51
|
Belleville S, Mellah S, Boller B, Ouellet É. Activation changes induced by cognitive training are consistent with improved cognitive reserve in older adults with subjective cognitive decline. Neurobiol Aging 2022; 121:107-118. [DOI: 10.1016/j.neurobiolaging.2022.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 05/05/2022] [Accepted: 10/19/2022] [Indexed: 11/09/2022]
|
52
|
Manelis A, Halchenko YO, Satz S, Ragozzino R, Iyengar S, Swartz HA, Levine MD. The interaction between depression diagnosis and BMI is related to altered activation pattern in the right inferior frontal gyrus and anterior cingulate cortex during food anticipation. Brain Behav 2022; 12:e2695. [PMID: 35962573 PMCID: PMC9480896 DOI: 10.1002/brb3.2695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/22/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Depression and overweight/obesity often cooccur but the underlying neural mechanisms for this bidirectional link are not well understood. METHODS In this functional magnetic resonance imaging study, we scanned 54 individuals diagnosed with depressive disorders (DD) and 48 healthy controls (HC) to examine how diagnostic status moderates the relationship between body mass index (BMI) and brain activation during anticipation and pleasantness rating of food versus nonfood stimuli. RESULTS We found a significant BMI-by-diagnosis interaction effect on activation in the right inferior frontal gyrus (RIFG) and anterior cingulate cortex (ACC) during food versus nonfood anticipation (p < .0125). Brain activation in these regions was greater in HC with higher BMI than in HC with lower BMI. Individuals with DD showed an opposite pattern of activation. Structural equation modeling revealed that the relationship between BMI, activation in the RIFG and ACC, and participants' desire to eat food items shown in the experiment depended on the diagnostic status. CONCLUSIONS Considering that food anticipation is an important component of appetitive behavior and that the RIFG and ACC are involved in emotion regulation, response inhibition and conflict monitoring necessary to control this behavior, we propose that future clinical trials targeting weight loss in DD should investigate whether adequate mental preparation positively affects subsequent food consumption behaviors in these individuals.
Collapse
Affiliation(s)
- A Manelis
- Department of PsychiatryUniversity of PittsburghPittsburghPennsylvania
| | - YO Halchenko
- Department of Psychological and Brain SciencesDartmouth CollegeHanoverNew Hampshire
| | - S Satz
- Department of PsychiatryUniversity of PittsburghPittsburghPennsylvania
| | - R Ragozzino
- Department of PsychiatryUniversity of PittsburghPittsburghPennsylvania
| | - S Iyengar
- Department of StatisticsUniversity of PittsburghPittsburghPennsylvania
| | - HA Swartz
- Department of PsychiatryUniversity of PittsburghPittsburghPennsylvania
| | - MD Levine
- Department of PsychiatryUniversity of PittsburghPittsburghPennsylvania
| |
Collapse
|
53
|
Reiss AL, Jo B, Arbelaez AM, Tsalikian E, Buckingham B, Weinzimer SA, Fox LA, Cato A, White NH, Tansey M, Aye T, Tamborlane W, Englert K, Lum J, Mazaika P, Foland-Ross L, Marzelli M, Mauras N. A Pilot randomized trial to examine effects of a hybrid closed-loop insulin delivery system on neurodevelopmental and cognitive outcomes in adolescents with type 1 diabetes. Nat Commun 2022; 13:4940. [PMID: 36042217 PMCID: PMC9427757 DOI: 10.1038/s41467-022-32289-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 07/26/2022] [Indexed: 12/23/2022] Open
Abstract
Type 1 diabetes (T1D) is associated with lower scores on tests of cognitive and neuropsychological function and alterations in brain structure and function in children. This proof-of-concept pilot study (ClinicalTrials.gov Identifier NCT03428932) examined whether MRI-derived indices of brain development and function and standardized IQ scores in adolescents with T1D could be improved with better diabetes control using a hybrid closed-loop insulin delivery system. Eligibility criteria for participation in the study included age between 14 and 17 years and a diagnosis of T1D before 8 years of age. Randomization to either a hybrid closed-loop or standard diabetes care group was performed after pre-qualification, consent, enrollment, and collection of medical background information. Of 46 participants assessed for eligibility, 44 met criteria and were randomized. Two randomized participants failed to complete baseline assessments and were excluded from final analyses. Participant data were collected across five academic medical centers in the United States. Research staff scoring the cognitive assessments as well as those processing imaging data were blinded to group status though participants and their families were not. Forty-two adolescents, 21 per group, underwent cognitive assessment and multi-modal brain imaging before and after the six month study duration. HbA1c and sensor glucose downloads were obtained quarterly. Primary outcomes included metrics of gray matter (total and regional volumes, cortical surface area and thickness), white matter volume, and fractional anisotropy. Estimated power to detect the predicted treatment effect was 0.83 with two-tailed, α = 0.05. Adolescents in the hybrid closed-loop group showed significantly greater improvement in several primary outcomes indicative of neurotypical development during adolescence compared to the standard care group including cortical surface area, regional gray volumes, and fractional anisotropy. The two groups were not significantly different on total gray and white matter volumes or cortical thickness. The hybrid closed loop group also showed higher Perceptual Reasoning Index IQ scores and functional brain activity more indicative of neurotypical development relative to the standard care group (both secondary outcomes). No adverse effects associated with study participation were observed. These results suggest that alterations to the developing brain in T1D might be preventable or reversible with rigorous glucose control. Long term research in this area is needed.
Collapse
Affiliation(s)
- Allan L Reiss
- Center for Interdisciplinary Brain Sciences, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA.
- Department of Radiology, Stanford University, Stanford, CA, USA.
- Department of Pediatrics, Stanford University, Stanford, CA, USA.
| | - Booil Jo
- Center for Interdisciplinary Brain Sciences, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Ana Maria Arbelaez
- Divisions of Endocrinology & Diabetes, at Washington University in St, Louis, St, Louis, MO, USA
| | - Eva Tsalikian
- Stead Family Department of Pediatrics, Endocrinology and Diabetes, University of Iowa, Iowa City, IA, USA
| | - Bruce Buckingham
- Department of Pediatrics, Stanford University, Stanford, CA, USA
| | | | - Larry A Fox
- Division of Endocrinology, Diabetes & Metabolism, Nemours Children's Health, Jacksonville, FL, USA
| | - Allison Cato
- Division of Neurology, Nemours Children's Health, Jacksonville, FL, USA
| | - Neil H White
- Divisions of Endocrinology & Diabetes, at Washington University in St, Louis, St, Louis, MO, USA
| | - Michael Tansey
- Stead Family Department of Pediatrics, Endocrinology and Diabetes, University of Iowa, Iowa City, IA, USA
| | - Tandy Aye
- Department of Pediatrics, Stanford University, Stanford, CA, USA
| | | | - Kimberly Englert
- Division of Endocrinology, Diabetes & Metabolism, Nemours Children's Health, Jacksonville, FL, USA
| | - John Lum
- Jaeb Center for Health Research, Tampa, FL, USA
| | - Paul Mazaika
- Center for Interdisciplinary Brain Sciences, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Lara Foland-Ross
- Center for Interdisciplinary Brain Sciences, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Matthew Marzelli
- Center for Interdisciplinary Brain Sciences, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Nelly Mauras
- Division of Endocrinology, Diabetes & Metabolism, Nemours Children's Health, Jacksonville, FL, USA
| |
Collapse
|
54
|
Koenis MMG, Ng J, Anderson B, Stevens MC, Tishler DS, Papasavas PK, Stone A, McLaughlin T, Verhaak A, Domakonda MJ, Pearlson GD. Food cue reactivity in successful laparoscopic gastric banding: A sham-deflation-controlled pilot study. Front Hum Neurosci 2022; 16:902192. [PMID: 36092648 PMCID: PMC9454014 DOI: 10.3389/fnhum.2022.902192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/09/2022] [Indexed: 11/24/2022] Open
Abstract
Laparoscopic adjustable gastric banding (LAGB) offers a unique opportunity to examine the underlying neuronal mechanisms of surgically assisted weight loss due to its instant, non-invasive, adjustable nature. Six participants with stable excess weight loss (%EWL ≥ 45) completed 2 days of fMRI scanning 1.5-5 years after LAGB surgery. In a within-subject randomized sham-controlled design, participants underwent (sham) removal of ∼ 50% of the band's fluid. Compared to sham-deflation (i.e., normal band constriction) of the band, in the deflation condition (i.e., decreasing restriction) participants showed significantly lower activation in the anterior (para)cingulate, angular gyrus, lateral occipital cortex, and frontal cortex in response to food images (p < 0.05, whole brain TFCE-based FWE corrected). Higher activation in the deflation condition was seen in the fusiform gyrus, inferior temporal gyrus, lingual gyrus, lateral occipital cortex. The findings of this within-subject randomized controlled pilot study suggest that constriction of the stomach through LAGB may indirectly alter brain activation in response to food cues. These neuronal changes may underlie changes in food craving and food preference that support sustained post-surgical weight-loss. Despite the small sample size, this is in agreement with and adds to the growing literature of post-bariatric surgery changes in behavior and control regions.
Collapse
Affiliation(s)
- Marinka M. G. Koenis
- Olin Neuropsychiatry Research Center, Institute of Living at Hartford Hospital, Hartford, CT, United States
| | - Janet Ng
- Olin Neuropsychiatry Research Center, Institute of Living at Hartford Hospital, Hartford, CT, United States
| | - Beth Anderson
- Olin Neuropsychiatry Research Center, Institute of Living at Hartford Hospital, Hartford, CT, United States
| | - Michael C. Stevens
- Olin Neuropsychiatry Research Center, Institute of Living at Hartford Hospital, Hartford, CT, United States
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| | - Darren S. Tishler
- Division of Metabolic and Bariatric Surgery, Hartford Hospital, Hartford, CT, United States
| | - Pavlos K. Papasavas
- Division of Metabolic and Bariatric Surgery, Hartford Hospital, Hartford, CT, United States
| | - Andrea Stone
- Olin Neuropsychiatry Research Center, Institute of Living at Hartford Hospital, Hartford, CT, United States
| | - Tara McLaughlin
- Division of Metabolic and Bariatric Surgery, Hartford Hospital, Hartford, CT, United States
| | - Allison Verhaak
- Division of Metabolic and Bariatric Surgery, Hartford Hospital, Hartford, CT, United States
| | - Mirjana J. Domakonda
- Olin Neuropsychiatry Research Center, Institute of Living at Hartford Hospital, Hartford, CT, United States
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| | - Godfrey D. Pearlson
- Olin Neuropsychiatry Research Center, Institute of Living at Hartford Hospital, Hartford, CT, United States
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
55
|
Park HRP, Williams LM, Turner RM, Gatt JM. TWIN-10: protocol for a 10-year longitudinal twin study of the neuroscience of mental well-being and resilience. BMJ Open 2022; 12:e058918. [PMID: 35777871 PMCID: PMC9252211 DOI: 10.1136/bmjopen-2021-058918] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 06/08/2022] [Indexed: 11/04/2022] Open
Abstract
INTRODUCTION Mental well-being is a core component of mental health, and resilience is a key process of positive adaptive recovery following adversity. However, we lack an understanding of the neural mechanisms that contribute to individual variation in the trajectories of well-being and resilience relative to risk. Genetic and/or environmental factors may also modulate these mechanisms. The aim of the TWIN-10 Study is to characterise the trajectories of well-being and resilience over 12 years across four timepoints (baseline, 1 year, 10 years, 12 years) in 1669 Australian adult twins of European ancestry (to account for genetic stratification effects). To this end, we integrate data across genetics, environment, psychological self-report, neurocognitive performance and brain function measures of well-being and resilience. METHODS AND ANALYSIS Twins who took part in the baseline TWIN-E Study will be invited back to participate in the TWIN-10 Study, at 10-year and 12-year follow-up timepoints. Participants will complete an online battery of psychological self-reports, computerised behavioural assessments of neurocognitive functions and MRI testing of the brain structure and function during resting and task-evoked scans. These measures will be used as predictors of the risk versus resilience trajectory groups defined by their changing levels of well-being and illness symptoms over time as a function of trauma exposure. Structural equation models will be used to examine the association between the predictors and trajectory groups of resilience and risk over time. Univariate and multivariate twin modelling will be used to determine heritability of the measures, as well as the shared versus unique genetic and environmental contributions. ETHICS AND DISSEMINATION This study involves human participants. This study was approved by the University of New South Wales Human Research Ethics Committee (HC180403) and the Scientific Management Panel of Neuroscience Research Australia Imaging (CX2019-05). Results will be disseminated through publications and presentations to the public and the academic community. Participants gave informed consent to participate in the study before taking part.
Collapse
Affiliation(s)
- Haeme R P Park
- Neuroscience Research Australia, Randwick, New South Wales, Sydney, Australia
- School of Psychology, University of New South Wales, Sydney, NSW, Australia
| | - Leanne M Williams
- Psychiatry and Behavioral Sciences, Stanford School of Medicine, Stanford University, Stanford, California, USA
| | - Robin M Turner
- Biostatistics Centre, Division of Health Sciences, University of Otago, Dunedin, Central Dunedin, New Zealand
| | - Justine M Gatt
- Neuroscience Research Australia, Randwick, New South Wales, Sydney, Australia
- School of Psychology, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
56
|
Winkelmeier L, Filosa C, Hartig R, Scheller M, Sack M, Reinwald JR, Becker R, Wolf D, Gerchen MF, Sartorius A, Meyer-Lindenberg A, Weber-Fahr W, Clemm von Hohenberg C, Russo E, Kelsch W. Striatal hub of dynamic and stabilized prediction coding in forebrain networks for olfactory reinforcement learning. Nat Commun 2022; 13:3305. [PMID: 35676281 PMCID: PMC9177857 DOI: 10.1038/s41467-022-30978-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 05/19/2022] [Indexed: 11/13/2022] Open
Abstract
Identifying the circuits responsible for cognition and understanding their embedded computations is a challenge for neuroscience. We establish here a hierarchical cross-scale approach, from behavioral modeling and fMRI in task-performing mice to cellular recordings, in order to disentangle local network contributions to olfactory reinforcement learning. At mesoscale, fMRI identifies a functional olfactory-striatal network interacting dynamically with higher-order cortices. While primary olfactory cortices respectively contribute only some value components, the downstream olfactory tubercle of the ventral striatum expresses comprehensively reward prediction, its dynamic updating, and prediction error components. In the tubercle, recordings reveal two underlying neuronal populations with non-redundant reward prediction coding schemes. One population collectively produces stabilized predictions as distributed activity across neurons; in the other, neurons encode value individually and dynamically integrate the recent history of uncertain outcomes. These findings validate a cross-scale approach to mechanistic investigations of higher cognitive functions in rodents. Where and how the brain learns from experience is not fully understood. Here the authors use a hierarchical approach from behavioural modelling to systems fMRI to cellular coding reveals brain mechanisms for history informed updating of future predictions.
Collapse
Affiliation(s)
- Laurens Winkelmeier
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany
| | - Carla Filosa
- Department of Psychiatry and Psychotherapy, University Medical Center, Johannes Gutenberg University, 55131, Mainz, Germany
| | - Renée Hartig
- Department of Psychiatry and Psychotherapy, University Medical Center, Johannes Gutenberg University, 55131, Mainz, Germany
| | - Max Scheller
- Department of Psychiatry and Psychotherapy, University Medical Center, Johannes Gutenberg University, 55131, Mainz, Germany
| | - Markus Sack
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany
| | - Jonathan R Reinwald
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany
| | - Robert Becker
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany
| | - David Wolf
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany
| | - Martin Fungisai Gerchen
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany
| | - Alexander Sartorius
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany
| | - Andreas Meyer-Lindenberg
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany
| | - Wolfgang Weber-Fahr
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany
| | | | - Eleonora Russo
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany.,Department of Psychiatry and Psychotherapy, University Medical Center, Johannes Gutenberg University, 55131, Mainz, Germany
| | - Wolfgang Kelsch
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany. .,Department of Psychiatry and Psychotherapy, University Medical Center, Johannes Gutenberg University, 55131, Mainz, Germany.
| |
Collapse
|
57
|
Ma Q, Pu M, Haihambo NP, Baetens K, Heleven E, Deroost N, Baeken C, Van Overwalle F. The posterior cerebellum and temporoparietal junction support explicit learning of social belief sequences. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2022; 22:467-491. [PMID: 34811709 DOI: 10.3758/s13415-021-00966-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/16/2021] [Indexed: 06/13/2023]
Abstract
This study tests the hypothesis that the posterior cerebellum is involved in social cognition by identifying and automatizing sequences of social actions. We applied a belief serial reaction time task (Belief SRT task), which requires mentalizing about two protagonists' beliefs about how many flowers they receive. The protagonists' beliefs could either be true or false depending on their orientation (true belief: oriented towards and directly observing the flowers; or false belief: oriented away and knowing only prior information about flowers). A Control SRT task was created by replacing protagonists and their beliefs with shapes and colors. Participants were explicitly told that there was a standard sequence related to the two protagonists' belief orientations (Belief SRT task) or the shapes' colors (Control SRT task). Both tasks included a Training phase where the standard sequence was repeated and a Test phase where this standard sequence was interrupted by random sequences. As hypothesized, compared with the Control SRT task, the Belief SRT task recruited the posterior cerebellar Crus II and the temporoparietal junction (TPJ) more. Faster response times were correlated with less Crus II activation and with more TPJ activation, suggesting that the Crus II supported automatizing the belief sequence while the TPJ supported inferring the protagonists' beliefs. Also as hypothesized, compared with an implicit version of the Belief SRT task (i.e., participants did not know about the existence of sequences; Ma, Pu, et al., 2021b), the cerebellar Crus I &II was engaged less during initial training and automatic application of the sequence, and the cortical TPJ was activated more in processing random sequences.
Collapse
Affiliation(s)
- Qianying Ma
- Department of Psychology, Center for Neuroscience, Vrije Universiteit Brussel, Pleinlaan 2, B -, 1050, Brussels, Belgium.
| | - Min Pu
- Department of Psychology, Center for Neuroscience, Vrije Universiteit Brussel, Pleinlaan 2, B -, 1050, Brussels, Belgium
| | - Naem P Haihambo
- Department of Psychology, Center for Neuroscience, Vrije Universiteit Brussel, Pleinlaan 2, B -, 1050, Brussels, Belgium
| | - Kris Baetens
- Department of Psychology, Center for Neuroscience, Vrije Universiteit Brussel, Pleinlaan 2, B -, 1050, Brussels, Belgium
| | - Elien Heleven
- Department of Psychology, Center for Neuroscience, Vrije Universiteit Brussel, Pleinlaan 2, B -, 1050, Brussels, Belgium
| | - Natacha Deroost
- Department of Psychology, Center for Neuroscience, Vrije Universiteit Brussel, Pleinlaan 2, B -, 1050, Brussels, Belgium
| | - Chris Baeken
- Department of Head and Skin, Faculty of Medicine and Health Sciences, Ghent Experimental, Ghent, Belgium
- Psychiatry (GHEP) Laboratory, Ghent University, Ghent, Belgium
- Department of Psychiatry, University Hospital (UZBrussel), Brussels, Belgium
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Frank Van Overwalle
- Department of Psychology, Center for Neuroscience, Vrije Universiteit Brussel, Pleinlaan 2, B -, 1050, Brussels, Belgium.
| |
Collapse
|
58
|
Oren S, Tittgemeyer M, Rigoux L, Schlamann M, Schonberg T, Kuzmanovic B. Neural Encoding of Food and Monetary Reward Delivery. Neuroimage 2022; 257:119335. [PMID: 35643268 DOI: 10.1016/j.neuroimage.2022.119335] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 11/18/2022] Open
Abstract
Different types of rewards such as food and money can similarly drive our behavior owing to shared brain processes encoding their subjective value. However, while the value of money is abstract and needs to be learned, the value of food is rooted in the innate processing of sensory properties and nutritional utilization. Yet, the actual consumption of food and the receipt of money have never been directly contrasted in the same experiment, questioning what unique neural processes differentiate those reward types. To fill this gap, we examined the distinct and common neural responses to the delivery of food and monetary rewards during fMRI. In a novel experimental approach, we parametrically manipulated the subjective value of food and monetary rewards by modulating the quantities of administered palatable milkshake and monetary gains. The receipt of increasing amounts of milkshake and money recruited the ventral striatum and the ventromedial prefrontal cortex, previously associated with value encoding. Notably, the consumption and the subsequent evaluation of increasing quantities of milkshake relative to money revealed an extended recruitment of brain regions related to taste, somatosensory processing, and salience. Moreover, we detected a decline of reward encoding in the ventral tegmental area, nucleus accumbens, and vmPFC, indicating that these regions may be susceptible to time-dependent effects upon accumulation of food and money rewards. Relative to monetary gains, the consumption and evaluation of palatable milkshakes engaged complex neural processing over and above value tracking, emphasizing the critical contribution of taste and other sensory properties to the processing of food rewards. Furthermore, our results highlight the need to closely monitor metabolic states and neural responses to the accumulation of rewards to pinpoint the mechanisms underlying time-dependent dynamics of reward-related processing.
