous system occurs at synapses. Some intercellular glutamate signaling occurs outside synapses, however, and even outside the nervous system where high ambient extracellular glutamate might be expected to preclude the effectiveness of glutamate as an intercellular signal. Here, I briefly review the types of intercellular glutamate signaling in the nervous system and beyond, with emphasis on the diversity of signaling mechanisms and fundamental unanswered questions.
Collapse
Affiliation(s)
- David E. Featherstone
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois 60607
| |
Collapse
|
73
|
Abstract
Glia are increasingly appreciated as active participants in central neural processing via calcium waves, electrical coupling, and even synaptic-like release of “neuro”-transmitters. In some sensory organs (e.g., retina, olfactory bulb), glia have been shown to interact with neurons in the same manner, although their role in perception has yet to be elucidated. In the organ of Corti, synapses occur between supporting cells and neurons. In one sensory organ, the Pacinian corpuscle (fine touch), glia have been shown to play just as important a role in sensory transduction as they do in neural processing in the brain, and the functional role is quite clear; the modified Schwann cells of the capsule are responsible for the rapid adaptation process of the PCs, integral to its function as a vibration detector. This complex glial/neuronal relationship may be a recent evolutionary phenomenon and may account for much of the relative sophistication of vertebrate nervous systems.
Collapse
Affiliation(s)
- Adam K. Pack
- Department of Biology, Utica College, Utica, New York,
| | | |
Collapse
|
74
|
Hamilton N, Vayro S, Wigley R, Butt AM. Axons and astrocytes release ATP and glutamate to evoke calcium signals in NG2-glia. Glia 2010; 58:66-79. [PMID: 19533604 DOI: 10.1002/glia.20902] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
NG2-glia are an abundant population of cells in the adult CNS that make up a novel glial cell type. Here, we have examined calcium signals in NG2-glia identified by expression of the fluorescent protein DsRed under the control of the NG2 promoter in the white matter of the mouse optic nerve. We focused on mice aged postnatal day (P)12-16, after the main period of oligodendrocyte generation. Using fluo-4 and fura-2 calcium imaging in isolated intact nerves, we show that glutamate and ATP evoke Ca(2+) signals in NG2-glia in situ, acting on AMPA-type glutamate receptors and P2Y(1) and P2X(7) purine receptors; NMDA evoked a weak Ca(2+) signal in a small proportion of NG2-glia. We show that axonal action potentials and mechanical stimulation of astrocytes effect the release of glutamate and ATP to act on NG2-glia; ATP alone evokes robust Ca(2+) signals, whereas glutamate did not unless AMPA receptor desensitization was blocked with cyclothiazide. We identify the precise contacts that NG2-glia form with axons at nodes of Ranvier, and the intricate bipartite sheaths formed between the processes of NG2-glia and astrocytes. In addition, we provide evidence that NG2-glia express synaptophysin, indicating they have mechanisms for transmitting as well as receiving signals. This study places NG2-glia within a neuron-glial network, and identifies roles for glutamate and ATP in communication with astrocytes as well as axons.
Collapse
Affiliation(s)
- Nicola Hamilton
- Institute of Biology and Biomedical Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | | | | | | |
Collapse
|
75
|
Bidirectional calcium signaling between satellite glial cells and neurons in cultured mouse trigeminal ganglia. ACTA ACUST UNITED AC 2009; 6:43-51. [PMID: 19891813 DOI: 10.1017/s1740925x09990408] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Astrocytes communicate with neurons, endothelial and other glial cells through transmission of intercellular calcium signals. Satellite glial cells (SGCs) in sensory ganglia share several properties with astrocytes, but whether this type of communication occurs between SGCs and sensory neurons has not been explored. In the present work we used cultured neurons and SGCs from mouse trigeminal ganglia to address this question. Focal electrical or mechanical stimulation of single neurons in trigeminal ganglion cultures increased intracellular calcium concentration in these cells and triggered calcium elevations in adjacent glial cells. Similar to neurons, SGCs responded to mechanical stimulation with increase in cytosolic calcium that spread to the adjacent neuron and neighboring glial cells. Calcium signaling from SGCs to neurons and among SGCs was diminished in the presence of the broad-spectrum P2 receptor antagonist suramin (50 muM) or in the presence of the gap junction blocker carbenoxolone (100 muM), whereas signaling from neurons to SGCs was reduced by suramin, but not by carbenoxolone. Following induction of submandibular inflammation by Complete Freund's Adjuvant injection, the amplitude of signaling among SGCs and from SGCs to neuron was increased, whereas the amplitude from neuron to SGCs was reduced. These results indicate for the first time the presence of bidirectional calcium signaling between neurons and SGCs in sensory ganglia cultures, which is mediated by the activation of purinergic P2 receptors, and to some extent by gap junctions. Furthermore, the results indicate that not only sensory neurons, but also SGCs release ATP. This form of intercellular calcium signaling likely plays key roles in the modulation of neuronal activity within sensory ganglia in normal and pathological states.
