51
|
Hayter EA, Brown TM. Additive contributions of melanopsin and both cone types provide broadband sensitivity to mouse pupil control. BMC Biol 2018; 16:83. [PMID: 30064443 PMCID: PMC6066930 DOI: 10.1186/s12915-018-0552-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 07/20/2018] [Indexed: 01/13/2023] Open
Abstract
Background Intrinsically photosensitive retinal ganglion cells (ipRGCs) drive an array of non-image-forming (NIF) visual responses including circadian photoentrainment and the pupil light reflex. ipRGCs integrate extrinsic (rod/cone) and intrinsic (melanopsin) photoreceptive signals, but the contribution of cones to ipRGC-dependent responses remains incompletely understood. Given recent data revealing that cone-derived colour signals influence mouse circadian timing and pupil responses in humans, here we set out to investigate the role of colour information in pupil control in mice. Results We first recorded electrophysiological activity from the pretectal olivary nucleus (PON) of anaesthetised mice with a red-shifted cone population (Opn1mwR) and mice lacking functional cones (Cnga3−/−) or melanopsin (Opn1mwR; Opn4−/−). Using multispectral stimuli to selectively modulate the activity of individual opsin classes, we show that PON cells which receive ipRGC input also exhibit robust S- and/or L-cone opsin-driven activity. This population includes many cells where the two cone opsins drive opponent responses (most commonly excitatory/ON responses to S-opsin stimulation and inhibitory/OFF responses to L-opsin stimulation). These cone inputs reliably tracked even slow (0.025 Hz) changes in illuminance/colour under photopic conditions with melanopsin contributions becoming increasingly dominant for higher-contrast/lower temporal frequency stimuli. We also evaluated consensual pupil responses in awake animals and show that, surprisingly, this aspect of physiology is insensitive to chromatic signals originating with cones. Instead, by contrast with the situation in humans, signals from melanopsin and both cone opsins combine in a purely additive manner to drive pupil constriction in mice. Conclusion Our data reveal a key difference in the sensory control of the mouse pupil relative to another major target of ipRGCs—the circadian clock. Whereas the latter uses colour information to help estimate time of day, the mouse pupil instead sums signals across cone opsin classes to provide broadband spectral sensitivity to changes in illumination. As such, while the widespread co-occurrence of chromatic responses and melanopsin input in the PON supports a close association between colour discrimination mechanisms and NIF visual processing, our data suggest that colour opponent PON cells in the mouse contribute to functions other than pupil control. Electronic supplementary material The online version of this article (10.1186/s12915-018-0552-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Edward A Hayter
- Faculty of Biology, Medicine and Health, University of Manchester, AV Hill Building, Oxford Road, Manchester, M13 9PT, UK
| | - Timothy M Brown
- Faculty of Biology, Medicine and Health, University of Manchester, AV Hill Building, Oxford Road, Manchester, M13 9PT, UK.
| |
Collapse
|
52
|
Stinchcombe AR, Mouland JW, Wong KY, Lucas RJ, Forger DB. Multiplexing Visual Signals in the Suprachiasmatic Nuclei. Cell Rep 2018; 21:1418-1425. [PMID: 29117548 DOI: 10.1016/j.celrep.2017.10.045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 06/24/2017] [Accepted: 10/05/2017] [Indexed: 12/23/2022] Open
Abstract
The suprachiasmatic nuclei (SCN), the site of the mammalian circadian (daily) pacemaker, contains thousands of interconnected neurons, some of which receive direct retinal input. Here, we study the fast (<1 s) responses of SCN neurons to visual stimuli with a large-scale mathematical model tracking the ionic currents and voltage of all SCN neurons. We reconstruct the SCN network connectivity and reject 99.99% of theoretically possible SCN networks by requiring that the model reproduces experimentally determined receptive fields of SCN neurons. The model shows how the SCN neuronal network can enhance circadian entrainment by sensitizing a population of neurons in the ventral SCN to irradiance. This SCN network also increases the spatial acuity of neurons and increases the accuracy of a simulated subconscious spatial visual task. We hypothesize that much of the fast electrical activity within the SCN is related to the processing of spatial information.
Collapse
Affiliation(s)
- Adam R Stinchcombe
- Department of Mathematics, University of Michigan, 2074 East Hall, 530 Church Street, Ann Arbor, MI 48109-1043, USA
| | - Joshua W Mouland
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Kwoon Y Wong
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA; Department of Molecular, Cellular & Developmental Biology, University of Michigan, Ann Arbor, MI 48105, USA
| | - Robert J Lucas
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Daniel B Forger
- Department of Mathematics, University of Michigan, 2074 East Hall, 530 Church Street, Ann Arbor, MI 48109-1043, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
53
|
Functional Assessment of Melanopsin-Driven Light Responses in the Mouse: Multielectrode Array Recordings. Methods Mol Biol 2018; 1753:289-303. [PMID: 29564797 DOI: 10.1007/978-1-4939-7720-8_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Intrinsically photosensitive retinal ganglion cells (ipRGCs) are a special subset of retinal output neurons capable of detecting and responding to light via a unique photopigment called melanopsin. Melanopsin activation is essential to a wide array of physiological functions, especially to those related to non-image-forming vision. Since ipRGCs only constitute a very small proportion of retinal ganglion cells, targeted recording of melanopsin-driven responses used to be a big challenge to vision researchers. Multielectrode array (MEA) recording provides a noninvasive, high throughput method to monitor melanopsin-driven responses. When synaptic inputs from rod/cone photoreceptors are silenced with glutamatergic blockers, extracellular electric signals derived from melanopsin activation can be recorded from multiple ipRGCs simultaneously by tens of microelectrodes aligned in an array. In this chapter we describe how our labs have approached MEA recording of melanopsin-driven light responses in adult mouse retinas. Instruments, tools and chemical reagents routinely used for setting up a successful MEA recording are listed, and a standard experimental procedure is provided. The implementation of this technique offers a useful paradigm that can be used to conduct functional assessments of ipRGCs and NIF vision.
Collapse
|
54
|
Delwig A, Chaney SY, Bertke AS, Verweij J, Quirce S, Larsen DD, Yang C, Buhr E, VAN Gelder R, Gallar J, Margolis T, Copenhagen DR. Melanopsin expression in the cornea. Vis Neurosci 2018; 35:E004. [PMID: 29905117 PMCID: PMC6203320 DOI: 10.1017/s0952523817000359] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A unique class of intrinsically photosensitive retinal ganglion cells in mammalian retinae has been recently discovered and characterized. These neurons can generate visual signals in the absence of inputs from rods and cones, the conventional photoreceptors in the visual system. These light sensitive ganglion cells (mRGCs) express the non-rod, non-cone photopigment melanopsin and play well documented roles in modulating pupil responses to light, photoentrainment of circadian rhythms, mood, sleep and other adaptive light functions. While most research efforts in mammals have focused on mRGCs in retina, recent studies reveal that melanopsin is expressed in non-retinal tissues. For example, light-evoked melanopsin activation in extra retinal tissue regulates pupil constriction in the iris and vasodilation in the vasculature of the heart and tail. As another example of nonretinal melanopsin expression we report here the previously unrecognized localization of this photopigment in nerve fibers within the cornea. Surprisingly, we were unable to detect light responses in the melanopsin-expressing corneal fibers in spite of our histological evidence based on genetically driven markers and antibody staining. We tested further for melanopsin localization in cell bodies of the trigeminal ganglia (TG), the principal nuclei of the peripheral nervous system that project sensory fibers to the cornea, and found expression of melanopsin mRNA in a subset of TG neurons. However, neither electrophysiological recordings nor calcium imaging revealed any light responsiveness in the melanopsin positive TG neurons. Given that we found no light-evoked activation of melanopsin-expressing fibers in cornea or in cell bodies in the TG, we propose that melanopsin protein might serve other sensory functions in the cornea. One justification for this idea is that melanopsin expressed in Drosophila photoreceptors can serve as a temperature sensor.
Collapse
Affiliation(s)
- Anton Delwig
- Department of Ophthalmology,School of Medicine,University of California San Francisco,San Francisco,California
| | - Shawnta Y Chaney
- Department of Ophthalmology,School of Medicine,University of California San Francisco,San Francisco,California
| | - Andrea S Bertke
- Proctor Foundation,School of Medicine,University of California San Francisco,San Francisco,California
| | - Jan Verweij
- Department of Ophthalmology,School of Medicine,University of California San Francisco,San Francisco,California
| | - Susana Quirce
- Instituto de Neurociencias de Alicante,Universidad Miguel Hernandez-CSIC,San Juan de Alicante,Spain
| | - Delaine D Larsen
- Department of Ophthalmology,School of Medicine,University of California San Francisco,San Francisco,California
| | - Cindy Yang
- Department of Anatomy,School of Medicine,University of California San Francisco,San Francisco,California
| | - Ethan Buhr
- Department of Ophthalmology,School of Medicine,University of Washington,Seattle,Washington
| | - Russell VAN Gelder
- Department of Ophthalmology,School of Medicine,University of Washington,Seattle,Washington
| | - Juana Gallar
- Instituto de Neurociencias de Alicante,Universidad Miguel Hernandez-CSIC,San Juan de Alicante,Spain
| | - Todd Margolis
- Department of Ophthalmology,School of Medicine,University of California San Francisco,San Francisco,California
| | - David R Copenhagen
- Department of Ophthalmology,School of Medicine,University of California San Francisco,San Francisco,California
| |
Collapse
|
55
|
Shimura A, Hideo S, Takaesu Y, Nomura R, Komada Y, Inoue T. Comprehensive assessment of the impact of life habits on sleep disturbance, chronotype, and daytime sleepiness among high-school students. Sleep Med 2017. [PMID: 29530363 DOI: 10.1016/j.sleep.2017.10.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
OBJECTIVE Sleep affects adolescents in various ways. However, the effects of multiple factors on sleep hygiene remain unclear. A comprehensive assessment of the effects of life habits on sleep in high-school students was conducted. METHODS A cross-sectional survey of 344 high school students (age range 15-17; 171 boys, 173 girls) in Tokyo, Japan was conducted in 2015. Complete responses were provided by 294 students. Demographic variables, Pittsburgh Sleep Quality Index (PSQI), diurnal type scale, Pediatric Daytime Sleepiness Scale (PDSS), and life habits such as dinnertime, viewing electronic displays, caffeine intake, sunlight in the morning, and the brightness of the room in the night were asked. RESULTS The mean scores were PSQI: 5.9 (±2.3), PDSS: 19.0 (±5.8), and the diurnal type scale: 16.7 (±3.4). Using an electronic display in bed (OR = 3.01; (95%CI) 1.24-7.30), caffeine intake at night always (OR = 2.22; 1.01-4.90), and waking up before dawn (OR = 3.25; 1.34-7.88) were significantly associated with sleep disturbance. Irregular timing of the evening meal (OR = 2.06; 1.10-3.84) and display viewing within 2 h before bedtime (OR = 2.50; 1.01-6.18) or in bed (OR = 3.60; 1.41-9.21) were significantly associated with excessive daytime sleepiness. Using an electronic display within 2 h before bedtime (OR = 2.64; 1.10-6.38) or in bed (OR = 3.50; 1.40-8.76) and a living room which is bright at night (OR = 1.89; 1.06-3.36) were significantly associated with eveningness. CONCLUSION Each type of sleep-related problem had its own associated life habit factors.