Collapse
Affiliation(s)
- Shiran Oren
- Sagol School of Neuroscience, Tel Aviv University, P.O. Box 39040, Tel Aviv 6997801, Israel; Translational Neurocircuitry Group, Max Planck Institute for Metabolism Research, Gleuelerstr. 50, Cologne 50931, Germany
| | - Marc Tittgemeyer
- Translational Neurocircuitry Group, Max Planck Institute for Metabolism Research, Gleuelerstr. 50, Cologne 50931, Germany; Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), University of Cologne, Cologne 50931, Germany
| | - Lionel Rigoux
- Translational Neurocircuitry Group, Max Planck Institute for Metabolism Research, Gleuelerstr. 50, Cologne 50931, Germany
| | - Marc Schlamann
- Institute for Diagnostic and Interventional Radiology, University Hospital Cologne, Kerpenerstr. 62, Cologne 50937, Germany
| | - Tom Schonberg
- Sagol School of Neuroscience, Tel Aviv University, P.O. Box 39040, Tel Aviv 6997801, Israel; Department of Neurobiology, The George S. Wise Faculty of Life Sciences, P.O. Box 39040, Tel Aviv 6997801, Israel
| | - Bojana Kuzmanovic
- Translational Neurocircuitry Group, Max Planck Institute for Metabolism Research, Gleuelerstr. 50, Cologne 50931, Germany.
| |
Collapse
|
59
|
Manelis A, Lima Santos JP, Suss SJ, Holland CL, Stiffler RS, Bitzer HB, Mailliard S, Shaffer MA, Caviston K, Collins MW, Phillips ML, Kontos AP, Versace A. Vestibular/ocular motor symptoms in concussed adolescents are linked to retrosplenial activation. Brain Commun 2022; 4:fcac123. [PMID: 35615112 PMCID: PMC9127539 DOI: 10.1093/braincomms/fcac123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 04/07/2022] [Accepted: 05/11/2022] [Indexed: 11/23/2022] Open
Abstract
Following concussion, adolescents often experience vestibular and ocular motor symptoms as well as working memory deficits that may affect their cognitive, academic and social well-being. Complex visual environments including school activities, playing sports, or socializing with friends may be overwhelming for concussed adolescents suffering from headache, dizziness, nausea and fogginess, thus imposing heightened requirements on working memory to adequately function in such environments. While understanding the relationship between working memory and vestibular/ocular motor symptoms is critically important, no previous study has examined how an increase in working memory task difficulty affects the relationship between severity of vestibular/ocular motor symptoms and brain and behavioural responses in a working memory task. To address this question, we examined 80 adolescents (53 concussed, 27 non-concussed) using functional MRI while performing a 1-back (easy) and 2-back (difficult) working memory tasks with angry, happy, neutral and sad face distractors. Concussed adolescents completed the vestibular/ocular motor screening and were scanned within 10 days of injury. We found that all participants showed lower accuracy and slower reaction time on difficult (2-back) versus easy (1-back) tasks (P-values < 0.05). Concussed adolescents were significantly slower than controls across all conditions (P < 0.05). In concussed adolescents, higher vestibular/ocular motor screening total scores were associated with significantly greater differences in reaction time between 1-back and 2-back across all distractor conditions and significantly greater differences in retrosplenial cortex activation for the 1-back versus 2-back condition with neutral face distractors (P-values < 0.05). Our findings suggest that processing of emotionally ambiguous information (e.g. neutral faces) additionally increases the task difficulty for concussed adolescents. Post-concussion vestibular/ocular motor symptoms may reduce the ability to inhibit emotionally ambiguous information during working memory tasks, potentially affecting cognitive, academic and social functioning in concussed adolescents.
Collapse
Affiliation(s)
- Anna Manelis
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Stephen J. Suss
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Cynthia L. Holland
- Department of Orthopaedic Surgery/UPMC Sports Medicine Concussion Program, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Hannah B. Bitzer
- Department of Orthopaedic Surgery/UPMC Sports Medicine Concussion Program, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sarrah Mailliard
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Madelyn A. Shaffer
- Department of Orthopaedic Surgery/UPMC Sports Medicine Concussion Program, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kaitlin Caviston
- Department of Orthopaedic Surgery/UPMC Sports Medicine Concussion Program, University of Pittsburgh, Pittsburgh, PA, USA
| | - Michael W. Collins
- Department of Orthopaedic Surgery/UPMC Sports Medicine Concussion Program, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mary L. Phillips
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Anthony P. Kontos
- Department of Orthopaedic Surgery/UPMC Sports Medicine Concussion Program, University of Pittsburgh, Pittsburgh, PA, USA
| | - Amelia Versace
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Radiology, Magnetic Resonance Research Center, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
60
|
Steffener J, Habeck C, Franklin D, Lau M, Yakoub Y, Gad M. Subjective difficulty in a verbal recognition-based memory task: Exploring brain-behaviour relationships at the individual level in healthy young adults. Neuroimage 2022; 257:119301. [PMID: 35568348 DOI: 10.1016/j.neuroimage.2022.119301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 05/05/2022] [Accepted: 05/09/2022] [Indexed: 11/18/2022] Open
Abstract
The vast majority of fMRI studies of task-related brain activity utilize common levels of task demands and analyses that rely on the central tendencies of the data. This approach does not take into account perceived difficulty nor regional variations in brain activity between people. The results are findings of brain-behavior relationships that weaken as sample sizes increase. Participants of the current study included twenty-six healthy young adults evenly split between the sexes. The current work utilizes five parametrically modulated levels of memory load centered around each individual's predetermined working memory cognitive capacity. Principal components analyses (PCA) identified the group-level central tendency of the data. After removing the group effect from the data, PCA identified individual-level patterns of brain activity across the five levels of task demands. Expression of the group effect significantly differed between the sexes across all load levels. Expression of the individual level patterns demonstrated a significant load by sex interaction. Furthermore, expressions of the individual maps make better predictors of response time behavior than group-derived maps. We demonstrated that utilization of an individual's unique pattern of brain activity in response to increasing a task's perceived difficulty is a better predictor of brain-behavior relationships than study designs and analyses focused on identification of group effects. Furthermore, these methods facilitate exploration into how individual differences in patterns of brain activity relate to individual differences in behavior and cognition.
Collapse
Affiliation(s)
- Jason Steffener
- Interdisciplinary School of Health Science, University of Ottawa, 200 Lees, Lees Campus, Office # E250E, Ottawa, ON K1S 5S9, Canada.
| | - Chris Habeck
- Cognitive Neuroscience Division, Department of Neurology and Taub Institute for Research on Alzheimer's Disease and The Aging Brain, Columbia University College of Physicians and Surgeons, New York, New York, United States
| | - Dylan Franklin
- School of Psychology, University of Ottawa, Ottawa, ON, Canada
| | - Meghan Lau
- Interdisciplinary School of Health Science, University of Ottawa, 200 Lees, Lees Campus, Office # E250E, Ottawa, ON K1S 5S9, Canada
| | - Yara Yakoub
- Interdisciplinary School of Health Science, University of Ottawa, 200 Lees, Lees Campus, Office # E250E, Ottawa, ON K1S 5S9, Canada
| | - Maryse Gad
- Interdisciplinary School of Health Science, University of Ottawa, 200 Lees, Lees Campus, Office # E250E, Ottawa, ON K1S 5S9, Canada
| |
Collapse
|
61
|
Olazadeh K, Borumandnia N, Khadembashi N, Alavi Majd H. Effect of Modafinil on functional connectivity in healthy young people using resting-state fMRI data. AMERICAN JOURNAL OF NEURODEGENERATIVE DISEASE 2022; 11:1-9. [PMID: 35600512 PMCID: PMC9123432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 03/09/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Examining the differences in the Functional Connectivity (FC) network while using Functional Magnetic Resonance Imaging (fMRI) between two groups can expand the understanding of neural processes and help diagnose and prevent neurological progression disorders. The present study evaluated the Modafinil effect on the FC of brain Regions of Interest (ROI) among healthy young individuals between the Modafinil and placebo groups. METHOD The data used in this study were downloaded from the open fMRI site and analyzed after preprocessing. Data included brain scan images of 26 healthy young men with no history of neurological disorders. These people are divided into two groups of drugs and a placebo. The drug group was given 100 mg of Modafinil, and the placebo group was assigned the same dose. Data were analyzed using a longitudinal variance component model. RESULT After taking the drug and placebo by the two groups, the study of the difference between FC in the drug and placebo group and the baseline effect showed a statistically significant difference in one pair of ROIs. Also, in examining the difference between FC in the drug and placebo groups of the longitudinal trend, there was a statistically significant difference between 5 pairs of ROIs. CONCLUSION After taking Modafinil and placebo, it was observed that FC in most areas in the drug group increased compared to the placebo group, indicating Modafinil has cognitive enhancement properties and has a role in visual, auditory, memory learning, and self-awareness functions and enhances these functions.
Collapse
Affiliation(s)
- Keyvan Olazadeh
- Department of Biostatistics, School of Allied Medical Sciences, Shahid Beheshti University of Medical SciencesTehran, Iran
| | - Nasrin Borumandnia
- Urology and Nephrology Research Centre, Shahid Beheshti University of Medical SciencesTehran, Iran
| | - Naghmeh Khadembashi
- English Language Department, School of Allied Medical Sciences, Shahid Beheshti University of Medical SciencesTehran, Iran
| | - Hamid Alavi Majd
- Department of Biostatistics, School of Allied Medical Sciences, Shahid Beheshti University of Medical SciencesTehran, Iran
| |
Collapse
|
62
|
Lindenmuth M, Herd T, Brieant A, Lee J, Deater-Deckard K, Bickel WK, King-Casas B, Kim-Spoon J. Neural Cognitive Control Moderates the Longitudinal Link between Hedonia and Substance Use across Adolescence. Dev Cogn Neurosci 2022; 55:101111. [PMID: 35472691 PMCID: PMC9061620 DOI: 10.1016/j.dcn.2022.101111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 04/11/2022] [Accepted: 04/14/2022] [Indexed: 11/30/2022] Open
Abstract
Hedonic dysregulation is evident in addiction and substance use disorders, but it is not clearly understood how hedonic processes may interact with brain development related to cognitive control to influence risky decision making and substance use during adolescence. The present study used prospective longitudinal data to clarify the role of cognitive control in the link between hedonic experiences and the development of substance use during adolescence. Participants included 167 adolescents (53% male) assessed at four time points, annually. Adolescents participated in a functional magnetic resonance imaging (fMRI) session where blood-oxygen level dependent (BOLD) response was monitored during the Multi-Source- Interference Task to assess cognitive control. Substance use and hedonia were assessed using self-report. A two-group growth curve model of substance use with hedonia as a time-varying covariate indicated that higher levels of hedonia predicted higher substance use, but only in adolescents with higher activation in the frontoparietal regions and in the rostral anterior cingulate cortex during cognitive control. Results elucidate the moderating effects of neural cognitive control on associations between hedonia and adolescent substance use, suggesting that lower cognitive control functioning in the brain may exacerbate risk for substance use promoted by hedonia. Increased risk-taking in adolescence may be due to immature cognitive processes combined with heightened reward seeking. The role of hedonia in the development of substance use behavior is not clearly understood. Using RDoC framework, the roles positive valence and cognitive systems in the development of substance use were examined. Results suggest that less efficient neural cognitive functioning may serve as risk for substance use promoted by hedonia. Implications include promoting cognitive control related to risky decision making in the presence of potential rewards.
Collapse
Affiliation(s)
| | - Toria Herd
- Department of Psychology, Virginia Tech, Blacksburg, VA, USA
| | - Alexis Brieant
- Department of Psychology, Yale University, New Haven, CT, USA
| | - Jacob Lee
- Fralin Biomedical Research Institute, Roanoke, VA, USA
| | - Kirby Deater-Deckard
- Department of Psychological and Brain Sciences, University of Massachusetts, Amherst, MA, USA
| | - Warren K Bickel
- Department of Psychology, Virginia Tech, Blacksburg, VA, USA; Fralin Biomedical Research Institute, Roanoke, VA, USA
| | - Brooks King-Casas
- Department of Psychology, Virginia Tech, Blacksburg, VA, USA; Fralin Biomedical Research Institute, Roanoke, VA, USA
| | | |
Collapse
|
63
|
Vanicek T, Reed MB, Unterholzner J, Klöbl M, Godbersen GM, Handschuh PA, Spurny-Dworak B, Ritter V, Gryglewski G, Kraus C, Winkler D, Lanzenberger R, Seiger R. Escitalopram administration, relearning, and neuroplastic effects: A diffusion tensor imaging study in healthy individuals. J Affect Disord 2022; 301:426-432. [PMID: 35016914 DOI: 10.1016/j.jad.2021.12.135] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/10/2021] [Accepted: 12/31/2021] [Indexed: 01/05/2023]
Abstract
BACKGROUND Neuroplastic processes are influenced by serotonergic agents, which reportedly alter white matter microstructure in humans in conjunction with learning. The goal of this double-blind, placebo-controlled imaging study was to investigate the neuroplastic properties of escitalopram and cognitive training on white matter plasticity during (re)learning as a model for antidepressant treatment and environmental factors. METHODS Seventy-one healthy individuals (age=25.6 ± 5.0, 43 females) underwent three diffusion magnetic resonance imaging scans: at baseline, after 3 weeks of associative learning (emotional/non-emotional content), and after relearning shuffled associations for an additional 3 weeks. During the relearning phase, participants received a daily dose of 10 mg escitalopram or placebo orally. Fractional anisotropy (FA), and mean (MD), axial (AD), and radial diffusivity (RD) were calculated within the FMRIB software library and analyzed using tract-based spatial statistics. RESULTS In a three-way repeated-measures marginal model with sandwich estimator standard errors, we found no significant effects of escitalopram and content on AD, FA, MD, and RD during both learning and relearning periods (pFDR>0.05). When testing for escitalopram or content effects separately, we also demonstrated no significant findings (pFDR>0.05) for any of the diffusion tensor imaging metrics. LIMITATIONS The intensity of the study interventions might have been too brief to induce detectable white matter changes. DISCUSSION Previous studies examining the effects of SSRIs on white matter tracts in humans have yielded inconclusive outcomes. Our results indicate that relearning under escitalopram does not affect the white matter microstructures in healthy individuals when administered for 3 weeks.
Collapse
Affiliation(s)
- T Vanicek
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - M B Reed
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - J Unterholzner
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - M Klöbl
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - G M Godbersen
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - P A Handschuh
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - B Spurny-Dworak
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - V Ritter
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - G Gryglewski
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - C Kraus
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - D Winkler
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - R Lanzenberger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria.
| | - R Seiger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| |
Collapse
|
64
|
Perrier J, Joue G, Desgranges B, Allouache D, Levy C, Noal S, Dayan J, Eustache F, Joly F, Viard A, Giffard B. Self-referential processes and resting-state connectivity in breast cancer patients before and 1 year after chemotherapy. Eur J Neurosci 2022; 55:624-636. [PMID: 34978117 DOI: 10.1111/ejn.15587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 12/17/2021] [Indexed: 11/30/2022]
Abstract
Modifications in the processing of information relevant to oneself have been reported in breast cancer (BC) patients. Here, we characterize the longitudinal changes to self-representations in BC patients and how they are related to intrinsic functional brain connectivity. We tested 16 BC patients before (T1) and 1 year after the end of chemotherapy (T2) along with 24 healthy control participants (HC) at similar time points. Participants underwent resting-state fMRI and completed the Questionnaire of Self-Representation (QSR), which evaluates self-assertion and self-esteem. Resting-state functional connectivity (RSFC) was calculated for regions implicated in self-referential processes (dorsomedial prefrontal cortex [dmPFC], posterior cingulate cortex [PCC], and dorsal anterior cingulate cortex [dACC]) and correlated with QSR scores. QSR scores were on average larger in patients compared with HC and did not vary over time. RSFC between the dACC and regions supporting body awareness (precentral/postcentral and supramarginal gyri, superior parietal lobule) decreased more between T1 and T2 in BC patients than in HC. BC patients had lower RSFC than HC between the dmPFC and the PCC, and regions supporting mental imagery (precuneus, lingual gyrus), at each time point, and a greater decrease from T1 and T2. QSR scores negatively correlated with RSFC. Patients described themselves as having greater self-awareness and positive self-image, reflecting a fighting spirit. In parallel, patients presented a decrease in cortical activity related to body awareness and mental imagery of self-representations over time that may be related to the positive self-image patients have and could reflect a temporary adaptive strategy.