Collapse
|
76
|
D'hondt C, Ponsaerts R, De Smedt H, Bultynck G, Himpens B. Pannexins, distant relatives of the connexin family with specific cellular functions? Bioessays 2009; 31:953-74. [PMID: 19644918 DOI: 10.1002/bies.200800236] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Intercellular communication (IC) is mediated by gap junctions (GJs) and hemichannels, which consist of proteins. This has been particularly well documented for the connexin (Cx) family. Initially, Cxs were thought to be the only proteins capable of GJ formation in vertebrates. About 10 years ago, however, a new GJ-forming protein family related to invertebrate innexins (Inxs) was discovered in vertebrates, and named the pannexin (Panx) family. Panxs, which are structurally similar to Cxs, but evolutionarily distinct, have been shown to be co-expressed with Cxs in vertebrates. Both protein families show distinct properties and have their own particular function. Identification of the mechanisms that control Panx channel gating is a major challenge for future work. In this review, we focus on the specific properties and role of Panxs in normal and pathological conditions.
Collapse
Affiliation(s)
- Catheleyne D'hondt
- Laboratory of Molecular and Cellular Signalling, KULeuven, Campus Gasthuisberg O/N, Leuven, Belgium
| | | | | | | | | |
Collapse
|
77
|
Iglesias R, Dahl G, Qiu F, Spray DC, Scemes E. Pannexin 1: the molecular substrate of astrocyte "hemichannels". J Neurosci 2009; 29:7092-7. [PMID: 19474335 PMCID: PMC2733788 DOI: 10.1523/jneurosci.6062-08.2009] [Citation(s) in RCA: 297] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Revised: 03/08/2009] [Accepted: 03/30/2009] [Indexed: 11/21/2022] Open
Abstract
Purinergic signaling plays distinct and important roles in the CNS, including the transmission of calcium signals between astrocytes. Gap junction hemichannels are among the mechanisms proposed by which astrocytes might release ATP; however, whether the gap junction protein connexin43 (Cx43) forms these "hemichannels" remains controversial. Recently, a new group of proteins, the pannexins, have been shown to form nonselective, high-conductance plasmalemmal channels permeable to ATP, thereby offering an alternative for the hemichannel protein. Here, we provide strong evidence that, in cultured astrocytes, pannexin1 (Panx1) but not Cx43 forms hemichannels. Electrophysiological and fluorescence microscope recordings performed in wild-type and Cx43-null astrocytes did not reveal any differences in hemichannel activity, which was mostly eliminated by treating Cx43-null astrocytes with Panx1-short interfering RNA [Panx1-knockdown (Panx1-KD)]. Moreover, quantification of the amount of ATP released from wild-type, Cx43-null, and Panx1-KD astrocytes indicates that downregulation of Panx1, but not of Cx43, prevented ATP release from these cells.
Collapse
Affiliation(s)
- Rodolfo Iglesias
- The Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York 10461, and
| | - Gerhard Dahl
- Department of Physiology and Biophysics, University of Miami, Miami, Florida 33136
| | - Feng Qiu
- Department of Physiology and Biophysics, University of Miami, Miami, Florida 33136
| | - David C. Spray
- The Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York 10461, and
| | - Eliana Scemes
- The Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York 10461, and
| |
Collapse
|
78
|
Wakasa S, Shiiya N, Tachibana T, Ooka T, Matsui Y. A semiquantitative analysis of reactive astrogliosis demonstrates its correlation with the number of intact motor neurons after transient spinal cord ischemia. J Thorac Cardiovasc Surg 2009; 137:983-90. [DOI: 10.1016/j.jtcvs.2008.10.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2008] [Revised: 08/27/2008] [Accepted: 10/03/2008] [Indexed: 11/28/2022]
|
79
|
Scemes E, Spray DC, Meda P. Connexins, pannexins, innexins: novel roles of "hemi-channels". Pflugers Arch 2009; 457:1207-26. [PMID: 18853183 PMCID: PMC2656403 DOI: 10.1007/s00424-008-0591-5] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2008] [Accepted: 09/17/2008] [Indexed: 12/11/2022]
Abstract
The advent of multicellular organisms, some 800 million years ago, necessitated the development of mechanisms for cell-to-cell synchronization and for the spread of signals across increasingly large cell populations [168 , 185 ]. Many structures and mechanisms have evolved to achieve such functions [4 , 15 ]. Among these mechanisms, one which is prominent in both the invertebrate and the vertebrate world, across the entire phylogenetic scale, involves the transmembrane flux of large cytosolic and extracellular molecules [4 , 15 , 65 , 66 , 69 –71 , 121 , 128 , 129 , 147 , 154 , 163 ]. These fluxes, in turn, are dependent on the formation of specific channels that in all animal classes are made by tetra-span integral membrane proteins [65 , 66 , 69 –71 , 121 , 128 , 129 , 147 , 154 , 163 ] (Fig. 1 ).