Collapse
Affiliation(s)
- Akiyoshi Shimura
- Department of Psychiatry, Tokyo Medical University, Tokyo, Japan; Department of Sleep and Psychiatry, Kanno Hospital, Saitama, Japan.
| | - Sakai Hideo
- Tokyo Gakugei University Senior High School, Tokyo, Japan
| | | | - Ryota Nomura
- Faculty of Education, The University of Tokyo, Tokyo, Japan
| | - Yoko Komada
- Liberal Arts, Meiji Pharmaceutical University, Tokyo, Japan
| | - Takeshi Inoue
- Department of Psychiatry, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
56
|
Lasauskaite R, Cajochen C. Influence of lighting color temperature on effort-related cardiac response. Biol Psychol 2017; 132:64-70. [PMID: 29133144 DOI: 10.1016/j.biopsycho.2017.11.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 10/23/2017] [Accepted: 11/09/2017] [Indexed: 10/18/2022]
Abstract
Higher color temperature refers to a higher proportion of blue spectral components of light, that are known to be associated with higher alertness state in humans. Based on motivational intensity theory (Brehm & Self, 1989), here we predicted that this lighting-induced alertness state should inform about the readiness to perform and this way influence subjective task demand and thus mental effort. To test this, study participants spent 15min under one of four lighting color temperature conditions and then performed a cognitive task. As predicted, effort-related cardiac response, indexed by a shortened cardiac pre-ejection period, decreased with increasing color temperature of light, as indicated by a significant single planned linear contrast. These results demonstrate that spectral properties of light can influence mental effort mobilization.
Collapse
Affiliation(s)
- Ruta Lasauskaite
- Centre for Chronobiology, Transfaculty Research Platform Molecular and Cognitive Neurosciences, Psychiatric Hospital of the University of Basel, University of Basel, Basel, Switzerland.
| | - Christian Cajochen
- Centre for Chronobiology, Transfaculty Research Platform Molecular and Cognitive Neurosciences, Psychiatric Hospital of the University of Basel, University of Basel, Basel, Switzerland
| |
Collapse
|
57
|
Abstract
In this issue of Neuron, Mure et al. (2016) demonstrate that two mechanisms-phosphorylation of a C-terminal intracellular region, and mechanism involving the whole of the C terminus-oppositely shape the kinetics and sensitivity of the nonvisual photoreceptor melanopsin.
Collapse
Affiliation(s)
- Russell N Van Gelder
- Department of Ophthalmology, University of Washington School of Medicine, Seattle, WA 98104, USA; Department of Biological Structure, University of Washington School of Medicine, Seattle, WA 98104, USA; Department of Pathology, University of Washington School of Medicine, Seattle, WA 98104, USA.
| | - Ethan D Buhr
- Department of Ophthalmology, University of Washington School of Medicine, Seattle, WA 98104, USA
| |
Collapse
|
58
|
Groman-Lupa S, Adewumi J, Park KU, Brzezinski JA. The Transcription Factor Prdm16 Marks a Single Retinal Ganglion Cell Subtype in the Mouse Retina. Invest Ophthalmol Vis Sci 2017; 58:5421-5433. [PMID: 29053761 PMCID: PMC5656415 DOI: 10.1167/iovs.17-22442] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 09/20/2017] [Indexed: 12/04/2022] Open
Abstract
Purpose Retinal ganglion cells (RGC) can be categorized into roughly 30 distinct subtypes. How these subtypes develop is poorly understood, in part because few unique subtype markers have been characterized. We tested whether the Prdm16 transcription factor is expressed by RGCs as a class or within particular ganglion cell subtypes. Methods Embryonic and mature retinal sections and flatmount preparations were examined by immunohistochemistry for Prdm16 and several other cell type-specific markers. To visualize the morphology of Prdm16+ cells, we utilized Thy1-YFP-H transgenic mice, where a small random population of RGCs expresses yellow fluorescent protein (YFP) throughout the cytoplasm. Results Prdm16 was expressed in the retina starting late in embryogenesis. Prdm16+ cells coexpressed the RGC marker Brn3a. These cells were arranged in an evenly spaced pattern and accounted for 2% of all ganglion cells. Prdm16+ cells coexpressed parvalbumin, but not calretinin, melanopsin, Smi32, or CART. This combination of marker expression and morphology data from Thy1-YFP-H mice suggested that the Prdm16+ cells represented a single ganglion cell subtype. Prdm16 also marked vascular endothelial cells and mural cells of retinal arterioles. Conclusions A single subtype of ganglion cell appears to be uniquely marked by Prdm16 expression. While the precise identity of these ganglion cells is unclear, they most resemble the G9 subtype described by Völgyi and colleagues in 2009. Future studies are needed to determine the function of these ganglion cells and whether Prdm16 regulates their development.
Collapse
Affiliation(s)
- Sergio Groman-Lupa
- Department of Ophthalmology, University of Colorado Denver, Aurora, Colorado, United States
| | - Joseph Adewumi
- Department of Ophthalmology, University of Colorado Denver, Aurora, Colorado, United States
| | - Ko Uoon Park
- Department of Ophthalmology, University of Colorado Denver, Aurora, Colorado, United States
| | - Joseph A. Brzezinski
- Department of Ophthalmology, University of Colorado Denver, Aurora, Colorado, United States
| |
Collapse
|
59
|
M1 ipRGCs Influence Visual Function through Retrograde Signaling in the Retina. J Neurosci 2017; 36:7184-97. [PMID: 27383593 DOI: 10.1523/jneurosci.3500-15.2016] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 05/26/2016] [Indexed: 12/23/2022] Open
Abstract
UNLABELLED Melanopsin-expressing intrinsically photosensitive retinal ganglion cells (ipRGCs, with five subtypes named M1-M5) are a unique subclass of RGCs with axons that project directly to many brain nuclei involved in non-image-forming functions such as circadian photoentrainment and the pupillary light reflex. Recent evidence suggests that melanopsin-based signals also influence image-forming visual function, including light adaptation, but the mechanisms involved are unclear. Intriguingly, a small population of M1 ipRGCs have intraretinal axon collaterals that project toward the outer retina. Using genetic mouse models, we provide three lines of evidence showing that these axon collaterals make connections with upstream dopaminergic amacrine cells (DACs): (1) ipRGC signaling to DACs is blocked by tetrodotoxin both in vitro and in vivo, indicating that ipRGC-to-DAC transmission requires voltage-gated Na(+) channels; (2) this transmission is partly dependent on N-type Ca(2+) channels, which are possibly expressed in the axon collateral terminals of ipRGCs; and (3) fluorescence microscopy reveals that ipRGC axon collaterals make putative presynaptic contact with DACs. We further demonstrate that elimination of M1 ipRGCs attenuates light adaptation, as evidenced by an impaired electroretinogram b-wave from cones, whereas a dopamine receptor agonist can potentiate the cone-driven b-wave of retinas lacking M1 ipRGCs. Together, the results strongly suggest that ipRGCs transmit luminance signals retrogradely to the outer retina through the dopaminergic system and in turn influence retinal light adaptation. SIGNIFICANCE STATEMENT Melanopsin-expressing intrinsically photosensitive retinal ganglion cells (ipRGCs) comprise a third class of retinal photoreceptors that are known to mediate physiological responses such as circadian photoentrainment. However, investigation into whether and how ipRGCs contribute to vision has just begun. Here, we provide convergent anatomical and physiological evidence that axon collaterals of ipRGCs constitute a centrifugal pathway to DACs, conveying melanopsin-based signals from the innermost retina to the outer retina. We further demonstrate that retrograde signals likely influence visual processing because elimination of axon collateral-bearing ipRGCs impairs light adaptation by limiting dopamine-dependent facilitation of the cone pathway. Our findings strongly support the hypothesis that retrograde melanopsin-based signaling influences visual function locally within the retina, a notion that refutes the dogma that RGCs only provide physiological signals to the brain.
Collapse
|
60
|
Milosavljevic N, Allen AE, Cehajic-Kapetanovic J, Lucas RJ. Chemogenetic Activation of ipRGCs Drives Changes in Dark-Adapted (Scotopic) Electroretinogram. Invest Ophthalmol Vis Sci 2017; 57:6305-6312. [PMID: 27893096 PMCID: PMC5119489 DOI: 10.1167/iovs.16-20448] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Purpose The purpose of this study was to investigate the impact of activating melanopsin-expressing intrinsically photosensitive retinal ganglion cells (ipRGCs) on dark-adapted (scotopic) electroretinograms (ERG). Methods We used mice (Opn4Cre/+) expressing cre recombinase in melanopsin-expressing cells for a targeted gene delivery of a chemogenetic Gq-coupled receptor, hM3Dq, to ipRGCs. Intraperitoneal injection of clozapine N-oxide (CNO) at 5 mg/kg was used for acute activation of hM3Dq and thus excitation of ipRGCs in darkness. Dark-adapted flash ERGs were recorded across a 9-fold range of irradiances from hM3Dq Opn4Cre/+ and control Opn4Cre/+ mice before and after intraperitoneal injection of CNO. A- and b-wave amplitudes and implicit times and oscillatory potentials (OPs) were analyzed. Paired-flash stimuli were used to isolate cone-driven responses. Results Clozapine N-oxide application suppressed a- and b-wave amplitudes of the dark-adapted ERG across the flash intensity range in hM3Dq Opn4Cre/+ mice compared to control mice. Examination of the normalized irradiance-response functions revealed a shift in b-wave but not a-wave sensitivity. No changes in a- and b-wave implicit times were detected. Total OP amplitudes were also reduced in hM3Dq Opn4Cre/+ mice compared to controls following CNO administration. The paired-flash method revealed reduction in both the first (rods and cones) and second (cones only) flash response. Conclusions Acute and selective activation of ipRGCs modulates the amplitude of both a- and b-waves of the scotopic ERG, indicating that the influence of this ganglion cell class on the retinal physiology extends to the photoreceptors as well as their downstream pathways.
Collapse
Affiliation(s)
- Nina Milosavljevic
- Faculty of Biology, Medicine and Health, the University of Manchester, Manchester, United Kingdom
| | - Annette E Allen
- Faculty of Biology, Medicine and Health, the University of Manchester, Manchester, United Kingdom
| | - Jasmina Cehajic-Kapetanovic
- Centre for Ophthalmology and Vision Sciences, Institute of Human Development, the University of Manchester, Manchester, United Kingdom
| | - Robert J Lucas
- Faculty of Biology, Medicine and Health, the University of Manchester, Manchester, United Kingdom
| |
Collapse
|
61
|
Georg B, Ghelli A, Giordano C, Ross-Cisneros FN, Sadun AA, Carelli V, Hannibal J, La Morgia C. Melanopsin-expressing retinal ganglion cells are resistant to cell injury, but not always. Mitochondrion 2017; 36:77-84. [PMID: 28412540 DOI: 10.1016/j.mito.2017.04.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 03/14/2017] [Accepted: 04/07/2017] [Indexed: 12/12/2022]
Abstract
Melanopsin retinal ganglion cells (mRGCs) are intrinsically photosensitive RGCs deputed to non-image forming functions of the eye such as synchronization of circadian rhythms to light-dark cycle. These cells are characterized by unique electrophysiological, anatomical and biochemical properties and are usually more resistant than conventional RGCs to different insults, such as axotomy and different paradigms of stress. We also demonstrated that these cells are relatively spared compared to conventional RGCs in mitochondrial optic neuropathies (Leber's hereditary optic neuropathy and Dominant Optic Atrophy). However, these cells are affected in other neurodegenerative conditions, such as glaucoma and Alzheimer's disease. We here review the current evidences that may underlie this dichotomy. We also present our unpublished data on cell experiments demonstrating that melanopsin itself does not explain the robustness of these cells and some preliminary data on immunohistochemical assessment of mitochondria in mRGCs.
