51
|
Yamakawa H, Cheng J, Penney J, Gao F, Rueda R, Wang J, Yamakawa S, Kritskiy O, Gjoneska E, Tsai LH. The Transcription Factor Sp3 Cooperates with HDAC2 to Regulate Synaptic Function and Plasticity in Neurons. Cell Rep 2018; 20:1319-1334. [PMID: 28793257 DOI: 10.1016/j.celrep.2017.07.044] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 06/08/2017] [Accepted: 07/18/2017] [Indexed: 11/15/2022] Open
Abstract
The histone deacetylase HDAC2, which negatively regulates synaptic gene expression and neuronal plasticity, is upregulated in Alzheimer's disease (AD) patients and mouse models. Therapeutics targeting HDAC2 hold promise for ameliorating AD-related cognitive impairment; however, attempts to generate HDAC2-specific inhibitors have failed. Here, we take an integrative genomics approach to identify proteins that mediate HDAC2 recruitment to synaptic plasticity genes. Functional screening revealed that knockdown of the transcription factor Sp3 phenocopied HDAC2 knockdown and that Sp3 facilitated recruitment of HDAC2 to synaptic genes. Importantly, like HDAC2, Sp3 expression was elevated in AD patients and mouse models, where Sp3 knockdown ameliorated synaptic dysfunction. Furthermore, exogenous expression of an HDAC2 fragment containing the Sp3-binding domain restored synaptic plasticity and memory in a mouse model with severe neurodegeneration. Our findings indicate that targeting the HDAC2-Sp3 complex could enhance cognitive function without affecting HDAC2 function in other processes.
Collapse
Affiliation(s)
- Hidekuni Yamakawa
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jemmie Cheng
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jay Penney
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Fan Gao
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Richard Rueda
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jun Wang
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Satoko Yamakawa
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Oleg Kritskiy
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Elizabeta Gjoneska
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Li-Huei Tsai
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Broad Institute of Harvard University and Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
| |
Collapse
|
52
|
KMT2A and KMT2B Mediate Memory Function by Affecting Distinct Genomic Regions. Cell Rep 2018; 20:538-548. [PMID: 28723559 DOI: 10.1016/j.celrep.2017.06.072] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 04/09/2017] [Accepted: 06/23/2017] [Indexed: 11/23/2022] Open
Abstract
Kmt2a and Kmt2b are H3K4 methyltransferases of the Set1/Trithorax class. We have recently shown the importance of Kmt2b for learning and memory. Here, we report that Kmt2a is also important in memory formation. We compare the decrease in H3K4 methylation and de-regulation of gene expression in hippocampal neurons of mice with knockdown of either Kmt2a or Kmt2b. Kmt2a and Kmt2b control largely distinct genomic regions and different molecular pathways linked to neuronal plasticity. Finally, we show that the decrease in H3K4 methylation resulting from Kmt2a knockdown partially recapitulates the pattern previously reported in CK-p25 mice, a model for neurodegeneration and memory impairment. Our findings point to the distinct functions of even closely related histone-modifying enzymes and provide essential insight for the development of more efficient and specific epigenetic therapies against brain diseases.
Collapse
|
53
|
Hu Y, Pan S, Zhang HT. Interaction of Cdk5 and cAMP/PKA Signaling in the Mediation of Neuropsychiatric and Neurodegenerative Diseases. ADVANCES IN NEUROBIOLOGY 2018; 17:45-61. [PMID: 28956329 DOI: 10.1007/978-3-319-58811-7_3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Both cyclin-dependent kinase 5 (Cdk5) and cyclic AMP (cAMP)/protein kinase A (PKA) regulate fundamental central nervous system (CNS) functions including neuronal survival, neurite and axonal outgrowth, neuron development and cognition. Cdk5, a serine/threonine kinase, is activated by p35 or p39 and phosphorylates multiple signaling components of various pathways, including cAMP/PKA signaling. Here, we review the recent literature on the interaction between Cdk5 and cAMP/PKA signaling and their role in the mediation of CNS functions and neuropsychiatric and neurodegenerative diseases.
Collapse
Affiliation(s)
- Yafang Hu
- Department of Neurology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, Guangdong, 510515, China.
| | - Suyue Pan
- Department of Neurology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, Guangdong, 510515, China
| | - Han-Ting Zhang
- Department of Behavioral Medicine and Psychiatry, West Virginia University Health Sciences Center, 1 Medical Center Drive, Morgantown, WV, 26506, USA.,Department of Physiology and Pharmacology, West Virginia University Health Sciences Center, 1 Medical Center Drive, Morgantown, WV, 26506, USA.,Institute of Pharmacology, Taishan Medical University, Taian, 271016, China
| |
Collapse
|
54
|
Regensburger M, Prots I, Reimer D, Brachs S, Loskarn S, Lie DC, Mielenz D, Winner B. Impact of Swiprosin-1/Efhd2 on Adult Hippocampal Neurogenesis. Stem Cell Reports 2018; 10:347-355. [PMID: 29337116 PMCID: PMC5830914 DOI: 10.1016/j.stemcr.2017.12.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Revised: 12/13/2017] [Accepted: 12/13/2017] [Indexed: 12/13/2022] Open
Abstract
Swiprosin-1/Efhd2 (Efhd2) is highly expressed in the CNS during development and in the adult. EFHD2 is regulated by Ca2+ binding, stabilizes F-actin, and promotes neurite extension. Previous studies indicated a dysregulation of EFHD2 in human Alzheimer's disease brains. We hypothesized a detrimental effect of genetic ablation of Efhd2 on hippocampal integrity and specifically investigated adult hippocampal neurogenesis. Efhd2 was expressed throughout adult neuronal development and in mature neurons. We observed a severe reduction of the survival of adult newborn neurons in Efhd2 knockouts, starting at the early neuroblast stage. Spine formation and dendrite growth of newborn neurons were compromised in full Efhd2 knockouts, but not upon cell-autonomous Efhd2 deletion. Together with our finding of severe hippocampal tauopathy in Efhd2 knockout mice, these data connect Efhd2 to impaired synaptic plasticity as present in Alzheimer's disease and identify a role of Efhd2 in neuronal survival and synaptic integration in the adult hippocampus. Efhd2 is expressed in the dentate gyrus and its loss reduces adult neurogenesis Reduced neurite complexity and spine density in new neurons of Efhd2 knockout mice Role of cell-extrinsic EFHD2 for dendrite morphology of adult newborn neurons Increased levels of pathological TAU in the hippocampus of Efhd2 knockout mice
Collapse
Affiliation(s)
- Martin Regensburger
- Department of Stem Cell Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Glueckstrasse 6, Erlangen 91054, Germany; Department of Neurology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen 91054, Germany; IZKF Junior Research Group III and BMBF Research Group Neuroscience, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen 91054, Germany
| | - Iryna Prots
- Department of Stem Cell Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Glueckstrasse 6, Erlangen 91054, Germany; IZKF Junior Research Group III and BMBF Research Group Neuroscience, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen 91054, Germany
| | - Dorothea Reimer
- Department of Molecular Immunology, Department of Internal Medicine III, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Glueckstrasse 6, Erlangen 91054, Germany
| | - Sebastian Brachs
- Department of Molecular Immunology, Department of Internal Medicine III, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Glueckstrasse 6, Erlangen 91054, Germany
| | - Sandra Loskarn
- Department of Stem Cell Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Glueckstrasse 6, Erlangen 91054, Germany; Department of Neurology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen 91054, Germany; IZKF Junior Research Group III and BMBF Research Group Neuroscience, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen 91054, Germany
| | - Dieter Chichung Lie
- Emil-Fischer Centre, Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen 91054, Germany
| | - Dirk Mielenz
- Department of Molecular Immunology, Department of Internal Medicine III, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Glueckstrasse 6, Erlangen 91054, Germany.
| | - Beate Winner
- Department of Stem Cell Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Glueckstrasse 6, Erlangen 91054, Germany; IZKF Junior Research Group III and BMBF Research Group Neuroscience, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen 91054, Germany.
| |
Collapse
|
55
|
Nagayoshi T, Isoda K, Mamiya N, Kida S. Hippocampal calpain is required for the consolidation and reconsolidation but not extinction of contextual fear memory. Mol Brain 2017; 10:61. [PMID: 29258546 PMCID: PMC5735908 DOI: 10.1186/s13041-017-0341-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 12/04/2017] [Indexed: 11/10/2022] Open
Abstract
Memory consolidation, reconsolidation, and extinction have been shown to share similar molecular signatures, including new gene expression. Calpain is a Ca2+-dependent protease that exerts its effects through the proteolytic cleavage of target proteins. Neuron-specific conditional deletions of calpain 1 and 2 impair long-term potentiation in the hippocampus and spatial learning. Moreover, recent studies have suggested distinct roles of calpain 1 and 2 in synaptic plasticity. However, the role of hippocampal calpain in memory processes, especially memory consolidation, reconsolidation, and extinction, is still unclear. In the current study, we demonstrated the critical roles of hippocampal calpain in the consolidation, reconsolidation, and extinction of contextual fear memory in mice. We examined the effects of pharmacological inhibition of calpain in the hippocampus on these memory processes, using the N-Acetyl-Leu-Leu-norleucinal (ALLN; calpain 1 and 2 inhibitor). Microinfusion of ALLN into the dorsal hippocampus impaired long-term memory (24 h memory) without affecting short-term memory (2 h memory). Similarly, this pharmacological blockade of calpain in the dorsal hippocampus also disrupted reactivated memory but did not affect memory extinction. Importantly, the systemic administration of ALLN inhibited the induction of c-fos in the hippocampus, which is observed when memory is consolidated. Our observations showed that hippocampal calpain is required for the consolidation and reconsolidation of contextual fear memory. Further, the results suggested that calpain contributes to the regulation of new gene expression that is necessary for these memory processes as a regulator of Ca2+-signal transduction pathway.
Collapse
Affiliation(s)
- Taikai Nagayoshi
- Department of Bioscience, Faculty of Applied Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Kiichiro Isoda
- Department of Bioscience, Faculty of Applied Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Nori Mamiya
- Department of Bioscience, Faculty of Applied Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Satoshi Kida
- Department of Bioscience, Faculty of Applied Bioscience, Tokyo University of Agriculture, Tokyo, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Saitama, Japan
| |
Collapse
|
56
|
Schmauss C. The roles of class I histone deacetylases (HDACs) in memory, learning, and executive cognitive functions: A review. Neurosci Biobehav Rev 2017; 83:63-71. [DOI: 10.1016/j.neubiorev.2017.10.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 09/29/2017] [Accepted: 10/02/2017] [Indexed: 01/06/2023]
|
57
|
Ferreras S, Fernández G, Danelon V, Pisano MV, Masseroni L, Chapleau CA, Krapacher FA, Mlewski EC, Mascó DH, Arias C, Pozzo-Miller L, Paglini MG. Cdk5 Is Essential for Amphetamine to Increase Dendritic Spine Density in Hippocampal Pyramidal Neurons. Front Cell Neurosci 2017; 11:372. [PMID: 29225566 PMCID: PMC5705944 DOI: 10.3389/fncel.2017.00372] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 11/08/2017] [Indexed: 12/12/2022] Open
Abstract
Psychostimulant drugs of abuse increase dendritic spine density in reward centers of the brain. However, little is known about their effects in the hippocampus, where activity-dependent changes in the density of dendritic spine are associated with learning and memory. Recent reports suggest that Cdk5 plays an important role in drug addiction, but its role in psychostimulant's effects on dendritic spines in hippocampus remain unknown. We used in vivo and in vitro approaches to demonstrate that amphetamine increases dendritic spine density in pyramidal neurons of the hippocampus. Primary cultures and organotypic slice cultures were used for cellular, molecular, pharmacological and biochemical analyses of the role of Cdk5/p25 in amphetamine-induced dendritic spine formation. Amphetamine (two-injection protocol) increased dendritic spine density in hippocampal neurons of thy1-green fluorescent protein (GFP) mice, as well as in hippocampal cultured neurons and organotypic slice cultures. Either genetic or pharmacological inhibition of Cdk5 activity prevented the amphetamine-induced increase in dendritic spine density. Amphetamine also increased spine density in neurons overexpressing the strong Cdk5 activator p25. Finally, inhibition of calpain, the protease necessary for the conversion of p35 to p25, prevented amphetamine's effect on dendritic spine density. We demonstrate, for the first time, that amphetamine increases the density of dendritic spine in hippocampal pyramidal neurons in vivo and in vitro. Moreover, we show that the Cdk5/p25 signaling and calpain activity are both necessary for the effect of amphetamine on dendritic spine density. The identification of molecular mechanisms underlying psychostimulant effects provides novel and promising therapeutic approaches for the treatment of drug addiction.