Collapse
Affiliation(s)
- Eliana Scemes
- The Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY, USA
| | - David C. Spray
- The Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY, USA
| | - Paolo Meda
- Department of Cell Physiology and Metabolism, University of Geneva, C.M.U., 1 rue Michel Serve, 1211 Geneva 4, Switzerland
| |
Collapse
|
80
|
Hypertonic stimulation induces synthesis and release of glutamate in cultured rat hypothalamic astrocytes and C6 cells. Neurosci Bull 2009; 24:359-66. [PMID: 19037321 DOI: 10.1007/s12264-008-0709-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
OBJECTIVE To investigate whether hypertonic saline (HS) can induce the synthesis and release of glutamate in cultured hypothalamic astrocytes or C6 cell line. METHODS Astrocytes were isolated, cultured, purified and identified from the hypothalamus of newborn rat (1 day). The astrocytes were randomly divided into five groups: isotonic (IS) and HS groups, astrocytes were incubated by IS and HS (320 mosM NaCl) medium, respectively, for 1, 3, 5, 10 or 15 min; carbenoxolone (CBX)+IS and CBX+HS groups, astrocytes were pre-treated with CBX (100 mmol/L) for 1 h at 37 degrees C in a 5% CO(2) / 95% atmosphere, then removed to IS and HS medium, respectively, for 1, 3, 5, 10 or 15 min; Ca(2+)+HS group, astrocytes were pre-incubated with Ca Ca(2+) (1,000 micromol/L) for 1 h at 37 degrees C in a 5% CO(2) / 95% atmosphere, followed by a wash with isotonic FBS/DMEM, and then removed to hypertonic saline for 1, 3, 5, 10 or 15 min. The media of five groups were collected to analyze the medium glutamate concentration with high performance liquid chromatography. The astrocytes were fixed and double immunofluorescent stained with anti-glial fibrillary acidic protein (GFAP) and anti-glutamate. The C6 cells were divided into four groups: IS, HS, CBX+IS and CBX+HS groups, and used for quantitative measurement of glutamate in cells by flow cytometry (FCM). RESULTS (1) Anti-GFAP immunofluorescent signal revealed no significant difference among various time points in each group, or among the five groups. (2) The anti-glutamate immunofluorescent signal was increased in HS group and peaked at 5 min, and decreased and returned to the level of IS group at 15 min (P < 0.01 vs the 5 min of HS group). In CBX+HS group, the glutamate intensity was higher than that in CBX+IS and HS groups. (3) The medium glutamate concentration had no change after treatment with HS for 1 and 3 min, while increased markedly after treatment for 5 min to 15 min (P< 0.01 vs 1 min and 3 min). On the contrary, the medium glutamate concentrations in the CBX+HS or Ca(2+)+HS group were significant lower than that in the HS group (P < 0.01). (4) FCM showed HS and CBX+HS induced glutamate increase in C6 cells. CONCLUSION HS induced cultured rat hypothalamic astrocytes or C6 cells to synthesize and release glutamate; CBX could block glutamate release, but could not disrupt glutamate synthesis.
Collapse
|
81
|
Juszczak GR, Swiergiel AH. Properties of gap junction blockers and their behavioural, cognitive and electrophysiological effects: animal and human studies. Prog Neuropsychopharmacol Biol Psychiatry 2009; 33:181-98. [PMID: 19162118 DOI: 10.1016/j.pnpbp.2008.12.014] [Citation(s) in RCA: 162] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Revised: 12/22/2008] [Accepted: 12/22/2008] [Indexed: 10/21/2022]
Abstract
Gap junctions play an important role in brain physiology. They synchronize neuronal activity and connect glial cells participating in the regulation of brain metabolism and homeostasis. Gap junction blockers (GJBs) include various chemicals that impair gap junction communication, disrupt oscillatory neuronal activity over a wide range of frequencies, and decrease epileptic discharges. The behavioural and clinical effects of GJBs suggest that gap junctions can be involved in the regulation of locomotor activity, arousal, memory, and breathing. Severe neuropsychiatric side effects suggest the involvement of gap junctions in mechanisms of consciousness. Unfortunately, the available GJBs are not selective and can bind to targets other than gap junctions. Other problems in behavioural studies include the possible adverse effects of GJBs, for example, retinal toxicity and hearing disturbances, changes in blood-brain transport, and the metabolism of other drugs. Therefore, it is necessary to design experiments properly to avoid false, misleading or uninterpretable results. We review the pharmacological properties and electrophysiological, behavioural and cognitive effects of the available gap junction blockers, such as carbenoxolone, glycyrrhetinic acid, quinine, quinidine, mefloquine, heptanol, octanol, anandamide, fenamates, 2-APB, several anaesthetics, retinoic acid, oleamide, spermine, aminosulfonates, and sodium propionate. It is concluded that despite a number of different problems, the currently used gap junction blockers could be useful tools in pharmacology and neuroscience.