Collapse
Affiliation(s)
- Birgitte Georg
- Department of Clinical Biochemistry, Bispebjerg and Frederiksberg Hospital, Faculty Health Sciences, University of Copenhagen, Denmark
| | - Anna Ghelli
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Carla Giordano
- Department of Radiology, Oncology and Pathology, Sapienza, University of Rome, Rome, Italy
| | | | - Alfredo A Sadun
- Doheny Eye Institute, Los Angeles, CA, USA; Department of Ophthalmology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, USA
| | - Valerio Carelli
- IRCCS Institute of Neurological Sciences of Bologna, Bellaria Hospital, Bologna, Italy; Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Jens Hannibal
- Department of Clinical Biochemistry, Bispebjerg and Frederiksberg Hospital, Faculty Health Sciences, University of Copenhagen, Denmark.
| | - Chiara La Morgia
- IRCCS Institute of Neurological Sciences of Bologna, Bellaria Hospital, Bologna, Italy; Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy.
| |
Collapse
|
62
|
Left Habenula Mediates Light-Preference Behavior in Zebrafish via an Asymmetrical Visual Pathway. Neuron 2017; 93:914-928.e4. [PMID: 28190643 DOI: 10.1016/j.neuron.2017.01.011] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 11/23/2016] [Accepted: 01/13/2017] [Indexed: 12/21/2022]
Abstract
Habenula (Hb) plays critical roles in emotion-related behaviors through integrating inputs mainly from the limbic system and basal ganglia. However, Hb also receives inputs from multiple sensory modalities. The function and underlying neural circuit of Hb sensory inputs remain unknown. Using larval zebrafish, we found that left dorsal Hb (dHb, a homolog of mammalian medial Hb) mediates light-preference behavior by receiving visual inputs from a specific subset of retinal ganglion cells (RGCs) through eminentia thalami (EmT). Loss- and gain-of-function manipulations showed that left, but not right, dHb activities, which encode environmental illuminance, are necessary and sufficient for light-preference behavior. At circuit level, left dHb neurons receive excitatory monosynaptic inputs from bilateral EmT, and EmT neurons are contacted mainly by sustained ON-type RGCs at the arborization field 4 of retinorecipient brain areas. Our findings discover a previously unidentified asymmetrical visual pathway to left Hb and its function in mediating light-preference behavior. VIDEO ABSTRACT.
Collapse
|
63
|
Abstract
The dorsal lateral geniculate nucleus (dLGN) of the thalamus is the principal conduit for visual information from retina to visual cortex. Viewed initially as a simple relay, recent studies in the mouse reveal far greater complexity in the way input from the retina is combined, transmitted, and processed in dLGN. Here we consider the structural and functional organization of the mouse retinogeniculate pathway by examining the patterns of retinal projections to dLGN and how they converge onto thalamocortical neurons to shape the flow of visual information to visual cortex.
Collapse
Affiliation(s)
- Daniel Kerschensteiner
- Department of Ophthalmology and Visual Sciences,Washington University School of Medicine,Saint Louis,Missouri 63110
| | - William Guido
- Department of Anatomical Sciences and Neurobiology,University of Louisville School of Medicine,Louisville,Kentucky 40292
| |
Collapse
|
64
|
Intrinsically Photosensitive Retinal Ganglion Cells (ipRGCs) Are Necessary for Light Entrainment of Peripheral Clocks. PLoS One 2016; 11:e0168651. [PMID: 27992553 PMCID: PMC5161485 DOI: 10.1371/journal.pone.0168651] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 12/04/2016] [Indexed: 11/23/2022] Open
Abstract
Light is a powerful entrainer of circadian clocks in almost all eukaryotic organisms promoting synchronization of internal circadian rhythms with external environmental light-dark (LD) cycles. In mammals, the circadian system is organized in a hierarchical manner, in which a central pacemaker in the suprachiasmatic nucleus (SCN) synchronizes oscillators in peripheral tissues. Recent evidence demonstrates that photoentrainment of the SCN proceeds via signaling from a subpopulation of retinal ganglion cells (RGCs) which are melanopsin-expressing and intrinsically photosensitive (ipRGCs). However, it is still unclear whether photoentrainment of peripheral clocks is mediated exclusively by the ipRGC system or if signaling from RGCs that do not express melanopsin also plays a role. Here we have used genetic “silencing” of ipRGC neurotransmission in mice to investigate whether this photoreceptive system is obligatory for the photoentrainment of peripheral circadian clocks. Genetic silencing of ipRGC neurotransmission in mice was achieved by expression of tetanus toxin light chain in melanopsin-expressing cells (Opn4::TeNT mouse line). Rhythms of the clock gene Period 2 in various peripheral tissues were measured by crossbreeding Opn4::TeNT mice with PER2 luciferase knock-in mice (mPER2Luc). We found that in Opn4::TeNT mice the pupillary light reflex, light modulation of activity, and circadian photoentrainment of locomotor activity were severely impaired. Furthermore, ex vivo cultures from Opn4::TeNT, mPER2Luc mice of the adrenal gland, cornea, lung, liver, pituitary and spleen exhibited robust circadian rhythms of PER2::LUC bioluminescence. However, their peak bioluminescence rhythms were not aligned to the projected LD cycles indicating their lack of photic entrainment in vivo. Finally, we found that the circadian rhythm in adrenal corticosterone in Opn4::TeNT mice, as monitored by in vivo subcutaneous microdialysis, was desynchronized from environmental LD cycles. Our findings reveal a non-redundant role of ipRGCs for photic entrainment of peripheral tissues, highlighting the importance of this photoreceptive system for the organismal adaptation to daily environmental LD cycles.
Collapse
|
65
|
Abstract
Circadian rhythms are self-sustained, approximately 24-h rhythms of physiology and behavior. These rhythms are entrained to an exactly 24-h period by the daily light-dark cycle. Remarkably, mice lacking all rod and cone photoreceptors still demonstrate photic entrainment, an effect mediated by intrinsically photosensitive retinal ganglion cells (ipRGCs). These cells utilize melanopsin (OPN4) as their photopigment. Distinct from the ciliary rod and cone opsins, melanopsin appears to function as a stable photopigment utilizing sequential photon absorption for its photocycle; this photocycle, in turn, confers properties on ipRGCs such as sustained signaling and resistance from photic bleaching critical for an irradiance detection system. The retina itself also functions as a circadian pacemaker that can be autonomously entrained to light-dark cycles. Recent experiments have demonstrated that another novel opsin, neuropsin (OPN5), is required for this entrainment, which appears to be mediated by a separate population of ipRGCs. Surprisingly, the circadian clock of the mammalian cornea is also light entrainable and is also neuropsin-dependent for this effect. The retina thus utilizes a surprisingly broad array of opsins for mediation of different light-detection tasks.
Collapse
Affiliation(s)
- Russell N Van Gelder
- Department of Ophthalmology, University of Washington School of Medicine, Seattle, Washington 98109.,Department of Pathology, University of Washington School of Medicine, Seattle, Washington 98195.,Department of Biological Structure, University of Washington School of Medicine, Seattle, Washington 98195;
| | - Ethan D Buhr
- Department of Ophthalmology, University of Washington School of Medicine, Seattle, Washington 98109
| |
Collapse
|
66
|
Arroyo DA, Kirkby LA, Feller MB. Retinal Waves Modulate an Intraretinal Circuit of Intrinsically Photosensitive Retinal Ganglion Cells. J Neurosci 2016; 36:6892-905. [PMID: 27358448 PMCID: PMC4926237 DOI: 10.1523/jneurosci.0572-16.2016] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 05/11/2016] [Accepted: 05/16/2016] [Indexed: 02/07/2023] Open
Abstract
UNLABELLED Before the maturation of rod and cone photoreceptors, the developing retina relies on light detection by intrinsically photosensitive retinal ganglion cells (ipRGCs) to drive early light-dependent behaviors. ipRGCs are output neurons of the retina; however, they also form functional microcircuits within the retina itself. Whether ipRGC microcircuits exist during development and whether they influence early light detection remain unknown. Here, we investigate the neural circuit that underlies the ipRGC-driven light response in developing mice. We use a combination of calcium imaging, tracer coupling, and electrophysiology experiments to show that ipRGCs form extensive gap junction networks that strongly contribute to the overall light response of the developing retina. Interestingly, we found that gap junction coupling was modulated by spontaneous retinal waves, such that acute blockade of waves dramatically increased the extent of coupling and hence increased the number of light-responsive neurons. Moreover, using an optical sensor, we found that this wave-dependent modulation of coupling is driven by dopamine that is phasically released by retinal waves. Our results demonstrate that ipRGCs form gap junction microcircuits during development that are modulated by retinal waves; these circuits determine the extent of the light response and thus potentially impact the processing of early visual information and light-dependent developmental functions. SIGNIFICANCE STATEMENT Light-dependent functions in early development are mediated by intrinsically photosensitive retinal ganglion cells (ipRGCs). Here we show that ipRGCs form an extensive gap junction network with other retinal neurons, including other ipRGCs, which shapes the retina's overall light response. Blocking cholinergic retinal waves, which are the primary source of neural activity before maturation of photoreceptors, increased the extent of ipRGC gap junction networks, thus increasing the number of light-responsive cells. We determined that this modulation of ipRGC gap junction networks occurs via dopamine released by waves. These results demonstrate that retinal waves mediate dopaminergic modulation of gap junction networks to regulate pre-vision light responses.
Collapse
Affiliation(s)
| | | | - Marla B Feller
- Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, University of California-Berkeley, Berkeley, California 94720-3200
| |
Collapse
|
67
|
Mure LS, Hatori M, Zhu Q, Demas J, Kim IM, Nayak SK, Panda S. Melanopsin-Encoded Response Properties of Intrinsically Photosensitive Retinal Ganglion Cells. Neuron 2016; 90:1016-27. [PMID: 27181062 DOI: 10.1016/j.neuron.2016.04.016] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 02/17/2016] [Accepted: 04/06/2016] [Indexed: 11/16/2022]
Abstract
Melanopsin photopigment expressed in intrinsically photosensitive retinal ganglion cells (ipRGCs) plays a crucial role in the adaptation of mammals to their ambient light environment through both image-forming and non-image-forming visual responses. The ipRGCs are structurally and functionally distinct from classical rod/cone photoreceptors and have unique properties, including single-photon response, long response latency, photon integration over time, and slow deactivation. We discovered that amino acid sequence features of melanopsin protein contribute to the functional properties of the ipRGCs. Phosphorylation of a cluster of Ser/Thr residues in the C-terminal cytoplasmic region of melanopsin contributes to deactivation, which in turn determines response latency and threshold sensitivity of the ipRGCs. The poorly conserved region distal to the phosphorylation cluster inhibits phosphorylation's functional role, thereby constituting a unique delayed deactivation mechanism. Concerted action of both regions sustains responses to dim light, allows for the integration of light over time, and results in precise signal duration.
Collapse
Affiliation(s)
- Ludovic S Mure
- Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Megumi Hatori
- Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Quansheng Zhu
- Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - James Demas
- St. Olaf College, 1520 St. Olaf Avenue, Northfield, MN 55057, USA
| | - Irene M Kim
- Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Surendra K Nayak
- Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Satchidananda Panda
- Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
68
|
Svechtarova MI, Buzzacchera I, Toebes BJ, Lauko J, Anton N, Wilson CJ. Sensor Devices Inspired by the Five Senses: A Review. ELECTROANAL 2016. [DOI: 10.1002/elan.201600047] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
| | | | - B. Jelle Toebes
- NovioSense BV; Transistorweg 5 6534 AT Nijmegen The Netherlands
| | - Jan Lauko
- NovioSense BV; Transistorweg 5 6534 AT Nijmegen The Netherlands
| | - Nicoleta Anton
- Universitatea de Medicina si Farmacie Grigore T.; Popa, Str. Universitatii nr. 16 700115 Iasi Romania
| | | |
Collapse
|
69
|
Muscarinic acetylcholine receptor-mediated stimulation of retinal ganglion cell photoreceptors. Neuropharmacology 2016; 108:305-15. [PMID: 27055770 DOI: 10.1016/j.neuropharm.2016.04.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 04/01/2016] [Accepted: 04/01/2016] [Indexed: 12/16/2022]
Abstract
Melanopsin-dependent phototransduction in intrinsically photosensitive retinal ganglion cells (ipRGCs) involves a Gq-coupled phospholipase C (PLC) signaling cascade. Acetylcholine, released in the mammalian retina by starburst amacrine cells, can also activate Gq-PLC pathways through certain muscarinic acetylcholine receptors (mAChRs). Using multielectrode array recordings of rat retinas, we demonstrate that robust spiking responses can be evoked in neonatal and adult ipRGCs after bath application of the muscarinic agonist carbachol. The stimulatory action of carbachol on ipRGCs was a direct effect, as confirmed through calcium imaging experiments on isolated ipRGCs in purified cultures. Using flickering (6 Hz) yellow light stimuli at irradiances below the threshold for melanopsin activation, spiking responses could be elicited in ipRGCs that were suppressed by mAChR antagonism. Therefore, this work identified a novel melanopsin-independent pathway for stimulating sustained spiking in ganglion cell photoreceptors. This mAChR-mediated pathway could enhance ipRGC spiking responses in conditions known to evoke retinal acetylcholine release, such as those involving flickering or moving visual stimuli. Furthermore, this work identifies a pharmacological approach for light-independent ipRGC stimulation that could be targeted by mAChR agonists.