Collapse
Affiliation(s)
- Joy Perrier
- Normandie Univ, UNICAEN, PSL Université, EPHE, INSERM, U1077, CHU de Caen, GIP Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine, Caen, France
| | - Gina Joue
- Normandie Univ, UNICAEN, PSL Université, EPHE, INSERM, U1077, CHU de Caen, GIP Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine, Caen, France
| | - Béatrice Desgranges
- Normandie Univ, UNICAEN, PSL Université, EPHE, INSERM, U1077, CHU de Caen, GIP Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine, Caen, France
| | - Djelila Allouache
- Breast Committee Department, Centre François Baclesse, Caen, France.,Medical Oncology Department, University Hospital of Caen, Caen, France
| | - Christelle Levy
- Breast Committee Department, Centre François Baclesse, Caen, France.,Medical Oncology Department, University Hospital of Caen, Caen, France
| | - Sabine Noal
- Breast Committee Department, Centre François Baclesse, Caen, France.,Medical Oncology Department, University Hospital of Caen, Caen, France
| | - Jacques Dayan
- Normandie Univ, UNICAEN, PSL Université, EPHE, INSERM, U1077, CHU de Caen, GIP Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine, Caen, France.,CHGR, Pôle Universitaire de Psychiatrie de l'Enfant et l'Adolescent, Rennes, France
| | - Francis Eustache
- Normandie Univ, UNICAEN, PSL Université, EPHE, INSERM, U1077, CHU de Caen, GIP Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine, Caen, France
| | - Florence Joly
- Medical Oncology Department, University Hospital of Caen, Caen, France.,Clinical Research Department, Centre François Baclesse, Caen, France.,Normandie Univ, UNICAEN, INSERM, ANTICIPE, Caen, France.,Cancer & Cognition, Platform, Ligue Nationale Contre le Cancer, Caen, France
| | - Armelle Viard
- Normandie Univ, UNICAEN, PSL Université, EPHE, INSERM, U1077, CHU de Caen, GIP Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine, Caen, France
| | - Bénédicte Giffard
- Normandie Univ, UNICAEN, PSL Université, EPHE, INSERM, U1077, CHU de Caen, GIP Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine, Caen, France.,Cancer & Cognition, Platform, Ligue Nationale Contre le Cancer, Caen, France
| |
Collapse
|
65
|
Zugman A, Harrewijn A, Cardinale EM, Zwiebel H, Freitag GF, Werwath KE, Bas‐Hoogendam JM, Groenewold NA, Aghajani M, Hilbert K, Cardoner N, Porta‐Casteràs D, Gosnell S, Salas R, Blair KS, Blair JR, Hammoud MZ, Milad M, Burkhouse K, Phan KL, Schroeder HK, Strawn JR, Beesdo‐Baum K, Thomopoulos SI, Grabe HJ, Van der Auwera S, Wittfeld K, Nielsen JA, Buckner R, Smoller JW, Mwangi B, Soares JC, Wu M, Zunta‐Soares GB, Jackowski AP, Pan PM, Salum GA, Assaf M, Diefenbach GJ, Brambilla P, Maggioni E, Hofmann D, Straube T, Andreescu C, Berta R, Tamburo E, Price R, Manfro GG, Critchley HD, Makovac E, Mancini M, Meeten F, Ottaviani C, Agosta F, Canu E, Cividini C, Filippi M, Kostić M, Munjiza A, Filippi CA, Leibenluft E, Alberton BAV, Balderston NL, Ernst M, Grillon C, Mujica‐Parodi LR, van Nieuwenhuizen H, Fonzo GA, Paulus MP, Stein MB, Gur RE, Gur RC, Kaczkurkin AN, Larsen B, Satterthwaite TD, Harper J, Myers M, Perino MT, Yu Q, Sylvester CM, Veltman DJ, Lueken U, Van der Wee NJA, Stein DJ, Jahanshad N, Thompson PM, Pine DS, Winkler AM. Mega-analysis methods in ENIGMA: The experience of the generalized anxiety disorder working group. Hum Brain Mapp 2022; 43:255-277. [PMID: 32596977 PMCID: PMC8675407 DOI: 10.1002/hbm.25096] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/26/2020] [Accepted: 05/31/2020] [Indexed: 12/15/2022] Open
Abstract
The ENIGMA group on Generalized Anxiety Disorder (ENIGMA-Anxiety/GAD) is part of a broader effort to investigate anxiety disorders using imaging and genetic data across multiple sites worldwide. The group is actively conducting a mega-analysis of a large number of brain structural scans. In this process, the group was confronted with many methodological challenges related to study planning and implementation, between-country transfer of subject-level data, quality control of a considerable amount of imaging data, and choices related to statistical methods and efficient use of resources. This report summarizes the background information and rationale for the various methodological decisions, as well as the approach taken to implement them. The goal is to document the approach and help guide other research groups working with large brain imaging data sets as they develop their own analytic pipelines for mega-analyses.
Collapse
Affiliation(s)
- André Zugman
- National Institute of Mental Health (NIMH), National Institutes of Health (NIH)BethesdaMarylandUSA
| | - Anita Harrewijn
- National Institute of Mental Health (NIMH), National Institutes of Health (NIH)BethesdaMarylandUSA
| | - Elise M. Cardinale
- National Institute of Mental Health (NIMH), National Institutes of Health (NIH)BethesdaMarylandUSA
| | - Hannah Zwiebel
- National Institute of Mental Health (NIMH), National Institutes of Health (NIH)BethesdaMarylandUSA
| | - Gabrielle F. Freitag
- National Institute of Mental Health (NIMH), National Institutes of Health (NIH)BethesdaMarylandUSA
| | - Katy E. Werwath
- National Institute of Mental Health (NIMH), National Institutes of Health (NIH)BethesdaMarylandUSA
| | - Janna M. Bas‐Hoogendam
- Leiden University Medical Center, Department of PsychiatryLeidenThe Netherlands
- Leiden Institute for Brain and Cognition (LIBC)LeidenThe Netherlands
- Leiden University, Institute of Psychology, Developmental and Educational PsychologyLeidenThe Netherlands
| | - Nynke A. Groenewold
- Department of Psychiatry & Neuroscience InstituteUniversity of Cape TownCape TownSouth Africa
| | - Moji Aghajani
- Department. of PsychiatryAmsterdam UMC/VUMCAmsterdamThe Netherlands
- GGZ InGeestDepartment of Research & InnovationAmsterdamThe Netherlands
| | - Kevin Hilbert
- Department of PsychologyHumboldt‐Universität zu BerlinBerlinGermany
| | - Narcis Cardoner
- Department of Mental HealthUniversity Hospital Parc Taulí‐I3PTBarcelonaSpain
- Department of Psychiatry and Forensic MedicineUniversitat Autònoma de BarcelonaBarcelonaSpain
- Centro de Investigación Biomédica en Red de Salud MentalCarlos III Health InstituteMadridSpain
| | - Daniel Porta‐Casteràs
- Department of Mental HealthUniversity Hospital Parc Taulí‐I3PTBarcelonaSpain
- Department of Psychiatry and Forensic MedicineUniversitat Autònoma de BarcelonaBarcelonaSpain
- Centro de Investigación Biomédica en Red de Salud MentalCarlos III Health InstituteMadridSpain
| | - Savannah Gosnell
- Menninger Department of Psychiatry and Behavioral SciencesBaylor College of MedicineHoustonTexasUSA
| | - Ramiro Salas
- Menninger Department of Psychiatry and Behavioral SciencesBaylor College of MedicineHoustonTexasUSA
| | - Karina S. Blair
- Center for Neurobehavioral ResearchBoys Town National Research HospitalBoys TownNebraskaUSA
| | - James R. Blair
- Center for Neurobehavioral ResearchBoys Town National Research HospitalBoys TownNebraskaUSA
| | - Mira Z. Hammoud
- Department of PsychiatryNew York UniversityNew YorkNew YorkUSA
| | - Mohammed Milad
- Department of PsychiatryNew York UniversityNew YorkNew YorkUSA
| | - Katie Burkhouse
- Department of PsychiatryUniversity of Illinois at ChicagoChicagoIllinoisUSA
| | - K. Luan Phan
- Department of Psychiatry and Behavioral HealthThe Ohio State UniversityColumbusOhioUSA
| | - Heidi K. Schroeder
- Department of Psychiatry & Behavioral NeuroscienceUniversity of CincinnatiCincinnatiOhioUSA
| | - Jeffrey R. Strawn
- Department of Psychiatry & Behavioral NeuroscienceUniversity of CincinnatiCincinnatiOhioUSA
| | - Katja Beesdo‐Baum
- Behavioral EpidemiologyInstitute of Clinical Psychology and Psychotherapy, Technische Universität DresdenDresdenGermany
| | - Sophia I. Thomopoulos
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, University of Southern CaliforniaMarina del ReyCaliforniaUSA
| | - Hans J. Grabe
- Department of Psychiatry and PsychotherapyUniversity Medicine GreifswaldGreifswaldGermany
- German Center for Neurodegenerative Diseases (DZNE)Site Rostock/GreifswaldGreifswaldGermany
| | - Sandra Van der Auwera
- Department of Psychiatry and PsychotherapyUniversity Medicine GreifswaldGreifswaldGermany
- German Center for Neurodegenerative Diseases (DZNE)Site Rostock/GreifswaldGreifswaldGermany
| | - Katharina Wittfeld
- Department of Psychiatry and PsychotherapyUniversity Medicine GreifswaldGreifswaldGermany
- German Center for Neurodegenerative Diseases (DZNE)Site Rostock/GreifswaldGreifswaldGermany
| | - Jared A. Nielsen
- Department of PsychologyHarvard UniversityCambridgeMassachusettsUSA
- Center for Brain ScienceHarvard UniversityCambridgeMassachusettsUSA
| | - Randy Buckner
- Department of PsychologyHarvard UniversityCambridgeMassachusettsUSA
- Center for Brain ScienceHarvard UniversityCambridgeMassachusettsUSA
- Department of PsychiatryMassachusetts General HospitalBostonMassachusettsUSA
| | - Jordan W. Smoller
- Department of PsychiatryMassachusetts General HospitalBostonMassachusettsUSA
| | - Benson Mwangi
- Center Of Excellence On Mood Disorders, Department of Psychiatry and Behavioral SciencesThe University of Texas Health Science Center at HoustonHoustonTexasUSA
| | - Jair C. Soares
- Center Of Excellence On Mood Disorders, Department of Psychiatry and Behavioral SciencesThe University of Texas Health Science Center at HoustonHoustonTexasUSA
| | - Mon‐Ju Wu
- Center Of Excellence On Mood Disorders, Department of Psychiatry and Behavioral SciencesThe University of Texas Health Science Center at HoustonHoustonTexasUSA
| | - Giovana B. Zunta‐Soares
- Center Of Excellence On Mood Disorders, Department of Psychiatry and Behavioral SciencesThe University of Texas Health Science Center at HoustonHoustonTexasUSA
| | - Andrea P. Jackowski
- LiNC, Department of PsychiatryFederal University of São PauloSão PauloSão PauloBrazil
| | - Pedro M. Pan
- LiNC, Department of PsychiatryFederal University of São PauloSão PauloSão PauloBrazil
| | - Giovanni A. Salum
- Section on Negative Affect and Social Processes, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do SulPorto AlegreRio Grande do SulBrazil
| | - Michal Assaf
- Olin Neuropsychiatry Research CenterInstitute of Living, Hartford HospitalHartfordConnecticutUSA
- Department of PsychiatryYale School of MedicineNew HavenConnecticutUSA
| | - Gretchen J. Diefenbach
- Anxiety Disorders CenterInstitute of Living, Hartford HospitalHartfordConnecticutUSA
- Yale School of MedicineNew HavenConnecticutUSA
| | - Paolo Brambilla
- Department of Neurosciences and Mental HealthFondazione IRCCS Ca' Granda Ospedale Maggiore PoliclinicoMilanItaly
| | - Eleonora Maggioni
- Department of Neurosciences and Mental HealthFondazione IRCCS Ca' Granda Ospedale Maggiore PoliclinicoMilanItaly
| | - David Hofmann
- Institute of Medical Psychology and Systems Neuroscience, University of MuensterMuensterGermany
| | - Thomas Straube
- Institute of Medical Psychology and Systems Neuroscience, University of MuensterMuensterGermany
| | - Carmen Andreescu
- Department of PsychiatryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Rachel Berta
- Department of PsychiatryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Erica Tamburo
- Department of PsychiatryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Rebecca Price
- Department of Psychiatry & PsychologyUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Gisele G. Manfro
- Anxiety Disorder ProgramHospital de Clínicas de Porto AlegrePorto AlegreRio Grande do SulBrazil
- Department of PsychiatryFederal University of Rio Grande do SulPorto AlegreRio Grande do SulBrazil
| | - Hugo D. Critchley
- Department of NeuroscienceBrighton and Sussex Medical School, University of SussexBrightonUK
| | - Elena Makovac
- Centre for Neuroimaging ScienceKings College LondonLondonUK
| | - Matteo Mancini
- Department of NeuroscienceBrighton and Sussex Medical School, University of SussexBrightonUK
| | | | | | - Federica Agosta
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of NeuroscienceIRCCS San Raffaele Scientific InstituteMilanItaly
- Vita‐Salute San Raffaele UniversityMilanItaly
| | - Elisa Canu
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of NeuroscienceIRCCS San Raffaele Scientific InstituteMilanItaly
| | - Camilla Cividini
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of NeuroscienceIRCCS San Raffaele Scientific InstituteMilanItaly
| | - Massimo Filippi
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of NeuroscienceIRCCS San Raffaele Scientific InstituteMilanItaly
- Vita‐Salute San Raffaele UniversityMilanItaly
- Neurology and Neurophysiology UnitIRCCS San Raffaele Scientific InstituteMilanItaly
| | - Milutin Kostić
- Institute of Mental Health, University of BelgradeBelgradeSerbia
- Department of Psychiatry, School of MedicineUniversity of BelgradeBelgradeSerbia
| | - Ana Munjiza
- Institute of Mental Health, University of BelgradeBelgradeSerbia
| | - Courtney A. Filippi
- National Institute of Mental Health (NIMH), National Institutes of Health (NIH)BethesdaMarylandUSA
| | - Ellen Leibenluft
- National Institute of Mental Health (NIMH), National Institutes of Health (NIH)BethesdaMarylandUSA
| | - Bianca A. V. Alberton
- Graduate Program in Electrical and Computer Engineering, Universidade Tecnológica Federal do ParanáCuritibaPuerto RicoBrazil
| | - Nicholas L. Balderston
- Center for Neuromodulation in Depression and StressUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Monique Ernst
- National Institute of Mental Health (NIMH), National Institutes of Health (NIH)BethesdaMarylandUSA
| | - Christian Grillon
- National Institute of Mental Health (NIMH), National Institutes of Health (NIH)BethesdaMarylandUSA
| | | | | | - Gregory A. Fonzo
- Department of PsychiatryThe University of Texas at Austin Dell Medical SchoolAustinTexasUSA
| | | | - Murray B. Stein
- Department of Psychiatry & Family Medicine and Public HealthUniversity of CaliforniaLa JollaCaliforniaUSA
| | - Raquel E. Gur
- Department of PsychiatryUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Ruben C. Gur
- Department of PsychiatryUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | | | - Bart Larsen
- Department of PsychiatryUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | | | - Jennifer Harper
- Department of PsychiatryWashington UniversitySt. LouisMissouriUSA
| | - Michael Myers
- Department of PsychiatryWashington UniversitySt. LouisMissouriUSA
| | | | - Qiongru Yu
- Department of PsychiatryWashington UniversitySt. LouisMissouriUSA
| | | | - Dick J. Veltman
- Department. of PsychiatryAmsterdam UMC/VUMCAmsterdamThe Netherlands
| | - Ulrike Lueken
- Department of PsychologyHumboldt‐Universität zu BerlinBerlinGermany
| | - Nic J. A. Van der Wee
- Leiden University Medical Center, Department of PsychiatryLeidenThe Netherlands
- Leiden Institute for Brain and Cognition (LIBC)LeidenThe Netherlands
| | - Dan J. Stein
- Department of Psychiatry & Neuroscience InstituteUniversity of Cape TownCape TownSouth Africa
- SAMRC Unite on Risk & Resilience in Mental Disorders, Department of Psychiatry & Neuroscience InstituteUniversity of Cape TownCape TownSouth Africa
| | - Neda Jahanshad
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, University of Southern CaliforniaMarina del ReyCaliforniaUSA
| | - Paul M. Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, University of Southern CaliforniaMarina del ReyCaliforniaUSA
| | - Daniel S. Pine
- National Institute of Mental Health (NIMH), National Institutes of Health (NIH)BethesdaMarylandUSA
| | - Anderson M. Winkler
- National Institute of Mental Health (NIMH), National Institutes of Health (NIH)BethesdaMarylandUSA
| |
Collapse
|
66
|
Stage E, Svaldi D, Sokolow S, Risacher SL, Marosi K, Rotter JI, Saykin AJ, Apostolova LG. Prescribing cholinesterase inhibitors in mild cognitive impairment-Observations from the Alzheimer's Disease Neuroimaging Initiative. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2021; 7:e12168. [PMID: 35005201 PMCID: PMC8719350 DOI: 10.1002/trc2.12168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 03/05/2021] [Accepted: 03/14/2021] [Indexed: 11/10/2022]
Abstract
INTRODUCTION Analyses of off-label use of acetylcholinesterase inhibitors (AChEIs) in mild cognitive impairment (MCI) has produced mixed results. Post hoc analyses of observational cohorts, such as the Alzheimer's Disease Neuroimaging Initiative (ADNI), have reported deleterious effects in AChEI-treated subjects (AChEI+). Here, we used neuroimaging biomarkers to determine whether AChEI+ subjects had a greater rate of neurodegeneration than untreated (AChEI-) subjects while accounting for baseline differences. METHODS We selected 121 ADNI MCI AChEI+ subjects and 151 AChEI- subjects with a magnetic resonance imaging (MRI) scan; 82 AChEI+ and 110 AChEI- also had a fluorodeoxyglucose (FDG) scan. A subset (83 AChEI+ and 98 AChEI-) had cerebrospinal fluid (CSF) or amyloid positron emission tomography (PET) assessment for amyloid positivity. Linear regression models were used to compare the effect of treatment on changes in Mini-Mental State Examination and Clinical Dementia Rating-Sum of Boxes scores. We used standard regression in SPM (for baseline) and the SPM toolbox sandwich estimator, SwE (for longitudinal) for comparisons of AChEI+ and AChEI- FDG PET and MRI data. RESULTS At baseline, the AChEI+ group had significantly reduced cortical gray matter density (GMD) and more hypometabolism than AChEI- subjects. The greater rate of atrophy and hypometabolic changes over time in AChEI+ compared to AChEI- subjects did not survive correction for baseline differences. AChEI+ participants were more likely to be amyloid-positive and have lower GMD and FDG standardized uptake value ratio than AChEI- at baseline. AChEI+ subjects showed greater atrophy over time, which remained significant after controlling for amyloid status. DISCUSSION Our data suggest that the observed differences in rates of cognitive decline, atrophy, and hypometabolism are likely the result of significant baseline differences between the groups. Furthermore, the data indicate no treatment effect of AChEI (positive of negative), rather that physicians prescribe AChEI to subjects who present with more severe clinical impairment. This alone may account for the negative effect seen previously in the ADNI population of AChEI use among MCI subjects.