Collapse
Affiliation(s)
- Grzegorz R Juszczak
- Department of Animal Behaviour, Institute of Genetics and Animal Breeding, Jastrzebiec, ul. Postepu 1, 05-552 Wolka Kosowska, Poland.
| | | |
Collapse
|
82
|
|
83
|
Ye ZC, Oberheim N, Kettenmann H, Ransom BR. Pharmacological "cross-inhibition" of connexin hemichannels and swelling activated anion channels. Glia 2009; 57:258-69. [PMID: 18837047 PMCID: PMC2676787 DOI: 10.1002/glia.20754] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The study of ion channels has relied heavily on the use of pharmacological blocking agents. However, many of these agents have multiple effects, which may compromise interpretation of results when the affected mechanisms/pathways mediate similar functions. Volume regulated anion channels (VRAC) and connexin hemichannels can both mediate the release of glutamate and taurine, although these channels have distinct activation stimuli and hemichannels, but not VRAC, are permeable to Lucifer Yellow (LY). It has been reported that some anion channel blockers may inhibit connexin hemichannels. We further examined the effects of classic gap junction/hemichannel blockers and anion channel blockers on these channels. The typical VRAC blockers, NPPB, IAA-94, and tamoxifen blocked low divalent cation-induced glutamate and taurine release and LY loading, presumed due to hemichannel opening. The blocking action of these compounds on hemichannels was concentration dependent and fell within the same range where the drugs classically block VRACs. Conversely, carbenoxolone (CBX), the most widely used gap junction/hemichannel blocker, was an effective blocker of VRAC-mediated glutamate and taurine release, and blocked these channels at similar concentrations at which it blocked hemichannels. The CBX effect on VRACs was verified using astrocytes from connexin 43 knock out (Cx43 KO) animals. In these cells, the hypotonic induced amino acid flux was retained whereas the low divalent cation solution-induced flux was lost. These results extend our knowledge about "cross-inhibition" of VRACs and gap junctions/hemichannels by certain pharmacological agents. Given the overlap in function of these two types of channels, great care must be exerted in using pharmacological blockers to identify one channel from the other.
Collapse
Affiliation(s)
- Zu-Cheng Ye
- Department of Neurology, University of Washington School of Medicine, Seattle, Washington 98104, USA.
| | | | | | | |
Collapse
|
84
|
González A, Salido GM. Ethanol alters the physiology of neuron-glia communication. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2009; 88:167-98. [PMID: 19897078 DOI: 10.1016/s0074-7742(09)88007-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In the central nervous system (CNS), both neurones and astrocytes play crucial roles. On a cellular level, brain activity involves continuous interactions within complex cellular circuits established between neural cells and glia. Although it was initially considered that neurones were the major cell type in cerebral function, nowadays astrocytes are considered to contribute to cerebral function too. Astrocytes support normal neuronal activity, including synaptic function, by regulating the extracellular environment with respect to ions and neurotransmitters. There is a plethora of noxious agents which can lead to the development of alterations in organs and functional systems, and that will end in a chronic prognosis. Among the potentially harmful external agents we can find ethanol consumption, whose consequences have been recognized as a major public health concern. Deregulation of cell cycle has devastating effects on the integrity of cells, and has been closely associated with the development of pathologies which can lead to dysfunction and cell death. An alteration of normal neuronal-glial physiology could represent the basis of neurodegenerative processes. In this review we will pay attention on to the recent findings in astrocyte function and their role toward neurons under ethanol consumption.
Collapse
Affiliation(s)
- Antonio González
- Department of Physiology (Cell Physiology Research Group), University of Extremadura, 10071, Cáceres, Spain
| | | |
Collapse
|
85
|
Agulhon C, Petravicz J, McMullen AB, Sweger EJ, Minton SK, Taves SR, Casper KB, Fiacco TA, McCarthy KD. What is the role of astrocyte calcium in neurophysiology? Neuron 2008; 59:932-46. [PMID: 18817732 PMCID: PMC3623689 DOI: 10.1016/j.neuron.2008.09.004] [Citation(s) in RCA: 404] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2008] [Revised: 09/08/2008] [Accepted: 09/08/2008] [Indexed: 11/22/2022]
Abstract
Astrocytes comprise approximately half of the volume of the adult mammalian brain and are the primary neuronal structural and trophic supportive elements. Astrocytes are organized into distinct nonoverlapping domains and extend elaborate and dense fine processes that interact intimately with synapses and cerebrovasculature. The recognition in the mid 1990s that astrocytes undergo elevations in intracellular calcium concentration following activation of G protein-coupled receptors by synaptically released neurotransmitters demonstrated not only that astrocytes display a form of excitability but also that astrocytes may be active participants in brain information processing. The roles that astrocytic calcium elevations play in neurophysiology and especially in modulation of neuronal activity have been intensely researched in recent years. This review will summarize the current understanding of the function of astrocytic calcium signaling in neurophysiological processes and discuss areas where the role of astrocytes remains controversial and will therefore benefit from further study.