Collapse
|
70
|
The Visual Cycle in the Inner Retina of Chicken and the Involvement of Retinal G-Protein-Coupled Receptor (RGR). Mol Neurobiol 2016; 54:2507-2517. [DOI: 10.1007/s12035-016-9830-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 03/04/2016] [Indexed: 11/27/2022]
|
71
|
Hughes S, Jagannath A, Rodgers J, Hankins MW, Peirson SN, Foster RG. Signalling by melanopsin (OPN4) expressing photosensitive retinal ganglion cells. Eye (Lond) 2016; 30:247-54. [PMID: 26768919 DOI: 10.1038/eye.2015.264] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 11/23/2015] [Indexed: 12/17/2022] Open
Abstract
Over the past two decades there have been significant advances in our understanding of both the anatomy and function of the melanopsin system. It has become clear that rather than acting as a simple irradiance detector the melanopsin system is in fact far more complicated. The range of behavioural systems known to be influenced by melanopsin activity is increasing with time, and it is now clear that melanopsin contributes not only to multiple non-image forming systems but also has a role in visual pathways. How melanopsin is capable of driving so many different behaviours is unclear, but recent evidence suggests that the answer may lie in the diversity of melanopsin light responses and the functional specialisation of photosensitive retinal ganglion cell (pRGC) subtypes. In this review, we shall overview the current understanding of the melanopsin system, and evaluate the evidence for the hypothesis that individual pRGC subtypes not only perform specific roles, but are functionally specialised to do so. We conclude that while, currently, the available data somewhat support this hypothesis, we currently lack the necessary detail to fully understand how the functional diversity of pRGC subtypes correlates with different behavioural responses, and ultimately why such complexity is required within the melanopsin system. What we are lacking is a cohesive understanding of how light responses differ between the pRGC subtypes (based not only on anatomical classification but also based on their site of innervation); how these diverse light responses are generated, and most importantly how these responses relate to the physiological functions they underpin.
Collapse
Affiliation(s)
- S Hughes
- Nuffield Laboratory of Ophthalmology (Nuffield Department of Clinical Neurosciences), Sleep and Circadian Neuroscience Institute, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - A Jagannath
- Nuffield Laboratory of Ophthalmology (Nuffield Department of Clinical Neurosciences), Sleep and Circadian Neuroscience Institute, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - J Rodgers
- Nuffield Laboratory of Ophthalmology (Nuffield Department of Clinical Neurosciences), Sleep and Circadian Neuroscience Institute, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - M W Hankins
- Nuffield Laboratory of Ophthalmology (Nuffield Department of Clinical Neurosciences), Sleep and Circadian Neuroscience Institute, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - S N Peirson
- Nuffield Laboratory of Ophthalmology (Nuffield Department of Clinical Neurosciences), Sleep and Circadian Neuroscience Institute, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - R G Foster
- Nuffield Laboratory of Ophthalmology (Nuffield Department of Clinical Neurosciences), Sleep and Circadian Neuroscience Institute, University of Oxford, John Radcliffe Hospital, Oxford, UK
| |
Collapse
|
72
|
Díaz NM, Morera LP, Guido ME. Melanopsin and the Non-visual Photochemistry in the Inner Retina of Vertebrates. Photochem Photobiol 2015; 92:29-44. [DOI: 10.1111/php.12545] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 10/09/2015] [Indexed: 01/28/2023]
Affiliation(s)
- Nicolás M. Díaz
- Departamento de Química Biológica-CIQUIBIC (CONICET); Facultad de Ciencias Químicas; Universidad Nacional de Córdoba (UNC); Córdoba Argentina
| | - Luis P. Morera
- Departamento de Química Biológica-CIQUIBIC (CONICET); Facultad de Ciencias Químicas; Universidad Nacional de Córdoba (UNC); Córdoba Argentina
| | - Mario E. Guido
- Departamento de Química Biológica-CIQUIBIC (CONICET); Facultad de Ciencias Químicas; Universidad Nacional de Córdoba (UNC); Córdoba Argentina
| |
Collapse
|
73
|
Walch OJ, Zhang LS, Reifler AN, Dolikian ME, Forger DB, Wong KY. Characterizing and modeling the intrinsic light response of rat ganglion-cell photoreceptors. J Neurophysiol 2015; 114:2955-66. [PMID: 26400257 PMCID: PMC4737408 DOI: 10.1152/jn.00544.2015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 09/18/2015] [Indexed: 12/20/2022] Open
Abstract
Intrinsically photosensitive retinal ganglion cells (ipRGCs) mediate both image-forming vision and non-image-forming visual responses such as pupillary constriction and circadian photoentrainment. Five types of ipRGCs, named M1-M5, have been discovered in rodents. To further investigate their photoresponse properties, we made multielectrode array spike recordings from rat ipRGCs, classified them into M1, M2/M4, and M3/M5 clusters, and measured their intrinsic, melanopsin-based responses to single and flickering light pulses. Results showed that ipRGC spiking can track flickers up to ∼0.2 Hz in frequency and that flicker intervals between 5 and 14 s evoke the most spikes. We also learned that melanopsin's integration time is intensity and cluster dependent. Using these data, we constructed a mathematical model for each cluster's intrinsic photoresponse. We found that the data for the M1 cluster are best fit by a model that assumes a large photoresponse, causing the cell to enter depolarization block. Our models also led us to hypothesize that the M2/M4 and M3/M5 clusters experience comparable photoexcitation but that the M3/M5 cascade decays significantly faster than the M2/M4 cascade, resulting in different response waveforms between these clusters. These mathematical models will help predict how each ipRGC cluster might respond to stimuli of any waveform and could inform the invention of lighting technologies that promote health through melanopsin stimulation.
Collapse
Affiliation(s)
- Olivia J Walch
- Department of Mathematics, University of Michigan, Ann Arbor, Michigan
| | - L Samantha Zhang
- Department of Ophthalmology & Visual Sciences, University of Michigan, Ann Arbor, Michigan
| | - Aaron N Reifler
- Department of Ophthalmology & Visual Sciences, University of Michigan, Ann Arbor, Michigan
| | - Michael E Dolikian
- Department of Ophthalmology & Visual Sciences, University of Michigan, Ann Arbor, Michigan
| | - Daniel B Forger
- Department of Mathematics, University of Michigan, Ann Arbor, Michigan; Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, Michigan; and
| | - Kwoon Y Wong
- Department of Ophthalmology & Visual Sciences, University of Michigan, Ann Arbor, Michigan; Department of Molecular, Cellular & Developmental Biology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
74
|
Tsukamoto H, Kubo Y, Farrens DL, Koyanagi M, Terakita A, Furutani Y. Retinal Attachment Instability Is Diversified among Mammalian Melanopsins. J Biol Chem 2015; 290:27176-27187. [PMID: 26416885 DOI: 10.1074/jbc.m115.666305] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Indexed: 01/12/2023] Open
Abstract
Melanopsins play a key role in non-visual photoreception in mammals. Their close phylogenetic relationship to the photopigments in invertebrate visual cells suggests they have evolved to acquire molecular characteristics that are more suited for their non-visual functions. Here we set out to identify such characteristics by comparing the molecular properties of mammalian melanopsin to those of invertebrate melanopsin and visual pigment. Our data show that the Schiff base linking the chromophore retinal to the protein is more susceptive to spontaneous cleavage in mammalian melanopsins. We also find this stability is highly diversified between mammalian species, being particularly unstable for human melanopsin. Through mutagenesis analyses, we find that this diversified stability is mainly due to parallel amino acid substitutions in extracellular regions. We propose that the different stability of the retinal attachment in melanopsins may contribute to functional tuning of non-visual photoreception in mammals.
Collapse
Affiliation(s)
- Hisao Tsukamoto
- Department of Life and Coordination-Complex Molecular Science, Institute for Molecular Science, Okazaki, 444-8585, Japan,; Department of Structural Molecular Science, SOKENDAI (The Graduate University for Advanced Studies), Hayama, Kanagawa 240-0193, Japan,.
| | - Yoshihiro Kubo
- Division of Biophysics and Neurobiology, Department of Molecular Physiology, National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan,; Department of Physiological Sciences, SOKENDAI (The Graduate University for Advanced Studies), Hayama, Kanagawa 240-0193, Japan
| | - David L Farrens
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, Oregon 97239-3098
| | - Mitsumasa Koyanagi
- Department of Biology and Geosciences, Graduate School of Science, Osaka City University, Osaka 558-8585, Japan
| | - Akihisa Terakita
- Department of Biology and Geosciences, Graduate School of Science, Osaka City University, Osaka 558-8585, Japan
| | - Yuji Furutani
- Department of Life and Coordination-Complex Molecular Science, Institute for Molecular Science, Okazaki, 444-8585, Japan,; Department of Structural Molecular Science, SOKENDAI (The Graduate University for Advanced Studies), Hayama, Kanagawa 240-0193, Japan
| |
Collapse
|
75
|
Sexton TJ, Bleckert A, Turner MH, Van Gelder RN. Type I intrinsically photosensitive retinal ganglion cells of early post-natal development correspond to the M4 subtype. Neural Dev 2015; 10:17. [PMID: 26091805 PMCID: PMC4480886 DOI: 10.1186/s13064-015-0042-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 06/03/2015] [Indexed: 12/16/2022] Open
Abstract
Background Intrinsically photosensitive retinal ganglion cells (ipRGCs) mediate circadian light entrainment and the pupillary light response in adult mice. In early development these cells mediate different processes, including negative phototaxis and the timing of retinal vascular development. To determine if ipRGC physiologic properties also change with development, we measured ipRGC cell density and light responses in wild-type mouse retinas at post-natal days 8, 15 and 30. Results Melanopsin-positive cell density decreases by 17 % between post-natal days 8 and 15 and by 25 % between days 8 and 30. This decrease is due specifically to a decrease in cells co-labeled with a SMI-32, a marker for alpha-on ganglion cells (corresponding to adult morphologic type M4 ipRGCs). On multi-electrode array recordings, post-natal day 8 (P8) ipRGC light responses show more robust firing, reduced adaptation and more rapid recovery from short and extended light pulses than do the light responses of P15 and P30 ipRGCs. Three ipRGC subtypes – Types I-III – have been defined in early development based on sensitivity and latency on multielectrode array recordings. We find that Type I cells largely account for the unique physiologic properties of P8 ipRGCs. Type I cells have previously been shown to have relatively short latencies and high sensitivity. We now show that Type I cells show have rapid and robust recovery from long and short bright light exposures compared with Type II and III cells, suggesting differential light adaptation mechanisms between cell types. By P15, Type I ipRGCs are no longer detectable. Loose patch recordings of P8 M4 ipRGCs demonstrate Type I physiology. Conclusions Type I ipRGCs are found only in early development. In addition to their previously described high sensitivity and rapid kinetics, these cells are uniquely resistant to adaptation and recover quickly and fully to short and prolonged light exposure. Type I ipRGCs correspond to the SMI-32 positive, M4 subtype and largely lose melanopsin expression in development. These cells constitute a unique morphologic and physiologic class of ipRGCs functioning early in postnatal development. Electronic supplementary material The online version of this article (doi:10.1186/s13064-015-0042-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Timothy J Sexton
- Department of Ophthalmology, University of Washington, 325 9th Avenue, Seattle, WA, 98104, USA. .,Program in Neurobiology and Behavior, University of Washington, Health Sciences Center, Seattle, WA, 98195, USA.