Collapse
Affiliation(s)
- Soledad Ferreras
- Laboratory of Neurophysiology, Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina.,Department of Neurobiology, Civitan International Research Center, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Guillermo Fernández
- Laboratory of Neurophysiology, Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Víctor Danelon
- Centro de Biología Celular y Molecular, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, IIBYT-CONICET, Córdoba, Argentina
| | - María V Pisano
- Laboratory of Neurophysiology, Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Luján Masseroni
- Laboratory of Neurobiology, Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Christopher A Chapleau
- Department of Neurobiology, Civitan International Research Center, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Favio A Krapacher
- Laboratory of Neurophysiology, Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Estela C Mlewski
- Laboratory of Neurophysiology, Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Daniel H Mascó
- Centro de Biología Celular y Molecular, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, IIBYT-CONICET, Córdoba, Argentina
| | - Carlos Arias
- Laboratory of Neurophysiology, Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Lucas Pozzo-Miller
- Department of Neurobiology, Civitan International Research Center, University of Alabama at Birmingham, Birmingham, AL, United States
| | - María G Paglini
- Laboratory of Neurophysiology, Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina.,Virology Institute "Dr. J. M. Vanella", Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
58
|
Imm J, Kerrigan TL, Jeffries A, Lunnon K. Using induced pluripotent stem cells to explore genetic and epigenetic variation associated with Alzheimer's disease. Epigenomics 2017; 9:1455-1468. [DOI: 10.2217/epi-2017-0076] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
It is thought that both genetic and epigenetic variation play a role in Alzheimer's disease initiation and progression. With the advent of somatic cell reprogramming into induced pluripotent stem cells it is now possible to generate patient-derived cells that are able to more accurately model and recapitulate disease. Furthermore, by combining this with recent advances in (epi)genome editing technologies, it is possible to begin to examine the functional consequence of previously nominated genetic variants and infer epigenetic causality from recently identified epigenetic variants. In this review, we explore the role of genetic and epigenetic variation in Alzheimer's disease and how the functional relevance of nominated loci can be investigated using induced pluripotent stem cells and (epi)genome editing techniques.
Collapse
Affiliation(s)
- Jennifer Imm
- Institute of Clinical and Biomedical Science, University of Exeter Medical School, Exeter University, Exeter, UK
| | - Talitha L Kerrigan
- Institute of Clinical and Biomedical Science, University of Exeter Medical School, Exeter University, Exeter, UK
| | - Aaron Jeffries
- Institute of Clinical and Biomedical Science, University of Exeter Medical School, Exeter University, Exeter, UK
| | - Katie Lunnon
- Institute of Clinical and Biomedical Science, University of Exeter Medical School, Exeter University, Exeter, UK
| |
Collapse
|
59
|
Dhuriya YK, Srivastava P, Shukla RK, Gupta R, Singh D, Parmar D, Pant AB, Khanna VK. Prenatal exposure to lambda-cyhalothrin impairs memory in developing rats: Role of NMDA receptor induced post-synaptic signalling in hippocampus. Neurotoxicology 2017; 62:80-91. [DOI: 10.1016/j.neuro.2017.04.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 04/12/2017] [Accepted: 04/12/2017] [Indexed: 11/29/2022]
|
60
|
Delgado-Morales R, Agís-Balboa RC, Esteller M, Berdasco M. Epigenetic mechanisms during ageing and neurogenesis as novel therapeutic avenues in human brain disorders. Clin Epigenetics 2017; 9:67. [PMID: 28670349 PMCID: PMC5493012 DOI: 10.1186/s13148-017-0365-z] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 06/11/2017] [Indexed: 12/26/2022] Open
Abstract
Ageing is the main risk factor for human neurological disorders. Among the diverse molecular pathways that govern ageing, epigenetics can guide age-associated decline in part by regulating gene expression and also through the modulation of genomic instability and high-order chromatin architecture. Epigenetic mechanisms are involved in the regulation of neural differentiation as well as in functional processes related to memory consolidation, learning or cognition during healthy lifespan. On the other side of the coin, many neurodegenerative diseases are associated with epigenetic dysregulation. The reversible nature of epigenetic factors and, especially, their role as mediators between the genome and the environment make them exciting candidates as therapeutic targets. Rather than providing a broad description of the pathways epigenetically deregulated in human neurological disorders, in this review, we have focused on the potential use of epigenetic enzymes as druggable targets to ameliorate neural decline during normal ageing and especially in neurological disorders. We will firstly discuss recent progress that supports a key role of epigenetic regulation during healthy ageing with an emphasis on the role of epigenetic regulation in adult neurogenesis. Then, we will focus on epigenetic alterations associated with ageing-related human disorders of the central nervous system. We will discuss examples in the context of psychiatric disorders, including schizophrenia and posttraumatic stress disorders, and also dementia or Alzheimer's disease as the most frequent neurodegenerative disease. Finally, methodological limitations and future perspectives are discussed.
Collapse
Affiliation(s)
- Raúl Delgado-Morales
- Cancer Epigenetics Group, Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Biomedical Research Institute (IDIBELL), 3rd Floor, Hospital Duran i Reynals, Av. Gran Via 199-203, 08908L'Hospitalet, Barcelona, Catalonia Spain.,Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands
| | - Roberto Carlos Agís-Balboa
- Psychiatric Diseases Research Group, Galicia Sur Health Research Institute, Complexo Hospitalario Universitario de Vigo (CHUVI), SERGAS, CIBERSAM, Vigo, Spain
| | - Manel Esteller
- Cancer Epigenetics Group, Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Biomedical Research Institute (IDIBELL), 3rd Floor, Hospital Duran i Reynals, Av. Gran Via 199-203, 08908L'Hospitalet, Barcelona, Catalonia Spain.,Department of Physiological Sciences II, School of Medicine, University of Barcelona, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - María Berdasco
- Cancer Epigenetics Group, Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Biomedical Research Institute (IDIBELL), 3rd Floor, Hospital Duran i Reynals, Av. Gran Via 199-203, 08908L'Hospitalet, Barcelona, Catalonia Spain
| |
Collapse
|
61
|
Brureau A, Blanchard-Bregeon V, Pech C, Hamon S, Chaillou P, Guillemot JC, Barneoud P, Bertrand P, Pradier L, Rooney T, Schussler N. NF-L in cerebrospinal fluid and serum is a biomarker of neuronal damage in an inducible mouse model of neurodegeneration. Neurobiol Dis 2017; 104:73-84. [PMID: 28392472 DOI: 10.1016/j.nbd.2017.04.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 03/31/2017] [Accepted: 04/05/2017] [Indexed: 12/13/2022] Open
Abstract
Accumulation of neurofilaments (NFs), the major constituents of the neuronal cytoskeleton, is a distinctive feature of neurological diseases and several studies have shown that soluble NFs can be detected in the cerebrospinal fluid (CSF) of patients with neurological diseases, such as multiple sclerosis and frontotemporal dementia. Here we have used an inducible transgenic mouse model of neurodegeneration, CamKII-TetOp25 mice, to evaluate whether NF-L levels in CSF or blood can be used as a biochemical biomarker of neurodegeneration. Induction of p25 transgene brain expression led to increase in CSF and serum NF-L levels that correlated with ongoing neurodegeneration. Switching off p25 prevented further increases in both CSF and serum NF-L levels and concomitantly stopped the progression of neurodegeneration. The levels of CSF NF-L detected in p25 mice are about 4-fold higher than the CSF levels detected in patients with chronic neurodegenerative diseases, such as symptomatic FTD (bvFTD). In addition, our data indicate that the NF-L detected in CSF is most likely a cleaved form of NF-L. These results suggest that CSF and serum NF-L are of interest to be further explored as potential translational dynamic biomarkers of neurodegeneration or as pharmacodynamics biomarkers at least in preclinical animal studies.
Collapse
Affiliation(s)
- Anthony Brureau
- Sanofi R&D, Neuroscience Research Therapeutic Area, Neurodegeneration Cluster, 1 Avenue Pierre Brossolette, Chilly Mazarin, 91380, France; Pharnext, 11 rue des Peupliers, 92130 Issy-les-Moulineaux, France
| | | | - Catherine Pech
- Evotec, 19 route d'Espagne, - BP13669-31036 Toulouse Cedex 1, France
| | - Stéphanie Hamon
- Sanofi R&D, Translational Sciences Unit, Chilly Mazarin, 91380, France
| | - Pascal Chaillou
- Sanofi R&D, Translational Sciences Unit, Chilly Mazarin, 91380, France
| | | | - Pascal Barneoud
- Sanofi R&D, Neuroscience Research Therapeutic Area, Neurodegeneration Cluster, 1 Avenue Pierre Brossolette, Chilly Mazarin, 91380, France
| | - Philippe Bertrand
- Sanofi R&D, Neuroscience Research Therapeutic Area, Neurodegeneration Cluster, 1 Avenue Pierre Brossolette, Chilly Mazarin, 91380, France
| | - Laurent Pradier
- Sanofi R&D, Neuroscience Research Therapeutic Area, Neurodegeneration Cluster, 1 Avenue Pierre Brossolette, Chilly Mazarin, 91380, France
| | - Thomas Rooney
- Sanofi R&D, Neuroscience Research Therapeutic Area, Neurodegeneration Cluster, 1 Avenue Pierre Brossolette, Chilly Mazarin, 91380, France
| | - Nathalie Schussler
- Sanofi R&D, Neuroscience Research Therapeutic Area, Neurodegeneration Cluster, 1 Avenue Pierre Brossolette, Chilly Mazarin, 91380, France.
| |
Collapse
|
62
|
Senter RK, Ghoshal A, Walker AG, Xiang Z, Niswender CM, Conn PJ. The Role of mGlu Receptors in Hippocampal Plasticity Deficits in Neurological and Psychiatric Disorders: Implications for Allosteric Modulators as Novel Therapeutic Strategies. Curr Neuropharmacol 2017; 14:455-73. [PMID: 27296640 PMCID: PMC4983746 DOI: 10.2174/1570159x13666150421003225] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 03/18/2015] [Accepted: 04/09/2015] [Indexed: 11/22/2022] Open
Abstract
Long-term potentiation (LTP) and long-term depression (LTD) are two distinct forms of synaptic plasticity that have been extensively characterized at the Schaffer collateral-CA1 (SCCA1) synapse and the mossy fiber (MF)-CA3 synapse within the hippocampus, and are postulated to be the molecular underpinning for several cognitive functions. Deficits in LTP and LTD have been implicated in the pathophysiology of several neurological and psychiatric disorders. Therefore, there has been a large effort focused on developing an understanding of the mechanisms underlying these forms of plasticity and novel therapeutic strategies that improve or rescue these plasticity deficits. Among many other targets, the metabotropic glutamate (mGlu) receptors show promise as novel therapeutic candidates for the treatment of these disorders. Among the eight distinct mGlu receptor subtypes (mGlu1-8), the mGlu1,2,3,5,7 subtypes are expressed throughout the hippocampus and have been shown to play important roles in the regulation of synaptic plasticity in this brain area. However, development of therapeutic agents that target these mGlu receptors has been hampered by a lack of subtype-selective compounds. Recently, discovery of allosteric modulators of mGlu receptors has provided novel ligands that are highly selective for individual mGlu receptor subtypes. The mGlu receptors modulate the multiple forms of synaptic plasticity at both SC-CA1 and MF synapses and allosteric modulators of mGlu receptors have emerged as potential therapeutic agents that may rescue plasticity deficits and improve cognitive function in patients suffering from multiple neurological and psychiatric disorders.