Collapse
Affiliation(s)
- Cendra Agulhon
- Department of Pharmacology, 1004 Mary Ellen Jones Building CB #7365
| | - Jeremy Petravicz
- Curriculum in Neurobiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7365, USA
| | | | | | | | - Sarah R. Taves
- Curriculum in Neurobiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7365, USA
| | | | - Todd A. Fiacco
- Department of Cell Biology and Neuroscience, University of California Riverside, Riverside, CA 92521, USA
| | - Ken D. McCarthy
- Department of Pharmacology, 1004 Mary Ellen Jones Building CB #7365
- Curriculum in Neurobiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7365, USA
| |
Collapse
|
86
|
Grewer C, Gameiro A, Zhang Z, Tao Z, Braams S, Rauen T. Glutamate forward and reverse transport: from molecular mechanism to transporter-mediated release after ischemia. IUBMB Life 2008; 60:609-19. [PMID: 18543277 PMCID: PMC2632779 DOI: 10.1002/iub.98] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Glutamate transporters remove the excitatory neurotransmitter glutamate from the extracellular space after neurotransmission is complete, by taking glutamate up into neurons and glia cells. As thermodynamic machines, these transporters can also run in reverse, releasing glutamate into the extracellular space. Because glutamate is excitotoxic, this transporter-mediated release is detrimental to the health of neurons and axons, and it, thus, contributes to the brain damage that typically follows a stroke. This review highlights current ideas about the molecular mechanisms underlying glutamate uptake and glutamate reverse transport. It also discusses the implications of transporter-mediated glutamate release for cellular function under physiological and patho-physiological conditions.
Collapse
Affiliation(s)
- Christof Grewer
- Binghamton University, Department of Chemistry, Binghamton, NY 13902, USA.
| | | | | | | | | | | |
Collapse
|
87
|
Affiliation(s)
- Bruce D. Trapp
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195;
| | - Klaus-Armin Nave
- Max Planck Institute of Experimental Medicine, Hermann-Rein-Strasse 3, D-37075 Göttingen, Germany;
| |
Collapse
|
88
|
Garg SK, Banerjee R, Kipnis J. Neuroprotective immunity: T cell-derived glutamate endows astrocytes with a neuroprotective phenotype. THE JOURNAL OF IMMUNOLOGY 2008; 180:3866-73. [PMID: 18322194 DOI: 10.4049/jimmunol.180.6.3866] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A well-controlled T cell response to CNS injury may result in increased neuronal survival. However, the precise mechanism of T cell-induced neuroprotection is unknown. In this study, we report the unexpected finding that during culture of T cells, high levels of glutamate accumulate, which are efficiently cleared if T cells are cocultured with astrocytes. The T cell-derived glutamate elicits in turn, the release of neuroprotective thiols (cysteine, glutathione, and cysteinyl-glycine) and lactate from astrocytes. Media obtained from astrocytes conditioned in the presence of T cells reduce neuronal apoptosis induced by oxidative stress in primary neuronal cultures from 48 +/- 14 to 9 +/- 4% (p < 0.001). Inhibition of glutamate-dependent signaling during astrocyte-T cell cocultivation by a glutamate uptake inhibitor, l-aspartic acid beta-hydroxamate, abolishes this neuroprotective effect. The ability of astrocytes to clear extracellular glutamate is impaired under conditions of oxidative stress. We demonstrate that T cells, via secreted cytokines, restore glutamate clearance capacity of astrocytes under oxidative conditions. Furthermore, under normoxic conditions, glutamate-buffering capacity of astrocytes is increased upon cocultivation with T cells. It is known that, following CNS injury, astrocytes can respond with beneficial or destructive effects on neurons. However, the context and signaling mechanisms for this dual astrocytic response are unknown. Our results implicate T cells as potential determinants of the context that elicits a protective role for astrocytes in the damaged CNS.
Collapse
Affiliation(s)
- Sanjay K Garg
- Redox Biology Center, University of Nebraska, Lincoln, NE 68588, USA
| | | | | |
Collapse
|
89
|
Franco R, Panayiotidis MI, de la Paz LDO. Autocrine signaling involved in cell volume regulation: the role of released transmitters and plasma membrane receptors. J Cell Physiol 2008; 216:14-28. [PMID: 18300263 DOI: 10.1002/jcp.21406] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cell volume regulation is a basic homeostatic mechanism transcendental for the normal physiology and function of cells. It is mediated principally by the activation of osmolyte transport pathways that result in net changes in solute concentration that counteract cell volume challenges in its constancy. This process has been described to be regulated by a complex assortment of intracellular signal transduction cascades. Recently, several studies have demonstrated that alterations in cell volume induce the release of a wide variety of transmitters including hormones, ATP and neurotransmitters, which have been proposed to act as extracellular signals that regulate the activation of cell volume regulatory mechanisms. In addition, changes in cell volume have also been reported to activate plasma membrane receptors (including tyrosine kinase receptors, G-protein coupled receptors and integrins) that have been demonstrated to participate in the regulatory process of cell volume. In this review, we summarize recent studies about the role of changes in cell volume in the regulation of transmitter release as well as in the activation of plasma membrane receptors and their further implications in the regulation of the signaling machinery that regulates the activation of osmolyte flux pathways. We propose that the autocrine regulation of Ca2+-dependent and tyrosine phosphorylation-dependent signaling pathways by the activation of plasma membrane receptors and swelling-induced transmitter release is necessary for the activation/regulation of osmolyte efflux pathways and cell volume recovery. Furthermore, we emphasize the importance of studying these extrinsic signals because of their significance in the understanding of the physiology of cell volume regulation and its role in cell biology in vivo, where the constraint of the extracellular space might enhance the autocrine or even paracrine signaling induced by these released transmitters.