| | - Adam Bleckert
- Department of Biological Structure, University of Washington, 1959 NE Pacific Street, Seattle, WA, 98195, USA. .,Program in Neurobiology and Behavior, University of Washington, Health Sciences Center, Seattle, WA, 98195, USA.
| | - Maxwell H Turner
- Department of Physiology & Biophysics, University of Washington, 1705 NE Pacific St., Seattle, WA, 98195, USA. .,Program in Neurobiology and Behavior, University of Washington, Health Sciences Center, Seattle, WA, 98195, USA.
| | - Russell N Van Gelder
- Department of Ophthalmology, University of Washington, 325 9th Avenue, Seattle, WA, 98104, USA. .,Department of Biological Structure, University of Washington, 1959 NE Pacific Street, Seattle, WA, 98195, USA. .,Department of Pathology, University of Washington, 1959 NE Pacific Street, Seattle, WA, 98195, USA. .,Program in Neurobiology and Behavior, University of Washington, Health Sciences Center, Seattle, WA, 98195, USA.
| |
Collapse
|
76
|
G-Protein Coupled Receptor Kinase 2 Minimally Regulates Melanopsin Activity in Intrinsically Photosensitive Retinal Ganglion Cells. PLoS One 2015; 10:e0128690. [PMID: 26069965 PMCID: PMC4467020 DOI: 10.1371/journal.pone.0128690] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 04/29/2015] [Indexed: 12/20/2022] Open
Abstract
Phosphorylation is a primary modulator of mammalian G-protein coupled receptor (GPCR) activity. The GPCR melanopsin is the photopigment of intrinsically photosensitive retinal ganglion cells (ipRGCs) in the mammalian retina. Recent evidence from in vitro experiments suggests that the G-protein coupled receptor kinase 2 (GRK2) phosphorylates melanopsin and reduces its activity following light exposure. Using an ipRGC-specific GRK2 loss-of-function mouse, we show that GRK2 loss alters melanopsin response dynamics and termination time in postnatal day 8 (P8) ipRGCs but not in older animals. However, the alterations are small in comparison to the changes reported for other opsins with loss of their cognate GRK. These results suggest GRK2 contributes to melanopsin deactivation, but that other mechanisms account for most of modulation of melanopsin activity in ipRGCs.
Collapse
|
77
|
Vosko A, van Diepen HC, Kuljis D, Chiu AM, Heyer D, Terra H, Carpenter E, Michel S, Meijer JH, Colwell CS. Role of vasoactive intestinal peptide in the light input to the circadian system. Eur J Neurosci 2015; 42:1839-48. [PMID: 25885685 DOI: 10.1111/ejn.12919] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Revised: 04/11/2015] [Accepted: 04/13/2015] [Indexed: 12/11/2022]
Abstract
The neuropeptide vasoactive intestinal peptide (VIP) is expressed at high levels in a subset of neurons in the ventral region of the suprachiasmatic nucleus (SCN). While VIP is known to be important for the synchronization of the SCN network, the role of VIP in photic regulation of the circadian system has received less attention. In the present study, we found that the light-evoked increase in electrical activity in vivo was unaltered by the loss of VIP. In the absence of VIP, the ventral SCN still exhibited N-methyl-d-aspartate-evoked responses in a brain slice preparation, although the absolute levels of neural activity before and after treatment were significantly reduced. Next, we used calcium imaging techniques to determine if the loss of VIP altered the calcium influx due to retinohypothalamic tract stimulation. The magnitude of the evoked calcium influx was not reduced in the ventral SCN, but did decline in the dorsal SCN regions. We examined the time course of the photic induction of Period1 in the SCN using in situ hybridization in VIP-mutant mice. We found that the initial induction of Period1 was not reduced by the loss of this signaling peptide. However, the sustained increase in Period1 expression (after 30 min) was significantly reduced. Similar results were found by measuring the light induction of cFOS in the SCN. These findings suggest that VIP is critical for longer-term changes within the SCN circuit, but does not play a role in the acute light response.
Collapse
Affiliation(s)
- Andrew Vosko
- Department of Structural Medicine, Rocky Vista University, Parker, CO, USA
| | - Hester C van Diepen
- Laboratory of Neurophysiology, Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Dika Kuljis
- Department of Psychiatry & Biobehavioral Sciences, University of California - Los Angeles, Los Angeles, CA, 90024, USA
| | - Andrew M Chiu
- Medical Scientist Training Program, Northwestern University, Evanston, IL, USA
| | - Djai Heyer
- Laboratory of Neurophysiology, Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Huub Terra
- Laboratory of Neurophysiology, Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Ellen Carpenter
- Department of Psychiatry & Biobehavioral Sciences, University of California - Los Angeles, Los Angeles, CA, 90024, USA
| | - Stephan Michel
- Laboratory of Neurophysiology, Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Johanna H Meijer
- Laboratory of Neurophysiology, Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Christopher S Colwell
- Department of Psychiatry & Biobehavioral Sciences, University of California - Los Angeles, Los Angeles, CA, 90024, USA
| |
Collapse
|
78
|
|
79
|
Renna JM, Chellappa DK, Ross CL, Stabio ME, Berson DM. Melanopsin ganglion cells extend dendrites into the outer retina during early postnatal development. Dev Neurobiol 2015; 75:935-46. [PMID: 25534911 DOI: 10.1002/dneu.22260] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 11/14/2014] [Accepted: 12/17/2014] [Indexed: 01/10/2023]
Abstract
Melanopsin ganglion cells express the photopigment melanopsin and are the first functional photoreceptors to develop in the mammalian retina. They have been shown to play a variety of important roles in visual development and behavior in the early postnatal period (Johnson et al., 2010; Kirkby and Feller, 2013; Rao et al., 2013; Renna et al., 2011). Here, we probed the maturation of the dendritic arbors of melanopsin ganglion cells during this developmental period in mice. We found that some melanopsin ganglion cells (mainly the M1-subtype) transiently extend their dendrites not only into the inner plexiform layer (where they receive synaptic inputs from bipolar and amacrine cells) but also into the outer plexiform layer, where in mature retina, rod and cone photoreceptors are thought to contact only bipolar and horizontal cells. Thus, some immature melanopsin ganglion cells are biplexiform. This feature is much less common although still present in the mature retina. It reaches peak incidence 8-12 days after birth, before the eyes open and bipolar cells are sufficiently mature to link rods and cones to ganglion cells. At this age, some outer dendrites of melanopsin ganglion cells lie in close apposition to the axon terminals of cone photoreceptors and express a postsynaptic marker of glutamatergic transmission, postsynaptic density-95 protein (PSD-95). These findings raise the possibility of direct, monosynaptic connections between cones and melanopsin ganglion cells in the early postnatal retina. We provide a detailed description of the developmental profile of these processes and consider their possible functional and evolutionary significance.
Collapse
Affiliation(s)
- Jordan M Renna
- Department of Biology, University of Akron, 185 E. Mill St., Akron, Ohio, 44325-3908
| | - Deepa K Chellappa
- Department of Neuroscience, Brown University, 185 Meeting Street, Providence, Rhode Island, 02912
| | - Christopher L Ross
- Department of Biology, University of Akron, 185 E. Mill St., Akron, Ohio, 44325-3908
| | - Maureen E Stabio
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, 12801 E. 17th Ave, RC1 South 12120, Aurora, Colorado, 80045
| | - David M Berson
- Department of Neuroscience, Brown University, 185 Meeting Street, Providence, Rhode Island, 02912
| |
Collapse
|
80
|
Reifler AN, Chervenak AP, Dolikian ME, Benenati BA, Meyers BS, Demertzis ZD, Lynch AM, Li BY, Wachter RD, Abufarha FS, Dulka EA, Pack W, Zhao X, Wong KY. The rat retina has five types of ganglion-cell photoreceptors. Exp Eye Res 2015; 130:17-28. [PMID: 25450063 PMCID: PMC4276437 DOI: 10.1016/j.exer.2014.11.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 10/27/2014] [Accepted: 11/17/2014] [Indexed: 01/30/2023]
Abstract
Intrinsically photosensitive retinal ganglion cells (ipRGCs) are inner retinal photoreceptors that mediate non-image-forming visual functions, e.g. pupillary constriction, regulation of pineal melatonin release, and circadian photoentrainment. Five types of ipRGCs were recently discovered in mouse, but whether they exist in other mammals remained unknown. We report that the rat also has five types of ipRGCs, whose morphologies match those of mouse ipRGCs; this is the first demonstration of all five cell types in a non-mouse species. Through immunostaining and λmax measurements, we showed that melanopsin is likely the photopigment of all rat ipRGCs. The various cell types exhibited diverse spontaneous spike rates, with the M1 type spiking the least and M4 spiking the most, just like we had observed for their mouse counterparts. Also similar to mouse, all ipRGCs in rat generated not only sluggish intrinsic photoresponses but also fast, synaptically driven ones. However, we noticed two significant differences between these species. First, whereas we learned previously that all mouse ipRGCs had equally sustained synaptic light responses, rat M1 cells' synaptic photoresponses were far more transient than those of M2-M5. Since M1 cells provide all input to the circadian clock, this rat-versus-mouse discrepancy could explain the difference in photoentrainment threshold between mouse and other species. Second, rat ipRGCs' melanopsin-based spiking photoresponses could be classified into three varieties, but only two were discerned for mouse ipRGCs. This correlation of spiking photoresponses with cell types will help researchers classify ipRGCs in multielectrode-array (MEA) spike recordings.
Collapse
Affiliation(s)
- Aaron N Reifler
- Department of Ophthalmology & Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA
| | - Andrew P Chervenak
- Department of Ophthalmology & Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA
| | - Michael E Dolikian
- Department of Ophthalmology & Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA
| | - Brian A Benenati
- Department of Ophthalmology & Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA
| | - Benjamin S Meyers
- Department of Ophthalmology & Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA
| | - Zachary D Demertzis
- Department of Ophthalmology & Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA
| | - Andrew M Lynch
- Department of Ophthalmology & Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA
| | - Benjamin Y Li
- Department of Ophthalmology & Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA
| | - Rebecca D Wachter
- Department of Ophthalmology & Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA
| | - Fady S Abufarha
- Department of Ophthalmology & Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA
| | - Eden A Dulka
- Department of Ophthalmology & Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA
| | - Weston Pack
- Department of Ophthalmology & Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA
| | - Xiwu Zhao
- Department of Ophthalmology & Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA
| | - Kwoon Y Wong
- Department of Ophthalmology & Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA; Department of Molecular, Cellular & Developmental Biology, University of Michigan, Ann Arbor, MI 48105, USA.
| |
Collapse
|
81
|
Hughes S, Jagannath A, Hankins MW, Foster RG, Peirson SN. Photic regulation of clock systems. Methods Enzymol 2014; 552:125-43. [PMID: 25707275 DOI: 10.1016/bs.mie.2014.10.018] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Circadian rhythms in physiology and behavior provide a selective advantage by enabling organisms to anticipate rhythmic changes in their environment. These rhythms are based upon a molecular clock generated via an intracellular transcriptional-translational feedback loop involving a number of key clock genes. However, to be of practical use, circadian rhythms need to be entrained to the external environment. In mammals, the primary signal for entrainment is light detected by the photoreceptors of the eye. Research on the mechanisms of photic entrainment has identified a novel photoreceptor system in the retina, consisting of photosensitive retinal ganglion cells expressing the photopigment melanopsin. Light input from these retinal photoreceptors reaches the master circadian pacemaker in the suprachiasmatic nuclei (SCN) via the retinohypothalamic tract, where it then interacts with the molecular clock to bring about entrainment. This chapter focuses on the retinal photoreceptors mediating entrainment, and how light information from the retina is transmitted to the SCN, before detailing recent advances in our understanding of how the molecular clock within the SCN is regulated by light input. Finally, the primary assays that have been used to measure photic entrainment are described.