Collapse
Affiliation(s)
- Eddie Stage
- Indiana Alzheimer Disease CenterIndianapolisINUSA
- Department of NeurologyIU School of MedicineIndianapolisINUSA
| | - Diana Svaldi
- Department of NeurologyIU School of MedicineIndianapolisINUSA
| | - Sophie Sokolow
- UCLA School of NursingLos AngelesCAUSA
- UCLA Brain Research InsituteLos AngelesCAUSA
- UCLA Clinical and Translational Science InstituteLos AngelesCAUSA
| | - Shannon L. Risacher
- Indiana Alzheimer Disease CenterIndianapolisINUSA
- Department of Radiology and Imaging SciencesIU School of MedicineIndianapolisINUSA
| | | | - Jerome I. Rotter
- The Institute for Translational Genomics and Population SciencesHarbor‐UCLA Medical CenterTorranceCAUSA
- Department of PediatricsHarbor‐UCLA Medical CenterTorranceCAUSA
- The Lundquist Institute for Biomedical InnovationHarbor‐UCLA Medical CenterTorranceCAUSA
| | - Andrew J. Saykin
- Indiana Alzheimer Disease CenterIndianapolisINUSA
- Department of Radiology and Imaging SciencesIU School of MedicineIndianapolisINUSA
| | - Liana G. Apostolova
- Indiana Alzheimer Disease CenterIndianapolisINUSA
- Department of NeurologyIU School of MedicineIndianapolisINUSA
- Department of Radiology and Imaging SciencesIU School of MedicineIndianapolisINUSA
- Department of Medical and Molecular GeneticsIU School of MedicineIndianapolisINUSA
| | | |
Collapse
|
67
|
Koenis MMG, Papasavas PK, Janssen RJ, Tishler DS, Pearlson GD. Brain responses to anticipatory cues and milkshake taste in obesity, and their relationship to bariatric surgery outcome. Neuroimage 2021; 245:118623. [PMID: 34627978 PMCID: PMC10947342 DOI: 10.1016/j.neuroimage.2021.118623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 12/15/2022] Open
Abstract
There is substantial variability in percent total weight loss (%TWL) following bariatric surgery. Functional brain imaging may explain more variance in post-surgical weight loss than psychological or metabolic information. Here we examined the neuronal responses during anticipatory cues and receipt of drops of milkshake in 52 pre-bariatric surgery men and women with severe obesity (OW, BMI = 35-60 kg/m2) (23 sleeve gastrectomy (SG), 24 Roux-en-Y gastric bypass (RYGB), 3 laparoscopic adjustable gastric banding (LAGB), 2 did not undergo surgery) and 21 healthy-weight (HW) controls (BMI = 19-27 kg/m2). One-year post-surgery weight loss ranged from 3.1 to 44.0 TWL%. Compared to HW, OW had a stronger response to milkshake cues (compared to water) in frontal and motor, somatosensory, occipital, and cerebellar regions. Responses to milkshake taste receipt (compared to water) differed from HW in frontal, motor, and supramarginal regions where OW showed more similar response to water. One year post-surgery, responses to high-fat milkshake cues normalized in frontal, motor, and somatosensory regions. This change in brain response was related to scores on a composite health index. We found no correlation between baseline response to milkshake cues or tastes and%TWL at 1-yr post-surgery. In RYGB participants only, a stronger response to low-fat milkshake and water cues (compared to high-fat) in supramarginal and cuneal regions respectively was associated with more weight loss. A stronger cerebellar response to high-fat vs low-fat milkshake receipt was also associated with more weight loss. We confirm differential responses to anticipatory milkshake cues in participants with severe obesity and HW in the largest adult cohort to date. Our brain wide results emphasizes the need to look beyond reward and cognitive control regions. Despite the lack of a correlation with post-surgical weight loss in the entire surgical group, participants who underwent RYGB showed predictive power in several regions and contrasts. Our findings may help in understanding the neuronal mechanisms associated with obesity.
Collapse
Affiliation(s)
- Marinka M G Koenis
- Olin Neuropsychiatry Research Center, Institute of Living at Hartford Hospital, 200 Retreat Avenue, Hartford, CT 06102, United States.
| | - Pavlos K Papasavas
- Division of Metabolic and Bariatric Surgery, Hartford Hospital, 80 Seymour Street, Hartford, CT 06102, United States
| | - Ronald J Janssen
- Olin Neuropsychiatry Research Center, Institute of Living at Hartford Hospital, 200 Retreat Avenue, Hartford, CT 06102, United States
| | - Darren S Tishler
- Division of Metabolic and Bariatric Surgery, Hartford Hospital, 80 Seymour Street, Hartford, CT 06102, United States
| | - Godfrey D Pearlson
- Olin Neuropsychiatry Research Center, Institute of Living at Hartford Hospital, 200 Retreat Avenue, Hartford, CT 06102, United States; Department of Psychiatry, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, United States; Department of Neuroscience, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, United States
| |
Collapse
|
68
|
Markett S, Nothdurfter D, Focsa A, Reuter M, Jawinski P. Attention networks and the intrinsic network structure of the human brain. Hum Brain Mapp 2021; 43:1431-1448. [PMID: 34882908 PMCID: PMC8837576 DOI: 10.1002/hbm.25734] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 11/15/2021] [Accepted: 11/24/2021] [Indexed: 11/09/2022] Open
Abstract
Attention network theory distinguishes three independent systems, each supported by its own distributed network: an alerting network to deploy attentional resources in anticipation, an orienting network to direct attention to a cued location, and a control network to select relevant information at the expense of concurrently available information. Ample behavioral and neuroimaging evidence supports the dissociation of the three attention domains. The strong assumption that each attentional system is realized through a separable network, however, raises the question how these networks relate to the intrinsic network structure of the brain. Our understanding of brain networks has advanced majorly in the past years due to the increasing focus on brain connectivity. The brain is intrinsically organized into several large‐scale networks whose modular structure persists across task states. Existing proposals on how the presumed attention networks relate to intrinsic networks rely mostly on anecdotal and partly contradictory arguments. We addressed this issue by mapping different attention networks at the level of cifti‐grayordinates. Resulting group maps were compared to the group‐level topology of 23 intrinsic networks, which we reconstructed from the same participants' resting state fMRI data. We found that all attention domains recruited multiple and partly overlapping intrinsic networks and converged in the dorsal fronto‐parietal and midcingulo‐insular network. While we observed a preference of each attentional domain for its own set of intrinsic networks, implicated networks did not match well to those proposed in the literature. Our results indicate a necessary refinement of the attention network theory.
Collapse
|
69
|
Xu Y, Wang S, Chen L, Shao Z, Zhang M, Liu S, Wen X, Li Y, Yang W, Tang F, Luo J, Fan L, Yan C, Liu J, Yuan K. Reduced midbrain functional connectivity and recovery in abstinent heroin users. J Psychiatr Res 2021; 144:168-176. [PMID: 34662755 DOI: 10.1016/j.jpsychires.2021.10.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/24/2021] [Accepted: 10/10/2021] [Indexed: 11/28/2022]
Abstract
Dopaminergic pathways from the midbrain to striatum as well as cortex are involved in addiction. However, the alternations of these pathways and whether the recoveries of aberrant circuits would be detected after prolonged abstinence in heroin users are rarely known. The resting-state functional connectivity (RSFC) patterns of midbrain (i.e., the ventral tegmental area (VTA) and substantia nigra (SN)) were compared between 40 abstinent heroin users with opioid use disorder (HUs) and 35 healthy controls (HCs). Then, we tested the functional recovery hypothesis by both cross-sectional and longitudinal design. For cross-sectional design, HUs were separated into short-term abstainers (STs) (3-15 days) and long-term abstainers (LTs) (>15 days). With regard to longitudinal design, 22 subjects among HUs were followed up for 10 months. A sandwich estimator method was used to analyze the differences between baseline HUs and follow-up HUs. HUs showed lower RSFC between midbrain and several cortical areas (medial orbitofrontal cortex (mOFC) and anterior cingulate cortex) compared with HCs. Besides, lower RSFC of VTA-right nucleus accumbens circuit as well as right SN- caudate circuit was also found in HUs. The enhanced RSFC value of VTA-left mOFC circuit was observed in LTs, compared with STs. Additionally, longitudinal design also revealed the increased RSFC values of the midbrain with frontal cortex after 10 months prolonged abstinence. We revealed abnormal functional organizations of midbrain-striato and midbrain-cortical circuits in HUs. More importantly, partially recovery of these dysfunctions can be found after long-term abstinence.
Collapse
Affiliation(s)
- Yan Xu
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China; Engineering Research Center of Molecular and Neuro Imaging Ministry of Education, Xi'an, Shaanxi, China
| | - Shicong Wang
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China; Engineering Research Center of Molecular and Neuro Imaging Ministry of Education, Xi'an, Shaanxi, China
| | - Longmao Chen
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China; Engineering Research Center of Molecular and Neuro Imaging Ministry of Education, Xi'an, Shaanxi, China
| | - Ziqiang Shao
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China; Engineering Research Center of Molecular and Neuro Imaging Ministry of Education, Xi'an, Shaanxi, China
| | - Min Zhang
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China; Engineering Research Center of Molecular and Neuro Imaging Ministry of Education, Xi'an, Shaanxi, China
| | - Shuang Liu
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China; Engineering Research Center of Molecular and Neuro Imaging Ministry of Education, Xi'an, Shaanxi, China
| | - Xinwen Wen
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China; Engineering Research Center of Molecular and Neuro Imaging Ministry of Education, Xi'an, Shaanxi, China
| | - Yangding Li
- Hunan Provincial Key Laboratory of Intelligent Computing and Language Information Processing, Hunan Normal University, Changsha, Hunan, China
| | - Wenhan Yang
- Department of Radiology, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Fei Tang
- Department of Radiology, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jing Luo
- Department of Radiology, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Li Fan
- Department of Radiology, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Cui Yan
- Department of Radiology, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jun Liu
- Department of Radiology, Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Kai Yuan
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China; Engineering Research Center of Molecular and Neuro Imaging Ministry of Education, Xi'an, Shaanxi, China.
| |
Collapse
|
70
|
Schading S, Pohl H, Gantenbein A, Luechinger R, Sandor P, Riederer F, Freund P, Michels L. Tracking tDCS induced grey matter changes in episodic migraine: a randomized controlled trial. J Headache Pain 2021; 22:139. [PMID: 34800989 PMCID: PMC8605508 DOI: 10.1186/s10194-021-01347-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/27/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Occipital transcranial direct current stimulation (tDCS) is an effective and safe treatment for migraine attack prevention. Structural brain alterations have been found in migraineurs in regions related to pain modulation and perception, including occipital areas. However, whether these structural alterations can be dynamically modulated through tDCS treatment is understudied. OBJECTIVE To track longitudinally grey matter volume changes in occipital areas in episodic migraineurs during and up to five months after occipital tDCS treatment in a single-blind, and sham-controlled study. METHODS 24 episodic migraineurs were randomized to either receive verum or sham occipital tDCS treatment for 28 days. To investigate dynamic grey matter volume changes patients underwent structural MRI at baseline (prior to treatment), 1.5 months and 5.5 months (after completion of treatment). 31 healthy controls were scanned with the same MRI protocol. Morphometry measures assessed rate of changes over time and between groups by means of tensor-based morphometry. RESULTS Before treatment, migraineurs reported 5.6 monthly migraine days on average. A cross-sectional analysis revealed grey matter volume increases in the left lingual gyrus in migraineurs compared to controls. Four weeks of tDCS application led to a reduction of 1.9 migraine days/month and was paralleled by grey matter volume decreases in the left lingual gyrus in the treatment group; its extent overlapping with that seen at baseline. CONCLUSION This study shows that migraineurs have increased grey matter volume in the lingual gyrus, which can be modified by tDCS. Tracking structural plasticity in migraineurs provides a potential neuroimaging biomarker for treatment monitoring. TRIAL REGISTRATION ClinicalTrials.gov , NCT03237754 . Registered 03 August 2017 - retrospectively registered, https://clinicaltrials.gov/ct2/show/NCT03237754 .
Collapse
Affiliation(s)
- Simon Schading
- Spinal Cord Injury Centre Balgrist, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Heiko Pohl
- Department of Neurology, University Hospital Zurich, Zurich, Switzerland
| | - Andreas Gantenbein
- Department of Neurology, University Hospital Zurich, Zurich, Switzerland
- ZURZACH Care, Bad Zurzach, Switzerland
| | - Roger Luechinger
- Institute for Biomedical Engineering, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Peter Sandor
- Department of Neurology, University Hospital Zurich, Zurich, Switzerland
- ZURZACH Care, Bad Zurzach, Switzerland
| | - Franz Riederer
- Department of Neurology, University Hospital Zurich, Zurich, Switzerland
- Neurological Center Rosenhügel and Karl Landsteiner Institute for Epilepsy Research and Cognitive Neurology, Vienna, Austria
| | - Patrick Freund
- Spinal Cord Injury Centre Balgrist, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Wellcome Centre for Human Neuroimaging, Institute of Neurology, University College London, London, UK
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Lars Michels
- Department of Neuroradiology, University Hospital Zurich, Frauenklinikstrasse 10, 8091, Zurich, Switzerland.
| |
Collapse
|
71
|
David G, Pfyffer D, Vallotton K, Pfender N, Thompson A, Weiskopf N, Mohammadi S, Curt A, Freund P. Longitudinal changes of spinal cord grey and white matter following spinal cord injury. J Neurol Neurosurg Psychiatry 2021; 92:1222-1230. [PMID: 34341143 PMCID: PMC8522459 DOI: 10.1136/jnnp-2021-326337] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 06/09/2021] [Indexed: 11/21/2022]
Abstract
OBJECTIVES Traumatic and non-traumatic spinal cord injury produce neurodegeneration across the entire neuraxis. However, the spatiotemporal dynamics of spinal cord grey and white matter neurodegeneration above and below the injury is understudied. METHODS We acquired longitudinal data from 13 traumatic and 3 non-traumatic spinal cord injury patients (8-8 cervical and thoracic cord injuries) within 1.5 years after injury and 10 healthy controls over the same period. The protocol encompassed structural and diffusion-weighted MRI rostral (C2/C3) and caudal (lumbar enlargement) to the injury level to track tissue-specific neurodegeneration. Regression models assessed group differences in the temporal evolution of tissue-specific changes and associations with clinical outcomes. RESULTS At 2 months post-injury, white matter area was decreased by 8.5% and grey matter by 15.9% in the lumbar enlargement, while at C2/C3 only white matter was decreased (-9.7%). Patients had decreased cervical fractional anisotropy (FA: -11.3%) and increased radial diffusivity (+20.5%) in the dorsal column, while FA was lower in the lateral (-10.3%) and ventral columns (-9.7%) of the lumbar enlargement. White matter decreased by 0.34% and 0.35% per month at C2/C3 and lumbar enlargement, respectively, and grey matter decreased at C2/C3 by 0.70% per month. CONCLUSIONS This study describes the spatiotemporal dynamics of tissue-specific spinal cord neurodegeneration above and below a spinal cord injury. While above the injury, grey matter atrophy lagged initially behind white matter neurodegeneration, in the lumbar enlargement these processes progressed in parallel. Tracking trajectories of tissue-specific neurodegeneration provides valuable assessment tools for monitoring recovery and treatment effects.
Collapse
Affiliation(s)
- Gergely David
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Dario Pfyffer
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Kevin Vallotton
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Nikolai Pfender
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Alan Thompson
- Department of Brain Repair and Rehabilitation, UCL Institute of Neurology, London, UK
| | - Nikolaus Weiskopf
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Felix Bloch Institute for Solid State Physics, Faculty of Physics and Earth Sciences, Leipzig University, Leipzig, Germany
| | - Siawoosh Mohammadi
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Armin Curt
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Patrick Freund
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland .,Department of Brain Repair and Rehabilitation, UCL Institute of Neurology, London, UK.,Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Wellcome Trust Centre for Neuroimaging, UCL Institute of Neurology, London, UK
| |
Collapse
|
72
|
Karagiorgis AT, Chalas N, Karagianni M, Papadelis G, Vivas AB, Bamidis P, Paraskevopoulos E. Computerized Music-Reading Intervention Improves Resistance to Unisensory Distraction Within a Multisensory Task, in Young and Older Adults. Front Hum Neurosci 2021; 15:742607. [PMID: 34566611 PMCID: PMC8461100 DOI: 10.3389/fnhum.2021.742607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 08/23/2021] [Indexed: 11/13/2022] Open
Abstract
Incoming information from multiple sensory channels compete for attention. Processing the relevant ones and ignoring distractors, while at the same time monitoring the environment for potential threats, is crucial for survival, throughout the lifespan. However, sensory and cognitive mechanisms often decline in aging populations, making them more susceptible to distraction. Previous interventions in older adults have successfully improved resistance to distraction, but the inclusion of multisensory integration, with its unique properties in attentional capture, in the training protocol is underexplored. Here, we studied whether, and how, a 4-week intervention, which targets audiovisual integration, affects the ability to deal with task-irrelevant unisensory deviants within a multisensory task. Musically naïve participants engaged in a computerized music reading game and were asked to detect audiovisual incongruences between the pitch of a song's melody and the position of a disk on the screen, similar to a simplistic music staff. The effects of the intervention were evaluated via behavioral and EEG measurements in young and older adults. Behavioral findings include the absence of age-related differences in distraction and the indirect improvement of performance due to the intervention, seen as an amelioration of response bias. An asymmetry between the effects of auditory and visual deviants was identified and attributed to modality dominance. The electroencephalographic results showed that both groups shared an increase in activation strength after training, when processing auditory deviants, located in the left dorsolateral prefrontal cortex. A functional connectivity analysis revealed that only young adults improved flow of information, in a network comprised of a fronto-parietal subnetwork and a multisensory temporal area. Overall, both behavioral measures and neurophysiological findings suggest that the intervention was indirectly successful, driving a shift in response strategy in the cognitive domain and higher-level or multisensory brain areas, and leaving lower level unisensory processing unaffected.
Collapse
Affiliation(s)
- Alexandros T Karagiorgis
- School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece.,School of Music Studies, Faculty of Fine Arts, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Nikolas Chalas
- Institute for Biomagnetism and Biosignalanalysis, University of Münster, Münster, Germany
| | - Maria Karagianni
- School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Georgios Papadelis
- School of Music Studies, Faculty of Fine Arts, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Ana B Vivas
- Department of Psychology, CITY College, University of York Europe Campus, Thessaloniki, Greece
| | - Panagiotis Bamidis
- School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Evangelos Paraskevopoulos
- School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece.,Department of Psychology, University of Cyprus, Nicosia, Cyprus
| |
Collapse
|
73
|
Chopra S, Francey SM, O’Donoghue B, Sabaroedin K, Arnatkeviciute A, Cropley V, Nelson B, Graham J, Baldwin L, Tahtalian S, Yuen HP, Allott K, Alvarez-Jimenez M, Harrigan S, Pantelis C, Wood SJ, McGorry P, Fornito A. Functional Connectivity in Antipsychotic-Treated and Antipsychotic-Naive Patients With First-Episode Psychosis and Low Risk of Self-harm or Aggression: A Secondary Analysis of a Randomized Clinical Trial. JAMA Psychiatry 2021; 78:994-1004. [PMID: 34160595 PMCID: PMC8223142 DOI: 10.1001/jamapsychiatry.2021.1422] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
IMPORTANCE Altered functional connectivity (FC) is a common finding in resting-state functional magnetic resonance imaging (rs-fMRI) studies of people with psychosis, yet how FC disturbances evolve in the early stages of illness, and how antipsychotic treatment influences these disturbances, remains unknown. OBJECTIVE To investigate longitudinal FC changes in antipsychotic-naive and antipsychotic-treated patients with first-episode psychosis (FEP). DESIGN, SETTING, AND PARTICIPANTS This secondary analysis of a triple-blind, randomized clinical trial was conducted over a 5-year recruitment period between April 2008 and December 2016 with 59 antipsychotic-naive patients with FEP receiving either a second-generation antipsychotic or a placebo pill over a treatment period of 6 months. Participants were required to have low suicidality and aggression, to have a duration of untreated psychosis of less than 6 months, and to be living in stable accommodations with social support. Both FEP groups received intensive psychosocial therapy. A healthy control group was also recruited. Participants completed rs-fMRI scans at baseline, 3 months, and 12 months. Data were analyzed from May 2019 to August 2020. INTERVENTIONS Resting-state functional MRI was used to probe brain FC. Patients received either a second-generation antipsychotic or a matched placebo tablet. Both patient groups received a manualized psychosocial intervention. MAIN OUTCOMES AND MEASURES The primary outcomes of this analysis were to investigate (1) FC differences between patients and controls at baseline; (2) FC changes in medicated and unmedicated patients between baseline and 3 months; and (3) associations between longitudinal FC changes and clinical outcomes. An additional aim was to investigate long-term FC changes at 12 months after baseline. These outcomes were not preregistered. RESULTS Data were analyzed for 59 patients (antipsychotic medication plus psychosocial treatment: 28 [47.5%]; mean [SD] age, 19.5 [3.0] years; 15 men [53.6%]; placebo plus psychosocial treatment: 31 [52.5%]; mean [SD] age, 18.8 [2.7]; 16 men [51.6%]) and 27 control individuals (mean [SD] age, 21.9 [1.9] years). At baseline, patients showed widespread functional dysconnectivity compared with controls, with reductions predominantly affecting interactions between the default mode network, limbic systems, and the rest of the brain. From baseline to 3 months, patients receiving placebo showed increased FC principally within the same systems; some of these changes correlated with improved clinical outcomes (canonical correlation analysis R = 0.901; familywise error-corrected P = .005). Antipsychotic exposure was associated with increased FC primarily between the thalamus and the rest of the brain. CONCLUSIONS AND RELEVANCE In this secondary analysis of a clinical trial, antipsychotic-naive patients with FEP showed widespread functional dysconnectivity at baseline, followed by an early normalization of default mode network and cortical limbic dysfunction in patients receiving placebo and psychosocial intervention. Antipsychotic exposure was associated with FC changes concentrated on thalamocortical networks. TRIAL REGISTRATION ACTRN12607000608460.