Collapse
Affiliation(s)
- Rodrigo Franco
- Laboratory of Cell Biology and Signal Transduction, Biomedical Research Unit, FES-Iztacala, UNAM, Mexico.
| | | | | |
Collapse
|
90
|
Scemes E, Bavamian S, Charollais A, Spray DC, Meda P. Lack of "hemichannel" activity in insulin-producing cells. CELL COMMUNICATION & ADHESION 2008; 15:143-54. [PMID: 18649186 PMCID: PMC2583242 DOI: 10.1080/15419060802014255] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Connexins and pannexins have been implicated in the formation of "hemichannels," which may account for the uptake and release of membrane-impermeant molecules in single cells. The in vivo existence of "hemichannels" and their protein composition is still debated. Investigations on these matters are complicated by the lack of adequate negative controls. In search for such essential controls, the authors have investigated transformed (MIN6 line) and primary insulin-producing cells. Here, the authors report that these cells, which express Cx36 and pannexin 1, cannot be shown to display functional "hemichannels," as evaluated by (1) uptake of the membrane-impermeant tracer ethidium bromide, whether in the presence or absence of extracellular Ca(2+), following stimulation of P2X(7) receptors, and after exposure to hypotonic medium; and (2) lack of exocytosis-independent release of endogenous ATP. Moreover, electrophysiological recordings indicated the absence of carbenoxolone-sensitive pannexin 1 currents evoked by membrane potentials above +30 mV. Thus, insulin-producing cells are expected to provide a useful tool in the further characterization of hemichannel composition, properties, and physiological relevance.
Collapse
Affiliation(s)
- Eliana Scemes
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, USA
| | | | | | | | | |
Collapse
|
91
|
Hamilton N, Vayro S, Kirchhoff F, Verkhratsky A, Robbins J, Gorecki DC, Butt AM. Mechanisms of ATP- and glutamate-mediated calcium signaling in white matter astrocytes. Glia 2008; 56:734-49. [PMID: 18293404 DOI: 10.1002/glia.20649] [Citation(s) in RCA: 159] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Neurotransmitters released at synapses mediate Ca2+ signaling in astrocytes in CNS grey matter. Here, we show that ATP and glutamate evoke these Ca2+ signals in white matter astrocytes of the mouse optic nerve, a tract that contains neither neuronal cell bodies nor synapses. We further demonstrate that action potentials along white matter axons trigger the release of ATP and the intercellular propagation of astroglial Ca2+ signals. These mechanisms were studied in astrocytes in intact optic nerves isolated from transgenic mice expressing enhanced green fluorescent protein (EGFP) under control of the human glial fibrillary acidic protein promoter (GFAP) by Fura-2 ratiometric Ca2+ imaging. ATP evoked astroglial Ca2+ signals predominantly via metabotropic P2Y1 and ionotropic P2X7 purinoceptors. Glutamate acted on both AMPA- and NMDA-type receptors, as well as on group I mGlu receptors to induce an increase in astroglial [Ca2+]i. The direct Ca2+ signal evoked by glutamate was small, and the main action of glutamate was to trigger the release of the "gliotransmitter" ATP by a mechanism involving P2X7 receptors; propagation of the glutamate-mediated Ca2+ signal was significantly reduced in P2X7 knock-out mice. Furthermore, axonal action potentials and mechanical stimulation of astrocytes both induced the release of ATP, to propagate Ca2+ signals in astrocytes and neighboring EGFP-negative glia. Our data provide a model of multiphase axon-glial signaling in the optic nerve as follows: action potentials trigger axonal release of ATP, which evokes further release of ATP from astrocytes, and this acts by amplifying the initiating signal and by transmitting an intercellular Ca2+ wave to neighboring glia.
Collapse
Affiliation(s)
- Nicola Hamilton
- Department of Physiology, University College London, London, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
92
|
Stridh MH, Tranberg M, Weber SG, Blomstrand F, Sandberg M. Stimulated efflux of amino acids and glutathione from cultured hippocampal slices by omission of extracellular calcium: likely involvement of connexin hemichannels. J Biol Chem 2008; 283:10347-56. [PMID: 18272524 PMCID: PMC2447665 DOI: 10.1074/jbc.m704153200] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2007] [Revised: 12/22/2007] [Indexed: 12/27/2022] Open
Abstract
Omission of extracellular Ca(2+) for 15 min from the incubation medium of cultured hippocampal slices stimulated the efflux of glutathione, phosphoethanolamine, hypotaurine, and taurine. The efflux was reduced by several blockers of gap junctions, i.e. carbenoxolone, flufenamic acid, and endothelin-1, and by the connexin43 hemichannel blocking peptide Gap26 but was unchanged by the P2X(7) receptor inhibitor oxidized ATP, a pannexin1 hemichannel blocking peptide and an inactive analogue of carbenoxolone. Pretreatment of the slices with the neurotoxin N-methyl-d -aspartate left the efflux by Ca(2+) omission unchanged, indicating that the stimulated efflux primarily originated from glia. Elevated glutamate efflux was detected when Ca(2+) omission was combined with the glutamate uptake blocker l-trans-pyrrolidine-2,4-dicarboxylate and when both Ca(2+) and Mg(2+) were omitted from the medium. Omission of Ca(2+) for 15 min alone did not induce delayed toxicity, but in combination with blocked glutamate uptake, significant cell death was observed 24 h later. Our results indicate that omission of extracellular Ca(2+) stimulates efflux of glutathione and specific amino acids including glutamate via opening of glial hemichannels. This type of efflux may have protective functions via glutathione efflux but can aggravate toxicity in situations when glutamate reuptake is impaired, such as following a stroke.