Collapse
Affiliation(s)
| | | | | | | | | | - P Jeffrey Conn
- Department of Pharmacology, Faculty of Vanderbilt University Medical Center, 1205 Light Hall, Nashville, TN 37232, USA.
| |
Collapse
|
63
|
Shukla V, Seo J, Binukumar B, Amin ND, Reddy P, Grant P, Kuntz S, Kesavapany S, Steiner J, Mishra SK, Tsai LH, Pant HC. TFP5, a Peptide Inhibitor of Aberrant and Hyperactive Cdk5/p25, Attenuates Pathological Phenotypes and Restores Synaptic Function in CK-p25Tg Mice. J Alzheimers Dis 2017; 56:335-349. [PMID: 28085018 PMCID: PMC10020940 DOI: 10.3233/jad-160916] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
It has been reported that cyclin-dependent kinase 5 (cdk5), a critical neuronal kinase, is hyperactivated in Alzheimer's disease (AD) and may be, in part, responsible for the hallmark pathology of amyloid plaques and neurofibrillary tangles (NFTs). It has been proposed by several laboratories that hyperactive cdk5 results from the overexpression of p25 (a truncated fragment of p35, the normal cdk5 regulator), which, when complexed to cdk5, induces hyperactivity, hyperphosphorylated tau/NFTs, amyloid-β plaques, and neuronal death. It has previously been shown that intraperitoneal (i.p.) injections of a modified truncated 24-aa peptide (TFP5), derived from the cdk5 activator p35, penetrated the blood-brain barrier and significantly rescued AD-like pathology in 5XFAD model mice. The principal pathology in the 5XFAD mutant, however, is extensive amyloid plaques; hence, as a proof of concept, we believe it is essential to demonstrate the peptide's efficacy in a mouse model expressing high levels of p25, such as the inducible CK-p25Tg model mouse that overexpresses p25 in CamKII positive neurons. Using a modified TFP5 treatment, here we show that peptide i.p. injections in these mice decrease cdk5 hyperactivity, tau, neurofilament-M/H hyperphosphorylation, and restore synaptic function and behavior (i.e., spatial working memory, motor deficit using Rota-rod). It is noteworthy that TFP5 does not inhibit endogenous cdk5/p35 activity, nor other cdks in vivo suggesting it might have no toxic side effects, and may serve as an excellent therapeutic candidate for neurodegenerative disorders expressing abnormally high brain levels of p25 and hyperactive cdk5.
Collapse
Affiliation(s)
- Varsha Shukla
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Jinsoo Seo
- Department of Brain and Cognitive Sciences, The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - B.K. Binukumar
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Niranjana D. Amin
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Preethi Reddy
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Philip Grant
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Susan Kuntz
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | | | - Joseph Steiner
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Santosh K. Mishra
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MA, USA
| | - Li-Huei Tsai
- Department of Brain and Cognitive Sciences, The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Harish C. Pant
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- Correspondence to: Dr. Harish C. Pant, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
64
|
Zhu C, Xu B, Sun X, Zhu Q, Sui Y. Targeting CCR3 to Reduce Amyloid-β Production, Tau Hyperphosphorylation, and Synaptic Loss in a Mouse Model of Alzheimer's Disease. Mol Neurobiol 2016; 54:7964-7978. [PMID: 27878757 DOI: 10.1007/s12035-016-0269-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Accepted: 10/30/2016] [Indexed: 12/19/2022]
Abstract
The majority of Alzheimer's disease (AD) patients have a late onset, and chronic neuroinflammation, characterized by glial activation and secretion of pro-inflammatory cytokines and chemokines, plays a role in the pathogenesis of AD. The chemokine CCL11 has been shown to be a causative factor of cognitive decline in the process of aging, but little is known whether it is involved in the pathogenesis of AD. In the present study, we showed that CCR3, the receptor for CCL11, was expressed by hippocampal neurons and treatment of primary hippocampal neuronal cultures (14 days in vitro) with CCL11 resulted in activation of cyclin-dependent kinase 5 and glycogen synthase kinase-3β, associated with elevated tau phosphorylation at multiple sites. CCL11 treatment also induced the production of Aβ and dendritic spine loss in the hippocampal neuronal cultures. All these effects were blocked by the CCR3 specific antagonist, GW766994. An age-dependent increase in CCL11, predominantly expressed by the activated microglia, was observed in the cerebrospinal fluid of both APP/PS1 double transgenic mice and wild-type (WT) littermates, with a markedly higher level in APP/PS1 double transgenic mice than that in WT littermates. Deletion of CCR3 in APP/PS1 double transgenic mice significantly reduced the phosphorylation of CDK5 and GSK3β, tau hyperphosphorylation, Aβ deposition, microgliosis, astrogliosis, synaptic loss, and spatial learning and memory deficits. Thus, the age-related increase in CCL11 may be a risk factor of AD, and antagonizing CCR3 may bring therapeutic benefits to AD.
Collapse
Affiliation(s)
- Chunyan Zhu
- Department of Neurology, Shenyang Seventh People's Hospital, Shenyang, China
| | - Bing Xu
- Department of Neurology, Shenyang First People's Hospital, Shenyang Brain Hospital, Shenyang Brain Institute, Shenyang, China
| | - Xiaohong Sun
- Department of Neurology, the Fourth Affiliated Hospital, China Medical University, Shenyang, China
| | - Qiwen Zhu
- Key laboratory of Behavioral and Cognitive Neuroscience of Liaoning Province, Shenyang Medical College, Shenyang, China
| | - Yi Sui
- Department of Neurology, Shenyang First People's Hospital, Shenyang Brain Hospital, Shenyang Brain Institute, Shenyang, China. .,Department of Neurology, the Fourth Affiliated Hospital, China Medical University, Shenyang, China. .,Key laboratory of Behavioral and Cognitive Neuroscience of Liaoning Province, Shenyang Medical College, Shenyang, China.
| |
Collapse
|
65
|
Binukumar B, Pelech SL, Sutter C, Shukla V, Amin ND, Grant P, Bhaskar M, Skuntz S, Steiner J, Pant HC. Profiling of p5, a 24 Amino Acid Inhibitory Peptide Derived from the CDK5 Activator, p35 CDKR1 Against 70 Protein Kinases. J Alzheimers Dis 2016; 54:525-33. [DOI: 10.3233/jad-160458] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- B.K. Binukumar
- National Institute of Neurological Disorders and Strokes, National Institutes of Health, Bethesda, MD, USA
| | - Steven L. Pelech
- Kinexus Bioinformatics Corporation; Division of Neurology, Department of Medicine, University of British Columbia, BC, Canada
| | - Catherine Sutter
- Kinexus Bioinformatics Corporation; Division of Neurology, Department of Medicine, University of British Columbia, BC, Canada
| | - Varsha Shukla
- National Institute of Neurological Disorders and Strokes, National Institutes of Health, Bethesda, MD, USA
| | - Niranjana D. Amin
- National Institute of Neurological Disorders and Strokes, National Institutes of Health, Bethesda, MD, USA
| | - Philip Grant
- National Institute of Neurological Disorders and Strokes, National Institutes of Health, Bethesda, MD, USA
| | - Manju Bhaskar
- National Institute of Neurological Disorders and Strokes, National Institutes of Health, Bethesda, MD, USA
| | - Suzanne Skuntz
- National Institute of Neurological Disorders and Strokes, National Institutes of Health, Bethesda, MD, USA
| | - Joseph Steiner
- National Institute of Neurological Disorders and Strokes, National Institutes of Health, Bethesda, MD, USA
| | - Harish C. Pant
- National Institute of Neurological Disorders and Strokes, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
66
|
Sheng Y, Zhang L, Su SC, Tsai LH, Julius Zhu J. Cdk5 is a New Rapid Synaptic Homeostasis Regulator Capable of Initiating the Early Alzheimer-Like Pathology. Cereb Cortex 2016; 26:2937-51. [PMID: 26088971 PMCID: PMC4898661 DOI: 10.1093/cercor/bhv032] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cyclin-dependent kinase 5 (Cdk5) is a serine/threonine kinase implicated in synaptic plasticity, behavior, and cognition, yet its synaptic function remains poorly understood. Here, we report that physiological Cdk5 signaling in rat hippocampal CA1 neurons regulates homeostatic synaptic transmission using an unexpectedly rapid mechanism that is different from all known slow homeostatic regulators, such as beta amyloid (Aβ) and activity-regulated cytoskeleton-associated protein (Arc, aka Arg3.1). Interestingly, overproduction of the potent Cdk5 activator p25 reduces synapse density, and dynamically regulates synaptic size by suppressing or enhancing Aβ/Arc production. Moreover, chronic overproduction of p25, seen in Alzheimer's patients, induces initially concurrent reduction in synapse density and increase in synaptic size characteristic of the early Alzheimer-like pathology, and later persistent synapse elimination in intact brains. These results identify Cdk5 as the regulator of a novel rapid form of homeostasis at central synapses and p25 as the first molecule capable of initiating the early Alzheimer's synaptic pathology.
Collapse
Affiliation(s)
- Yanghui Sheng
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
- Undergraduate Class of 2011, Yuanpei Honors College, Peking University, Beijing100871, China
- Current address: Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Lei Zhang
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Susan C. Su
- Picower Institute for Learning and Memory and Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Li-Huei Tsai
- Picower Institute for Learning and Memory and Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - J. Julius Zhu
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| |
Collapse
|
67
|
Mungenast AE, Siegert S, Tsai LH. Modeling Alzheimer's disease with human induced pluripotent stem (iPS) cells. Mol Cell Neurosci 2016; 73:13-31. [PMID: 26657644 PMCID: PMC5930170 DOI: 10.1016/j.mcn.2015.11.010] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 11/05/2015] [Accepted: 11/25/2015] [Indexed: 02/08/2023] Open
Abstract
In the last decade, induced pluripotent stem (iPS) cells have revolutionized the utility of human in vitro models of neurological disease. The iPS-derived and differentiated cells allow researchers to study the impact of a distinct cell type in health and disease as well as performing therapeutic drug screens on a human genetic background. In particular, clinical trials for Alzheimer's disease (AD) have been failing. Two of the potential reasons are first, the species gap involved in proceeding from initial discoveries in rodent models to human studies, and second, an unsatisfying patient stratification, meaning subgrouping patients based on the disease severity due to the lack of phenotypic and genetic markers. iPS cells overcome this obstacles and will improve our understanding of disease subtypes in AD. They allow researchers conducting in depth characterization of neural cells from both familial and sporadic AD patients as well as preclinical screens on human cells. In this review, we briefly outline the status quo of iPS cell research in neurological diseases along with the general advantages and pitfalls of these models. We summarize how genome-editing techniques such as CRISPR/Cas9 will allow researchers to reduce the problem of genomic variability inherent to human studies, followed by recent iPS cell studies relevant to AD. We then focus on current techniques for the differentiation of iPS cells into neural cell types that are relevant to AD research. Finally, we discuss how the generation of three-dimensional cell culture systems will be important for understanding AD phenotypes in a complex cellular milieu, and how both two- and three-dimensional iPS cell models can provide platforms for drug discovery and translational studies into the treatment of AD.