Collapse
Affiliation(s)
- Sidhant Chopra
- Turner Institute for Brain and Mental Health, Monash University School of Psychological Sciences, Clayton, Victoria, Australia,Monash Biomedical Imaging, Monash University, Clayton, Victoria, Australia
| | - Shona M. Francey
- Orygen, Parkville, Victoria, Australia,Centre for Youth Mental Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Brian O’Donoghue
- Orygen, Parkville, Victoria, Australia,Centre for Youth Mental Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Kristina Sabaroedin
- Turner Institute for Brain and Mental Health, Monash University School of Psychological Sciences, Clayton, Victoria, Australia,Monash Biomedical Imaging, Monash University, Clayton, Victoria, Australia
| | - Aurina Arnatkeviciute
- Turner Institute for Brain and Mental Health, Monash University School of Psychological Sciences, Clayton, Victoria, Australia
| | - Vanessa Cropley
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne & Melbourne Health, Melbourne, Victoria, Australia
| | - Barnaby Nelson
- Orygen, Parkville, Victoria, Australia,Centre for Youth Mental Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Jessica Graham
- Orygen, Parkville, Victoria, Australia,Centre for Youth Mental Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Lara Baldwin
- Orygen, Parkville, Victoria, Australia,Centre for Youth Mental Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Steven Tahtalian
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne & Melbourne Health, Melbourne, Victoria, Australia
| | - Hok Pan Yuen
- Orygen, Parkville, Victoria, Australia,Centre for Youth Mental Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Kelly Allott
- Orygen, Parkville, Victoria, Australia,Centre for Youth Mental Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Mario Alvarez-Jimenez
- Orygen, Parkville, Victoria, Australia,Centre for Youth Mental Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Susy Harrigan
- Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia,Department of Social Work, Monash University, Caulfield, Victoria, Australia
| | - Christos Pantelis
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne & Melbourne Health, Melbourne, Victoria, Australia
| | - Stephen J. Wood
- Orygen, Parkville, Victoria, Australia,Centre for Youth Mental Health, The University of Melbourne, Melbourne, Victoria, Australia,University of Birmingham School of Psychology, Edgbaston, United Kingdom
| | - Patrick McGorry
- Orygen, Parkville, Victoria, Australia,Centre for Youth Mental Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Alex Fornito
- Turner Institute for Brain and Mental Health, Monash University School of Psychological Sciences, Clayton, Victoria, Australia,Monash Biomedical Imaging, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
74
|
Heinrichs HS, Beyer F, Medawar E, Prehn K, Ordemann J, Flöel A, Witte AV. Effects of bariatric surgery on functional connectivity of the reward and default mode network: A pre-registered analysis. Hum Brain Mapp 2021; 42:5357-5373. [PMID: 34432350 PMCID: PMC8519880 DOI: 10.1002/hbm.25624] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/07/2021] [Accepted: 08/02/2021] [Indexed: 12/18/2022] Open
Abstract
Obesity imposes serious health risks and involves alterations in resting‐state functional connectivity of brain networks involved in eating behavior. Bariatric surgery is an effective treatment, but its effects on functional connectivity are still under debate. In this pre‐registered study, we aimed to determine the effects of bariatric surgery on major resting‐state brain networks (reward and default mode network) in a longitudinal controlled design. Thirty‐three bariatric surgery patients and 15 obese waiting‐list control patients underwent magnetic resonance imaging at baseline, after 6 and 12 months. We conducted a pre‐registered whole‐brain time‐by‐group interaction analysis, and a time‐by‐group interaction analysis on within‐network connectivity. In exploratory analyses, we investigated the effects of weight loss and head motion. Bariatric surgery compared to waiting did not significantly affect functional connectivity of the reward network and the default mode network (FWE‐corrected p > .05), neither whole‐brain nor within‐network. In exploratory analyses, surgery‐related BMI decrease (FWE‐corrected p = .041) and higher average head motion (FWE‐corrected p = .021) resulted in significantly stronger connectivity of the reward network with medial posterior frontal regions. This pre‐registered well‐controlled study did not support a strong effect of bariatric surgery, compared to waiting, on major resting‐state brain networks after 6 months. Exploratory analyses indicated that head motion might have confounded the effects. Data pooling and more rigorous control of within‐scanner head motion during data acquisition are needed to substantiate effects of bariatric surgery on brain organization.
Collapse
Affiliation(s)
- Hannah S Heinrichs
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Frauke Beyer
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,CRC 1052 "Obesity Mechanisms", Subproject A1, University of Leipzig, Leipzig, Germany
| | - Evelyn Medawar
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Kristin Prehn
- Department of Neurology & NeuroCure Clinical Research Center, Charité University Medicine, Berlin, Germany.,Department of Psychology, Medical School Hamburg, Hamburg, Germany
| | - Jürgen Ordemann
- Center for Bariatric and Metabolic Surgery, Charité University Medicine, Berlin, Germany.,Center for Bariatric and Metabolic Surgery, Vivantes Clinic Spandau, Berlin, Germany
| | - Agnes Flöel
- Department of Neurology, University Medicine Greifswald, Greifswald, Germany.,German Center for Neurodegenerative Diseases (DZNE), Greifswald, Germany
| | - A Veronica Witte
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,CRC 1052 "Obesity Mechanisms", Subproject A1, University of Leipzig, Leipzig, Germany.,Clinic for Cognitive Neurology, University of Leipzig Medical Center, Leipzig, Germany
| |
Collapse
|
75
|
Lindheimer JB, Stegner AJ, Van Riper SM, Ninneman JV, Ellingson LD, Cook DB. Nociceptive stress interferes with neural processing of cognitive stimuli in Gulf War Veterans with chronic musculoskeletal pain. Life Sci 2021; 279:119653. [PMID: 34051215 PMCID: PMC8243383 DOI: 10.1016/j.lfs.2021.119653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/20/2021] [Accepted: 05/20/2021] [Indexed: 10/21/2022]
Abstract
AIMS Disrupted cognition and chronic musculoskeletal pain (CMP) are prevalent experiences among Gulf War Veterans (GWV). A negative association between CMP and cognition (i.e., chronic pain-related cognitive interference) has been observed in some chronic pain populations but has not been evaluated in GWV. Additional research suggests that disrupted cognition in GWV with CMP may be exacerbated by stressing the nociceptive system. Therefore, we compared cognitive performance and related neural activity between CMP and healthy control (CO) GWV in the absence and presence of experimental pain. MAIN METHODS During functional magnetic resonance imaging (fMRI), Veterans (CMP = 29; CO = 27) completed cognitive testing via congruent and incongruent conditions of a modified Stroop task (Stroop-only). A random subset (CMP = 13; CO = 13) also completed cognitive testing with experimental pain (Pain+Stroop). Yuen's modified t-test and robust mixed-model analysis of variance (ANOVA) models were used for analyzing cognitive performance data. Independent t-tests and repeated-measures ANOVA models were employed for fMRI data with thresholding for multiple-comparisons (p < 0.005) and cluster size (> 320 mm3). KEY FINDINGS Functional MRI analysis revealed significant between-group differences for the incongruent but not congruent-Stroop run. Neither correct responses nor reaction time differed between groups in either Stroop condition (all p ≥ 0.21). Significant group (CMP, CO) by run (Stroop-only, Pain+Stroop) interactions revealed greater neural responses in CMP Veterans during Pain+Stroop runs. No significant interactions were observed for correct responses or reaction time (p ≥ 0.31). SIGNIFICANCE GWV with CMP require a greater amount of neural resources to sustain cognitive performance during nociceptive stress.
Collapse
Affiliation(s)
- Jacob B Lindheimer
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA; Department of Kinesiology, University of Wisconsin-Madison, Madison, WI, USA; Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA.
| | - Aaron J Stegner
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA; Department of Kinesiology, University of Wisconsin-Madison, Madison, WI, USA
| | - Stephanie M Van Riper
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA; Department of Kinesiology, University of Wisconsin-Madison, Madison, WI, USA
| | - Jacob V Ninneman
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA; Department of Kinesiology, University of Wisconsin-Madison, Madison, WI, USA
| | - Laura D Ellingson
- Division of Health and Exercise Science, Western Oregon University, Monmouth, OR, USA
| | - Dane B Cook
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA; Department of Kinesiology, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
76
|
Williams RJ, Brown EC, Clark DL, Pike GB, Ramasubbu R. Early post-treatment blood oxygenation level-dependent responses to emotion processing associated with clinical response to pharmacological treatment in major depressive disorder. Brain Behav 2021; 11:e2287. [PMID: 34333866 PMCID: PMC8413787 DOI: 10.1002/brb3.2287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 06/21/2021] [Accepted: 07/02/2021] [Indexed: 11/16/2022] Open
Abstract
INTRODUCTION Pre-treatment blood oxygenation level-dependent (BOLD) functional magnetic resonance imaging (fMRI) has been used for the early identification of patients with major depressive disorder (MDD) who later respond or fail to respond to medication. However, BOLD responses early after treatment initiation may offer insight into early neural changes associated with later clinical response. The present study evaluated both pre-treatment and early post-treatment fMRI responses to an emotion processing task, to further our understanding of neural changes associated with a successful response to pharmacological intervention. METHODS MDD patients who responded (n = 22) and failed to respond (n = 12) after 8 weeks of treatment with either citalopram or quetiapine extended release, and healthy controls (n = 18) underwent two fMRI scans, baseline (pre-treatment), and early post-treatment (one week after treatment commencement). Participants completed an emotional face matching task at both scans. RESULTS Using threshold-free cluster enhancement (TFCE) and non-parametric permutation testing, fMRI activation maps showed that after one week of treatment, responders demonstrated increased activation in the left parietal lobule, precentral gyrus, and bilateral insula (all P < 0.05 threshold-free cluster enhancement (TFCE) family-wise error-corrected) to negative facial expressions. Non-responders showed some small increases in the precentral gyrus, while controls showed no differences between scans. Compared to non-responders, responders showed some increased activation in the superior parietal lobule and middle temporal gyrus at the post-treatment scan. There were no group differences between responders, non-responders, and controls at baseline. CONCLUSIONS One week after treatment commencement, BOLD signal changes in the parietal lobules, insula, and middle temporal gyrus were related to clinical response to pharmacological treatment.
Collapse
Affiliation(s)
- Rebecca J Williams
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Department of Radiology, University of Calgary, Calgary, Alberta, Canada
| | - Elliot C Brown
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, Alberta, Canada.,Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada.,Department of Psychiatry, University of Calgary, Calgary, Alberta, Canada.,Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Neuroscience Research Center, Berlin, Germany
| | - Darren L Clark
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, Alberta, Canada.,Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada.,Department of Psychiatry, University of Calgary, Calgary, Alberta, Canada
| | - G Bruce Pike
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Department of Radiology, University of Calgary, Calgary, Alberta, Canada.,Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | - Rajamannar Ramasubbu
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, Alberta, Canada.,Department of Psychiatry, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
77
|
Song X, García-Saldivar P, Kindred N, Wang Y, Merchant H, Meguerditchian A, Yang Y, Stein EA, Bradberry CW, Ben Hamed S, Jedema HP, Poirier C. Strengths and challenges of longitudinal non-human primate neuroimaging. Neuroimage 2021; 236:118009. [PMID: 33794361 PMCID: PMC8270888 DOI: 10.1016/j.neuroimage.2021.118009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 03/16/2021] [Accepted: 03/23/2021] [Indexed: 01/20/2023] Open
Abstract
Longitudinal non-human primate neuroimaging has the potential to greatly enhance our understanding of primate brain structure and function. Here we describe its specific strengths, compared to both cross-sectional non-human primate neuroimaging and longitudinal human neuroimaging, but also its associated challenges. We elaborate on factors guiding the use of different analytical tools, subject-specific versus age-specific templates for analyses, and issues related to statistical power.
Collapse
Affiliation(s)
- Xiaowei Song
- Preclinical Pharmacology Section, Intramural Research Program, NIDA, NIH, Baltimore, MD 21224, USA
| | - Pamela García-Saldivar
- Instituto de Neurobiología, UNAM, Campus Juriquilla. Boulevard Juriquilla No. 3001 Querétaro, Qro. 76230, México
| | - Nathan Kindred
- Biosciences Institute & Centre for Behaviour and Evolution, Faculty of Medical Sciences, Newcastle University, United Kingdom
| | - Yujiang Wang
- CNNP Lab (www.cnnp-lab.com), Interdisciplinary Complex Systems Group, School of Computing, Newcastle University, United Kingdom
| | - Hugo Merchant
- Instituto de Neurobiología, UNAM, Campus Juriquilla. Boulevard Juriquilla No. 3001 Querétaro, Qro. 76230, México
| | - Adrien Meguerditchian
- Laboratoire de Psychologie Cognitive, UMR7290, Université Aix-Marseille/CNRS, Institut Language, Communication and the Brain 13331 Marseille, France
| | - Yihong Yang
- Neuroimaging Research Branch, Intramural Research Program, NIDA, NIH, Baltimore, MD 21224, USA
| | - Elliot A Stein
- Neuroimaging Research Branch, Intramural Research Program, NIDA, NIH, Baltimore, MD 21224, USA
| | - Charles W Bradberry
- Preclinical Pharmacology Section, Intramural Research Program, NIDA, NIH, Baltimore, MD 21224, USA
| | - Suliann Ben Hamed
- Institut des Sciences Cognitives Marc Jeannerod, UMR 5229, Université de Lyon - CNRS, France
| | - Hank P Jedema
- Preclinical Pharmacology Section, Intramural Research Program, NIDA, NIH, Baltimore, MD 21224, USA.
| | - Colline Poirier
- Biosciences Institute & Centre for Behaviour and Evolution, Faculty of Medical Sciences, Newcastle University, United Kingdom.
| |
Collapse
|
78
|
Cellier D, Riddle J, Petersen I, Hwang K. The development of theta and alpha neural oscillations from ages 3 to 24 years. Dev Cogn Neurosci 2021; 50:100969. [PMID: 34174512 PMCID: PMC8249779 DOI: 10.1016/j.dcn.2021.100969] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 05/14/2021] [Accepted: 05/29/2021] [Indexed: 10/27/2022] Open
Abstract
Intrinsic, unconstrained neural activity exhibits rich spatial, temporal, and spectral organization that undergoes continuous refinement from childhood through adolescence. The goal of this study was to investigate the development of theta (4-8 Hertz) and alpha (8-12 Hertz) oscillations from early childhood to adulthood (years 3-24), as these oscillations play a fundamental role in cognitive function. We analyzed eyes-open, resting-state EEG data from 96 participants to estimate genuine oscillations separately from the aperiodic (1/f) signal. We examined age-related differences in the aperiodic signal (slope and offset), as well as the peak frequency and power of the dominant posterior oscillation. For the aperiodic signal, we found that both the aperiodic slope and offset decreased with age. For the dominant oscillation, we found that peak frequency, but not power, increased with age. Critically, early childhood (ages 3-7) was characterized by a dominance of theta oscillations in posterior electrodes, whereas peak frequency of the dominant oscillation in the alpha range increased between ages 7 and 24. Furthermore, theta oscillations displayed a topographical transition from dominance in posterior electrodes in early childhood to anterior electrodes in adulthood. Our results provide a quantitative description of the development of theta and alpha oscillations.
Collapse
Affiliation(s)
- Dillan Cellier
- University of Iowa, Department of Psychological and Brain Sciences, United States; University of Iowa, Iowa Neuroscience Institute, United States.
| | - Justin Riddle
- University of North Carolina, Chapel Hill, Department of Psychiatry, United States
| | - Isaac Petersen
- University of Iowa, Department of Psychological and Brain Sciences, United States; University of Iowa, Iowa Neuroscience Institute, United States
| | - Kai Hwang
- University of Iowa, Department of Psychological and Brain Sciences, United States; University of Iowa, Iowa Neuroscience Institute, United States
| |
Collapse
|
79
|
Chopra S, Fornito A, Francey SM, O'Donoghue B, Cropley V, Nelson B, Graham J, Baldwin L, Tahtalian S, Yuen HP, Allott K, Alvarez-Jimenez M, Harrigan S, Sabaroedin K, Pantelis C, Wood SJ, McGorry P. Differentiating the effect of antipsychotic medication and illness on brain volume reductions in first-episode psychosis: A Longitudinal, Randomised, Triple-blind, Placebo-controlled MRI Study. Neuropsychopharmacology 2021; 46:1494-1501. [PMID: 33637835 PMCID: PMC8209146 DOI: 10.1038/s41386-021-00980-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 01/17/2021] [Accepted: 01/20/2021] [Indexed: 01/31/2023]
Abstract
Changes in brain volume are a common finding in Magnetic Resonance Imaging (MRI) studies of people with psychosis and numerous longitudinal studies suggest that volume deficits progress with illness duration. However, a major unresolved question concerns whether these changes are driven by the underlying illness or represent iatrogenic effects of antipsychotic medication. In this study, 62 antipsychotic-naïve patients with first-episode psychosis (FEP) received either a second-generation antipsychotic (risperidone or paliperidone) or a placebo pill over a treatment period of 6 months. Both FEP groups received intensive psychosocial therapy. A healthy control group (n = 27) was also recruited. Structural MRI scans were obtained at baseline, 3 months and 12 months. Our primary aim was to differentiate illness-related brain volume changes from medication-related changes within the first 3 months of treatment. We secondarily investigated long-term effects at the 12-month timepoint. From baseline to 3 months, we observed a significant group x time interaction in the pallidum (p < 0.05 FWE-corrected), such that patients receiving antipsychotic medication showed increased volume, patients on placebo showed decreased volume, and healthy controls showed no change. Across the entire patient sample, a greater increase in pallidal grey matter volume over 3 months was associated with a greater reduction in symptom severity. Our findings indicate that psychotic illness and antipsychotic exposure exert distinct and spatially distributed effects on brain volume. Our results align with prior work in suggesting that the therapeutic efficacy of antipsychotic medications may be primarily mediated through their effects on the basal ganglia.
Collapse
Affiliation(s)
- Sidhant Chopra
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, VIC, Australia.