Collapse
Affiliation(s)
- Steven Hughes
- Sleep and Circadian Institute (SCNi), Nuffield Department of Clinical Neurosciences (Nuffield Laboratory of Ophthalmology), University of Oxford, Oxford, United Kingdom
| | - Aarti Jagannath
- Sleep and Circadian Institute (SCNi), Nuffield Department of Clinical Neurosciences (Nuffield Laboratory of Ophthalmology), University of Oxford, Oxford, United Kingdom
| | - Mark W Hankins
- Sleep and Circadian Institute (SCNi), Nuffield Department of Clinical Neurosciences (Nuffield Laboratory of Ophthalmology), University of Oxford, Oxford, United Kingdom
| | - Russell G Foster
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom.
| | - Stuart N Peirson
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
82
|
Landgraf D, Koch CE, Oster H. Embryonic development of circadian clocks in the mammalian suprachiasmatic nuclei. Front Neuroanat 2014; 8:143. [PMID: 25520627 PMCID: PMC4249487 DOI: 10.3389/fnana.2014.00143] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 11/13/2014] [Indexed: 01/22/2023] Open
Abstract
In most species, self-sustained molecular clocks regulate 24-h rhythms of behavior and physiology. In mammals, a circadian pacemaker residing in the hypothalamic suprachiasmatic nucleus (SCN) receives photic signals from the retina and synchronizes subordinate clocks in non-SCN tissues. The emergence of circadian rhythmicity during development has been extensively studied for many years. In mice, neuronal development in the presumptive SCN region of the embryonic hypothalamus occurs on days 12–15 of gestation. Intra-SCN circuits differentiate during the following days and retinal projections reach the SCN, and thus mediate photic entrainment, only after birth. In contrast the genetic components of the clock gene machinery are expressed much earlier and during midgestation SCN explants and isolated neurons are capable of generating molecular oscillations in culture. In vivo metabolic rhythms in the SCN, however, are observed not earlier than the 19th day of rat gestation, and rhythmic expression of clock genes is hardly detectable until after birth. Together these data indicate that cellular coupling and, thus, tissue-wide synchronization of single-cell rhythms, may only develop very late during embryogenesis. In this mini-review we describe the developmental origin of the SCN structure and summarize our current knowledge about the functional initiation and entrainment of the circadian pacemaker during embryonic development.
Collapse
Affiliation(s)
- Dominic Landgraf
- Center of Circadian Biology and Department of Psychiatry, University of California, San Diego, and Veterans Affairs San Diego Healthcare System San Diego, CA, USA
| | - Christiane E Koch
- Chronophysiology Group, Medical Department I, University of Lübeck Lübeck, Germany
| | - Henrik Oster
- Chronophysiology Group, Medical Department I, University of Lübeck Lübeck, Germany
| |
Collapse
|
83
|
Cui Q, Ren C, Sollars PJ, Pickard GE, So KF. The injury resistant ability of melanopsin-expressing intrinsically photosensitive retinal ganglion cells. Neuroscience 2014; 284:845-853. [PMID: 25446359 PMCID: PMC4637166 DOI: 10.1016/j.neuroscience.2014.11.002] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 10/17/2014] [Accepted: 11/04/2014] [Indexed: 12/19/2022]
Abstract
Neurons in the mammalian retina expressing the photopigment melanopsin have been identified as a class of intrinsically photosensitive retinal ganglion cells (ipRGCs). This discovery more than a decade ago has opened up an exciting new field of retinal research, and following the initial identification of photosensitive ganglion cells, several subtypes have been described. A number of studies have shown that ipRGCs subserve photoentrainment of circadian rhythms. They also influence other non-image forming functions of the visual system, such as the pupillary light reflex, sleep, cognition, mood, light aversion and development of the retina. These novel photosensitive neurons also influence form vision by contributing to contrast detection. Furthermore, studies have shown that ipRGCs are more injury-resistant following optic nerve injury, in animal models of glaucoma, and in patients with mitochondrial optic neuropathies, i.e., Leber’s hereditary optic neuropathy and dominant optic atrophy. There is also an indication that these cells may be resistant to glutamate-induced excitotoxicity. Herein we provide an overview of ipRGCs and discuss the injury-resistant character of these neurons under certain pathological and experimental conditions.
Collapse
Affiliation(s)
- Q Cui
- Guangdong-HongKong-Macau Institute of CNS Regeneration, Jinan University, Guangdong, PR China; Guangdong Medical Key Laboratory of Brain Function and Diseases, Jinan University, Guangzhou, PR China; GHM Collaboration and Innovation Center for Tissue Regeneration and Repair, Jinan University, Guangzhou, PR China
| | - C Ren
- Guangdong-HongKong-Macau Institute of CNS Regeneration, Jinan University, Guangdong, PR China; Guangdong Medical Key Laboratory of Brain Function and Diseases, Jinan University, Guangzhou, PR China; GHM Collaboration and Innovation Center for Tissue Regeneration and Repair, Jinan University, Guangzhou, PR China
| | - P J Sollars
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska, Lincoln, NE 68583, USA
| | - G E Pickard
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska, Lincoln, NE 68583, USA; Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - K-F So
- Guangdong-HongKong-Macau Institute of CNS Regeneration, Jinan University, Guangdong, PR China; Guangdong Medical Key Laboratory of Brain Function and Diseases, Jinan University, Guangzhou, PR China; GHM Collaboration and Innovation Center for Tissue Regeneration and Repair, Jinan University, Guangzhou, PR China; Department of Ophthalmology, University of Hong Kong, Hong Kong.
| |
Collapse
|
84
|
Allen AE, Storchi R, Martial FP, Petersen RS, Montemurro MA, Brown TM, Lucas RJ. Melanopsin-driven light adaptation in mouse vision. Curr Biol 2014; 24:2481-90. [PMID: 25308073 PMCID: PMC4228053 DOI: 10.1016/j.cub.2014.09.015] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 08/06/2014] [Accepted: 09/03/2014] [Indexed: 01/25/2023]
Abstract
BACKGROUND In bright light, mammals use a distinct photopigment (melanopsin) to measure irradiance for centrally mediated responses such as circadian entrainment. We aimed to determine whether the information generated by melanopsin is also used by the visual system as a signal for light adaptation. To this end, we compared retinal and thalamic responses to a range of artificial and natural visual stimuli presented using spectral compositions that either approximate the mouse's experience of natural daylight ("daylight") or are selectively depleted of wavelengths to which melanopsin is most sensitive ("mel-low"). RESULTS We found reproducible and reversible changes in the flash electroretinogram between daylight and mel-low. Simultaneous recording in the dorsal lateral geniculate nucleus (dLGN) revealed that these reflect changes in feature selectivity of visual circuits in both temporal and spatial dimensions. A substantial fraction of units preferred finer spatial patterns in the daylight condition, while the population of direction-sensitive units became tuned to faster motion. The dLGN contained a richer, more reliable encoding of natural scenes in the daylight condition. These effects were absent in mice lacking melanopsin. CONCLUSIONS The feature selectivity of many neurons in the mouse dLGN is adjusted according to a melanopsin-dependent measure of environmental brightness. These changes originate, at least in part, within the retina. Melanopsin performs a role analogous to a photographer's light meter, providing an independent measure of irradiance that determines optimal setting for visual circuits.
Collapse
Affiliation(s)
- Annette E Allen
- Faculty of Life Sciences, Manchester University, Oxford Road, Manchester M13 9PT, UK.
| | - Riccardo Storchi
- Faculty of Life Sciences, Manchester University, Oxford Road, Manchester M13 9PT, UK
| | - Franck P Martial
- Faculty of Life Sciences, Manchester University, Oxford Road, Manchester M13 9PT, UK
| | - Rasmus S Petersen
- Faculty of Life Sciences, Manchester University, Oxford Road, Manchester M13 9PT, UK
| | - Marcelo A Montemurro
- Faculty of Life Sciences, Manchester University, Oxford Road, Manchester M13 9PT, UK
| | - Timothy M Brown
- Faculty of Life Sciences, Manchester University, Oxford Road, Manchester M13 9PT, UK
| | - Robert J Lucas
- Faculty of Life Sciences, Manchester University, Oxford Road, Manchester M13 9PT, UK.
| |
Collapse
|
85
|
Sodhi P, Hartwick ATE. Adenosine modulates light responses of rat retinal ganglion cell photoreceptors througha cAMP-mediated pathway. J Physiol 2014; 592:4201-20. [PMID: 25038240 DOI: 10.1113/jphysiol.2014.276220] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Adenosine is an established neuromodulator in the mammalian retina, with A1 adenosine receptors being especially prevalent in the innermost ganglion cell layer. Activation of A1 receptors causes inhibition of adenylate cyclase, decreases in intracellular cyclic AMP (cAMP) levels and inhibition of protein kinase A (PKA). In this work, our aim was to characterize the effects of adenosine on the light responses of intrinsically photosensitive retinal ganglion cells (ipRGCs) and to determine whether these photoreceptors are subject to neuromodulation through intracellular cAMP-related signalling pathways. Using multielectrode array recordings from postnatal and adult rat retinas, we demonstrated that adenosine significantly shortened the duration of ipRGC photoresponses and reduced the number of light-evoked spikes fired by these neurons. The effects were A1 adenosine receptor-mediated, and the expression of this receptor on melanopsin-containing ipRGCs was confirmed by calcium imaging experiments on isolated cells in purified cultures. While inhibition of the cAMP/PKA pathway by adenosine shortened ipRGC light responses, stimulation of this pathway with compounds such as forskolin had the opposite effect and lengthened the duration of ipRGC spiking. Our findings reveal that the modification of ipRGC photoresponses through a cAMP/PKA pathway is a general feature of rat ganglion cell photoreceptors, and this pathway can be inhibited through activation of A1 receptors by adenosine. As adenosine levels in the retina rise at night, adenosinergic modulation of ipRGCs may serve as an internal regulatory mechanism to limit transmission of nocturnal photic signals by ipRGCs to the brain. Targeting retinal A1 adenosine receptors for ipRGC inhibition represents a potential therapeutic target for sleep disorders and migraine-associated photophobia.
Collapse
Affiliation(s)
- Puneet Sodhi
- Department of Neuroscience, Ohio State University, Columbus, OH, 43210, USA
| | | |
Collapse
|
86
|
Hughes S, Jagannath A, Hickey D, Gatti S, Wood M, Peirson SN, Foster RG, Hankins MW. Using siRNA to define functional interactions between melanopsin and multiple G Protein partners. Cell Mol Life Sci 2014; 72:165-79. [PMID: 24958088 PMCID: PMC4282707 DOI: 10.1007/s00018-014-1664-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 05/10/2014] [Accepted: 06/02/2014] [Indexed: 12/13/2022]
Abstract
Melanopsin expressing photosensitive retinal ganglion cells (pRGCs) represent a third class of ocular photoreceptors and mediate a range of non-image forming responses to light. Melanopsin is a G protein coupled receptor (GPCR) and existing data suggest that it employs a membrane bound signalling cascade involving Gnaq/11 type G proteins. However, to date the precise identity of the Gα subunits involved in melanopsin phototransduction remains poorly defined. Here we show that Gnaq, Gna11 and Gna14 are highly co-expressed in pRGCs of the mouse retina. Furthermore, using RNAi based gene silencing we show that melanopsin can signal via Gnaq, Gna11 or Gna14 in vitro, and demonstrate that multiple members of the Gnaq/11 subfamily, including Gna14 and at least Gnaq or Gna11, can participate in melanopsin phototransduction in vivo and contribute to the pupillary light responses of mice lacking rod and cone photoreceptors. This diversity of G protein interactions suggests additional complexity in the melanopsin phototransduction cascade and may provide a basis for generating the diversity of light responses observed from pRGC subtypes.