Collapse
Affiliation(s)
- Malin H Stridh
- Institute of Neuroscience and Physiology, University of Gothenburg, SE-40530 Gothenburg, Sweden
| | | | | | | | | |
Collapse
|
93
|
Samoilova M, Wentlandt K, Adamchik Y, Velumian AA, Carlen PL. Connexin 43 mimetic peptides inhibit spontaneous epileptiform activity in organotypic hippocampal slice cultures. Exp Neurol 2008; 210:762-75. [DOI: 10.1016/j.expneurol.2008.01.005] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2007] [Revised: 01/02/2008] [Accepted: 01/07/2008] [Indexed: 01/12/2023]
|
94
|
Abstract
Many neuroscientists assume that ambient extracellular glutamate concentrations in the nervous system are biologically negligible under nonpathological conditions. This assumption is false. Hundreds of studies over several decades suggest that ambient extracellular glutamate levels in the intact mammalian brain are approximately 0.5 to approximately 5 microM. This has important implications. Glutamate receptors are desensitized by glutamate concentrations significantly lower than needed for receptor activation; 0.5 to 5 microM of glutamate is high enough to cause constitutive desensitization of most glutamate receptors. Therefore, most glutamate receptors in vivo may be constitutively desensitized, and ambient extracellular glutamate and receptor desensitization may be potent but generally unrecognized regulators of synaptic transmission. Unfortunately, the mechanisms regulating ambient extracellular glutamate and glutamate receptor desensitization remain poorly understood and understudied.
Collapse
Affiliation(s)
- David E Featherstone
- Department of Biological Sciences, University of Illinois at Chicago 60607, USA.
| | | |
Collapse
|
95
|
Syed N, Martens CA, Hsu WH. Arginine vasopressin increases glutamate release and intracellular Ca2+ concentration in hippocampal and cortical astrocytes through two distinct receptors. J Neurochem 2007; 103:229-37. [PMID: 17877638 DOI: 10.1111/j.1471-4159.2007.04737.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Arginine vasopressin (AVP), released from the CNS, plays an important role in regulating several aspects of CNS functions including aggression, anxiety, and cognition. In this study, we report a novel finding that AVP induces glutamate release from astrocytes isolated from the cerebral cortex and hippocampus. We also investigated the types of AVP receptors involved in the AVP-induced increase in glutamate release from astrocytes isolated from the hippocampus and cortex of neonatal rats. We showed that the AVP (0.1-1000 nmol/L) induced increase in glutamate release and [Ca(2+)](i) is brought about by two distinct subtypes of V(1) receptors (V(1a) and V(1b)). Our results suggested that V(1b) receptors are predominantly expressed in astrocytes isolated from the hippocampus and V(1a) receptors are solely expressed in astrocytes isolated from the cerebral cortex of neonatal rats. The results of the western blot analyses confirmed these pharmacological data. In addition, the AVP-induced increase in glutamate did not contribute to an increase in [Ca(2+)](i), as blockade of metabotropic glutamate receptors did not alter the AVP-induced increase in [Ca(2+)](i). In addition, the administration of a phospholipase A(2) inhibitor failed to alter AVP-induced [Ca(2+)](i) increase suggesting the lack of involvement of this enzyme.
Collapse
Affiliation(s)
- Nasser Syed
- Department of Biomedical Sciences and Interdepartmental Program of Toxicology, Iowa State University, Ames, Iowa, USA
| | | | | |
Collapse
|
96
|
Ni Y, Malarkey EB, Parpura V. Vesicular release of glutamate mediates bidirectional signaling between astrocytes and neurons. J Neurochem 2007; 103:1273-84. [PMID: 17727631 DOI: 10.1111/j.1471-4159.2007.04864.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The major excitatory neurotransmitter in the CNS, glutamate, can be released exocytotically by neurons and astrocytes. Glutamate released from neurons can affect adjacent astrocytes by changing their intracellular Ca(2+) dynamics and, vice versa, glutamate released from astrocytes can cause a variety of responses in neurons such as: an elevation of [Ca(2+)](i), a slow inward current, an increase of excitability, modulation of synaptic transmission, synchronization of synaptic events, or some combination of these. This astrocyte-neuron signaling pathway might be a widespread phenomenon throughout the brain with astrocytes possessing the means to be active participants in many functions of the CNS. Thus, it appears that the vesicular release of glutamate can serve as a common denominator for two of the major cellular components of the CNS, astrocytes and neurons, in brain function.