- Monash Biomedical Imaging, Monash University, Clayton, VIC, Australia.
| | - Alex Fornito
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, VIC, Australia
- Monash Biomedical Imaging, Monash University, Clayton, VIC, Australia
| | - Shona M Francey
- Orygen, Parkville, VIC, Australia
- Centre for Youth Mental Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Brian O'Donoghue
- Orygen, Parkville, VIC, Australia
- Centre for Youth Mental Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Vanessa Cropley
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne & Melbourne Health, Melbourne, VIC, Australia
| | - Barnaby Nelson
- Orygen, Parkville, VIC, Australia
- Centre for Youth Mental Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Jessica Graham
- Orygen, Parkville, VIC, Australia
- Centre for Youth Mental Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Lara Baldwin
- Orygen, Parkville, VIC, Australia
- Centre for Youth Mental Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Steven Tahtalian
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne & Melbourne Health, Melbourne, VIC, Australia
| | - Hok Pan Yuen
- Orygen, Parkville, VIC, Australia
- Centre for Youth Mental Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Kelly Allott
- Orygen, Parkville, VIC, Australia
- Centre for Youth Mental Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Mario Alvarez-Jimenez
- Orygen, Parkville, VIC, Australia
- Centre for Youth Mental Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Susy Harrigan
- Department of Social Work, Monash University, Clayton, VIC, Australia
- Melbourne School of Population and Global Health, University of Melbourne, Parkville, VIC, Australia
| | - Kristina Sabaroedin
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, VIC, Australia
- Monash Biomedical Imaging, Monash University, Clayton, VIC, Australia
| | - Christos Pantelis
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne & Melbourne Health, Melbourne, VIC, Australia
- The Florey Institute for Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, Australia
| | - Stephen J Wood
- Orygen, Parkville, VIC, Australia
- Centre for Youth Mental Health, The University of Melbourne, Melbourne, VIC, Australia
- School of Psychology, University Birmingham, Edgbaston, UK
| | - Patrick McGorry
- Orygen, Parkville, VIC, Australia
- Centre for Youth Mental Health, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
80
|
Park JY, Fiecas M. Permutation-based inference for spatially localized signals in longitudinal MRI data. Neuroimage 2021; 239:118312. [PMID: 34182099 DOI: 10.1016/j.neuroimage.2021.118312] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 05/11/2021] [Accepted: 06/23/2021] [Indexed: 10/21/2022] Open
Abstract
Alzheimer's disease is a neurodegenerative disease in which the degree of cortical atrophy in specific structures of the brain serves as a useful imaging biomarker. Recent approaches using linear mixed effects (LME) models in longitudinal neuroimaging have been powerful and flexible in investigating the temporal trajectories of cortical thickness. However, massive-univariate analysis, a simplified approach that obtains a summary statistic (e.g., a p-value) for every vertex along the cortex, is insufficient to model cortical atrophy because it does not account for spatial similarities of the signals in neighboring locations. In this article, we develop a permutation-based inference procedure to detect spatial clusters of vertices showing statistically significant differences in the rates of cortical atrophy. The proposed method, called SpLoc, uses spatial information to combine the signals adaptively across neighboring vertices, yielding high statistical power while controlling family-wise error rate (FWER) accurately. When we reject the global null hypothesis, we use a cluster selection algorithm to detect the spatial clusters of significant vertices. We validate our method using simulation studies and apply it to the Alzheimer's Disease Neuroimaging Initiative (ADNI) data to show its superior performance over existing methods. An R package for implementing SpLoc is publicly available.
Collapse
Affiliation(s)
- Jun Young Park
- Department of Statistical Sciences and Department of Psychology, University of Toronto, Toronto, ON M5S, Canada.
| | - Mark Fiecas
- Division of Biostatistics, University of Minnesota School of Public Health, Minneapolis, MN 55455, U.S.A
| | | |
Collapse
|
81
|
The posterior cerebellum supports implicit learning of social belief sequences. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2021; 21:970-992. [PMID: 34100254 DOI: 10.3758/s13415-021-00910-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/25/2021] [Indexed: 11/08/2022]
Abstract
Recent studies have documented the involvement of the posterior cerebellar Crus (I & II) in social mentalizing, when sequences play a critical role. We investigated for the first time implicit learning of belief sequences. We created a novel task in which true and false beliefs of other persons were alternated in an adapted serial reaction time (SRT) paradigm (Belief SRT task). Participants observed two protagonists whose beliefs concerning reality were manipulated, depending on their orientation toward the scene (true belief: directly observing the situation) or away from it (false belief: knowing only the prior situation). Unbeknownst to the participants, a fixed sequence related to the two protagonists' belief orientations was repeated throughout the task (Training phase); and to test the acquisition of this fixed sequence, it was occasionally interrupted by random sequences (Test phase). As a nonsocial control, the two protagonists and their orientations were replaced by two different shapes of different colors respectively (Control SRT task). As predicted, the posterior cerebellar Crus I & II were activated during the Belief SRT task and not in the Control SRT task. The Belief SRT task revealed that Crus I was activated during the initial learning of the fixed sequence (Training phase) and when this learned sequence was interrupted by random sequences (Test phase). Moreover, Crus II was activated during occasional reappearance of the learned sequence in the context of sequence violations (Test phase). Our results demonstrate the contribution of the posterior cerebellar Crus during implicit learning and predicting new belief sequences.
Collapse
|
82
|
Favre P, Kanske P, Engen H, Singer T. Decreased emotional reactivity after 3-month socio-affective but not attention- or meta-cognitive-based mental training: A randomized, controlled, longitudinal fMRI study. Neuroimage 2021; 237:118132. [PMID: 33951510 DOI: 10.1016/j.neuroimage.2021.118132] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 03/22/2021] [Accepted: 04/26/2021] [Indexed: 12/18/2022] Open
Abstract
Meditation-based mental training interventions show physical and mental health benefits. However, it remains unclear how different types of mental practice affect emotion processing at both the neuronal and the behavioural level. In the context of the ReSource project, 332 participants underwent an fMRI scan while performing an emotion anticipation task before and after three 3-month training modules cultivating 1) attention and interoceptive awareness (Presence); 2) socio-affective skills, such as compassion (Affect); 3) socio-cognitive skills, such as theory of mind (Perspective). Only the Affect module led to a significant reduction of experienced negative affect when processing images depicting human suffering. In addition, after the Affect module, participants showed significant increased activation in the right supramarginal gyrus when confronted with negative stimuli. We conclude that socio-affective, but not attention- or meta-cognitive based mental training is specifically effective to improve emotion regulation capabilities when facing adversity.
Collapse
Affiliation(s)
- Pauline Favre
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| | - Philipp Kanske
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Haakon Engen
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Tania Singer
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| |
Collapse
|
83
|
Kim-Spoon J, Herd T, Brieant A, Elder J, Lee J, Deater-Deckard K, King-Casas B. A 4-year longitudinal neuroimaging study of cognitive control using latent growth modeling: developmental changes and brain-behavior associations. Neuroimage 2021; 237:118134. [PMID: 33951508 PMCID: PMC8316755 DOI: 10.1016/j.neuroimage.2021.118134] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 04/15/2021] [Accepted: 04/22/2021] [Indexed: 11/16/2022] Open
Abstract
Despite theoretical models suggesting developmental changes in neural substrates of cognitive control in adolescence, empirical research has rarely examined intraindividual changes in cognitive control-related brain activation using multi-wave multivariate longitudinal data. We used longitudinal repeated measures of brain activation and behavioral performance during the multi-source interference task (MSIT) from 167 adolescents (53% male) who were assessed annually over four years from ages 13 to 17 years. We applied latent growth modeling to delineate the pattern of brain activation changes over time and to examine longitudinal associations between brain activation and behavioral performance. We identified brain regions that showed differential change patterns: (1) the fronto-parietal regions that involved bilateral insula, bilateral middle frontal gyrus, left pre-supplementary motor area, left inferior parietal lobule, and right precuneus; and (2) the rostral anterior cingulate cortex (rACC) region. Longitudinal confirmatory factor analyses of the fronto-parietal regions revealed strong measurement invariance across time implying that multivariate functional magnetic resonance imaging data during cognitive control can be measured reliably over time. Latent basis growth models indicated that fronto-parietal activation decreased over time, whereas rACC activation increased over time. In addition, behavioral performance data, age-related improvement was indicated by a decreasing trajectory of intraindividual variability in response time across four years. Testing longitudinal brain-behavior associations using multivariate growth models revealed that better behavioral cognitive control was associated with lower fronto-parietal activation, but the change in behavioral performance was not related to the change in brain activation. The current findings suggest that reduced effects of cognitive interference indicated by fronto-parietal recruitment may be a marker of a maturing brain that underlies better cognitive control performance during adolescence.
Collapse
Affiliation(s)
| | - Toria Herd
- Department of Psychology, Virginia Tech, Blacksburg, VA 24061, USA
| | - Alexis Brieant
- Department of Psychology, Yale University, New Haven, CT 06520, USA
| | - Jacob Elder
- Department of Psychology, University of California, Riverside, CA 92521, USA
| | - Jacob Lee
- Fralin Biomedical Research Institute at VTC, Roanoke, VA 24016, USA
| | - Kirby Deater-Deckard
- Department of Psychological and Brain Sciences, University of Massachusetts, Amherst, MA 01003, USA
| | - Brooks King-Casas
- Department of Psychology, Virginia Tech, Blacksburg, VA 24061, USA; Fralin Biomedical Research Institute at VTC, Roanoke, VA 24016, USA
| |
Collapse
|
84
|
Burrowes SAB, Rhodes CS, Meeker TJ, Greenspan JD, Gullapalli RP, Seminowicz DA. Decreased grey matter volume in mTBI patients with post-traumatic headache compared to headache-free mTBI patients and healthy controls: a longitudinal MRI study. Brain Imaging Behav 2021; 14:1651-1659. [PMID: 30980274 DOI: 10.1007/s11682-019-00095-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Traumatic brain injury (TBI) occurs in 1.7 million people annually and many patients go on to develop persistent disorders including post-traumatic headache (PTH). PTH is considered chronic if it continues past 3 months. In this study we aimed to identify changes in cerebral grey matter volume (GMV) associated with PTH in mild TBI patients. 50 mTBI patients (31 Non-PTH; 19 PTH) underwent MRI scans: within 10 days post-injury, 1 month, 6 months and 18 months. PTH was assessed at visit 4 by a post-TBI headache questionnaire. Healthy controls (n = 21) were scanned twice 6 months apart. Compared to non-PTH, PTH patients had decreased GMV across two large clusters described as the right anterior-parietal (p = 0.012) and left temporal-opercular (p = 0.027). Compared to healthy controls non-PTH patients had decreased GMV in the left thalamus (p = 0.047); PTH patients had decreased GMV in several extensive clusters: left temporal-opercular (p = 0.003), temporal-parietal (p = 0.041), superior frontal gyrus (p = 0.008) and right middle frontal/superior frontal gyrus (0.004) and anterior-parietal (p = 0.003). Differences between PTH and non-PTH patients were most striking at early time points. These early changes may be associated with an increased risk of PTH. Patients with these changes should be monitored for chronic PTH.
Collapse
Affiliation(s)
- Shana A B Burrowes
- Department of Epidemiology and Public Health, School of Medicine, University of Maryland Baltimore, Baltimore, MD, USA.,Department of Neural and Pain Sciences, School of Dentistry, University of Maryland Baltimore, 650 W. Baltimore Street, 8 South, Baltimore, MD, 21201, USA.,Center to Advance Chronic Pain Research, University of Maryland Baltimore, Baltimore, MD, USA
| | - Chandler Sours Rhodes
- Diagnostic Radiology and Nuclear Medicine, School of Medicine, University of Maryland Baltimore, Baltimore, MD, USA
| | - Timothy J Meeker
- Department of Neural and Pain Sciences, School of Dentistry, University of Maryland Baltimore, 650 W. Baltimore Street, 8 South, Baltimore, MD, 21201, USA
| | - Joel D Greenspan
- Department of Neural and Pain Sciences, School of Dentistry, University of Maryland Baltimore, 650 W. Baltimore Street, 8 South, Baltimore, MD, 21201, USA.,Center to Advance Chronic Pain Research, University of Maryland Baltimore, Baltimore, MD, USA
| | - Rao P Gullapalli
- Diagnostic Radiology and Nuclear Medicine, School of Medicine, University of Maryland Baltimore, Baltimore, MD, USA
| | - David A Seminowicz
- Department of Neural and Pain Sciences, School of Dentistry, University of Maryland Baltimore, 650 W. Baltimore Street, 8 South, Baltimore, MD, 21201, USA. .,Center to Advance Chronic Pain Research, University of Maryland Baltimore, Baltimore, MD, USA.
| |
Collapse
|
85
|
Chakrabarti S, Hamlet LC, Kaminsky J, Subramanian SV. Association of Human Mobility Restrictions and Race/Ethnicity-Based, Sex-Based, and Income-Based Factors With Inequities in Well-being During the COVID-19 Pandemic in the United States. JAMA Netw Open 2021; 4:e217373. [PMID: 33825836 PMCID: PMC8027913 DOI: 10.1001/jamanetworkopen.2021.7373] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 03/03/2021] [Indexed: 01/04/2023] Open
Abstract
Importance An accurate understanding of the distributional implications of public health policies is critical for ensuring equitable responses to the COVID-19 pandemic and future public health threats. Objective To identify and quantify the association of race/ethnicity-based, sex-based, and income-based inequities of state-specific lockdowns with 6 well-being dimensions in the United States. Design, Setting, and Participants This pooled, repeated cross-sectional study used data from 14 187 762 households who participated in phase 1 of the population-representative US 2020 Household Pulse Survey (HPS). Households were invited to participate by email, text message, and/or telephone as many as 3 times. Data were collected via an online questionnaire from April 23 to July 21, 2020, and participants lived in all 50 US states and the District of Columbia. Exposures Indicators of race/ethnicity, sex, and income and their intersections. Main Outcomes and Measures Unemployment; food insufficiency; mental health problems; no medical care received for health problems; default on last month's rent or mortgage; and class cancellations with no distance learning. Race/ethnicity, sex, income, and their intersections were used to measure distributional implications across historically marginalized populations; state-specific, time-varying population mobility was used to measure lockdown intensity. Logistic regression models with pooled repeated cross-sections were used to estimate risk of dichotomous outcomes by social group, adjusted for confounding variables. Results The 1 088 314 respondents (561 570 [51.6%; 95% CI, 51.4%-51.9%] women) were aged 18 to 88 years (mean [SD], 51.55 [15.74] years), and 826 039 (62.8%; 95% CI, 62.5%-63.1%) were non-Hispanic White individuals; 86 958 (12.5%; 95% CI, 12.4%-12.7%), African American individuals; 86 062 (15.2%; 95% CI, 15.0%-15.4%), Hispanic individuals; and 50 227 (5.6%; 95% CI, 5.5%-5.7%), Asian individuals. On average, every 10% reduction in mobility was associated with higher odds of unemployment (odds ratio [OR], 1.3; 95% CI, 1.2-1.4), food insufficiency (OR, 1.1; 95% CI, 1.1-1.2), mental health problems (OR, 1.04; 95% CI, 1.0-1.1), and class cancellations (OR, 1.1; 95% CI, 1.1-1.2). Across most dimensions compared with White men with high income, African American individuals with low income experienced the highest risks (eg, food insufficiency, men: OR, 3.3; 95% CI, 2.8-3.7; mental health problems, women: OR, 1.9; 95% CI, 1.8-2.1; medical care inaccessibility, women: OR, 1.7; 95% CI, 1.6-1.9; unemployment, men: OR, 2.8; 95% CI, 2.5-3.2; rent/mortgage defaults, men: OR, 5.7; 95% CI, 4.7-7.1). Other high-risk groups were Hispanic individuals (eg, unemployment, Hispanic men with low income: OR, 2.9; 95% CI, 2.5-3.4) and women with low income across all races/ethnicities (eg, medical care inaccessibility, non-Hispanic White women: OR, 1.8; 95% CI, 1.7-2.0). Conclusions and Relevance In this cross-sectional study, African American and Hispanic individuals, women, and households with low income had higher odds of experiencing adverse outcomes associated with the COVID-19 pandemic and stay-at-home orders. Blanket public health policies ignoring existing distributions of risk to well-being may be associated with increased race/ethnicity-based, sex-based, and income-based inequities.
Collapse
Affiliation(s)
- Suman Chakrabarti
- Department of Global Health, University of Washington Schools of Public Health and Medicine, Seattle
| | - Leigh C. Hamlet
- Department of Civil and Environmental Engineering, University of Washington College of Engineering, Seattle
| | - Jessica Kaminsky
- Department of Civil and Environmental Engineering, University of Washington College of Engineering, Seattle
| | - S. V. Subramanian
- Harvard Center for Population and Development Studies, Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| |
Collapse
|
86
|
Kim-Spoon J, Herd T, Brieant A, Peviani K, Deater-Deckard K, Lauharatanahirun N, Lee J, King-Casas B. Maltreatment and brain development: The effects of abuse and neglect on longitudinal trajectories of neural activation during risk processing and cognitive control. Dev Cogn Neurosci 2021; 48:100939. [PMID: 33706181 PMCID: PMC7960935 DOI: 10.1016/j.dcn.2021.100939] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 02/18/2021] [Accepted: 02/27/2021] [Indexed: 11/16/2022] Open
Abstract
The profound effects of child maltreatment on brain functioning have been documented. Yet, little is known about whether distinct maltreatment experiences are differentially related to underlying neural processes of risky decision making: valuation and control. Using conditional growth curve modeling, we compared a cumulative approach versus a dimensional approach (relative effects of abuse and neglect) to examine the link between child maltreatment and brain development. The sample included 167 adolescents (13-14 years at Time 1, 53 % male), assessed annually four times. Risk processing was assessed by blood-oxygen-level-dependent responses (BOLD) during a lottery choice task, and cognitive control by BOLD responses during the Multi-Source Interference Task. Cumulative maltreatment effects on insula and dorsolateral anterior cingulate cortex (dACC) activation during risk processing were not significant. However, neglect (but not abuse) was associated with slower developmental increases in insula and dACC activation. In contrast, cumulative maltreatment effects on fronto-parietal activation during cognitive control were significant, and abuse (but not neglect) was associated with steeper developmental decreases in fronto-parietal activation. The results suggest neglect effects on detrimental neurodevelopment of the valuation system and abuse effects on accelerated neurodevelopment of the control system, highlighting differential effects of distinct neglect versus abuse adverse experiences on neurodevelopment.
Collapse
Affiliation(s)
| | - Toria Herd
- Department of Psychology, Virginia Tech, Blacksburg, VA, United States
| | - Alexis Brieant
- Department of Psychology, Virginia Tech, Blacksburg, VA, United States
| | - Kristin Peviani
- Department of Psychology, Virginia Tech, Blacksburg, VA, United States
| | - Kirby Deater-Deckard
- Department of Psychological and Brain Sciences, University of Massachusetts, Amherst, MA, United States
| | - Nina Lauharatanahirun
- Department of Biomedical Engineering, Department of Biobehavioral Health, Pennsylvania State University, State College, PA, United States; Fralin Biomedical Research Institute at VTC, Roanoke, VA, United States
| | - Jacob Lee
- Fralin Biomedical Research Institute at VTC, Roanoke, VA, United States
| | - Brooks King-Casas
- Department of Psychology, Virginia Tech, Blacksburg, VA, United States; Fralin Biomedical Research Institute at VTC, Roanoke, VA, United States
| |
Collapse
|
87
|
Vandekar SN, Stephens J. Improving the replicability of neuroimaging findings by thresholding effect sizes instead of p-values. Hum Brain Mapp 2021; 42:2393-2398. [PMID: 33660923 PMCID: PMC8090771 DOI: 10.1002/hbm.25374] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/26/2021] [Accepted: 02/04/2021] [Indexed: 12/22/2022] Open
Abstract
The classical approach for testing statistical images using spatial extent inference (SEI) thresholds the statistical image based on the p‐value. This approach has an unfortunate consequence on the replicability of neuroimaging findings because the targeted brain regions are affected by the sample size—larger studies have more power to detect smaller effects. Here, we use simulations based on the preprocessed Autism Brain Imaging Data Exchange (ABIDE) to show that thresholding statistical images by effect sizes has more consistent estimates of activated regions across studies than thresholding by p‐values. Using a constant effect size threshold means that the p‐value threshold naturally scales with the sample size to ensure that the target set is similar across repetitions of the study that use different sample sizes. As a consequence of thresholding by the effect size, the type 1 and type 2 error rates go to zero as the sample size gets larger. We use a newly proposed robust effect size index that is defined for an arbitrary statistical image so that effect size thresholding can be used regardless of the test statistic or model.