Collapse
Affiliation(s)
- Alison E Mungenast
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA; Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA
| | - Sandra Siegert
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA; Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA.
| | - Li-Huei Tsai
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA; Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA
| |
Collapse
|
68
|
S-nitrosation of proteins relevant to Alzheimer's disease during early stages of neurodegeneration. Proc Natl Acad Sci U S A 2016; 113:4152-7. [PMID: 27035958 DOI: 10.1073/pnas.1521318113] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Protein S-nitrosation (SNO-protein), the nitric oxide-mediated posttranslational modification of cysteine thiols, is an important regulatory mechanism of protein function in both physiological and pathological pathways. A key first step toward elucidating the mechanism by which S-nitrosation modulates a protein's function is identification of the targeted cysteine residues. Here, we present a strategy for the simultaneous identification of SNO-cysteine sites and their cognate proteins to profile the brain of the CK-p25-inducible mouse model of Alzheimer's disease-like neurodegeneration. The approach-SNOTRAP (SNO trapping by triaryl phosphine)-is a direct tagging strategy that uses phosphine-based chemical probes, allowing enrichment of SNO-peptides and their identification by liquid chromatography tandem mass spectrometry. SNOTRAP identified 313 endogenous SNO-sites in 251 proteins in the mouse brain, of which 135 SNO-proteins were detected only during neurodegeneration. S-nitrosation in the brain shows regional differences and becomes elevated during early stages of neurodegeneration in the CK-p25 mouse. The SNO-proteome during early neurodegeneration identified increased S-nitrosation of proteins important for synapse function, metabolism, and Alzheimer's disease pathology. In the latter case, proteins related to amyloid precursor protein processing and secretion are S-nitrosated, correlating with increased amyloid formation. Sequence analysis of SNO-cysteine sites identified potential linear motifs that are altered under pathological conditions. Collectively, SNOTRAP is a direct tagging tool for global elucidation of the SNO-proteome, providing functional insights of endogenous SNO proteins in the brain and its dysregulation during neurodegeneration.
Collapse
|
69
|
Shi C, Viccaro K, Lee HG, Shah K. Cdk5-Foxo3 axis: initially neuroprotective, eventually neurodegenerative in Alzheimer's disease models. J Cell Sci 2016; 129:1815-1830. [PMID: 28157684 DOI: 10.1242/jcs.185009] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 03/03/2016] [Indexed: 12/12/2022] Open
Abstract
Deregulated Cdk5 causes neurotoxic amyloid beta peptide (Aβ) processing and cell death, two hallmarks of Alzheimer's disease, through the Foxo3 transcriptional factor in hippocampal cells, primary neurons and an Alzheimer's disease mouse model. Using an innovative chemical genetic screen, we identified Foxo3 as a direct substrate of Cdk5 in brain lysates. Cdk5 directly phosphorylates Foxo3, which increased its levels and nuclear translocation. Nuclear Foxo3 initially rescued cells from ensuing oxidative stress by upregulating MnSOD (also known as SOD2). However, following prolonged exposure, Foxo3 upregulated Bim (also known as BCL2L11) and FasL (also known as FASLG) causing cell death. Active Foxo3 also increased Aβ(1-42) levels in a phosphorylation-dependent manner. These events were completely inhibited either by expressing phosphorylation-resistant Foxo3 or by depleting Cdk5 or Foxo3, highlighting a key role for Cdk5 in regulating Foxo3. These results were confirmed in an Alzheimer's disease mouse model, which exhibited increased levels and nuclear localization of Foxo3 in hippocampal neurons, which preceded neurodegeneration and Aβ plaque formation, indicating this phenomenon is an early event in Alzheimer's disease pathogenesis. Collectively, these results show that Cdk5-mediated phospho-regulation of Foxo3 can activate several genes that promote neuronal death and aberrant Aβ processing, thereby contributing to the progression of neurodegenerative pathologies.
Collapse
Affiliation(s)
- Chun Shi
- Department of Chemistry and Purdue University Center for Cancer Research, Purdue University, 560 Oval Drive, West Lafayette, IN 47907, USA
| | - Keith Viccaro
- Department of Chemistry and Purdue University Center for Cancer Research, Purdue University, 560 Oval Drive, West Lafayette, IN 47907, USA
| | - Hyoung-Gon Lee
- Department of Pathology, Case Western Reserve University School of Medicine, Iris S. Bert L. Wolstein Research Building, 2103 Cornell Road, Room 5123, Cleveland, OH 44106, USA
| | - Kavita Shah
- Department of Chemistry and Purdue University Center for Cancer Research, Purdue University, 560 Oval Drive, West Lafayette, IN 47907, USA
| |
Collapse
|
70
|
Shah K, Lahiri DK. A Tale of the Good and Bad: Remodeling of the Microtubule Network in the Brain by Cdk5. Mol Neurobiol 2016; 54:2255-2268. [PMID: 26944284 DOI: 10.1007/s12035-016-9792-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 02/11/2016] [Indexed: 10/22/2022]
Abstract
Cdk5, a cyclin-dependent kinase family member, is a global orchestrator of neuronal cytoskeletal dynamics. During embryogenesis, Cdk5 is indispensable for brain development. In adults, it is essential for numerous neuronal processes, including higher cognitive functions such as learning and memory formation, drug addiction, pain signaling, and long-term behavior changes through long-term potentiation and long-term depression, all of which rely on rapid alterations in the cytoskeleton. Cdk5 activity becomes deregulated in various brain disorders, including Alzheimer's disease, Parkinson's disease, Huntington's disease, attention-deficit hyperactivity disorder, epilepsy, schizophrenia, and ischemic stroke; these all result in profound remodeling of the neuronal cytoskeleton. This Commentary specifically focuses on the pleiotropic contribution of Cdk5 in regulating neuronal microtubule remodeling. Because the vast majority of the physiological substrates of Cdk5 are associated with the neuronal cytoskeleton, our emphasis is on the Cdk5 substrates, such as CRMP2, stathmin, drebrin, dixdc1, axin, MAP2, MAP1B, doublecortin, kinesin-5, and tau, that have allowed to unravel the molecular mechanisms through which Cdk5 exerts its divergent roles in regulating neuronal microtubule dynamics, both in healthy and disease states.
Collapse
Affiliation(s)
- Kavita Shah
- Department of Chemistry and Purdue University Center for Cancer Research, 560 Oval Drive, West Lafayette, IN, 47907, USA.
| | - Debomoy K Lahiri
- Departments of Psychiatry and Medical & Molecular Genetics, Institute of Psychiatric Research, Neuroscience Research Center, Indiana University School of Medicine, 320 W. 15th Street, Indianapolis, IN, 46202-2266, USA
| |
Collapse
|
71
|
Environmental enrichment as a method to improve cognitive function. What can we learn from animal models? Neuroimage 2015; 131:42-7. [PMID: 26656208 DOI: 10.1016/j.neuroimage.2015.11.039] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 11/12/2015] [Accepted: 11/15/2015] [Indexed: 01/21/2023] Open
Abstract
There is substantial evidence that physical and cognitive exercise can enhance memory function in rodents as well as in humans. In addition various behaviors associated with physical activity have been associated with an increased cognitive reserve and a lower risk to develop age-associated memory decline and age-associated neurodegenerative diseases such as Alzheimer's disease. To better understand the molecular mechanisms that increase brain plasticity in response to exercise will therefore help to develop effective therapeutic strategies to treat memory decline. Here we review the currently available data with a specific focus on neurodegenerative diseases.
Collapse
|
72
|
Shan LL, Guo H, Song NN, Jia ZP, Hu XT, Huang JF, Ding YQ, Richter-Levin G, Richter-Levine G, Zhou QX, Xu L. Light exposure before learning improves memory consolidation at night. Sci Rep 2015; 5:15578. [PMID: 26493375 PMCID: PMC4616152 DOI: 10.1038/srep15578] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 09/28/2015] [Indexed: 01/12/2023] Open
Abstract
Light is recently recognized as a modulator able to activate the hippocampus and modulate memory processing, but little is known about the molecular mechanisms. Here, we report that in mice, a short pulse of white light before learning dramatically improves consolidation of contextual fear memory during the night. The light exposure increases hippocampal active p21-activated kinase 1 (PAK1) and CA1 long-term potentiation (LTP). These light effects are abolished in PAK1 knockout and dominant-negative transgenic mice, but preserved by expression of constitutively active PAK1 in the hippocampus. Our results indicate that light can act as a switch of PAK1 activity that modulate CA1 LTP and thereby memory consolidation without affecting learning and short-term memory.
Collapse
Affiliation(s)
- Li-Li Shan
- Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, the Chinese Academy of Science, Kunming 650223, China.,KIZ-SU Joint Laboratory of Animal Models and Drug Development, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China.,Laboratory of Learning and Memory, Kunming Institute of Zoology, the Chinese Academy of Science, Kunming 650223, China.,University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Hao Guo
- Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, the Chinese Academy of Science, Kunming 650223, China.,Laboratory of Learning and Memory, Kunming Institute of Zoology, the Chinese Academy of Science, Kunming 650223, China.,University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Ning-Ning Song
- Collaborative Innovation Center for Brain Science, Department of Anatomy and Neurobiology, Tongji University School of Medicine, 1239 Siping Road, Shanghai 200092, China
| | - Zheng-Ping Jia
- Neurosciences &Mental Health, The Hospital for Sick Children, Department of Physiology, Faculty of Medicine, University of Toronto, 555 University Ave., Toronto, Ontario 5MS 3H2, Canada
| | - Xin-Tian Hu
- Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, the Chinese Academy of Science, Kunming 650223, China.,CAS Center for Excellence in Brain Science, 320 Yue Yang Road, Shanghai, 200031, China
| | - Jing-Fei Huang
- KIZ-SU Joint Laboratory of Animal Models and Drug Development, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China.,State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming 650223, China
| | - Yu-Qiang Ding
- Collaborative Innovation Center for Brain Science, Department of Anatomy and Neurobiology, Tongji University School of Medicine, 1239 Siping Road, Shanghai 200092, China
| | | | - Gal Richter-Levine
- The Institute for the Study of Affective Neuroscience, and Sagol Department of Neurobiology and Department of Psychology, University of Haifa, Haifa, Israel
| | - Qi-Xin Zhou
- Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, the Chinese Academy of Science, Kunming 650223, China.,KIZ-SU Joint Laboratory of Animal Models and Drug Development, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China.,Laboratory of Learning and Memory, Kunming Institute of Zoology, the Chinese Academy of Science, Kunming 650223, China
| | - Lin Xu
- Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, the Chinese Academy of Science, Kunming 650223, China.,KIZ-SU Joint Laboratory of Animal Models and Drug Development, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China.,Laboratory of Learning and Memory, Kunming Institute of Zoology, the Chinese Academy of Science, Kunming 650223, China.,University of the Chinese Academy of Sciences, Beijing 100049, China.,CAS Center for Excellence in Brain Science, 320 Yue Yang Road, Shanghai, 200031, China
| |
Collapse
|
73
|
Song WJ, Son MY, Lee HW, Seo H, Kim JH, Chung SH. Enhancement of BACE1 Activity by p25/Cdk5-Mediated Phosphorylation in Alzheimer's Disease. PLoS One 2015; 10:e0136950. [PMID: 26317805 PMCID: PMC4552876 DOI: 10.1371/journal.pone.0136950] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 08/10/2015] [Indexed: 11/24/2022] Open
Abstract
The activity of beta-site amyloid precursor protein (APP) cleaving enzyme 1 (BACE1) is elevated during aging and in sporadic Alzheimer’s disease (AD), but the underlying mechanisms of this change are not well understood. p25/Cyclin-dependent kinase 5 (Cdk5) has been implicated in the pathogenesis of several neurodegenerative diseases, including AD. Here, we describe a potential mechanism by which BACE activity is increased in AD brains. First, we show that BACE1 is phosphorylated by the p25/Cdk5 complex at Thr252 and that this phosphorylation increases BACE1 activity. Then, we demonstrate that the level of phospho-BACE1 is increased in the brains of AD patients and in mammalian cells and transgenic mice that overexpress p25. Furthermore, the fraction of p25 prepared from iodixanol gradient centrifugation was unexpectedly protected by protease digestion, suggesting that p25/Cdk5-mediated BACE1 phosphorylation may occur in the lumen. These results reveal a link between p25 and BACE1 in AD brains and suggest that upregulated Cdk5 activation by p25 accelerates AD pathogenesis by enhancing BACE1 activity via phosphorylation.