Collapse
Affiliation(s)
- Yingchun Ni
- National Institute for Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | | | | |
Collapse
|
97
|
|
98
|
van der Zeyden M, Oldenziel WH, Rea K, Cremers TI, Westerink BH. Microdialysis of GABA and glutamate: analysis, interpretation and comparison with microsensors. Pharmacol Biochem Behav 2007; 90:135-47. [PMID: 17939932 DOI: 10.1016/j.pbb.2007.09.004] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2007] [Revised: 08/16/2007] [Accepted: 09/04/2007] [Indexed: 10/22/2022]
Abstract
GABA and glutamate sampled from the brain by microdialysis do not always fulfill the classic criteria for exocytotic release. In this regard the origin (neuronal vs. astroglial, synaptic vs. extrasynaptic) of glutamate and GABA collected by microdialysis as well as in the ECF itself, is still a matter of debate. In this overview microdialysis of GABA and glutamate and the use of microsensors to detect extracellular glutamate are compared and discussed. During basal conditions glutamate in microdialysates is mainly derived from non-synaptic sources. Indeed recently several sources of astrocytic glutamate release have been described, including glutamate derived from gliotransmission. However during conditions of (chemical, electrical or behavioral) stimulation a significant part of glutamate might be derived from neurotransmission. Interestingly accumulating evidence suggests that glutamate determined by microsensors is more likely to reflect basal synaptic events. This would mean that microdialysis and microsensors are complementary methods to study extracellular glutamate. Regarding GABA we concluded that the chromatographic conditions for the separation of this transmitter from other amino acid-derivatives are extremely critical. Optimal conditions to detect GABA in microdialysis samples--at least in our laboratory--include a retention time of approximately 60 min and a careful control of the pH of the mobile phase. Under these conditions it appears that 50-70% of GABA in dialysates is derived from neurotransmission.
Collapse
Affiliation(s)
- Miranda van der Zeyden
- Department of Biomonitoring and Sensoring, University Centre for Pharmacy, Antonius Deusinglaan 1, Groningen, The Netherlands.
| | | | | | | | | |
Collapse
|
99
|
Scemes E, Suadicani SO, Dahl G, Spray DC. Connexin and pannexin mediated cell-cell communication. NEURON GLIA BIOLOGY 2007; 3:199-208. [PMID: 18634611 PMCID: PMC2588549 DOI: 10.1017/s1740925x08000069] [Citation(s) in RCA: 178] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In this review, we briefly summarize what is known about the properties of the three families of gap junction proteins, connexins, innexins and pannexins, emphasizing their importance as intercellular channels that provide ionic and metabolic coupling and as non-junctional channels that can function as a paracrine signaling pathway. We discuss that two distinct groups of proteins form gap junctions in deuterostomes (connexins) and protostomes (innexins), and that channels formed of the deuterostome homologues of innexins (pannexins) differ from connexin channels in terms of important structural features and activation properties. These differences indicate that the two families of gap junction proteins serve distinct, complementary functions in deuterostomes. In several tissues, including the CNS, both connexins and pannexins are involved in intercellular communication, but have different roles. Connexins mainly contribute by forming the intercellular gap junction channels, which provide for junctional coupling and define the communication compartments in the CNS. We also provide new data supporting the concept that pannexins form the non-junctional channels that play paracrine roles by releasing ATP and, thus, modulating the range of the intercellular Ca(2+)-wave transmission between astrocytes in culture.
Collapse
Affiliation(s)
- Eliana Scemes
- The Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, NY, 10461, USA.
| | | | | | | |
Collapse
|
100
|
Lee KH, Kristic K, van Hoff R, Hitti FL, Blaha C, Harris B, Roberts DW, Leiter JC. High-frequency stimulation of the subthalamic nucleus increases glutamate in the subthalamic nucleus of rats as demonstrated by in vivo enzyme-linked glutamate sensor. Brain Res 2007; 1162:121-9. [PMID: 17618941 DOI: 10.1016/j.brainres.2007.06.021] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2007] [Revised: 06/06/2007] [Accepted: 06/07/2007] [Indexed: 11/30/2022]
Abstract
Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is an effective therapy for Parkinson's disease; however, the mechanism whereby DBS ameliorates the symptoms of Parkinson's disease remains an area of intense research. In the present study, we investigated the hypothesis that the neurotransmitter glutamate is released within the STN during high-frequency stimulation (HFS) of the STN. Direct measurements of extracellular glutamate concentration in the STN were made using a dual enzyme-based electrochemical sensor. The studies were carried out in ketamine/xylazine anesthetized rats placed in a Kopf stereotaxic head frame. Various electrical stimulations (100-micros cathodic pulses; 100-3000 microA; 10- to 1000-Hz frequency; 5-s to 60-min stimulus durations) using bipolar stimulating electrodes were delivered to the STN. Stimulation of the STN elevated the concentration of glutamate in the STN. The concentration of glutamate rose quickly during HFS, remained elevated for the duration of stimulation, and descended slowly towards baseline upon cessation of stimulation. Elevation of the extracellular concentration of glutamate in the STN may be an important mechanism whereby DBS in the STN improves the symptoms of Parkinson's disease. Furthermore, our data argue against the hypothesis that DBS works primarily by electrotonic inhibition of the stimulated structure.
Collapse
Affiliation(s)
- Kendall H Lee
- Department of Neurosurgery, Mayo Clinic, 200 First Street, S.W., Rochester, MN 55902, USA
| | | | | | | | | | | | | | | |
Collapse
|