Collapse
Affiliation(s)
- Steven Hughes
- Nuffield Laboratory of Ophthalmology, University of Oxford, Oxford, OX3 9DU UK
| | - Aarti Jagannath
- Nuffield Laboratory of Ophthalmology, University of Oxford, Oxford, OX3 9DU UK
- F. Hoffman La Roche, RED Research and Development, CNS DTA, Basel, Switzerland
| | - Doron Hickey
- Nuffield Laboratory of Ophthalmology, University of Oxford, Oxford, OX3 9DU UK
| | - Silvia Gatti
- F. Hoffman La Roche, RED Research and Development, CNS DTA, Basel, Switzerland
| | - Matthew Wood
- Department of Anatomy, Physiology and Genetics, University of Oxford, Le Gros Clark Building, South Parks Road, Oxford, OX1 3QX UK
| | - Stuart N. Peirson
- Nuffield Laboratory of Ophthalmology, University of Oxford, Oxford, OX3 9DU UK
| | - Russell G. Foster
- Nuffield Laboratory of Ophthalmology, University of Oxford, Oxford, OX3 9DU UK
| | - Mark W. Hankins
- Nuffield Laboratory of Ophthalmology, University of Oxford, Oxford, OX3 9DU UK
| |
Collapse
|
87
|
Abstract
Light has profoundly influenced the evolution of life on earth. As widely appreciated, light enables us to generate images of our environment. However, light - through intrinsically photosensitive retinal ganglion cells (ipRGCs) - also influences behaviours that are essential for our health and quality of life but are independent of image formation. These include the synchronization of the circadian clock to the solar day, tracking of seasonal changes and the regulation of sleep. Irregular light environments lead to problems in circadian rhythms and sleep, which eventually cause mood and learning deficits. Recently, it was found that irregular light can also directly affect mood and learning without producing major disruptions in circadian rhythms and sleep. In this Review, we discuss the indirect and direct influence of light on mood and learning, and provide a model for how light, the circadian clock and sleep interact to influence mood and cognitive functions.
Collapse
|
88
|
Chew KS, Schmidt TM, Rupp AC, Kofuji P, Trimarchi JM. Loss of gq/11 genes does not abolish melanopsin phototransduction. PLoS One 2014; 9:e98356. [PMID: 24870805 PMCID: PMC4037210 DOI: 10.1371/journal.pone.0098356] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 05/01/2014] [Indexed: 11/29/2022] Open
Abstract
In mammals, a subset of retinal ganglion cells (RGCs) expresses the photopigment melanopsin, which renders them intrinsically photosensitive (ipRGCs). These ipRGCs mediate various non-image-forming visual functions such as circadian photoentrainment and the pupillary light reflex (PLR). Melanopsin phototransduction begins with activation of a heterotrimeric G protein of unknown identity. Several studies of melanopsin phototransduction have implicated a G-protein of the Gq/11 family, which consists of Gna11, Gna14, Gnaq and Gna15, in melanopsin-evoked depolarization. However, the exact identity of the Gq/11 gene involved in this process has remained elusive. Additionally, whether Gq/11 G-proteins are necessary for melanopsin phototransduction in vivo has not yet been examined. We show here that the majority of ipRGCs express both Gna11 and Gna14, but neither Gnaq nor Gna15. Animals lacking the melanopsin protein have well-characterized deficits in the PLR and circadian behaviors, and we therefore examined these non-imaging forming visual functions in a variety of single and double mutants for Gq/11 family members. All Gq/11 mutant animals exhibited PLR and circadian behaviors indistinguishable from WT. In addition, we show persistence of ipRGC light-evoked responses in Gna11−/−; Gna14−/− retinas using multielectrode array recordings. These results demonstrate that Gq, G11, G14, or G15 alone or in combination are not necessary for melanopsin-based phototransduction, and suggest that ipRGCs may be able to utilize a Gq/11-independent phototransduction cascade in vivo.
Collapse
Affiliation(s)
- Kylie S. Chew
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, United States of America
- * E-mail:
| | - Tiffany M. Schmidt
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Alan C. Rupp
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Paulo Kofuji
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Jeffrey M. Trimarchi
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa, United States of America
| |
Collapse
|
89
|
Zhao X, Stafford BK, Godin AL, King WM, Wong KY. Photoresponse diversity among the five types of intrinsically photosensitive retinal ganglion cells. J Physiol 2014; 592:1619-36. [PMID: 24396062 DOI: 10.1113/jphysiol.2013.262782] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Intrinsically photosensitive retinal ganglion cells (ipRGCs) mediate non-image-forming visual responses, including pupillary constriction, circadian photoentrainment and suppression of pineal melatonin secretion. Five morphological types of ipRGCs, M1-M5, have been identified in mice. In order to understand their functions better, we studied the photoresponses of all five cell types, by whole-cell recording from fluorescently labelled ipRGCs visualized using multiphoton microscopy. All ipRGC types generated melanopsin-based ('intrinsic') as well as synaptically driven ('extrinsic') light responses. The intrinsic photoresponses of M1 cells were lower threshold, higher amplitude and faster than those of M2-M5. The peak amplitudes of extrinsic light responses differed among the ipRGC types; however, the responses of all cell types had comparable thresholds, kinetics and waveforms, and all cells received rod input. While all five types exhibited inhibitory amacrine-cell and excitatory bipolar-cell inputs from the 'on' channel, M1 and M3 received additional 'off'-channel inhibition, possibly through their 'off'-sublamina dendrites. The M2-M5 ipRGCs had centre-surround-organized receptive fields, implicating a capacity to detect spatial contrast. In contrast, the receptive fields of M1 cells lacked surround antagonism, which might be caused by the surround of the inhibitory input nullifying the surround of the excitatory input. All ipRGCs responded robustly to a wide range of motion speeds, and M1-M4 cells appeared tuned to different speeds, suggesting that they might analyse the speed of motion. Retrograde labelling revealed that M1-M4 cells project to the superior colliculus, suggesting that the contrast and motion information signalled by these cells could be used by this sensorimotor area to detect novel objects and motion in the visual field.
Collapse
Affiliation(s)
- Xiwu Zhao
- Kellogg Eye Center, 1000 Wall Street, Ann Arbor, MI 48105, USA.
| | | | | | | | | |
Collapse
|
90
|
Matynia A. Blurring the boundaries of vision: novel functions of intrinsically photosensitive retinal ganglion cells. J Exp Neurosci 2013; 7:43-50. [PMID: 25157207 PMCID: PMC4089729 DOI: 10.4137/jen.s11267] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Mammalian vision consists of the classic image-forming pathway involving rod and cone photoreceptors interacting through a neural network within the retina before sending signals to the brain, and a non image-forming pathway that uses a photosensitive cell employing an alternative and evolutionary ancient phototransduction system and a direct connection to various centers in the brain. Intrinsically photosensitive retinal ganglion cells (ipRGCs) contain the photopigment melanopsin, which is independently capable of photon detection while also receiving synaptic input from rod and cone photoreceptors via bipolar cells. These cells are the retinal sentry for subconscious visual processing that controls circadian photoentrainment and the pupillary light reflex. Classified as irradiance detectors, recent investigations have led to expanding roles for this specific cell type and its own neural pathways, some of which are blurring the boundaries between image-forming and non image-forming visual processes.
Collapse
Affiliation(s)
- Anna Matynia
- Department of Ophthalmology, Jules Stein Eye Institute, David Geffen School of Medicine, UCLA, Los Angeles, CA. ; Brain Research Institute, UCLA, Los Angeles, CA
| |
Collapse
|
91
|
Karnas D, Mordel J, Bonnet D, Pévet P, Hicks D, Meissl H. Heterogeneity of intrinsically photosensitive retinal ganglion cells in the mouse revealed by molecular phenotyping. J Comp Neurol 2013; 521:912-32. [PMID: 22886938 DOI: 10.1002/cne.23210] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Revised: 08/01/2012] [Accepted: 08/03/2012] [Indexed: 11/11/2022]
Abstract
Intrinsically photosensitive retinal ganglion cell (ipRGC) types can be distinguished by their dendritic tree stratification and intensity of melanopsin staining. We identified heavily stained melanopsin-positive M1 cells branching in the outermost part of the inner plexiform layer (IPL) and weakly melanopsin-positive M2 cells branching in the innermost layer of the IPL. A third type can be distinguished by the displacement of the soma to the inner nuclear layer and has morphological similarities with either M1 cells or M2 cells, and is termed here displaced or M-d cells. The aim of the present study was to examine the phenotypic traits of ipRGC types. Using whole retinae from adult mice, we performed immunohistochemistry using melanopsin immunostaining and a number of antibodies directed against proteins typically expressed in retinal ganglion cells. The majority of M1 and M2 ipRGCs expressed Isl-1, microtubule associated protein-2 (MAP2), γ-synuclein, and NeuN, whereas Brn3 transcription factor and the different neurofilaments (NF68, NF160, NF200) were able to discriminate between ipRGC subtypes. Brn3 was expressed preferentially in M2 cells and in a small subpopulation of weakly melanopsin-positive M-d cells with similarities to M2 cells. All three neurofilaments were primarily expressed in large M2 cells with similarities to the recently described alpha-like M4 cells, but not in M1 cells. Expression of NF68 and NF160 was also observed in a few large M-d ipRGCs. These findings show that ipRGCs are not a phenotypically homogenous population and that specific neuronal markers (Brn3 and neurofilament) can partly distinguish between different ipRGC subtypes.
Collapse
Affiliation(s)
- Diana Karnas
- Department of Neuroanatomy, Max Planck Institute for Brain Research, 60528 Frankfurt/M, Germany
| | | | | | | | | | | |
Collapse
|
92
|
Karnas D, Hicks D, Mordel J, Pévet P, Meissl H. Intrinsic photosensitive retinal ganglion cells in the diurnal rodent, Arvicanthis ansorgei. PLoS One 2013; 8:e73343. [PMID: 23951350 PMCID: PMC3739746 DOI: 10.1371/journal.pone.0073343] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 07/29/2013] [Indexed: 01/15/2023] Open
Abstract
Intrinsically photosensitive retinal ganglion cells (ipRGCs) represent a new class of photoreceptors which support a variety of non-image forming physiological functions, such as circadian photoentrainment, pupillary light reflex and masking responses to light. In view of the recently proposed role of retinal inputs for the regulation of diurnal and nocturnal behavior, we performed the first deep analysis of the ipRGC system in a diurnal rodent model, Arvicanthisansorgei, and compared the anatomical and physiological properties of ipRGCs with those of nocturnal mice. Based on somata location, stratification pattern and melanopsin expression, we identified two main ipRGC types in the retina of Arvicanthis: M1, constituting 74% of all ipRGCs and non-M1 (consisting mainly of the M2 type) constituting the following 25%. The displaced ipRGCs were rarely encountered. Phenotypical staining patterns of ganglion cell markers showed a preferential expression of Brn3 and neurofilaments in non-M1 ipRGCs. In general, the anatomical properties and molecular phenotyping of ipRGCs in Arvicanthis resemble ipRGCs of the mouse retina, however the percentage of M1 cells is considerably higher in the diurnal animal. Multi-electrode array recordings (MEA) identified in newborn retinas of Arvicanthis three response types of ipRGCs (type I, II and III) which are distinguished by their light sensitivity, response strength, latency and duration. Type I ipRGCs exhibited a high sensitivity to short light flashes and showed, contrary to mouse type I ipRGCs, robust light responses to 10 ms flashes. The morphological, molecular and physiological analysis reveals very few differences between mouse and Arvicanthis ipRGCs. These data imply that the influence of retinal inputs in defining the temporal niche could be related to a stronger cone input into ipRGCs in the cone-rich Arvicanthis retina, and to the higher sensitivity of type I ipRGCs and elevated proportion of M1 cells.