Collapse
Affiliation(s)
- Simon N Vandekar
- Department of Biostatistics, Vanderbilt University, Nashville, Tennessee, USA.,Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jeremy Stephens
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
88
|
Styliadis C, Leung R, Özcan S, Moulton EA, Pang E, Taylor MJ, Papadelis C. Atypical spatiotemporal activation of cerebellar lobules during emotional face processing in adolescents with autism. Hum Brain Mapp 2021; 42:2099-2114. [PMID: 33528852 PMCID: PMC8046060 DOI: 10.1002/hbm.25349] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 12/07/2020] [Accepted: 01/09/2021] [Indexed: 01/17/2023] Open
Abstract
Autism spectrum disorder (ASD) is characterized by social deficits and atypical facial processing of emotional expressions. The underlying neuropathology of these abnormalities is still unclear. Recent studies implicate cerebellum in emotional processing; other studies show cerebellar abnormalities in ASD. Here, we elucidate the spatiotemporal activation of cerebellar lobules in ASD during emotional processing of happy and angry faces in adolescents with ASD and typically developing (TD) controls. Using magnetoencephalography, we calculated dynamic statistical parametric maps across a period of 500 ms after emotional stimuli onset and determined differences between group activity to happy and angry emotions. Following happy face presentation, adolescents with ASD exhibited only left‐hemispheric cerebellar activation in a cluster extending from lobule VI to lobule V (compared to TD controls). Following angry face presentation, adolescents with ASD exhibited only midline cerebellar activation (posterior IX vermis). Our findings indicate an early (125–175 ms) overactivation in cerebellar activity only for happy faces and a later overactivation for both happy (250–450 ms) and angry (250–350 ms) faces in adolescents with ASD. The prioritized hemispheric activity (happy faces) could reflect the promotion of a more flexible and adaptive social behavior, while the latter midline activity (angry faces) may guide conforming behavior.
Collapse
Affiliation(s)
- Charis Styliadis
- Laboratory of Medical Physics, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Selin Özcan
- Laboratory of Children's Brain Dynamics, Division of Newborn Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Eric A Moulton
- Center for Pain and the Brain, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Elizabeth Pang
- University of Toronto, Toronto, Canada.,Division of Neurology, Hospital for Sick Children, Toronto, Ontario, Canada.,Neurosciences and Mental Health Program, Research Institute, Hospital for Sick Children, Toronto, Canada
| | - Margot J Taylor
- University of Toronto, Toronto, Canada.,Neurosciences and Mental Health Program, Research Institute, Hospital for Sick Children, Toronto, Canada.,Diagnostic Imaging, Hospital for Sick Children, Toronto, Canada.,Autism Research Unit, Hospital for Sick Children, Toronto, Canada
| | - Christos Papadelis
- Jane and John Justin Neurosciences Center, Cook Children's Health Care System, Fort Worth, Texas, USA.,Department of Bioengineering, University of Texas at Arlington, Arlington, Texas, USA.,Department of Pediatrics, TCU and UNTHSC School of Medicine, Fort Worth, Texas, USA
| |
Collapse
|
89
|
van Duinkerken E, Bernardes G, van Bloemendaal L, Veltman DJ, Barkhof F, Mograbi DC, Gerdes VEA, Deacon CF, Holst JJ, Drent ML, Diamant M, ten Kulve J, Ijzerman RG. Cerebral effects of glucagon-like peptide-1 receptor blockade before and after Roux-en-Y gastric bypass surgery in obese women: A proof-of-concept resting-state functional MRI study. Diabetes Obes Metab 2021; 23:415-424. [PMID: 33084088 PMCID: PMC7821255 DOI: 10.1111/dom.14233] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 09/27/2020] [Accepted: 10/18/2020] [Indexed: 12/31/2022]
Abstract
AIM To assess the effects of Roux-en-Y gastric bypass surgery (RYGB)-related changes in glucagon-like peptide-1 (GLP-1) on cerebral resting-state functioning in obese women. MATERIALS AND METHODS In nine obese females aged 40-54 years in the fasted state, we studied the effects of RYGB and GLP-1 on five a priori selected networks implicated in food- and reward-related processes as well as environment monitoring (default mode, right frontoparietal, basal ganglia, insula/anterior cingulate and anterior cingulate/orbitofrontal networks). RESULTS Before surgery, GLP-1 receptor blockade (using exendin9-39) was associated with increased right caudate nucleus (basal ganglia network) and decreased right middle frontal (right frontoparietal network) connectivity compared with placebo. RYGB resulted in decreased right orbitofrontal (insula/anterior cingulate network) connectivity. In the default mode network, after surgery, GLP-1 receptor blockade had a larger effect on connectivity in this region than GLP-1 receptor blockade before RYGB (all PFWE < .05). Results remained similar after correction for changes in body weight. Default mode and right frontoparietal network connectivity changes were related to changes in body mass index and food scores after RYGB. CONCLUSIONS These findings suggest GLP-1 involvement in resting-state networks related to food and reward processes and monitoring of the internal and external environment, pointing to a potential role for GLP-1-induced changes in resting-state connectivity in RYGB-mediated weight loss and appetite control.
Collapse
Affiliation(s)
- Eelco van Duinkerken
- Department of Medical PsychologyAmsterdam University Medical Centers, Vrije UniversiteitAmsterdamthe Netherlands
- Amsterdam Diabetes Center/Department of Internal MedicineAmsterdam University Medical Centers, Vrije UniversiteitAmsterdamthe Netherlands
- Department of NeurologyHospital Universitário Gaffrée e Guinle, Universidade Federal do Estado do Rio de JaneiroRio de JaneiroBrazil
- Center for EpilepsyInstituto Estadual do Cérebro Paulo NiemeyerRio de JaneiroBrazil
| | - Gabriel Bernardes
- Departament of PsychologyPontifícia Universidade Católica do Rio de JaneiroRio de JaneiroBrazil
| | - Liselotte van Bloemendaal
- Amsterdam Diabetes Center/Department of Internal MedicineAmsterdam University Medical Centers, Vrije UniversiteitAmsterdamthe Netherlands
| | - Dick J. Veltman
- Department of PsychiatryAmsterdam University Medical Centers, Vrije UniversiteitAmsterdamthe Netherlands
| | - Frederik Barkhof
- Department of Radiology and Nuclear MedicineAmsterdam University Medical Centers, Vrije UniversiteitAmsterdamthe Netherlands
- Institute of Neurology and Healthcare EngineeringUniversity College LondonLondonUK
| | - Daniel C. Mograbi
- Departament of PsychologyPontifícia Universidade Católica do Rio de JaneiroRio de JaneiroBrazil
- Institute of PsychiatryKing's College LondonLondonUK
| | | | - Carolyn F. Deacon
- Novo Nordisk Foundation Center for Basic Metabolic Research and Department of Biomedical Sciences, Panum InstituteUniversity of CopenhagenCopenhagenDenmark
| | - Jens J. Holst
- Novo Nordisk Foundation Center for Basic Metabolic Research and Department of Biomedical Sciences, Panum InstituteUniversity of CopenhagenCopenhagenDenmark
| | - Madeleine L. Drent
- Amsterdam Diabetes Center/Department of Internal MedicineAmsterdam University Medical Centers, Vrije UniversiteitAmsterdamthe Netherlands
- Section of Clinical Neuropsychology, Department of Clinical, Neuro‐ & Developmental PsychologyFaculty of Behavioral and Movement Sciences, Vrije UniversiteitAmsterdamthe Netherlands
| | - Michaela Diamant
- Amsterdam Diabetes Center/Department of Internal MedicineAmsterdam University Medical Centers, Vrije UniversiteitAmsterdamthe Netherlands
| | - Jennifer ten Kulve
- Amsterdam Diabetes Center/Department of Internal MedicineAmsterdam University Medical Centers, Vrije UniversiteitAmsterdamthe Netherlands
| | - Richard G. Ijzerman
- Amsterdam Diabetes Center/Department of Internal MedicineAmsterdam University Medical Centers, Vrije UniversiteitAmsterdamthe Netherlands
| |
Collapse
|
90
|
Quidé Y, Zine A, Descriaud C, Saint-Martin P, Andersson F, El-Hage W. Aberrant intrinsic connectivity in women victims of sexual assault. Brain Imaging Behav 2021; 15:2356-2366. [PMID: 33469788 DOI: 10.1007/s11682-020-00431-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 06/16/2020] [Accepted: 12/17/2020] [Indexed: 01/08/2023]
Abstract
This study aims to determine if resting-state functional connectivity may represent a marker for the progression of posttraumatic stress disorder (PTSD) in women victims of sexual assault. Participants were 25 adult women recruited three weeks following exposure to sexual assault (T1) and 19 age-matched healthy, non trauma-exposed controls (HC). Among the victims, 10 participants met (PTSD) and 15 did not meet (trauma-exposed controls, TEC) DSM-IV criteria for PTSD six months post-trauma (T2). At both visits, patterns of intrinsic connectivity, a measure of network centrality at each voxel of the brain, were derived from resting-state functional magnetic resonance imaging. Compared to both the HC and TEC groups, victims who developed PTSD at T2 showed higher centrality in the right middle/superior occipital gyrus at T1, while reduced centrality of the posterior cingulate cortex (PCC)/precuneus at T1 was found for the TEC group, compared to the HC group only. There were no differences in intrinsic connectivity at T1 between the TEC and PTSD groups. There were no significant between-group differences in intrinsic connectivity at T2, and no significant group-by-time interaction. This study indicates that increased occipital centrality three weeks post-trauma exposure may represent a marker of the later development of PTSD. On the other hand, reduced centrality of the PCC/precuneus may represent a marker of resilience to trauma exposure.
Collapse
Affiliation(s)
- Yann Quidé
- School of Psychiatry, University of New South Wales (UNSW), Sydney, NSW, Australia. .,Neuroscience Research Australia, Randwick, NSW, Australia.
| | - Aïcha Zine
- UMR 1253 iBrain, Université de Tours, INSERM, Tours, France
| | - Céline Descriaud
- Centre d'Accueil des Victimes d'Agressions Sexuelles, Centre Hospitalier Régional d'Orléans, Orléans, France
| | | | | | - Wissam El-Hage
- UMR 1253 iBrain, Université de Tours, INSERM, Tours, France.,Centre de Psychotraumatologie CVL, CHRU de Tours, Tours, France.,CIC 1415, INSERM, Centre d'Investigation Clinique, CHRU de Tours, Tours, France
| |
Collapse
|
91
|
Mak E, Dounavi ME, Low A, Carter SF, McKiernan E, Williams GB, Jones PS, Carriere I, Muniz GT, Ritchie K, Ritchie C, Su L, O'Brien JT. Proximity to dementia onset and multi-modal neuroimaging changes: The prevent-dementia study. Neuroimage 2021; 229:117749. [PMID: 33454416 DOI: 10.1016/j.neuroimage.2021.117749] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 12/22/2020] [Accepted: 01/08/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND First-degree relatives of people with dementia (FH+) are at increased risk of developing Alzheimer's disease (AD). Here, we investigate "estimated years to onset of dementia" (EYO) as a surrogate marker of preclinical disease progression and assess its associations with multi-modal neuroimaging biomarkers. METHODS 89 FH+ participants in the PREVENT-Dementia study underwent longitudinal MR imaging over 2 years. EYO was calculated as the difference between the parental age of dementia diagnosis and the current age of the participant (mean EYO = 23.9 years). MPRAGE, ASL and DWI data were processed using Freesurfer, FSL-BASIL and DTI-TK. White matter lesion maps were segmented from FLAIR scans. The SPM Sandwich Estimator Toolbox was used to test for the main effects of EYO and interactions between EYO, Time, and APOE-ε4+. Threshold free cluster enhancement and family wise error rate correction (TFCE FWER) was performed on voxelwise statistical maps. RESULTS There were no significant effects of EYO on regional grey matter atrophy or white matter hyperintensities. However, a shorter EYO was associated with lower white matter Fractional Anisotropy and elevated Mean/Radial Diffusivity, particularly in the corpus callosum (TFCEFWERp < 0.05). The influence of EYO on white matter deficits were significantly stronger compared to that of normal ageing. APOE-ε4 carriers exhibited hyperperfusion with nearer proximity to estimated onset in temporo-parietal regions. There were no interactions between EYO and time, suggesting that EYO was not associated with accelerated imaging changes in this sample. CONCLUSIONS Amongst cognitively normal midlife adults with a family history of dementia, a shorter hypothetical proximity to dementia onset may be associated with incipient brain abnormalities, characterised by white matter disruptions and perfusion abnormalities, particularly amongst APOE-ε4 carriers. Our findings also confer biological validity to the construct of EYO as a potential stage marker of preclinical progression in the context of sporadic dementia. Further clinical follow-up of our longitudinal sample would provide critical validation of these findings.
Collapse
Affiliation(s)
- Elijah Mak
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0SP, UK.
| | - Maria-Eleni Dounavi
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0SP, UK
| | - Audrey Low
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0SP, UK
| | - Stephen F Carter
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0SP, UK
| | - Elizabeth McKiernan
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0SP, UK
| | - Guy B Williams
- Department of Clinical Neurosciences and Wolfson Brain Imaging Centre, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - P Simon Jones
- Department of Clinical Neurosciences and Wolfson Brain Imaging Centre, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Isabelle Carriere
- Centre for Dementia Prevention, University of Edinburgh, Edinburgh, UK
| | | | - Karen Ritchie
- Centre for Dementia Prevention, University of Edinburgh, Edinburgh, UK; INSERM and University of Montpellier, Montpellier, France
| | - Craig Ritchie
- Centre for Dementia Prevention, University of Edinburgh, Edinburgh, UK
| | - Li Su
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0SP, UK
| | - John T O'Brien
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0SP, UK
| |
Collapse
|
92
|
Paraskevopoulos E, Chalas N, Karagiorgis A, Karagianni M, Styliadis C, Papadelis G, Bamidis P. Aging Effects on the Neuroplastic Attributes of Multisensory Cortical Networks as Triggered by a Computerized Music Reading Training Intervention. Cereb Cortex 2021; 31:123-137. [PMID: 32794571 DOI: 10.1093/cercor/bhaa213] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/08/2020] [Accepted: 07/13/2020] [Indexed: 12/24/2022] Open
Abstract
The constant increase in the graying population is the result of a great expansion of life expectancy. A smaller expansion of healthy cognitive and brain functioning diminishes the gains achieved by longevity. Music training, as a special case of multisensory learning, may induce restorative neuroplasticity in older ages. The current study aimed to explore aging effects on the cortical network supporting multisensory cognition and to define aging effects on the network's neuroplastic attributes. A computer-based music reading protocol was developed and evaluated via electroencephalography measurements pre- and post-training on young and older adults. Results revealed that multisensory integration is performed via diverse strategies in the two groups: Older adults employ higher-order supramodal areas to a greater extent than lower level perceptual regions, in contrast to younger adults, indicating an age-related shift in the weight of each processing strategy. Restorative neuroplasticity was revealed in the left inferior frontal gyrus and right medial temporal gyrus, as a result of the training, while task-related reorganization of cortical connectivity was obstructed in the group of older adults, probably due to systemic maturation mechanisms. On the contrary, younger adults significantly increased functional connectivity among the regions supporting multisensory integration.
Collapse
Affiliation(s)
- Evangelos Paraskevopoulos
- School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Nikolas Chalas
- School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.,Institute for Biomagnetism and Biosignal Analysis, University of Münster, D-48149 Münster, Germany
| | - Alexandros Karagiorgis
- School of Music Studies, Faculty of Fine Arts, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Maria Karagianni
- School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Charis Styliadis
- School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Georgios Papadelis
- School of Music Studies, Faculty of Fine Arts, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Panagiotis Bamidis
- School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
93
|
Vaghi MM, Moutoussis M, Váša F, Kievit RA, Hauser TU, Vértes PE, Shahar N, Romero-Garcia R, Kitzbichler MG, Bullmore ET, Dolan RJ. Compulsivity is linked to reduced adolescent development of goal-directed control and frontostriatal functional connectivity. Proc Natl Acad Sci U S A 2020; 117:25911-25922. [PMID: 32989168 PMCID: PMC7568330 DOI: 10.1073/pnas.1922273117] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
A characteristic of adaptive behavior is its goal-directed nature. An ability to act in a goal-directed manner is progressively refined during development, but this refinement can be impacted by the emergence of psychiatric disorders. Disorders of compulsivity have been framed computationally as a deficit in model-based control, and have been linked also to abnormal frontostriatal connectivity. However, the developmental trajectory of model-based control, including an interplay between its maturation and an emergence of compulsivity, has not been characterized. Availing of a large sample of healthy adolescents (n = 569) aged 14 to 24 y, we show behaviorally that over the course of adolescence there is a within-person increase in model-based control, and this is more pronounced in younger participants. Using a bivariate latent change score model, we provide evidence that the presence of higher compulsivity traits is associated with an atypical profile of this developmental maturation in model-based control. Resting-state fMRI data from a subset of the behaviorally assessed subjects (n = 230) revealed that compulsivity is associated with a less pronounced change of within-subject developmental remodeling of functional connectivity, specifically between the striatum and a frontoparietal network. Thus, in an otherwise clinically healthy population sample, in early development, individual differences in compulsivity are linked to the developmental trajectory of model-based control and a remodeling of frontostriatal connectivity.
Collapse
Affiliation(s)
- Matilde M Vaghi
- Max Planck University College London Centre for Computational Psychiatry and Ageing Research, University College London, WC1 B5EH London, United Kingdom;
- Wellcome Centre for Human Neuroimaging, University College London, WC1N 3AR London, United Kingdom
| | - Michael Moutoussis
- Max Planck University College London Centre for Computational Psychiatry and Ageing Research, University College London, WC1 B5EH London, United Kingdom
- Wellcome Centre for Human Neuroimaging, University College London, WC1N 3AR London, United Kingdom
| | - František Váša
- Department of Psychiatry, University of Cambridge, CB2 2QQ Cambridge, United Kingdom
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, SE5 8AF London, United Kingdom
| | - Rogier A Kievit
- Max Planck University College London Centre for Computational Psychiatry and Ageing Research, University College London, WC1 B5EH London, United Kingdom
- Medical Research Council Cognition and Brain Sciences Unit, Cambridge, CB2 7EF Cambridge, United Kingdom
| | - Tobias U Hauser
- Max Planck University College London Centre for Computational Psychiatry and Ageing Research, University College London, WC1 B5EH London, United Kingdom
- Wellcome Centre for Human Neuroimaging, University College London, WC1N 3AR London, United Kingdom
| | - Petra E Vértes
- Department of Psychiatry, University of Cambridge, CB2 2QQ Cambridge, United Kingdom
- The Alan Turing Institute, NW1 2DB London, United Kingdom
- School of Mathematical Sciences, Queen Mary University of London, E1 4NS London, United Kingdom
| | - Nitzan Shahar
- Max Planck University College London Centre for Computational Psychiatry and Ageing Research, University College London, WC1 B5EH London, United Kingdom
- Wellcome Centre for Human Neuroimaging, University College London, WC1N 3AR London, United Kingdom
| | - Rafael Romero-Garcia
- Department of Psychiatry, University of Cambridge, CB2 2QQ Cambridge, United Kingdom
| | - Manfred G Kitzbichler
- Department of Psychiatry, University of Cambridge, CB2 2QQ Cambridge, United Kingdom
| | - Edward T Bullmore
- Department of Psychiatry, University of Cambridge, CB2 2QQ Cambridge, United Kingdom
| | - Raymond J Dolan
- Max Planck University College London Centre for Computational Psychiatry and Ageing Research, University College London, WC1 B5EH London, United Kingdom
- Wellcome Centre for Human Neuroimaging, University College London, WC1N 3AR London, United Kingdom
| |
Collapse
|
94
|
Abstract
Recent evidence suggests that gains in performance observed while humans learn a novel motor sequence occur during the quiet rest periods interleaved with practice (micro-offline gains, MOGs). This phenomenon is reminiscent of memory replay observed in the hippocampus during spatial learning in rodents. Whether the hippocampus is also involved in the production of MOGs remains currently unknown. Using a multimodal approach in humans, here we show that activity in the hippocampus and the precuneus increases during the quiet rest periods and predicts the level of MOGs before asymptotic performance is achieved. These functional changes were followed by rapid alterations in brain microstructure in the order of minutes, suggesting that the same network that reactivates during the quiet periods of training undergoes structural plasticity. Our work points to the involvement of the hippocampal system in the reactivation of procedural memories.