Collapse
Affiliation(s)
- Woo-Joo Song
- Department of Biochemistry and Molecular Biology, Neurodegeneration Control Research Center, School of Medicine, Kyung Hee University, Seoul, Korea
- Institute for Brain Science and Technology, Inje University, Busan, Korea
| | - Mi-Young Son
- Institute for Brain Science and Technology, Inje University, Busan, Korea
| | - Hye-Won Lee
- Institute for Brain Science and Technology, Inje University, Busan, Korea
| | - Hyemyung Seo
- Division of Molecular and Life Sciences, College of Sciences and Technology, Hanyang University, Ansan, Gyeonggi Do, Korea
| | - Jeong Hee Kim
- Department of Oral Biochemistry and Molecular Biology, School of Dentistry, Kyung Hee University, Seoul, Korea
- Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul, Korea
- * E-mail: (JHK); (SHC)
| | - Sul-Hee Chung
- Department of Biochemistry and Molecular Biology, Neurodegeneration Control Research Center, School of Medicine, Kyung Hee University, Seoul, Korea
- Institute for Brain Science and Technology, Inje University, Busan, Korea
- * E-mail: (JHK); (SHC)
| |
Collapse
|
74
|
Szyf M. Prospects for the development of epigenetic drugs for CNS conditions. Nat Rev Drug Discov 2015; 14:461-74. [DOI: 10.1038/nrd4580] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
75
|
Nazem A, Sankowski R, Bacher M, Al-Abed Y. Rodent models of neuroinflammation for Alzheimer's disease. J Neuroinflammation 2015; 12:74. [PMID: 25890375 PMCID: PMC4404276 DOI: 10.1186/s12974-015-0291-y] [Citation(s) in RCA: 170] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Accepted: 03/27/2015] [Indexed: 12/24/2022] Open
Abstract
Alzheimer's disease remains incurable, and the failures of current disease-modifying strategies for Alzheimer's disease could be attributed to a lack of in vivo models that recapitulate the underlying etiology of late-onset Alzheimer's disease. The etiology of late-onset Alzheimer's disease is not based on mutations related to amyloid-β (Aβ) or tau production which are currently the basis of in vivo models of Alzheimer's disease. It has recently been suggested that mechanisms like chronic neuroinflammation may occur prior to amyloid-β and tau pathologies in late-onset Alzheimer's disease. The aim of this study is to analyze the characteristics of rodent models of neuroinflammation in late-onset Alzheimer's disease. Our search criteria were based on characteristics of an idealistic disease model that should recapitulate causes, symptoms, and lesions in a chronological order similar to the actual disease. Therefore, a model based on the inflammation hypothesis of late-onset Alzheimer's disease should include the following features: (i) primary chronic neuroinflammation, (ii) manifestations of memory and cognitive impairment, and (iii) late development of tau and Aβ pathologies. The following models fit the pre-defined criteria: lipopolysaccharide- and PolyI:C-induced models of immune challenge; streptozotocin-, okadaic acid-, and colchicine neurotoxin-induced neuroinflammation models, as well as interleukin-1β, anti-nerve growth factor and p25 transgenic models. Among these models, streptozotocin, PolyI:C-induced, and p25 neuroinflammation models are compatible with the inflammation hypothesis of Alzheimer's disease.
Collapse
Affiliation(s)
- Amir Nazem
- Elmezzi Graduate School of Molecular Medicine, The Feinstein Institute for Medical Research, 350 Community drive, Manhasset, NY, 11030, USA.
| | - Roman Sankowski
- Elmezzi Graduate School of Molecular Medicine, The Feinstein Institute for Medical Research, 350 Community drive, Manhasset, NY, 11030, USA.
| | - Michael Bacher
- Institute of Immunology, Philipps University Marburg, Hans-Meerwein-Str., 35043, Marburg, Germany.
| | - Yousef Al-Abed
- Center for Molecular Innovation, The Feinstein Institute for Medical Research, 350 Community drive, Manhasset, NY, 11030, USA.
| |
Collapse
|
76
|
Gjoneska E, Pfenning AR, Mathys H, Quon G, Kundaje A, Tsai LH, Kellis M. Conserved epigenomic signals in mice and humans reveal immune basis of Alzheimer's disease. Nature 2015; 518:365-9. [PMID: 25693568 PMCID: PMC4530583 DOI: 10.1038/nature14252] [Citation(s) in RCA: 390] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 01/22/2015] [Indexed: 12/12/2022]
Abstract
Alzheimer’s disease (AD) is a severe1 age-related neurodegenerative disorder characterized by accumulation of amyloid-β (Aβ) plaques and neurofibrillary tangles, synaptic and neuronal loss, and cognitive decline. Several genes have been implicated in AD, but chromatin state alterations during neurodegeneration remain uncharacterized. Here, we profile transcriptional and chromatin state dynamics across early and late pathology in the hippocampus of an inducible mouse model of AD-like neurodegeneration. We find a coordinated downregulation of synaptic plasticity genes and regulatory regions, and upregulation of immune response genes and regulatory regions, which are targeted by factors that belong to the ETS family of transcriptional regulators, including PU.1. Human regions orthologous to increasing-level enhancers show immune cell-specific enhancer signatures as well as immune cell expression quantitative trait loci (eQTL), while decreasing-level enhancer orthologs show fetal-brain-specific enhancer activity. Notably, AD-associated genetic variants are specifically enriched in increasing-level enhancer orthologs implicating immune processes in AD predisposition. Indeed, increasing enhancers overlap known AD loci lacking protein-altering variants and implicate additional loci that do not reach genome-wide significance. Our results reveal new insights into the mechanisms of neurodegeneration and establish the mouse as a useful model for functional studies of AD regulatory regions.
Collapse
Affiliation(s)
- Elizabeta Gjoneska
- 1] The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA [2] Broad Institute of Harvard University and Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Andreas R Pfenning
- 1] Broad Institute of Harvard University and Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA [2] Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Hansruedi Mathys
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Gerald Quon
- 1] Broad Institute of Harvard University and Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA [2] Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Anshul Kundaje
- 1] Broad Institute of Harvard University and Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA [2] Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA [3] Department of Genetics, Department of Computer Science, Stanford University, Stanford, California 94305, USA
| | - Li-Huei Tsai
- 1] The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA [2] Broad Institute of Harvard University and Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Manolis Kellis
- 1] Broad Institute of Harvard University and Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA [2] Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
77
|
Damián JP, Acosta V, Da Cuña M, Ramírez I, Oddone N, Zambrana A, Bervejillo V, Benech JC. Effect of resveratrol on behavioral performance of streptozotocin-induced diabetic mice in anxiety tests. Exp Anim 2015; 63:277-87. [PMID: 25077757 PMCID: PMC4206731 DOI: 10.1538/expanim.63.277] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The aim of this study was to evaluate with anxiety tests the effect of resveratrol (RSV)
on streptozotocin (STZ)-induced diabetic mouse behavioral performance at the second and
fourth week of treatment. Confirmed diabetic mice (>250 mg/dl of glucose in blood after
STZ injection) were treated with RSV (RDM, n=12) or control treated (DM, n=12) for 4
weeks. DM and RDM were tested in the Open Field Test (OFT) and Elevated Plus Maze (EPM).
In the second week of RSV treatment, a higher grooming frequency
(P<0.05) and a lower defecation and rearing frequency
(P<0.05) were detected in the OFT in the RDM group compared with the
DM. There was a higher grooming frequency (P<0.05) and higher
percentage of entries in open arms (P<0.05) in the RDM group than in
the DM group in the EPM. However, in the fourth week of RSV treatment, the only effect
observed was a higher grooming frequency in the RDM group than in the DM group
(P<0.05) in the EPM. In conclusion, RSV treatment in diabetic mice
provoked anxiolytic-like effects in both tests (OFT and EPM), and these effects were
observed in a short time window (2 weeks). It is suggested that RSV may help diabetic
animals to adapt to new stressing and anxiety situations and thus to improve their
welfare.
Collapse
Affiliation(s)
- Juan P Damián
- Laboratorio de Señalización Celular y Nanobiología, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Av. Italia 3318, 11600 Montevideo, Uruguay
| | | | | | | | | | | | | | | |
Collapse
|
78
|
Lundstrom K. Personalized Medicine and Epigenetic Drug Development. PERSONALIZED EPIGENETICS 2015:369-386. [DOI: 10.1016/b978-0-12-420135-4.00013-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
79
|
Wagner FF, Zhang YL, Fass DM, Joseph N, Gale JP, Weïwer M, McCarren P, Fisher SL, Kaya T, Zhao WN, Reis SA, Hennig KM, Thomas M, Lemercier BC, Lewis MC, Guan JS, Moyer MP, Scolnick E, Haggarty SJ, Tsai LH, Holson EB. Kinetically Selective Inhibitors of Histone Deacetylase 2 (HDAC2) as Cognition Enhancers. Chem Sci 2015; 6:804-815. [PMID: 25642316 PMCID: PMC4310013 DOI: 10.1039/c4sc02130d] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Kinetically selective inhibitors of HDAC2 enhanced learning and memory in a CK-p25 mouse model of neurodegeneration.
Aiming towards the development of novel nootropic therapeutics to address the cognitive impairment common to a range of brain disorders, we set out to develop highly selective small molecule inhibitors of HDAC2, a chromatin modifying histone deacetylase implicated in memory formation and synaptic plasticity. Novel ortho-aminoanilide inhibitors were designed and evaluated for their ability to selectively inhibit HDAC2 versus the other Class I HDACs. Kinetic and thermodynamic binding properties were essential elements of our design strategy and two novel classes of ortho-aminoanilides, that exhibit kinetic selectivity (biased residence time) for HDAC2 versus the highly homologous isoform HDAC1, were identified. These kinetically selective HDAC2 inhibitors (BRD6688 and BRD4884) increased H4K12 and H3K9 histone acetylation in primary mouse neuronal cell culture assays, in the hippocampus of CK-p25 mice, a model of neurodegenerative disease, and rescued the associated memory deficits of these mice in a cognition behavioural model. These studies demonstrate for the first time that selective pharmacological inhibition of HDAC2 is feasible and that inhibition of the catalytic activity of this enzyme may serve as a therapeutic approach towards enhancing the learning and memory processes that are affected in many neurological and psychiatric disorders.