Collapse
Affiliation(s)
- Diana Karnas
- Neuroanatomical Department, Max Planck Institute for Brain Research, Frankfurt/M, Germany
- Institute for Cellular and Integrative Neuroscience, CNRS UPR-3212 Strasbourg University, Strasbourg, France
| | - David Hicks
- Institute for Cellular and Integrative Neuroscience, CNRS UPR-3212 Strasbourg University, Strasbourg, France
- * E-mail: (HM); (DH)
| | - Jérôme Mordel
- Neuroanatomical Department, Max Planck Institute for Brain Research, Frankfurt/M, Germany
- Institute for Cellular and Integrative Neuroscience, CNRS UPR-3212 Strasbourg University, Strasbourg, France
| | - Paul Pévet
- Institute for Cellular and Integrative Neuroscience, CNRS UPR-3212 Strasbourg University, Strasbourg, France
| | - Hilmar Meissl
- Neuroanatomical Department, Max Planck Institute for Brain Research, Frankfurt/M, Germany
- * E-mail: (HM); (DH)
| |
Collapse
|
93
|
Kirkby LA, Feller MB. Intrinsically photosensitive ganglion cells contribute to plasticity in retinal wave circuits. Proc Natl Acad Sci U S A 2013; 110:12090-5. [PMID: 23821744 PMCID: PMC3718101 DOI: 10.1073/pnas.1222150110] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Correlated spontaneous activity in the developing nervous system is robust to perturbations in the circuits that generate it, suggesting that mechanisms exist to ensure its maintenance. We examine this phenomenon in the developing retina, where blockade of cholinergic circuits that mediate retinal waves during the first postnatal week leads to the generation of "recovered" waves through a distinct, gap junction-mediated circuit. Unlike cholinergic waves, these recovered waves were modulated by dopaminergic and glutamatergic signaling, and required the presence of the gap junction protein connexin 36. Moreover, in contrast to cholinergic waves, recovered waves were stimulated by ambient light via activation of melanopsin-expressing intrinsically photosensitive retinal ganglion cells. The involvement of intrinsically photosensitive retinal ganglion cells in this reconfiguration of wave-generating circuits offers an avenue of retinal circuit plasticity during development that was previously unknown.
Collapse
Affiliation(s)
| | - Marla B. Feller
- Department of Molecular and Cell Biology and the Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720
| |
Collapse
|
94
|
Weng S, Estevez ME, Berson DM. Mouse ganglion-cell photoreceptors are driven by the most sensitive rod pathway and by both types of cones. PLoS One 2013; 8:e66480. [PMID: 23762490 PMCID: PMC3676382 DOI: 10.1371/journal.pone.0066480] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 05/07/2013] [Indexed: 11/21/2022] Open
Abstract
Intrinsically photosensitive retinal ganglion cells (iprgcs) are depolarized by light by two mechanisms: directly, through activation of their photopigment melanopsin; and indirectly through synaptic circuits driven by rods and cones. To learn more about the rod and cone circuits driving ipRGCs, we made multielectrode array (MEA) and patch-clamp recordings in wildtype and genetically modified mice. Rod-driven ON inputs to ipRGCs proved to be as sensitive as any reaching the conventional ganglion cells. These signals presumably pass in part through the primary rod pathway, involving rod bipolar cells and AII amacrine cells coupled to ON cone bipolar cells through gap junctions. Consistent with this interpretation, the sensitive rod ON input to ipRGCs was eliminated by pharmacological or genetic disruption of gap junctions, as previously reported for conventional ganglion cells. A presumptive cone input was also detectable as a brisk, synaptically mediated ON response that persisted after disruption of rod ON pathways. This was roughly three log units less sensitive than the rod input. Spectral analysis revealed that both types of cones, the M- and S-cones, contribute to this response and that both cone types drive ON responses. This contrasts with the blue-OFF, yellow-ON chromatic opponency reported in primate ipRGCs. The cone-mediated response was surprisingly persistent during steady illumination, echoing the tonic nature of both the rod input to ipRGCs and their intrinsic, melanopsin-based phototransduction. These synaptic inputs greatly expand the dynamic range and spectral bandpass of the non-image-forming visual functions for which ipRGCs provide the principal retinal input.
Collapse
Affiliation(s)
- Shijun Weng
- Department of Neuroscience, Brown University, Providence, Rhode Island, United States of America
- Institute of Neurobiology, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, P.R. China
| | - Maureen E. Estevez
- Department of Neuroscience, Brown University, Providence, Rhode Island, United States of America
| | - David M. Berson
- Department of Neuroscience, Brown University, Providence, Rhode Island, United States of America
| |
Collapse
|
95
|
Kudo T, Tahara Y, Gamble KL, McMahon DG, Block GD, Colwell CS. Vasoactive intestinal peptide produces long-lasting changes in neural activity in the suprachiasmatic nucleus. J Neurophysiol 2013; 110:1097-106. [PMID: 23741043 DOI: 10.1152/jn.00114.2013] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The neuropeptide vasoactive intestinal peptide (VIP) is expressed at high levels in the neurons of the suprachiasmatic nucleus (SCN). While VIP is known to be important to the input and output pathways from the SCN, the physiological effects of VIP on electrical activity of SCN neurons are not well known. Here the impact of VIP on firing rate of SCN neurons was investigated in mouse slice cultures recorded during the night. The application of VIP produced an increase in electrical activity in SCN slices that lasted several hours after treatment. This is a novel mechanism by which this peptide can produce long-term changes in central nervous system physiology. The increase in action potential frequency was blocked by a VIP receptor antagonist and lost in a VIP receptor knockout mouse. In addition, inhibitors of both the Epac family of cAMP binding proteins and cAMP-dependent protein kinase (PKA) blocked the induction by VIP. The persistent increase in spike rate following VIP application was not seen in SCN neurons from mice deficient in Kv3 channel proteins and was dependent on the clock protein PER1. These findings suggest that VIP regulates the long-term firing rate of SCN neurons through a VIPR2-mediated increase in the cAMP pathway and implicate the fast delayed rectifier (FDR) potassium currents as one of the targets of this regulation.
Collapse
Affiliation(s)
- Takashi Kudo
- Laboratory of Circadian and Sleep Medicine, Department of Psychiatry and Biobehavioral Sciences, University of California-Los Angeles, CA 90024, USA
| | | | | | | | | | | |
Collapse
|
96
|
Hong J, Zeng Q, Wang H, Kuo DS, Baldridge WH, Wang N. Controlling the number of melanopsin-containing retinal ganglion cells by early light exposure. Exp Eye Res 2013; 111:17-26. [DOI: 10.1016/j.exer.2013.03.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 03/08/2013] [Accepted: 03/14/2013] [Indexed: 11/28/2022]
|
97
|
Adaptation to steady light by intrinsically photosensitive retinal ganglion cells. Proc Natl Acad Sci U S A 2013; 110:7470-5. [PMID: 23589882 DOI: 10.1073/pnas.1304039110] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Intrinsically photosensitive retinal ganglion cells (ipRGCs) are recently discovered photoreceptors in the mammalian eye. These photoreceptors mediate primarily nonimage visual functions, such as pupillary light reflex and circadian photoentrainment, which are generally expected to respond to the absolute light intensity. The classical rod and cone photoreceptors, on the other hand, mediate image vision by signaling contrast, accomplished by adaptation to light. Experiments by others have indicated that the ipRGCs do, in fact, light-adapt. We found the same but, in addition, have now quantified this light adaptation for the M1 ipRGC subtype. Interestingly, in incremental-flash-on-background experiments, the ipRGC's receptor current showed a flash sensitivity that adapted in background light according to the Weber-Fechner relation, well known to describe the adaptation behavior of rods and cones. Part of this light adaptation by ipRGCs appeared to be triggered by a Ca(2+) influx, in that the flash response elicited in the absence of extracellular Ca(2+) showed a normal rising phase but a slower decay phase, resulting in longer time to peak and higher sensitivity. There is, additionally, a prominent Ca(2+)-independent component of light adaptation not typically seen in rods and cones or in invertebrate rhabdomeric photoreceptors.
Collapse
|
98
|
Rao S, Chun C, Fan J, Kofron JM, Yang MB, Hegde RS, Ferrara N, Copenhagen DR, Lang RA. A direct and melanopsin-dependent fetal light response regulates mouse eye development. Nature 2013; 494:243-6. [PMID: 23334418 DOI: 10.1038/nature11823] [Citation(s) in RCA: 161] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Accepted: 12/05/2012] [Indexed: 11/09/2022]
Abstract
Vascular patterning is critical for organ function. In the eye, there is simultaneous regression of embryonic hyaloid vasculature (important to clear the optical path) and formation of the retinal vasculature (important for the high metabolic demands of retinal neurons). These events occur postnatally in the mouse. Here we have identified a light-response pathway that regulates both processes. We show that when mice are mutated in the gene (Opn4) for the atypical opsin melanopsin, or are dark-reared from late gestation, the hyaloid vessels are persistent at 8 days post-partum and the retinal vasculature overgrows. We provide evidence that these vascular anomalies are explained by a light-response pathway that suppresses retinal neuron number, limits hypoxia and, as a consequence, holds local expression of vascular endothelial growth factor (VEGFA) in check. We also show that the light response for this pathway occurs in late gestation at about embryonic day 16 and requires the photopigment in the fetus and not the mother. Measurements show that visceral cavity photon flux is probably sufficient to activate melanopsin-expressing retinal ganglion cells in the mouse fetus. These data thus show that light--the stimulus for function of the mature eye--is also critical in preparing the eye for vision by regulating retinal neuron number and initiating a series of events that ultimately pattern the ocular blood vessels.
Collapse
Affiliation(s)
- Sujata Rao
- The Visual Systems Group, Abrahamson Pediatric Eye Institute, Division of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Affiliation(s)
- Mark E. Kleinman
- Department of Ophthalmology and Visual Sciences, University of Kentucky, Lexington, Kentucky
| | - Jayakrishna Ambati
- Department of Ophthalmology and Visual Sciences, University of Kentucky, Lexington, Kentucky
- Department of Physiology, University of Kentucky, Lexington, Kentucky
- Corresponding author: Jayakrishna Ambati,
| |
Collapse
|
100
|
Axonal synapses utilize multiple synaptic ribbons in the mammalian retina. PLoS One 2012; 7:e52295. [PMID: 23284975 PMCID: PMC3524110 DOI: 10.1371/journal.pone.0052295] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 11/12/2012] [Indexed: 11/21/2022] Open
Abstract
In the mammalian retina, bipolar cells and ganglion cells which stratify in sublamina a of the inner plexiform layer (IPL) show OFF responses to light stimuli while those that stratify in sublamina b show ON responses. This functional relationship between anatomy and physiology is a key principle of retinal organization. However, there are at least three types of retinal neurons, including intrinsically photosensitive retinal ganglion cells (ipRGCs) and dopaminergic amacrine cells, which violate this principle. These cell types have light-driven ON responses, but their dendrites mainly stratify in sublamina a of the IPL, the OFF sublayer. Recent anatomical studies suggested that certain ON cone bipolar cells make axonal or ectopic synapses as they descend through sublamina a, thus providing ON input to cells which stratify in the OFF sublayer. Using immunoelectron microscopy with 3-dimensional reconstruction, we have identified axonal synapses of ON cone bipolar cells in the rabbit retina. Ten calbindin ON cone bipolar axons made en passant ribbon synapses onto amacrine or ganglion dendrites in sublamina a of the IPL. Compared to the ribbon synapses made by bipolar terminals, these axonal ribbon synapses were characterized by a broad postsynaptic element that appeared as a monad and by the presence of multiple short synaptic ribbons. These findings confirm that certain ON cone bipolar cells can provide ON input to amacrine and ganglion cells whose dendrites stratify in the OFF sublayer via axonal synapses. The monadic synapse with multiple ribbons may be a diagnostic feature of the ON cone bipolar axonal synapse in sublamina a. The presence of multiple ribbons and a broad postsynaptic density suggest these structures may be very efficient synapses. We also identified axonal inputs to ipRGCs with the architecture described above.
Collapse
|