Collapse
|
95
|
Seminowicz DA, Burrowes SAB, Kearson A, Zhang J, Krimmel SR, Samawi L, Furman AJ, Keaser ML, Gould NF, Magyari T, White L, Goloubeva O, Goyal M, Peterlin BL, Haythornthwaite JA. Enhanced mindfulness-based stress reduction in episodic migraine: a randomized clinical trial with magnetic resonance imaging outcomes. Pain 2020; 161:1837-1846. [PMID: 32701843 PMCID: PMC7487005 DOI: 10.1097/j.pain.0000000000001860] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
We aimed to evaluate the efficacy of an enhanced mindfulness-based stress reduction (MBSR+) vs stress management for headache (SMH). We performed a randomized, assessor-blind, clinical trial of 98 adults with episodic migraine recruited at a single academic center comparing MBSR+ (n = 50) with SMH (n = 48). MBSR+ and SMH were delivered weekly by group for 8 weeks, then biweekly for another 8 weeks. The primary clinical outcome was reduction in headache days from baseline to 20 weeks. Magnetic resonance imaging (MRI) outcomes included activity of left dorsolateral prefrontal cortex (DLPFC) and cognitive task network during cognitive challenge, resting state connectivity of right dorsal anterior insula to DLPFC and cognitive task network, and gray matter volume of DLPFC, dorsal anterior insula, and anterior midcingulate. Secondary outcomes were headache-related disability, pain severity, response to treatment, migraine days, and MRI whole-brain analyses. Reduction in headache days from baseline to 20 weeks was greater for MBSR+ (7.8 [95% CI, 6.9-8.8] to 4.6 [95% CI, 3.7-5.6]) than for SMH (7.7 [95% CI 6.7-8.7] to 6.0 [95% CI, 4.9-7.0]) (P = 0.04). Fifty-two percent of the MBSR+ group showed a response to treatment (50% reduction in headache days) compared with 23% in the SMH group (P = 0.004). Reduction in headache-related disability was greater for MBSR+ (59.6 [95% CI, 57.9-61.3] to 54.6 [95% CI, 52.9-56.4]) than SMH (59.6 [95% CI, 57.7-61.5] to 57.5 [95% CI, 55.5-59.4]) (P = 0.02). There were no differences in clinical outcomes at 52 weeks or MRI outcomes at 20 weeks, although changes related to cognitive networks with MBSR+ were observed. Enhanced mindfulness-based stress reduction is an effective treatment option for episodic migraine.
Collapse
Affiliation(s)
- David A. Seminowicz
- Department of Neural and Pain Sciences, School of Dentistry, University of Maryland Baltimore, Baltimore, MD, USA 21201
- Center to Advance Chronic Pain Research, University of Maryland Baltimore, Baltimore, MD, USA 21201
| | - Shana AB Burrowes
- Department of Neural and Pain Sciences, School of Dentistry, University of Maryland Baltimore, Baltimore, MD, USA 21201
- Center to Advance Chronic Pain Research, University of Maryland Baltimore, Baltimore, MD, USA 21201
- Department of Epidemiology and Public Health, School of Medicine, University of Maryland Baltimore, Baltimore, MD, USA 21201
| | - Alexandra Kearson
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA 21224
| | - Jing Zhang
- Department of Neural and Pain Sciences, School of Dentistry, University of Maryland Baltimore, Baltimore, MD, USA 21201
- Center to Advance Chronic Pain Research, University of Maryland Baltimore, Baltimore, MD, USA 21201
| | - Samuel R Krimmel
- Department of Neural and Pain Sciences, School of Dentistry, University of Maryland Baltimore, Baltimore, MD, USA 21201
- Center to Advance Chronic Pain Research, University of Maryland Baltimore, Baltimore, MD, USA 21201
- Program in Neuroscience, School of Medicine, University of Maryland Baltimore, Baltimore, MD, USA 21201
| | - Luma Samawi
- Department of Neural and Pain Sciences, School of Dentistry, University of Maryland Baltimore, Baltimore, MD, USA 21201
- Center to Advance Chronic Pain Research, University of Maryland Baltimore, Baltimore, MD, USA 21201
| | - Andrew J Furman
- Department of Neural and Pain Sciences, School of Dentistry, University of Maryland Baltimore, Baltimore, MD, USA 21201
- Center to Advance Chronic Pain Research, University of Maryland Baltimore, Baltimore, MD, USA 21201
- Program in Neuroscience, School of Medicine, University of Maryland Baltimore, Baltimore, MD, USA 21201
| | - Michael L Keaser
- Department of Neural and Pain Sciences, School of Dentistry, University of Maryland Baltimore, Baltimore, MD, USA 21201
- Center to Advance Chronic Pain Research, University of Maryland Baltimore, Baltimore, MD, USA 21201
| | - Neda F. Gould
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA 21224
| | - Trish Magyari
- Private Mindfulness-based Psychotherapy Practice, 3511 N Calvert St, Baltimore, MD 21218
| | - Linda White
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA 21224
| | - Olga Goloubeva
- University of Maryland Greenebaum Comprehensive Cancer Center, University of Maryland Baltimore, Baltimore, MD, USA 21201
| | - Madhav Goyal
- Department of Medicine, Division of General Internal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD USA 21287
| | - B. Lee Peterlin
- Neuroscience Institute, Penn Medicine Lancaster General Health, Lancaster, PA, USA 17601
| | - Jennifer A. Haythornthwaite
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA 21224
| |
Collapse
|
96
|
Chow HM, Garnett EO, Li H, Etchell A, Sepulcre J, Drayna D, Chugani D, Chang SE. Linking Lysosomal Enzyme Targeting Genes and Energy Metabolism with Altered Gray Matter Volume in Children with Persistent Stuttering. NEUROBIOLOGY OF LANGUAGE (CAMBRIDGE, MASS.) 2020; 1:365-380. [PMID: 34041495 PMCID: PMC8138901 DOI: 10.1162/nol_a_00017] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 05/13/2020] [Indexed: 04/12/2023]
Abstract
Developmental stuttering is a childhood onset neurodevelopmental disorder with an unclear etiology. Subtle changes in brain structure and function are present in both children and adults who stutter. It is a highly heritable disorder, and 12-20% of stuttering cases may carry a mutation in one of four genes involved in intracellular trafficking. To better understand the relationship between genetics and neuroanatomical changes, we used gene expression data from the Allen Institute for Brain Science and voxel-based morphometry to investigate the spatial correspondence between gene expression patterns and differences in gray matter volume between children with persistent stuttering (n = 26, and 87 scans) and their fluent peers (n = 44, and 139 scans). We found that the expression patterns of two stuttering-related genes (GNPTG and NAGPA) from the Allen Institute data exhibited a strong positive spatial correlation with the magnitude of between-group gray matter volume differences. Additional gene set enrichment analyses revealed that genes whose expression was highly correlated with the gray matter volume differences were enriched for glycolysis and oxidative metabolism in mitochondria. Because our current study did not examine the participants' genomes, these results cannot establish the direct association between genetic mutations and gray matter volume differences in stuttering. However, our results support further study of the involvement of lysosomal enzyme targeting genes, as well as energy metabolism in stuttering. Future studies assessing variations of these genes in the participants' genomes may lead to increased understanding of the biological mechanisms of the observed spatial relationship between gene expression and gray matter volume.
Collapse
Affiliation(s)
- Ho Ming Chow
- Department of Communication Sciences and Disorders, University of Delaware, Newark, DE
- Katzin Diagnostic & Research PET/MRI Center, Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE
- Department of Psychiatry, University of Michigan, Ann Arbor, MI
- * Corresponding Author:
| | | | - Hua Li
- Katzin Diagnostic & Research PET/MRI Center, Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE
| | - Andrew Etchell
- Department of Psychiatry, University of Michigan, Ann Arbor, MI
| | - Jorge Sepulcre
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Dennis Drayna
- National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD
| | - Diane Chugani
- Department of Communication Sciences and Disorders, University of Delaware, Newark, DE
| | - Soo-Eun Chang
- Department of Psychiatry, University of Michigan, Ann Arbor, MI
- Cognitive Imaging Research Center, Department of Radiology, Michigan State University, East Lansing, MI
- Department of Communicative Sciences and Disorders, Michigan State University, East Lansing, MI
| |
Collapse
|
97
|
Klöbl M, Michenthaler P, Godbersen GM, Robinson S, Hahn A, Lanzenberger R. Reinforcement and Punishment Shape the Learning Dynamics in fMRI Neurofeedback. Front Hum Neurosci 2020; 14:304. [PMID: 32792929 PMCID: PMC7393482 DOI: 10.3389/fnhum.2020.00304] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/08/2020] [Indexed: 12/22/2022] Open
Abstract
Introduction Neurofeedback (NF) using real-time functional magnetic resonance imaging (fMRI) has proven to be a valuable neuroscientific tool for probing cognition and promising therapeutic approach for several psychiatric disorders. Even though learning constitutes an elementary aspect of NF, the question whether certain training schemes might positively influence its dynamics has largely been neglected. Methods To address this issue, participants were trained to exert control on their subgenual anterior cingulate cortex (sgACC) blood-oxygenation-level-dependent signal, receiving either exclusively positive reinforcement (PR, “positive feedback”) or also positive punishment (PP, “negative feedback”). The temporal dynamics of the learning process were investigated by individually modeling the feedback periods and trends, offering the possibility to assess activation changes within and across blocks, runs and sessions. Results The results show faster initial learning of the PR + PP group by significantly lower deactivations of the sgACC in the first session and stronger regulation trends during the first runs. Independent of the group, significant control over the sgACC could further be shown with but not without feedback. Conclusion The beneficial effect of PP is supported by previous findings of multiple research domains suggesting that error avoidance represents an important motivational factor of learning, which complements the reward spectrum. This hypothesis warrants further investigation with respect to NF, as it could offer a way to generally facilitate the process of gaining volitional control over brain activity.
Collapse
Affiliation(s)
- Manfred Klöbl
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Paul Michenthaler
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | | | - Simon Robinson
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria.,Centre for Advanced Imaging, University of Queensland, Brisbane, QLD, Australia.,Department of Neurology, Medical University of Graz, Graz, Austria
| | - Andreas Hahn
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Rupert Lanzenberger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
98
|
Cope LM, Hardee JE, Martz ME, Zucker RA, Nichols TE, Heitzeg MM. Developmental maturation of inhibitory control circuitry in a high-risk sample: A longitudinal fMRI study. Dev Cogn Neurosci 2020; 43:100781. [PMID: 32510344 PMCID: PMC7212183 DOI: 10.1016/j.dcn.2020.100781] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 03/02/2020] [Accepted: 04/04/2020] [Indexed: 01/09/2023] Open
Abstract
Background The goal of this work was to characterize the maturation of inhibitory control brain function from childhood to early adulthood using longitudinal data collected in two cohorts. Methods Functional MRI during a go/no-go task was conducted in 290 participants, with 88 % undergoing repeated scanning at 1- to 2-year intervals. One group entered the study at age 7–13 years (n = 117); the other entered at age 18–23 years (n = 173). 33.1 % of the sample had two parents with a substance use disorder (SUD), 43.8 % had one parent with an SUD, and 23.1 % had no parents with an SUD. 1162 scans were completed, covering ages 7–28, with longitudinal data from the cohorts overlapping across ages 16–21. A marginal model with sandwich estimator standard errors was used to characterize voxel-wise age-related changes in hemodynamic response associated with successful inhibitory control. Results There was significant positive linear activation associated with age in the frontal, temporal, parietal, and occipital cortices. No clusters survived thresholding with negative linear, positive or negative quadratic, or positive or negative cubic contrasts. Conclusions These findings extend previous cross-sectional and small-scale longitudinal studies that have observed positive linear developmental trajectories of brain function during inhibitory control.
Collapse
Affiliation(s)
- Lora M Cope
- University of Michigan, Department of Psychiatry and Addiction Center, 4250 Plymouth Road, Ann Arbor, MI 48109, USA.
| | - Jillian E Hardee
- University of Michigan, Department of Psychiatry and Addiction Center, 4250 Plymouth Road, Ann Arbor, MI 48109, USA.
| | - Meghan E Martz
- University of Michigan, Department of Psychiatry and Addiction Center, 4250 Plymouth Road, Ann Arbor, MI 48109, USA.
| | - Robert A Zucker
- University of Michigan, Department of Psychiatry and Addiction Center, 4250 Plymouth Road, Ann Arbor, MI 48109, USA.
| | - Thomas E Nichols
- University of Oxford, Oxford Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Nuffield Department of Population Health, United Kingdom; University of Oxford, Wellcome Centre for Integrative Neuroimaging, FMRIB Centre, Nuffield Department of Clinical Neurosciences, Oxford, OX3 9DU, United Kingdom; University of Warwick, Department of Statistics, Coventry, CV4 7AL, United Kingdom.
| | - Mary M Heitzeg
- University of Michigan, Department of Psychiatry and Addiction Center, 4250 Plymouth Road, Ann Arbor, MI 48109, USA.
| |
Collapse
|
99
|
Martí-Juan G, Sanroma-Guell G, Piella G. A survey on machine and statistical learning for longitudinal analysis of neuroimaging data in Alzheimer's disease. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2020; 189:105348. [PMID: 31995745 DOI: 10.1016/j.cmpb.2020.105348] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 01/10/2020] [Accepted: 01/18/2020] [Indexed: 05/02/2023]
Abstract
BACKGROUND AND OBJECTIVES Recently, longitudinal studies of Alzheimer's disease have gathered a substantial amount of neuroimaging data. New methods are needed to successfully leverage and distill meaningful information on the progression of the disease from the deluge of available data. Machine learning has been used successfully for many different tasks, including neuroimaging related problems. In this paper, we review recent statistical and machine learning applications in Alzheimer's disease using longitudinal neuroimaging. METHODS We search for papers using longitudinal imaging data, focused on Alzheimer's Disease and published between 2007 and 2019 on four different search engines. RESULTS After the search, we obtain 104 relevant papers. We analyze their approach to typical challenges in longitudinal data analysis, such as missing data and variability in the number and extent of acquisitions. CONCLUSIONS Reviewed works show that machine learning methods using longitudinal data have potential for disease progression modelling and computer-aided diagnosis. We compare results and models, and propose future research directions in the field.
Collapse
Affiliation(s)
- Gerard Martí-Juan
- BCN Medtech, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain.
| | | | - Gemma Piella
- BCN Medtech, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
100
|
Ziegler G, Moutoussis M, Hauser TU, Fearon P, Bullmore ET, Goodyer IM, Fonagy P, Jones PB, Lindenberger U, Dolan RJ. Childhood socio-economic disadvantage predicts reduced myelin growth across adolescence and young adulthood. Hum Brain Mapp 2020; 41:3392-3402. [PMID: 32432383 PMCID: PMC7375075 DOI: 10.1002/hbm.25024] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 03/16/2020] [Accepted: 04/17/2020] [Indexed: 12/20/2022] Open
Abstract
Socio-economic disadvantage increases exposure to life stressors. Animal research suggests early life stressors impact later neurodevelopment, including myelin developmental growth. To determine how early life disadvantage may affect myelin growth in adolescence and young adulthood, we analysed data from an accelerated longitudinal neuroimaging study measuring magnetisation transfer (MT), a myelin-sensitive marker, in 288 participants (149 female) between 14 and 25 years of age at baseline. We found that early life economic disadvantage before age 12, measured by a neighbourhood poverty index, was associated with slower myelin growth. This association was observed for magnetization transfer in cortical, subcortical and core white matter regions, and also in key subcortical nuclei. Participant IQ at baseline, alcohol use, body mass index, parental occupation and self-reported parenting quality did not account for these effects, but parental education did so partially. Specifically, positive parenting moderated the effect of socio-economic disadvantage in a protective manner. Thus, early socioeconomic disadvantage appears to alter myelin growth across adolescence. This finding has potential translational implications, including clarifying whether reducing socio-economic disadvantage during childhood, and increasing parental education and positive parenting, promote normal trajectories of brain development in economically disadvantaged contexts.
Collapse
Affiliation(s)
- Gabriel Ziegler
- Max Planck University College London Centre for Computational Psychiatry and Ageing Research, University College London, London, UK.,Max Planck University College London Centre for Computational Psychiatry and Ageing Research, Max Planck Institute for Human Development, Berlin, Germany.,Wellcome Centre for Human Neuroimaging, University College London, London, UK.,Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany.,DZNE Magdeburg, German Center for Neurodegenerative Diseases, Magdeburg, Germany
| | - Michael Moutoussis
- Max Planck University College London Centre for Computational Psychiatry and Ageing Research, University College London, London, UK.,Max Planck University College London Centre for Computational Psychiatry and Ageing Research, Max Planck Institute for Human Development, Berlin, Germany.,Wellcome Centre for Human Neuroimaging, University College London, London, UK
| | - Tobias U Hauser
- Max Planck University College London Centre for Computational Psychiatry and Ageing Research, University College London, London, UK.,Max Planck University College London Centre for Computational Psychiatry and Ageing Research, Max Planck Institute for Human Development, Berlin, Germany.,Wellcome Centre for Human Neuroimaging, University College London, London, UK
| | - Pasco Fearon
- Research Department of Clinical, Educational and Health Psychology, University College London, London, UK
| | - Edward T Bullmore
- Department of Psychiatry, University of Cambridge, Cambridge, UK.,Research and Development Department, Cambridgeshire and Peterborough National Health Service Foundation Trust, Cambridge, UK.,Medical Research Council/Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
| | - Ian M Goodyer
- Department of Psychiatry, University of Cambridge, Cambridge, UK.,Research and Development Department, Cambridgeshire and Peterborough National Health Service Foundation Trust, Cambridge, UK
| | - Peter Fonagy
- Research Department of Clinical, Educational and Health Psychology, University College London, London, UK
| | - Peter B Jones
- Department of Psychiatry, University of Cambridge, Cambridge, UK.,Research and Development Department, Cambridgeshire and Peterborough National Health Service Foundation Trust, Cambridge, UK
| | - Ulman Lindenberger
- Max Planck University College London Centre for Computational Psychiatry and Ageing Research, University College London, London, UK.,Max Planck University College London Centre for Computational Psychiatry and Ageing Research, Max Planck Institute for Human Development, Berlin, Germany.,Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Raymond J Dolan
- Max Planck University College London Centre for Computational Psychiatry and Ageing Research, University College London, London, UK.,Max Planck University College London Centre for Computational Psychiatry and Ageing Research, Max Planck Institute for Human Development, Berlin, Germany.,Wellcome Centre for Human Neuroimaging, University College London, London, UK
| |
Collapse
|