Collapse
Affiliation(s)
- F F Wagner
- Stanley Center for Psychiatric Research; Broad Institute of Harvard and MIT; 7 Cambridge Center, Cambridge, Massachusetts, USA
| | - Y-L Zhang
- Stanley Center for Psychiatric Research; Broad Institute of Harvard and MIT; 7 Cambridge Center, Cambridge, Massachusetts, USA
| | - D M Fass
- Stanley Center for Psychiatric Research; Broad Institute of Harvard and MIT; 7 Cambridge Center, Cambridge, Massachusetts, USA ; SL Fisher Consulting, LLC, PO Box 3052, Framingham, Massachusetts, USA
| | - N Joseph
- Stanley Center for Psychiatric Research; Broad Institute of Harvard and MIT; 7 Cambridge Center, Cambridge, Massachusetts, USA ; Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Howard Hughes Medical Institute, Cambridge, Massachusetts, USA
| | - J P Gale
- Stanley Center for Psychiatric Research; Broad Institute of Harvard and MIT; 7 Cambridge Center, Cambridge, Massachusetts, USA
| | - M Weïwer
- Stanley Center for Psychiatric Research; Broad Institute of Harvard and MIT; 7 Cambridge Center, Cambridge, Massachusetts, USA
| | - P McCarren
- Stanley Center for Psychiatric Research; Broad Institute of Harvard and MIT; 7 Cambridge Center, Cambridge, Massachusetts, USA
| | - S L Fisher
- SL Fisher Consulting, LLC, PO Box 3052, Framingham, Massachusetts, USA
| | - T Kaya
- Stanley Center for Psychiatric Research; Broad Institute of Harvard and MIT; 7 Cambridge Center, Cambridge, Massachusetts, USA
| | - W-N Zhao
- Stanley Center for Psychiatric Research; Broad Institute of Harvard and MIT; 7 Cambridge Center, Cambridge, Massachusetts, USA ; Chemical Neurobiology Laboratory, Center for Human Genetic Research, Massachusetts General Hospital, Department of Neurology and Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
| | - S A Reis
- Stanley Center for Psychiatric Research; Broad Institute of Harvard and MIT; 7 Cambridge Center, Cambridge, Massachusetts, USA ; Chemical Neurobiology Laboratory, Center for Human Genetic Research, Massachusetts General Hospital, Department of Neurology and Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
| | - K M Hennig
- Stanley Center for Psychiatric Research; Broad Institute of Harvard and MIT; 7 Cambridge Center, Cambridge, Massachusetts, USA ; Chemical Neurobiology Laboratory, Center for Human Genetic Research, Massachusetts General Hospital, Department of Neurology and Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
| | - M Thomas
- Stanley Center for Psychiatric Research; Broad Institute of Harvard and MIT; 7 Cambridge Center, Cambridge, Massachusetts, USA
| | - B C Lemercier
- Stanley Center for Psychiatric Research; Broad Institute of Harvard and MIT; 7 Cambridge Center, Cambridge, Massachusetts, USA
| | - M C Lewis
- Stanley Center for Psychiatric Research; Broad Institute of Harvard and MIT; 7 Cambridge Center, Cambridge, Massachusetts, USA
| | - J S Guan
- Stanley Center for Psychiatric Research; Broad Institute of Harvard and MIT; 7 Cambridge Center, Cambridge, Massachusetts, USA ; Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Howard Hughes Medical Institute, Cambridge, Massachusetts, USA
| | - M P Moyer
- Stanley Center for Psychiatric Research; Broad Institute of Harvard and MIT; 7 Cambridge Center, Cambridge, Massachusetts, USA
| | - E Scolnick
- Stanley Center for Psychiatric Research; Broad Institute of Harvard and MIT; 7 Cambridge Center, Cambridge, Massachusetts, USA
| | - S J Haggarty
- Stanley Center for Psychiatric Research; Broad Institute of Harvard and MIT; 7 Cambridge Center, Cambridge, Massachusetts, USA ; Chemical Neurobiology Laboratory, Center for Human Genetic Research, Massachusetts General Hospital, Department of Neurology and Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
| | - L-H Tsai
- Stanley Center for Psychiatric Research; Broad Institute of Harvard and MIT; 7 Cambridge Center, Cambridge, Massachusetts, USA ; Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Howard Hughes Medical Institute, Cambridge, Massachusetts, USA
| | - E B Holson
- Stanley Center for Psychiatric Research; Broad Institute of Harvard and MIT; 7 Cambridge Center, Cambridge, Massachusetts, USA
| |
Collapse
|
80
|
Fang J, Yang R, Gao L, Yang S, Pang X, Li C, He Y, Liu AL, Du GH. Consensus models for CDK5 inhibitors in silico and their application to inhibitor discovery. Mol Divers 2014; 19:149-62. [DOI: 10.1007/s11030-014-9561-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2014] [Accepted: 11/25/2014] [Indexed: 02/07/2023]
|
81
|
Lebel M, Robinson P, Cyr M. Canadian Association of Neurosciences Review: The Role of Dopamine Receptor Function in Neurodegenerative Diseases. Can J Neurol Sci 2014; 34:18-29. [PMID: 17352343 DOI: 10.1017/s0317167100005746] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Dopamine (DA) receptors, which are heavily expressed in the caudate/putamen of the brain, represent the molecular target of several drugs used in the treatment of various neurological disorders, such as Parkinson's disease. Although most of the drugs are very effective in alleviating the symptoms associated with these conditions, their long-term utilization could lead to the development of severe side-effects. In addition to uncovering novel mediators of physiological DA receptor functions, recent research advances are suggesting a role of these receptors in toxic effects on neurons. For instance, accumulating evidence indicates that DA receptors, particularly D1 receptors, are central in the neuronal toxicity induced by elevated synaptic levels of DA. In this review, we will discuss recent findings on DA receptors as regulators of long term neuronal dysfunction and neurodegenerative processes.
Collapse
Affiliation(s)
- Manon Lebel
- Neuroscience Research Group, Université du Québec à Trois-Rivières, Canada
| | | | | |
Collapse
|
82
|
Mishiba T, Tanaka M, Mita N, He X, Sasamoto K, Itohara S, Ohshima T. Cdk5/p35 functions as a crucial regulator of spatial learning and memory. Mol Brain 2014; 7:82. [PMID: 25404232 PMCID: PMC4239319 DOI: 10.1186/s13041-014-0082-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 11/03/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cyclin-dependent kinase 5 (Cdk5), which is activated by binding to p35 or p39, is involved in synaptic plasticity and affects learning and memory formation. In Cdk5 knockout (KO) mice and p35 KO mice, brain development is severely impaired because neuronal migration is impaired and lamination is disrupted. To avoid these developmental confounders, we generated inducible CreER-p35 conditional (cKO) mice to study the role of Cdk5/p35 in higher brain function. RESULTS CreER-p35 cKO mice exhibited spatial learning and memory impairments and reduced anxiety-like behavior. These phenotypes resulted from a decrease in the dendritic spine density of CA1 pyramidal neurons and defective long-term depression induction in the hippocampus. CONCLUSIONS Taken together, our findings reveal that Cdk5/p35 regulates spatial learning and memory, implicating Cdk5/p35 as a therapeutic target in neurological disorders.
Collapse
Affiliation(s)
- Tomohide Mishiba
- Laboratory for Molecular Brain Science, Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-cho, , Shinjuku-ku, Tokyo, 162-8480, Japan.
| | - Mika Tanaka
- Laboratory for Behavioral Genetics, Brain Science Institute, RIKEN, Saitama, 351-0198, Japan.
| | - Naoki Mita
- Laboratory for Molecular Brain Science, Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-cho, , Shinjuku-ku, Tokyo, 162-8480, Japan.
| | - Xiaojuan He
- Laboratory for Molecular Brain Science, Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-cho, , Shinjuku-ku, Tokyo, 162-8480, Japan.
| | - Kodai Sasamoto
- Laboratory for Molecular Brain Science, Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-cho, , Shinjuku-ku, Tokyo, 162-8480, Japan.
| | - Shigeyoshi Itohara
- Laboratory for Behavioral Genetics, Brain Science Institute, RIKEN, Saitama, 351-0198, Japan.
| | - Toshio Ohshima
- Laboratory for Molecular Brain Science, Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-cho, , Shinjuku-ku, Tokyo, 162-8480, Japan.
| |
Collapse
|
83
|
Mita N, He X, Sasamoto K, Mishiba T, Ohshima T. Cyclin-Dependent Kinase 5 Regulates Dendritic Spine Formation and Maintenance of Cortical Neuron in the Mouse Brain. Cereb Cortex 2014; 26:967-976. [DOI: 10.1093/cercor/bhu264] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
84
|
Activation of Glycogen Synthase Kinase-3 Mediates the Olfactory Deficit-Induced Hippocampal Impairments. Mol Neurobiol 2014; 52:1601-1617. [DOI: 10.1007/s12035-014-8953-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Accepted: 10/20/2014] [Indexed: 01/04/2023]
|
85
|
Singer BF, Forneris J, Vezina P. Inhibiting cyclin-dependent kinase 5 in the nucleus accumbens enhances the expression of amphetamine-induced locomotor conditioning. Behav Brain Res 2014; 275:96-100. [PMID: 25196634 DOI: 10.1016/j.bbr.2014.08.055] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 08/08/2014] [Accepted: 08/27/2014] [Indexed: 10/25/2022]
Abstract
When psychostimulant drugs like amphetamine are administered repeatedly in the presence of a contextual stimulus complex, long-lasting associations form between the unconditioned effects of the drug and the contextual stimuli. Here we assessed the role played by the proline-directed serine/threonine kinase cyclin-dependent kinase 5 (Cdk5) in the nucleus accumbens (NAcc) on the expression of the conditioned locomotion normally observed when rats are returned to a context previously paired with amphetamine. Infusing the Cdk5 inhibitor roscovitine (40nmol/0.5μl/side) into the NAcc 30-min before the test for conditioning significantly enhanced the conditioned locomotor response observed in rats previously administered amphetamine in the test environment. This effect was specific to the expression of a conditioned response as inhibiting Cdk5 produced no effect in control rats previously administered saline or previously administered amphetamine elsewhere. As inhibiting Cdk5 during exposure to amphetamine has been found to block the accrual of locomotor conditioning, the present results suggest distinct roles for NAcc Cdk5 in the induction and expression of excitatory conditioning by amphetamine.
Collapse
Affiliation(s)
- B F Singer
- Committee on Neurobiology, The University of Chicago, Chicago, IL, USA
| | - J Forneris
- Department of Psychiatry and Behavioral Neuroscience, The University of Chicago, Chicago, IL, USA
| | - P Vezina
- Committee on Neurobiology, The University of Chicago, Chicago, IL, USA; Department of Psychiatry and Behavioral Neuroscience, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
86
|
Stilling RM, Rönicke R, Benito E, Urbanke H, Capece V, Burkhardt S, Bahari-Javan S, Barth J, Sananbenesi F, Schütz AL, Dyczkowski J, Martinez-Hernandez A, Kerimoglu C, Dent SYR, Bonn S, Reymann KG, Fischer A. K-Lysine acetyltransferase 2a regulates a hippocampal gene expression network linked to memory formation. EMBO J 2014; 33:1912-27. [PMID: 25024434 DOI: 10.15252/embj.201487870] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Neuronal histone acetylation has been linked to memory consolidation, and targeting histone acetylation has emerged as a promising therapeutic strategy for neuropsychiatric diseases. However, the role of histone-modifying enzymes in the adult brain is still far from being understood. Here we use RNA sequencing to screen the levels of all known histone acetyltransferases (HATs) in the hippocampal CA1 region and find that K-acetyltransferase 2a (Kat2a)--a HAT that has not been studied for its role in memory function so far--shows highest expression. Mice that lack Kat2a show impaired hippocampal synaptic plasticity and long-term memory consolidation. We furthermore show that Kat2a regulates a highly interconnected hippocampal gene expression network linked to neuroactive receptor signaling via a mechanism that involves nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). In conclusion, our data establish Kat2a as a novel and essential regulator of hippocampal memory consolidation.
Collapse
Affiliation(s)
- Roman M Stilling
- Department of Psychiatry and Psychotherapy, University Medical Center, Göttingen, Germany
| | - Raik Rönicke
- Research group for Pathophysiology in Dementia, German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Eva Benito
- Research group for Epigenetics in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Hendrik Urbanke
- Research group for Epigenetics in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Vincenzo Capece
- Research group for Computational Analysis of Biological Networks, German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Susanne Burkhardt
- Research group for Epigenetics in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Sanaz Bahari-Javan
- Research group for Epigenetics in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Jonas Barth
- Research group for Epigenetics in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Farahnaz Sananbenesi
- Department of Psychiatry and Psychotherapy, University Medical Center, Göttingen, Germany
| | - Anna L Schütz
- Research group for Computational Analysis of Biological Networks, German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Jerzy Dyczkowski
- Research group for Computational Analysis of Biological Networks, German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Ana Martinez-Hernandez
- Research group for Epigenetics in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Cemil Kerimoglu
- Department of Psychiatry and Psychotherapy, University Medical Center, Göttingen, Germany
| | - Sharon Y R Dent
- MD Anderson Cancer Center, University of Texas, Smithville, TX, USA
| | - Stefan Bonn
- Research group for Computational Analysis of Biological Networks, German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Klaus G Reymann
- Research group for Pathophysiology in Dementia, German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Andre Fischer
- Department of Psychiatry and Psychotherapy, University Medical Center, Göttingen, Germany Research group for Epigenetics in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| |
Collapse
|
87
|
Bahari-Javan S, Sananbenesi F, Fischer A. Histone-acetylation: a link between Alzheimer's disease and post-traumatic stress disorder? Front Neurosci 2014; 8:160. [PMID: 25009454 PMCID: PMC4067694 DOI: 10.3389/fnins.2014.00160] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 05/26/2014] [Indexed: 11/13/2022] Open
Abstract
The orchestration of gene-expression programs is essential for cellular homeostasis. Epigenetic processes provide to the cell a key mechanism that allows the regulation of gene-expression networks in response to environmental stimuli. Recently epigenetic mechanisms such as histone-modifications have been implicated with cognitive function and altered epigenome plasticity has been linked to the pathogenesis of neurodegenerative and neuropsychiatric diseases. Thus, key regulators of epigenetic gene-expression have emerged as novel drug targets for brain diseases. Numerous recent review articles discuss in detail the current findings of epigenetic processes in brain diseases. The aim of this article is not to give yet another comprehensive overview of the field but to specifically address the question why the same epigenetic therapies that target histone-acetylation may be suitable to treat seemingly different diseases such as Alzheimer's disease and post-traumatic stress disorder.
Collapse
Affiliation(s)
- Sanaz Bahari-Javan
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen Göttingen, Germany ; Research Group for Epigenetics in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE) Göttingen Germany
| | - Farahnaz Sananbenesi
- Research Group for Epigenetics in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE) Göttingen Germany
| | - Andre Fischer
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen Göttingen, Germany ; Research Group for Epigenetics in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE) Göttingen Germany
| |
Collapse
|
88
|
Lee YS. Genes and signaling pathways involved in memory enhancement in mutant mice. Mol Brain 2014; 7:43. [PMID: 24894914 PMCID: PMC4050447 DOI: 10.1186/1756-6606-7-43] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 05/27/2014] [Indexed: 11/10/2022] Open
Abstract
Mutant mice have been used successfully as a tool for investigating the mechanisms of memory at multiple levels, from genes to behavior. In most cases, manipulating a gene expressed in the brain impairs cognitive functions such as memory and their underlying cellular mechanisms, including synaptic plasticity. However, a remarkable number of mutations have been shown to enhance memory in mice. Understanding how to improve a system provides valuable insights into how the system works under normal conditions, because this involves understanding what the crucial components are. Therefore, more can be learned about the basic mechanisms of memory by studying mutant mice with enhanced memory. This review will summarize the genes and signaling pathways that are altered in the mutants with enhanced memory, as well as their roles in synaptic plasticity. Finally, I will discuss how knowledge of memory-enhancing mechanisms could be used to develop treatments for cognitive disorders associated with impaired plasticity.
Collapse
Affiliation(s)
- Yong-Seok Lee
- Department of Life Science, College of Natural Science, Chung-Ang University, Seoul 156-756, Republic of Korea.
| |
Collapse
|
89
|
Singer BF, Neugebauer NM, Forneris J, Rodvelt KR, Li D, Bubula N, Vezina P. Locomotor conditioning by amphetamine requires cyclin-dependent kinase 5 signaling in the nucleus accumbens. Neuropharmacology 2014; 85:243-52. [PMID: 24939858 DOI: 10.1016/j.neuropharm.2014.05.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Revised: 05/16/2014] [Accepted: 05/18/2014] [Indexed: 10/25/2022]
Abstract
Intermittent systemic exposure to psychostimulants leads to several forms of long-lasting behavioral plasticity including nonassociative sensitization and associative conditioning. In the nucleus accumbens (NAcc), the protein serine/threonine kinase cyclin-dependent kinase 5 (Cdk5) and its phosphorylation target, the guanine-nucleotide exchange factor kalirin-7 (Kal7), may contribute to the neuroadaptations underlying the formation of conditioned associations. Pharmacological inhibition of Cdk5 in the NAcc prevents the increases in dendritic spine density normally observed in this site following repeated cocaine. Mice lacking the Kal7 gene display similar effects. As increases in spine density may relate to the formation of associative memories and both Cdk5 and Kal7 regulate the generation of spines following repeated drug exposure, we hypothesized that either inhibiting Cdk5 or preventing its phosphorylation of Kal7 in the NAcc may prevent the induction of drug conditioning. In the present experiments, blockade in rats of NAcc Cdk5 activity with roscovitine (40 nmol/0.5 μl/side) prior to each of 4 injections of amphetamine (1.5 mg/kg; i.p.) prevented the accrual of contextual locomotor conditioning but spared the induction of locomotor sensitization as revealed on tests conducted one week later. Similarly, transient viral expression in the NAcc exclusively during amphetamine exposure of a threonine-alanine mutant form of Kal7 [mKal7(T1590A)] that is not phosphorylated by Cdk5 also prevented the accrual of contextual conditioning and spared the induction of sensitization. These results indicate that signaling via Cdk5 and Kal7 in the NAcc is necessary for the formation of context-drug associations, potentially through the modulation of dendritic spine dynamics in this site.
Collapse
Affiliation(s)
- Bryan F Singer
- Committee on Neurobiology, The University of Chicago, Chicago, IL, USA
| | - Nichole M Neugebauer
- Department of Psychiatry and Behavioral Neuroscience, The University of Chicago, Chicago, IL, USA
| | - Justin Forneris
- Department of Psychiatry and Behavioral Neuroscience, The University of Chicago, Chicago, IL, USA
| | - Kelli R Rodvelt
- Department of Psychiatry and Behavioral Neuroscience, The University of Chicago, Chicago, IL, USA
| | - Dongdong Li
- Department of Psychiatry and Behavioral Neuroscience, The University of Chicago, Chicago, IL, USA
| | - Nancy Bubula
- Department of Psychiatry and Behavioral Neuroscience, The University of Chicago, Chicago, IL, USA
| | - Paul Vezina
- Committee on Neurobiology, The University of Chicago, Chicago, IL, USA; Department of Psychiatry and Behavioral Neuroscience, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
90
|
Jerónimo-Santos A, Vaz SH, Parreira S, Rapaz-Lérias S, Caetano AP, Buée-Scherrer V, Castrén E, Valente CA, Blum D, Sebastião AM, Diógenes MJ. Dysregulation of TrkB Receptors and BDNF Function by Amyloid-β Peptide is Mediated by Calpain. Cereb Cortex 2014; 25:3107-21. [PMID: 24860020 DOI: 10.1093/cercor/bhu105] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) and its high-affinity full-length (FL) receptor, TrkB-FL, play a central role in the nervous system by providing trophic support to neurons and regulating synaptic plasticity and memory. TrkB and BDNF signaling are impaired in Alzheimer's disease (AD), a neurodegenerative disease involving accumulation of amyloid-β (Aβ) peptide. We recently showed that Aβ leads to a decrease of TrkB-FL receptor and to an increase of truncated TrkB receptors by an unknown mechanism. In the present study, we found that (1) Aβ selectively increases mRNA levels for the truncated TrkB isoforms without affecting TrkB-FL mRNA levels, (2) Aβ induces a calpain-mediated cleavage on TrkB-FL receptors, downstream of Shc-binding site, originating a new truncated TrkB receptor (TrkB-T') and an intracellular fragment (TrkB-ICD), which is also detected in postmortem human brain samples, (3) Aβ impairs BDNF function in a calpain-dependent way, as assessed by the inability of BDNF to modulate neurotransmitter (GABA and glutamate) release from hippocampal nerve terminals, and long-term potentiation in hippocampal slices. It is concluded that Aβ-induced calpain activation leads to TrkB cleavage and impairment of BDNF neuromodulatory actions.
Collapse
Affiliation(s)
- André Jerónimo-Santos
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Portugal Unidade de Neurociências, Instituto de Medicina Molecular, Universidade de Lisboa, Portugal
| | - Sandra Henriques Vaz
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Portugal Unidade de Neurociências, Instituto de Medicina Molecular, Universidade de Lisboa, Portugal
| | - Sara Parreira
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Portugal Unidade de Neurociências, Instituto de Medicina Molecular, Universidade de Lisboa, Portugal
| | - Sofia Rapaz-Lérias
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Portugal Unidade de Neurociências, Instituto de Medicina Molecular, Universidade de Lisboa, Portugal
| | - António P Caetano
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Portugal Unidade de Neurociências, Instituto de Medicina Molecular, Universidade de Lisboa, Portugal
| | - Valérie Buée-Scherrer
- Université Lille-Nord de France, UDSL, Lille, France Inserm U837, Jean-Pierre Aubert Research Centre, IMPRT, Lille, France CHRU-Lille, F-59000, Lille, France
| | - Eero Castrén
- Neuroscience Center, University of Helsinki, PO Box 56, 00014 Helsinki, Finland
| | - Claudia A Valente
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Portugal Unidade de Neurociências, Instituto de Medicina Molecular, Universidade de Lisboa, Portugal
| | - David Blum
- Université Lille-Nord de France, UDSL, Lille, France Inserm U837, Jean-Pierre Aubert Research Centre, IMPRT, Lille, France CHRU-Lille, F-59000, Lille, France
| | - Ana Maria Sebastião
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Portugal Unidade de Neurociências, Instituto de Medicina Molecular, Universidade de Lisboa, Portugal
| | - Maria José Diógenes
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Portugal Unidade de Neurociências, Instituto de Medicina Molecular, Universidade de Lisboa, Portugal
| |
Collapse
|
91
|
Furusawa K, Asada A, Saito T, Hisanaga SI. The effect of Cyclin-dependent kinase 5 on voltage-dependent calcium channels in PC12 cells varies according to channel type and cell differentiation state. J Neurochem 2014; 130:498-506. [PMID: 24766160 DOI: 10.1111/jnc.12746] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 04/12/2014] [Accepted: 04/16/2014] [Indexed: 11/29/2022]
Abstract
Cyclin-dependent kinase 5 (Cdk5) is a Ser/Thr kinase that plays an important role in the release of neurotransmitter from pre-synaptic terminals triggered by Ca(2+) influx into the pre-synaptic cytoplasm through voltage-dependent Ca(2+) channels (VDCCs). It is reported that Cdk5 regulates L-, P/Q-, or N-type VDCC, but there is conflicting data as to the effect of Cdk5 on VDCC activity. To clarify the mechanisms involved, we examined the role of Cdk5 in regulating the Ca(2+) -channel property of VDCCs, using PC12 cells expressing endogenous, functional L-, P/Q-, and N-type VDCCs. The Ca(2+) influx, induced by membrane depolarization with high K(+) , was monitored with a fluorescent Ca(2+) indicator protein in both undifferentiated and nerve growth factor (NGF)-differentiated PC12 cells. Overall, Ca(2+) influx was increased by expression of Cdk5-p35 in undifferentiated PC12 cells but suppressed in differentiated PC12 cells. Moreover, we found that different VDCCs are distinctly regulated by Cdk5-p35 depending on the differentiation states of PC12 cells. These results indicate that Cdk5-p35 regulates L-, P/Q-, or N-type VDCCs in a cellular context-dependent manner. Calcium (Ca(2+) ) influx through voltage-dependent Ca(2+) channels (VDCCs) triggers neurotransmitter release from pre-synaptic terminal of neurons. The channel activity of VDCCs is regulated by Cdk5-p35, a neuronal Ser/Thr kinase. However, there have been debates about the regulation of VDCCs by Cdk5. Using PC12 cells, we show that Cdk5-p35 regulates VDCCs in a type (L, P/Q, and N) and differentiation-dependent manner. NGF = nerve growth factor.
Collapse
Affiliation(s)
- Kotaro Furusawa
- Laboratory of Molecular Neuroscience, Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, Hachioji, Tokyo, Japan
| | | | | | | |
Collapse
|
92
|
Plattner F, Hernández A, Kistler TM, Pozo K, Zhong P, Yuen EY, Tan C, Hawasli AH, Cooke SF, Nishi A, Guo A, Wiederhold T, Yan Z, Bibb JA. Memory enhancement by targeting Cdk5 regulation of NR2B. Neuron 2014; 81:1070-1083. [PMID: 24607229 DOI: 10.1016/j.neuron.2014.01.022] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2014] [Indexed: 12/22/2022]
Abstract
UNLABELLED Many psychiatric and neurological disorders are characterized by learning and memory deficits, for which cognitive enhancement is considered a valid treatment strategy. The N-methyl-D-aspartate receptor (NMDAR) is a prime target for the development of cognitive enhancers because of its fundamental role in learning and memory. In particular, the NMDAR subunit NR2B improves synaptic plasticity and memory when overexpressed in neurons. However, NR2B regulation is not well understood and no therapies potentiating NMDAR function have been developed. Here, we show that serine 1116 of NR2B is phosphorylated by cyclin-dependent kinase 5 (Cdk5). Cdk5-dependent NR2B phosphorylation is regulated by neuronal activity and controls the receptor's cell surface expression. Disrupting NR2B-Cdk5 interaction via a small interfering peptide (siP) increases NR2B surface levels, facilitates synaptic transmission, and improves memory formation in vivo. Our results reveal a regulatory mechanism critical to NR2B function that can be targeted for the development of cognitive enhancers. VIDEO ABSTRACT
Collapse
Affiliation(s)
- Florian Plattner
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Adan Hernández
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Tara M Kistler
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Karine Pozo
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ping Zhong
- Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, NY 14214, USA
| | - Eunice Y Yuen
- Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, NY 14214, USA
| | - Chunfeng Tan
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ammar H Hawasli
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sam F Cooke
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Akinori Nishi
- Department of Pharmacology, School of Medicine, Kurume University, Fukuoka 830-0011, Japan
| | - Ailan Guo
- Cell Signaling Technology, CNS Development, Danvers, MA 01923, USA
| | | | - Zhen Yan
- Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, NY 14214, USA
| | - James A Bibb
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Neurology and Neurotherapeutics, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Harold C. Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
93
|
Giese KP. Generation of the Cdk5 activator p25 is a memory mechanism that is affected in early Alzheimer's disease. Front Mol Neurosci 2014; 7:36. [PMID: 24822036 PMCID: PMC4013459 DOI: 10.3389/fnmol.2014.00036] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 04/17/2014] [Indexed: 01/09/2023] Open
Abstract
About 15 years ago it was proposed that generation of the truncated protein p25 contributes to toxicity in Alzheimer's disease (AD). p25 is a calcium-dependent degradation product of p35, the principal activator of cyclin-dependent kinase 5 (Cdk5). The biochemical properties of p25 suggested that its generation would cause Cdk5 overactivation and tau hyperphosphorylation, a prerequisite for neurofibrillary tangle (NFT) formation. Whilst this model was appealing as it explained NFT formation, many laboratories could not confirm the finding of increased p25 generation in brain from AD patients. On the contrary, it emerged that p25 levels are reduced in AD. This reduction occurs primarily in the early stages of the disease. Further, p25 generation in the mouse hippocampus is associated with normal memory formation and p25 overexpression enhances synaptogenesis. Therefore, it transpires that p25 generation is a molecular memory mechanism that is impaired in early AD. I discuss the prospect that investigation of p25-regulated proteins will shed light into mechanisms underlying synaptic degeneration associated with memory decline in AD.
Collapse
Affiliation(s)
- K. Peter Giese
- Centre for the Cellular Basis of Behaviour, James Black Centre, King’s College LondonLondon, UK
| |
Collapse
|
94
|
Abstract
Recent data support the view that epigenetic processes play a role in memory consolidation and help to transmit acquired memories even across generations in a Lamarckian manner. Drugs that target the epigenetic machinery were found to enhance memory function in rodents and ameliorate disease phenotypes in models for brain diseases such as Alzheimer's disease, Chorea Huntington, Depression or Schizophrenia. In this review, I will give an overview on the current knowledge of epigenetic processes in memory function and brain disease with a focus on Morbus Alzheimer as the most common neurodegenerative disease. I will address the question whether an epigenetic therapy could indeed be a suitable therapeutic avenue to treat brain diseases and discuss the necessary steps that should help to take neuroepigenetic research to the next level.
Collapse
Affiliation(s)
- Andre Fischer
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
95
|
Nasuti C, Fattoretti P, Carloni M, Fedeli D, Ubaldi M, Ciccocioppo R, Gabbianelli R. Neonatal exposure to permethrin pesticide causes lifelong fear and spatial learning deficits and alters hippocampal morphology of synapses. J Neurodev Disord 2014; 6:7. [PMID: 24678976 PMCID: PMC3994247 DOI: 10.1186/1866-1955-6-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 03/13/2014] [Indexed: 12/17/2022] Open
Abstract
Background During the neurodevelopmental period, the brain is potentially more susceptible to environmental exposure to pollutants. The aim was to determine if neonatal exposure to permethrin (PERM) pesticide, at a low dosage that does not produce signs of obvious abnormalities, could represent a risk for the onset of diseases later in the life. Methods Neonatal rats (from postnatal day 6 to 21) were treated daily by gavage with a dose of PERM (34 mg/kg) close to the no-observed-adverse-effect level (NOAEL), and hippocampal morphology and function of synapses were investigated in adulthood. Fear conditioning, passive avoidance and Morris water maze tests were used to assess cognitive skills in rats, whereas electron microscopy analysis was used to investigate hippocampal morphological changes that occurred in adults. Results In both contextual and tone fear conditioning tests, PERM-treated rats showed a decreased freezing. In the passive avoidance test, the consolidation of the inhibitory avoidance was time-limited: the memory was not impaired for the first 24 h, whereas the information was not retained 72 h following training. The same trend was observed in the spatial reference memories acquired by Morris water maze. In PERM-treated rats, electron microscopy analysis revealed a decrease of synapses and surface densities in the stratum moleculare of CA1, in the inner molecular layer of the dentate gyrus and in the mossy fibers of the hippocampal areas together with a decrease of perforated synapses in the stratum moleculare of CA1 and in the inner molecular layer of the dentate gyrus. Conclusions Early-life permethrin exposure imparts long-lasting consequences on the hippocampus such as impairment of long-term memory storage and synaptic morphology.
Collapse
Affiliation(s)
- Cinzia Nasuti
- School of Pharmacy, Pharmacology Unit, University of Camerino, Via Madonna delle Carceri, Camerino, MC 62032, Italy.
| | | | | | | | | | | | | |
Collapse
|
96
|
Li G, Liu T, Kong X, Wang L, Jin X. Hippocampal Glycogen Synthase Kinase 3β is Critical for the Antidepressant Effect of Cyclin-Dependent Kinase 5 Inhibitor in Rats. J Mol Neurosci 2014; 54:92-9. [DOI: 10.1007/s12031-014-0254-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 02/04/2014] [Indexed: 12/17/2022]
|
97
|
Abstract
Nicotinamide, or vitamin B3, is a precursor of nicotinamide adenine dinucleotide (NAD(+)) and is involved in a multitude of intra- and inter-cellular processes, which regulate some of the cell's metabolic, stress, and immune responses to physiological or pathological signals. As a precursor of NAD(+), which is a key coenzyme in the production of adenosine triphosphate or cellular energy, nicotinamide has been investigated for potential neuroprotective effects in cellular, animal, and human studies. Objectives We aimed to summarize the current evidence on the effect of dietary and supplemental nicotinamide on cognitive function. Methods A literature review was conducted on the effects of nicotinamide and its derivatives as a preventive and therapeutic agent for disorders of neurocognitive function. Specific conditions examined include age-related cognitive decline, Alzheimer's disease, Parkinson's disease, and ischaemic and traumatic brain injury. Results Data from animal and human interventional studies and epidemiological research suggests that nicotinamide may be beneficial in preserving and enhancing neurocognitive function. Discussion Nicotinamide is non-toxic, inexpensive and widely available, and interventional studies in humans, using supplemental doses of nicotinamide, are now warranted.
Collapse
|
98
|
Fischer A. Targeting histone-modifications in Alzheimer's disease. What is the evidence that this is a promising therapeutic avenue? Neuropharmacology 2014; 80:95-102. [PMID: 24486385 DOI: 10.1016/j.neuropharm.2014.01.038] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 01/20/2014] [Accepted: 01/21/2014] [Indexed: 01/06/2023]
Abstract
Alzheimer' s disease (AD) is the most common form of dementia causing an increasing emotional and economical burden to our societies. Although much progress has been made regarding the molecular mechanisms that underlie AD pathogenesis effective therapies are not available yet. The emerging field of neuroepigenetics has provided evidence that de-regulation of epigenetic processes play a role in AD. In this article we will critically review the primary research data that led to the hypothesis that targeting histone-modifying enzymes could be used to treat AD pathogenesis and address the question if the field is ready to translate such findings into clinical application.
Collapse
Affiliation(s)
- Andre Fischer
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Grisebachstr. 5, 37077 Göttingen, Germany; Research Group for Epigenetic Mechansims of Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE) Göttingen, Grisebachstr. 5, 37077 Göttingen, Germany.
| |
Collapse
|
99
|
Sale A, Berardi N, Maffei L. Environment and Brain Plasticity: Towards an Endogenous Pharmacotherapy. Physiol Rev 2014; 94:189-234. [DOI: 10.1152/physrev.00036.2012] [Citation(s) in RCA: 265] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Brain plasticity refers to the remarkable property of cerebral neurons to change their structure and function in response to experience, a fundamental theoretical theme in the field of basic research and a major focus for neural rehabilitation following brain disease. While much of the early work on this topic was based on deprivation approaches relying on sensory experience reduction procedures, major advances have been recently obtained using the conceptually opposite paradigm of environmental enrichment, whereby an enhanced stimulation is provided at multiple cognitive, sensory, social, and motor levels. In this survey, we aim to review past and recent work concerning the influence exerted by the environment on brain plasticity processes, with special emphasis on the underlying cellular and molecular mechanisms and starting from experimental work on animal models to move to highly relevant work performed in humans. We will initiate introducing the concept of brain plasticity and describing classic paradigmatic examples to illustrate how changes at the level of neuronal properties can ultimately affect and direct key perceptual and behavioral outputs. Then, we describe the remarkable effects elicited by early stressful conditions, maternal care, and preweaning enrichment on central nervous system development, with a separate section focusing on neurodevelopmental disorders. A specific section is dedicated to the striking ability of environmental enrichment and physical exercise to empower adult brain plasticity. Finally, we analyze in the last section the ever-increasing available knowledge on the effects elicited by enriched living conditions on physiological and pathological aging brain processes.
Collapse
Affiliation(s)
- Alessandro Sale
- Institute of Neuroscience, National Research Council, Pisa, Italy; Department of Psychology, Florence University, Florence, Italy; and Scuola Normale Superiore, Pisa, Italy
| | - Nicoletta Berardi
- Institute of Neuroscience, National Research Council, Pisa, Italy; Department of Psychology, Florence University, Florence, Italy; and Scuola Normale Superiore, Pisa, Italy
| | - Lamberto Maffei
- Institute of Neuroscience, National Research Council, Pisa, Italy; Department of Psychology, Florence University, Florence, Italy; and Scuola Normale Superiore, Pisa, Italy
| |
Collapse
|
100
|
|